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Design of an Efficient Pulsed Dy3+: ZBLAN Fiber
Laser Operating in Gain Switching Regime

Mario Christian Falconi, Student Member, IEEE, Dario Laneve , Michele Bozzetti , Toney Teddy Fernandez,
Gianluca Galzerano , and Francesco Prudenzano

Abstract—A time-dependent numerical model of a dysprosium-
doped ZBLAN glass fiber is developed in order to design a pulsed
laser emitting at about 3 µm wavelength, by employing an in-band
pumping scheme. A number of design parameters are changed
to optimize the laser performance. Gain-switching regime with
an output signal peak power close to 59 W and a full width at
half maximum pulse duration shorter than 184 ns is simulated for
a fiber with dopant concentration of 2000 ppm, by employing a
pulsed input pump with a peak power of 5 W and a repetition
rate of 100 kHz at the wavelength of 2.8 µm. These characteristics
are very promising and theoretically predict the feasibility of a
laser, which can find application in many areas such as chemical,
biological, and environmental monitoring.

Index Terms—Dysprosium, fiber laser, gain switching, middle
infrared, ZBLAN glass.

I. INTRODUCTION

THE need for high beam quality (M 2 ≈ 1) emission in
the middle-infrared (Mid-IR) wavelength range is orig-

inated by a number of potential applications, in the field of
free-space communication, chemical and biological sensing, re-
mote sensing and earth atmosphere monitoring, medical diag-
nostic and surgery, material processing and material science
measurements. More precisely, the interaction of Mid-IR light
beams with biological tissues, gases, water, air contaminants and
many other materials is extremely promising. Innovative sens-
ing systems can be developed by exploiting the characteristic
absorption fingerprints exhibited by the chemical and biological
molecules in the Mid-IR wavelength range (2–20 μm) due to,
e.g., the vibrational resonances of C-H, N-H and O-H chemical
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bonds. Also laser ablation surgery can be efficiently obtained at
Mid-IR wavelengths by exploiting the strong water absorption.
Novel communication systems based on free space propagation
could utilize the transmission windows of earth atmosphere, e.g.,
the 3–4 μm, 4.3–5.0 μm, 8–10 μm and 10–14 μm wavelength
ranges.

Different glasses can be employed as host materials for the
construction of rare-earth-doped fiber lasers providing efficient
Mid-IR emission. Chalcogenide fiber lasers have been exten-
sively investigated for their excellent transparency at very long
wavelengths, till 20 μm, but further technological development
is required in order to obtain working prototypes [1]–[8]. Tel-
lurite [9]–[11] and fluoride [12]–[23] fiber glasses constitute
more feasible alternatives in the 2–3 μm wavelength range. In
particular, the market availability of efficient laser diodes as
pumping sources has allowed significant advances in the con-
struction of both continuous-wave (CW) and pulsed ZBLAN
fiber lasers close to 3 μm wavelength. As an example, in [24]
a Q-switched Er3+-doped ZBLAN fluoride fiber laser has been
proposed. Nonlinear polarization rotation (NPR) method [25]
and gain switching [26]–[28] constitute further approaches in
order to obtain high-energy pulsed laser operation.

In this work, for the first time to the best of our knowledge,
a time-dependent numerical model for an in-band pumped con-
figuration of Dy3+-doped ZBLAN fiber laser is proposed in
order to investigate the generation of optical pulses at 3 μm.
Till now, only CW Dy3+-doped ZBLAN fiber lasers with in-
band pumped configuration have been demonstrated [29]–[32].
Therefore, the investigation illustrated in this work could pave
the way to the pulsed operation for this kind of lasers. The gain
switching method, in which a suitable input pump modulates the
optical gain, is considered to achieve pulsed operation. Stable
single-pulse regime is predicted. Moreover, this investigation
has a practical interest since simulation parameters pertaining
to commercially available fluoride fibers are employed [32].

II. GAIN-SWITCHED LASER MODEL

In the proposed model, the rate equations coupled with the
time-varying power propagation equations for the pump and sig-
nal beams are solved by including the time derivatives. Group
velocity for all propagating waves is taken into account [26],
[27], [33]. A numerical code based on a modified FDTD ap-
proach is implemented. A first-order forward-time scheme is
considered for the rate equations [34].
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Fig. 1. Dy3+ energy levels and transitions for the case of λp = 2.8 μm in-band
pumping.

The optical behavior of dysprosium ions, for in-band pump-
ing at λp = 2.8 μm wavelength, can be suitably modeled by
employing a two levels laser system, as shown in Fig. 1. The
6H15/2 and 6H13/2 energy levels are the fundamental state and
the excited state, respectively. By taking into account the typical
light-rare earth interactions, i.e., absorption, stimulated emis-
sion, radiative and nonradiative decays, the following equation
system for the level populations N1(x, y, z, t) and N2(x, y, z, t)
can be written:

⎧
⎪⎪⎨

⎪⎪⎩

∂N2

∂t
= WGSAN1 − (WE + A21 + R21)N2

∂N1

∂t
= −WGSAN1 + (WE + A21 + R21)N2

(1)

where WGSA = W p
GSA + W s

GSA is the total transition rate per-
taining to the Ground State Absorption (GSA), WE = W p

E + W s
E

is the total transition rate pertaining to the Stimulated Emission
(E), while A21 = τ−1

2 and R21 = T−1
2 are the radiative and

nonradiative decay rates for the 6H13/2 → 6H15/2 transition,
respectively. The transition rates for the pump (p) and the signal
(s) can be calculated as follows:

W p
GSA =

σ12(νp)
hνp

[P+
p (z, t) + P−

p (z, t)]ip(x, y)

W p
E =

σ21(νp)
hνp

[P+
p (z, t) + P−

p (z, t)]ip(x, y)

W s
GSA =

σ12(νs)
hνs

[P+
s (z, t) + P−

s (z, t)]is(x, y)

W s
E =

σ21(νs)
hνs

[P+
s (z, t) + P−

s (z, t)]is(x, y)

where h is the Planck constant, νp is the pump frequency, νs

is the signal frequency, σ12(ν) and σ21(ν) are the frequency-
dependent absorption and emission cross sections, respectively,
P±

p is the forward/backward pump power and P±
s is the for-

ward/backward signal power, ip and is are the normalized
transverse intensity profiles of pump and signal beams, respec-
tively. The previous system of differential equations (1) can
be simplified because the sum of level populations is equal to
the total dopant concentration NDy(x, y, z) = N1(x, y, z, t) +
N2(x, y, z, t):

⎧
⎨

⎩

∂N2

∂t
= WGSAN1 − (WE + A21 + R21)N2

N1(x, y, z, t) = NDy(x, y, z) − N2(x, y, z, t)
(2)

Fig. 2. Schematic of the device.

The propagation of the pump and signal optical beams is taken
into account by the following nonlinear partial differential
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P+
p

∂z
+

1
vp

g

∂P+
p

∂t
= [gp(z, t) − α(νp)]P+

p

∂P−
p

∂z
− 1

vp
g

∂P−
p

∂t
= [−gp(z, t) + α(νp)]P−

p

∂P+
s

∂z
+

1
vs

g

∂P+
s

∂t
= [gs(z, t) − α(νs)]P+

s + asp(z, t)

∂P−
s

∂z
− 1

vs
g

∂P−
s

∂t
= [−gs(z, t) + α(νs)]P−

s − asp(z, t)

(3)

where

gp(z, t) = −σ12(νp)n1p(z, t) + σ21(νp)n2p(z, t),

gs(z, t) = −σ12(νs)n1s(z, t) + σ21(νs)n2s(z, t),

asp(z, t) = 2hνsBaseσ21(νs)n2s(z, t),

are the gain coefficient for the pump, the gain coefficient for
the signal and the spontaneous emission term, respectively, vp

g

and vs
g are the group velocities for the pump and the signal,

respectively, α(ν) is the frequency-dependent optical loss of
the glass and Base is the equivalent noise bandwidth for the
Amplified Spontaneous Emission (ASE). The overlap integrals
over the rare earth-doped region Ωd between the ion populations
and the pump/signal optical modes are calculated as follows:

n1p(z, t) =
∫

Ωd

N1(x, y, z, t)ip(x, y) dxdy

n2p(z, t) =
∫

Ωd

N2(x, y, z, t)ip(x, y) dxdy

n1s(z, t) =
∫

Ωd

N1(x, y, z, t)is(x, y) dxdy

n2s(z, t) =
∫

Ωd

N2(x, y, z, t)is(x, y) dxdy

Therefore, the actual spatial distribution of both the ion popula-
tion and the electromagnetic field is taken into account.

In order to solve the previous PDEs (3), suitable boundary
and initial conditions are imposed (see Fig. 2):

P+
p (0, t) = P+

p0(t)

P−
p (L, t) = P−

p0(t)

P+
s (0, t) = R1(νs)P−

s (0, t)

P−
s (L, t) = R2(νs)P+

s (L, t)
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where z = 0 and z = L represent the endpoints of the laser
cavity, P±

p0(t) is the input forward/backward pump power signal,
R1(νs) is the first mirror reflectivity and R2(νs) is the second
mirror reflectivity. In addition, the system is considered to be
initially at rest, therefore all rare earth ions are in the ground
state and all the signals are zero everywhere:

N1(x, y, z, 0) = NDy(x, y, z)

N2(x, y, z, 0) = 0

P+
p (z, 0) = P−

p (z, 0) = P+
s (z, 0) = P−

s (z, 0) = 0

The time evolution of the generated optical pulses can be ob-
tained as follows:

P out
s (t) = [1 − R2(νs)]P+

s (L, t) (4)

III. NUMERICAL RESULTS

The fiber considered in the simulation is a step-index fluoride
fiber, commercially available (Le Verre Fluoré), with core di-
ameter dcore = 12.5 μm, cladding diameter dclad = 125 μm and
numerical aperture NA = 0.16. The absorption and emission
cross sections for the pump are σ12(νp) = 3.26 × 10−25 m2 and
σ21(νp) = 2.04 × 10−25 m2 , respectively. The absorption and
emission cross sections for the signal are σ12(νs) = 9.61 ×
10−26 m2 and σ21(νs) = 1.65 × 10−25 m2 , respectively. The
6H13/2 → 6H15/2 radiative lifetime is τ2 = 13.7 ms and the
6H13/2 → 6H15/2 nonradiative decay rate is R21 = 1539 s−1 .
The equivalent ASE noise bandwidth is Base = 100 nm. The
glass refractive index is n = 1.48 at the wavelength λ =
2.88 μm. A suitable Sellmeier equation is considered to model
the glass cladding refractive index dispersion, while keep-
ing constant the numerical aperture NA. The group veloci-
ties for the pump and the signal are vp

g = 2.025 × 108m s−1

and vs
g = 2.027 × 108m s−1 , respectively. They are very close,

as expected. The optical losses are assumed to be equal to
α = 0.9 dB m−1 at both pump and signal wavelengths, i.e., high
enough to include potential losses due to the splicing of the dif-
ferent parts of the laser cavity. The dopant concentration is
NDy = 2000 ppm = 3.63 × 1025 ions/m3 . The first mirror re-
flectivity is R1 = 99%. The pump and signal wavelengths are
λp = 2.8 μm and λs = 3.0 μm, respectively. The input pump
peak power is P peak

p = 5 W. The time step size is Δt = 5 ns and
the space step size is Δz = 1 cm. In the following, the excitation
pump waveform is assumed to be a square wave with variable
amplitude, repetition rate and duty cycle. The time-dependent
model has been validated by considering, as particular case, in-
put pump power pulses with duty cycle D = 100%, i.e., CW
operation. All the parameters of the laser experimental set-up
reported in [29] have been considered. By supposing a real-
istic coupling efficiency of about 30%, an output laser power
very close to the experimental one has been obtained, with an
agreement within 5%.

As an example of time-dependent simulation, Fig. 3 shows
the unstable output signal pulses and the input pump pulses
as a function of the time, input pump duty cycle D = 40%,
laser cavity length L = 1 m and second mirror reflectivity

Fig. 3. Input pump power pulses P +
p (0, t) (blue pulses) and output signal

power pulses P out
s (t) (red pulses) as a function of the time. Input pump duty cy-

cle D = 40%, laser cavity length L = 1 m, pump repetition rate fR = 100 kHz,
second mirror reflectivity R2 = 50%.

Fig. 4. Output signal peak power P
peak
s as a function of the cavity length L for

different input pump duty cycles, D = 25% (dotted curve), D = 30% (dashed
curve), D = 35% (dash-dot curve), D = 40% (solid curve). Pump repetition
rate fR = 100 kHz; second mirror reflectivity R2 = 50%.

R2 = 50%. It is apparent that a proper design of the laser is
mandatory in order to obtain stable single-pulse emission.

The output laser characteristics are investigated as a function
of: i) laser cavity length L, see Figs. 4–6; ii) second mirror
reflectivity R2 , see Figs. 7–9; iii) input pump duty cycle D,
see Figs. 10–12. Only points belonging to single-pulse stability
regions are shown.

Fig. 4 shows the output signal peak power P peak
s as a func-

tion of the laser cavity length L for different input pump duty
cycles. The curves exhibit an increasing behavior for small cav-
ity lengths, they reach the maximum for L = 0.8 m and then
they decrease by increasing the cavity length. In other words,
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Fig. 5. Output signal pulse width τs as a function of the cavity length L for
different input pump duty cycles, D = 25% (dotted curve), D = 30% (dashed
curve), D = 35% (dash-dot curve), D = 40% (solid curve). Pump repetition
rate fR = 100 kHz; second mirror reflectivity R2 = 50%.

Fig. 6. Output signal pulse energy Es as a function of the cavity length L for
different input pump duty cycles, D = 25% (dotted curve), D = 30% (dashed
curve), D = 35% (dash-dot curve), D = 40% (solid curve). Pump repetition
rate fR = 100 kHz; second mirror reflectivity R2 = 50%.

for a given laser configuration and dopant concentration, even
by changing the average input pump power by considering dif-
ferent duty cycle values, the length L = 0.8 m seems to be the
optimal one.

Fig. 5 shows the output signal pulse width τs as a function
of the laser cavity length L for different input pump duty cy-
cles. The simulation parameters are the same of Fig. 4. For
short fibers, the pulse width exhibits a decreasing behavior and
reaches a minimum at L = 0.75-0.85 m, then it increases. The

Fig. 7. Output signal peak power P
peak
s as a function of the output mirror

reflectivity R2 for different input pump duty cycles, D = 25% (dotted curve),
D = 30% (dashed curve), D = 35% (dash-dot curve), D = 40% (solid curve).
Pump repetition rate fR = 100 kHz; cavity length L = 0.9 m.

Fig. 8. Output signal pulse width τs as a function of the output mirror re-
flectivity R2 for different input pump duty cycles, D = 25% (dotted curve),
D = 30% (dashed curve), D = 35% (dash-dot curve), D = 40% (solid curve).
Pump repetition rate fR = 100 kHz; cavity length L = 0.9 m.

shortest achievable duration is about τs = 180 ns, for D = 35%.
For D = 40%, the performance deteriorates due to the stabil-
ity region limited by non-optimal cavity lengths. The related
pulse energy Es is shown in Fig. 6. The maximum achievable
pulse energy is about Es = 11 μJ, for D = 35%, leading to an
optical-to-optical efficiency higher than η = 60%.

Fig. 7 shows the output signal peak power P peak
s as a function

of the output mirror reflectivity R2 for different input pump
duty cycles. The curves exhibit an increasing behavior for low
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Fig. 9. Output signal pulse energy Es as a function of the output mirror
reflectivity R2 for different input pump duty cycles, D = 25% (dotted curve),
D = 30% (dashed curve), D = 35% (dash-dot curve), D = 40% (solid curve).
Pump repetition rate fR = 100 kHz; cavity length L = 0.9 m.

Fig. 10. Output signal peak power P
peak
s as a function of input pump duty cycle

D for different pump repetition rates, fR = 10 kHz (dotted curve), fR = 30 kHz
(dashed curve), fR = 50 kHz (dash-dot curve), fR = 70 kHz (solid curve),
fR = 90 kHz (solid curve with square markers), fR = 100 kHz (solid curve
with diamond markers), fR = 120 kHz (solid curve with asterisk markers),
fR = 140 kHz (solid curve with circle markers). Cavity length L = 0.9 m;
second mirror reflectivity R2 = 50%.

reflectivities and a decreasing behavior for high reflectivities.
The maximum is reached around R2 = 50%, even if the pump
duty cycle changes from D = 25% to D = 35%. It is worth-
while noting that, for higher pump duty cycles, the single-pulse
stability region gets narrower and narrower.

Fig. 11. Output signal pulse width τs as a function of input pump duty cycle D
for different pump repetition rates, fR = 10 kHz (dotted curve), fR = 30 kHz
(dashed curve), fR = 50 kHz (dash-dot curve), fR = 70 kHz (solid curve),
fR = 90 kHz (solid curve with square markers), fR = 100 kHz (solid curve
with diamond markers), fR = 120 kHz (solid curve with asterisk markers),
fR = 140 kHz (solid curve with circle markers). Cavity length L = 0.9 m;
second mirror reflectivity R2 = 50%.

Fig. 12. Output signal pulse energy Es as a function of input pump duty cycle
D for different pump repetition rates, fR = 10 kHz (dotted curve), fR = 30 kHz
(dashed curve), fR = 50 kHz (dash-dot curve), fR = 70 kHz (solid curve),
fR = 90 kHz (solid curve with square markers), fR = 100 kHz (solid curve
with diamond markers), fR = 120 kHz (solid curve with asterisk markers),
fR = 140 kHz (solid curve with circle markers). Cavity length L = 0.9 m;
second mirror reflectivity R2 = 50%.

Fig. 8 shows the output signal pulse width τs as a function of
the output mirror reflectivity R2 for different input pump duty
cycles. The simulation parameters are the same of Fig. 7. The
curves exhibit a monotone decreasing behavior, with a very steep
slope for low reflectivities. For reflectivities greater than R2 =
40%, the pulse width is almost constant. Again, the best value
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Fig. 13. (a) Input pump power pulses P +
p (0, t) (blue pulses) and output signal power pulses P out

s (t) (red pulses) as a function of the time. Input pump duty cycle
D = 35%, laser cavity length L = 0.8 m, pump repetition rate fR = 100 kHz, second mirror reflectivity R2 = 50%. (b) Zoom of a single output signal pulse.

of about τs = 180 ns is obtained for R2 = 50%, for the case
D = 35%. Fig. 9 shows the related pulse energy Es. Like the
previous case, the behavior is similar to that of Fig. 7, although
the maximum pulse energy is obtained for D = 40%.

Fig. 10 depicts the output signal peak power P peak
s as a func-

tion of the input pump duty cycle D for different pump rep-
etition rates. It is worthwhile noting that these curves refer to
the average signal power, defined as P avg

s = EsfR, varying from
P avg

s = 0.04 W to P avg
s = 1.45 W and represent the regions in

which stable output pulses are generated. It can be seen that a
repetition rate as high as fR = 140 kHz is feasible.

Fig. 11 shows the output signal pulse width τs as a function of
the input pump duty cycle D for different pump repetition rates,
for the same simulation parameters of Fig. 10. The curves are
monotone decreasing for all repetition rate values, with a slope
less and less steep as the repetition rate increases. In addition,
the pulse width never falls below τs = 180 ns. This is probably
due to an inherent limitation of this fiber laser in gain switching
operation. Also in this case, the pulse energy Es, which is shown
in Fig. 12, exhibits a behavior similar to that of the pulse peak
power. Energies of about Es = 10-11 μJ can be achieved for
each value of the repetition rate, which provides great flexibility
in the design of the device for both low and high repetition rates
applications.

Figs. 10–12 are obtained for nearly optimized cavity length L
and second mirror reflectivity R2 and allow identifying the max-
imum pulse peak power P peak

s , width τs and energy Es achievable
by varying the operating condition in terms of repetition rate fR

and duty cycle D.
Fig. 13(a) reports the generated pulses for the optimized

laser, showing the stable output signal pulses and the input
pump pulses as a function of the time, input pump duty cycle
D = 35%, laser cavity length L = 0.8 m and second mirror re-
flectivity R2 = 50%. After a build-up time of about t = 65 μs,
the first pulse is generated. Stable gain-switched pulsed regime
with an output peak power of P peak

s = 59 W and a pulse du-
ration of τs = 184 ns, corresponding to an output energy of
Es = 11 μJ, is obtained after t = 110 μs. Fig. 13(b) depicts a
zoom of a single output signal pulse.

The obtained results are promising, even with reference to
the state of the art [28], [35], [36]. As examples, the following

characteristics of gain switched lasers were reported in the recent
literature: i) in [35], pulse trains at λ = 2.8 μm with a maximum
peak power of P peak

s = 68 W, a duration of τs = 300 ns and a
pulse energy of Es = 20.4 μJ at the repetition rate of fR =
100 kHz in an Er3+-doped ZBLAN fiber laser; ii) in [28], pulse
trains at λ = 2.8 μm with a maximum peak power of P peak

s =
3.85 W, a duration of τs = 1.55 μs and a pulse energy of Es =
5.97 μJ at the repetition rate of fR = 20 kHz in the same fiber;
iii) in [36], pulse trains at λ = 2.98 μm with a maximum peak
power of P peak

s = 3.26 W, a duration of τs = 1.49 μs and a pulse
energy of Es = 4.87 μJ at the repetition rate of fR = 80 kHz
in a Ho3+-doped ZBLAN fiber. In view of these results, the
proposed ZBLAN fiber laser doped with Dy3+ ions constitutes
an attractive solution since it allows the generation of pulse trains
at λ = 3 μm with a maximum peak power of P peak

s = 59 W, a
duration of τs = 184 ns, a pulse energy of Es = 11 μJ and an
optical-to-optical efficiency of η = 60% at the repetition rate of
fR = 100 kHz. Moreover, the proposed solution promises stable
gain-switching operation even at higher repetition rates, e.g., at
fR = 140 kHz.

IV. CONCLUSION

For the first time, a Dy3+:ZBLAN fiber laser operating in
gain switching regime is accurately modeled and numerically
investigated. By employing an input pump of 5 W with 100 kHz
repetition rate and 35% duty cycle, pulses with a peak power
of 59 W and a full width at half maximum (FWHM) width of
184 ns can be obtained. The related energy is 11 μJ, which cor-
responds to an optical-to-optical efficiency larger than 60%. The
parameters of a commercially available fluoride fiber are used.
Therefore, the proposed investigation can be considered a fea-
sibility investigation of a pulsed laser which can be constructed
by employing fluoride fibers available on the market.
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