
24 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity / Ambrosio, V.; D'Avenia, P.. - In:
JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 264:(2018), pp. 3336-3368.
[10.1016/j.jde.2017.11.021]

This is a pre-print of the following article

Original Citation:

Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity

Published version
DOI:10.1016/j.jde.2017.11.021

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/114304 since: 2021-03-11



NONLINEAR FRACTIONAL MAGNETIC SCHRÖDINGER EQUATION:
EXISTENCE AND MULTIPLICITY

VINCENZO AMBROSIO AND PIETRO D’AVENIA

Abstract. In this paper we focus our attention on the following nonlinear fractional Schrödinger equa-
tion with magnetic field

ε2s(−∆)sA/εu + V (x)u = f(|u|2)u in RN ,

where ε > 0 is a parameter, s ∈ (0, 1), N ≥ 3, (−∆)sA is the fractional magnetic Laplacian, V : RN → R
and A : RN → RN are continuous potentials and f : RN → R is a subcritical nonlinearity. By applying
variational methods and Ljusternick-Schnirelmann theory, we prove existence and multiplicity of solutions
for ε small.

1. introduction

In this paper we consider the following fractional nonlinear Schrödinger equation

ε2s(−∆)sA/ εu+ V (x)u = f(|u|2)u in RN (1.1)

where ε > 0 is a parameter, s ∈ (0, 1), N ≥ 3, V ∈ C(RN ,R) and A ∈ C0,α(RN ,RN ), α ∈ (0, 1], are
the electric and magnetic potentials respectively, u ∈ RN → C, f : R → R. The fractional magnetic
Laplacian is defined by

(−∆)sAu(x) := cN,s lim
r→0

∫
Bcr(x)

u(x)− eı(x−y)·A(x+y
2

)u(y)

|x− y|N+2s
dy, cN,s :=

4sΓ
(
N+2s

2

)
πN/2|Γ(−s)|

. (1.2)

This nonlocal operator has been defined in [15] as a fractional extension (for an arbitrary s ∈ (0, 1))
of the magnetic pseudorelativistic operator, or Weyl pseudodifferential operator defined with mid-point
prescription,

HAu(x) =
1

(2π)3

∫
R6

eı(x−y)·ξ
√∣∣∣ξ −A(x+ y

2

)∣∣∣2u(y)dydξ

=
1

(2π)3

∫
R6

e
ı(x−y)·

(
ξ+A
(
x+y

2

))√
|ξ|2u(y)dydξ,

introduced in [26] by Ichinose and Tamura, through oscillatory integrals, as a fractional relativistic gen-
eralization of the magnetic Laplacian (see also [25] and the references therein). Observe that for smooth
functions u,

HAu(x) = − lim
ε↘0

∫
Bcε(0)

[
e−ıy·A

(
x+ y

2

)
u(x+ y)− u(x)− 1{|y|<1}(y)y · (∇− ıA(x))u(x)

]
dµ

= lim
ε↘0

∫
Bcε(x)

[
u(x)− eı(x−y)·A(x+y

2 )u(y)
]
µ(y − x)dy,
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2 V. AMBROSIO AND P. D’AVENIA

where

dµ = µ(y)dy =
Γ
(
N+1

2

)
π
N+1

2 |y|N+1
dy.

For details about the consistency of the definition in (1.2) we refer the reader to [30,32,33,37].
The study of nonlinear fractional Schrödinger equations attracted a great attention, specially in the

case A = 0 (see [29] and references therein). For instance, Felmer et al. [20] dealt with existence, regularity
and symmetry of positive solutions when V is constant, and f is a superlinear function with subcritical
growth; see also [3,5,17] and [14] for the nonlocal Choquard equation. Secchi [35] obtained the existence
of ground state solutions under the assumptions that the potential V is coercive. Shang and Zhang [36]
considered a fractional Schrödinger equation involving a critical nonlinearity, investigating the relation
between the number of solutions and the topology of the set where V attains its minimum. Alves and
Miyagaki [2] studied the existence and the concentration of positive solutions via penalization method
(see also [4, 6, 21,24] for related results).

On the other hand, the classical magnetic nonlinear Schrödinger equation has been extensively inves-
tigated by many authors [1, 7, 10,13,19,27] by applying suitable variational and topological methods.

However, in our nonlocal setting, only few papers [15,22,28,39] dealt with the existence and multiplicity
of fractional magnetic problems. Therefore, motivated by this, in the present work we are interested in
the existence and multiplicity of solutions to (1.1) when the potential V verifies the following condition

V∞ = lim inf
|x|→∞

V (x) > V0 = inf
x∈RN

V (x) > 0 (V)

introduced by Rabinowitz in [34].
In this context, the presence of the nonlocal operator (1.2) makes our analysis more complicated and

intriguing, and new techniques are needed to overcome the difficulties that appear.
Before to state our results, we introduce the assumptions on the nonlinearity. Along the paper we will

assume that f : R→ R is a C1 function satisfying the following assumptions:
(f1) f(t) = 0 for t ≤ 0;
(f2) lim

t→0
f(t) = 0;

(f3) there exists q ∈ (2, 2∗s), where 2∗s = 2N/(N − 2s), such that limt→∞ f(t)/t
q−2

2 = 0;
(f4) there exists θ > 2 such that 0 < θ

2F (t) ≤ tf(t) for any t > 0, where F (t) =
∫ t

0 f(τ)dτ ;
(f5) there exists σ ∈ (2, 2∗s) such that f ′(t) ≥ Cσt

σ−4
2 for any t > 0.

A first result we get is the following.

Theorem 1.1. Assume that (V) and (f1)–(f5) hold. Then there exists ε0 > 0 such that the problem
(2.1) admits a ground state solution for any ε ∈ (0, ε0).

Now, let us introduce the sets

M = {x ∈ RN : V (x) = V0} and Mδ = {x ∈ RN : dist(x,M) < δ} for δ > 0. (1.3)

In order to obtain a multiplicity result for (1.1), we consider the Ljusternik-Schnirelmann category:
given a closed set Y is of a topological space X, the Ljusternik-Schnirelmann category of Y in X, denoted
by catX(Y ), is the least number of closed and contractible sets in X which cover Y (see [38]).
More precisely we have

Theorem 1.2. Assume V verifies (V), and f satisfies (f1)–(f5). Then, for any δ > 0 there exists εδ > 0
such that, for any ε ∈ (0, εδ), the problem (1.1) has at least catMδ

(M) nontrivial solutions.

The proof of the above theorem is based on variational methods.
In the study of our problem, we will use the diamagnetic inequality recently established in [15] and

some interesting decay properties of positive solutions to the limit problem associated to (1.1) (see [20]).
These facts combined with the Hölder continuity assumption on the magnetic potential, will play an



NONLINEAR FRACTIONAL MAGNETIC SCHRÖDINGER EQUATION 3

essential role to get some useful estimates needed to obtain the existence of solutions and to implement
the barycenter machinery.

The paper is organized as follows: in Section 2 we introduce the functional setting and we give some
fundamental tools and in Sections 3 and 4 we give the proof of Theorems 1.1 and 1.2 respectively.

Notations: In what follows | · |r denotes the Lr(RN ) norm, <(z) is the real part of the complex number
z, the letters C, Ci will be repeatedly used to denote various positive constants whose exact values are
irrelevant and can change from line to line, and BR(x) is the ball in RN centered at x with radius R.

2. The space Hs
ε

By using the change of variable x 7→ ε x we can see that the problem (1.1) is equivalent to the following
one

(−∆)sAεu+ Vε(x)u = f(|u|2)u in RN , (2.1)

where Aε(x) = A(ε x) and Vε(x) = V (εx).
For a function u : RN → C, let us denote by

[u]2A :=
cN,s

2

∫∫
R2N

|u(x)− eı(x−y)·A(x+y
2

)u(y)|2

|x− y|N+2s
dxdy,

and consider
Ds
A(RN ,C) :=

{
u ∈ L2∗s (RN ,C) : [u]2A <∞

}
.

Then let us introduce the Hilbert space

Hs
ε :=

{
u ∈ Ds

Aε(R
N ,C) :

∫
RN

V (ε x)|u|2 dx <∞
}

endowed with the scalar product

〈u, v〉ε := <
∫
RN

V (ε x)uv̄dx

+
cN,s

2
<
∫∫

R2N

(u(x)− eı(x−y)·Aε(x+y
2

)u(y))(v(x)− eı(x−y)·Aε(x+y
2

)v(y))

|x− y|N+2s
dxdy

and let
‖u‖ε :=

√
〈u, u〉ε.

Observe that for A = 0 we recover the classical definition of Hs(RN ,C) (for details we refer the reader
to [16]).

If u ∈ Hs
ε , let

ûj(x) := ϕj(x)u(x) (2.2)

where j ∈ N∗ and ϕj(x) = ϕ(2x/j) with ϕ ∈ C∞0 (RN ,R), 0 ≤ ϕ ≤ 1, ϕ(x) = 1 if |x| ≤ 1, and ϕ(x) = 0
if |x| ≥ 2. Note that ûj ∈ Hs

ε and ûj has compact support.
Proceeding as in [39, Lemma 3.2], we get the following useful result.

Lemma 2.1. For any ε > 0, it holds ‖ûj − u‖ε → 0 as j →∞.

The space Hs
ε satisfies the following fundamental properties.

Lemma 2.2. The space Hs
ε is complete and C∞c (RN ,C) is dense in Hs

ε .
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Proof. To prove that Hs
ε is a complete space, let us consider a Cauchy sequence (un) in Hs

Aε
. In particular

(
√
Vεun) is a Cauchy sequence in L2(RN ,C), and being Vε ≥ V0 in RN , there exists u ∈ L2(RN ,C) such

that
√
Vεun →

√
Vεu in L2(RN ,C) and a.e. in RN . By using Fatou’s Lemma we get un → u in Hs

ε .
To prove that C∞c (RN ,C) is dense in Hs

ε we fix u ∈ Hs
ε and we consider the sequence ûj(x) = u(x)ϕ(x/j)

defined as in (2.2).
In view of Lemma 2.1, we know that ‖ûj − u‖ε → 0 as j → ∞ and so it is enough to prove the density
for compact supported functions in Hs

ε .
Now, we consider v ∈ Hs

ε with compact support, and assume that supp(v) ⊂ BR(0). Taking into account

|u(x)− u(y)|2 ≤ 2|u(x)− u(y)eıAε(
x+y

2
)·(x−y)|2 + 2|u(y)|2|eıAε(

x+y
2

)·(x−y) − 1|2

and that, from |eıt − 1|2 ≤ 4 and |eıt − 1|2 ≤ t2, we deduce∫
BR(0)

|u(y)|2dy
∫
RN

|eıAε(
x+y

2
)·(x−y) − 1|2

|x− y|N+2s
dx ≤ C

[∫
BR(0)

|u(y)|2dy
∫
|x−y|>1

1

|x− y|N+2s
dx

+

∫
BR(0)

|u(y)|2dy
∫
|x−y|≤1

max|z|≤ 2R+1
2
|Aε(z)|2

|x− y|N+2s−2
dx

]
<∞,

since Vε ≥ V0 in RN , we can see that u ∈ Hs(RN ,C).
Then, it makes sense to define uε = ρε ∗ u ∈ C∞c (RN ,C), where ρε is a mollifier with supp(ρε) ⊂ Bε(0).
Arguing as in [23, Theorem 3.24] we have that uε → u in Hs(RN ,C) as ε→ 0.
Moreover there exists K > 0 such that supp(uε − u) ⊂ BK(0) for all ε > 0 small enough and, arguing as
before,

[uε − u]2Aε ≤ 2[uε − u]2 + 2

∫∫
R2N

|(uε − u)(y)|2 |e
ıAε(

x+y
2

)·(x−y) − 1|2

|x− y|N+2s
dxdy

≤ 2[uε − u]2 + C

[∫
BK(0)

|(uε − u)(y)|2dy
∫
|x−y|>1

1

|x− y|N+2s
dx

+

∫
BK(0)

|(uε − u)(y)|2dy
∫
|x−y|≤1

(max|z|≤ 2K+1
2
|Aε(z)|)2

|x− y|N+2s−2
dx

]

≤ 2[uε − u]2 + C

∫
BK(0)

|(uε − u)(y)|2dy → 0 as ε→ 0.

�

Using (V) and the pointwise diamagnetic inequality

||u(x)| − |u(y)|| ≤
∣∣∣u(x)− eı(x−y)·A(x+y

2 )u(y)
∣∣∣ ,

we can proceed as in [15, Lemma 3.1] to prove that if u ∈ Hs
ε , then |u| ∈ Hs(RN ,R) and the following

fractional diamagnetic inequality
[|u|]2 ≤ [u]2Aε (2.3)

holds, where

[u]2 :=
cN,s

2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Then, arguing as in [15, Lemma 3.5] and using [9, Lemma 3.2], we get
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Lemma 2.3. The space Hs
ε is continuously embedded in Lr(RN ,C) for r ∈ [2, 2∗s], and compactly embed-

ded in Lrloc(RN ,C) for r ∈ [1, 2∗s).
Moreover, if V∞ = ∞, then, for any bounded sequence (un) in Hs

ε , we have that, up to a subsequence,
(|un|) is strongly convergent in Lr(RN ,R) for r ∈ [2, 2∗s).

For compact supported functions in Hs(RN ,R) we can prove the following result.

Lemma 2.4. If u ∈ Hs(RN ,R) and u has compact support, then w = eıA(0)·xu ∈ Hs
ε .

Proof. Assume that supp(u) ⊂ BR(0). Since V is continuous it is clear that∫
RN

V (ε x)|w|2dx =

∫
BR(0)

V (ε x)|u|2dx ≤ C|u|22 <∞.

Therefore, it is enough to show that [w]Aε <∞.
Recalling that A is continuous and |eıt − 1|2 ≤ 4 and |eıt − 1|2 ≤ t2 for all t ∈ R, we have

[w]2ε =

∫∫
R2N

|eıA(0)·xu(x)− eıA(0)·yeıAε(
x+y

2
)·(x−y)u(y)|2

|x− y|N+2s
dxdy

≤ 2[u]2 + 2

∫∫
R2N

u2(y)|eı[Aε(
x+y

2
)−A(0)]·(x−y) − 1|2

|x− y|N+2s
dxdy

≤ 2[u]2 + 2

∫
BR(0)

u2(y)dy
[∫
|x−y|≥1

4

|x− y|N+2s
dx+

∫
|x−y|<1

|Aε(x+y
2 )−A(0)|2

|x− y|N+2s−2
dx
]

≤ 2[u]2 + 2

∫
BR(0)

u2(y)dy
[∫
|x−y|≥1

4

|x− y|N+2s
dx+

∫
|x−y|<1

(max|z|≤ 2R+1
2

[|Aε(z)|+ |A(0)|])2

|x− y|N+2s−2
dx
]

≤ 2[u]2 + C

∫
BR(0)

u2(y)dy
[∫ ∞

1

1

ρ2s+1
dρ+

∫ 1

0

1

ρ2s−1
dρ
]
<∞

because of u ∈ Hs(RN ,R) and s ∈ (0, 1). �

Moreover we have the following Lions-type Lemma (see [20, Lemma 2.2]).

Lemma 2.5. Let N ≥ 2. If (un) is a bounded sequence in Hs(RN ,R) and if

lim
n

sup
y∈RN

∫
BR(y)

|un|2dx = 0

where R > 0, then un → 0 in Lr(RN ,R) for all r ∈ (2, 2∗s).

Arguing as in [18, Lemma 3.2] and taking into account Lemma 2.3 we can prove

Lemma 2.6. Let τ ∈ [2, 2∗s) and (un) ⊂ Hs
ε be a bounded sequence. Then there exists a subsequence

(unj ) ⊂ Hs
ε such that for any σ > 0 there exists rσ,τ > 0 such that

lim sup
j

∫
Bj(0)\Br(0)

|unj |τdx ≤ σ (2.4)

for any r ≥ rσ.
We conclude this section giving some properties on the nonlinearity that will be useful in the proofs

of our results.

Lemma 2.7. The nonlinearity satisfies the following properties:
(i) for every ξ > 0 there exists Cξ > 0 such that for all t ∈ R,

θ

2
F (t2) ≤ f(t2)t2 ≤ ξt2 + Cξ|t|q;
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(ii) there exist C1, C2 > 0 such that for all t ∈ R, F (t2) ≥ C1|t|ϑ − C2;
(iii) if unj ⇀ u in Hs

ε and ûj is defined as in (2.2) we have that∫
RN

F (|unj |2)− F (|unj − ûj |2)− F (|ûj |2)dx = oj(1) as j →∞;

(iv) if (un) ⊂ Hs
ε is bounded, (unj ) a subsequence as in Lemma 2.6 such that unj ⇀ u in Hs

ε and ûj
is defined as in (2.2) we have that∫

RN
[f(|unj |2)unj − f(|unj − ûj |2)(unj − ûj)− f(|ûj |2)ûj ]φdx→ 0 as j →∞

uniformly with respect to φ ∈ Hs
ε with ‖φ‖ε ≤ 1.

Proof. Properties (i) and (ii) are easy consequences of (f2), (f3) and (f4).
Let us prove (iii). Recalling that ûj = ϕju with ϕj ∈ [0, 1], (i) in Lemma 2.7, and using the Young
inequality we can see that

|F (|unj |2)− F (|unj − ûj |2)| ≤ 2

∫ 1

0
|f(|unj − tûj |2)||uj − tûj ||ûj |dt

≤ C
[
(|unj |+ |u|)|u|+ (|unj |+ |u|)q−1|u|

]
≤ ξ(|unj |2 + |unj |q) + C(|u|2 + |u|q)

for any ξ > 0. Then

|F (|unj |2)− F (|unj − ûj |2)− F (|ûj |2)| ≤ ξ(|unj |2 + |unj |q) + C(|u|2 + |u|q)

Now let
Gξj := max

{
|F (|unj |2)− F (|unj − ûj |2)− F (|ûj |2)| − ξ(|unj |2 + |unj |q), 0

}
.

Note that Gξj → 0 as j → ∞ a.e. in RN and 0 ≤ Gξj ≤ C(|u|2 + |u|q) ∈ L1(RN ,R). Thus, applying the
Dominated Convergence Theorem, we deduce that∫

RN
Gξjdx→ 0 as j →∞.

On the other hand, from the definition of Gξj ,

|F (|unj |2)− F (|unj − ûj |2)− F (|ûj |2)| ≤ ξ(|uj |2 + |uj |2
∗
s ) +Gξj .

Hence, since (unj ) is bounded in Hs
ε , we have

lim sup
j

∫
RN
|F (|unj |2)− F (|unj − ûj |2)− F (|ûj |2)| ≤ Cξ

and, from the arbitrariness of ξ, we conclude.
To prove (iv), let us consider φ ∈ Hs

ε such that ‖φ‖ε ≤ 1 and σ > 0. Note that, for any r ≥ max{rσ,2, rσ,q},
where rσ,τ has been introduced in Lemma 2.4,∣∣∣∣∫

RN
[f(|unj |2)unj − f(|unj − ûj |2)(unj − ûj)− f(|ûj |2)ûj ]φdx

∣∣∣∣
≤
∫
Br(0)

|f(|unj |2)unj − f(|vj |2)vj − f(|ûj |2)ûj ||φ|dx

+

∫
Bcr(0)

|f(|unj |2)unj − f(|vj |2)vj − f(|ûj |2)ûj ||φ|dx

=: Dj + Ej .
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Taking into account Lemma 2.3 and Lemma 2.1, we can apply the Dominated Convergence Theorem to
obtain that Dj → 0 uniformly in φ ∈ Hs

ε with ‖φ‖ε ≤ 1.
On the other hand, recalling that (i) in Lemma 2.7 and that ûj = 0 in Bc

j (0) for any j ≥ 1, we deduce
that, for j large enough,

Ej =

∫
Bj(0)\Br(0)

|f(|unj |2)unj − f(|unj − ûj |2)(unj − ûj)− f(|ûj |2)ûj ||φ|dx

≤ C
∫
Bj(0)\Br(0)

(|unj |+ |ûj |+ |unj |q−1 + |ûj |q−1)|φ|dx.

Since ‖φ‖ε ≤ 1, using also the Hölder inequality and Lemma 2.3, we get∫
Bj(0)\Br(0)

(|unj |+ |unj |q−1)|φ|dx ≤ C

(∫
Bj(0)\Br(0)

|unj |2dx

) 1
2

+

(∫
Bj(0)\Br(0)

|unj |qdx

) q−1
q


and so, by Lemma 2.4,

lim sup
j

∫
Bj(0)\Br(0)

(|unj |+ |unj |q−1)|φ|dx ≤ C(σ
1
2 + σ

q−1
q ).

Moreover, note that from Lemma 2.3 and Lemma 2.1, we know that ûj → u in L2(RN ,C) ∩ Lq(RN ,C)
as j →∞. This and Hölder inequality give

lim sup
j

∫
Bj(0)\Br(0)

(|ûj |+ |ûj |q−1)|φ|dx =

∫
Bcr(0)

(|u|+ |u|q−1)|φ|dx ≤ C(σ
1
2 + σ

q−1
q )

for r large enough. Thus the arbitrariness of σ > 0 yields Ej → 0 as j → ∞ uniformly with respect to
φ, ‖φ‖ε ≤ 1 and we conclude. �

3. A first existence result

The goal of this section is to prove Theorem 1.1.
We want to find solutions of (2.1) in the sense of the following definition.

Definition 3.1. We say that u ∈ Hs
ε is a weak solution to (2.1) if for any v ∈ Hs

ε

<
(cN,s

2

∫∫
R2N

(u(x)− eı(x−y)·Aε(x+y
2

)u(y))(v(x)− eı(x−y)·Aε(x+y
2

)v(y))

|x− y|N+2s
dxdy

+

∫
RN

V (ε x)uv̄ dx−
∫
RN

f(|u|2)uv̄ dx
)

= 0.

Such solutions can be found as critical points of the functional Jε : Hs
ε → R defined as

Jε(u) =
1

2
‖u‖2ε −

1

2

∫
RN

F (|u|2) dx.

Using Lemma 2.3 and Lemma 2.7, we can get that Jε is well-defined and that Jε ∈ C1(Hs
ε ,R).

Let us show that for any ε > 0 the functional Jε satisfies the geometrical assumptions of the Mountain
Pass Theorem.

Lemma 3.2. The functional Jε satisfies the following conditions:
(i) there exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ;
(ii) there exists e ∈ Hs

ε \Bρ(0) such that Jε(e) < 0.
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Proof. Taking into account (i) in Lemma 2.7, Lemma 2.3, and (V), for ξ < V0 we get

Jε(u) ≥ 1

2
[u]2Aε +

1

2

(
1− ξ

V0

)∫
RN

V (ε x)|u|2dx−
Cξ
2

∫
RN
|u|qdx ≥ C1‖u‖2ε − C2‖u‖qε

and then (i).
To prove (ii), we observe that by (ii) in Lemma 2.7 and taking ϕ ∈ C∞c (RN ,C) such that ϕ 6≡ 0 we have

Jε(tϕ) ≤ t2

2
‖ϕ‖2ε − tϑC1|ϕ|ϑϑ + C2|supp(ϕ)| → −∞ as t→ +∞

since ϑ > 2. �

By the Ekeland Variational Principle there exists a (PS)cε sequence (un) ⊂ Hs
ε , that is

Jε(un)→ cε and J ′ε(un)→ 0, (3.1)

where cε is the minimax level of the Mountain Pass Theorem, namely

cε := inf
γ∈Γ

max
t∈[0,1]

Jε(γ(t))

with Γ := {γ ∈ H([0, 1], Hs
ε ) : γ(0) = 0, Jε(γ(1)) < 0}.

Let us observe that (un) is bounded in Hs
ε . In fact by using (3.1) and (f4) we can see that

cε + on(1)‖un‖ε = Jε(un)− 1

θ
〈J ′ε(un), un〉

=

(
1

2
− 1

θ

)
‖un‖2ε +

∫
RN

[
1

θ
f(|un|2)|un|2 −

1

2
F (|un|2)

]
dx

≥
(

1

2
− 1

θ

)
‖un‖2ε.

Moreover it is standard to verify the characterization

cε = inf
u∈Hs

ε\{0}
sup
t≥0

Jε(tu) = inf
u∈Nε

Jε(u),

where
Nε := {u ∈ Hs

ε \ {0} : 〈J ′ε(u), u〉 = 0}
is the usually Nehari manifold associated to Jε.
The following properties hold.

Lemma 3.3. We have:
(i) there exists K > 0 such that, for all u ∈ Nε, ‖u‖ε ≥ K;
(ii) for any u ∈ Hs

ε \ {0} there exists a unique t0 = t0(u) such that Jε(t0u) = maxt≥0 Jε(tu) and then
t0u ∈ Nε.

Proof. Property (i) follows easily from (i) in Lemma 2.7 and Lemma 2.3, since, if u ∈ Nε, then, for all
ξ > 0

‖u‖2ε =

∫
RN

f(|u|2)|u|2dx ≤ ξ‖u‖2ε + C‖u‖qε.

To prove (ii), let us fix u ∈ Hs
ε \ {0} and consider the smooth function h(t) := Jε(tu) for t ≥ 0. Arguing

as in Lemma 3.2 we can get that

Jε(tu) ≥ C1t
2‖u‖2ε − C2t

q‖u‖qε
and

Jε(tu) ≤ t2

2
‖u‖2ε − tϑC1

∫
Ω
|u|ϑdx+ C2|Ω| → −∞ as t→ +∞,
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where Ω is a compact subset of supp(u) with |Ω| > 0. Then there exists a maximum point of h. To prove
the uniqueness, let 0 < t1 < t2 be two maximum points of h. Since h′(t1) = h′(t2) = 0, then

‖u‖2ε =

∫
RN

f(|t1u|2)|u|2dx =

∫
RN

f(|t2u|2)|u|2dx

which is in contradiction with the strict increasing of f assumed in (f5). �

To prove the compactness of the (PS)d sequences, for suitable d ∈ R, we will use the following
preliminary result.

Lemma 3.4. Let d ∈ R and (un) ⊂ Hs
ε be a (PS)d sequence for Jε such that un ⇀ 0 in Hs

ε . Then, one
of the following alternatives occurs:

(a) un → 0 in Hs
ε ;

(b) there are a sequence {yn} ⊂ RN and constants R, β > 0 such that

lim inf
n

∫
BR(yn)

|un|2dx ≥ β > 0.

Proof. Assume that (b) does not hold true. Then, for every R > 0 such that

lim
n

sup
y∈RN

∫
BR(y)

|un|2dx = 0.

Since (un) is bounded in Hs
ε , from (2.3) we deduce that (|un|) is bounded in Hs(RN ,R), so by Lemma

2.5 it follows that |un|q → 0.
Since, moreover, (un) is also a (PS)d sequence for Jε, by (i) in Lemma 2.7 we have that for every ξ > 0

0 ≤ ‖un‖2ε =

∫
RN

f(|un|2)|un|2dx+ on(1) ≤ ξ|un|22 + Cξ|un|qq + on(1) ≤ ξ

V0
‖un‖2ε + Cξ|un|qq + on(1).

Thus, for ξ small enough, we get (a). �

Moreover, to develop our arguments, we will need to consider the following family of limit problems
associated to (2.1)

(−∆)su+ µu = f(|u|2)u in RN , (Pµ)
with µ > 0, whose corresponding C1 functional IV0 : Hs(RN ,R)→ R is given by

Iµ(u) =
1

2
‖u‖2µ −

1

2

∫
RN

F (|u|2) dx,

where
‖u‖2µ := [u]2 + V0|u|22.

Even in this case we can define the Nehari manifold

Mµ = {u ∈ Hs(RN ,R) : 〈I ′µ(u), u〉 = 0}
and we have that

cµ := inf
γ∈Ξµ

max
t∈[0,1]

Iµ(γ(t)) = inf
u∈Hs(RN ,R)\{0}

sup
t≥0

Iµ(tu) = inf
u∈Mµ

Iµ(u)

with Ξµ := {γ ∈ C([0, 1], Hs(RN ,R)) : γ(0) = 0, Iµ(γ(1)) < 0}.
We will call ground state for (Pµ) each minimum of Iµ inMµ, wich is also a solution of (Pµ).

Remark 3.5. Arguing as in Lemma 3.3 we can prove that for every fixed µ > 0 there exists K > 0 such
that, for all u ∈ Mµ, ‖u‖ε ≥ K and that for any u ∈ Hs(RN ,R) \ {0} there exists a unique t0 = t0(u)
such that Iµ(t0u) = maxt≥0 Iµ(tu) and then t0u ∈Mµ.

Using the same arguments of Lemma 3.4 and arguing as in [21, Lemma 6] we can get
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Lemma 3.6. Let (wn) ⊂Mµ be a sequence satisfying Iµ(wn)→ cµ. Then (wn) is bounded in Hs(RN ,R)
and, up to a subsequence, wn ⇀ w in Hs(RN ,R). If w 6= 0, then wn → w ∈Mµ in Hs(RN ,R) and w is
a ground state for (Pµ). If w = 0, then there exist (ỹn) ⊂ RN and w̃ ∈ Hs(RN ,R) \ {0} such that up to
a subsequence wn(·+ ỹn)→ w̃ ∈Mµ in Hs(RN ,R) and w̃ is a ground state for (Pµ).

Remark 3.7. In view of [20, Theorems 1.2 and 3.4] we can see that a ground state υ obtained in Lemma
3.6 is Hölder continuous and has a power type decay at infinite, more precisely

0 < υ(x) ≤ C

|x|N+2s
if |x| > 1.

Now we prove a fundamental property on the (PS)d sequences for Jε in the noncoercive case (V∞ <∞).

Lemma 3.8. Let d ∈ R. Assume that V∞ < ∞ and let (vn) be a (PS)d sequence for Jε in Hs
ε with

vn ⇀ 0 in Hs
ε . If vn 6→ 0 in Hs

ε , then d ≥ cV∞.

Proof. Let (tn) ⊂ (0,+∞) such that (tn|vn|) ⊂MV∞ .
Firstly we prove that lim supn tn ≤ 1.
Assume by contradiction that there exist δ > 0 and a subsequence, still denoted by (tn), such that

tn ≥ 1 + δ ∀n ∈ N. (3.2)

Since (vn) is a (PS)d sequence for Jε we have

[vn]2Aε +

∫
RN

V (ε x)|vn|2dx =

∫
RN

f(|vn|2)|vn|2dx+ on(1). (3.3)

On the other hand, tn|vn| ∈ MV∞ . Thus we get

[|vn|]2 + V∞|vn|22 =

∫
RN

f(t2n|vn|2)|vn|2dx. (3.4)

Putting together (3.3), (3.4) and using (2.3) we obtain∫
RN

[
f(t2n|vn|2)− f(|vn|2)

]
|vn|2 dx ≤

∫
RN

(V∞ − V (ε x)) |vn|2dx+ on(1). (3.5)

Now, by the assumption (V), we can see that for every ζ > 0 there exists R = R(ζ) > 0 such that

V∞ − V (ε x) ≤ ζ for any |x| ≥ R. (3.6)

Combining (3.6) with the fact that, by Lemma 2.3, vn → 0 in L2(BR,C), so that |vn| → 0 in L2(BR),
and with the boundedness of (vn) in Hs

ε , we get∫
RN

(V∞ − V (ε x)) |vn|2dx =

∫
BR(0)

(V∞ − V (ε x)) |vn|2dx+

∫
BcR(0)

(V∞ − V (ε x)) |vn|2dx

≤ V∞
∫
BR(0)

|vn|2dx+ ζ

∫
BcR(0)

|vn|2dx

≤ on(1) +
ζ

V0
‖vn‖2ε ≤ on(1) + ζC.

Thus, in view of (3.5), we deduce that∫
RN

[
f(t2n|vn|2)− f(|vn|2)

]
|vn|2 dx ≤ ζC + on(1). (3.7)

Since vn 6→ 0, we can apply Lemma 3.4 to deduce the existence of a sequence (yn) ⊂ RN , and the
existence of two positive numbers R̄, β such that∫

BR̄(yn)
|vn|2dx ≥ β > 0. (3.8)
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Now, let us consider wn = |vn|(·+ yn). Taking into account that (V), (2.3), and the boundedness of (vn)
in Hs

ε , we can see that
‖wn‖2V0

= ‖|vn|‖2V0
≤ ‖vn‖2ε ≤ C.

Therefore wn ⇀ w in Hs(RN ,R) and wn → w in Lrloc(RN ,R) for all r ∈ [2, 2∗s). By (3.8)∫
BR̄(0)

w2 = lim
n

∫
BR̄(0)

w2
n ≥ β

and so there exists Ω ⊂ RN with positive measure and such that w 6= 0 in Ω. By using (3.2) and (3.7)
we can infer ∫

Ω

(
f((1 + δ)2w2

n)− f(w2
n)
)
w2
ndx ≤ ζC + on(1).

By applying Fatou’s Lemma and by (f5) we obtain

0 <

∫
Ω

(
f((1 + δ)2w2)− f(w2)

)
w2dx ≤ ζC

and by the arbitrariness of ζ > 0 we get a contradiction.
Now, two cases can occur.
Case 1: lim supn tn = 1.
In this case there exists a subsequence still denoted by (tn) such that tn → 1. Taking into account that
{vn} is a (PS)d sequence for Jε, cV∞ is the minimax level of IV∞ , and (2.3), we have

d+ on(1) = Jε(vn)

≥ Jε(vn)− IV∞(tn|vn|) + cV∞

≥ 1− t2n
2

[|vn|]2 +
1

2

∫
RN

(
V (ε x)− t2nV∞

)
|vn|2dx

+
1

2

∫
RN

[
F (t2n|vn|2)− F (|vn|2)

]
dx+ cV∞ .

(3.9)

Since (|vn|) is bounded in Hs(RN ,R) and tn → 1, we can see that

(1− t2n)

2
[|vn|]2 = on(1). (3.10)

Now, using (V), we have that for every ζ > 0 there exists R = R(ζ) > 0 such that for any |x| > R it
holds

V (ε x)− t2nV∞ = (V (ε x)− V∞) + (1− t2n)V∞ ≥ −ζ + (1− t2n)V∞.

Thus, since (vn) is bounded in Hs
ε , |vn| → 0 in Lp(BR), tn → 1, we get∫

RN

(
V (ε x)− t2nV∞

)
|vn|2dx =

∫
BR(0)

(
V (ε x)− t2nV∞

)
|vn|2dx

+

∫
BcR(0)

(
V (ε x)− t2nV∞

)
|vn|2dx

≥ (V0 − t2nV∞)

∫
BR(0)

|vn|2dx− ζ
∫
BcR(0)

|vn|2dx

+ V∞(1− t2n)

∫
BcR(0)

|vn|2dx

≥ on(1)− C

V0
ζ.

(3.11)
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Finally, using the Mean Value Theorem, (i) in Lemma 2.7, tn → 1, and the boundedness of (|vn|), we get∣∣∣∣∫
RN

[
F (t2n|vn|2)− F (|vn|2)

]
dx

∣∣∣∣ ≤ ∫
RN
|f(θn|vn|2)||t2n − 1||vn|2 dx

≤ (C1|vn|22 + C2|vn|qq)|t2n − 1| = on(1).

(3.12)

Now, putting together (3.9), (3.10), (3.11) and (3.12) we can infer that

d+ on(1) ≥ on(1)− ζC + cV∞ ,

and taking the limit as n→∞ we get d ≥ cV∞ .
Case 2: lim supn tn = t0 < 1.
In this case there exists a subsequence still denoted by (tn), such that tn → t0 and tn < 1 for any n ∈ N.
Since (vn) is a bounded (PS)d sequence for Jε, we have

d+ on(1) = Jε(vn)− 1

2
〈J ′ε(vn), vn〉 =

1

2

∫
RN

(
f(|vn|2)|vn|2 − F (|vn|2)

)
dx. (3.13)

Observe that, by (f5), the map t 7→ f(t)t− F (t) is increasing for t > 0.
Hence, since tn|vn| ∈ MV∞ and tn < 1, from (3.13), we obtain

cV∞ ≤ IV∞(tn|vn|)

= IV∞(tn|vn|)− tn
1

2
〈I ′V∞(tn|vn|), |vn|〉

=
1

2

∫
RN

(
f(t2n|vn|2)t2n|vn|2 − F (t2n|vn|2)

)
dx

≤ 1

2

∫
RN

(
f(|vn|2)|vn|2 − F (|vn|2)

)
dx

= d+ on(1).

Passing to the limit as n→∞ we get d ≥ cV∞ . �

Thus we are ready to give conditions on the levels c so that Jε satisfies the (PS)c condition.

Proposition 3.9. The functional Jε satisfies the (PS)c condition at any level c < cV∞ if V∞ < ∞ and
at any level c ∈ R if V∞ =∞.

Proof. Let (un) be a (PS)c sequence for Jε. Then (un) is bounded in Hs
ε and, up to a subsequence,

un ⇀ u in Hs
ε and un → u in Lqloc(R

N ,C) for any q ∈ [1, 2∗s). Using also the assumptions (f2), (f3), it is
easy to deduce that J ′ε(u) = 0 and so, using (f4), we can see that

Jε(u) = Jε(u)− 1

2
〈J ′ε(u), u〉 =

1

2

∫
RN

(f(|u|2)|u|2 − F (|u|2))dx ≥ 0. (3.14)

In view of Lemma 2.6 we can find a subsequence (unj ) ⊂ Hs
ε verifying (2.4).

Now, let vj = unj − ûj where ûj is defined as in (2.2). We claim that

Jε(vj) = c− Jε(u) + oj(1) (3.15)

and

J ′ε(vj) = oj(1). (3.16)

To prove (3.15), let us observe that

Jε(vj)− Jε(unj ) + Jε(ûj) = [‖ûj‖2ε − 〈unj , ûj〉ε] +

∫
RN

[F (|unj |2)− F (|vj |2)− F (|ûj |2)]dx

=: Aj +Bj .
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In view of the weak convergence of (unj ) to u in Hs
ε and Lemma 2.1, we can see that Aj → 0 as j →∞.

Moreover, by (iii) in Lemma 2.7, we have that Bj → 0 as j →∞.
To show (3.16) we observe that∣∣〈J ′ε(vj)− J ′ε(unj ) + J ′ε(ûj), φ〉

∣∣ =

∣∣∣∣< ∫
RN

[f(|unj |2)unj − f(|vj |2)vj − f(|ûj |2)ûj ]φ̄dx

∣∣∣∣
≤
∫
RN
|f(|unj |2)unj − f(|vj |2)vj − f(|ûj |2)ûj ||φ|dx

and so, by (iv) in Lemma 2.7 we get that 〈J ′ε(vj) − J ′ε(unj ) + J ′ε(ûj), φ〉 → 0 for any φ ∈ Hs
ε such that

‖φ‖ε ≤ 1. Thus, since J ′ε(unj )→ 0 and J ′ε(ûj)→ J ′ε(u) = 0, we can infer that (3.16) is satisfied.
Let us assume that V∞ < ∞ and c < cV∞ . By (3.15) and (3.14) we have that c − Jε(u) ≤ c < cV∞ .
Thus, since (vj) is a (PS)c−Jε(u) sequence for Jε and vj ⇀ 0 in Hs

ε , by Lemma 3.8 we infer vj → 0 in
Hs
ε . Hence Lemma 2.1 implies that unj → u in Hs

ε as j →∞.
If V∞ = +∞. Then, by Lemma 2.3, vj → 0 in Lr(RN ,C) for any r ∈ [2, 2∗s) and by (3.16) and (i) in
Lemma 2.7 we deduce that

‖vj‖2ε =

∫
RN

f(|vj |2)|vj |2dx+ oj(1) = oj(1).

Hence, as before, unj → u in Hs
ε as j →∞ and we conclude. �

Now we show that Nε is a natural constraint, namely that the constrained critical points of the
functional Jε on Nε are critical points of Jε in Hs

ε .

Proposition 3.10. The functional Jε restricted to Nε satisfies the (PS)c condition at any level c < cV∞
if V∞ <∞ and at any level c ∈ R if V∞ =∞.

Proof. Let (un) ⊂ Nε be a (PS)c sequence of restricted toNε. Then, by [38, Proposition 5.12], Jε(un)→ c
as n→∞ and there exists (λn) ⊂ R such that

J ′ε(un) = λnT
′
ε(un) + on(1) (3.17)

where Tε : Hs
ε → R is defined as

Tε(u) = ‖u‖2ε −
∫
RN

f(|u|2)|u|2dx.

By (f5) we can see that

〈T ′ε(un), un〉 = 2‖un‖2ε − 2

∫
RN

f(|un|2)|un|2dx− 2

∫
RN

f ′(|un|2)|un|4dx

= −2

∫
RN

f ′(|un|2)|un|4dx ≤ −2Cσ|un|σσ < 0.

Up to a subsequence, we may assume that 〈T ′ε(un), un〉 → ` ≤ 0.
If ` = 0, then

on(1) = |〈T ′ε(un), un〉| ≥ C|un|σσ
so we obtain that un → 0 in Lσ(RN ,C). Observe that, since (un) ⊂ Nε and Jε(un) → c as n → ∞,
then (un) is bounded in Hs

ε . Thus, by interpolation, we also have un → 0 in Lq(RN ,C). Hence, by (i) in
Lemma 2.7, we get

‖un‖2ε =

∫
RN

f(|un|2)|un|2dx ≤
ξ

V0
‖un‖2ε + Cξ|un|qq =

ξ

V0
‖un‖2ε + on(1),
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which implies that un → 0 in Hs
ε . This is impossible in view of (i) of Lemma 3.3. Therefore ` < 0 and

by (3.17) we deduce that λn = on(1). Moreover, by the assumptions on f we have that for every φ ∈ Hs
ε

|〈T ′ε(un), φ〉| ≤ 2‖un‖ε‖φ‖ε + 2

∫
RN
|f(|un|2)||un||φ|dx+ 2

∫
RN
|f ′(|un|2)||un|3|φ|dx

≤ C‖un‖ε(1 + ‖un‖q−2
ε )‖φ‖ε.

Then, the boundedness of (un) implies the boundedness of T ′ε(un) and so, by (3.17) we infer that J ′ε(un) =
on(1), that is (un) is a (PS)c sequence for Jε. Hence, it is enough to apply Proposition 3.9 to obtain the
thesis. �

As a consequence we have the following result.

Corollary 3.11. The constrained critical points of the functional Jε on Nε are critical points of Jε in
Hs
ε .

Now we are ready the proof of the main result of this section.

Proof of Theorem 1.1. By Lemma 3.2 we know that Jε has a mountain pass geometry. So, by the Ekeland
Variational Principle, there exists a (PS)cε sequence (un) ⊂ Hs

ε for Jε.
If V∞ =∞, by Lemma 2.3 and Proposition 3.9 we deduce that Jε(u) = cε and J ′ε(u) = 0, where u ∈ Hs

ε

is the weak limit of un.
Now, we consider the case V∞ < ∞. In view of Proposition 3.9 it is enough to show that cε < cV∞ .
Suppose without loss of generality that

V (0) = V0 = inf
x∈RN

V (x).

Let µ ∈ (V0, V∞). Clearly cV0 < cµ < cV∞ . Let w ∈ Hs(RN ,R) be a positive ground state to the
autonomous problem (Pµ) and η ∈ C∞c (RN ,R) be a cut-off function such that η = 1 in B1(0) and η = 0

in Bc
2(0). Let us define wr(x) := ηr(x)w(x)eıA(0)·x, with ηr(x) = η(x/r) for r > 0, and we observe that

|wr| = ηrw and wr ∈ Hs
ε in view of Lemma 2.4. Take tr > 0 such that

Iµ(tr|wr|) = max
t≥0

Iµ(t|wr|)

Let us prove that there exists r sufficiently large such that Iµ(tr|wr|) < cV∞ .
If by contradiction Iµ(tr|wr|) ≥ cV∞ for any r > 0, by using the fact that |wr| → w in Hs(RN ,R) as
r →∞ (see [31, Lemma 5]), we have tr → 1 and

cV∞ ≤ lim inf
r→∞

Iµ(tr|wr|) = Iµ(w) = cµ

which gives a contradiction since cV∞ > cµ. Hence, there exists r > 0 such that

Iµ(tr|wr|) = max
τ≥0

Iµ(τ(tr|wr|)) and Iµ(tr|wr|) < cV∞ . (3.18)

Now, we show that

lim
ε→0

[wr]
2
Aε = [ηrw]2. (3.19)
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Then we can see that

[wr]
2
Aε =

∫∫
R2N

|eıA(0)·xηr(x)w(x)− eıAε(
x+y

2
)·(x−y)eıA(0)·yηr(y)w(y)|2

|x− y|N+2s
dxdy

= [ηrw]2 +

∫∫
R2N

η2
r (y)w2(y)|eı[Aε(

x+y
2

)−A(0)]·(x−y) − 1|2

|x− y|N+2s
dxdy

+ 2<
∫∫

R2N

(ηr(x)w(x)− ηr(y)w(y))ηr(y)w(y)(1− e−ı[Aε(
x+y

2
)−A(0)]·(x−y))

|x− y|N+2s
dxdy

=: [ηrw]2 +Xε + 2Yε.

Since |Yε| ≤ [ηrw]
√
Xε, it s enough to show that Xε → 0 as ε→ 0 to deduce that (3.19) holds.

Observe that, for 0 < β < α/(1 + α− s),

Xε ≤
∫
RN

w2(y)dy

∫
|x−y|≥ε−β

|eı[Aε(
x+y

2
)−A(0)]·(x−y) − 1|2

|x− y|N+2s
dx

+

∫
RN

w2(y)dy

∫
|x−y|<ε−β

|eı[Aε(
x+y

2
)−A(0)]·(x−y) − 1|2

|x− y|N+2s
dx

=: X1
ε +X2

ε .

(3.20)

Since |eıt − 1|2 ≤ 4 and recalling that w ∈ Hs(RN ,R), we can observe that

X1
ε ≤ C

∫
RN

w2(y)dy

∫ ∞
ε−β

ρ−1−2sdρ ≤ C ε2βs → 0. (3.21)

Concerning X2
ε , since |eıt − 1|2 ≤ t2 for all t ∈ R, A ∈ C0,α(RN ,RN ) for α ∈ (0, 1], and |x + y|2 ≤

2(|x− y|2 + 4|y|2), we have

X2
ε ≤

∫
RN

w2(y)dy

∫
|x−y|<ε−β

|Aε
(x+y

2

)
−A(0)|2

|x− y|N+2s−2
dx

≤ C ε2α

∫
RN

w2(y)dy

∫
|x−y|<ε−β

|x+ y|2α

|x− y|N+2s−2
dx

≤ C ε2α

(∫
RN

w2(y)dy

∫
|x−y|<ε−β

1

|x− y|N+2s−2−2α
dx

+

∫
RN
|y|2αw2(y)dy

∫
|x−y|<ε−β

1

|x− y|N+2s−2
dx

)
=: C ε2α(X2,1

ε +X2,2
ε ).

(3.22)

Then

X2,1
ε = C

∫
RN

w2(y)dy

∫ ε−β

0
ρ1+2α−2sdρ ≤ Cε−2β(1+α−s). (3.23)

On the other hand, using Remark 3.7, we infer that

X2,2
ε ≤ C

∫
RN
|y|2αw2(y)dy

∫ ε−β

0
ρ1−2sdρ

≤ C ε−2β(1−s)

[∫
B1(0)

w2(y)dy +

∫
Bc1(0)

1

|y|2(N+2s)−2α
dy

]
≤ C ε−2β(1−s) .

(3.24)
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Taking into account (3.20), (3.21), (3.22), (3.23) and (3.24) we can conclude that Xε → 0.
Now, in view of (V), there exists ε0 > 0 such that

V (ε x) ≤ µ for all x ∈ supp(|wr|), ε ∈ (0, ε0). (3.25)

Therefore, putting together (3.18) , (3.19) and (3.25), we deduce that

lim sup
ε→0

cε ≤ lim sup
ε→0

[
max
τ≥0

Jε(τtrwr)

]
≤ max

τ≥0
Iµ(τtr|wr|) = Iµ(tr|wr|) < cV∞

which implies that cε < cV∞ for any ε > 0 sufficiently small. �

4. Proof of Theorem 1.2

In this section, our main purpose is to apply the Ljusternik-Schnirelmann category theory to prove
a multiplicity result for problem (2.1). In order to achieve our main result, first we give some useful
preliminary lemmas.
Let δ > 0 be fixed and ω ∈ Hs(RN ,R) be a ground state solution of the problem (Pµ) for µ = V0 given
by Lemma 3.6 (see also Remark 3.7).

Moreover let ψ ∈ C∞(R+, [0, 1]) be a nonincreasing function such that ψ = 1 in [0, δ/2] and ψ = 0 in
[δ,∞) and, for any fixed y ∈M , let us introduce

Ψε,y(x) := ψ(| ε x− y|)ω
(
ε x− y
ε

)
eıτy( ε x−y

ε
)

where M is defined in (1.3) and τy(x) :=
∑N

j=1Aj(y)xj .
By Lemma 3.3 let tε > 0 be the unique positive number such that

Jε(tεΨε,y) = max
t≥0

Jε(tεΨε,y)

and let us introduce the map Φε : M → Nε by setting Φε(y) = tεΨε,y. By construction, Φε(y) has
compact support for any y ∈M .
We begin proving the following result.

Lemma 4.1. As ε→ 0 we have that ‖Ψε,y‖2ε → ‖ω‖2V0
uniformly with respect to y ∈M .

Proof. By applying the Dominated Convergence Theorem we easily have that∫
RN

V (εx)|Ψε,y(x)|2dx→ V0

∫
RN

ω2(x)dx.

Thus, we only need to prove that as ε→ 0

∫∫
R2N

|Ψε,y(x1)−Ψε,y(x2)eı(x1−x2)·Aε(x1+x2
2

)|2

|x1 − x2|N+2s
dx1dx2 →

∫∫
R2N

|ω(x1)− ω(x2)|2

|x1 − x2|N+2s
dx1dx2.
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By using the change of variable ε xi − y = ε zi (i = 1, 2), we obtain∫∫
R2N

|Ψε,y(x1)−Ψε,y(x2)eı(x1−x2)·Aε(x1+x2
2

)|2

|x1 − x2|N+2s
dx1dx2

=

∫∫
R2N

|ψ(| ε z1|)ω(z1)eıτy(z1) − ψ(| ε z2|)ω(z2)eıτy(z2)eı(z1−z2)·A(ε
z1+z2

2
+y)|2

|z1 − z2|N+2s
dz1dz2

=

∫∫
R2N

|ψ(| ε z1|)ω(z1)− ψ(| ε z2|)ω(z2)|2

|z1 − z2|N+2s
dz1dz2

+ 2

∫∫
R2N

ψ2(| ε z2|)ω2(z2)
(

1− cos
{

(z1 − z2) · [A(ε( z1+z2
2 ) + y)−A(y)]

})
|z1 − z2|N+2s

dz1dz2

+ 2<
∫∫

R2N

[ψ(| ε z1|)ω(z1)− ψ(| ε z2|)ω(z2)]ψ(| ε z2|)ω(z2)
[
1− eı(z2−z1)·[A(ε(

z1+z2
2

)+y)−A(y)]
]

|z1 − z2|N+2s
dz1dz2

:= Xε + Yε + 2Zε

Since ψ(|x|) = 1 for x ∈ Bδ/2, we can use [31, Lemma 5] to get

Xε =

∫∫
R2N

|ψ(| ε z1|)ω(z1)− ψ(| ε z2|)ω(z2)|2

|z1 − z2|N+2s
dz1dz2 →

∫∫
R2N

|ω(z1)− ω(z2)|2

|z1 − z2|N+2s
dz1dz2

as ε→ 0.
On the other hand, by the Hölder inequality we can see that

|Zε| ≤
√
Xε

√
Yε.

Therefore, it is enough to show that Yε → 0 as ε→ 0.
Being ψ = 0 in Bc

δ(0), we have

Yε = 2

∫
Bδ/ε(0)

ψ2(| ε z2|)ω2(z2)dz2

{∫
|z1−z2|<ε−β

1− cos
{

(z1 − z2) · [A(ε( z1+z2
2 ) + y)−A(y)]

}
|z1 − z2|N+2s

dz1

+

∫
|z1−z2|≥ε−β

1− cos
{

(z1 − z2) · [A(ε( z1+z2
2 ) + y)−A(y)]

}
|z1 − z2|N+2s

dz1

}
:= Y 1

ε + Y 2
ε ,

(4.1)

where 0 < β < α
1+α−s .

Taking into account that |z1 + z2|2α ≤ C(|z1 − z2|2α + |z2|2α) for any z1, z2 ∈ RN , 2(1− cos t) ≤ t2 in R,
the assumptions on A, and recalling that 0 ≤ ψ ≤ 1 we can see that

Y 1
ε ≤ C ε2α

∫
Bδ/ε(0)

ω2(z2)dz2

{∫
|z1−z2|<ε−β

dz1

|z1 − z2|N+2s−2−2α
+

∫
|z1−z2|<ε−β

|z2|2α

|z1 − z2|N+2s−2
dz1

}
=: C ε2α[Y 1,1

ε + Y 1,2
ε ].

(4.2)

We have

Y 1,1
ε ≤ C

∫
RN

ω2(z2)dz2

∫ ε−β

0
ρ1+2α−2sdρ = C ε−2β(1+α−s) (4.3)
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and, taking into account Remark 3.7 and that N ≥ 3,

Y 1,2
ε ≤ C

∫
RN
|z2|2αω2(z2)dz2

∫ ε−β

0
ρ1−2sdρ

≤ C ε−2β(1−s)

[∫
|z2|>1

1

|z2|2(N+2s)−2α
dz2 +

∫
|z2|<1

ω(z2)2dz2

]
≤ C ε−2β(1−s)

(4.4)

Putting together (4.2), (4.3) and (4.4) we can infer that

Y 1
ε → 0 as ε→ 0. (4.5)

Finally, using the facts 0 ≤ ψ ≤ 1 and 0 ≤ 1− cos t ≤ 1 in R, we have

Y 2
ε ≤ C

∫
RN

ω2(z2)dz2

∫ ∞
ε−β

1

ρ2s+1
dρ ≤ C ε2sβ . (4.6)

Taking into account (4.1),(4.5) and (4.6) we can conclude. �

The next result will be very useful to define a map from M to a suitable sub level in the Nehari
manifold.

Lemma 4.2. The functional Φε satisfies the following limit

lim
ε→0

Jε(Φε(y)) = cV0 uniformly in y ∈M.

Proof. Assume by contradiction that there there exists κ > 0, (yn) ⊂M and εn → 0 such that

|Jεn(Φεn(yn))− cV0 | ≥ κ.

Since 〈J ′εn(Φεn(yn)),Φεn(yn)〉 = 0 and using the change of variable z = (εn x− yn)/εn, (f5), and that, if
z ∈ Bδ/ εn(0), then εn z + yn ∈ Bδ(yn) ⊂Mδ, we can see that

‖Ψεn,yn‖2εn =

∫
RN

f(|tεnΨεn |2)|Ψεn |2dx

=

∫
RN

f(|tεnψ(| εn z|)ω(z)|2)|ψ(| εn z|)ω(z)|2dz

≥
∫
Bδ/2(0)

f(|tεnω(z)|2)ω2(z)dz

≥ f(|tnα|2)

∫
Bδ/2(0)

ω2(z)dz

for all n ≥ n0, with n0 ∈ N such that B δ
2
(0) ⊂ B δ

2 εn

(0) and α = min{ω(z) : |z| ≤ δ
2}.

Hence, if tεn →∞, by (f4) we deduce that ‖Ψεn,yn‖2 →∞ which contradicts Lemma 4.1.
Therefore, up to a subsequence, we may assume that tεn → t0 ≥ 0. In fact, taking into account Lemma
4.1 and passing to the limit as n→∞ in

‖Ψεn,yn‖2εn =

∫
RN

f(|tεnψ(| εn z|)ω(z)|2)|ψ(| εn z|)ω(z)|2dz

it is easy to check that t0 > 0.
Moreover

[t0ω]2 +

∫
RN

V0|t0ω|2dx =

∫
RN

f(|t0ω|2)t20ω
2,
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that is t0ω ∈MV0 . Since ω ∈MV0 we get that t0 = 1.
Then

lim
n

∫
RN

F (|Φεn(yn)|2) =

∫
RN

F (ω2).

and so
lim
n
Jεn(Φεn(yn)) = IV0(ω) = cV0

which gives a contradiction. �

Now, we are in the position to define the barycenter map. We take ρ > 0 such that Mδ ⊂ Bρ and we
consider Υ : RN → RN defined by setting

Υ(x) =

{
x if |x| < ρ
ρx/|x| if |x| ≥ ρ.

We define the barycenter map βε : Nε → RN as follows

βε(u) :=

∫
RN

Υ(ε x)|u(x)|2dx∫
RN
|u(x)|2dx

.

Lemma 4.3. The function Φε verifies the following limit

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈M.

Proof. Suppose by contradiction that there exists κ > 0, (yn) ⊂M and εn → 0 such that

|βεn(Φεn(yn))− yn| ≥ κ. (4.7)

Using the change of variable z = (εn x− yn)/εn, we can see that

βεn(Ψεn(yn)) = yn +

∫
RN [Υ(εn z + yn)− yn]|ψ(| εn z|)|2|ω(z)|2 dz∫

RN |ψ(| εn z|)|2|ω(z)|2 dz
.

Taking into account (yn) ⊂M ⊂Mδ ⊂ Bρ and the Dominated Convergence Theorem, we can infer that

|βεn(Φεn(yn))− yn| = on(1)

which contradicts (4.7). �

Next, we prove the following useful compactness result.

Proposition 4.4. Let εn → 0+ and (un) ⊂ Nεn be such that Jεn(un)→ cV0. Then there exists (ỹn) ⊂ RN
such that the translated sequence

vn(x) := |un|(x+ ỹn)

has a subsequence which converges in Hs(RN ,R). Moreover, up to a subsequence, (yn) := (εn ỹn) is such
that yn → y ∈M .

Proof. Since 〈J ′εn(un), un〉 = 0 and Jεn(un) → cV0 , we easily get that there exists C > 0 such that
‖un‖εn ≤ C for all n ∈ N. Let us observe that ‖un‖εn 9 0 since cV0 > 0. Therefore, as in the proof of
Lemma 3.4, we can find a sequence (ỹn) ⊂ RN and constants R, β > 0 such that

lim inf
n

∫
BR(ỹn)

|un|2dx ≥ β. (4.8)

Let us define
vn(x) := |un|(x+ ỹn).

By the diamagnetic inequality (2.3) we get the boundedness of (|un|) in Hs(RN ,R) and, using (4.8), we
may suppose that vn ⇀ v in Hs(RN ,R) for some v 6= 0.
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Let (tn) ⊂ (0,+∞) be such that wn = tnvn ∈MV0 , and set yn := εn ỹn.
By (2.3), we can see that

cV0 ≤ IV0(wn) ≤ max
t≥0

Jεn(tun) = Jεn(un) = cV0 + on(1),

which yields IV0(wn)→ cV0 .
Now, the sequence (tn) is bounded since (vn) and (wn), by Lemma 3.6, are bounded in Hs(RN ,R) and
vn 9 0 in Hs(RN ,R). Therefore, up to a subsequence, we may assume that tn → t0 ≥ 0.
Let us show that t0 > 0.
In fact, if t0 = 0, from the boundedness of (vn), we get wn = tnvn → 0 in Hs(RN ,R), that is IV0(wn)→ 0
in contrast with the fact cV0 > 0.
Thus, up to a subsequence, we may assume that wn ⇀ w := t0v 6= 0 in Hs(RN ,R).
From Lemma 3.6, we can deduce that wn → w in Hs(RN ,R), which gives vn → v in Hs(RN ,R).
Now show that (yn) has a subsequence such that yn → y ∈M .
Assume by contradiction that (yn) is not bounded, that is there exists a subsequence, still denoted by
(yn), such that |yn| → +∞.
Firstly, we deal with the case V∞ =∞.
Taking into account (2.3), we can see that∫

RN
V (εn x+ yn)|vn|2dx ≤ [|vn|]2 +

∫
RN

V (εn x+ yn)|vn|2dx ≤ ‖un‖2εn ≤ C.

On the other hand, by Fatou’s Lemma, we deduce that

lim inf
n

∫
RN

V (εn x+ yn)|vn|2dx =∞

and we get a contradiction.
Now, let us consider the case V∞ <∞.
Since wn → w strongly in Hs(RN ,R), V0 < V∞, and by using (2.3), we obtain

cV0 = IV0(w) < IV∞(w)

≤ lim inf
n

[
1

2
[wn]2 +

1

2

∫
RN

V (εn x+ yn)|wn|2dx−
∫
RN

F (|wn|2)dx

]
= lim inf

n

[
t2n
2

[|un|]2 +
t2n
2

∫
RN

V (εn z)|un|2dx−
∫
RN

F (t2n|un|2)dx

]
≤ lim inf

n
Jεn(tnun) ≤ lim inf

n
Jεn(un) = cV0

(4.9)

which gives a contradiction.
Thus (yn) is bounded and, up to a subsequence, we may assume that yn → y. If y /∈M , then V0 < V (y)
and we can argue as in (4.9) to get a contradiction and so the proof is complete. �

At this point, we introduce a subset Ñε of Nε by setting

Ñε = {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},

where h : R+ → R+ is such that h(ς)→ 0 as ς → 0.
Fixed y ∈ M , we conclude from Lemma 4.2 that h(ς) = |Jς(Φς(y)) − cV0 | → 0 as ς → 0. Hence
Φε(y) ∈ Ñε, and Ñε 6= ∅ for any ε > 0.

Moreover, we have the following relation between Ñε and the barycenter map.

Lemma 4.5. We have
lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.
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Proof. Let εn → 0 as n→∞. For any n ∈ N, there exists (un) ∈ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u)− y| = inf
y∈Mδ

|βεn(un)− y|+ on(1).

Therefore, it is suffices to prove that there exists (yn) ⊂Mδ such that

lim
n
|βεn(un)− yn| = 0. (4.10)

By using the diamagnetic inequality (2.3), we can see that IV0(t|un|) ≤ Jεn(tun) for any t ≥ 0. Therefore,
recalling that (un) ⊂ Ñεn ⊂ Nεn , we can deduce that

cV0 ≤ max
t≥0

IV0(t|un|) ≤ max
t≥0

Jεn(tun) = Jεn(un) ≤ cV0 + h(εn)

which implies that Jεn(un)→ cV0 because of h(εn)→ 0 as n→∞.
From Proposition 4.4 it follows that there exists (ỹn) ⊂ RN such that yn = εn ỹn ∈Mδ for n sufficiently
large.
Thus

βεn(un) = yn +

∫
RN [Υ(εn z + yn)− yn]|un(z + ỹn)|2 dz∫

RN |un(z + ỹn)|2 dz
.

Since, up to a subsequence, |un|(·+ ỹn) converges strongly in Hs(RN ,R) and εn z+ yn → y ∈M for any
z ∈ RN , we deduce (4.10). �

Now, we are ready to present the proof of our multiplicity result.

Proof of Theorem 1.2. Given δ > 0, we can apply Lemma 4.2, Lemma 4.3 and Lemma 4.5 and argue as
in [11, Section 6] to find εδ > 0 such that for any ε ∈ (0, εδ), the diagram

M
Φε→ Ñε

βε→Mδ

is well-defined and βε ◦ Φε is homotopically equivalent to the embedding ι : M → Mδ. This fact
and [8, Lemma 4.3] (see also [12, Lemma 2.2]) yield

catÑε(Ñε) ≥ catMδ
(M).

From the definition Ñε and Proposition 3.10, we know that Jε verifies the Palais-Smale condition in
Ñε (taking εδ smaller if necessary), so we can apply standard Ljusternik-Schnirelmann theory for C1

functionals (see [38, Theorem 5.20]) to obtain at least catMδ
(M) critical points of Jε restricted to Nε.

From Corollary 3.11, we can deduce that Jε has at least catMδ
(M) critical points in Hs

ε . �
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