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� 
Abstract - Abnormal gait and postural instability are common 

disorders in people affected by Parkinson’s disease (PD). This 
paper proposes an embedded cyber-physical system for the 
identification and the real-time extraction of highly selective 
diagnostic indexes for PD patients. A non-invasive wearable and 
wireless architecture for both gait analysis and postural instability 
detection has been proposed and implemented on a programmable 
hardware. The combined analysis of EEG and EMG allows 
studying the motor cortex activity through the Movement Related 
Potentials (MRPs), determining a novel set of indexes that could 
be used for the PD diagnosis and classification. In a future 
perspective of an ASIC implementation, the real-time data 
processing has been fully realized on the Altera Cyclone V FPGA, 
without interactions with embedded processor architecture.  
Referring to an Altera Cyclone V SE 5CSEMA5F31C6N device, 
the whole implemented architecture exploits the 90% of the 
available FPGA ALMs, the 74% of the manageable registers and 
the 10.3% of the total memory, as well as the 29.7% wires 
utilization. Furthermore, the system is able to provide the outputs 
in about 57ms with a dynamically power dissipation of 89mW. 
The platform has been tested in-vivo on 2 Parkinson’s patients and 
2 healthy subjects (control group) covering three typical diagnostic 
scenarios: PD vs. Controls, Drug Treatment Evaluation and 
Involuntary Movements detection.  
 
 

Index Terms - Gait Analysis, EEG-EMG Coupling, Parkinson, 
Assistive Technology, Embedded Cyber-Physical System  
 

I. INTRODUCTION 

One of the current challenges in brain-machine interfacing is 
to characterize and decode the limb kinematics from brain 
signals. Recent research work states that it is possible to do so 
based on low frequency electroencephalographic components. 
Several the applications in neurodegenerative diseases, as well 
as the Parkinson’s diseases. 

Parkinson’s disease (PD) is one of the most common 
neurodegenerative diseases [1]. Although several motor and 
non-motor symptoms may occur over the course of the disease, 
the PD diagnosis is based on the detection of a few cardinal 
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motor signs including bradykinesia, rest tremor, and rigidity in 
different body parts, gait impairment and postural instability. 
These motor features result, at least in part, from a selective and 
progressive loss of dopaminergic neurons in the substantia 
nigra pars compacta. Although symptomatic dopamine-
replacement therapy is of benefit in the early stages of PD, it is 
also linked with the development of often disabling motor 
complications like the wearing-off phenomenon (which is 
linked to the end-of-dose deterioration) and abnormal 
involuntary movements (dyskinesia) [2, 3]. Several clinical 
rating scales have been proposed to stratify the disease. The 
Unified Parkinson’s Disease Rating Scale (UPDRS) [4] is the 
most widely used scale in clinical practice and research to 
evaluate tremor, rigidity and bradykinesia in different body 
parts, as well as speech, facial expression, gait impairment and 
postural instability by 0 to 4 grading. Like other clinical scales, 
the UPDRS is based on clinical grounds rather than systematic 
quantification and, for this reason, it can be biased. This raises 
the need for objective methods ensuring greater precision in 
evaluating PD motor signs.  
In this paper, we detail the implementation and testing a real-
time FPGA-based wearable platform for PD stratification by 
synchronized cortico-muscular analysis. The programmable 
device exploits the synchronized study of 
electroencephalography (EEG) and electromyography (EMG), 
calculating in real-time, a set of indexes (postural instability, 
involuntary movements, pre-motor potentials, drug-related 
benefits) according to the UPDRS standard scale. The complete 
cyber-physical system has been implemented on an FPGA in 
order to achieve and hardware implementation which can 
guarantee a real-time operation even when large data needs to 
be processed.  The platform has been tested in-vivo on 2 PD 
patients and 2 healthy subjects in 3 different real-life scenarios: 

(1) PD stratification based on cortico-muscular analysis;  
(2) Gait analysis to assess postural instability: 
(3) Benefits evaluation of short-term levodopa treatments.  

The structure of the paper is the following:  Sec. 2 analyzes the 
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current state of the art, briefly describes the basic medical 
knowledge, the architecture and the FPGA implementation; in 
Sec. 3, the experimental results are shown. Sec. 4 concludes the 
paper giving the perspective of the proposed cyber-physical 
system (CPS).   

II. METHODS 

A. State of the Art  

At the current state of the art, several tools aiming to stratify the 
severity of PD by smart sensors processing have been proposed 
[5]. These included video systems for gait monitoring [6], GPS 
approaches [7] or movement tracker systems [7 -10]. All the 
proposed beneficial tools have some drawbacks. The video 
system in [6] allows accurate investigation and provides useful 
information related to the gait analysis (e.g. bradykinesia, rest 
tremor, rigidity and postural instability), nevertheless, it is 
limited to an ambulatory application and needs extensive 
analysis.  High accuracy satellite positioning [7] can monitor 
outdoor walking, but it returns only few walking parameters. 
 Ambulatory gait monitoring systems, using tiny and 
wearable motion sensors, can monitor the status of the disease 
anytime and anywhere.  Among these systems, there are the 
eGaIT system [8], the Parkinson’s Kinetigraph (PKG) based 
system [10] and the wearable activity monitoring system (W-
AMS) developed in [11]. The eGaIT [8] approach reaches 91% 
of accuracy in severe PD recognition, but the accuracy goes 
down to 81% when the impairment level decreases. Although it 
is a good complementary tool for daily clinical workup, eGaIT 
does not provide useful information about bradykinesia and 
dyskinesia. The PKG [10] system is characterized by low 
encumbrance of the acquisition sensors and, also, it operates 
offline.  The W-AMS [11] extracts visual characteristics and 3D 
position by inertial sensors. However, general gait 
characteristics are frequently missed in severe PD patients and 
sometimes there are noise peaks that could be confuse with gait 
signals [11]. Rodríguez-Martín et al. in [12] have realized a 
prototype of an inertial measurement unit performing both real-
time analysis of Parkinson's disease symptoms during gait and 
fall detection. The proposed system may be applicable to the 
dyskinesia recognition or in defining the side effect in 
dopaminergic replacement treatments [13]. Despite the wide 
range of analyzed symptoms, as well as the classification 
capability [13], the data extracted need complex post processing 
to provide reliable diagnosis and this makes the domestic 
diagnosis not feasible. Also, noteworthy is the so-called 
“PERFORM” system proposed in [14]. The system includes 
four tri-axial accelerometers used to record the accelerations of 
the movements at each patient extremity, one 
accelerometer/gyroscope on the waist and an acquisition unit, 
wearable and constantly monitoring the PD patient's features 
(i.e. tremor, freezing, Levodopa inducted dyskinesia and 
bradykinesia). The overall extracted data provide a good 
description of the above-stated parameters, but the data 
handling needs post-processing and off-line classification [14].  
All the above-mentioned works are surely remarkable, 
nevertheless, the complexity of the post-processing [6, 10, 11,  

TABLE I. CURRENT STATE OF THE ART  

 
14] requires computational times and resources too demanding 
for real-time applications in a real-life scenario. Indeed, as 
shown in Table I, which compare our work at the current state 
of the art, the 50% of the analyzed solution uses dedicated 
software, installed on a computer.  Two solutions adopt a 
micro-controller solution, but only in a single case, the limited 
computational effort allows the system to be used in a real time 
context.  
Additionally, none of them provides information about the 
coupling between motor and cerebral activity. The lack of such 
information is critical.  
In fact, the combined analysis of cortical and muscular signals 
allows better understanding the cerebral activity leading to 
movement under physiological and pathological conditions. 
Although the combined evaluation of EEG and EMG signals is 
more significant for PD diagnosis [15-17], the requirement for 
computational resources becomes even more onerous. 
In fact, while a 1s data stream from 1 accelerometer 
(11bit@50Hz) [8] requires only 550 bits, a 1s second data 
stream for 1 EEG channel (24bit @500Hz) and 1 EMG channel 
(16bit@500Hz) requires 20kb. In order to guarantee the real-
time processing of such a large dataset, a dedicated processor – 
ideally an Application-Specific Integrated Circuit (ASIC) – and 
an optimized strategy for data compression are needed. In this 
work, we have therefore implemented our system on an Altera 
Cyclone V SE 5CSEMA5F31C6N device in order to 
demonstrate that an ASIC for PD stratification processing EEG 
and EMG data in real-time can be implemented.  

B. Theoretical Background  

During voluntary movements, activation of proper muscles 
sequence is preceded by a cerebral preparation process that 
usually starts about 1s before muscle contraction and is 
accompanied by EEG potentials, called “Movement Related 
Potentials” (MRPs), which reveals the intentionality of 
movement [15]. In our work, we focused on three MRPs, i.e. 
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n.d.: not defined in the reference; PDS: Parkinson’s disease stratification; RL-
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the Bereitschafts potential (BP), the μ rhythm, and the β rhythm. 
The BP is a slow positive component that increases 
progressively in amplitude starting from 1s before the 
movement and peaking about 100-200ms before the onset of 
movement. Its frequency band ranges between 2 and 5Hz. The 
signal has a 10μVmaximum amplitude [16]. The µ-rhythm 
occupies a frequency band between 9 and 11Hz and can occur 
up to 1s before the movement activation. Performing a motor 
action suppresses this rhythm [17]. The β-rhythm has a 
frequency band ranging from 12.5Hz to 30Hz. This pre-motor 
cortex rhythm is responsible for muscle contractions in isotonic 
movements [18]. Typically, MRPs are clearly visible in the 
brain hemisphere contralateral to the moving limb. A parallel 
deep knowledge of motor and cortical implications allows the 
objective investigation of cardinal features of the Parkinson’s 
disease, according to the UPDRS scale [4]. This is possible, 
assuming that any involuntary movement is linked to muscle 
activation (EMG) without a phase motor ideation (EEG). This 
cortico-muscular approach defines the postural instability and 
returns a complete gait characterization. This is thanks to the 
deep differences in the walking pattern between PD patients and 
healthy subjects: PD subjects walk slowly, performing short 
shuffling steps and exhibit freezing episodes [1-4].  

C. The Novel Cyber Physical System for Remote Gait 
Analysis 

The CPS, outlined in Figure 1, is made up by: 8 wireless surface 
EMG and 8 EEG smart electrodes of the standard 32-channel 
electroencephalographic wireless headset.  
The considered EEG electrodes are: T3, T4, C3, C4, CZ, P3, 
P4, according to the international 10-20 system [19, 20]. The 
O2 electrode is used for noise suppression.  
As shown in Figure 2, the EMG electrodes are placed on Rectus 
and Biceps Femoralis, Gastrocnemius and Tibialis of both legs 
[22 - 25]. Both the EEG and the EMG signals are sampled at 
500Hz, while the EMG has a 16bit resolution, the EEG are 
shown with 24bit of resolution [25]. Electrode signals are 
transmitted via Bluetooth to a dedicated gateway and processed 
in real-time by using an FPGA [23]. 
The workflow of the CPS can be summarized as follows. EEG 
and EMG data are analyzed at the same time by two parallel 
processing branches.  
The EEG processing branch performs the time-frequency 
analysis on the EEG data acquired in the 500ms before the 
movement. Any limb muscle activation is detected by the EMG 
electrodes that trigger the EEG analysis. For the computation, 
we evaluate the MRPs and, in particular, the peak of the BP, the 
μ and β rhythm. The MRPs detection is based on thresholds 
definition and learning. In this way, our approach aims to 
realize a “truth machine of the involuntary movements” [25] to 
detect and quantify the cortical activity leading to a detected 
movement. 
In parallel, the EMG processing aims to the instability detection 
by calculating a set of indexes quantifying both single muscles 
activity (contraction and relaxation times, step duty cycle - 
SDC) both behavior of agonist-antagonist muscles (agonist-
antagonist muscle co-contraction time, number of co-
contractions per second, named Haste Rate - HR).  

By a dynamic threshold approach, each EMG signal is 
immediately converted in real time in a 1-bit signal (called in 
the following trigger), which is high only when the muscle is 
contracted.  
The detected EMG contraction defines the acquisition trigger 
for the EEG. When the muscle activation edge occurs and all 
the MRPs overcome the thresholds (thus no critical situation is 
detected), the system extracts the Muscle Indexes (MI). 
Although muscle tone and walk pattern are subjective 
parameters, in-vivo tests and literature references [19-21, 35] 
demonstrate that the co-contraction, can be an objective index 
for unbalance detection during the gait.  
Basing on both experimental [20] and literature references [19, 
35], the CPS interprets a co-contraction time (tcc) smaller than 
400ms (lower threshold) as the indication of a normal pattern. 
In case of tcc exceeding 500ms (higher threshold), the system 
reports the presence of a significant instability. Finally, the 
range between 400ms and 500ms is used as a ‘safety margin’: 
when tcc is in this range, the algorithm takes into account the 
presence of a possible unbalance but this occurrence is not 
considered as a critical one. The co-contraction muscular 
indexes, together with the MRPs presence/absence, allow 
defining postural stability or involuntary movement onset. 
On the other hand, the single muscle parameters (activation and 
relaxation time) contribute to the assessment of the 
bradykinesia (evaluating the slowness through the step 
duration) or abnormal unilateral muscular hyperactivity, in 
which the patient tends to incline the trunk on a particular side  
In addition, they allow to uniquely assess motor fluctuations 
due to wrong treatment, by using a set of muscle 
activation/relax timers. Specifically, the system also calculates 
the step duty cycle, SDC, defined as: 
 
 

ἡἎἍ(%) = ἼἫἷἶ
ἼἫἷἶ ἼἺἭἴ

∙                (1) 

 
 

where tcon and trel  are contraction and relaxation time on each 
muscle, respectively. Figure 3 summarizes all the MI 
definitions. In particular, Figure 3.a shows two trigger signals 
generated by the Left Rectus and the Biceps Femoralis. Figure 
3.b shows the co-contraction and Figure 3.c displays the MRP 
spectral power levels referring to the first muscle activation and 
compare each of them to the correspondent fixed thresholds. 
When the CPS detects critical situation from either the EEG 
(critical motor-cortex involvements) or the EMG (abnormal co-
contractions) processing branches, it provides an alert flag 
(Feedback in Fig.1) to the physician. The flag could be used to 
deliver either an external alarm or local feedback to the patient 
muscle (electrical stimulation for muscle activation) during the 
gait protocol or postural adjustment [4]. 

D. The Algorithm 

The CPS is entrusted to the Altera Cyclone V SE 
5CSEMA5F31C6N FPGA. The EMG and EEG signals are 
analyzed in parallel by two different computing paths in the 
FPGA.  
In order to extract from the EMG signals the information about 
muscles activation/deactivation, the platform implements an  
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Fig 1. Cyber-physical system top-level architecture. EEG and EMG signals are 
wirelessly collected by a central unit, which includes an implementation of the 
proposed architecture. The architecture is here implemented on a FPGA. 

 
 
Fig. 2. (a)  EEG and (b) EMG electrodes setting. 
 

 
Fig. 3. Gait analysis parameters extraction. (a) agonist-antagonist muscle 
triggers. (b) the co-contraction signal obtained by the overlapping time of the  
triggers in (a). (c) Power spectrum of the MRP. A threshold level for MRPs on 
each step is outlined.  

algorithm aiming to generate a 1-bit signal per EMG signal 
(EMG trigger) recorded [19 - 26].  
Nevertheless, since the EMG is a signal with zero-mean and 
highly variable amplitude, a single threshold comparator 
approach cannot operate correctly. Movement artifacts and 
electrical noise can also affect it. Furthermore, even after an 
appropriate setting of the threshold, practical issues arise, such 
as the reduction of muscle tone during the medical evaluation, 
which could invalidate the diagnosis. Aiming to overcome the 
limits of a single threshold approach, the CPS exploits a 
procedure for a dynamic threshold extraction, starting from the 
raw data.  
In the following, the procedure for the adaptive movement 
detection is detailed, considering, for clarity, a single EMG 
channel. The collected EMG signal is rectified, squared and 
stored in an shift-register. The shift-register stores 16-bits M 
words (in this work M = 512, i.e. 1s of the acquisition time). By 
averaging the samples in the register, the power of the signal (in 
the M-samples window) can be extracted. The computed power 
is named Global Power (GP) in this work and it is used as a 
temporary threshold.  

A second average is calculated on the last N samples (with 
N<M) of the register (in this work N = 128, i.e. 250ms of the 
acquisition time). This second power level is called Local 
Power (LP). As soon as a new EMG sample arrives is received, 
both GP and LP are refreshed and the LP is compared to the 
GP: the dynamic movement detection consist of a 1-bit signal 
generated only when LP > GP. 
Since the threshold is cyclically updated, the algorithm follows 
the trend of the muscular tone, continuing to work properly, 
even in case of supervening fatigue. The optimization in the 
trigger generation is based on the optimal choice of N and M. 
Specifically, when N is increased, a more reliable LP is 
extracted but - in spite of this benefit - the trigger activation is 
delayed. Aiming to avoid the random behavior of the trigger 
when the subject is at rest but standing, the LP undergoes a 
second threshold verification: the LP needs to overcome - in 
addition to the GP - a baseline, which is customized on the 
individual, after a period of learning [26]. 
The real-time signal processing of the EEG signals is presented 
in the following (only one EEG channel is presented for clarity). 
EEG are continuously stored in a 256 24-bit words shift-register 
(~500ms data). 
As soon as the rising edge of the contralateral EMG occurs, a 
Fast Fourier Transform (FFT) is computed on the stored EEG. 
It should be stressed that the FFT is performed on 500ms before 
the muscle activation, in order to quantify the pre-motor 
potentials. The FFT output data are processed to extract the 
power levels in the proper MRPs bands.  
Subsequently, the computed output power levels, dynamically 
calculated as soon as a new muscle contraction is detected, are 
compared to static thresholds (one for each frequency band of 
BPth, µth, and βth) in order to evaluate the voluntariness of each 
EMG contraction. MRPs thresholds are subjectively calibrated 
basing on a stage of machine learning. In the calibration stage, 
the subjects were asked to stand, in the rest position, for about 
1 minute without performing any movement and the MRP 
baseline is evaluated. 
The movement is considered intentional and properly 
elaborated by the brain, only when MPR power levels are 
greater than the learned thresholds. All the under-threshold 
situations are considered as a mismatch between the movement 
performed and its brain processing (possible involuntary 
movement). Typically, MRPs are more visible in contralateral 
hemisphere with respect to the limb involved in the movement.  
These potentials are elicited into motor cortex area, i.e.: central 
and early parietal brain zone, with high relevance on the midline 
electrodes (C3, Cz, C4 - International 10-20 system [19, 20]) that 
typically refer to leg and foot movements [15].  
Figure 4 summarizes the steps of the algorithm operation. First, 
EMG raw data are acquired in real-time (in Figure 4.a One 
channel out of 8 is shown for clarity).  The red semi-
transparency area represents the samples (NSa) that are 
considered for computing the LP; similarly, the yellow area 
represents the samples (MSa) used for the GP extraction. The 
EMG signal in Figure 4.a is processed in order to generate a 
Trigger (in Figure 4.b). The Trigger returns a high level when 
the local power (LP in Figure 4.b) is greater than the global one 
(GP in Figure 4.b). When the trigger rising edge occurs (red 
arrow in Figure 4.b), the EEG channels from the contra-lateral 
motor cortex hemisphere are processed by time-frequency  
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Fig. 4. Demonstrative algorithm workflow evaluated on a single step. (a) Raw 
EMG signal (blue - right Gastr.) and the windows for trigger generation (GP 
yellow and LP light red).  (b) the associated Trigger signal (c) The FFT on the 
midline electrode Cz-O2 for the extraction of MRPs. 
 
analysis. The time-frequency analysis adopted in this work is 
the Short Time Fourier Transform (STFT). 
This method has been selected since it allows keeping the 
timing information (which is completely lost in a standard 
Fourier Transform) and, since it is computationally lighter than 
the Wavelet Transform, it is more suitable for real-time 
applications. Specifically, the EEG raw data is divided into slots 
of 500ms (i.e. 250 samples) by a sliding rectangular window. A 
first stage of noise reduction is performed by using a ‘non-
motor’ EEG channel (O2 in this work).  Subsequently, the ‘Fast 
Fourier Transform’ (FFT) algorithm performs the spectral 
analysis of each EEG windowed signal. The spectral outcomes 
are labelled in the time domain by using the last sample 
analyzed in the window. Since the frequency resolution of the 
FFT is the ratio between the sampling frequency (fsEEG=500 
Sa/s) and the width of the window (250 Sa), the spectral 
resolution is 2Hz, which is enough for the band multiplexing. 
Instead, the time resolution is linked to the sliding step of the 
window, i.e. 50 samples or 100ms. Afterword, a 3D 
spectrogram is derived (Figure 4.c): time values are on the x-
axis, the y-axis reports the frequency, while the absolute value 
of the signal FFT is reported using a different color scale. The 
contribute of the movement related potentials (EEGs), in the 
specific frequency bands, is expressed in the following in term 
of dBµ, which is by definition: 
 

ὓὙὖ| = 20 ∙ log [ ]
       (2) 

E. The FPGA Implementation 

The above-described system has been physically prototyped by 
VHDL on an evaluation board provided by Terasic: DE1-SoC 
Rev.E, which embeds the Altera Cyclone V SE 
5CSEMA5F31C6N FPGA. The prototyping set-up is shown in 
Fig. 5, where is possible to identify the Terasic board and the  
EEG/EMG signals readout and their canalization on the 
computing unit.  
In our design, 16 bio-signals (8 EEG and 8 EMG channels) 
inputs and 57 outputs, have been used. 

 
Fig. 4. System prototyping set-up: DE1-SoC evaluation board and bio-signals 
receiver 

The inputs, coming from signal conditioning circuits [26-29], 
are serially canalized on 16 FPGA GPIO ports. Finally, they are 
filtered [30-33].  
The 57 outputs, which are functionally distributed on the 
remaining available GPIO ports, consist of:  
- 21 cortical parameters: BP, μ and β 1bit detection flags for 

each 7 motor-cortex channel. Thee flags rise to ‘1’ if the 
MRP overcomes the baseline, otherwise ‘0’.  

- 4 1bit co-contractions  
- 4 co-contractions digitized with a dedicated counter in 11 

bits. Thus, co-contraction time can assume a value between 
0ms and 4094ms, considering 500Hz sampling rate. The 
extracted data have time resolution of 2ms. 

- 8 contractions and 8 relaxation times extracted from a 
dedicated counter with 11 bits. As for the co-contraction, 
the contraction and relaxation times have 2ms of resolution 
and a full scale of about 4s. 

- 8 7-bits duty cycles with 1% of sensitivity over the 
measured data.  

The global signals are: the asynchronous Reset, the Enable 
SW  which stops the processing; the 500Hz_CLK, sampling 
rate for both EMG and EEG. The adopted system clock is the 
8MHz CLK (8.19209MHz), a clock signal derived by the on-
chip Phase-Locked Loop (PLL) from the embedded 50MHz 
oscillator (50MHz_CLK).  
The overall implementation is made up by 8 EMG and 7 EEG 
processing branches working in parallel on the FPGA.  
The following section details the FPGA implementation of the 
algorithm. 

F. The Computing Paths  

EEG Branch. Figure 6 outlines a top-level workflow of a 
single EEG computing branch. The computation core of the 
considered branch is the FFT processor (256 points, 24 bit 
resolution), based on a Radix-2 Butterfly Structure (fixed point 
variable streaming FFT). The Radix-2 Butterfly Structure has 
been adopted for the Decimation-In Frequency because of its 
higher efficiency (it reduces the complex multiplications from  
N² to N/2log2N, where N is the number of samples in the signal 
stream, 256 in our case) The EEG samples acquired are 
dynamically stored in a 256 24bit words RAM in FIFO 
configuration (EEG Ram) driven by the FFT Controller. 
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Fig. 6. Overview of the EEG branch. 
 

 
 

Fig. 7. Overview of the EMG branch. 

As shown in Figure 6, the FFT Controller provides the data to 
be analyzed (D_FFT), the control signal for the FFT processor 
(Sink FFT) and a dedicated clock (Clk_FFT) @ 4MHz. The 
FSM in FFT Controller waits for the 500Hz_CLK rising edge, 
generating the RAM clock (Clk). 
As shown Figure 6, if the L_EMG Trigger rises to ‘1’, the 
RAM stored samples are transferred to the FFT processor by 
properly temporizing through a series of dedicated states 
(Sink). The FFT is done in less than 1ms.  
Once the data are sent, the FSM waits for the FFT completion 
and finally passes the Real and Imaginary part to the MRP 
Calculator. The FSM for the MRP Calculator interprets the 
FFT output data, extracting the BP, µ and β powers, in natural 
units (BP, MU, BETA signals). Finally, BP, µ and β values are 
compared to static thresholds. The subjective thresholds are 
preloaded on the FPGA [22, 34].  
EMG Branch. As shown in Figure 7, the EMG samples are 
squared (16bit to 32bit) and passed to two blocks named Global 
Power Finite State Machine (FSM) and Local Power one. 
 

 
 

Fig. 8. Overview of the MIs branch. 
 
 
The finite state machines calculate the dynamic threshold (GP) 
and the local power (LP). Basing on two block RAM (GP RAM 
512 and LP RAM 128 in Figure 7), when a new EMG sample 
occurs, the last sample in RAM is extracted and returns in a 
FIFO-like functionality to proper FSM. The overall power 
within the window is refreshed by subtracting the previously 
RAM- extracted sample and by adding the new sample (Sum in 
follows). The FSMs overwrite the RAM word with the new 
data. Mathematically the FSM process can be expressed as: 
 

ἡἽἵ:= Ἑ∙ἡ ὀ▪ ὀ
╜

          (3)  
 

where x is the last squared sample extracted from the RAM 
block,  x  is the new arrived sample, which is going to pick the 
first position in the RAM, M is the number of samples (512 for 
GP or 128 for LP) and S is defined in (4): 

ἡ =
Ἑ
∙ ∑ ὀἱἙ

ἱ           (4)   

where x   represents each sample arrived.            
The 128bit based FSM differs from the 512bit based one, 
because in the LP Sum is divided by 128 (it consists of a 7bit 
right shift) while for the GA by 512 (9bit right shift).  
At first, a three conditions comparator (>) compares the 
powers calculated by the two blocks (GP and LP) and then 
compares LP with the learned fixed threshold (BL). The 
comparator provides a 1bit EMG Trigger, used both in the EEG 
and Muscular Indexes (MI) computing branches. 

MI Branch. Figure 8 schematically explains the process of 
indexes extraction from a single muscle. The branch operates 
serially with the generation of Trigger signal (EMG Branch 
output), and thus when the Trigger goes ‘1’, the Activation 
Counter starts increasing its value by 1 bit, which corresponds 
to a 2ms increment (500Hz).  Relax Counter operates in an 
analogous manner, but its increment is linked to the state ‘0’ of 
the Trigger. At the end of the step, both the counters values are 
sent in output when the synchronization signal (Edge 
detector) goes high. A parallel bit sum (+) between realizes 
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Contra_t and Rel_t the step time.  When the step is over (or 
another step starts), all the MI extracted until now are enabled 
to pass through a Parallel In- Parallel Out register (PIPO), 
which is piloted by the Edge detector signal.   
When all the values are successfully transmitted downstream 
the PIPO, the counters are cleared. In this way, all the useful 
values (Activation Time, Step Time) are simultaneously present 
downstream from the PIPO for the entire next step time. This 
approach isolates the counting section, generating a static 
calculation section for the SDC. 
Here, the Contra_t is multiplied for (100)10 and then divided 
by the entire step duration (Step_t). The quotient (Q) in output 
represents the integer value of the SDC (7bits). The remaining 
divider block is used for a rounding process. 
In addition to single MI, also Agonist and Antagonist muscle 
Triggers are jointly evaluated, by using an AND gate, 
generating the co-contraction waveform. Similarly to 
Activation/Relax Counters operation, the co-contractions 
time are evaluated and returns its value when the step - in which 
the co-contraction is contained - ends. The Output Management 
block is used to refresh the output values on external device 
(e.g. set of display or website refresh) with an adequate timing. 

III. RESULTS  

In the present section, a detailed report on the FPGA-based CPS 
performance is reported, focusing on the FPGA resources 
utilization, operation timing and power consumption. In 
addition, a section is dedicated to the in-vivo validation of the 
algorithm on 2 PD patients and 2 healthy subjects (control 
group). 

A. FPGA Implementation Performances 

In the acquisition frame, the CPS analyzes about 64kbps 
(500Sa/(s∙ch) ∙ 16bit/Sa ∙ 8ch) from the EMG side and 84kbps 
(500Sa/(s∙ch) ∙ 24bit/Sa ∙ 7ch) from the EEG. The system 
involves a total of 148kbps and provides outputs at 434bps. The 
CPS exploits 28894.7 adaptive logic modules out of 32070 
available (90.1%), 419004 bits on memory block, where 
4065280 are available (10.3%). In term of registers, the system 
uses the 74.8% (47996/64140). Table II summarizes the 
resources consumption by macro subsystems. 
The EMG computing comprises the Global Power and Local 
Power FSMs, as well as RAMs block for the storage of the 
patterns. The EEG computing concerns, the FSMs for FFT 
controller/processor and MRPs calculation. The third entity 
(Single Muscle Indexes) represents the resources utilization for 
the extraction of Contra_t, Rel_t, SDC. The Coupled Muscles 
Indexes is related to the extrapolation of Co-Contraction time 
and HR for 4 agonist-antagonist couples. Other defines the 
surrounding circuitry.  
By deeply analyzing the first two sub-systems, it is possible to 
quantify the contribution of each FSM in a single computing 
branch. The outcomes are shown in Figures 9 and 10. 
Figure 9 shows the contribution in terms of resources utilization 
(ALMs, Registers and Memory) of the FSMs, in a single EMG 
branch. A single EMG branch consumes 268.8 ALMs, 188 
Registers and 20480 bits of Memory blocks.  
 

TABLE II. RESOURCES UTILIZATION BY SUB-SYSTEMS 
 

 

 
Fig. 9.  Contribute in resources utilization of the FSMs that operates in a single 
EMG branches 
 

 
Fig. 10.  Contribute in resources utilization of the FSMs that operates in a single 
EEG branches  
Figure 10 reports the consumption (ALMs, Registers and 
Memory) of the FSMs in a single EEG branches. A single EEG 
branch consumes 4100.8 ALMs, 6994 Registers and 36632 bits 
of Memory blocks. 
Figure 11 shows the Logic Array Block (LAB) utilization on 
the Altera Cyclone V FPGA, by using the Chip Planner Tool. 
In particular, Figure 11.a reports the LAB utilization of the 
entire MI block (8 Single Muscle Indexes and 4 Coupled 
Muscles Indexes Extraction). The Figure 11.b shows the LAB 
utilization of the sub-system that implements the 8 EMG 
branches. The overall system is sketched in Figure 11.c, also 
comprising the 7 EEG blocks. In the Figure 11.d, it is shown by 
different colors, the increment in the LAB occupation, caused 
by the FFT blocks. Finally, the Figure 11.e represents a 
colormap of the wire utilization normalized to the available 
connection on the FPGA.  The MI block involves the 2.9% of 
the total wire. For the EMG block, the routing utilization utility 
returns the 7.8%, while the 19% is dedicated to the EEG one, 
for a total of 29.7% of wire utilization. 
In the timing requirements frame, the overall processing, from 
data collection up to FPGA output generation, requests about 
57ms, matching the real-time constraints. In particular, the 
wireless recording system latencies are 1ms and 14ms, for 
multiplexing data digitalization and transmission, respectively.  
The EMG trigger is activated about 40ms after the actual  

SUB-SYSTEM 
ALMS 

(TOT: 
32070) 

ALUTS 
REGISTERS 

(TOT: 
64140) 

BLOCK MEMORY 
(BITS) 

(TOT : 4065280) 
8 EMG 

Computing 
1836.2 
(5.7%) 3880 1432 (2.2%) 163840 (4.0%) 

7 EEG  
Computing 

23996 
(74.8%) 40286 45227 

(70.5%) 
255164 
(6.3%) 

Single Muscle 
Indexes 

2657.6 
(8.3%) 5264 800 (1.3%) 0 

Coupled Muscles 
Indexes 44.0 (0.14%) 48 120 (0.2%) 0 

Others 360.9 (1.1%) 642 417(0.7%) 0 (0.0%) 

Total 28894.7 
(90.1%) 50120 47996 

(74.8%) 419004(10.3%) 
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Fig. 11.  LAB utilization of: (a) 8 MIs branches (b) 8 EMG branches (c) Overall 
system (d) FFT block locations (e) wire utilization colormap. 
 
contraction [26] once the discrimination process of 10µs is 
performed. When enabled, the FFT runs in 0.13ms and the 
whole EEG processing, comprising the MRP calculation is 
completed in less than 1ms. The MI block operates, on average, 
each second but with a computing time of 0.2ms.  

B. CPS Implementation Power Consumption 

In a context of power consumption estimation, the here 
presented CPS, must be divided into two sub-systems: the 
sensors set and the computing unit (FPGA).   Considering the 
first one, the wireless EMG sensors, operates with a power 
supply voltage of 4V (Lithium Battery of  28 x 20 x 12 mm), 
absorbing 40mW with a sampling rate of 2kHz and a 
transmission power (ARP) of 0.45mW@2.4MHz. In a 
continuous mode operation, the EMG nodes are able to send 
data for about 12 hours. 
The EEG module uses an accumulator LIP 523450 3.7V has a 
rated power consumption on 500mW. A typical continuous 
acquisition reaches about 8 hours.  
The PowerPlay Power Analyzer tool has been used to provide 
the power consumption values related to the computing unit 
(FPGA). All the data reported in the following have been 
obtained with a “high” power estimation confidence. The 
overall implementation consumes 519.57mW without heat sink 
with still air, of which 416.64mW is a core static thermal power 
dissipation. The PSTATIC is the thermal power dissipated on chip, 
independent of user clocks. It includes the leakage power from 
all FPGA functional blocks, except for I/O DC bias. The I/O 
management statically dissipated 8mW with a VDDIO=2.5V. The 
adopted ADC (AD7928), operating with a serial clock of 
20MHz and with a throughput rate of 500sps has a consumption 
of about 2.7mW, due to its operation in full shutdown mode. 
The power dissipation caused by signal transitions 
(dynamically dissipated) is estimated as PDYN=88.89mW, 

considering the two adopted clocks (500Hz_Clk and 
8MHz_Clk). PDYN can be divided in: 14.4 mW for the I/O, 
8.55mW for the register cells, 1.84mW for the combinational 
ones, the Memory 10 kB (M10K) blocks, dissipates 34.09mW, 
and finally, the PLL unit consumption is about 30mW. 

C. Study of the FPGA implementation in semicustom in 65nm 
CMOS technology 

The development of complex algorithms for domestic medical 
assistance systems is a challenging task, due to the high 
innovation rate and processing demands of applications in this 
field. The development is usually supported by a software, 
which provides an infrastructure (e.g., access to sensor data) 
that simulates and evaluates the algorithms. One problem, 
especially with computationally intensive algorithms, is the 
slow simulation speed. In this paper, we have presented a 
prototyping environment that connects a software development 
framework with a FPGA-based hardware platform. This allows 
implementing computationally intensive tasks in hardware. The 
proposed rapid prototyping system not only reduces the 
simulation time, thereby allowing the software designer to 
evaluate algorithmic parameters with quicker feedback, but also 
allows verifying and evaluating hardware modules for rapid 
prototyping. The degree of benefit can grow if the platform 
becomes portable or even wearable. In this aim, the future 
perspective of the method here described, is its implementation 
on an ad hoc ASIC design that can be easily embedded in a belt 
o in a swatch-type of holder. The benefits are: 1. area reduction 
and then portability, 2. power reduction, 3. Even faster 
performance evaluation and 4. better wireless communication. 
About the area, accordingly to a large set of benchmark circuits, 
largely detailed by Wong et al. in their work [37], a reliable area 
occupation estimation, for a semicustom CMOS 65nm 
implementation, can be made. In this aim, the equivalence 
between the implemented “building blocks” is necessary. 
Following the guidelines in [37], it is possible to describe our 
design as constituted by 46223 ALUTs, 228 M10k (10kb 
memory) and 87 complete DSP blocks. The tile areas of the 
above-listed blocks are respectively: 0.0011mm², 0.0635mm² 
and 0.2623mm². Considering the 65nm CMOS technology for 
the ASIC implementation, the area occupancy of the FPGA 
design, is about 70 mm² (considering as example, an off-the-
shelf commercial device, in the same technology), as shown in 
Fig.11. As explained in [37], a rule of thumb to obtain a worst-
case estimation of an equivalent 65nm semicustom CMOS 
circuit is to divide the area occupation for 27. In this way, but 
considering an additional optimization the here presented 
architecture, can potentially be compacted in less than 2 mm² 
die. The power can be estimated in a conservative mode as 
100μW at 1.2V of supply (the max value in 65nm LP-CMOS 
technology) with a frequency of 300MHz [38]. The power 
consumption is reduced of almost three order of magnitude 
respect the ALTERA platform  implementation, here described. 
The better communication is obviously given by the fixed 
distance between the transmitter (EEG/EMG) and the receiver 
(ASIC placed on the user belt).  
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D. In-Vivo Testing and Validation 

The in-vivo testing and validation has been performed on a 
dataset of 2 patients affected by Parkinson disease (subject 1: 
age 61,  male, body height 1.60m and body weight 58kg;subject 
2: age 65,  male, body height 1.73m and body weight 67kg) and 
2 healthy subjects (subject 1: age 26,  male, body height 1.77m 
and body weight 86kg; subject 2: age 25,  male, body height 
1.80m and body weight 80kg). To validate the proposed CPS, 
we used the following two standardized clinical protocols 
derived from the UPDRS guidelines [4]:   
- 10-meter walk: Subjects walk for 10m distance. Subjects 

are asked to adopt a comfortable walking speed. The 10-
meter walk is repeated for 10 times [4]. The  test is 
prescribed by the sections: III.10  “March”, III.11 
“Freezing”, III.13 “Postural Assessment”, III.14 
“Bradykinesia” and indirectly in motor complications 
section (UPDRS-IV) as  IV.1 “Dyskinesia time” , IV.3 “ 
Motor Fluctuations” 

- Pull Test.  The test evaluates the response to a sudden body 
displacement, induced by a rapid and vigorous traction on 
the shoulders while the patient is in an upright position. 
This test is prescribed by the section III.12 under the 
caption “Postural Stability” [4]. 

Specialized medical staff have supervised these tests which are 
prescribed by the UPDRS III and IV Parts [4]. The in-vivo 
testing was carried out in accordance with the recommendations 
of the ethics committee of the ‘Azienda Ospedaliera Policlinico 
di Bari', Italy, with written informed consent from all subjects. 
All subjects gave written informed consent in accordance with 
the Declaration of Helsinki. The protocol was approved by the 
above-mentioned ethics committee. The CPS has been tested 
for three different applications: PD vs. Controls, Drug 
Treatment Evaluation and Involuntary Movements detection. 
The experimental results have been reported in the following 
sub-paragraphs.  
 

E. PD vs. Control Group (PD Stratification) 

A systematic comparison between the PD extracted parameters 
and healthy subjects is provided in order to highlight the system 
suitability in disease recognition and stratification. The subjects 
(n. 2 PD subjects and n.2 Controls) are asked to perform the 10 
meter walk protocol [4]. The results are presented in Table III, 
reporting the maximum and typical co-contraction time, the HR 
and the single muscle activation/relax time and SDC during a 
single step. Table III shows separately the parameters for PD 
(red background in Table II) and healthy subjects (blue 
background in Table III). All the indexes are expressed as 
mean±std. Also, the maximum co-contraction values are in the 
same form, since each one is referred to 2 subjects for each 
category. The results quantify the differences between PD 
subjects and healthy controls during gait: 

- The maximum co-contraction time is higher in PD. The 
maximum co-contraction time detected for all muscles of 
the PD subjects is higher compared with the healthy 
subjects (e.g. on L. Rect-L. Bic. in PD subjects is 756ms 
and in healthy ones is 548ms). 

- Co-contraction times during gait are higher in PD subjects 
than in healthy ones. Indeed, typical co-contraction time 
values show an increase of 18ms, on average, on the left 
side pairs, and an increment of 105ms on the right side 
between PD subjects and healthy ones. A great increment 
has been recorded on the right leg with +120ms on R.Gast 
and the coupled R. Tib; similarly, the couple R. Bic – R. 
Rect returns an increment of +90ms. The incidence on the 
right leg can be attributed to the patient’s body flexion in 
that direction during his normal stationary state due to the 
Parkinson disease effect.  

- Co-contractions are more frequent in PD. The average 
haste rates for PD subjects and healthy ones are 1.17 co-
contractions/s and 0.44 co-contractions/s – respectively. 

- The PD shows muscular hyperactivity during gait. On 
single muscle and on average, PD and healthy subjects 
show contraction time during the 48.56% and the 33.62% 
respectively of the step time width.  

The difference in the walking patterns is also evident observing 
the diagram presented in Figure 12. The co-contractions are 
monitored on the Left Gastrocnemius and Tibialis muscles, 
while BP is evaluated on EEG channels from the right brain 
motor area. The areas in semi transparency (red for PD patients 
and blue for Control group) are delimited by a confidence 
interval of 67% of the evaluated (BP, tcc). The figure is derived 
considering a single 10-meter walk of a PD subject and a 
healthy individual due to the presence of exhaustive values for 
the comparison in Table III.   
The analysis shows that both subjects provide comparable 
results concerning MRPs, while the co-contractions are clearly 

TABLE III. MUSCULAR INDEXES EXTRACTED BY THE CPS IN PD VS. 
CONTROLS – PD: RED, CONTROLS: BLUE 

756±28 630±32 446±30 640±42

548±100 364±74 270±26 542±64

266±88 260±90 128±72 336±186

268±44 140±86 100±42 246±28

1.53±0.06 1.1±0.09 1.1±0.20 1±0.16

0.68±0.05 0.25±0.12 0.25±0.08 0.59±0.05

482
±138

434
±198

554
±260

386
±72

386
±150

382
±270

528
±232

420
±282

353
±128

509
±198

574
±208

382
±170

560
±254

444
±110

328
±142

494
±182

338
±204

382
±156

362
±132

596
±138

632
±298

572
±206

336
±174

536
±88

982
±498

788
±361

632
±282

868
±392

950
±266

980
±230

982
±438

812
±368

58±6 53±4 60±6 40±3 38±10 40±8 61±6 44±8
26±3 39±5 48±6 31±2 37±7 31±5 25±3 38±8

 
 
 

 
 
Fig. 12. BP vs co-contraction time for both PD (blue) and healthy subjects. 
The analysis outlines the different distribution of co-contraction times during 
gait. 
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more frequent and reach values much higher in the PD subjects 
than in the healthy ones. During the 10-meter walk, no 
significant differences on MRPs were found. 
In Figure 12, it is possible to observe a slight broadening in the 
range of BP occurrence in healthy subjects.  

These brain rhythms tend to focus with high probability at fixed 
values. The BP ranges from 58-65 dBµ, µ-rhythm from 51-55 
dBµ and β-rhythm sweeps between 41-44 dBµ, for both 
subjects.   

F. Drug Treatment Evaluation 

This section is dedicated to the assessment of the CPS responses 
in term of cortico-muscular implications before and two hours 
after Levodopa administration. In this framework, PD subjects 
were asked to perform a natural and fluid walk, with 
comfortable speed in a straight path of 10m for 10 times (5 
before and 5 after the treatment) within a total time range of 120 
min, after the Levodopa administration. The results 
summarized in Table IV quantify the muscular implications of 
the drug treatment.  
The parameters here reported and discussed are obtained 
considering the average on first 5 walks as “Before drug 
treatment” status (green background in Table IV), and the 5 
final walks as “After drug treatment” status (red background in 
Table IV).  
 

TABLE IV. MUSCULAR INDEXES EXTRACTED BY THE CPS IN DRUG 

TREATMENT EVALUATION – BEFORE AND AFTER TREATMENT. 

496 566 464 840

418 396 516 628

312±88 221±90 176±72 334±186

282.5±90 170±60 272±150 256±150

1.04±0.2 1,26±0.16 1,58±0.10 1,92±0.08

1.04±0.08 1.04±0.02 1.1±0.12 1.02±0.24

440±1
30

680±1
10

616±3
00

518±1
72

606±1
90

502±2
70

478±2
32

770±2
82

444
±108

568
±130

613
±228

470
±272

650
±130

552
±250

446
±200

614
±130

558
±204

708
±422

570
±94

494
±216

716
±390

512
±206

588
±70

222
±120

642
±136

372
±222

296
±122

466
±108

404
±144

416
±300

540
±88

414
±266

44±6 49±4 52±2 50±8 46±4 50±2 55±4 78±2

41±2 60±3 67±4 50±7 62±3 57±5 45±5 60±7

 

TABLE V. MRPS EXTRACTED BY THE CPS IN DRUG TREATMENT EVALUATION 

– BEFORE AND AFTER TREATMENT. 

 

 

67.8±8.5 63.8±6.7 62.3±6.7 65.6±13 65.1±7.4 63.8±13 66.2±12

60.7±6.3 62.3±5.6 62.7±5.4 62.4±5.1 60.9±5.9 62.4±5.2 62.9±5.7

49.2±2.3 50.1±2.9 49.0±2.4 47.9±9.1 47.0±9.0 52.3±9.5 49.0±9.0

48.5±2.3 48.9±2.9 48.6±2.7 48.3±2.7 46.6±3.0 49.6±2.7 48.3±3.0

40.1±3.3 41.0±2.8 39.6±2.3 39.6±7.5 40.1±7.2 45.0±4.3 40.8±2.8

39.31±2 8.9±2.7 37.8±3.2 36.6±3.3 36.1±3.3 41.4±2.2 37.4±3.2

 

 
Fig. 13. The MRPs modulation evaluated on midline electrode Cz before 
(green) and after (red) the drug treatment. 

The results contained in Table IV show that: 

i. Before Levodopa administration PD subject had a 
maximum co-contraction time is of 840ms on R. Rect-
R. Bic; while after the drug absorption, it reaches 628ms. 
The maximum co-contraction time is reduced of 23.6% 
after the treatment. 

ii. The co-contractions show a decrease of 53ms (average 
value on all the four muscles couples), with a good 
improvement on the right leg (Δt=-51ms on R.Gast-R. 
Tib and Δt=-78ms on R. Bic – R. Rect). A postural 
recovery is induced by the Levodopa benefits. 

iii. After Levodopa administration, the HR is reduced, on 
average, of 23.3%. PD subject exhibits 1.92 co-
contractions/s and 1.02 co-contractions/s respectively 
before and after the treatment. Co-contractions are, on 
average, less frequent in PD patients after 120min from 
the treatment onset. 

iv. The activation time on single muscle is reduced, on 
average, of 5.4% (576ms→544ms), similarly the 
relaxation is reduced of 18.8% (546ms→443ms). This 
behavior is linked to the loss of the slowness status. 
Indeed, step time after Levodopa is reduced of 100ms, 
reaching the duration of 1.1s starting from 1.2s. 

v. On single muscle, the duty cycles follow an opposite 
trend, showing an average increase of 2.25%. It 
represents an increase of the muscular activity during the 
gait.  

Gait analysis returns differences on MRPs value, showing a 
reduction of intentionality in the phase of motor ideation, 
typical of recurring movements (e.g. walking or go upstairs). 
Table V and Figure 13 show the Levodopa brain modulation in 
terms of BP µ and β rhythm mean and standard deviation of the 
probability density functions. 
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The x-axis and y-axis in Figure 13 are shared in order to 
highlight the differences in MRPs when the Levodopa starts to 
act. The BP before the Levodopa treatment (BP black Gaussian 
bell in Figure 13) has a mean of 64.9 dBµ and standard 
deviation of 9.61 dBµ. 
After the Levodopa, the BP reaches a mean of 62.1 dBµ and a 
standard deviation of 5.6 dBµ. A relative reduction of 4.3% 
(2.8dBµ) in BP is recorded. 
The µ- rhythm records an absolute increment of 0.8dBµ, or 
relative one of 1.6% (48.4dBµ±6.3dBµ → 49.2dBµ±6.3dBµ). 
Similarly to BP, the β-rhythm moves from 40.9dBµ±4.3dBµ to 
38.2dBµ±2.8dBµ with a relative decrease of the 6% (2.7dBµ). 

G. Detection of changes in postural stability  

The CPS ability in detecting changes in postural stability is 
evaluated by using the pull test protocol, as detailed in sec. 3.D.  
The normal response to avoid the fall is one/two quick 
backwards steps followed by one forward recovery step. 
Usually, during this pull test, the physician associates a score to 
the subject reaction. In our case, the proposed CPS, quantifies 
the instability of the subject and his intentionality in the 
performed movements by evaluating the MRPs. Table VI 
reports the Pull test results for both PD and control subjects, 
including the mean value of MRPs for both right and left EEG 
monitored electrodes (the value is an average on all the 
premotor interested channels of both the subject involved in the 
test). It is important to note that the values of MRPs increase in 
an alternating manner, depending on the limb used to bring the 
step. For instance, considering only the BP values column, the 
results show that: starting from the 1st backward step, if we  
 

TABLE VI. MRPS AND CO-CONTRACTIONS REVEALED BY THE CPS DURING 

PULL TEST FOR BOTH PD AND CONTROL GROUPS.  

62.8 60 49.6 54 46.1 45.6 1060

58.4 56.4 47.3 52.2 42.7 38.1 568

65 62.4 54.5 54.7 46.3 44.3 598

- - - - - - -

66 66.3 55.4 55.7 48.2 43.7 751

- - - - - - -

69.3 66 55.8 57.9 44.8 47.9 98

69.2 64.2 53.1 58.4 44.2 44.1 204

66 68.2 57.6 59.5 46.3 47 102

- - - - - - -

 
 
Fig. 14.  (a) MRPs power levels behavior increment in the PD patient in order 
to recovery his stability. (b) BP average (red) extracted from each single 
channel response. 
compare the BP extracted from left and right EEG channels, the 
larger values always alternated following the order: Right side 
BP (1st Back),  Left side BP (2nd Back), Right side BP (1st 
Recovery),  Left side BP (2nd Recovery). Both the sides 
increase their values. 
Table VI also provides an indication of the maximum co-
contraction value. The main results quantifying the differences 
between PD subjects and healthy controls are presented below: 

i. PD subjects perform more settling steps. The EMG 
analysis demonstrates that, when the sudden 
unbalancing is externally induced, both the PD 
subjects reacted with four steps, two of whom were 
backwards. The other two steps were forward and 
completed the settling. The healthy subjects reacted to 
the test with one single settling step. 

 
ii. PD co-contraction times are even longer in the pull 

test. PD subjects’ co-contraction times increase, on 
average, of 98.75ms w.r.t. gait values, showing a 
situation of effective unbalancing. The healthy 
subjects’ co-contraction values show no relevant 
change (increase of 11.75ms). The PD subjects’ co-
contraction maximum value was 1.06s and was 
recorded on right biceps-rectus Femoralis. 

When a sudden unbalancing situation occurs, the PD subjects 
increase their initial value (that sweep between 59.9-62.8dBµ) 
of 6.5dBµ on right EEG channels and 6dBµ on left ones. The 
increase is progressive over the steps, clearly showing the 
recovery of voluntariness during the movements. The healthy 
subjects showed an initial range of 56.4-58.4dBµ and reached 
64.2 dBµ (increase of 7.8 dBµ) and 69.2dBµ (increase of 7.8 
dBµ) on left and right EEG channels, respectively.  
The MRPs evolution of the PD subjects during a pull test is 
presented in Figure 14. The Figure 14.a clearly shows a rising 
trend for all the evaluated MRPs. The alternation between EEG 
left and right side in term of MRPs level is clearly present in BP 
and β-rhythms. Figure 14.b shows how the channels 
subjectively contribute to the average in Table VI. Figure 14 
and Table VI show that the recorded MRPs values are 
comparable to the resting values under externally induced 
unbalance. However, in the recovery steps, the MRPs increase 
both on right (ΔBP = +11.9% ; Δµ =5.5% ; Δβ = + 11.1%) and 
left (ΔBP = +14.3% ;  Δµ = +8.8% ; Δβ = +2.2%) EEG 
channels. 
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IV. CONCLUSION 

In this work, a non-invasive wearable and wireless embedded 
cyber-physical system for PD monitoring has been 
implemented and tested on a programmable hardware. The CPS 
is made up by a wearable sensing system (8 EEG and 8 EMG 
wireless smart electrodes) and processing and synchronous data 
handling unit, based on an FPGA (Altera Cyclone V) as core, 
for real-time monitoring. The system calculates 57 different 
indexes, estimating the muscular implications during the 
movement and the motor cortex activity through the Movement 
Related Potentials. The implemented processing algorithm 
allows the system detecting critical situations during the gait, 
and thus to activate a corrective feedback action. In a future 
perspective of the system ASIC implementation, the choice of 
the implementation platform led on a programmable hardware, 
taking care to use only elementary components, without 
interactions/programming on the embedded processor (e.g. 
NiosII). The implemented architecture exploits the 90% of the 
ALMs, the 74% of the manageable registers and the 10.3% of 
the total memory, as well as the 29.7% wires utilization. In 
practical applications, the CPS is able to provide the outputs in 
about 57ms with a dynamically power dissipation of 89mW. 
The processing system is self-adapting and the sensors non-
invasive, can be wear by the patient without need of help or 
electrode positioning if EEG and EMG are respectively 
embedded in cap or sock. In such a way it is usable as assistive 
tool even in domestic environment and collect data over the day 
monitoring in remote of the drug impact in case of PD patients. 
The system has been in-vivo validated on a dataset of 4 patients. 
The experimental outcomes clearly show that the system can 
extract walking pattern differences between PD and healthy 
subjects, including agonist-antagonist co-contraction duration 
(i.e. Typical co-contraction of PD is, on average, 215ms higher 
than the same measure on a healthy subject). In the drug 
benefits/side effects evaluation application the CPS shows a 
reduction of 7% and 12% reduction in the typical and maximum 
co-contraction time, respectively, linked to the Levodopa 
administration. The system ability in fall recognition is proven 
with the pull test, in which all the monitored MRPs, increase 
during the voluntariness recovery.  
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