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Abstract: The photo-catalytic degradation of a textile azo-dye as Methyl Orange was studied in
an innovative unit constituted by a channel over which a layer of titanium dioxide (TiO2) catalyst
in anatase form was deposited and activated by UVB irradiation. The degradation kinetics were
followed after variation of the chemical, physical, and hydraulic/hydrodynamic parameters of the
system. For this purpose, the influence of the TiO2 dosage (g/cm3), dye concentration (mg/L), pH
of the solution, flow-rate (L/s), hydraulic load (cm), and irradiation power (W) were evaluated on
the degradation rates. It was observed that the maximum dosage of TiO2 was 0.79 g/cm3 while for
higher dosage a reduction of homogeneity of the cement conglomerate occurred. The Langmuir–
Hinshelwood (LH) kinetic model was followed up to a dye concentration around 1 mg/L. It was
observed that with the increase of the flow rate, an increase of the degradation kinetics was obtained,
while the further increase of the flow-rate associated with the modification of the hydraulic load
determined a decrease of the kinetic rates. The results also evidenced an increase of the kinetic rates
with the increase of the UVB intensity. A final comparison with other dyes such as Methyl Red and
Methylene Blue was carried out in consideration of the pH of the solution, which sensibly affected
the removal efficiencies.

Keywords: photo-catalysis; TiO2; azo dye; kinetic study; hydraulic and hydrodynamic parameters

1. Introduction

Emerging contaminants in water and wastewater are chemical compounds produced
by industrial practices and anthropogenic activities [1–6] that must be removed due to their
potential toxicological effects on human health and the environment [7–13].

For this purpose, Advanced Oxidation Processes (AOPs) are efficient methods to
remove from water and wastewater contaminants of organic nature that are not degradable
by biological processes [14–16]. Specifically, these treatments result effective for the removal
of micro-pollutants as pesticides, personal care products, pharmaceuticals, flame retardants,
antifoulants, stabilizers, and plasticizers, which have harmful effects on the reproductive
system [8,17–20].

AOPs are processes involving the production of very reactive radical species able to
degrade a wide range of biopersistent organic substrates [21–23]. Among these, photo-
catalysis is an efficient treatment carried out with a catalyst that generates radicals when
irradiated with light of a suitable wavelength [24–28]. TiO2 has been extensively studied
as a catalyst due to its wide band gap (3.2 eV), strong oxidizing power, high resistance to
chemicals, nontoxic nature, and low cost [24,29].
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The TiO2 photocatalysis can be applied in the removal of xenobiotic azo dyes from
the textile industry such as Methylene Blue, Methyl Red, and Methyl Orange, which
tend to bioaccumulate in the environment and have allergenic, carcinogenic, mutagenic,
and teratogenic properties. Methylene Blue is used in dye manufacturing industries,
plastics, cosmetics, and printing [30,31]. It is a toxic compound since it can cause eye
burns, vomiting, jaundice, and diarrhea [32,33]. Methyl Red is used in textile dyeing
and paper printing and it is hazardous in case of skin contact (irritant), inhalation, and
ingestion [34,35]. Methyl Orange is widely used in dyeing, printing textiles, and paper
industries. Methyl Orange is the common name of a water-soluble aromatic synthetic
compound (C14H14N3NaO3S) containing an azo group (–N=N–). This molecule is a toxic
compound and can cause hypersensitivity, allergies and may be fatal if inhaled [31,36].
The main environmental damage caused by the textile industry is the release of untreated
effluents into the water bodies, corresponding to ~80% of the total emissions [37].

The aim of this paper was to study the UVB photo-catalytic degradation of Methyl Or-
ange in water and wastewater by the use of an innovative unit [38–40]. The photocatalytic
system was a recirculating plant formed of two tanks connected by a channel over which
anatase TiO2 was deposited and UVB irradiated. The influence of the TiO2 dosage (g/cm3),
dye concentration c0 (mg/L), pH of the solution, flow-rate Q (L/s), hydraulic load hw (cm),
and irradiation power (W) were evaluated on the degradation kinetics of this hazardous
dye. Moreover, the removal efficiencies of Methyl Orange were compared with those of
other textile dyes such as Methyl Red and Methylene Blue in order to have more detailed
information about the treatment of these harmful compounds through this unit.

2. Experimental Section

Anatase titanium dioxide (TiO2) was provided by Adriatica Legnami s.r.l., Italy, and
was characterized by 0.15 µm average grain size and 3.85 g/cm3 specific gravity. Methyl
Orange (MO), pure chemical from Sigma Aldrich, was used to prepare the synthetic
solutions in tap water (pH = 7.5) and distilled water (pH = 6). Moreover, Methyl Red (MR)
and Methylene Blue (MB), pure chemicals from Sigma Aldrich, were also used to prepare
tap and distilled water solutions in order to make a comparison.

The determination of the residual dye concentrations was obtained by a UV–Vis
spectrophotometer Mod. UVIKON 942 from Kontron Instruments, Augsburg, Germany.

The unit which was used for the experimental tests is depicted in Figure 1. Specifically,
Figure 1A,B report the overview and the top view schemes of the system, respectively.
Figure 1C represents the real overview of the laboratory scale pilot plant. It was char-
acterized by a channel (c) (15 cm width, 185 cm length) over which layers of cement
mortars (0.5 mm thickness) with different TiO2 concentrations (0.16 g/cm3, 0.39 g/cm3,
0.55 g/cm3, 0.79 g/cm3) were deposited. The dye influent solution was kept under UVB
irradiation in contact with the catalyst. For this purpose, three low-pressure UVB lamps
(40 W each, λem = 312 nm), Vilber-Lourmat (Collégien, France), were used. The system
was characterized by an upper reservoir with manifolds (a) which allowed for the change
of the treated volume solution associated with the modification of the hydraulic load (hw)
with consequent variation of the flow-rates (Q). The introduction of layers of different
thicknesses (1.5, 1.0 and 0.5 mm; 11 × 70 cm) into an opening of this tank allowed for the
modification of the flow-rate (Q), keeping constant the hydraulic load (hw). The system
was also characterized by a bottom reservoir (b) with similar capacity to the former and
equipped with a piezometric tube. A pump (d) (Mod. CPm 130, Pedrollo, Milan, Italy;
0.37 kW, 230 V, 50 Hz) was used for the recirculation of the influent solution through the
unit. Table 1 represents a summary of the tests carried out in the present investigation.
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Figure 1. (A) Overview scheme and (B) top view scheme of the laboratory scale pilot plant. (C) 
Picture of the unit. (a) Upper reservoir, (b) bottom reservoir, (c) channel, (d) pump, (e) UVB lamp. 

  

Figure 1. (A) Overview scheme and (B) top view scheme of the laboratory scale pilot plant. (C) Picture
of the unit. (a) Upper reservoir, (b) bottom reservoir, (c) channel, (d) pump, (e) UVB lamp.
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Table 1. Summary of the tests carried out in the present investigation. c0 = initial dye concentration, Vsol = volume of the
influent solution, Q = flow-rate, hw = hydraulic load, lw = irradiated liquid width in the channel, lc = irradiated liquid length
in the channel, ld = irradiated liquid depth in the channel, Virr = irradiated volume (lw × lc × ld) of the liquid in the channel,
Irt = irradiated retention time (Virr/Q), irradiation power (W), pH.

Test No. c0
(mg/L)

TiO2
(g/cm3)

Vsol
(L)

Q
(L/s)

hw
(cm)

lw
(cm)

lc
(cm)

ld
(cm)

Virr
(L)

Irt
(s) Light Power

(W) pH

1 0.7 0.16 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

2 0.7 0.39 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

3 0.7 0.55 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

4 0.7 0.79 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

5 0.7 0.85 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

6 0.7 0.95 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

7 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

8 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.147 13.5 15 140 0.79 1.66 10.5 yes 120 7.5

9 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.210 13.5 15 140 0.85 1.78 7.9 yes 120 7.5

10 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 7.5

11 0.7 0.79 72.5 0.355 18 15 140 1.08 2.30 5.8 yes 120 7.5

12 0.7 0.79 90 0.408 22.5 15 140 1.12 2.35 5.2 yes 120 7.5

13 0.7 0.79 105 0.441 27 15 140 1.16 2.45 4.9 yes 120 7.5

14 0.7 0 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 7.5

15 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 no no 7.5

16 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 40 7.5

17 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 80 7.5

18 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 6.0

3. Results and Discussion

The first set of photocatalytic experiments was carried out at different TiO2 dosage,
tests no. 1–6 (Figure 2), constant flow-rate (Q = 0.066 L/h), the hydraulic load (hw = 13.5 cm),
and the influent substrate concentration (c0 = 0.7 mg/L) as reported in Table 1. The
processes described in this paper, at low initial dye concentration, may be approximated
by the “pseudo-first-order” equation,

ln(c/c0) = −k × θ × t (1)

i.e., the Langmuir–Hinshelwood (LH) kinetic model. In this equation, c0 (mg/L) is the
starting concentration of the substrate and c (mg/L) is the concentration of the dye at
specific time intervals, while k is the apparent rate constant (min−1) and θ represents the
number of the surface active sites present on the catalyst surface [41–43]. The trend reported
in the inset of Figure 2 is in agreement with this model, accordingly after linear correlation
the apparent rate constant is represented by the slope. Figure 2 shows that the degradation
rate increased with the increase of the catalyst concentration due to the growing number of
the active sites necessary for the photocatalytic oxidation. Theoretically, an improvement of
the results could be obtained with a further increase of oxide concentration but a reduction
of homogeneity was observed which was detrimental for the process since leaching of the
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catalyst from the cement conglomerate occurred. In this respect, the maximum dosage of
TiO2 was 0.79 g/cm3.
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Figure 2. Influence of the TiO2 dosage on the degradation rate (Methyl Orange (MO) = 0.7 mg/L;
Q = 0.066 L/s, hw = 13.5 cm, tests no. 1–6). In the inset: c/c0 vs. t and ln(c/c0) vs. t correlations relative
to test no. 4 (MO = 0.7 mg/L; TiO2 = 0.79 g/cm3; Q = 0.066 L/s, hw = 13.5 cm).

The second set of experiments (Table 1, test no. 7) was carried out at different substrate
concentration (0.3–5.0 mg/L range, Figure 3), constant flow-rate (0.066 L/h), the hydraulic
load (hw = 13.5 cm), and with 0.79 g/cm3 catalyst dosage because, as formerly reported, it is
the titania concentration corresponding to the highest degradation rate. It can be observed
that the best performance was obtained with a substrate concentration corresponding to
0.7 mg/L (Figure 3A), while lower values were obtained with the [MO] increase. Basically,
the Langmuir–Hinshelwood (LH) kinetic model was not followed at higher concentrations
due to the absorption of the UV radiation operated by the dye molecules which limited the
photocatalytic process thus becoming bare photolysis.

In fact, the photocatalysis of the adsorbed substrate is based on two simultaneous
reactions, oxidation from photogenerated holes (h+) and reduction from photogenerated
electrons (e−) after excitation of titania with UVB light. Specifically, the oxidation of the
adsorbed water by the holes generates hydroxyl radicals –OH while the reduction of the
oxygen by the electrons generates superoxide radicals –O2

−, both reacting with the organic
molecule [44,45].

The increased concentration of the dye solution in the 1.2–5 mg/L range decreased
the interaction of light with the catalyst surface; accordingly, the combined effect of UV
radiation and titania started to be less effective.

Figure 3B shows the temporal evolution of the MO UV−vis absorption spectrum for a
5 mg/L influent solution. The spectrum shows a maximum corresponding to the π→π*
transitions of the dimethylamino electron donors at 470 nm and a 270 nm peak associated
to π→π* transitions of the aromatic rings. A UV−vis quenching and blue-shift of the
MO absorption peak during the kinetic experiments was observed, which confirmed the
degradation of the substrate associated with the removal of the N-methyl groups [46].

The third set of experiments (Table 1, tests no. 7, 8, 9, 10) was carried out at different
flow rates (0.066 L/s, 0.147 L/s, 0.210 L/s, 0.305 L/s) with a substrate concentration in
the range of 0.3–5.0 mg/L, constant catalyst dosage 0.79 g/cm3. The variation of the flow
rate, constant hydraulic load (hw = 13.5 cm) was obtained by the introduction of layers of
different thicknesses (1.5, 1.0, and 0.5 mm; 11 × 70 cm) into an opening of this tank. It was
observed that with the increase of the flow rate, an increase of the degradation kinetics was
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obtained. This result can be ascribed to an increasingly higher dissolution of the dissolved
oxygen into the water solution, which affected the kinetic rates because of the increase of
the photogenerated radicals reacting with the substrate. Moreover, a faster re-circulation
of the solution and an increase of the irradiated volume (Virr, Table 1) can also explain
these trends. Furthermore, in this case, it can be observed that the best performance was
obtained with a substrate concentration corresponding to 0.7 mg/L, while lower values
were obtained with a further increase up to 5 mg/L. Figure 4B shows the kinetic trend and
the temporal evolution of the MO UV–vis absorption spectrum for a 0.7 mg/L influent
solution characterized by quenching and blue-shift of the maximum absorption peak.
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Figure 3. (A) Influence of the dye concentration c0 on the degradation rate (TiO2 = 0.79 g/cm3;
Q = 0.066 L/s, hw = 13.5 cm, test no. 7. (B) MO UV–Vis absorption spectrum decay during the
photo-degradation. MO = 5 mg/L; TiO2= 0.79 g/cm3; Q = 0.066 L/s, hw = 13.5 cm.

The fourth set of experiments (Table 1, tests no. 10, 11, 12, 13) was carried out at
different hydraulic loads (hw) corresponding to different solution volumes Vsol (60 L, 72.5 L,
90 L and 105 L) and flow-rates Q (0.305 L/s, 0.355 L/s, 0.408 L/s, 0.441 L/s), constant
substrate concentration (c0 = 0.7 mg/L), and the catalyst dosage (0.79 g/cm3). These results
were combined with the former results regarding the variation of the flow rates at the same
hydraulic load (0.066 L/s, 0.147 L/s, 0.210 L/s, 0.305 L/s) and reported in Figure 4C. On
the contrary of what expected, the further increase of the flow rates associated with the
modification of the hydraulic load determined a decrease of the kinetics because of the
increasingly large volume (Vsol) of the dye solution to treat (60 L for 0.305 L/s, 72.5 L for
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0.355 L/s, 90 L for 0.408 L/s, 105 L for 0.441 L/s) and of the ever shorter catalysts/substrate
contact times (Irt) (6.7 s for 0.305 L/s, 5.8 s for 0.355 L/s, 5.2 s for 0.408 L/s, 5.2 s for
0.441 L/s, Table 1).
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Figure 4. (A) Influence of the flow rate at different dye concentrations (TiO2 = 0.79 g/cm3, hw = 13.5 cm, tests no. 7, 8, 9, 10).
(B) kinetic curve relative to the experiment carried out with MO = 0.7 mg/L; TiO2 = 0.79 g/cm3, Q = 0.305 L/h, hw = 13.5 cm
and in the inset the relative UV–vis absorption spectrum decay. (C) kinetics obtained at different hydraulic parameters
(flow rate Q, hydraulic load hw, MO = 0.7 mg/L; TiO2 = 0.79 g/cm3, tests no. 7–13).

From the kinetic study carried out at variable hydraulic and hydrodynamic conditions,
it was observed that the best results were detected at Q = 0.305 L/s and hW = 13.5 cm
hydraulic load (corresponding to the maximum of the curve, Figure 4C) with a dye concen-
tration and TiO2 dosage, respectively, ranging 0.7 mg/L and 0.79 g/cm3.

Figure 5 reports how the combined effect of UVB light and catalyst (test no. 10) affects
the degradation of the substrate and influences the kinetic rates (fifth set of tests). For this
purpose, the photolytic and the bare adsorption tests (tests no. 14 and 15) resulted very
slow, thus showing limited effects on the dye removal.

The synergistic combination of irradiation and catalyst can be influenced by the inten-
sity of UVB light. It was studied and represented in Figure 6 reporting the measurements
carried out at Q = 0.305 L/s, hW = 13.5 cm, c0 = 0.7 mg/L, and TiO2 = 0.79 g/cm3. In the
present case, the tests were performed with 40 W, 80 W, and 120 W (tests no. 10, 16, and
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17) and the results demonstrated the increase of the kinetic rates with the increase of the
UVB intensity, although it was observed that passing from 40 W to 120 W the apparent rate
constant only doubled.
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Similar results were also observed in the case of other dye substrates as Methyl
Red while in the case of Methylene Blue, the kinetic rates dramatically increased from
40 W to 120 W, all the other chemical and hydraulic/hydrodynamic parameters were
constant (Table 2).

Basically, the pH of the solution and the pH at zero point charge of TiO2 (pHZPC)
can influence these results because the surface state of the catalyst and the charge of the
substrate functional groups are affected by pH variations [47].
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Specifically, the TiO2 surface is negative (Ti-O−) at pH higher than the catalyst pHzpc
(6.8), while the TiO2 surface is positive (Ti-OH2

+) at pH lower than the catalyst pHzpc [41,47].
In the present case, the solutions were prepared in tap water with a pH around 7.5.

The non-polar Methyl Red is not affected by these operative conditions, while Methy-
lene Blue is a cationic dye at all pH [41,47,48]. Methyl Orange is instead characterized by a
negative charge; accordingly, the lowest kinetics of MO can be ascribed to the Coulombic
repulsion between the negative sulfonate groups of the dye and the negative charged
surface of TiO2 [41,47]. Methyl Red is sorbed by secondary Van der Waals bonds between
the hydroxyl and amino functional groups of this substrate and the catalyst, while the
best performances with Methylene Blue can be explained by the adsorption of the positive
charged dye onto the negative charged catalyst surface (Table 2) [48]. The better interaction
between the MB functionalities and the TiO2 surface can also explain the large increase of
the kinetic rate with the increase of the UVB intensity as regard to the other dyes.

Table 2. (A) Apparent rate constants for the UV/TiO2 photo-catalysis at different UVB intensity
(tests no. 10, 16, 17) for Methyl Orange, Methyl Red, and Methylene Blue, [dye] = 0.7 mg/L;
TiO2 = 0.79 g/cm3; tap water (pH = 7.5); Q = 0.305 L/s; hw = 13.5.

Dye Molecular Structure Power
(W)

k
(min−1) × 10−4

Methyl Orange
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It can be also observed that if the measurements were carried out in distilled water
(pH = 6), with all the other chemical, physical, and hydraulic/hydrodynamic parameters
constant, the kinetics resulted different (tests no. 18). Under these conditions, the inter-
actions of the Methyl Orange functional groups with the catalyst surface were improved
with an increase of the value of the apparent rate constant in the range of 40%, quite similar
to that obtained with Methyl Red which, as reported before, is not affected by the pH. The
kinetic rate of the Methylene Blue showed a decrease in the range of the 20% associated
with a decrease of the interactions between the positive charged dye and the more positive
catalyst surface (Table 3, Figure 7).
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4. Conclusions

A laboratory-scale unit was employed to study the UVB photo-catalytic degradation of
Methyl Orange by anatase TiO2 embedded in a cement matrix and deposited onto a channel
of a recirculating system. The influence of the TiO2 dosage (g/cm3), dye concentration
(mg/L), flow-rate (L/s), hydraulic load (cm) and irradiation power (W), and pH of the
solution were evaluated on the degradation rates.

The degradation rate increased with the increase of the catalyst concentration due to
the growing number of the active sites necessary for the photocatalytic oxidation. The max-
imum dosage of TiO2 was 0.79 g/cm3 and with a further increase of oxide concentration,
a reduction of homogeneity was observed, which was detrimental for the process since
leaching of the catalyst from the cement conglomerate occurred.

The best performance was obtained with a substrate concentration corresponding to
0.7 mg/L, while lower values were obtained with a further increase up to 5 mg/L. The
Langmuir–Hinshelwood (LH) kinetic model was followed up to ~1 mg/L concentration;
at higher concentrations, a bare photolysis process occurred.

It was observed that with the increase of the flow rate an increase of the degradation
kinetics was obtained due to the increasingly higher dissolution of the oxygen into the water
solution, the faster re-circulation of the solution, and the increase of the irradiated volume.

The further increase of the flow rates associated with the modification of the hydraulic
load determined a decrease of the kinetic rates because of the increasingly large volume of
the dye solution to treat and of the ever shorter catalysts/substrate contact times.

The photolytic and the bare adsorption tests showed very slow rates thus demonstrat-
ing the effective synergistic action of the UVB light/catalyst system on the dye removal.

An increase of the kinetic rates with the increase of the UVB intensity was observed,
although the values only doubled from 40 W to 120 W.

A comparison with other dyes was carried out. Similar results were observed in the
case of Methyl Red, while in the case of Methylene Blue, the kinetic rates dramatically
increased from 40 W to 120 W.

The pH of the solution influenced these results because the charge of the catalyst
surface and the charge of the substrate functional groups were affected by pH variations.
For this reason, different results were observed with the different dyes at the pH of tap
water and at the pH of distilled water.

As a final remark, the kinetic trends reported in this paper are not easily comparable
with literature results due to the different operative conditions of the systems. In particular,
in this paper, the measurements were carried out in a re-circulating unit where TiO2 was
immobilized onto a channel. Moreover, in this case, the TiO2/dye molar ratio was 2 or
3 orders of magnitude lower and the catalyst particle size on the order of micron (lower
specific surface area) was deposited and not suspended.
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The operations were also carried out with low-pressure UVB lamps and no thermal
activation of the film or additions of other oxidants as O2, H2O2, S2O8

−2 were carried out
to improve sorption/degradation of Methyl Orange.
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