
27 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Modeling and Design of Adaptive Video Streaming Control Systems / Cofano, Giuseppe; De Cicco, Luca; Mascolo,
Saverio. - In: IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS. - ISSN 2325-5870. - ELETTRONICO. -
5:1(2018), pp. 548-559. [10.1109/TCNS.2016.2631452]

This is a post print of the following article

Original Citation:

Modeling and Design of Adaptive Video Streaming Control Systems

Published version
DOI:10.1109/TCNS.2016.2631452

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/90428 since: 2021-03-12



1

Modeling and Design of
Adaptive Video Streaming Control Systems
Giuseppe Cofano, Luca De Cicco Member, IEEE, and Saverio Mascolo, Senior Member, IEEE

Abstract—Adaptive video streaming systems aim at providing
the best user experience given the user device and the network
available bandwidth. With this purpose, a controller selecting the
video bitrate (or level) from a discrete set L has to be designed.
The control goal is to maximize the video bitrate while avoiding
playback interruptions and minimizing video bitrate switches. In
this paper we propose a hybrid dynamical system modeling the
essential features of an important class of controllers for adaptive
video streaming systems. We derive tuning rules to achieve key
performance goals by sizing the control system parameters. We
show how to: (i) tune the controller parameters to keep the video
level switching frequency below a given target; (ii) design the
video levels set L to obtain a performance trade-off between
switching frequency and storage costs at the servers; (iii) find
the minimum amount of playout buffer that should be stored
to avoid rebuffering events with a given probability in case of
temporary bandwidth drop. The theoretical results are validated
through numerical simulation and experimental evaluation.

Keywords—Adaptive video streaming, Hybrid modeling.

I. INTRODUCTION AND BACKGROUND

V IDEO streaming systems allow a client to play a video
that is sent by a remote server over the Internet. Video

streaming platforms, such as YouTube and Netflix, are credited
today as the largest contributors for the downlink bandwidth
traffic in the United States and it has been predicted that such
growth will lead video to globally dominate the Internet traffic
in the forthcoming years [1]. As a consequence, video content
providers have to deal with the twofold challenge of (i) provid-
ing a seamless multimedia experience across a heterogeneous
mix of client devices (such as smart TVs, desktop PCs, smart
phones) and access networks (such as wired cable/ADSL and
wireless 3G/4G connections), and (ii) managing a complex
delivery network in a cost effective way. From the video
providers point of view, improving user engagement is the
key requirement due to its direct connection to revenues.
Among other subjective factors that impact user engagement,
the Quality of Experience (QoE) plays a fundamental role.

Video clients employ a playout buffer to absorb the instan-
taneous mismatches between the video encoding bitrate and
the network available bandwidth that in best-effort Internet is

The authors are with the Dipartimento di Ingegneria Elet-
trica e dell’Informazione, Politecnico di Bari, Via Orabona
4, Bari, Italy. emails: giuseppe.cofano@poliba.it,
luca.decicco@poliba.it, mascolo@poliba.it

This work has been supported by the Italian Ministry of Education, Universi-
ties and Research (MIUR) through the MAIVISTO project (PAC02L1_00061)
and by the "Future in Research" project no. ACYBEH5 funded by the Apulia
Region, Italy.

unpredictable and time-varying. It has been shown that play-
back interruptions due to video playout buffer depletion are
highly detrimental for the QoE and the user engagement [2].
Intuitively, in order to avoid that the playout buffer gets empty,
the video bitrate should not be higher than the available
network bandwidth. This requires (i) the video content to be
made elastic, i.e. its bitrate can be changed in real-time, (ii) the
design of a control algorithm that dynamically selects the
video bitrate. Today, the leading approach to make the content
elastic, i.e. to implement adaptivity, is the stream-switching (or
multi-bitrate): the server encodes the video content at different
bitrates, the video levels, and the control algorithm selects
the video level to be sent. Due to its implementation and
deployment simplicity, such a technique is today employed
by leading video streaming services such as Netflix, Hulu,
Vudu, Livestream, and YouTube. The two main adaptive
streaming standards, MPEG Dynamic Adaptive Streaming over
HTTP (DASH) and HTTP Live Streaming (HLS), adopt this
approach. From the architectural point of view, the leading
choice is the one placing the controller at the client.

Regarding the design of the stream-switching control al-
gorithm, the following goals have to be pursued to improve
the QoE: (i) avoiding playback interruptions; (ii) maximizing
video quality (level or bitrate); (iii) minimizing the start-up
delay; (iv) minimizing amplitude and frequency of video level
switches [3]. Two cooperating techniques are employed: (i) an
algorithm to dynamically select the video level, which is
required to ideally match the available bandwidth and (ii) a
playout buffer controller that is used to absorb bandwidth
variations and avoid playback interruptions. Playout buffer
control algorithms can be designed by taking one of the
following approaches: the buffer level can be controlled by
acting either on the received rate (rate-based approach) or on
the video level (level-based approach). It is now well-known
that the mainstream rate-based approach leads to fundamental
performance issues such as poor bandwidth utilization and
unfairness in presence of concurrent flows [4], [5], whereas
the level-based approach is able to solve the issues affecting
the rate-based approach at the cost of a possible increase of
video level switches at steady state.

This performance limitation is the main reason hindering
the adoption of level-based controllers. The goal of this paper,
which significantly extends [6], is to characterize level-based
HTTP Adaptive Streaming (HAS) controllers and propose rules
to guide the design of controllers taking such an approach. To
the purpose, we provide a model of level-based controllers
in the form of a hybrid dynamical system that generalizes
such controllers. Then, based on this model, we derive a
simple relationship between minimum switching frequency

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
 for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Digital Object Identifier 10.1109/TCNS.2016.2631452



2

and control system parameters to provide a configurable bound
to the number of video level switches at steady state. As a
new contribution to [6], we propose a methodology to tune
the minimum amount of playout buffer that should always be
guaranteed to bound rebuffering events to a target probability.

II. PRELIMINARIES

The following notation is used in the rest of the paper.
R≥0 denotes the nonnegative real numbers. Given a set A,
A denotes its closure. PD denotes the set of positive-definite
functions. Given a vector x ∈ Rn, |x| denotes the Euclidean
vector norm. Given a vector x ∈ Rn and a set A ⊂ Rn,
the distance from x to A is denoted |x|A and is defined by
|x|A := infy∈A |x − y|. A function α : R≥0 → R≥0 is
said to belong to the class K∞ if it continuous, zero at zero,
positive when its argument is positive, strictly increasing and
unbounded.

A. Hybrid dynamical systems
A hybrid system H can be described using four elements

(C,D, F,G) as proposed in [7]:
�
ẋ ∈ F (x) x ∈ C,
x+ ∈ G(x) x ∈ D,

where x is the state, C is the flow set where x evolves according
to a continuous equation, F is a set-valued mapping describing
the continuous evolution of the state, D is the jump set where
jumps are enabled, G is a set-valued mapping describing the
discrete evolution of the state.

Solutions to a hybrid system are given on hybrid time
domains by hybrid arcs. A subset E ⊂ R≥0 ×N is a compact

hybrid time domain if E =
J−1�
j=0

([tj , tj+1], j) for some finite

sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . It is a hybrid
time domain if for all (T, J) ∈ E , E ∩ ([0, T ] × {0, 1, ..., J})
is a compact hybrid time domain. A hybrid arc η is a function
defined on a hybrid time domain dom η mapping to Rn such
that η(t, j) is locally absolutely continuous in t for each j,
(t, j) ∈ domη. A hybrid arc η is a solution to the hybrid system
H if η(0, 0) ∈ C ∪D and: (S1) For all j ∈ N and almost all t
such that (t, j) ∈ domη, η(t, j) ∈ C, η̇(t, j) ∈ F (η(t, j)); (S2)
For all (t, j) ∈ domη such that (t, j+1) ∈ domη, η(t, j) ∈ D,
η(t, j + 1) ∈ G(η(t, j)).

B. Stability definitions
We are now ready to give the definition of stability for a

hybrid system:
Definition 1: [Uniform global pre-asymptotic stability

(UGpAS)[7, Chap. 3]] Consider a hybrid system H on Rn

and a closed set A ⊂ Rn. The set A is said to be
• Uniformly Globally Stable for H if there exists a class

K∞ function α such that any solution φ to H satisfies
|φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ domφ ;

• Uniformly Globally pre-Attractive for H if for each � >
0 and r > 0 there exists T > 0 such that, for any

solution φ to H with |φ(0, 0)|A ≤ r, (t, j) ∈ domφ
and t+ j ≥ T implies |φ(t, j)|A ≤ ε;

• Uniformly Globally pre-Asymptotically Stable for H
if it is both uniformly globally stable and uniformly
globally pre-attractive.

Stability of hybrid systems can be assessed by means of Lya-
punov sufficient conditions. A function V : domV → R is said
to be a Lyapunov function candidate for H = (C,D, F,G) if
V is continuously differentiable on an open set containing C
and C∪D∪G(D) ⊂ domV . A basic theorem provides sufficient
conditions for a generic hybrid system H . Moreover, several
relaxed or weakened Lyapunov conditions hold for special
cases. The following relaxed conditions hold for the special
case of persistent flowing:

Proposition 1: [Persistent flowing [7, Chap. 3]] Let H =
(C,D, F,G) be a hybrid system and A ⊂ Rn a closed set. Let
V be a Lyapunov function candidate for H and there exist
α1,α2 ∈ K∞, and a continuous ρ ∈ PD such that:

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D) (1)

�∇V (x), f� ≤ −ρ(|x|A) ∀x ∈ C, ∀f ∈ F (x) (2)

V (g)− V (x) ≤ 0 ∀x ∈ D, ∀g ∈ G(x) (3)

If, for each r > 0, there exists γr ∈ K∞, Nr ≥ 0 such that
for every solution φ to H , |φ(0, 0)|A ∈ (0, r], (t, j) ∈ domφ,
t+j ≥ T implies t ≥ γr(T )−Nr, then A is uniformly globally
pre-asymptotically stable.

III. ADAPTIVE VIDEO STREAMING

Early literature on video streaming, dating back to ‘90s and
later [8], [9], was focused on systems delivering content over
the User Datagram Protocol (UDP). Since the UDP lacks a
congestion control mechanism, the most important issue of
such systems was the design of such an algorithm at the appli-
cation layer. These early systems were making the assumption,
which was recently proven wrong [10], that containing the
video delivery latency was a key performance index for video
streaming. As such, the designed congestion control algorithms
did not implement a reliable transport leading to video quality
degradation due to packet losses. It is important to notice
that, even though many congestion control algorithms were
proposed in the literature, the common practice adopted by
the industry was to employ their own proprietary algorithms
to deliver video. Such a practice has led to a remarkable
fragmentation of the video streaming ecosystem which has
hindered its diffusion. The situation changed in 2005 when
YouTube adopted the so-called HTTP progressive download
approach, i.e., the video was downloaded as any other file
through an HTTP/TCP connection using a web browser. Such
an approach has been improved by the HTTP Adaptive Stream-
ing (HAS)1 by adding the possibility of adapting the video

1Notice that recently Google has proposed QUIC, a protocol allowing HTTP
traffic to be sent over UDP sockets [11], which is used today by YouTube
to deliver videos to users. Despite the different transport protocol, QUIC is
semantically equivalent to HTTP over TCP. The model proposed in this paper
for HAS systems is valid both in the case of HTTP over TCP and HTTP over
UDP (QUIC).



3

bitrate to the user device and end-to-end bandwidth. The HAS
approach is today the dominant technology and is employed by
all video streaming platforms. Based on the above background,
the challenge today is to study new control mechanisms and
mathematical models for the currently used video streaming
systems employing the HAS approach.

In this paper we consider HAS adaptive video streaming
control systems that take the stream-switching (or multi bitrate)
approach: the server encodes the video content at different
bitrate levels forming a discrete set L ={l0, l1, . . . , lN−1}
with li < li+1. Each video level is then divided logically,
or physically, into segments of fixed duration. A control
algorithm dynamically selects the video level to be streamed at
each segment download. The overall control goal of adaptive
video streaming algorithms is to maximize the users perceived
Quality of Experience given the available bandwidth.

A. Plant model

In this Section we present a fluid-flow model of the playout
buffer length defined as the total duration of video, measured
in seconds, temporarily stored in the buffer. We denote with
q(t) the playout buffer length2. Given a video of total duration
Tv , each video frame can be uniquely associated to a time
instant tv ∈ [0, Tv]. We define the video encoding bitrate as
l = dD/dtv , where dD is the amount of bytes required to store
a portion of video of duration dtv . Indeed, by definition, the
encoding rate l is always strictly greater than zero. We denote
the video level selected by the controller with l(t) ∈ L. The
received rate r(t) can be defined as r(t) = dD/dt, i.e. the
amount dD of bytes that are received in a time interval dt.

As any storage element, the playout buffer length can be
modeled as an integrator

q̇(t) = fr(t)− dr(t), (4)

where fr(t) is the filling rate and dr(t) is the draining rate.
If an amount of video duration dtv is received by the client
and stored in the playout buffer in a time dt, the instantaneous
filling rate fr(t) is equal to dtv/dt by definition. Thus, from
fr(t) = (dtv/dD) · (dD/dt) it turns out that

fr(t) =
r(t)

l(t)
. (5)

The playout buffer is drained by the player decoder: when the
video is playing, τ seconds of video are played in τ seconds,
i.e. dr(t) = 1; when the player is paused the draining rate is
zero. Thus, the draining rate is given by

dr(t) =

�
1 playing,
0 paused.

(6)

Finally, substitution of (5) and (6) in (4) yields to

q̇(t) =
r(t)

l(t)
− dr(t). (7)

2For the rest of the paper we will use the terms “buffer” and “queue”
equivalently.

B. Control approaches

In [6] we have proposed a classification for HAS control sys-
tems based on the employed actuation mechanism: the buffer
level, in fact, can be controlled by acting either on the received
rate (rate-based approach) or on the video level (level-based
approach). The employed approach has a remarkable impact
on performance.

In the following we describe the two classes of control
approaches that can be used to design a video streaming system
following the classification introduced in [6].

Rate-based approach. Let us consider the rate-based ap-
proach and for simplicity let us assume that the end-to-end
available bandwidth is fixed and thus the received rate r(t) is
constant and equal to r. These systems select the video level
l(t) as the maximum level l̄ ∈ L less than the received rate r.
Since l < r it turns out that, according to (5), the filling rate
would be greater than 1, i.e. the queue would always grow.
Hence, with this approach, the received rate is required to be
set equal to l(t) to keep q(t) at a fixed set point qT . However,
the client cannot arbitrarily set r(t) to a desired value since,
for each t, video segments are downloaded at a rate equal
to r. Thus, the only way to achieve, at least on average, the
desired received rate r(t) is to insert idle periods between the
download of two consecutive video segments. In other words
the client alternates between ON and OFF phases: during the
ON period, the client receives at a rate r(t) = r, whereas
during the OFF period it stays idle, i.e. r(t) = 0. With this
naive control approach the average received rate in an ON-
OFF period can be made equal to the selected video level l(t)
by properly setting the OFF duration. The advantage of this
approach is that, if the end-to-end bandwidth is constant, the
video level is kept constant and the queue tracks the set point.

Despite its simplicity, this approach has two major draw-
backs extensively studied in the literature: (i) the available
bandwidth is always underutilized, since the selected video
level is lower than the available bandwidth; (ii) it has been
experimentally shown that the ON-OFF traffic pattern causes
the video flows to obtain a bandwidth share significantly
less than the fair one when competing with long-lived TCP
flows [5], [4]. The first issue can significantly degrade the
perceived QoE in case the distance between the levels is high.
The second issue, that is known in the literature as downward
spiral effect [4], [12], can lead to an even worse degradation
of the perceived QoE.

Level-based approach. In the case of the level-based
approach (see for instance [12]), the video segments are
downloaded back to back, thus eliminating the ON-OFF traffic
pattern, i.e. r(t) is always equal to r. In this way video
flows behave as any other TCP long-lived flow and, as a
consequence, full utilization and fairness with TCP long-lived
flows are achieved by design. The control is done by throttling
l(t) in order to avoid rebuffering events. The drawback of this
approach is that at steady state video level switches occur even
when the available bandwidth is constant since l(t) belongs
to the discrete set L and cannot exactly match the available
bandwidth.

In the following section we propose a model that captures



4

the essential dynamics of the closed-loop system obtained
when a level-based controller is employed.

IV. LEVEL-BASED CONTROL

In this work we focus on level-based controllers since
they allow to overcome the well-known underutilization and
unfairness issues affecting rate-based controllers [4]. The main
reason why rate-based controllers are still employed despite
these issues is that level-based controllers, if not properly
designed, may provoke an excessive number of video level
switches even under constant available bandwidth, where the
expected behavior of the controller would be to keep the video
level constant. In this Section we show how to overcome
such a limitation. To the purpose, Section IV-A provides a
formal model of the closed-loop system obtained when using
a level-based hysteresis controller. We argue that any level-
based controller should reach a steady state dynamics matching
the one reached by the proposed hysteresis controller. Then,
Section IV-B proves the stability of the system and, based on
this analysis, some key properties are derived which provide
a bound to the number of video level switches at steady state.
Throughout the whole Section we assume a constant available
bandwidth input function.3 Such an assumption allows us to
analyze the stability of the system and to model steady state
conditions that we want to investigate.

A. Hybrid Model
The control goals of a generic adaptive streaming control

system are: G1) obtaining full utilization of the available
bandwidth at steady state, i.e., r(t) = B; G2) preventing re-
buffering events (occurring when the buffer gets empty), while
keeping the buffer length as low as possible; G3) minimizing
the video level switching amplitude and frequency at steady
state. Let us briefly justify the three goals. Regarding goal
G1, maximizing the video bitrate under the constraint of the
available bandwidth allows to indirectly maximize the user
experience [10]. Even though the design of control algorithms
for video streaming directly controlling the video quality is an
interesting and yet developing research area [13], [14], [15],
this paper focuses on the mainstream bitrate adaptation ap-
proach currently used both in the literature and in the industry.
We argue that, regardless of the taken control approach, the
video bitrate cannot be neglected since it directly affects the
dynamics of the playout buffer (see eq. (7)). Regarding G2,
in addition to avoiding rebuffering events, the queue should
be kept as low as possible to (i) avoid unnecessary segments
downloads wasting network bandwidth, (ii) minimize client
memory usage, and (iii) provide liveness in the case of live
streaming. Regarding G3, when a video level switch from li
to lj occurs, the larger the distance between li and lj , the
higher the QoE impairment [3]. Additionally, high switching
frequency should be prevented to avoid QoE degradation [3].

3Notice that home network scenarios represent the vast majority of video
traffic [1]. In these scenarios the users share the same downlink channel
of an ADSL/Cable connection. Step-like drops (increases) of the available
bandwidth occur whenever a long-lived TCP flow is started (stopped) on the
same channel.

With the level-based approach, the goal G1 is reached by
design since segments are downloaded back to back and TCP
guarantees full link utilization in the case of backlogged flows.
Goals G2 and G3 are potentially in contrast since control of
the playout buffer is performed by varying the video level l(t).
The avoidance of rebuffering events is reached at the price of
the presence of level switches even at steady state, due to the
fact that l(t) belongs to the discrete set L and cannot exactly
match B.

We propose a simple solution to this issue based on the
employment of a deadzone. The key idea is to keep q(t) in
a deadzone [qL, qH ] instead of steering it to a setpoint qT .
When q(t) ∈ [qL, qH ], video level switches are inhibited. This
design choice fully satisfies the goal G2, since the controller
aims at preventing both buffer underruns (that might occur
when q(t) < qL) and excessive buffering (that might occur
when q(t) > qH ). At the same time, it allows to minimize
both the amplitude and the frequency of the level switches,
making them predictable and tunable, as it will be shown in
the following.

The proposed approach can be applied in principle to any
level-based controller. In order to show its advantages, we
analyze the performance of a simple controller, that acts by
switching the video level l(t) between the two adjacent video
levels l and l such that l < B < l. In particular

l = max
l∈L

l

s.t. l < B
(8)

l = min
l∈L

l

s.t. l > B
(9)

The proposed controller increases the video level by selecting
l(t) = l when q(t) increases above the high threshold qH ,
whereas it decreases the video level to l when q(t) decreases
below the low threshold qL. When q(t) ∈ [qL, qH ], the video
level is kept constant. The proposed controller represents a
benchmark to compare level-based controllers making use of
the deadzone [qL, qH ].

In the following we present a hybrid dynamical model H
of the considered control system by employing the framework
proposed in [7] and summarized in Section II. The formal
model allows us to (i) rigorously prove that the queue length
keeps within the range [qL, qH ] at steady state regardless of
the initial conditions and (ii) provide some key properties of
the system.

Before defining the model, we exclude some trivial cases.
If B = li, i.e. the available bandwidth is exactly equal to
one video level bitrate, no switching between adjacent levels
at steady state occurs. However, this is a purely mathematical
condition that never holds in the practice: we exclude it by
imposing that B �= li for all i ∈ {0, . . . , N − 1}. Additionally,
if q(t) grows above a threshold qMAX � qH due to the fact
that B > lN−1, the control algorithm reacts with a safety
mechanism by employing the ON-OFF pattern to reduce the
received rate and prevent the download of the entire video.
Therefore, the proposed model holds only as long as 0 ≤
q(t) ≤ qMAX.



5

Let us now define the hybrid model H . The state of the
system is given by x = [ q l ]T ∈ X = [0, qMAX]× L. For
convenience of notation we define the following sets

CL = {x ∈ X : q < qL}, CH = {x ∈ X : q > qH},
CT = {x ∈ X : qL ≤ q ≤ qH},

Csup = {x ∈ X : l = l}, Cinf = {x ∈ X : l = l}.
The flow set C and jump set D are given by

C = (CL ∩ Cinf) ∪ CT ∪ (CH ∩ Csup),
D = (CL ∩ Csup) ∪ (CH ∩ Cinf).

The flow map is defined as

f(x) =
�

B
l − 1 0

�T
. (10)

The jump map is given by

g(x) =

��
q l

�T
ifx ∈ (CL ∩ Csup),�

q l
�T

ifx ∈ (CH ∩ Cinf).
(11)

B. System properties
The following theorem ensures that the queue length keeps

within the range [qL, qH ] regardless of the initial conditions.
Theorem 1: The set A = CT is uniformly globally pre-

asymptotically stable (UGpAS) for the hybrid system H .
Proof: We employ the sufficient Lyapunov condition

given in Proposition 1. The distance of x from the set A is
defined as

|x|A =





|x1 − qL| x ∈ CL,
0 x ∈ CT ,
|x1 − qH | x ∈ CH .

Let us consider the following candidate Lyapunov function

V (x) =
1

2
|x|2A

that satisfies condition (1). In order to prove (2) we compute:

�∇V (x), f� =





(x1 − qL)(
B
l − 1) x ∈ CL

0 x ∈ CT
(x1 − qH)(B

l
− 1) x ∈ CH

We consider the two cases x ∈ CL and x ∈ CH separately.
When x ∈ CL, since B > l it holds that B

l − 1 > 0, hence
(x1−qL)(

B
l −1) ≤ γL(x1−qL)

2, where γL ∈ [− 1
qL

(Bl −1), 0).
When x ∈ CH , since B < l it holds that −(1 − B

l
) < 0,

hence (x1 − qH)(B
l
− 1) ≤ γH(x1 − qH)2, where γH ∈

[− 1
qMAX−qH

(1 − B
l
), 0). Condition (2) is satisfied. During

jumps q(t) does not change, hence V (g) − V (x) = 0 and
condition (3) is verified. We still have to prove that the persis-
tent flowing condition holds. Every solution is characterized by
a transient period T ≥ 0, which depends on initial conditions,
and is such that after each jump has to flow for at least a time

qL

t

t

l(t)

li+1

li

B

ΔtLH

Ts

qH

q(t)

ΔtHL

Fig. 1. Limit cycle dynamics of the playout buffer length q(t) and the
selected bitrate l(t) at steady state

Tf > 0 due to the fact that ∀x ∈ X the distance between g(x)
and D is strictly greater than 0. Hence, (t, j) ∈ domφ implies
j ≤ T

Tf
+ t

Tf
, and thus from t+ j ≥ T follows the condition

of persistent flowing with γr(s) =
Tf

1+Tf
s and Nr = T

1+Tf
,

which concludes the proof. It is worth to notice that Tf has to
be less than min((qH − qL)

l
l−B

, (qH − qL)
l

B−l ).
We can further characterize the dynamical behavior of the

system with the following proposition.
Proposition 2: Given B ∈ (li, li+1), the evolution of the

queue of H at steady state is a triangular wave with switching
period

Ts = Δq

�
li

B − li
+

li+1

li+1 −B

�
,

where Δq is equal to qH − qL.
Proof: By solving (7) when li < B is selected, we see that

the queue linearly increases with constant rate B/li − 1 > 0.
When qH is reached, li+1 > B is selected and the queue
linearly decreases with constant rate B/li+1 − 1 < 0 until
q(t) = qL. Thus, li and li+1 are alternately selected according
to the jump map (11). Let us denote with ΔtHL (ΔtLH ) the
time elapsed to drain (fill) the queue from qH to qL(from qL
to qH ). We can write

ΔtHL = Δq
li+1

li+1 −B
; ΔtLH = Δq

li
B − li

.

Thus, the period is given by

Ts = ΔtLH +ΔtHL = Δq

�
li

B − li
+

li+1

li+1 −B

�
. (12)

Figure 1 shows the limit cycle dynamics described above.
Users’ QoE depends on the switching period Ts, that is

required to be as large as possible. We are able to provide a
lower bound to Ts, which corresponds to the minimum value
taken by Ts in the worst case available bandwidth B.

Proposition 3: The minimum switching period T s is given
by

T s =
ΔqDi

Di + 2− 2
√
Di + 1

, (13)



6

with Di = (li+1 − li)/li (the video level relative distance),
when B =

�
lili+1.

Proof: By computing ∂Ts/∂B = 0 we easily obtain

B =
�
lili+1, (14)

that is the geometric distance between the two adjacent levels.
Substitution of (14) and Di = (li+1 − li)/li in (12) yields,
after a little algebra, to (13).

Remark 1: We can employ (13) to tune the distance Δq =
qH −qL between the queue thresholds such that a target worst
case switching period is obtained. Since the function (13) is
monotonically decreasing with a vertical asymptote in Di =
0, the worst case switching period decreases as the relative
distance of two adjacent levels increases. The knowledge of
this simple relation can be used to properly design a level-
based controller in order to ensure the required QoE. Motivated
by this result we argue the superiority of level-based controllers
over the mainstream rate-based approach that is affected by
several important issues [16], [4].

Corollary 1: The minimum switching period T s is inde-
pendent of B if and only if the relative distance between any
adjacent video level is fixed, i.e. Di = D ∀i ∈ {0, . . . , N−1}.

This corollary expresses a key design choice that provides
a predictable performance in terms of switching period across
the entire range of bandwidths in [l0, lN−1]. Thus, this corol-
lary can be used to properly design the video levels set. This
will be further explained in the next section.

V. VIDEO LEVELS SET DESIGN

Let us consider the problem of the optimal design of
the video levels set L = {l0, . . . , lN−1}. Our goal is the
minimization of both QoE impairment due to video level
switching frequency and storage cost at the video provider.
The video levels set L is assumed to be composed of N
bitrates, whose number is not fixed a priori. In a typical use
case the minimum video level l0 is known a priori, whereas
the maximum lN−1 video level has to be kept higher than a
given value l̄N−1.

We formulate the following multivariate optimization prob-
lem:

min .
L={l0,...,lN−1}

J(L) = CS(S(L)) + αCfs(f̄s(L))
subject to N > 1, N ∈ N

l0 = l0
lN−1 ≥ lN−1,

(15)

where Cs(· ) and Cfs(· ) are monotonically non-decreasing
functions expressing, respectively, storage cost and switching
frequency cost (i.e. QoE impairment); f̄s(L) and S(L) are
minimum switching frequency4 and storage as functions of
the video levels set; α is a positive freely adjustable weighting
parameter.

First of all, we show how we can simplify this problem
by reducing it to a monovariate one. By taking into account

4The worst-case (i.e. the maximum) over the N − 1 minimum switching
frequencies obtained by considering the N − 1 pairs of consecutive video
levels li and li+1.

the Remark 1, we could proceed by fixing a target video level
switching period T s and the hysteresis width5 Δq in (13) to ob-
tain a unique value of D, which is independent of i. We assume
that D is upper bounded by Dmax = (l̄N−1 − l̄0)/l̄0. Once D
and l0 are fixed, each video level li, for all i ∈ {0, ..., N − 1}
can be expressed as

li = (1 +D)i l̄0. (16)

Hence, the number N of levels is a function of D

N(D) =




log
�

l̄N−1

l̄0

�

log(D + 1)



+ 1. (17)

Let us now consider again (15) applying the proposed ap-
proach. The switching frequency fs is equal to D+2−2

√
D+1

ΔqD ,
which is a univariate function of D independent of the video
level i. Storage for a video of duration Tv is proportional to
the sum of the size of all video levels:

S(D) = Tv

N(D)−1�

i=0

li =
Tv l̄0
D

((1 +D)N(D) − 1). (18)

We can finally formulate the resulting monovariate optimiza-
tion problem:

min.
D∈(0,Dmax]

J(D) = CS(S(D)) + αCfs(f̄s(D)).

Let us now assume for simplicity that both the cost functions
are linear, i.e. CS(S(D)) = γ1S(D) and Cfs(f̄s(D)) =
γ2f̄s(D). Observe that the storage cost is usually given by
piecewise linear functions in the industry6 and thus can be
assumed to be linear once the operational point of the video
provider is known. Regarding the switching frequency cost
Cfs , the relationship between the switching frequency and
user engagement, which ultimately impacts video providers
incomes, is still an open research issue. For simplicity it can
be assumed to be linear. We obtain:

min.
D∈(0,Dmax]

J(D) = γ1S(D) + αγ2f̄s(D). (19)

We expect that, when α is small, the storage component domi-
nates and large values of D will be obtained, meaning that few
and far apart levels should be employed. In particular, when
α = 0, the trivial solution D = Dmax (i.e. L = {l̄0, l̄N−1})
is obtained. On the contrary, with increasing values of α the
QoE component dominates and D gets smaller and smaller
converging to 0.

Let us now analyze the derivatives of the two functions. The
derivative of the switching frequency fs = 1/T s is equal to:

∂fs
∂D

=
1

Δq

D + 2− 2
√
D + 1

D2
√
D + 1

. (20)

5Recall that Δq cannot be made too large (see the control goal G2 in
Section IV-A).

6For instance, see https://www.cdn77.com/pricing\#cdn-storage and https:
//aws.amazon.com/it/cloudfront/pricing/



7

10 15 20 25
1

1.5

2

2.5

3
D

o
p
t

α

2.9 3.0

3.1 3.2

3.3

2.82.7

Fig. 2. Family of functions Dopt(α) when the parameter A = log l̄N−1 −
log l̄0 varies in the range [2.7, 3.1]

It can be shown that (20) is a monotonically decreasing func-
tion that is equal to 1/(4 ·Δq) for D = 0 and asymptotically
converges to 0.

The derivative of (18) turns out to be:

∂S

∂D
=

1− (1 +D)
log l̄N−1−log l̄0

log(D+1)

D2
(21)

that is monotonically increasing and goes from −∞ to 0. To
minimize (19) we have to solve the following equation:

γ1
∂S

∂D
+ αγ2

∂f̄s
∂D

= 0

It turns out that the previous equation has only one zero
depending on α. Figure 2 shows the optimal value of D as
a function of α for several values of A = log l̄N−1 − log l̄0.
In particular, the optimal value of D monotonically decreases
converging to 0 when α goes to +∞, due to the fact that with
a small α the storage term dominates, whereas with a large
α the switching frequency term dominates, as we previously
noted.

VI. PLAYOUT BUFFER LOWER THRESHOLD qL DESIGN

In Section IV constant available bandwidth has been as-
sumed to model steady state conditions. In this Section we
relax such an assumption to investigate robustness issues due
to sudden bandwidth drops. Observe that under time-varying
available bandwidth scenarios the goal of the controller is to
avoid rebuffering events, whereas video level switches have to
be performed in order to adapt to such bandwidth variations.
We first point out in Section VI-A that the main parameter
affecting robustness of the system is the lower threshold qL.
Then, in Section VI-B we propose a methodology to tune qL
in order to reach a target rebuffering ratio probability.

A. Motivation
In Section IV (Theorem 1) we have shown that the playout

buffer length of an ideal level-based control system is always
bounded in the set [qL, qH ] at steady-state provided that the
available bandwidth B is greater than the lowest video level
l0. In other words this means that, if B > l0 always holds,
rebuffering events do not occur. However, if the available

0 100 200 300 400 500 600
0

50

100

150

200

250

t [s]

B
it
ra

te
 [

k
b

/s
]

Fig. 3. Mismatch between nominal (dashed lines) and actual encoding rates
(continuous lines) of the video sequence “Elephant’s Dream”

bandwidth B gets lower than l0, the lower saturation condition
is met making the system open-loop and, consequently, letting
the playout buffer get empty. In such cases, a rebuffering event
can be avoided only if the amount of video already stored
in the playout buffer is sufficiently large to compensate this
temporary mismatch. Hence, the sizing of qL is crucial to avoid
rebuffering events in such situations. A trivial way to size qL
is to set it to a very large value, an unnecessarily conservative
practice that is being increasingly used today in leading video
on demand (VoD) systems such as Netflix7 [17]. However,
this practice is not advisable since it makes the playout buffers
very large resulting in the unnecessary pre-fetch of many video
segments wasting server and network bandwidth in the case of
early user abandonment [18]. Moreover, in the case of mobile
connections the user traffic has usually monthly quotas and
it is particularly important for the user to limit downloads of
segments that may be not played due to early abandonment.

Let us analyze why the condition B < l0 can occur. The
video levels li constituting the set L represent nominal bitrates
that are typically set to drive the encoding process and then
advertised by the video streaming server to the client through
the video manifest [19]. In particular, video streaming systems
(f.i., Netfix and YouTube) employ the Variable BitRate (VBR)
encoding process [20]: a target video bitrate is set and the
encoder strives to produce such a bitrate on average. However,
the encoder adapts the video bitrate to the video scene content.
For instance, highly dynamical scenes are encoded at a higher
bitrate to produce an acceptable video quality [20]. As a
consequence, the actual bitrate li(t) of a video level is time
varying and an instantaneous mismatch with the nominal
bitrate li exists in practice. To give an example, Figure 3 shows
the case of the benchmark video sequence “Elephant’s Dream”
made available in the MPEG-DASH dataset8. In Figure 3 we
show the first four nominal video levels (dashed line) and
compare them to the actual bitrate li(t) (continuous line) of
each segment. The figure shows that wide oscillations around
the nominal value are present, with a remarkable mismatch in
the time interval 570s < t < 600s that is due to a static scene.

Even though the video levels set is designed to cover the
typical user device range of bandwidths and screen resolutions,
there is no way to prevent the end-to-end available bandwidth

7Netflix employs a playout buffer target in the range of 150 seconds.
8http://www-itec.uni-klu.ac.at/ftp/datasets/mmsys12/ElephantsDream/



8

rebuffering

t0 t0 + x Tv0 t

l0(t)
b(t)

B
l̄0

tt0 + xt0

q(t)
qL

Fig. 4. Video level bitrate l0(t) and queue length q(t) in the presence of a
temporary bandwidth drop

to drop below the lowest video level bitrate l0. This situation
is commonplace in today wireless Internet, such as in the sce-
nario where a user consumes the video through a smartphone
with a 3G/4G connection.

B. The proposed methodology to size qL

We consider a video of duration Tv and known9 l0(t).
Our goal is to size qL so that, when the system is open-
loop (the controller has selected l0 and the bandwidth is less
than l0), rebuffering events are avoided with a given required
probability.

A video streaming session can be seen as a Bernoulli trial
having two possible outcomes: (i) no rebuffering event occurs
during the session, (ii) one or more rebuffering events occur.
We propose to tune qL so that the probability pNR of avoiding
rebuffering events is higher than a given threshold pNR. Hence,
the problem we want to solve can be stated as follows:

Problem 1: Find the minimum qL such that pNR > pNR.
Remark 2: It is worth to notice that value of qL obtained by

solving Problem 1 can be advertised to the adaptive stream-
switching algorithm at the start of the video playback by
embedding it, for instance, in the video manifest file. Then,
this value can be employed by the adaptive control system to
improve its performance.

We make the following unrestrictive assumptions: (i) the
system is open-loop since a generic time instant t0 and for a
certain duration x whose probability density function fX(x)
is known; (ii) the system is at steady-state at t0, i.e. qL ≤
q(t0) ≤ qH .

To simplify the following discussion, we consider a constant
bandwidth equal to B for t ∈ [t0, t0 + x], and q(t0) = qL.
Notice that if B = inft∈[t0,t0+x] b(t) and q(t0) = qL, by
using the following procedure we obtain the most conservative
setting for qL. Figure 4 depicts an example in which a
bandwidth drop occurring at time t0 and lasting until time
t0 + x provokes a rebuffering event due to the fact that,
even though the nominal level l0 is less than B, during the
bandwidth drop interval the actual level l0(t) is larger than B.

9The knowledge of l0(t) is not a restrictive assumption if we consider the
case of Video on Demand (f.i. YouTube or Netflix) where l0(t) is known both
at the client, through the manifest file, and at the server where the video is
stored.

In order to compute pNR we apply the law of total proba-
bility and obtain:

pNR =

ˆ ∞

0

pNR(x)fX(x)dx, (22)

where pNR(x) is the probability that no rebuffering occurs,
known that the open-loop duration is equal to x.

In order to find pNR(x), we compute the measure of the no
rebuffering event set NR, a subset of the sample space T

T = {t0 ∈ [0, Tv]}.
We define the no rebuffering event set as follows:

NR = {t0 ∈ T : ∀t ∈ [t0, t0 + x], q(t) > 0} (23)

In other words, t0 ∈ NR means that the dynamics of the queue
q(t) that we obtain by solving (7) is always strictly positive for
the whole duration of the open-loop time interval [t0, t0 + x].
Thus, to check if t0 ∈ NR we need to compute q(t) at a
generic time instant t ∈ [t0, t0 + x] by solving (7)

q(t) = q(t0) +B

ˆ t

t0

(
1

l0(ξ)
− 1)dξ. (24)

We notice that, since l0(t) is known and not null for all t ∈
[0, Tv], it is always possible to compute offline

´ t

t0
dξ/l0(ξ) for

each t0 ∈ [0, Tv] and t ∈ [t0, Tv]. We consider the indicator
function 1NR of NR ⊂ T , that is defined as

1NR(t0) =

�
1 if t0 ∈ NR,

0 if t0 /∈ NR.

A well-known property of indicator functions states that 1NR

is a random variable whose expected value is equal to the
probability of NR

E[1NR] = P(NR) = pNR(x).

As expected, pNR(x) is a function of qL and B since 1NR is
based on condition q(t) > 0 that depends on such variables.
Now, by plugging pNR(x) into (22), we obtain pNR. Finally,
by knowing pNR we can find the minimum qL such that pNR >
pNR. A way to implement the proposed technique is shown in
Section VI-C.

C. Implementation
In this Section we show how the methodology proposed

in Section VI-B can be implemented in the case of a DASH
video streaming system. The procedure has been implemented
by considering a discretization of (7) with a sampling interval
equal to Td. The video duration Tv is divided in K = �Tv/Td�
intervals. For each discrete time interval k ∈ {1, . . . ,K}, l0(k)
is discretized as

l0(k) =
1

Td

ˆ kTd

(k−1)Td

l0(t)dt. (25)

In order to compute pNR(x) in (22) we define the following
function:



9

Input: x, l0, qL, B
Output: No rebuffering probability pNR

1: for k0:=1:K − x do
2: for k:=k0:k0 + x do
3: if q(k0, k, B, l0, qL) < 0 then
4: buffcount ← buffcount + 1
5: Break
6: end if
7: end for
8: end for
9: pNR ← 1− buffcount/(K − x)

Fig. 5. The pseudo-code to compute pNR(x)

pNR(x) = buffProb(x,B, l0, qL)

where l0 is the array of segment bitrates computed using (25).
The pseudo-code of buffProb is given in Figure 5. We de-

note with k0 the sampling interval at which the bandwidth drop
begins. The key idea is to check for any k0 ∈ {1, . . . ,K − x}
if the queue gets empty, i.e. q(k) ≤ 0, for some value of
k ∈ {k0, . . . , k0 + x}. If this occurs we increase a rebuffering
counter. Then, the number of rebuffering events is divided by
K −x to compute E[1R] = pR(x), that is the probability that
one or more rebuffering events occur. The desired probability
pNR(x) is equal to 1 − pR(x), since we are considering a
Bernoulli trial.

To conclude, we give a short discussion on how the proposed
methodology, whose pseudo-code is described in Figure 5, can
be used. To compute pNR(x), we have to choose B which
is the value assumed by b(t) when it occurs a temporary
bandwidth drop. Indeed, the choice of B involves a trade-
off. Choosing a too low value of B might result in an overly
conservative setting for qL, while choosing B too high could
result in having a too low qL. Indeed, B can be tuned by
leveraging statistical information on the bandwidth estimated
by the clients. It is worth mentioning that, in order to size
their content delivery networks, video providers continuously
collect client-side measurements which include, among other
metrics, the bandwidth estimated by the client. Using such
datasets, B can be tuned, f.i., by taking the α percentile of the
estimated bandwidth samples distribution. We believe that the
proposed methodology can aid video providers in selecting
the qL parameter in a principled way so that the mentioned
trade-off can be taken into account without resorting to rules
of thumb based on experience. The way to select α ultimately
depends on the distribution of the estimated bandwidth samples
and is out of the scope of this paper.

VII. VALIDATION

In this section we validate the hybrid model H (see
Section IV-A) and its properties by comparing numerical
simulations with experimental data. We recall that the proposed
model H makes the fluid-flow assumption, i.e. the video seg-
ments length is infinitesimal, and assumes that the video levels
encoding rates are constant. In order to improve modeling

storage
Video

TAPAS

Player

Server Host

Apache
HTTP
Server

Client Host

L Video
Emulation
Internet

NetShaper

Fig. 6. Testbed employed for the experimental evaluation

accuracy in this section we also consider a refined hybrid
model HR relaxing both the aforementioned assumptions.
In particular, HR introduces the concept of discrete video
segment by allowing control decisions to be made only after
a segment has been completely downloaded. This also has
allowed us to employ in the simulations video levels with time-
varying encoding rate. The added features make HR difficult
to mathematically analyze and do not add, as it will be shown
in the following, a significant theoretical contribution. For this
reason the formal model is not included in this paper. Both the
proposed hybrid models H and HR have been implemented
with the Matlab Hybrid Equations (HyEq) Toolbox [21].

The proposed control algorithm has been then implemented
using TAPAS [22], an open-source tool that allows video
streaming control algorithms to be implemented and tested
through experiments in a real network such as the Internet.

Figure 6 shows the employed testbed that is composed of
two hosts connected through a 1 Gbps switch: the server host is
a workstation with a Debian Linux operating system equipped
with the software Apache10 that acts as HTTP server; the
server host also stores the video sequence “Sintel”11, encoded
at five nominal bitrates L = {300, 600, 900, 2500, 4000}kb/s
(except in Section VII-B, where other bitrates are considered);
the client host is a Ubuntu Linux machine that runs the TAPAS
tool in order to download video segments from the HTTP
server and play the video; TAPAS measures several variables
such as the video level l(t) selected by the controller and
the playout buffer length q(t) and stores it in log files [22];
moreover, the client host runs NetShaper, a tool developed
by us that permits to set the bandwidth b(t) and the delay of
the link connecting the client to the server host to emulate an
Internet connection.

A. Hybrid Model
In this section we compare the dynamics of the two proposed

models H and HR, obtained via numerical simulations, with
the dynamics of the real system obtained through experi-
ments. To the purpose, Figure 7 shows the state dynamics
x(t) = [ q(t) l(t) ]T in the case of simulations (Figure 7(a)
and Figure 7(b)) and experimental runs (Figure 7(c)) when
Δq = 12s and the available bandwidth B is equal to 1500kb/s.
By comparing Figure 7(a) and Figure 7(c), it turns out that H
models well the dynamics of the real control system. The only

10http://httpd.apache.org/
11http://www.sintel.org/



10

0 100 200 300 400 500
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400 500
500

1000

1500

2000

2500

3000

t [s]

l(
t)

 [
k
b
/s

]

(a) Hybrid model H

0 100 200 300 400 500
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400 500

1000

2000

3000

t [s]

l(
t)

 [
k
b
/s

]

(b) Refined hybrid model HR

0 100 200 300 400 500
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400 500
500

1000

1500

2000

2500

3000

t [s]

l(
t)

 [
k
b
/s

]

(c) Real system

Fig. 7. Dynamics of q(t) and l(t) obtained through numerical simulations and network experiments

10 15 20 25 30 35

50

100

150

Δq [s]

T
s
 [

s
]

 

 

experimental data

model H
refined model H

R

Fig. 8. The switching period Ts obtained through numerical simulations and
network experiments as a function of Δq

notable difference is that in the real system the queue gets
slightly below (above) the lower (higher) threshold before a
video level switch is triggered, whereas H triggers the level
switch exactly when the queue gets equal to the thresholds.
This difference is due to the fact that H is a fluid-flow
model and considers segments of infinitesimal size. On the
other hand, the dynamics of the refined model HR shown in
Figure 7(b) accurately matches the real system dynamics.

We have then validated the average switching period Ts

given by (12) both on the real system and on the refined
model HR. Several runs, each one with a different Δq ∈
{12, 16, 20, 24, 28, 32, 36}s, have been carried out. In each
run the average switching period Ts has been calculated. In
Figure 8 it is shown that (12) (dashed line) fits quite accurately
the average measured Ts of the real system (solid line). As
expected, the average measured Ts in the case of the refined
model HR (the dash-dotted line in Figure 8) achieves a higher
accuracy. Even though the proposed model H achieves lower
accuracy with respect to the refined model HR, it has the
merit of giving a closed form expression of Ts which can be
considered as a worst case lower bound. It is worth to notice
that such lower bound is not overly conservative.

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

l(
t)

 [
k
b
p
s
]

Flow #1

0

5

10

15

20

25

30

q
(t

) 
[s

]

0 50 100 150 200 250 300 350 400 450 500

Time [s]

0

500

1000

1500

2000

2500

3000
l(
t)

 [
k
b
p
s
]

Flow #2

0

5

10

15

20

25

30

q
(t

) 
[s

]

Fig. 9. Two video flows sharing a bottleneck with capacity C = 4Mbps

To conclude, we experimentally validate that the findings
obtained in Section IV also hold in a multiuser scenario. To
the purpose we consider the case of two concurrent video
streaming sessions sharing a bottleneck with a constant ca-
pacity C = 4Mbps playing the same video encoded with a
video level set L = {0.24, 0.5, 0.9, 1.4, 2.6, 4.0, 5.0}Mbps.
Both the flows employ the same controller settings, i.e.,
qL = 12 s and qH = 28 s. Assuming ideal TCP fairness,
the fair share is equal to B = C/2 = 2Mbps. Under such
settings, according to Proposition 2 both the flows should select
a video level periodically switching between l3 = 1.4Mbps
and l4 = 2.6Mbps with a switching period equal to 106 s
(see (12)).

Figure 9 shows the results of the experiment. The figure
shows that the limit cycle of the playout buffer length q(t)
and the selected video level l(t) is also valid in the case of a
multiuser scenario. The measured average switching period for
flow #1 and #2 are respectively 125 s and 121 s, with an error
of less than 20 s compared to the nominal switching period
of 106 s computed using (12)). This mismatch between the
computed and measured switching period is compatible with
the accuracy that we have discussed above (see Figure 8).
Finally, the negligible difference between the switching periods
measured for the two flows is due to the slightly different



11

0 500 1000 1500 2000 2500 3000 3500 4000
20

60

100

140

180

220

Experiments

Model

Lopt

Les

T
[s

]

B [kb/s]

Fig. 10. Comparison between the video level switching period obtained with
optimal level set Lopt = {300, 573, 1094, 2090, 4000}kb/s or with equally
spaced levels Les = {300, 1225, 2150, 3075, 4000}kb/s as a function of B

bandwidth share obtained by the two videos.
To summarize, the validation has shown that the model H

proposed in Section IV fits with good accuracy the real system
and that the refined model HR, though more complex, achieves
a very high accuracy.

B. Design of the Video Levels

In this Section we provide the validation of the procedure
proposed in Section V to design the video levels by taking
care of the trade-off between level switches and storage at the
server. We have experimentally compared T s obtained when
video levels are designed according to the optimal procedure
proposed in Section V to the T s obtained with equally spaced
levels with interval ΔL. With the latter procedure the predicted
T s is equal to

T s(li) =
Δq

ΔL
(ΔL+ 2li + 2

�
ΔL · li + l2i ). (26)

The video levels sets have been designed in the same range
[300 kb/s, 4000 kb/s] and the cardinality of the two sets is
the same. In each experiment the available bandwidth is
set equal to the worst case bandwidth B for each cou-
ple of adjacent levels (li, li+1) according to (14). With the
optimal procedure described in Section V the set Lopt =
{300, 573, 1094, 2090, 4000}kb/s is obtained. The average
measured worst case T s is shown in Figure 10 (thick line)
and compared to the one computed with (13) (thick dashed
line). It has to be noticed that encoders are not able to
produce video levels that precisely match the target levels
for low levels. In fact, we have measured that the actual
average bitrates of l0 and l1 are equal to, respectively, 342 kb/s
and 595 kb/s, with a relative error equal to 0.14 and 0.03
compared to the target levels. Despite of this, (12) nicely
predicts the worst case switching period T s. With the equally
spaced design procedure (thin line), the video levels set Les =
{300, 1225, 2150, 3075, 4000}kb/s is obtained and T s grows
approximately linearly, as expected from (26) (thin dashed
line).

5 10 15 20
0.2

0.4

0.6

0.8

1

predicted

simulations

p N
R

qL [s]
(a) X = 15s

5 10 15 20
0.2

0.4

0.6

0.8

1

predicted

simulations

p N
R

qL [s]
(b) X = 20s

Fig. 11. No Rebuffering probability pNR function of qL

C. Design of the Playout Buffer Lower Threshold
This Section validates the design procedure to size qL

that we have proposed in Section VI-B. To the purpose, we
have compared the predicted probability pNR to the ratio
of no rebuffering events obtained running simulations of the
model HR in the presence of a random bandwidth drop. The
bandwidth drop starts in a randomly uniformly distributed time
instant during the playback in both cases.

We have considered pNR, the probability of no rebuffering
ratio, in the case that x is uniformly distributed with distri-
bution U(0, X). The validation has been done by comparing
the value computed through the sizing procedure proposed in
Section VI-B with the ratio of no rebuffering events measured
through simulations obtained using the model HR. We have
used the simulations as a term of comparison in this case,
instead of network experiments, due to the very large time, in
the order of weeks, they would have taken. The accuracy of
the refined model HR has been shown in the Section VII-A.

We have considered the probability pNR obtained with qL
ranging in the interval [2, 20]s when a bandwidth drop to
50kbps occurs. The duration of the bandwidth drop is random
and uniformly distributed with distribution U(0, X).

The results are shown in Figure 11 (a) for the case X = 15s
and in Figure 11 (b) X = 20s. In both cases the prediction
is quite accurate and the measured prediction error is always
lower than 0.1.

VIII. CONCLUSIONS

In this paper we have considered an important class of
adaptive video streaming control systems. We have proposed
a hybrid dynamical model of a threshold-based controller that
can be considered as benchmark for such a class. Based on
this model, we have provided tuning rules of the system
parameters to minimize video level switches, which is the
main drawback of employing such class of controllers. We
have next shown how to design the video levels set L to obtain
optimal trade-off between switching frequency and storage cost



12

requirements. Finally, we have proposed a procedure to tune
the lower threshold in order to achieve the desired rebuffering
probability in the presence of a temporary bandwidth drop
below the minimum video level bitrate. Theoretical findings
have been validated by comparing numerical simulations and
experimental results, showing that the proposed model fits with
good accuracy the behavior of the real system and that the
derived properties are able to predict the system performance
in terms of video level switching frequency and no rebuffering
probability.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index:Forecast and Methodology
2013-2018,” 2013.

[2] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and
H. Zhang, “Developing a predictive model of quality of experience
for internet video,” in Proc. of ACM SIGCOMM, pp. 339–350, 2013.

[3] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” in Proc. of ACM
SIGCOMM, pp. 359–370, 2012.

[4] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in Proc. of ACM IMC, 2012.

[5] S. Akhshabi, L. Ananthakrishnan, A. C. Begen, and C. Dovrolis,
“What Happens When HTTP Adaptive Streaming Players Compete for
Bandwidth?,” in Proc. of ACM NOSSDAV, pp. 9–14, 2012.

[6] G. Cofano, L. D. Cicco, and S. Mascolo, “Characterizing adaptive video
streaming control systems,” in Proc. of American Control Conference
(ACC), pp. 2729–2734, July 2015.

[7] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
modeling, stability, and robustness. Princeton University Press, 2012.

[8] R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation
for internet video streaming,” IEEE Journal on Selected Areas in
Communications, vol. 18, no. 12, pp. 2530–2543, 2000.

[9] D. McNamee, C. Krasic, K. Li, A. Goel, E. Walthinsen, D. Steere,
and J. Walpole, “Control challenges in multi-level adaptive video
streaming,” in proc. of IEEE CDC, vol. 3, pp. 2228–2233, 2000.

[10] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Stream-
ing,” IEEE Communications Surveys and Tutorials, vol. 17, no. 1,
pp. 469–492, 2015.

[11] G. Carlucci, L. De Cicco, and S. Mascolo, “HTTP over UDP: An
Experimental Investigation of QUIC,” in Proc. of the 30th Annual ACM
Symposium on Applied Computing, SAC ’15, pp. 609–614, 2015.

[12] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
a Client-side Controller for Dynamic Adaptive Streaming over HTTP
(DASH),” in Proc. of Packet Video Workshop, Dec. 2013.

[13] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming
video over http with consistent quality,” in Proc. of the ACM Multimedia
Systems Conference, pp. 248–258, 2014.

[14] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online learning
adaptation strategy for dash clients,” in Proc. of the ACM Multimedia
Systems Conference, pp. 8:1–8:12, 2016.

[15] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proc.
of ACM SIGCOMM, pp. 325–338, 2015.

[16] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in
Proc. of ACM MMSys, pp. 157–168, 2011.

[17] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in Proc. of ACM SIGCOMM, pp. 187–198, 2014.

[18] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao, “Youtube
everywhere: Impact of device and infrastructure synergies on user
experience,” in Proc. of ACM IMC, pp. 345–360, 2011.

[19] I. Sodagar, “The MPEG-DASH Standard for Multimedia Streaming
Over the Internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[20] D.-K. Kwon, M.-Y. Shen, and C.-C. J. Kuo, “Rate control for h.264
video with enhanced rate and distortion models,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 5, pp. 517–
529, 2007.

[21] R. Sanfelice, D. Copp, and P. Nanez, “A toolbox for simulation of
hybrid systems in Matlab/Simulink: hybrid equations (HyEQ) toolbox,”
in Proc. of HSCC, pp. 101–106, 2013.

[22] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “TAPAS:
A Tool for rApid Prototyping of Adaptive Streaming Algorithms,” in
Proc. of VideoNext, pp. 1–6, 2014.

Giuseppe Cofano received the Telecommunications
Engineering degree (Hons.) and the Ph.D. degree in
Computer Science Engineering from Politecnico di
Bari, Bari, Italy, in 2012 and 2016. Currently, he is a
post-doc at Politecnico di Bari. He has held a visiting
position at the University of Würzburg, Germany, in
2015. His main interests focus on the modeling and
design of control algorithms for multimedia transport
and adaptive video streaming.

Luca De Cicco (M’ 14) received the computer
science engineering degree (Hons.) and the Ph.D.
degree in information engineering from Politecnico
di Bari, Bari, Italy, in 2003 and 2008, respectively.
Currently, he is an Assistant Professor at Politecnico
di Bari since 2016. He has held visiting positions at
the University of New Mexico, Albuquerque, NM,
USA, in 2007; Ecole Superieure d’Electricité, Paris,
France, in 2012; and the Laboratory of Information,
Networking and Communication Sciences-LINCS,
Paris, France, in 2013 and 2014. He is the co-

author of more than 40 papers published in international journals, books, or
conferences. His main interests focus on the modeling, analysis, and design
of congestion control algorithms for multimedia transport, adaptive video
streaming, and Session Initiation Protocol overload control.

Saverio Mascolo (SM’ 14) received the Laurea
degree (Hons.) in electronics engineering and the
Ph.D. from Politecnico di Bari, Italy, in 1991 and
1994, respectively. Since 2001, he has been Asso-
ciate Professor of Automatic Control at Politecnico
di Bari. He is Full Professor since 2012. He was
a Postdoctoral Researcher in 1995 and a Visiting
Researcher in 1999 at the University of California,
Los Angeles (UCLA) and Visiting Consultant at
the University of Uppsala, Sweden, from 2002 to
2004. He has authored or co-authored more than 120

papers in international journals, books, or conferences. He has worked on
congestion control in data networks (TCP and ATM), end-to-end bandwidth
estimate, modeling, and control. His current research interests focus on the
Future Internet, in particular, on the topic of real-time communication over the
web. He has been Associate Editor of the IEEE Transactions on Automatic
Control. Currently, he is Associate Editor of IEEE/ACM Transactions on
Networking and of Computer Networks Journal, Elsevier.


