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Abstract

We propose a new computational equilibrium approach for the structural safety assessment of historical masonry 

vaults of any geometry under general loading conditions. This approach, called Thrust Surface Method (TSM), 

represents an innovative application of the lower bound theorem of Limit Analysis to masonry vaults modeled as 

continuous No-Tension bodies. In particular, on allowing for singular stresses, the search of statically admissible stress 

field is reduced to the search of purely compressed membranes in equilibrium with the applied loads and entirely 

contained into the thickness of the vault. Based on a convenient numerical procedure and the formulation of a suitable 

constrained optimization problem, TSM is a method of practical application that, looking for “extremal” or “optimal” 

solutions, is capable of fully exploring the entire load-bearing capacity spectrum of a vault having an arbitrary 

geometry. Since the particular formulation, TSM can take into account not only any kind of vertical loads, but also 

horizontal loads like those simulating the maxima inertia effects related to seismic actions. In addition, the proposed 

approach could be a useful tool for visualizing and understanding the complex three-dimensional behavior and the 

close relationship between form and structure characterizing masonry vaults.

The effectiveness and the capabilities of the method are discussed in light of some representative case studies, allowing 

for suitable comparisons with the results of other analytical and experimental approaches in the literature.

Keywords: historic constructions; masonry vaults; limit analysis; equilibrium; numerical methods; lower bound 

theorem; thrust surface.

1. Introduction

Masonry structures are the vast majority of the worldwide Architectural Heritage, which needs to be 

preserved for future generations. Despite the great interest of the scientific community and the large number 

of research works on the subject [1,2], there is still the need of research toward the formulation of widely 
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accepted structural analysis approaches for historical masonry constructions, especially if structures with 

complex geometry as vaults and domes are considered.

Indeed, it is well-known that linear elastic analysis is inadequate for understanding the structural behavior of 

masonry structures [3]. Indeed, in Literature it is possible to find advanced mechanical models, that consider 

issues like anisotropy, nonlinear material behavior, plasticity, and damage, for describing the complex 

behavior of masonry structures. But the employ of the above models may be obstructed in several applicative 

cases by the difficulty in performing the accurate and extensive mechanical tests and surveys needed for the 

characterization of the high number of mechanical parameters of the masonry and of the boundary condition. 

Inaccuracy in the materials characterization or in the boundary condition characterization may yield results 

very far from the actual structural behavior of the construction. This is generally the case of historical 

masonry structures, where material parameters describing strength and stiffness are generally affected by a 

large heterogeneity and by a high level of uncertainty.

Nowadays, considering the difficulties in an accurate and representative structural modeling of masonry, an 

increasing number of researchers consider convenient to renounce to describe the load-response behavior, 

focalizing only on the estimation of the collapse loads. This approach, which can be set in the theoretical 

framework of Limit Analysis, is actually getting a growing consensus in the literature [4–8]. 

Indeed, from the theoretical point of view we recall that in most cases, since masonry usually has a very 

small tensile strength, the only reasonable assumption that it is possible to make is that the material behaves 

unilaterally, i.e. the masonry has no tensile strength at all (No-Tension models). A complete mathematical 

formalization of No-Tension material models is mainly attributable to the Italian School of Structural 

Mechanics [9–13]. Furthermore, Del Piero in [14] proved that Limit Analysis theorems apply also for No-

Tension materials. 

In this vein, one of the milestones toward the understanding of the mechanics of historical masonry 

structures is due to Heyman [15,16], who wisely reread the “geometrical” and “equilibrium-based” theories 

used by the ancient master builders within the rational framework of the modern Limit Analysis. It is worth 

to point out that, despite the very different starting points and methodologies, both old (ancient master 

builders’ knowledge) and new (Limit Analysis for No-Tension materials) theories come to the same 

conclusion: the safety of a masonry structure is a matter of geometry, and then a safe state of equilibrium can 

be achieved only through a suitable geometry. As evidence of this, it is well-known that by the lower bound 

theorem of Limit Analysis for No-Tension materials a masonry arch is “safe” under given loads if it is 

possible to find an equilibrium thrust line entirely contained into the thickness of the arch.

This equilibrium approach, used since the antiquity (although in an unwitting way) for the stability 

assessment of masonry structures reducible to plane schemes, like arches, can be extended also to spatial 

structures as domes and vaults using the classical slicing technique, consisting in the decomposition of the 

three-dimensional structure in a series of plane schemes (slices of the actual structure). Nevertheless, this 
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approach, described in detail in [17], neglects any possible three-dimensional feature of the structural 

behavior: thus, according to the lower bound theorem of Limit Analysis, if any a statically admissible 

solution it is found by the slicing technique, this solution strongly underestimates the actual load-bearing 

capacity of the vault.

Recent studies on the subject have tried to overcome this drawback, proposing both kinematic and static 

Limit Analysis approaches able to take into account the complex three-dimensional structural behavior of 

masonry vaults, and thus to give a substantially better load-bearing capacity estimate. These studies are 

progressively gaining a growing consensus, although some criticisms regarding the generality of the classic 

static Limit Analysis approaches still remain. In particular, criticisms concern the role of the frictional sliding 

in the collapse of masonry structures [18–20], that is neglected by classic Limit Analysis theory. Anyway, 

for masonry vaults and domes the assumption of no frictional sliding may yield representative results in 

terms of load bearing capacity for most of the practical applications with indisputable advantages in 

simplifying analytical aspect. This holds especially for historical vaults, where the joints between blocks are 

suitably arranged through an accurate and wise stereotomic design.

In this context, among the kinematic Limit Analysis approaches we recall that proposed by Milani et al. in 

[21] and based on a six-node triangular curved element, where an upper bound of the collapse load is 

obtained admitting plastic dissipation only at the interfaces between adjoining elements. Moreover, in 

[22,23], a Genetic Algorithm-NURBS-based approach for the kinematic limit analysis of FRP-reinforced 

masonry vaults is developed. 

On the other hand, from the static point of view, O’Dwyer [24] and Block et al. [25,26] proposed lower 

bound Limit Analysis approaches based on discrete networks that configure the search of a statically 

admissible stress field as the search of a purely compressed spatial network in equilibrium with the applied 

loads and entirely contained within the thickness of the masonry vault; some applicative issues are discussed 

in [27,28]. Recently, further developments of these approaches are proposed in [29,30]. Anyhow, the quality 

of solutions depends on the chosen discretization of the problem, i.e., on the topology of the network that has 

to be a priori chosen [31]. 

Also continuum approaches for lower bound Limit Analysis of masonry vaults and domes were recently 

proposed [32–34]. In particular Angelillo et al., allowing for singular stress fields according to the theory for 

No-Tension 2D bodies equilibrium introduced by Lucchesi et al. in [35–37], developed an analytical method 

configuring the search of statically admissible stress fields for masonry vaults as the search of unilateral 

membranes in equilibrium with the applied loads and entirely contained into the thickness of the vault [38–

40]. The geometry of these membranes is described a la Monge while their equilibrium is formulated 

adopting the Pucher form [41] and solved by introducing the Airy stress function. In this way, the problem is 

formulated in terms of a partial differential equation in two unknown scalar functions: the Airy stress 

function F and the shape function of the membrane f. The approach by Angelillo et al. is characterized by an 

advanced and rigorous formulation of the equilibrium problem, and has the merit of clearly highlighting the 
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close relationship between form and structure that is a hallmark of masonry curved structures. Possible 

strategies for solving the equilibrium problem above described are suggested in [38]: for the simple case of 

uniform vertical loads on the horizontal projection of the vaults and for some special vault geometries, 

closed-form solutions can be found by following mainly two approaches: a) assigning a priori the geometry 

of a membrane f entirely contained into the thickness of the vault and determining the stress function F by 

solving the equilibrium differential equation; in this case, it is necessary to a posteriori verify if the obtained 

stress field related to F is actually statically admissible; b) starting from an apriori assigned class of statically 

admissible stress fields represented by a stress function F, determine the shape function f by solving of the 

equilibrium differential equation; now, it is necessary to a posteriori verify if the obtained membrane f is 

actually contained in the thickness of the vault. In [38] it is also proposed an iterative procedure that 

combines the two above described approaches.

The need for a priori assumptions, on one hand, allows for finding closed-form solutions for some 

applicative cases, but on the other hand, prevents from considering more complex geometries and/or loading 

conditions; furthermore, if a solution is determined it is possible to claim that the vault can withstand the 

assigned loads, but it is not possible to assess how far is this solution from the actual maximum load-bearing 

capacity of the structure. Moreover, a priori assumptions prevent from determining extremal solutions like 

those related to the maximum or the minimum thrust on the abutments, or the maximum level of variable 

loads bearable by the structure. Finally, it became very difficult to take into account also horizontal loads; by 

the way, it is in these cases that the issues above listed are more relevant.

In order to overcome the limitations just mentioned, in this paper we propose a numerical method for the 

lower bound Limit Analysis of masonry vaults and domes called the Thrust Surface Method (TSM). TSM is 

developed in the theoretical framework of the continuum approach by Angelillo et al. that is capable of 

determining at the same time the two unknown functions of the problem, the Airy stress function F and the 

shape function of the membrane f, and of tackling problems of vaults having any shape and under the action 

of arbitrary loading conditions. This goal is achieved by a convenient numerical formulation and by 

configuring the problem as a suitable constrained optimization problem, by following an approach similar of 

that proposed by some of the authors in [42] for searching optimal lower bound solutions in the very 

different context of non-linear elastic problems. No a priori assumptions on the unknown functions are 

needed, nor on the load paths or on the topology of the network, as in the discrete equilibrium approaches 

cited above. This way, TSM reveals to be able of significantly extending the capability of the equilibrium 

approach in [38–40] in terms of possible geometries and loading conditions that can be studied, and of 

improving definitely the quality of the obtainable solutions, providing the possibility of a comprehensive 

exploration of the whole set of statically admissible solutions. Indeed, TSM avoids any a priori choice on the 

functions F or f and allows for the determination of “extremal” or “optimal” solutions, and then of of 

exploring the whole load-bearing capacity spectrum of the structure, and not only of determining “just one” 

safe solution. The formulation of the method allows for analyzing vaults whose shape is defined not only by 

arbitrary analytic functions, but also by a cloud of points, as supplied for example by a laser scanner survey. 
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Moreover, in addition to any kind of vertical loads (starting from the self-weight, to more complex loading 

conditions, like for example those due to the infill) also horizontal loads can be taken into account. The latter 

could represent the maxima inertia effects due to seismic actions, and therefore TSM can also answer to the 

crucial question of evaluating the seismic load bearing capacity of masonry vaults and domes [43]. 

In our opinion, TSM represents an approach for the structural analysis of masonry vaults and domes very 

close to the needs emerging in practical applications and might be easily implemented in software tools to be 

employed by practitioners. One of the most interesting features of TSM in view of practical applications is 

just the capability of determining “optimal” lower bound solutions, that allows for facing several relevant 

problems. For example, in some applications the structure cannot withstand safely the assigned loads, i.e., it 

is impossible to find a statically admissible solution. In these cases, it is important to determine, especially 

for what concerns eventual variable loads like seismic loads, the portion of the assigned loads compatible 

with the structural safety of the construction. This study requires a method for approximating as closely as 

possible the actual structural capacity and aims at limit strengthening interventions to those strictly needed, 

as it is proper for historical and monumental constructions. Moreover, when dealing with constructions 

having complex geometries like vaults and domes likely heuristic procedures for constructing “a” statically 

admissible solution not allow for identifying a safe solution under the assigned loads, whereas such a 

solution exists: approaches based on an optimization procedure may overcome this limitation. Finally, the 

capability of optimal lower bound solutions allows TSM also to give a satisfactory answer to the search of 

the maximum or the minimum thrust on the abutments. 

This paper is essentially devoted to the formulation of the Thrust Surface Method (TSM) approach. We 

describe in detail the features of TSM and then we validate the proposed innovative approach with reference 

to some case studies regarding masonry vaults under the action of the self-weight. Indeed, the latter simple 

load condition allows us for comparing the results obtained by TSM with some well-established analytical 

and numerical results in the literature. In forthcoming papers, we will discuss the capability of TSM also for 

problems characterized by more complex geometries and/or load conditions.

The paper is organized as follows.

In Sect. 2 we recap some fundamental theoretical concept about equilibrium analysis of masonry vaults. In 

particular, in Sect. 2.1 the Rigid No-Tension Material model (RNT) is summarized, along with the lower 

bound theorem of Limit Analysis for masonry structures; the strategy of using singular stress fields for 

solving the equilibrium problem is also recalled. In Sect. 2.2 the main features of the equilibrium Limit 

Analysis approach proposed for masonry vaults and domes in [38–40] are reported.

In Sect. 3 the TSM method is stated. In particular, Sect. 3.1 concerns the assignation of the input data 

(geometry and loading conditions) and of the constraints for the constrained optimization problem, coming 

from the equilibrium and the unilaterality requirements. In Sect. 3.2 the assignment of boundary conditions 

and other constraints is described; among the latter, the constraint capable of taking into account the 
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influence on the solution of preexisting cracks. Sect. 3.3 regards the possible objective functions, aimed at 

determining the Geometrical Factor of Safety of the vault, maximum and minimum thrust solutions and a 

lower bound estimation of collapse loads in an increasing loading process. In Sect. 3.4 the fundamental 

concepts for the numerical approximation of the solution are introduced. Finally, in Sect. 3.5 the algorithms 

employed for the optimization are summarized.

In Section 4 we describe the main steps of TSM approach.

In Section 5 the effectiveness and the capabilities of TSM are discussed in light of some representative case 

studies, also by suitable comparison with the results of other analytical and experimental approaches in the 

literature. In particular, in Sect. 5.1 the load assignation valid for all the examined case studies is described; 

an expression of vertical loads describing more accurately the self-weight, whose projection on the 

horizontal plane is not constant, is given. The first case study is analyzed in Sect. 5.2: a barrel vault; this case 

is considered since the simplicity of the geometry makes it useful for the validation of the results. The more 

complex case of a cross vault is then studied in Sect. 5.3. 

2. The equilibrium of masonry vaults

2.1 The Rigid No-Tension model (RNT) and singular stress fields

We consider a generic vault represented by , in equilibrium with the applied loads (s,b), with s  3

tractions on the unconstrained part of the boundary  and b the body forces; let the complementary 

constrained part of the boundary  be fixed. Moreover, we assume that the displacement u 

and the related strain E are infinitesimal.

If the vault is composed by a continuous Rigid No-Tension Material (RNT), the stress tensor T have to be 

negative semidefinite, 

(2)T Sym ;

in addition, since there are no elastic strains, the infinitesimal strain tensor E corresponds to inelastic strains 

related to fractures into the material (both concentrated and smeared fractures), and it has to be positive 

semidefinite: 

(3)E Sym .

Moreover, we assume that the (Cauchy) stress T does not work for the corresponding strain E:

(4)T E 0.

According to [14], these constitutive assumptions generalize the classical Heyman’s assumptions. Indeed, 

they correspond to the requirement for E to be normal to the cone of admissible stresses  and allow T Sym

for the application of the two theorems of Limit Analysis.
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In view of the lower bound theorem of Limit Analysis, it is of interest the search for  of statically 

admissible stress fields, in equilibrium with assigned loads and such that  To this aim, by T Sym .

following [36] and [44,45], for RNT material it is possible to admit stresses T that are only summable 

distributions i.e.:

 (5)

which, in general, can be decomposed into the sum 

(6)T T
r

T
s

of a regular part Tr , and a singular part Ts. 

In this hypothesis, we can assume that T is balanced and singular across a surface  contained inside the 

vault ; this corresponds to assume that T is a surface Dirac delta over . Indeed, by using a classical 

criterion of static equivalence, the forces (b, s) applied to the vault  can be reduced to a system of 

tractions p applied at the extrados of the vault [38]. 

Figure 1. Scheme of a generic cross section of a vault [38]

Now, by following the approach in [38], we consider a surface  entirely contained in  and dividing the 

vault into two parts:  (above ) and  (below ), where  is in a state of uniaxial compression 

and  is inert (zero stress) (Figure 1). In these assumptions, and for the equilibrium, the surface  is 

loaded by the stress jump across  between  and . Furthermore, for the admissibility of the stress  

(2) the generalized membrane stresses S on the surface  must be a negative semidefinite tensor. 

Therefore, the search of statically admissible stress fields for the vault  is reduced to the search of a 

unilateral membrane  entirely contained into the thickness of the vault and in equilibrium with the 

assigned loads. For more detail about the use of singular stress fields for masonry-like structure, the 

interested reader can refer to [44].

p
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2.2 The equilibrium of unilateral membrane

In a Cartesian reference system , let’s consider a membrane  that can be described using the O(x, y,z)

Monge patch1 as follows:

(7)z f (x, y), (x, y) ,

where  is the projection of the vault on the plane . The equilibrium of such membrane  under x, y

the load  can be expressed in the Pucher form [41]. p px , py , pz

 

Figure 2. Equilibrium of an infinitesimal element of the membrane dS; the edges dp and dq project in the (x,y) plane into dx and dy, 
respectively.

In particular, with reference to Figure 2, if we consider the projections of the membrane stresses N
x
, N

y
, N

xy

on , we have:Nx , N y , Nxy

(8)N
x

N
x

cos

cos
; N

y
N

y

cos

cos
; N

xy
N

xy
,

where  and  are the angles formed by the membrane edges with the axes x and y, respectively, and:

(9)cos 1/ 1
f

x

2

; cos 1/ 1
f

y

2

.

The equilibrium in x-direction and y-direction yields:

1 The Monge patch is a most straightforward parametrization in which a surface is defined by giving its height z over 
some plane as a function of orthonormal coordinates x and y in the plane. Notice that, from the definition, a Monge 
patch could not be able to entirely describe a surface of a vault unless introducing suitable differentiable manifolds. 
However, the above-mentioned case is very rare and this kind of parametrization is acceptable for the greatest part of 
the applicative cases.

dS

z

x

y

d
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(10)

Nx

x

N yx

y
p

x
0

N y

y

Nxy

x
p

y
0,

respectively, while for the equilibrium in the z-direction it is:

(11)N x

2 f

x2
N y

2 f

y2
2Nxy

2 f

x y
pz px

f

x
py

f

y
,

where  are the loads for unit area of the projection  equivalent to , that is:px , py , pz px , py , pz

(12)px px , ; py py , ; pz pz , ,

with

(13),
1 sin2 sin2

cos cos

the ratio between the area of the infinitesimal membrane element dS and the area of its horizontal projection 

dxdy (Figure 2) [41].

Solutions for the system of the three equilibrium equations (10)-(11) can be obtained introducing an Airy 

stress function  such that [41]:F x, y

 (14)N
x

2 F

y2
p

x
dx; N

y

2 F

x2
p

y
dy; N

xy

2 F

x y
,

that identically verify the two equilibrium equations (10). Substituting (14) in (11) we get:

 (15)

2 F

x2

2 f

y2
2

2 F

x y

2 f

x y

2 F

y2

2 f

x2
q,

where  collects all the load components:q

 (16)q pz px

f

x
py

f

y

2 f

x2
px dx

2 f

y2
py dy.

In conclusion, the equilibrium of a generic-shaped membrane is reduced to the sole (15), a second-order PDE 

in two unknown functions: f (describing the shape of the membrane) and F (the Airy stress function). 

Moreover, the requirement of negative semidefiniteness for the stress tensor T yields the following condition 

on the membrane stress tensor S:

 (17)trS 0 & detS 0.
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Notice that, if only vertical loads are acting on the vault, the expression (16) is greatly simplified and (17) is 

equivalent to the requirement that the stress function F must be concave [12,44], that is:

 (18)
2 F

x2

2 F

y2
0 &

2 F

x2

2 F

y2

2 F

x y

2

0.

3. Thrust Surface Method: searching for a statically admissible stress field as an optimization 

process

In this Section, we formulate the Thrust Surface Method (TSM), a new numerical method for solving the 

equilibrium problem presented in Sect. 2. TSM gives as the solution both the unknown functions f and F, and 

this it is capable to simultaneously determine the geometry of the membrane f and the Airy stress function F 

for masonry vaults of any geometry and under general load conditions, also including horizontal loads 

representative of seismic actions [46,47].

To this aim, if the geometry of the vault and the loads are known, a constrained optimization problem can be 

formulated in the form:

(19)

min | max x
1
,...,x

i
i 1,...,n

subject to g j x1,...,xi c j j 1,...,m

h
k

x
1
,..., x

i
d

k
k 1,...,l,

where a suitable n-variables objective function  has to be maximized or minimized under m x1,..., xi

equality constraints  and l inequality constraints . g
j

x
1
,...,x

i
c

j
h

k
x

1
,..., x

i
d

k

3.1 Input data and constraints of the optimization process

Since for vaults with arbitrary geometries and loading conditions it is practically impossible to obtain closed-

form solutions, and since by within RNT constitutive model the equilibrium problem for masonry vaults is 

essentially brought back to a geometric problem, it is possible to build up strategies for searching numerical 

solutions inspired by typical methods of differential geometry, also used in other fields of applied 

mathematics and computer graphics [48–50]. 

In particular, it is possible to discretize the problem of the search of statically admissible stress fields through 

the introduction of an appropriate set of points , like for example a n x m grid of points on the horizontal 

projection  of the vault (Figure 3a): 

(20)

For each point, input data related to the geometry of the vault and to the load condition will be associated.
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Defining a la Monge the functions describing the geometry of the vault , , , f
int

x, y f
ext

x, y f
m

x, y

(intrados, extrados and middle surface functions, respectively) and expressing the load condition q per unit of 

area of the horizontal projection  for each point  it is possible to associate the height of the intrados, 

of the extrados, of the middle surface and of the value of the load (Figure 3b). 

Figure 3. (a) Intrados, extrados and middle surfaces of the vault (in blue, green and orange, respectively); (b) Input data associated to 
each point Pij of .

Remark: since the geometry is assigned as the height of the intrados, of the extrados, and of the 

middle surface in a set of discrete points, TSM can be applied not only to vault whose geometry is 

defined by analytic expression of the functions , , , but also to vault fint x, y fext x, y fm x, y

whose geometry is assigned by a cloud of points, as that provided for example by a laser scanner 

survey. This might be of significant interest for practical applications.

Furthermore, recalling (15)-(18), for each point  the numerical counterpart of the constraints that 

must be satisfied is: 

(i) Equilibrium constraints:

(21)

i.e. the unilateral membrane must be in equilibrium with the applied load;

(ii) Unilateral constraints: 

(22)

a) b)
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i.e. the stress field must be negative semidefinite and the membrane must be contained into the 

thickness of the vault.

It is worth to note that this way, although the optimization process is conducted with reference to a discrete 

set of points, we obtain a continuum solution for the unknown functions (f, F), defined by the coefficients of 

the approximating polynomials.

3.2 Boundary conditions and additional constraints

Boundary value problems governed by PDE equations, like the equilibrium problem for masonry vaults 

under investigation, require Dirichlet type or Neumann type2 boundary conditions to be solved.

Anyway, since our approach configures the equilibrium problem in a constrained optimization problem, once 

specified the objective function (see Sect. 3.3) it is always possible to obtain an optimal solution obeying to 

the assigned constraints without it being strictly necessary to assign any boundary condition. However, from 

the engineering point of view, boundary conditions might have considerable relevance for obtaining 

solutions consistent with the actual support conditions of the vault. For example, either free edges or 

boundary arches or walls able to take and transfer thrusts may occur; clearly, these different support 

conditions strongly influence the actual distribution of the stresses in the vault.

In order to introduce also boundary conditions in the optimization process (19), it is possible to define a 

subset  consisting of points belonging to the boundary  of , where suitable boundary 

conditions have to be assigned. 

Now, in absence of horizontal loads, static-type boundary conditions can easily be imposed through 

geometrical conditions on the Airy stress function F, exploiting the duality between the Airy Stress Function 

F and the membrane geometry f expressed by (15) with an approach similar to that in [51]. Such duality 

transforms geometric conditions to mechanical conditions and, from a practical point of view, satisfying such 

geometric conditions may be easier than imposing mechanical conditions directly. To this aim it has to be 

recalled that the curvatures of the surfaces described by the pair of functions f and F through their second 

partial derivatives, and that from the definition of the Airy stress function F (14) it is clear that the curvature 

in a generic direction of F corresponds to membrane stresses in the orthogonal direction and vice versa. 

Here, as it is suggested in [52], for masonry vault we consider only two kinds of boundary conditions:

(i) Free Edge 

both normal and shear stresses are required to vanish along the edge, i.e.:

  (23)
2 F

s2

2 F

s n
0,

2 According to the classical terminology of Partial Differential Equation, a Dirichlet boundary condition consists in 
assigning the value of the unknown function at the boundary, whereas a Neumann boundary condition specifies the 
value of a derivative of the unknown function at the boundary.
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where  and  denote the derivatives of F in the directions normal and tangent to the 
F

n

F

s

horizontal projection of the edge, respectively;

(ii) Fixed edge

both normal and shear stresses along the edge are admitted, due to the interaction between the 

vault and the edge abutment. In this case, no boundary conditions are added in the optimization 

process (19), and once solved the problem and then determined the Airy stress function F,  
2 F

s2

and  give the support reactions.
2 F

s n

Remark: in [52] it is suggested a third kind of boundary condition concerning edges supported by a 

shear diaphragm; here, only membrane stresses normal to that edge vanish but shear stresses are 

admitted. For the present problem, this kind of boundary condition cannot be considered because it is 

not compatible with the unilateral constraints coming from the No-Tension assumption on the 

material (see (17)).

It is important to underline that in the presence of horizontal loads the direct duality between the membrane 

stresses projected on the plane  and the curvature of the Airy stress function is lost, and the definition x, y

of boundary conditions on  is more complex. 

Notice that instead of static-type boundary conditions it is possible to impose kinematic-type boundary 

conditions that, in a dual way, directly influence the geometry of the membrane, and then the function f. 

Thus, if kinematic-type boundary conditions are considered, the search of solutions in terms of purely 

compressed equilibrium membranes contained within the thickness of the vault is strongly simplified in 

terms of computational cost. But, in the spirit of the lower bound theorem of Limit Analysis, if optimal 

solutions corresponding to the best possible estimate of the load-bearing capacity of the masonry vault are 

searched, the restrictions of the set of possible solutions descending from the imposition of kinematic-type 

boundary conditions have to be avoided, and (when possible) static-type boundary conditions have to be 

preferred. 

Anyway, kinematic-type boundary conditions may be useful for searching solutions compatible with 

eventual cracks existing on the vault. Indeed, in real life, it is very common that masonry vaults show cracks 

usually associated to “hinges” opening; an accurate survey of the vault, preliminary to the structural analysis, 

may give the information needed for characterizing the position and the extension of cracks.

We recall that for masonry arches if the sliding between blocks does not occur the cracks affect the position 

of the thrust line [3]. Indeed, the opening of a crack at the intrados (or at the extrados) corresponds to the 

formation of a hinge in the opposite part of the same cross section of the arch, and then the thrust line is 

enforced to be tangent to the arch border in the hinge point. Analogously, for masonry vaults it is possible to 
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assume that when a cracking hinge exists, the equilibrium membrane f is enforced to pass along particular 

points. In particular, given the curve formed by the crack, f has to be tangent to the extrados or to the intrados 

of the vault on a curve opposite to the latter with respect to the thickness of the vault. 

Thus, for searching by TSM equilibrium solutions consistent with a certain cracked configuration of the 

vault a reasonable approach is that of defining a subset  of points belonging to the horizontal 

projection of cracking hinge curves. For each point , it is possible to set:

(24)

i.e., to impose that in correspondence of the hinge curves the membrane f is tangent to the intrados or to the 

extrados of the vault, depending on the position of the crack (if the crack is at the intrados, f has to be tangent 

to the extrados, and vice versa). Conversely, pass-through cracks as Sabouret cracks could also be taken into 

account by suitably dividing the vault in parts, whose equilibrium has to be studied separately.

Remark: it is important to point out that (24) imposes only that at some points the membrane and the 

extrados or intrados surfaces have to be coincident. However, at the same time, the constraints in 

(22) impose that the membrane has to be contained between the intrados and the extrados surfaces of 

the vault. The combination of the above two classes of constraints enforces that the membrane 

cannot be secant but at most tangent to the extrados and/or the intrados along prescribed lines.

3.3 Objective functions

It is well known that by lower bound theorem of Limit Analysis the existence of an arbitrary statically 

admissible stress field is a sufficient condition to prove that the vault is “safe” with respect to the assigned 

load condition, but no information about the “distance” of the considered load condition to the actual 

collapse loads of the vault are given (i.e., it is not possible to quantify the structural safety level and to 

determine an accurate estimate of the load-bearing capacity), and the obtained solution may be very 

conservative.

  

Figure 4. Objective functions: (a) Estimation of the Geometrical Factor of Safety; (b) Determination of the maximum and minimum 
thrust solutions; (c) lower bound estimation of the collapse multiplier c of a generic live load condition.

a) b) c)
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With the aim of configuring a method for vaults structural analysis that does not provide solutions in the 

form of a dichotomous variable (the vault is safe/unsafe) but allows for fully exploring the entire spectrum of 

the load-bearing capacity of the vault, it is necessary to qualify the obtained solutions or, in other words, to 

look for extremal or “optimal” solutions. 

To this aim, we introduced appropriate objective functions allowing for searching, among the infinite 

statically admissible solutions complying with the constraint conditions, extremal solutions representative of 

certain structural conditions (maximum load-bearing capacity, maximum or minimum thrust, etc.) that can 

be associated with the structural safety level of the vault. In what follows, we give some details about the 

considered objective functions.

(i) Geometrical Factor of Safety (GFS)

In order to qualify, in terms of structural safety level, solutions obtained by the application of the lower 

bound theorem of Limit Analysis to masonry arches, Heyman in [16] introduced the concept of Geometrical 

Factor of Safety (GFS) as the ratio between the actual thickness of the arch and the minimum thickness of an 

ideal homothetic arch capable of enveloping a possible equilibrium thrust line. 

The idea of GFS can be easily extended to masonry vaults: in this case, GFS can be defined as the ratio 

between the actual thickness of the vault and the minimum thickness of an ideal homothetic vault capable of 

enveloping a possible equilibrium membrane (Figure 4a). GFS could be considered as representative of the 

effective load-bearing capacity of the vault with reference to the considered class of loads.

According to the above definition, for determining the GFS by the optimization process, it is possible to 

employ the following objective function: 

(25)f
m

x
i
, y

j
f x

i
, y

j

2

Pij

,

together with the constraints in (21)-(22). This way, as in a least-squared polynomial regression, TSM 

searches among the infinite statically admissible solutions the purely compressed membrane contained into 

the thickness of the vault that minimizes the variance between the thrust surface and the middle surface in 

terms of distances, and thus that minimizes the error function represented by the sum in (25).

(ii) Maximum/Minimum Thrust solution

One of the key aspects of the mechanics of curved masonry structures is that, under an assigned load 

condition, they generate thrusts on the abutments that support them. The evaluation of this thrust is a very 

important goal of any structural analysis of masonry vaults but, unfortunately, this is not a problem of a 

simple solution. 

We recall that the maximum thrust can be conservatively considered for the assessment of the structures 

supporting the vault, whereas the minimum thrust solution is generally considered in the literature as the 
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solution better approximating the actual thrust level of the vault. This, especially for the case of historical 

constructions, that very likely has suffered from settlements of abutments along the centuries, even of small 

size [4].

In analogy with the simplest case of the masonry arch, for a masonry vault a different value of thrust on the 

abutments is associated to each possible equilibrium thrust surface. Clearly, if among all the possible 

solutions, those corresponding to the minimum and the maximum thrust are determined, it is possible to 

claim that the actual value of the thrust will lie between these two limit values.

By TSM, the search for solutions corresponding to the maximum and minimum thrust can be performed by 

introducing a suitable objective function in the optimization process. To this aim, considering only 

gravitational loads (the problem of the determination of the maximum and minimum thrust on the abutments 

is relevant right for this load condition), it is reasonable to assume that the forces per unit length transmitted 

to the abutments are tangent to the thrust surface. Thus, again in analogy with masonry arches, the minimum 

thrust solution corresponds to the geometric configuration of the membrane with minimum span and 

maximum rise. Vice versa, to the maximum thrust solution corresponds the maximum span and the minimum 

rise membrane [4] (Figure 4b).

For the above observations, recalling (13), we define Membrane Projection Factor (MPF) in a given point 

the ratio between the area of the membrane and its projection on the plane : x, y

(26)MPF
1 sin2 sin2

cos cos
,

where  and  could be expressed in terms of f by (9). Now, in order to search for maximum and cos cos

minimum thrust solutions, it is sufficient to consider in the optimization process that the objective function to 

be minimized (or maximized) is:

(27)MPF
Pij

r

,

i.e., the sum of the values of MPF for points belonging to the neighborhood of the restrained boundary  r

of the horizontal projection  of the vault. Indeed, it is clear that the membrane solution that minimizes 

(27) corresponds to the thrust surface with the smallest slope with respect to the horizontal plane  and x, y

thus related to the maximum thrust. On the contrary, for the membrane solution maximizing (27), related to 

the minimum thrust (Figure 4b).

For more complex problems (for example not fully-supported conditions like in presence of openings, 

horizontal loads, etc.), suitable objective functions aimed at obtaining the minimum or the maximum thrust 
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solution could be drowned up and implemented in the framework of TSM3. For instance, the objective 

function (27) works fine if the chosen grid is perfectly regular (points equally spaced). Analyzing vaults for 

which no symmetry in the geometric description is present, could be useful to use different distribution of 

points. In this case, it would be better to add something suitable for weighting areas coming from irregular 

grids. E.g., if something linked to the tributary area is assumed in the expression, the objective function for 

uniform grid becomes exactly Eq 27, whilst it can take into account irregular grids. 

(iii) Lower bound estimation of collapse loads

The possibilities offered by the Limit Analysis, and, in particular, by the application of the lower bound 

theorem, are not limited to the safety evaluation of a structure with respect to a fixed load condition. Rather, 

a result of greater interest is represented by the possibility of obtaining an estimate, as accurate as possible, 

of the load factor that could lead to the collapse of the structure under an assigned monotonic loading 

process.

For applying the above concepts to the present case of masonry vaults, let’s consider a linear loading process 

in the form:

(28)p x, y, p0 (x, y) p1(x, y),

where  is a dead load distribution (for example, the self-weight),  is a live load distribution p0 x, y p1 x, y

(either vertical or horizontal) and  is a load multiplier; in (29), loads refer to the planar projection of the 

vault.

Now, suppose that for  there exists an admissible equilibrium solution, and let c be the actual value of 0

the collapse load multiplier in the loading process (28). In order to determine the best lower bound estimate 

of c, it is possible to employ TSM in the following way.

In the optimization process, for a given load condition the objective function (25) allows for determining the 

“safest” possible thrust surface, i.e., the equilibrium thrust surface closest to the middle surface. With 

reference to the loading process (28), if we iteratively repeat the analysis by increasing at each iteration the 

value of the load factor  and by considering the objective function (25), we determine a series of “safest” 

possible thrust surfaces that gradually pull away from the middle surface. The limit condition is reached for 

the load factor  corresponding to a “safest” thrust surface tangent to the intrados and/or to the extrados of 

the vault: this case corresponds to a load multiplier for which GFS = 1 (Figure 4c). In this vein, horizontal 

3 The objective function (27) is suitable in case of regular grids (points equally spaced). However, without lack of 
generality, in some cases like, for example, asymmetric vaults, it may be appropriate to employ grids with an irregular 
distribution of points. In these cases, it would be better to generalize the expression of the objective function 
introducing something suitable for weighting areas coming from irregular grids. Notice that if this generalization is 
made by expression linked to the tributary area, then an objective function convenient for irregular grids is obtained, 
that reduces exactly to (27) in case of uniform grids.
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live loads proportional to the self-weight may be used for representing the maxima inertial effects related to 

the seismic actions, and then for studying of the seismic capacity of the vault.

In this context, it is interesting to point out that TSM can be also employed for gathering information about 

possible collapse mechanisms under an assigned loading processes: this could be very useful since, contrary 

to the case of masonry arches, there is still a lack of knowledge about collapse mechanisms of masonry 

vaults.

In order to exploit the capabilities of TSM in identifying potential collapse mechanisms, it is possible to 

follow an approach similar to that proposed in [16] for masonry arches. In the latter case, in a linear loading 

process like (28) the collapse limit condition associated with the highest value of  that satisfies the lower 

bound theorem of Limit Analysis corresponds to a (unique) thrust line still contained into the thickness of the 

arch, but tangent to the intrados and to the extrados in a certain number of points (Figure 4c). The kinematic 

counterpart of the above is that the collapse mechanism will be based on the formation of hinges in 

correspondence of these tangency points [4].

In the same way, for masonry vaults the iterative application of TSM described just above leads to identify 

some tangency curves between the limit thrust surface and the intrados or the extrados of the vault; these 

tangency curves identify possible (spatial) hinges and then may give a characterization of the possible 

collapse mechanism of the vault under the considered loading process. 

3.4 Polynomial approximation

The above-mentioned optimization problem, also in presence of very restrictive constraints (Sect. 3.1-3.2), 

both geometrical (the membrane must be contained within the thickness of the vault) and mechanical (the 

generalized membrane stress tensor S must be negative semidefinite), like all problems of optimal control of 

systems with distributed parameters or governed by partial differential equations, is strongly undetermined 

and might have many extremal solutions. Therefore, it is practically impossible to determine a closed-form 

solution. 

For the search of numerical solutions, a polynomial approximation of the unknown functions is a very 

helpful approach for reducing the variables of the problem to a reasonable number [53] by constraining, in 

fact, the search for a solution to a finite dimensional subspace of functions. 

Since according to Sect. 2 the equilibrium problem for masonry vaults has been reduced from  to , it is 3 2

possible to approximate the pair of unknown scalars functions of the problem (f, F) in the following 

polynomial form:

(30)

f x, y ijx
i y j i

i 0

j

j 0

n

F x, y ijx
i y j i ,

i 0

j

j 0

n
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where  and  are real coefficients and n is the polynomial degree. Here we assume that both the 
ij ij

unknown functions can be expressed by polynomials of the same degree n. 

Therefore, the optimization problem (19) reduces to the determination of the optimal values of  and  
ij ij

coefficients, which are now the variables. 

In this form, the above problem is then declined as a form-finding problem [51,54] of a unilateral membrane 

subject to mechanical and geometrical constraints.

Remark: The degree of polynomials (30) can be chosen according to the complexity of the geometry 

of the analyzed vault and of the considered load condition. Complex vault geometries or load 

conditions could require polynomial approximations of a higher degree to reach reasonable statically 

admissible solutions due to the higher complexity of the membrane geometry: this considerably 

affects the computational cost of the process. In practical applications, it might be useful a sensitivity 

analysis aimed at finding the best compromise between computational costs and accuracy of the 

approximation.

3.5 Optimization algorithms

The above-stated optimization problem involves many independent variables, i.e., the coefficients  and 
ij

 defining the polynomial approximation of the couple of unknown functions (f, F), and several nonlinear 
ij

equality and inequality constraints. For these reasons, we may expect all kinds of mathematical tricks: multi-

extremality, singularity, noise i.e. the inaccuracy in the solution evaluation and so on. In this case, we cannot 

use properly the concepts of gradient and of sensitivity [53].

Because of these shortcomings, classical Gradient-Based methods that use first-derivatives (or gradient) 

and/or second derivatives (Hessian) hardly apply successfully. Rather, algorithms known as Direct Methods 

or Derivative-Free Optimization (DFO) methods [55] making use of function values at a set of sample points 

to determine a new iterate without attempting to calculating or approximating the gradient seem to be more 

useful. 

Widely used DFO methods include deterministic approaches as the simplex-reflection method by Nelder and 

Mead, conjugate-direction methods [55], or non-deterministic and stochastic approaches as Simulated 

Annealing, Genetic Algorithms, and Differential Evolution.

For the purpose of the present paper, we have implemented the TSM algorithm in Wolfram Mathematica 

11.1 environment, and we have tested the effectiveness in the calculations of both Nelder-Mead [55] and 

Differential Evolution [56] optimization strategies.

Notice that by using DFO methods (also implemented in the optimization package of Mathematica) it is not 

possible to guarantee that the procedure leads to the global optimum. This point deserves more study since in 

many cases the attraction domain of local extrema is much larger than the attraction domain of global 
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extrema. Moreover, each problem has to be considered as multi-extremal unless the opposite statement is 

proved [53]. 

By a number of numerical experiments we have observed that, although Nelder-Mead method has shown a 

better efficiency in terms of computational effort in some simpler applications, the Differential Evolution 

method overall manage better the problem, even in more complex cases: it has proved to be relatively robust 

and to work well also for problems with multiple local minima [56]. Thus, we have chosen the Differential 

Evolution method as the optimization solver for the problem (19).

In Sect. 5, by referring to analytical and experimental results in the literature, we will discuss and validate the 

effectiveness and the accuracy of TSM results and we will also report the required computational costs.

4. Overview of the main steps of the Thrust Surface Method

After an in-depth description of the method, in this Section, we will summarize the main steps of TSM, that 

configure a practical tool for the lower bound Limit Analysis of masonry vaults of any geometry subject to 

arbitrary load conditions.

a) Definition of the geometry of the vault

The geometry of the vault must be expressed in the implicit form (Monge patch). To this aim, it is necessary 

to assign the expressions of intrados fint , extrados fext and middle surface fm functions. 

For vaults with a complex geometry and/or affected by cracks and deformations, for which the analytical 

description of the geometry is very difficult, it is possible to approximate the actual geometry by using 

classic polynomial interpolation methods starting, for example, from a cloud of points obtained by a laser 

scanner survey.

b) Assignment of the loads

In the assignment of loads, for the purpose of Limit Analysis, it is necessary to distinguish the dead load 

component  from the live load component  that is increased from zero by a load multiplier p0 x, y p1 x, y

. 

Loads must be assigned as forces per unit of area of the horizontal projection of the vault 

c) Choice of the grid of points and of the degree of the approximating polynomials

In the domain  of the projection of the vault on the plane , it is first necessary to define the set of x, y

points  for which the input data of the problem will be assigned (geometry and load conditions). Then, it 

is necessary to define the degree of the polynomials (30) approximating the unknown functions (f, F).
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Both choices are related to the complexity of the geometry of the vault and of the assigned load condition: 

the more the problem is complex, the higher should be the degree of the approximating polynomials and the 

number of points constituting the set .

Moreover, if the geometry and/or the loading conditions present singularities (for example, folded surface or 

jumps in the load condition) it is advisable for  to contain the points belonging to the horizontal 

projection of the singularity curves. In these cases, it may be convenient also to employ piecewise defined 

approximating polynomials (see Sect. 5.3).

d) Assignment of the constraints 

As it is pointed out in Sect. 3.1, for each point of the set  it is necessary to impose the constraint 

conditions expressing the equilibrium requirement and the No-Tension assumption of the material.

e) Assignment of the boundary conditions and of additions conditions

Even if not strictly necessary for solving the problem, in order to determine solutions more compliant with 

the features of the specific problem under investigation, it is possible to impose boundary conditions, which 

will be assigned for the points of the subsets  of .

Also additional conditions can be introduced, as for example those enforcing that the membrane solution is 

compatible with cracking hinges observed in the survey of the vault, see Sect. 3.2.

f) Choice of the objective function and solution of the equilibrium problem

According to the aim of the analysis, it is possible to choose among the objective functions (25)-(27) 

introduced in Sect. 3.3. 

At the end of the optimization process TSM provides as the result the coefficients  and  defining the 
ij ij

polynomial approximation of the couple of unknown functions (f, F). This way, a continuous statically 

admissible solution for the three-dimensional equilibrium problem for a masonry vault is found.

5. Case studies

In this Section, the application of the Thrust Surface Method (TSM) to masonry vaults having two different 

geometries, a barrel vault and a cross vault, will be illustrated and discusses in comparison with results 

available in the literature. This allows us to validate the proposed innovative approach, and for highlighting 

its effectiveness in the assessment of the load-bearing capacity of masonry vaults. Moreover, TSM results 

suggest useful information for understanding the complex three-dimensional behavior that these structures 

exhibit.

In particular, the examined case studies are “theoretical” vaults, whose geometry is not given by the survey 

of real-life constructions; anyway, the considered dimensions are consistent with typical dimensions of true 
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vaults. In particular, Sect. 5.2 is devoted to the application of TSM to a barrel vault, whereas Sect. 5.3 

concerns a cross vault. 

The employ of the different objective functions introduced in Sect. 3.3 allows for determining the GFS, and 

maximum/minimum thrust solutions.

5.1 Loading conditions

For both the vaults analyzed in the following we study the load-bearing capacity only with respect to the 

self-weight, without live loads. Thus, we consider the loading case:

(31)p x, y p0(x, y),

where the dead load   acts in the z-direction.p
0

x, y p
z

x, y

The choice of not consider loads like the weight of the infill or live loads (easily implementable in the TSM 

algorithm) is motivated by the purpose of the following analyses, that is the validation of the proposed 

innovative approach by the comparison to other analytical, numerical and experimental results in the 

literature, usually considering only the simple load condition of the self-weight.

In this vein, it has to be pointed out that in most of the approaches in the literature [38,39,57] the self-weight 

is represented by a uniformly distributed system of forces on the horizontal projection of the vault. We 

observe that such a system of forces is sufficiently representative of the self-weight only for shallow vaults. 

For vaults having the geometries that often characterize the historical architectural heritage this 

approximation is not always acceptable. With the aim of a more accurate description of the forces involved 

in the equilibrium problem, given the geometry of the middle surface of the vault  and recalling f
m

x, y

(13) it is possible to represent the dead load corresponding to the self-weight of the vault for unit area of the 

horizontal projection  of the vault as follows:

(32)pz s
1 sin2 sin2

cos cos
,

where  is the specific weight of the masonry,  is the thickness of the vault and, by (9):s

(33)cos
1

1
f

m

x

2
; cos

1

1
f

m

y

2
,

being  and  the angles that the middle surface fm forms with the x and y-axes, respectively.

Clearly, by (32) the load associated with the self-weight is not constant on the horizontal projection of the 

vault, but it assumes a curvilinear distribution characterized by an inverted profile with respect to the middle 

surface profile (Figure 5).
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Figure 5. Representation of the self-weight projected on the horizontal plane for a barrel vault.

For computing the self-weight, in both the examined case studies we consider a masonry specific weight 

.16 kN/m3

5.2 Barrel vault

The barrel vault is the simplest vaulted roof system; it is generally used to cover square or rectangular 

spaces. From the geometric point of view, a barrel vault is characterized as a translation surface with single 

curvature usually having a semi-circular or segmental profile.

         

Figure 6. Geometrical description of the studied barrel vault: (a) section of the vault; (b) intrados and extrados surfaces of the vault

For the purposes of the present analysis, we consider a barrel vault on a square plan with a segmental profile 

of width 130° and a thickness/radius ratio of 12.5%, whose geometric characteristics are shown in Figure 6.

The geometry of the vault can be described a la Monge by the following functions:

(34)

fint x, y rm s / 2
2

x2 ,

f
m

x, y r
m

2 x2 ,

f
ext

x, y r
m

s / 2
2

x2 ,

a) b)
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being ,  and  the intrados, the middle and the extrados surfaces of the vault, f
int

x, y f
m

x, y f
ext

x, y

respectively,  the radius of the middle surface directrix and  the thickness of the vault. Here, y-direction r
m

s

coincides with the direction of the generatrix of the vault and the origin of the reference system is the center 

of the plan of the vault.

In order to assess the effectiveness and the limitations of TSM also from the point of view of the 

computational cost, for both the polynomial (30) approximating the pair of unknown scalars functions (f, F), 

the degree n=4 has been chosen as a compromise between the accuracy and the computational time needed 

for the calculations. Furthermore, on the horizontal projection of the vault , the set of points  has been 

defined through a square mesh with spacing .r
m

/ 8

To make possible comparisons between TSM solutions and other results available in the literature, we 

considered the case of a barrel vault simply supported by impost walls, neglecting the possible presence of 

infill walls supporting the head arches. Then, for the points belonging to the horizontal projection of the head 

arches the following boundary conditions have been imposed:

(35)N
y

2 F

x2
0 and N

xy

2 F

x y
0 P

ij
y L / 2.

From the mechanical point of view, (35) means that normal and shear membrane stresses along the head 

arches vanish.

(i) Geometrical Factor of Safety

By performing TSM analysis under the self-weight of the vault expressed by (32) and by selecting the 

objective function (25), the optimization process has provided the following polynomial approximation of 

the two unknown functions (f, F) for the solution that maximizes the Geometrical Factor of Safety (GFS):

 (36)
f x, y 2.110 4.689 10 4 x 2.986 10 1x2 2.070 10 8 x3 0.011x4

F x, y 13.265 5.829 10 7 y 3.316y2 1.457 10 7 y3 5.380 10 7 y4,

where  and  are expressed in [m] and [kNm], respectively.f x, y F x, y

Figure 7a shows in orange the obtained unilateral membrane f, that is entirely contained between the intrados 

(in light blue) and the extrados (in green) of the vault; the graph of the related Airy stress function F is 

displayed in Figure 7b. 
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Figure 7. Estimation of the Geometrical Factor of Safety: (a) the unilateral membrane f; (b) the Airy stress function F.

It is interesting to note that to a barrel vault having an axial development in the y-direction corresponds a 

dual Airy stress function whose graph is characterized by a similar geometry (close to that of a barrel vault), 

but having an axial development in the orthogonal x-direction. This is not surprising, as it is a consequence 

of the duality discussed in Section 3. 

The existence of such solution, in view of the lower bound theorem of Limit Analysis, shows that the vault is 

“stable” under its self-weight, and then the collapse can never occur under this load. By enveloping the 

obtained membrane by the minimum thickness ideal barrel vault homothetic to the assigned barrel vault, it is 

found that the obtained solution corresponds to a GFS equal to 3.46 (Figure 8). Moreover, with reference to 

the obtained solution, the horizontal thrust at the imposts is  and the corresponding vertical H 6.63 kN/m

reaction is .V 9.62 kN/m

Figure 8. Generic cross section of the vault, entity of the GFS and corresponding horizontal and vertical reactions at supports.

If the Airy stress function F is known (rather, it is known its polynomial approximation (37)2) it is possible 

to obtain by partial derivation (see (14)) the expression of the membrane stresses projected on the plane 

. Then, the true membrane stresses can be calculated by (8). x, y

a) b)
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The obtained results in terms of membrane stresses for the maximum GFS solution are represented in Figure 

9a-b. Since the stresses Ny and Nxy are everywhere zero (Figure 9a), the mechanical behavior of a barrel vault 

subject to the self-weight can be schematized as a series of parallel compressed arches, arranged 

orthogonally to the generatrix axis of the vault. No interactions between arches in the direction orthogonal to 

their planes occur (Figure 9b).

For the above, the obtained solution can be compared with well-known classic Limit Analysis solutions for 

masonry arches reported in the literature [4,58,59] or with the solution obtainable by applying new numerical 

approaches for the lower bound Limit Analysis of masonry arches [4,59–61]. In particular, the determined 

value of GFS is a reliable lower bound of the GFS obtainable by computing the minimum thickness to radius 

ratio for arches subject only to the self-weight and with a segmental profile of width 130°; indeed, according 

to [4,58,59], we get . By dividing the thickness of the considered vault by the obtained value 
s

r
m min

0.034

of GFS we may evaluate the minimum thickness of the vault according to TSM; by further dividing by the 

radius, we get a minimum thickness to radius ratio , very close with the reference value 
s

r
m min

0.036

reported above. 

For the validation of TSM results consider also that, since the symmetry, the vertical reaction V at the 

abutments can be analytically evaluated as: 

 (38)V A dA d d
rint

rext

0
A

=
2

rext
2 rint

2 ,

where A is the area of the half-arch,  is the half angle of embrace of the arch, and  is the radial distance of 

any given point within the arch from the origin O of the coordinate system. Substituting the geometrical 

parameters in Figure 6, it results . The value estimated by TSM  has an error V 9.80 kN/m V 9.62 kN/m

only of 1.74%.

                 

Figure 9. Admissible stress field corresponding to maximum GFS: (a) entity of Nx, Ny and Nxy [kN/m] in a generic section of the 
vault; (b) distribution of Nx [kN/m].

a) b)

 [kN/m]

 [m]
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(ii) Maximum and minimum thrust solutions

Again, for the case of the self-weight (32) as the only load, by applying TSM it is also possible to provide an 

estimation of the maximum and minimum thrusts at the imposts if the objective function (27) is employed.

This way, the obtained maximum thrust solution is expressed in terms of the two unknown functions (f, F) 

by the following polynomial approximations:

(39)
f x, y 1.94 1.387 10 6 x 2.204 10 1x2 1.193 10 8 x3 8.844 10 3 x4

F x, y 18.095 4.058 10 6 y 4.524y2 1.015 10 6 y3 1.439 10 8 y4.

The shape of the maximum thrust equilibrium membrane (in orange) is shown Figure 10a, and of course is 

contained between the intrados surface (in light blue) and the extrados surface (in green) of the vault. 

Figure 10. (a) Maximum thrust solution; (b) minimum thrust solution

On the other hand, the polynomial approximation of the two unknown functions (f, F) for the minimum 

thrust solution is:

(40)
f x, y 2.200 1.432 10 6 x 3.750 10 1 x2 8,014 10 9 x3 2.166 10 2 x4

F x, y 9.989 1.857 10 8 y 2.497 y2 4.642 10 9 y3 5.679 10 9 y4.

The minimum thrust equilibrium membrane (in orange) laying between the intrados surface (in light blue) 

and the extrados surface (in green) of the vault is depicted in Figure 10b. In (37) and (38)  and f x, y

 are expressed again in [m] and [kNm], respectively.F x, y

As described for the case of the maximum GFS solution, by partial derivatives of the determined Airy stress 

function F (see (14)), it is possible to evaluate the stress state of the barrel vault in correspondence to the 

minimum and maximum thrust configurations; then, from the membrane stresses it is possible to calculate 

the minimum and maximum value of the horizontal thrust  at the imposts. In particular, we get H

 for the maximum thrust solution and  for the minimum thrust solution; H
max

9.05 kN/m H
min

4.99 kN/m

this implies that the actual value of the horizontal thrust  on the abutments must be such that H

.4.99 kN/m H 9.05 kN/m

a) b)
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Similarly to what has been previously observed for the maximum GFS solution, it is possible to compare the 

obtained results with maximum and minimum thrust line solutions for masonry arches having the same 

planar section of the directrix section of the considered vault. By this comparison, as it is evident from 

Figure 11, the thrust surfaces determined by TSM as well as the results in terms of thrusts are perfectly in 

agreement with well-known results in the literature relative to masonry arches in [4] (see Appendix A). 

Figure 11. Minimum thrust (yellow) and maximum thrust (red) solutions in a section of the case study vault.

Although TSM represents an application of the lower bound theorem of Limit Analysis, by virtue of the 

methodology used, that allows for determining optimal solutions, it is also possible to obtain kinematic 

information about potential collapse mechanisms. Indeed, in analogy with the thrust line analysis for 

masonry arches, it is possible to associate the tangency curves between the thrust surface and the intrados or 

the extrados of the vault to the formation of cracking hinges. We observe that the position of the cylindrical 

hinges in the maximum and minimum thrust configurations found by TSM are in perfect agreement with 

analytical [4,59] and experimental [62] results in the literature, and with crack patterns usually observed in 

many real-life case studies of barrel vaults. 

Notice that the minimum thrust solution suggests the formation of the classic extrados hinge at the keystone 

and intrados hinges at the haunch typical of barrel vaults (or an arches) on spreading supports [63], and thus 

in the minimum thrust condition. For the sake of the completeness, the obtained position of intrados hinges at 

 (Figure 11) is in perfect agreement with the results in [4,59]. 32

Finally, for what concerns the computational costs, the above analyses have been completed in 25 s by using 

a common personal computer Intel Core I7-4770 equipped with 16GB of RAM.

5.3 Cross vault

We consider a cross vault with a square plan. From the geometrical point of view it is possible to think the 

vault as obtained from the intersection of two orthogonal barrel vaults having the same geometry of that 

examined in Sect. 5.2. In particular, the geometry is singular in correspondence of the diagonals, and it can 

be described by the following piecewise defined functions:
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(41)

f
int

x, y
r s / 2

2
y2 x y

r s / 2
2

x2 x y

fm x, y
r 2 y2 x y

r 2 x2 x y

f
ext

x, y
r s / 2

2
y2 x y

r s / 2
2

x2 x y ,

describing the intrados surface, the middle surface, and the extrados surface, respectively (Figure 12). 

Figure 12. Intrados and extrados surfaces of the vault

In this case, given the complexity of the geometry, the search of a smooth unilateral membrane entirely 

contained within the thickness of the vault becomes very difficult and would requires a very fine 

discretization of the domain  of the horizontal projection of the vault and the employ of approximating 

polynomials (30) of very high degree. This way, the computational cost would result very high. Moreover, 

the obtainable smooth solution would not reflect the geometric characteristics of the shape of the vault, 

which indeed presents singularity curves at diagonals.

For these reasons, since the singularity of the geometry, we prefer to assume that the admissible stress field 

is singular at diagonals too. This implies that both the membrane f and the Airy stress F are continuous non-

smooth functions. 

In particular, by following the approach in [44], we consider that the pair of unknown functions (f, F) are 

both piecewise functions, singular along the same curves  and  (Figure 13), corresponding to the 
1 2

horizontal projection of the fold lines of the vault. This means that statically admissible stress fields will 

admit Dirac-delta singularity on  and . Notice that if F is singular on one curve  then also f must be 
1 2

singular on the same curve, as it is proved in [38]. 
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Figure 13. Singularity line 1 and 2 on the horizontal projection  of the vault corresponding to the vault folds.

For what concerns the approximating polynomials of (f, F), the above assumption yield that these 

polynomials can be expressed in the following piecewise defined form:

(42)

f x, y
ij
xi y j i x y

i 0

j

j 0

n

ij
xi y j i x y

i 0

j

j 0

n

F x, y
ij
xi y j i x y

i 0

j

j 0

n

ij
xi y j i x y ,

i 0

j

j 0

n

with obvious meaning of the symbols. 

Now, it becomes necessary to add in the optimization process additional constraints representing the 

continuity conditions of the unknown functions (f, F) at the two diagonal curves  and , that are:
1 2

(43) 
ij
xi y j i

ij
x i y j i P

ij 1
,

2
i 0

j

j 0

n

i 0

j

j 0

n

ijx
i y j i

ij x
i y j i Pij 1, 2 .

i 0

j

j 0

n

i 0

j

j 0

n

By admitting singularities for the unknown functions (f, F), it is simpler to achieve sufficiently representative 

results with approximating polynomials of low degree and with a discretization of the horizontal projection 

of the vault not much dense. In particular, we use polynomials of degree n = 4 and we define the set of points 

 on  with a square mesh having a spacing equal to .r
m

/ 8

About the boundary conditions, for the purposes of the comparison with the results in the literature, we 

considered a cross vault simply supported at corners, neglecting the presence of infill walls at the four sides. 

This free-edges assumption for side arches of the vault implies the impossibility to transfer normal and shear 
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stresses along the perimeter edges of the horizontal projection of the vault . Such conditions are satisfied 

if the Airy stress function F is constant along the boundary of : 

(44)

 (i) Geometrical Factor of Safety

With reference to the only self-weight (32), by using TSM it is possible to determine the polynomial 

approximations of the pair of unknown functions (f, F) representing the solution of the equilibrium problem 

corresponding to the maximum GFS; to this aim, the objective function in (25) has to be considered.

In Figure 14a it is shown in orange the obtained unilateral membrane f entirely contained between the (in 

light blue) and the extrados (in green) of the vault, while Figure 14b shows the graph of the dual Airy stress 

function F. 

Figure 14. Estimation of the Geometrical Factor of Safety: (b) the unilateral membrane f entirely contained between intrados and 
extrados surfaces of the vault; (b) the dual Airy stress function F.

It is possible to observe the interesting geometric analogy between the shape of the membrane and the shape 

of the graph of the stress function. Indeed, in analogy with the results obtained in [38], to a "cross-shaped” 

membrane corresponds an Airy function that presents the typical shape of a pavilion vault. This duality 

expresses the close relationship between form and structure that strongly characterizes 3D masonry 

structures.

By enveloping the obtained membrane by the minimum thickness ideal cross vault homothetic to the 

assigned cross vault, it is possible to determine a GFS equal to 3.52. 

From partial derivation of the determined Airy stress function F, it is possible to obtain by (14) the 

membrane stresses projected on the horizontal plane . It can be noticed that shear stresses  are x, y N xy

everywhere zero, while normal stresses  and  jump over singularity lines  and  (Figure 15a-b).N
x N y 1 2

a) b)



32

               

Figure 15. Projected membrane stresses on the horizontal plane: (a)  [kN/m]; (b)  [kN/m].N x N
y

Recalling (6), the obtained statically admissible stress field S can be expressed by the following sum:

(45)S Sr Ss ,

where  is the regular part describing membrane stresses within the four webbings of the vault, and related Sr

to the second-order partial derivatives of the Airy stress function F: 

(46)S
r

2 F

y2

2 F

x y
2 F

x y

2 F

x2

,

and  is the singular part concentered on the two diagonals  and :S
s 1 2

(47)S
s

N
1 1

t
1

t
1

N
2 2

t
2

t
2
,

where  and  are the tangent unit vectors to diagonals  and , respectively;  are Dirac-delta t
1

t
2 1 2

lines with support on the diagonals and  are the values of the singular stresses projected on the plane N

.x, y

In particular, following [44] and with reference to the diagonal , it is possible to calculate the singular 
1

stress component  as the jump of the slope of F orthogonally to the singularity line, that is:N
1

(48)N 1 F x, y
1

n

where  is the normal unit vector at . The same holds for the diagonal curve .n
1 2

a) b)
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From the projections of the membrane stresses on the horizontal plane, actual membrane stresses can be 

obtained, both the regular and the singular part, by using (8), i.e., by a projection on the surface of the 

membrane. the achieved results are summarized in Figure 16 .

     

Figure 16. Admissible stress field for the case study cross vault: (a) distribution of Nx [kN/m]; (b) distribution of Ny [kN/m]; (c) 
projected axial force N [kN] along the diagonals (in blue) and actual axial force along the fold (in orange).

From the mechanical point of view, the statically admissible stress field determined by TSM configure a 

mechanical behavior of the cross vault as a series of compressed arches parallel to the sides that completely 

transfer the external load to the folds, which in turn transfer the load towards the supports (Figure 17).

Figure 17. Scheme of the mechanical behavior of the cross vault subject to the self-weight

It is also interesting to note that, differently from the case of a classic masonry arch subject to the self-

weight, the thrust in the diagonal arches of the vault is not constant (Figure 16c). 

Moreover, from the singular stress component Ss on the fold (Figure 16c), it is possible to determine the 

horizontal and vertical the components of the force transmitted to the abutments. After simple calculations, 

we find  and . In order to validate this result, it is possible to calculate the H 18.05 kN/m V 18.21 kN/m

resultant of the applied loads by integrating over the domain of the horizontal projection of the vault the 

assigned load condition; we get:

a) b) c)
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(49)P p
z
dA 74.65 kN,

for the overall vertical load . Due to the double symmetry of the problem, the vertical component of the P

force transmitted to the supports should be equal to , with an error of 2.41% with V P / 4 18.66 kN

respect to the above-reported value determined by TSM.

(ii) Maximum and minimum thrust solutions

By applying TSM with the objective function (27) it is possible to provide an estimation of the maximum 

and minimum thrust that the cross vault transmits to the supports when it is loaded only with the self-weight 

(32). The obtained results are shown in Figure 18a-b; in particular, Figure 18a depicts the shape of the 

maximum thrust equilibrium membrane (in orange), contained between the intrados surface (in light blue) 

and the extrados surface (in green) of the vault; the same for Figure 18b, now for the case of the minimum 

thrust equilibrium membrane. 

In the same way as in the previous case of the maximum GFS, once determined (f, F) the regular membrane 

stress component  and the singular stress component , concentrated along the two fold lines, can be S
r

S
s

calculated. To this aim, the partial derivatives of the Airy stress function F have to be evaluated, and (47)-

(48) have to be employed for evaluating . S
s

Figure 18. (a) Maximum thrust solution; (b) minimum thrust solution.

Finally, from the singular stress component  on the folds it is possible to determine the horizontal and the S
s

vertical components of the forces transmitted to the abutments. In particular, after simple calculations, we get 

a maximum horizontal thrust  and a minimum horizontal thrust . Thus, H
max

24.65 kN H
min

13.94 kN

whatever the admissible equilibrium solution is, the horizontal thrust  at the abutments must be such that:H

(50)13.94 kN H 24.65 kN.

a) b)
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Recalling (49), we have then obtained that the horizontal thrust  on the abutments is between 18.67% and H

33.02% of the resultant  of the applied loads (49). These values are in perfect agreement with the results in P
[4,26], and [64].

Finally, for the same considerations developed for the case of the barrel vault, the geometry assumed by the 

equilibrium membrane in the limit conditions of maximum or minimum thrust can provide useful indications 

on the kinematics of the collapse of the cross vault under the self-weight. In particular, the minimum thrust 

solution shows tangency zones between the thrust surface and the intrados and the extrados of the vault 

perfectly corresponding to the hinge zones in the presence of diagonal settlements of the abutments described 

in [4,64]. 

For what concerns the computational costs, the analysis of the cross vault has been completed in 51 s by 

using a common personal computer Intel Core I7-4770 equipped with 16GB of RAM.

6. Conclusion 

The innovative Thrust Surface Method (TSM) proposed in this paper represents an advanced application of 

the lower bound theorem of Limit Analysis to masonry vaults of arbitrary shape, aimed at determining the 

structural safety level of these iconic constructions with reference to general loading conditions. 

In the spirit of the lower bound theorem, rather than looking for a generic statically admissible solution, TSM 

aims at finding of "optimal" solutions, able to fully explore the entire load-bearing capacity spectrum of the 

vault. To this end, the employ of a convenient numerical procedure together with the formulation of a 

suitable constrained optimization problem allows us for finding optimal lower bound estimates for:

the value of the Geometrical Factor of Safety (GFS) of the vault;

the value of the maximum and minimum thrust that the vault exerts on the abutments;

the collapse multiplier in a generic live loading process. 

The adopted numerical formulation, that can be efficiently coupled with optimization tools, allows for 

considerably extending the capability and the quality of the obtainable results with respect to other 

equilibrium approaches in Literature. In particular, vaults of any geometry and under any loading condition 

(including seismic loads) can be studied by TSM, and the search of optimal lower bound results allows for 

closely approximate the actual load bearing capacity of the vault. Moreover, TSM does not require 

assumptions on the load paths or on the topology of the network as in discrete approaches: those assumptions 

do not allow for exploring the whole set of admissible solutions, and this could affect the quality of results 

especially for complex geometries and/or load conditions. Finally, in our opinion the special formulation of 

TSM makes the proposed approach very suitable for practical applications.
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It is interesting to point out that from limit solutions obtainable by TSM it is possible to achieve also 

kinematic information about possible collapse mechanisms of masonry vaults, a topic that, from a literature 

review, seems do not have enough level of knowledge yet. 

From the computational point of view, the analyses reported in Sect. 5 have been performed with a 

remarkable speed and efficiency. Indeed, these analyses have been completed in less than a minute by using 

a common personal computer.

Our innovative approach is in continuity with the classic equilibrium-based methods that have characterized 

the tradition of analysis and design of masonry structures along centuries, and can be considered as a natural 

extension to three-dimensional constructions of principles and methods of the thrust line analysis 

traditionally used for masonry arches. In our opinion, TSM has also the advantage of highlighting the close 

relationship between shape and structure, a crucial feature of masonry vault and domes, synthetizing one of 

the highest achievements of the traditional construction techniques. 

The effectiveness of the method, in light of different case studies, was proved by the comparison of TSM 

results with well-established analytical, numerical and experimental results in the literature. For the sake of 

this comparison, in the analyzed case studies only the self-weight of the vault has been considered as the 

loading condition, similarly to the reference cases taken from the literature.

More general load conditions (for example, the study of the role of the infill like in [65], or the assessment of 

the load bearing capacity of masonry vaults subject to horizontal forces) will be analyzed in forthcoming 

papers. Moreover, in the next future TSM will be applied to some real-life masonry vaults characterized by 

more complex loads and boundary conditions. In addition, the influence of structural pathologies (as pre-

existing crack patterns) on the load-bearing capacity of the vault will also be evaluated. Finally, further 

developments will extend the capabilities of TSM to the reinforcement design, by using suitable spatial 

extensions of approaches proposed in the literature mainly for masonry arches [66], in which the additional 

tensile strength offered by reinforcements is represented through a virtual geometric extension of the spatial 

admissibility domain of the thrust surface.

Appendix A – An analytical Validation of TSM results

For validating TSM, with reference to results in Sect. 5.2 concerning the case of the barrel vault in minimum 

thrust condition, it is possible to observe that the value of the minimum thrust can be evaluated analytically 

by studying the equilibrium of a portion of the cross section of the vault between two consecutive hinges (see 

Figure 11). With reference to Figure 19 and following the approach in [4,59], the minimum thrust can be 

determined as:
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(A.52)H
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where  assigns the position of the inner hinge and  is the angle of embrace between two 2
2

consecutive hinges. 

Figure 19. Scheme for the analytical expression of the minimum thrust for an arch having a segmental profile [4]

For the vault under examination (A.52) provides the value Hmin = 4.80 kN/m. The minimum thrust estimated 

by TSM Hmin = 4.99 kN/m is then in very good agreement with the analytical result: the difference is limited 

to 3.82%, absolutely negligible for practical applications.
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