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Abstra
t

The e�e
t of a 
onstant homogeneous su
tion on the non-linear transient growth of lo
alized �nite

amplitude perturbations in a boundary-layer �ow is investigated. Using a variational te
hnique,

non-linear optimal disturban
es are 
omputed for the asymptoti
 su
tion boundary layer (ASBL)

�ow, de�ned as those �nite amplitude disturban
es yielding the largest energy growth at a given

target time T . It is found that a strong enough wall su
tion remarkably redu
es the optimal energy

gain in the non-linear 
ase, and breaks the spanwise mirror symmetry whi
h was a robust feature of

the non-linear optimal perturbations found in the Blasius boundary-layer 
ase. Symmetry-breaking

appears when de
reasing the Reynolds number from 10000 to 5000. Dire
t numeri
al simulations

show that the di�erent stru
ture of the base �ow leads to a di�erent evolution of the symmetri
 or

non symmetri
 initial perturbation, due to the transport and tilting of the vorti
es by the mean �ow.

By bise
ting the initial energy of the non-linear optimal perturbations, minimal energy thresholds

for sub
riti
al transition to turbulen
e have been obtained. These energy thresholds are found to be

1 to 4 order of magnitude lower than the ones found in the literature for other transition s
enarios.

For low to moderate Reynolds numbers, these thresholds are found to s
ale as Re−2, suggesting a

new s
aling law for transition in the ASBL.
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I. INTRODUCTION

Drag redu
tion in external and internal �ow is a fundamental topi
 in �uid me
hani
s

sin
e it is a key issue for improving the performan
e of engineering systems, in
reasing energy

saving, and redu
ing environmental impa
t. Flow su
tion through the wall was among the

�rst te
hniques applied to 
ontrol the stru
ture of the boundary layer in order to redu
e

drag. The idea, was born together with the 
on
ept of boundary layer itself [1℄, des
ribed

for the �rst time in 1904 by Prandtl during the Third International Mathemati
s Congress at

Heidelberg [2℄. About thirty years later, su
h a te
hnique was employed to delay transition

over air
raft wings by redu
ing the boundary layer thi
kness and indu
ing a fuller velo
ity

pro�le 
lose to the wall [1℄. The in�uen
e of su
tion on the stability of the boundary layer was

studied by analyti
al methods 
onsidering uniform su
tion velo
ity at wall. In parti
ular, a

very simple exponential solution for the velo
ity was derived by Meredith and Gri�th [1, 3℄

whi
h would be valid at a su�
iently high distan
e from the leading edge of a �at plate.

This solution of the Navier-Stokes equation is known as the asymptoti
 su
tion boundary

layer (ASBL) [1℄ and is 
onsidered a suitable model to study boundary layers subje
t to

a
tive 
ontrol by su
tion and to investigate the transition me
hanism. Ho
king (1975) [4℄

demonstrated that the 
riti
al Reynolds number is about two orders of magnitude higher

than that of the Blasius boundary layer (BBL). In fa
t, the normal velo
ity term in the Orr-

Sommerfeld and Squires equations stabilizes the Tollmien-S
hli
hting (TS) waves, produ
ing

an e�e
tive way of damping their asymptoti
 growth. This e�e
t has been widely employed

in di�erent forms in the design of air
raft wing (see, for example, Joslin (1998) [5℄).

More re
ently, the development of the optimal transient growth analysis has renewed

the interest in the study of the ASBL. In fa
t, it is well known that for a su�
iently

high level of free-stream turbulen
e (FST), a bypass route to transition may o

ur in the

boundary layer whi
h 
orresponds to the growth of linear optimal perturbations (LOP) [6, 7℄.

This me
hanism is based on the development of streamwise-aligned stru
tures 
omposed by

alternating low and high velo
ity streaks observed for the �rst time by Klebano� [8℄. The

algebrai
 growth of the streaks due to the lift-up e�e
t [9℄ leads eventually to se
ondary

instability and break-up to turbulen
e [10�12℄. From a numeri
al point of view, LOPs were


omputed for several shear �ows [13�17℄. In all of these works, optimal perturbations are

de�ned as those initial �ow states yielding the largest ampli�
ation of the disturban
e energy
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over a time/spa
e interval and 
an be 
omputed using a variational optimization approa
h

[18, 19℄. For the 
ase of the boundary layer at low Reynolds number, su
h optimal stru
tures


onsists of pairs of streamwise aligned 
ounter-rotating vorti
es produ
ing streamwise streaks

by the lift-up e�e
t, in perfe
t agreement with the above experimental �ndings. The same

me
hanisms have been studied in the ASBL. Fransson and Alfredsson (2003) [20℄ performed

an experimental analysis about the development of for
ed TS waves and about the algebrai


growth of disturban
es indu
ed by free-stream turbulen
e. They 
on�rmed the damping

of TS waves due to su
tion and were able to suppress transition in both 
ases. Using

a lo
al approa
h, Fransson and Corbett (2003) [21℄ 
omputed LOPs for the ASBL and


ompared their results with experiments. They observed a signi�
ant transient growth,

although smaller than in the 
ase of the BBL. This indi
ates that the strong e�e
t of the

damping of the energy growth of TS waves obtained by su
tion is not a
hieved in the 
ase

of the algebrai
 growth. Bystrom et al. (2007) [22℄ 
omputed LOPs for the semi-su
tion

boundary layer in order to take into a

ount the presen
e of a small region free of su
tion


lose to the leading edge of the �at plate. Using su
h a model, they 
ould improve the

agreement of the numeri
al results with experimental data, demonstrating that the optimal

energy growth is indeed obtained in the upstream region without su
tion. Finally, Levin

et al. (2005) [23℄ studied the energy thresholds for transition to turbulen
e in the ASBL,

for Re = 500, 800, 1200, with perturbations having the form of oblique waves, streamwise

vorti
es, or random noise; whereas, Levin et al. (2007) [24℄ analyzed the energy threshold

for the same Reynolds numbers in the 
ase of lo
alized disturban
es and investigated the

formation and evolution of turbulent spots.

The ASBL has been also 
onsidered for testing and validating the re
ent dynami
al sys-

tem theory of turbulen
e, whi
h analyzes the role of non-linearities in the transition pro
ess

and for the sustainment of turbulen
e for shear �ows. Su
h a theory relies on: 1) the obser-

vation of the existen
e of exa
t 
oherent states, whi
h 
an be unstable �xed points, periodi


orbits or 
haoti
 solutions of the Navier-Stokes equations, having a few unstable dire
tions

(see Ref. [25�30℄); 2) the idea that su
h states 
onstitute the skeleton of transition and

regeneration pro
esses of turbulen
e and 
an be used to understand their nature. In parti
-

ular, for analyzing the transition pro
ess, it is interesting to study those �ow perturbations


on�ned on the boundary between the laminar and the turbulent states, 
alled the edge of


haos [31�34℄. Those perturbations 
an be very dangerous, being the 
losest ones to the
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laminar state 
apable of triggering transition. On the edge of 
haos, one or more relative

attra
tors 
an be found, 
alled edge states [31℄, whi
h 
an be �xed points [35℄, periodi
 orbits

[36℄ or 
haoti
 states [29℄. Con
erning the ASBL, Kreilos et al. (2013) [36℄ investigated the

stru
ture of the edge states, identifying a periodi
 orbit embedded in the laminar-turbulent

boundary. Su
h a solution shows the same basi
 me
hanisms of transient growth intera
-

tions between streamwise-aligned vorti
es and streaks whi
h 
hara
terize many other shear

�ows. Furthermore, it 
aptures also the bursting phenomenon typi
al of the BBL. Khapko

et al. [37, 38℄ have investigated the dynami
s restri
ted to the laminar-turbulent boundary,

des
ribing the 
omplex spatio-temporal dynami
s of di�erent lo
alized edge states for sev-

eral streamwise wavelength. They found that all of these states have the same stru
ture,


onsisting of a lo
alised pair of low- and high-speed streaks �anked with streamwise vor-

ti
es. Investigating the stru
ture of the relative attra
tors embedded in the edge of 
haos

allows one to identify the typi
al shape and dynami
s of the 
oherent stru
tures 
onsituting

the skeleton of turbulen
e. However, for unraveling the main features of the most e�e
tive

(in terms of both time and energy) path to transition, the minimal-energy states on the

laminar-turbulent boundary should be analyzed [39, 40℄.

Very re
ently, the problem of �nding the minimal energy perturbation on the edge of tur-

bulen
e has been investigated by solving the non-linear optimal growth problem for �nite-

amplitude initial perturbations (see [41℄ for a review). Perturbations optimizing at a given

(target) time the growth of a fun
tional linked to transition (the kineti
 energy or the dissi-

pation, for instan
e), 
alled non-linear optimal perturbations (NLOPs), have been dis
overed

for a pipe �ow [42, 43℄; a boundary layer �ow [44, 45℄; and a Couette �ow [34, 39, 46, 47℄.

By optimizing the energy at large target times and bise
ting the initial energy to bring the

perturbation 
lose to the laminar-turbulent boundary, the perturbation of minimal energy


apable of bringing the �ow to the edge state and then to transition, 
alled the minimal

seed of turbulent transition, 
an be found [39℄. When small target times are 
onsidered, a

di�erent pro
edure should be used for �nding minimal-energy perturbations on the edge of


haos, dire
tly targeting the neighbourhood of the edge state in a �nite time [40℄.

In any 
ase, the NLOPs are 
hara
terized by a very di�erent stru
ture with respe
t to the

linear optimal ones and largely outgrow them in energy due to non-linear me
hanisms [43,

45℄. For the boundary-layer and the Couette �ow, the NLOPs are 
hara
terized by a similar

fundamental stru
ture, 
omposed of a lo
alized array of vorti
es and low-momentum regions
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of typi
al length s
ale, 
apable of maximizing the energy growth most rapidly. Cherubini

et al. (2011) [45, 48℄ have dis
ussed the 
ontribution of non-linear e�e
ts to su
h a strong

energy growth me
hanism, showing that non-linearity is 
ru
ial to sustain the growth of

these optimal perturbations. The knowledge of these non-linear me
hanisms may allow one

to design e�e
tive 
ontrol strategies to delay transition by using wall su
tion or spanwise

os
illations of the boundaries [49, 50℄. The aim of the present paper is to extend the analysis

of the NLOP to the 
ase of the ASBL, following the approa
h that the authors have employed

for the BBL, dis
ussing similarities and di�eren
es between these two 
ases, and highlighting

the role of the su
tion velo
ity.

The paper is organized as follows. In the se
ond se
tion we de�ne the problem and

des
ribe the non-linear optimization method. In the third se
tion, divided into three parts,

a thorough dis
ussion of the results of the non-linear optimization analysis is provided. In

parti
ular, in the �rst part, the fo
us is on the 
hara
terization of the NLOP with respe
t

to the LOP, also using the 
omparison with the results already obtained for the BBL and

Couette �ows. The se
ond part provides an analysis varying the Reynolds number, a
hieving

super
riti
al values; whereas, the third part deals with the optimal route to turbulen
e,


omputed by the DNS. Finally, 
on
luding remarks are provided.

II. PROBLEM FORMULATION

A. Governing equations and numeri
al method

The behaviour of an in
ompressible �ow is governed by the Navier�Stokes (NS) equations:

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,

(1)

where u = (u, v, w) is the velo
ity ve
tor and p indi
ates the pressure term. Dimensionless

variables are de�ned with respe
t to the in�ow boundary-layer displa
ement thi
kness δ∗

and the freestream velo
ity, U∗
∞, so that the Reynolds number is Re = U∗

∞δ∗/ν∗, where ν∗ is

the kinemati
 vis
osity and the supers
ript ∗ indi
ates dimensional quantities. A Cartesian


oordinate system is 
onsidered, x, y and z being the streamwise, wall-normal and spanwise

dire
tions, respe
tively. The asymptoti
 su
tion boundary-layer �ow is de�ned as the �ow
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over a �at plate with a uniform wall-normal su
tion velo
ity V ∗
S = ν∗/δ∗ applied along the

wall. Therefore, imposing no-slip 
onditions for the streamwise and spanwise 
omponents

of the velo
ity at the wall, one obtains from equations (1) the following solution [3℄, given

in nondimensional variables:

U = ((1− e−y),−
1

Re
, 0)T . (2)

The numeri
al simulations are performed by integrating the NS equations with the following

boundary 
onditions: at the bottom boundary, no-slip 
onditions for the x and z 
omponents

of the velo
ity and homogeneous su
tion for the y 
omponent, v = −VS; at the upper bound-

ary, the z 
omponent of the velo
ity and of the vorti
ity are set to zero and homogeneous

inje
tion is imposed for the y 
omponent of the velo
ity; in the streamwise and spanwise

dire
tions, periodi
ity is imposed for the three velo
ity 
omponents and the pressure.

The analysis has been performed using �ve values of the Reynolds number (see table I), ob-

tained 
hanging the boundary-layer displa
ement thi
kness δ∗ and keeping U∗
∞ �xed. Thus,

the su
tion velo
ity, in both dimensional and nondimensional forms, s
ales with the in-

verse of the Reynolds number, sin
e V ∗
S = U∗

∞/Re. The NS equations are dis
retized by a

�nite-di�eren
e fra
tional-step method using a staggered grid [51℄. A se
ond-order-a

urate


entered spa
e dis
retization is used. Performing a grid-
onvergen
e analysis, a mesh made

up by 451 × 100 × 61 points has been sele
ted for the referen
e domain at Re = 610 with

dimensions Lx = 100, Ly = 20 and Lz = 10.5. The spanwise dimension has been 
hosen very


lose to the one used in [23℄ for determining transition thresholds, whereas the streamwise

length is mu
h longer to avoid intera
tion of the �ow stru
tures with its own tail for long

target times. Sin
e the NLOP has been found to lo
alize more and more with in
reasing

Reynolds number, the domain length has been redu
ed a

ordingly, in order to redu
e the


omputational 
ost. Table I summarizes the domain lengths and the 
orresponding grid

points sele
ted for di�erent Reynolds numbers after validations with respe
t to larger do-

mains. For all the values of the Reynolds number and of the target times 
onsidered here,

the streamwise length of the domain has been 
hosen large enough to allow the optimal per-

turbation to remain lo
alized also at target time. Whereas, 
on
erning the spanwise length,

it has been redu
ed with Re following the typi
al s
aling of the streaks spa
ing, as explained

in se
tion III B.
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Figure 1: Sket
h of the ASBL �ow with a superposed lo
alized disturban
e.

Re Lx × Ly × Lz Nx ×Ny ×Nz T

610 100 × 20 × 10.5 451 × 101× 61 50, 75, 100, 150, 200, 250

1200 50× 15× 7 451 × 101× 61 50, 100, 150

2500 40× 15× 5 451 × 101× 61 50, 100, 150

5000 40× 7.5 × 4 451 × 101× 91 50, 100, 150

10000 30× 7.5 × 2 601 × 101× 91 50, 100

Table I: Domain lengths, grid points and target times 
hosen for the optimizations at di�erent

Reynolds numbers

B. Non linear optimization

The non-linear behavior of a perturbation q = (u′, v′, w′, p′)T evolving in the laminar

asymptoti
 su
tion boundary-layer �ow is analyzed by solving the NS equations written in

perturbative formulation with respe
t to the steady state solution, Q = (U, P )T , with U
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given by equation (2). A zero perturbation boundary 
ondition is imposed for the three

velo
ity 
omponents at the y−
onstant boundaries, whereas periodi
ity of the perturbation

is for
ed in the spanwise and streamwise dire
tions.

The goal is to �nd the perturbation at t = 0 providing the largest disturban
e growth at a

given target time, T . At this purpose, a Lagrange multiplier te
hnique is used [19, 42, 44, 52℄

to perform a 
onstrained optimization of the perturbation energy. The disturban
e energy

density is de�ned as

E(t) =
1

2V

�

V

�

u′2(t) + v′
2
(t) + w′2(t)

�

dV =
1

2V
hu′(t) · u′(t)i , (3)

where V is the volume of the 
omputational domain. Given an initial energy E(0) = E0, we

aim at �nding the shape and amplitude of an initial perturbation q0 whi
h indu
es at target

time T the largest energy gain E(T )/E0; threfore, the obje
tive fun
tion of the optimization

pro
edure is ℑ = E(T )/E(0). The Lagrange multiplier te
hnique 
onsists in sear
hing for

extrema of an augmented fun
tional, L, with respe
t to every independent variable, the

three-dimensional in
ompressible NS equations and the value of the initial energy being

imposed as 
onstraints. The augmented fun
tional reads:

L =
E(T )

E(0)
−

� T

0

�

�
† ·

�

∂u′

∂t
− u′ ·∇U+U ·∇u′ + u ·∇u′ −∇p′ −

∇2
�
′

Re

��

dt

−

� T

0

�

p† ·∇u′
�

dt− λ

�

E0

E(0)
− 1

�

.

(4)

where (u†, p†,λ) are the Lagrange multipliers, e.g. the adjoint variables. Integrating by

parts and setting to zero the �rst variation of L with respe
t to (u′, p′) leads to the adjoint

equations plus the 
ompatibility 
ondition (whi
h are provided in Ref. [45℄). The adjoint

equations are linked to the dire
t ones by the presen
e of the dire
t variables in the adve
tion

terms, so that the whole �ow �eld needs to be stored at ea
h time step, requiring a remarkable

storage 
apa
ity. The gradient of the augmented fun
tional with respe
t to the initial

perturbation q0 is for
ed to vanish by means of a 
onjugate gradient algorithm as detailed

in Ref. [45℄. A 
oupled iterative approa
h similar to that used in [52℄ and [42℄ is used to

solve the problem, relying on the forward and ba
kward solution of the dire
t and adjoint

NS equations, respe
tively, and on the update of the initial perturbation in the 
onjugate

gradient dire
tion at ea
h iteration, until 
onvergen
e is rea
hed. A detailed des
ription of

the optimization te
hnique and of its 
onvergen
e properties is provided in Ref. [45℄ for the


ase of the BBL �ow and in Ref. [47℄ for the Couette �ow.
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Figure 2: (Color online) Optimal energy gain versus target time T for Re = 610, E0 = 3.0× 10−7.

The dashed line with triangles indi
ates the results of the linear optimization; the solid line with

squares (red online) indi
ates the results of the non-linear optimization.

III. RESULTS

A. Non linear optimal perturbations at Re = 610

The laminar pro�le of the ASBL de�ned in equation (2) is linearly stable for Re < 54382

[4℄, whi
h is about 100 times the 
riti
al Reynolds for a Blasius boundary layer [1℄. For

starting the analysis, we 
hoose a sub
riti
al Reynolds number, Re = 610. This rather low

Reynolds number (
ompared to the 
riti
al one for the ASBL) has been 
hosen for 
om-

parison purpose with the BBL 
ase of ref. [44℄. Figure 2 shows the value of the optimal

energy gain versus the target time for an initial energy E0 = 3.0 × 10−7. The dashed line

refers to the results of a linear optimization, whereas the solid line represents the non-linear

optimization. As also observed for the BBL �ow [44℄, the non-linear optimal energy gain

is remarkably larger than the 
orresponding linear one for T > 50. The in�uen
e of the

parameter E0 on the value of the optimal energy is shown in Figure 3, for three values of

the target time. It appears that a non-linearity threshold value of the initial energy exists

from whi
h strong di�eren
es are observed in the non-linear optimal energy with respe
t to

the linear one (
ompare the solid lines with the dashed ones). Su
h a threshold de
reases

when the target time in
reases, as one 
an observe by 
omparing the solid lines in Figure
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Figure 3: (Color online) Optimal energy for Re = 610 at target time T = 50 (bla
k), T = 100

(red), and T = 200 (green) versus the initial energy E(0), using the non-linear optimization (solid

lines with symbols) and the linear optimization (dashed lines).

3, 
onverging towards a value, E0 = 1.2 × 10−7, whi
h might be 
lose to the energy of

the minimal seed for this Reynolds number (i.e., the perturbation of minimal energy on

the laminar-turbulent boundary). Table II provides a 
omparison between the energy gains

obtained for the BBL and the ASBL at T = 75 (the behavior is similar for di�erent target

times) for three optimizations: a linear optimization and two non-linear optimizations with

E0 = 1.2 × 10−7 and E0 = 3.0 × 10−7, respe
tively. The results indi
ate that a signi�
ant

redu
tion of the optimal energy growth is obtained in the linear 
ase; however, wall su
tion

is mu
h more e�e
tive in damping the growth of non-linear optimal perturbations.

Crossing the non-linearity threshold also yields large modi�
ations in the shape of the op-

timal perturbations. This 
an be observed in Figure 4, whi
h provides the optimal initial

perturbations obtained for the ASBL at Re = 610 and T = 75, for two values of the initial

energy, E0. For the lowest one, E0 = 1.2 × 10−7 (top frame), the perturbation is similar

to that obtained by the linear optimization in a BBL �ow [53℄, being 
hara
terized by al-

ternated vorti
es elongated in the streamwise dire
tion (bla
k and white surfa
es), lo
alized

in two di�erent positions along the �at plate. Due to weak non-linear e�e
ts, whi
h are

non-negligible for su
h values of the initial energy, some spanwise modulations are present

on the streamwise perturbation (green surfa
es). Con
erning the amplitudes, the largest

10



Test 
ase Linear E0 = 1.2 × 10−7 E0 = 3.0 × 10−7

BBL 275.10 801.98 1104.1

ASBL 125.16 125.15 158.37

Table II: Comparison between energy gains at T = 75 for the BBL and the ASBL.

perturbation velo
ity 
omponent is the spanwise one (|wmax| = 0.0027), followed by the

wall-normal (|vmax| = 0.0025) and the streamwise one (|umax| = 0.0003). One 
an noti
e

that the streamwise perturbation is one order of magnitude lower than the others, meaning

that for this value of the initial energy the me
hanism of growth is still very 
lose to the

linear optimal one, based on the lift-up of the streamwise base �ow velo
ity by the vorti
es

formed by the wall-normal and spanwise perturbation. However, as one 
an observe in �gure

4, the shape of the optimal perturbation 
hanges remarkably between E0 = 1.2× 10−7 and

E0 = 3.0 × 10−7. The most striking di�eren
e is the strong lo
alization of the disturban
e

in both the streamwise and spanwise dire
tion. In fa
t, for initial energies larger than the

non-linearity threshold, a strong lo
alization of the initial perturbation leads to larger am-

plitudes (for the same initial energy), triggering non-linear e�e
ts that indu
e a remarkable

in
rease of the energy gain at target time. In fa
t, for an in
rease of the initial energy of a

fa
tor 2.5, we observe at t = 0 an in
rease of the velo
ity magnitudes of a fa
tor equal to

about 12 for v and w, whereas a fa
tor 80 is obtained for u. These values of the perturba-

tion velo
ity 
omponents, together with the parti
ular shape of the disturban
e, are able to

trigger non-linear e�e
ts whi
h allow a mu
h larger energy growth than in the linear 
ase.

This strong lo
alization appears to be a typi
al feature of NLOPs in shear �ows, sin
e it has

been also observed for the pipe [42, 43℄, the BBL [45℄, and the Couette �ows [39, 46, 47℄.

Furthermore, not only the extension, but also the stru
ture of the perturbation 
hanges re-

markably. For E0 = 3.0× 10−7, the optimal perturbation is 
omposed by three streamwise-

alternated vorti
es showing a �nite in
lination with respe
t to the streamwise dire
tion

(bla
k and white surfa
es), whereas in the quasi-linear 
ase at E0 = 1.2× 10−7 the vorti
es

are streamwise-aligned. On both �anks of su
h in
lined vorti
es, lo
alized pat
hes of �nite-

amplitude streamwise disturban
e are observed (green surfa
es). Con
erning the relative

magnitude of the velo
ity perturbations, the largest perturbation velo
ity 
omponent is the

spanwise one (|wmax| = 0.033), followed by the streamwise (|umax| = 0.03) and the wall-
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normal one (|vmax| = 0.024). These values are similar to those found for the Couette �ow

[47℄, whereas, for the BBL �ow at the same Re, the largest 
omponent is the streamwise

one, whose value is about half of the maximum value found here for the ASBL, for an initial

energy just above the non-linearity threshold, see [45℄. It is worth noti
ing that, for all of

these �ows, in the linear 
ase the streamwise velo
ity 
omponent at initial time is from one

to two orders of magnitude lower than the spanwise and the streamwise ones, whereas in the

non-linear 
ase all of the 
omponents are of the same order, 
learly indi
ating that di�erent

me
hanisms are responsible for the growth of the perturbation energy. It is also noteworthy

that, for all of the values of E0, the NLOPs are 
hara
terized by vorti
al stru
tures in
lined

in the opposite dire
tion with respe
t to that of the base �ow, as one 
an observe in �gure

4. In fa
t, it is known that perturbations in
lined in the opposite dire
tion with respe
t

to the base �ow allow a large growth of the energy at small times due to the tilting of the

initial spanwise vorti
ity into the dire
tion of the shear. Su
h a me
hanism is 
alled Orr

me
hanism [54℄ and it is typi
al of most of the optimal perturbations found for shear �ows

(see [53� � ℄, for instan
e), in a linear and non-linear framework. In our 
ase, sin
e the

NLOPs perturbations are supposed to grow optimally, they should exploit all of the energy

produ
tion me
hanisms in order to trigger non linear e�e
ts as fast as possible.

The stru
ture of the NLOP found here shows some similarities with that found for the Cou-

ette �ow (
ompare with Figure 5 of Ref. [47℄) and with that obtained for the BBL �ow (see

Figure 4, bottom). For all of these shear �ows, the NLOP is 
hara
terized by streamwise-

in
lined vorti
al stru
tures and �nite-amplitude pat
hes of streamwise disturban
e. How-

ever, while for the Couette and the ASBL �ow (at least at low Reynolds number) the optimal

disturban
e does not show any parti
ular symmetry, for the BBL it is mirror-symmetri
 with

respe
t to a z = const plane. This 
an be 
learly observed in Figure 4 (bottom frame), show-

ing that the NLOP for the Blasius �ow at E0 = 1.2× 10−7 is 
omposed by a basi
 stru
ture

similar to that of the ASBL, having a mirror-symmetri
 shape with respe
t to a z−aligned

plane.

The �ow stru
tures 
an be better analyzed by taking x−
onstant sli
es of the NLOP, as

provided in the left frame of �gure 5. One 
an observe that the in
lined alternated vorti
es

are stri
tly lo
alized in a narrow zone in the spanwise dire
tion (2 < z < 5), surrounded

by pat
hes of negative (light gray) and positive (dark gray) streamwise perturbation whi
h

are alternated in the spanwise and wall-normal dire
tion. The di�eren
es with respe
t to

12



Figure 4: (Color online) Initial perturbations obtained by the non-linear optimization for the asymp-

toti
 su
tion boundary-layer at Re = 610 and target time T = 75: iso-surfa
es of the optimal

perturbations (grey, green online, for the negative streamwise 
omponent; dark and light gray for

negative and positive streamwise vorti
ity, respe
tively) with initial energy E0 = 1.2 × 10−7 (top

frame, surfa
es for u′ = −0.00017, ω′
x = ±0.01) and E0 = 3.0 × 10−7 (middle frame, u′ = −0.015,

ω′
x = ±0.1). Initial perturbations obtained by the non-linear optimization for the Blasius boundary

layer �ow at Re = 610, target time T = 75, with initial energy E0 = 1.2 × 10−7 (bottom frame,

u′ = −0.01, ω′
x = ±0.06). Axes are not in the same s
ale.

the BBL 
ase 
an be analyzed by 
omparing the left frame (ASBL) with the right frame

(BBL) of �gure 5. Con
erning the latter, the vorti
es are lo
alized in two distin
t regions in

the spanwise dire
tion, 
onne
ted by alternated pat
hes of streamwise disturban
e showing

a mirror-symmetry in the spanwise dire
tion. This dis
repan
y is re�e
ted also at target

time, as one 
an noti
e 
omparing Figures 6 (a) for the ASBL, with (b), for the BBL.

For the ASBL, one 
an observe in �gure 6 (a)-(b) the presen
e of bent streaks along the

streamwise vorti
es, showing strong os
illations in the streamwise and spanwise dire
tions.

Whereas, in �gures 6 (
)-(d) one 
an noti
e that, for the BBL �ow, the perturbations remain

spanwise-symmetri
, and the vorti
es as well as the streaks along them are strongly lifted

in the wall-normal dire
tion, showing the typi
al signature of an in
ipient hairpin vortex.
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Figure 5: (Color online) Contours and ve
tors of the velo
ity 
omponents of the NLOP at initial time

obtained with Re = 610, T = 75 for the asymptoti
 su
tion boundary layer with E0 = 3.0 × 10−7,

on the plane x = 211 (a); for the Blasius boundary layer with E0 = 1.2×10−7, on the plane x = 232

(b). Shaded 
ontours indi
ate the streamwise disturban
e velo
ity (dark, red online, for positive

values; light, green online, for negative ones); ve
tors represent the wall-normal and the spanwise

disturban
e velo
ity 
omponents.

As proposed in Ref. [42℄, the disturban
e of minimum amplitude 
apable of triggering

turbulen
e is de�ned as the minimal seed for a given Reynolds number. Bise
ting the value

of the initial energy at T = 200, and 
he
king whether the obtained NLOP is able to indu
e

transition, we have found the energy level of the minimal seed to be about 1.277 × 10−7

for Re = 610. The 
orresponding maximum amplitudes of the velo
ity 
omponents are

|u|max = 0.029, |v|max = 0.031, |w|max = 0.031, very 
lose to the values found at lower

target time (even if the wall-normal 
omponent is now slightly larger than the streamwise

one). The minimal seed is sandwi
hed between the NLOPs shown in �gure 7 (a) and (b),

for E0 = 1.2 × 10−7 and E0 = 1.35 × 10−7, both showing the basi
 stru
ture provided in

�gure 4 (middle frame). It is worth noti
ing that the NLOP keeps the same stru
ture of

the minimal seed also for values of the initial energy slightly lower than the minimal seed

energy. For larger values of the initial energy, lo
al maxima 
an be found, as in the 
ase of the

Couette �ow [47℄. Furthermore, for energies larger than the minimal seed one, 
onvergen
e

on the optimum is not assured (see [39℄), sin
e transition might be observed at target time.
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Figure 6: (Color online) Contours and ve
tors of the velo
ity 
omponents of the NLOP at target time

obtained with Re = 610, T = 75 for the asymptoti
 su
tion boundary layer with E0 = 3.0 × 10−7

on the plane x = 249 (a); for the Blasius boundary layer with E0 = 1.2×10−7 on the plane x = 267

(b). Shaded 
ontours indi
ate the streamwise disturban
e velo
ity (dark, red online, for positive

values; light, green online, for negative ones); ve
tors represent the wall-normal and the spanwise

disturban
e velo
ity 
omponents.

However, sin
e for T = 200 transition is still not observed for initial energies slightly higher

than that of the minimal seed, we have been able to perform two optimizations with two

di�erent initial 
onditions, in order to 
he
k the existen
e of su
h lo
al maxima. Thus, we

have 
hosen E0 = 2.7× 10−7 (almost double than the energy of the minimal seed), with two

di�erent initializations, namely, i) the minimal seed stru
ture, and ii) a symmetri
 initial

disturban
e obtained by mirroring the minimal seed stru
ture with respe
t to the streamwise

axis. The energy gain for the �rst optimization is E(T )/E0 = 1641, and the optimal

shape is shown in �gure 7 (
); whereas, for a mirror-symmetri
 initial guess, the suboptimal

stru
ture shown in �gure 7 (d) has been found, with energy gain E(T )/E0 = 254 (even if the

optimization eventually 
onverges to the non symmetri
 solution if the 
onvergen
e pro
ess

is 
ontinued to lower values of the residual). The 
omparison between the optimal in �gure

7 (
) and the suboptimal in �gure 7 (d) proves that repli
ation and spatial spreading of the

basi
 stru
tures is observed for large initial energies, as in the Couette �ow, but this does

not lead to a symmetrisation of the optimal (at least for Re = 610).
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(a) (b)

(
) (d)

Figure 7: (Color online) Isosurfa
es of the initial perturbations obtained by the non-linear optimiza-

tion for the ASBL at Re = 610 and target time T = 200, with initial energies E0 = 1.2× 10−7 (a),

E0 = 1.35× 10−7 (b), E0 = 2.7× 10−7 (
) and a suboptimal for E0 = 2.7× 10−7 initialized with a

mirror-symmetri
 initial perturbation (d). Green and red, for the negative and positive streamwise

velo
ity 
omponent; dark and light, for negative and positive streamwise vorti
ity, respe
tively,

with values u′ = −0.005, ω′
x = ±0.05 (a-b), u′ = −0.01, ω′

x = ±0.08 (
), u′ = −0.005, ω′
x = ±0.05

(d).

The results dis
ussed above show that NLOPs obtained for di�erent shear �ows share

a similar stru
ture, 
hara
terized by in
lined vorti
es along a pat
h of �nite streamwise

velo
ity perturbation (although with a di�erent symmetry). The persisten
e of this basi


stru
ture at di�erent values of the initial energy, target times and for di�erent kind of

�ows indi
ates that su
h a stru
ture, whi
h maximizes the disturban
e energy over a �nite

time, has an intrinsi
 fundamental importan
e for shear �ows. However, a 
ru
ial di�eren
e

has been found between the basi
 stru
ture of NLOP for the ASBL �ow (similar to that

of the Couette �ow) and that for the BBL �ows, namely, the spanwise symmetry of the

perturbation. This important di�eren
e has motivated the analysis of the stru
ture of the

NLOP for several Reynolds numbers provided in the next subse
tion.
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Figure 8: Streamwise (left) and wall-normal (right) velo
ity pro�lesof the base �ow velo
ity for the

BBL and the ASBL at R = 610 (thin solid lines) and Re = 5000 (thi
k solid lines), versus the

wall-normal variable y∗. For visualization purposes, the s
ale is not the same at di�erent values of

Re. The dashed lines in sub�gure (a) show the wall-normal derivative of the streamwise 
omponent

of the base �ow, dU∗/dy∗, in both �ows.
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Figure 9: Minimal energy for turbulent transition for the asymptoti
 su
tion boundary layer at

di�erent Reynolds numbers (solid line). The dashed lines show the minimal energy for di�erent

transition s
enarios, namely noise (NOISE), streamwise vorti
es (SV), oblique waves (OW), and

lo
alized disturban
es (LD), extrapolated from data in [24℄.

B. Reynolds number analysis

To generalize our results, we have extended the analysis to larger Reynolds numbers.

Figure 8 shows the velo
ity pro�les for the ASBL and the BBL (extra
ted at the inlet) at

two di�erent Reynolds numbers, namely, Re = 610 and Re = 5000, versus the wall-normal
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Figure 10: (Color online) Minimal seeds for the asymptoti
 su
tion boundary layer for Re = 1200

(left, with E0 = 2.08 × 10−8) and Re = 2500 (right, with E0 = 4.16 × 10−9) with target time

T = 150: iso-surfa
es of the negative streamwise 
omponent, u′ = −0.0025 (green) and of the

negative and positive streamwise vorti
ity, ω′
x = −0.045 (bla
k and white, respe
tively)

Figure 11: (Color online) Non linear optimal perturbations for the asymptoti
 su
tion boundary

layer at Re = 5000 for E0 = 2.12 × 10−9 (left) and E0 = 4.24 × 10−9 (right) with target time

T = 100: iso-surfa
es of the negative streamwise 
omponent, u′ = −0.001 (green) and of the

negative and positive streamwise vorti
ity, ω′
x = ±0.045 (bla
k and white, respe
tively)


oordinate y∗ (for visualization purposes, the s
ale is not the same at di�erent values of

Re, and δ∗ = 1 has been 
hosen for Re = 610). The �gure shows that, for both �ows, the

streamwise pro�le is the same at Re = 610 and Re = 5000 ex
ept for the di�erent s
aling

with respe
t to the wall-normal 
oordinate y∗. One 
an also noti
e the di�erent shape of

the ASBL and BBL pro�les, the �rst one having larger velo
ities 
lose to the wall, resulting

in a 'fuller' shape 
lose to the wall. Con
ering the wall-normal velo
ity, for both �ows, an

in
rease of one order of magnitude in the Reynolds number indu
es a de
rease of one order
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Figure 12: (Color online) Non linear optimal perturbations for the asymptoti
 su
tion boundary

layer at Re = 10000 with E0 = 2.5 × 10−9 (top), and with E0 = 1.25 × 10−8 (bottom) with target

time T = 50: iso-surfa
es of the negative streamwise 
omponent, u′ = −0.002 (green) and of the

negative and positive streamwise vorti
ity, ω′
x = ±0.045 (bla
k and white, respe
tively)

of magnitude in the amplitude of the wall-normal velo
ity pro�le V (�gure 8 (b)).

The non-linear optimal disturban
es of the ASBL �ow have been 
omputed for Re =

1200, 2500, 5000, 10000. For ea
h value of the Reynolds number but the latter the value

of the initial energy has been bise
ted in order to approximate the minimal seed with a two-

digit a

ura
y. The solid line in Figure 9 shows the energy of the minimal seed, Emin, versus

the Reynolds number, for Re = 610, 1200, 2500, 5000. Whereas, the dashed lines in the �g-

ure reprodu
e the results of Ref. [23, 24℄, for four di�erent initial perturbation stru
tures: i)

random three-dimensional noise (NOISE); ii) streamwise vorti
es (SV), obtained by a lo
al

spatial optimization; iii) spatially extended oblique waves (OW), obtained by a lo
al spatial

optimization; iv) lo
alized disturban
es (LD) 
onsisting of two alternated 
ounter-rotating

pairs of streamwise vorti
es. One 
an noti
e that the transition threshold provided by the

minimal seed energy is almost two orders of magnitude lower than the energy thresholds

found for spatially extended disturban
es su
h as the streamwise vorti
es and the oblique

waves. Moreover, Emin is one order of magnitude lower than the minimal energy found for
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Re = 610 1200 2500 5000 10000

lx = 18.2 8.6 4.1 2.9 1.7

lz = 8.6 4.4 2.7 1.94 1.3

Table III: Streamwise and spanwise dimensions, lx, lz of the minimal seed for several values of the

Reynolds number, measured as the largest spanwise and streamwise lengths of the �ow regions

where |u′| > 0.001

the lo
alized perturbations sele
ted in Ref. [24℄. We 
an also observe in �gure 9 that Emin

varies with Re following a power law Re−2, whereas Levin et al. [23℄ found a −2.1 exponent

for the SV and NOISE perturbations and a −2.8 exponent for the OW one. It is worth

noti
ing that in Ref. [34℄, a power law Re−2.7 has been found for the minimal seed for the

Couette �ow in a small domain (whereas the OW s
enario was 
hara
terized by a −2 ex-

ponent for the same 
on�guration). Con
erning the velo
ity amplitudes, for Re = 1200 the

minimal seed is 
hara
terized by |u|max = 0.014, |v|max = 0.015, |w|max = 0.017; the minimal

LD triggering transition in Ref. [24℄ was 
hara
terized by |v|max = 0.0124, very 
lose to

the minimal amplitudes found here, but with |u|max = 0.0. Thus, the large di�eren
e in

the transition thresholds 
an be linked to the 
omplete absen
e of the streamwise velo
ity

in the perturbation of Ref. [24℄: this appears to be a 
ru
ial feature for indu
ing a rapid

transition to turbulen
e using low-energy perturbations. Two other 
ru
ial elements whi
h

might explain the di�eren
e between the energy thresholds for the LD and the minimal seed

are: i) the larger spatial extension of the LDs, whi
h makes them more energeti
 than the

minimal seed for similar asso
iated amplitudes; ii) the fa
t that the vorti
es are perfe
tly

aligned with the streamwise axis, and sinusoidal in z, whereas the perturbations indu
ing

the largest growth by non-linear me
hanisms are 
hara
terized by a �nite in
lination with

respe
t to the streamwise axis and do not show any spanwise symmetry. Thus, it appears

that a non-linear optimization is ne
essary to evaluate the order of magnitude of the minimal

thresholds for transition to turbulen
e and to determine a

urately the shape and typi
al

length s
ales of the minimal perturbation 
apable of indu
ing transition to turbulen
e.

As shown in Figure 10, the shapes of the minimal seed for Re = 1200 and Re = 2500 are

very similar to the ones des
ribed in the previous se
tion for Re = 610. They are 
omposed

by streamwise alternated positive and negative vorti
es with a �nite in
lination with respe
t
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to the streamwise and wall-normal axis. It is worth noti
ing that, even if the basi
 stru
-

ture is the same, the minimal seed is mu
h more lo
alized for higher values of the Reynolds

number, as shown in table III. In parti
ular, the streamwise and spanwise lengths appear

to be almost halved for an in
rease of Re of a fa
tor two.

For a �uid with a given kinemati
 vis
osity, the dependen
e on Re of the typi
al length s
ales

of the wall-stru
tures, su
h as the streaks, is more 
omplex in the 
ase of the ASBL than in

the 
ase of the BBL. For the ASBL the Reynolds number 
an be varied either by 
hanging

the freestream velo
ity U∗
∞ (keeping the su
tion velo
ity �xed), or by 
hanging the su
tion

velo
ity, thus modifying the displa
ement thi
kness δ∗ (keeping U∗
∞ �xed). Yoshioka et al.

[55℄ have experimentally measured the typi
al length s
ales of the wall stru
tures indu
ed

by free stream-turbulen
e in the ASBL, 
on
luding that: i) if V ∗
S and δ∗ are kept 
onstant,

the spanwise spa
ing of the streaks varies with (U∗
∞)−1; ii) if U∗

∞ is kept 
onstant and δ∗ is


hanged, the dimensional spa
ing of the streaks remains 
onstant. In the present work, we


hange the Reynolds number by keeping U∗
∞ 
onstant, modifying the su
tion velo
ity V ∗

S ;

therefore, we are in
reasing the referen
e length, δ∗, when the Reynolds number in
reases.

Thus, a de
rease of a fa
tor 2 of the minimal seed size 
orresponding to a twofold in
rease

of the referen
e length δ∗ is 
onsistent with the results in Ref. [55℄, sin
e the dimensional

typi
al length s
ales of the streaks will not 
hange with Re when U∗
∞ is kept 
onstant. We


an thus 
on
lude that, at least for Reynolds numbers in the range [610, 10000], the typi
al

length s
ales of the NLOPs 
hange a

ordingly to the streak spa
ing measured in Ref. [55℄.

This explains why we have 
hosen to use smaller domain lengths for larger Re.

Another important feature of the minimal seed shown in �gure 10 for Re = 1200 and 2500 is

that, as for Re = 610, it does not present any symmetry in the spanwise dire
tion. However,

when the Reynolds number is in
reased to Re = 5000, two types of non-linear optimal so-

lutions have been found. Figure 11 shows the results of the non-linear optimization for two

initial energies, E0 = 2 × 10−9 and E0 = 4 × 10−9, for T = 100. One 
an observe that the

latter is almost symmetri
, roughly 
orresponding to a mirroring of the former with respe
t

to the streamwise axis. The minimal seed for this Reynolds number is sandwhi
hed between

these two solutions with di�erent symmetries. Further bise
tions of the initial energy value,

performed with a non-symmetri
 initial guess in order to not impose any symmetry, indi
ate

that the minimal seed is not mirror-symmetri
. However, the presen
e of a mirror-symmetri


non-linear optimal perturbation is an indi
ation of the 
hange in the optimal dynami
s that
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is observed at larger Reynolds numbers. In fa
t, for Re = 10000, only mirror-symmetri


optimal disturban
es have been found. Figure 12 shows two of them for two energy levels

and a short target time T = 50. This result has been veri�ed by performing optimizations

at a larger super
riti
al Reynolds number, Re = 65000, for whi
h a symmetri
 minimal

seed has been found as well, preserving the same stru
ture. This indi
ates that a value of

the Reynolds number exists between 5000 and 10000 for whi
h the NLOP 
hanges from a

nonsymmetri
 shape to a symmetri
 one. Therefore, for su�
iently high Reynolds numbers,

the stru
ture of the minimal seed be
omes similar to the one of the BBL. This behavior


an be explained 
onsidering that we are 
hanging the Reynolds number Re = U∗
∞/V ∗

S by

modifying the su
tion velo
ity V ∗
S (keeping U∗

∞ �xed to a given value). Therefore, in
reasing

the Reynolds number, while the streamwise velo
ity pro�le remains un
hanged (with respe
t

to the nondimensional wall-normal 
oordinate), the magnitude of V ∗
S de
reases. Comparing

the streamwise and wall-normal velo
ity pro�les at Re = 610 and Re = 5000 shown in �gure

8, one 
an noti
e that for the latter value the di�eren
e between VASBL and VBBL is redu
ed

by one order of magnitude. Thus, we 
onje
ture that the symmetry 
hange of the NLOP at

some "
riti
al" Reynolds number is linked to su
h a redu
tion of the wall-normal velo
ity


omponent. This 
onje
ture may appear in 
ontrast with the results in [20, 21℄, where a

linear lo
al transient growth analysis, performed for a hypotheti
al �ow with no su
tion but

an identi
al U-velo
ity pro�le to the ASBL, was found to bring only small di�eren
es on

the transient energy gain as well as on the shape of the linear optimal with respe
t to the


ase in whi
h the su
tion was 
onsidered as well. In this work, the authors 
on
luded that

the di�eren
es values of the optimal energy gain found for the ASBL and the BBL 
an be

attributed to the 
hange in shape of the mean streamwise velo
ity pro�le, not to the pres-

en
e of the V base �ow velo
ity. However, in the present work we are in a global, non-linear

framework, in whi
h the optimal 
an be lo
alized and not sinusoidal in the spanwise and

streamwise dire
tion. Thus, the base �ow wall-normal velo
ity V might have a 
onsiderable

role in sele
ting the symmetry of the optimal, despite the basi
 stru
ture of the optimal

solution and the resulting linear ampli�
ation would be mostly driven by the streamwise

velo
ity pro�le U .

In the next se
tion we will 
ompare the route to turbulen
e at low Reynolds number for the

ASBL and the BBL, in order to understand how these di�eren
es in the base �ow pro�les


an indu
e di�erent symmetries on the non-linear optimal solutions. We will also link these

22



Figure 13: (Color online) Snapshots of the evolution in time of the sele
ted NLOP for the ASBL:

iso-surfa
es of the streamwise velo
ity and vorti
ity perturbations (yellow and blue, for u′ = ±0.15,

respe
tively; bla
k and white, ω′
x = ±0.2, respe
tively) at t = 40, 80, 140, 200 (from top to bottom).

results to the 
hange of symmetry observed at high Reynolds numbers in the ASBL.

C. The route of the non-linear optimal perturbations to turbulen
e

In this se
tion, we analyze by DNSs the evolution towards turbulen
e of the NLOP

obtained for the ASBL with Re = 610 and T = 75, providing a 
omparison with the NLOP

of the BBL for the same 
onditions [45℄. In order to a
hieve transition, the two perturbations

have di�erent energy, namely, E0 = 3.0 × 10−7 for the ASBL and E0 = 1.2 × 10−7 for the

BBL. In the 
ase of the BBL, being the �ow non-parallel, we do not impose periodi
ity in

the streamwise dire
tion. Thus, we have used a domain two times longer in x than that
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Figure 14: (Color online) Snapshots of the evolution in time of the sele
ted NLOP for the BBL:

iso-surfa
es of the streamwise velo
ity and vorti
ity perturbations (yellow and blue, for u′ = ±0.1,

respe
tively; bla
k and white, ω′
x = ±0.2, respe
tively) at t = 40, 80, 140 (from top to bottom).

Figure 15: (Color online) Snapshots of the evolution in time of the sele
ted NLOP for the BBL:

isosurfa
es of the Q-
riterion for t = 80, 100, 160 (from left to right) .

used for the ASBL, in order to follow the evolution of the perturbation for a su�
iently long

time before the disturban
e leaves the domain. The number of grid points in the streamwise

dire
tion has been doubled as well, in order to maintain the same lo
al grid resolution.

A qualitative pi
ture of the transition pro
ess initiated by the NLOP for the ASBL is

given in �gure 13, showing the streamwise vorti
ity (bla
k and white surfa
es) and velo
ity

(blue and yellow) perturbations. At t = 40 (�rst frame), the initial vorti
es in
rease their

strength and streamwise in
lination, due to the Orr me
hanism [54℄. This �rst phase is
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Figure 16: (Color online) Snapshots of the evolution in time of the sele
ted NLOP for the ASBL:

isosurfa
es of the Q-
riterion for t = 80, 100, 160 (from left to right) .

similar to that obtained for the BBL, and appears to depend on the a
tion of the non-linear


oupling terms linked to the 
omponents of the streamwise vorti
ity, su
h as wwz, as

explained in detail in Ref. [45℄. At the same time, the streamwise velo
ity perturbation

in
reases its amplitude, due to a modi�ed lift-up e�e
t [45℄. In fa
t, sin
e the initial

vorti
es are in
lined, the generated streaks are modulated in the streamwise dire
tion,

as shown in the se
ond frame for t = 80. In parti
ular, a main high-speed bent streak

(yellow) is 
reated, �anked by two weaker low-speed streaks. On su
h streaks, lo
alized

pat
hes of vorti
ity are observed (see the third frame for t = 140), whi
h are originated

from the splitting of the initial in
lined vorti
es. The bent streaks 
ontinue to be fed by

the streamwise vorti
es, elongating in the streamwise dire
tion, as shown in the fourth

frame for t = 200. However, in the regions of larger vorti
ity, stronger modulations of the

streaks are indu
ed, leading the wave pa
ket to break-up starting from a lo
alized region.

Su
h a s
enario re
alls the me
hanism of se
ondary instability of streamwise streaks whi
h

triggers bypass transition in boundary-layer �ows [11, 56℄. In parti
ular, sin
e the initial

disturban
e is not mirror-symmetri
, the streaks are 
hara
terized by sinuous os
illations,

whi
h represent the primary instabilities of streamwise streaks [10, 11℄. However, in the

non-linear optimal 
ase, this me
hanism is mu
h more rapid than the one relying on the

linear growth of streamwise-aligned streaks followed by saturation and se
ondary instability.

In fa
t, the initial in
lined vorti
es 
an 
reate bent streaks in a short time and lead to

break-up by-passing the se
ondary instability due to their spanwise modulations [57℄. The

non-linear transition pro
ess is similar to the �rst phases of the disturban
e evolution on

the periodi
 orbit re
ently found by bise
tion in a small domain (see Ref. [36℄). However,

sin
e the NLOP 
onsidered here does not lay on the edge of 
haos as the mentioned periodi


orbit, transition to turbulen
e is rea
hed after the bursting phase.
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Despite the similarity of the initial optimal disturban
es, the non-linear route to transition

des
ribed here shows important di�eren
es with respe
t to that found in the non-parallel


ase. In fa
t, for the BBL 
ase, the perturbation maintains the initial symmetry of the

NLOP up to large times (obviously, before turbulen
e is initiated). As shown in �gure

14, the initial mirror-symmetri
 in
lined vorti
es transport the �ow momentum 
ausing an

ampli�
ation of the streamwise 
omponent of velo
ity along them and indu
ing the 
reation

of low- and high-momentum zones showing a Λ and an X shape, respe
tively (see the blue

and yellow surfa
es in the �rst frame for t = 40). This Λ stru
ture of the perturbation

is maintained at larger time (see the se
ond frame for t = 80), and the mirror-symmetri


in
lined vorti
es 
onne
t their fronts to 
reate a Λ−vortex, whi
h eventually turns into a

hairpin vortex leading the �ow to break-up (third frame for t = 140). The formation of

the hairpin for the BBL 
an be 
learly seen in �gure 15 at times t = 80 (a), t = 100, (b),

and t = 160, where the green surfa
es show the Q-
riterion, highlighting the regions of high

vorti
ity. At t = 80, one 
an observe that the initial vorti
es, tilted by the mean �ow, are

in
lined at a small angle with respe
t to the streamwise axis (≈ 7◦). However, at larger

times, the vorti
es in the heart of the wave pa
ket in
rease their in
lination, rea
hing angles

of about 35◦. This phase 
oin
ides with the formation of the hairpin vortex (two of them

are visible in the se
ond frame at t = 100) whi
h grows in size and splits into smaller hairpin

vorti
es, leading very qui
kly to a turbulent spot (see the third frame at t = 160). On the

other hand, for the ASBL, although the initial vorti
es have a similar wall-normal in
lination

with respe
t to the streamwise dire
tion, as shown in the �rst and se
ond frame of �gure

16, the head of the hairpin vortex 
annot be 
reated due to the la
k of symmetry of the

perturbation. Thus, the vorti
ity does not spread in spa
e as in the BBL 
ase, but remains

lo
alized in a narrow region in the streamwise dire
tion (see the third frame at t = 160).

The di�eren
es between the transition paths in the ASBL and BBL 
ase 
an be analyzed

by extra
ting the rms values of the three 
omponents of the velo
ity perturbation, as shown

in �gure 17, the thi
k lines referring to the ASBL, the thin ones to the BBL. In the BBL

�ow, the three 
omponents of velo
ity grow more rapidly and a
hieve larger rms values

than in the ASBL 
ase (see �gure 17 (a)). Con
erning the vorti
ity perturbation, shown in

�gure 17 (b), in the BBL 
ase all of the three 
omponents grow more rapidly; the largest

di�eren
es between the two �ows are re
overed for the wall-normal and spanwise vorti
ity,

whi
h attains values almost one order of magnitude larger than in the ASBL 
ase. This 
an
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Figure 17: (Color online) Evolution in time of the rms values of the three 
omponents of velo
ity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vorti
ity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the sele
ted NLOP for the ASBL (thi
k

lines) and the BBL (thin lines).

Figure 18: (Color online) Snapshots of the evolution in time of the sele
ted NLOP for the ASBL (left

frame) and the BBL (right frame): spanwise and wall-normal vorti
ity (blue surfa
es for ω′
z = 0.8,

red ones for ω′
y = 0.65.

be explained by observing that the vorti
ity 
omponents ω′
z and ω′

y have large values at

the head and legs of the hairpin whi
h 
hara
terize the BBL route to transition. In fa
t,

plotting the ω′
z and ω′

y iso-surfa
es for the parallel and non-parallel �ow 
ases at t = 100, as

provided in �gure 18 (a) and (b), respe
tively, one 
an observe that these two 
omponents of

the vorti
ity perturbations are mu
h more extended in spa
e and larger in magnitude in the

non-parallel 
ase than in the parallel one (both 
omponents are about 30%). In parti
ular,

the vorti
ity iso-surfa
es are lo
alized at the head and legs of the hairpin vorti
es, explaining
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Figure 19: (Color online) Snapshots of the evolution in time of the sele
ted NLOP obtained for the

BBL, inje
ted in the ASBL �ow: iso-surfa
es of the streamwise velo
ity and vorti
ity perturbations

(yellow and blue, for u′ = ±0.1, respe
tively; bla
k and white, ω′
x = ±0.2, respe
tively) at t =

80, 140 (from top to bottom).

Figure 20: (Color online) Snapshots of the evolution in time of the sele
ted NLOP obtained for

the BBL, inje
ted in the ASBL �ow: isosurfa
es of the Q-
riterion for t = 80, 100, 160 (from left to

right).

the larger growth of su
h terms with respe
t to the streamwise vorti
ity.

In order to better understand the di�eren
es between the two optimal transition paths, it

is worth to analyze the evolution of the mirror-symmetri
 optimal perturbation superposed to

the ASBL base �ow at low Reynolds number. Thus, we inje
t the sele
ted NLOP obtained

for the BBL in the ASBL �ow, and analyze its evolution in time. Figure 19 shows the

streamwise vorti
ity (bla
k and white) and velo
ity (yellow and blue) perturbations at t = 80

and t = 140. Comparing with �gures 14 (b) and (
), one 
an observe that the vorti
es as well

as the low- and high-momentum regions are straighten up and lose part of their in
lination.

As a result, at t = 140, three alternated streaks with weak vorti
es on their �anks are

found. In parti
ular, even if the initial perturbation is mirror-symmetri
 with respe
t to a
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z = const plane, the hairpin vortex is not formed at t = 100. This is 
learly shown in �gure

20, providing the Q-
riterion iso-surfa
es. One 
an see that at t = 80 (a) and at t = 100 (b)

the in
lination of the vorti
es is weak and begins to grow only at t = 160, turning eventually

in a hairpin stru
ture at t ≈ 200. This 
an be also inferred by analyzing in �gure 21 the time

evolution of the rms value of the three velo
ity and vorti
ity 
omponents, and 
omparing

them with the BBL 
ase. As provided by the thi
k lines in �gure 21 (a), the initial growth

of the velo
ity 
omponents of the NLOP inje
ted into the ASBL is initially similar to the

one 
hara
terizing the BBL. However, at t ≈ 40, the spanwise velo
ity 
omponent begins

to de
rease, and the wall-normal and the streamwise ones strongly de
rease their growth

rate. Con
erning the vorti
ity 
omponents, at approximately the same time they all begin

to de
rease, the ω′
z and the ω′

y with a larger rate than the ω′
x. This de
rease is due to

the absen
e of the hairpin vortex at t ≈ 100; in fa
t, it begins to grow only at t ≈ 200,

when the growth of all of the vorti
ity 
omponents is observed, due to streaks breakdown

of a vari
ose type. Thus, we 
an say that the me
hanism of rapid formation of the hairpin,

whi
h is responsible for the strong growth of all of the vorti
ity 
omponents in the BBL 
ase,

is delayed for the ASBL due to the wall su
tion, making a "sinuous" instability me
hanism

more e�e
tive in indu
ing a rapid transition. A similar s
enario is obtained in the 
ase of the

Couette �ow [47℄. Thus, in the 
ase of the ASBL a mirror-symmetri
 optimal perturbation

is less e�e
tive in indu
ing transition than a non-symmetri
 one. As observed in �gure 16,

the delay of the formation of the hairpin vortex appears to be due to the lower wall-normal

in
lination of the vorti
es with respe
t to the streamwise axis. This 
an be linked to a

simple me
hanism of transport of the perturbation by the mean �ow. In fa
t, inje
ting the

same initial vorti
al stru
ture in the ASBL and the BBL base �ows, in the latter 
ase the

highest part of the vortex will experien
e a lower streamwise base velo
ity as it is adve
ted

downstream, so it will de
elerate with respe
t to its lowest part. This will indu
e an in
rease

of the in
lination of the initial vortex in the wall-normal dire
tion, leading to a 
onne
tion

of the fronts of the two vorti
es, �nally 
reating an hairpin stru
ture. This is 
learly shown

in �gure 22, providing the base �ow ve
tors at Re = 610 for the ASBL (left frame) and the

BBL (right frame) and the e�e
t they have on the same vorti
al stru
ture evolving in time

up to t = 100. For the ASBL �ow, the pro�le is fuller than the BBL one, so the me
hanism

of in
lination by the mean �ow is weaker, delaying the formation of the hairpin vortex from

an initial mirror-symmetri
 perturbation. Therefore, the zones of strong velo
ity de�
it (in
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Figure 21: (Color online) Evolution in time of the rms values of the three 
omponents of velo
ity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vorti
ity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the sele
ted NLOP obtained for the

BBL, inje
ted into the ASBL (thi
k lines) and the BBL (thin lines) �ows. .

Figure 22: (Color online) Snapshots of the evolution in time of the sele
ted NLOP obtained for the

BBL at Re = 610, inje
ted in the ASBL (left frame) and the BBL �ow (right frame): isosurfa
es

of the Q-
riterion for t = 100 and ve
tors of the base �ow.

blue in the �gure) remain 
loser to the wall, delaying the formation of in�e
tion points in

the mean �ow pro�le, and the 
onsequent transition to turbulen
e.

This 
onje
ture 
an be veri�ed by visualizing the a
tivation of the transport terms of

the spanwise vorti
ity (
hara
terizing the head of the hairpin) by the mean �ow. Figure

23 shows one of these two transport terms, Uv′x, for the BBL (top frames) and the ASBL

(bottom frames) at t = 100 (left frames) and t = 150 (right frames). It appears that, for the

BBL, the terms is a
tivated at the head of the hairpin vorti
es, spreading in spa
e at larger

time. Whereas, for the ASBL, it is 
hara
terized by a lower amplitude (lower than half the

one for the BBL) and is rapidly damped in time. This 
on�rms that the transport of the

spanwise vorti
ity by the mean �ow is indeed the me
hanism whi
h 
an explain the large

di�eren
es in the symmetry of the two non-linear optimal perturbations. Su
h a result shows

30



Figure 23: (Color online) Snapshots of the evolution in time of the adve
tion term Uv′x obtained

for the BBL (top frames) and the ASBL (bottom frames) at t = 100 (left frames) and t = 150

(right frames): isosurfa
es Uv′x = ±0.13 for the BBL, Uv′x = ±0.06 for the ASBL.

that it is 
ru
ial to take into a

ount the non-linearity as well as the non-parallelism of a

�ow at the same time, for determining with a

ura
y the most e�e
tive route to transition.

For larger Reynolds numbers, sin
e the su
tion velo
ity V ∗
S is mu
h weaker, the me
hanisms

of tilting and stret
hing of the vorti
es tend to be 
loser to those of the BBL �ow. Thus,

the transition s
enario tends to be
ome similar to the BBL one, sele
ting mirror-symmetri


perturbations as the optimal ones. Figure 24 shows three snapshots of the evolution in time

of the NLOP obtained for Re = 5000 and E0 = 4.25×10−9, showing a behaviour very similar

to the one re
overed for the BBL in �gure 14. In parti
ular, one 
an observe the formation of

Λ stru
tures for the negative streamwise velo
ity 
omponent and the streamwise vorti
ity.

Figure 25 shows the generation of a train of hairpin vorti
es at t = 75 and t = 100, as

well as the base �ow pro�les, whi
h appear mu
h less full than in the previous 
ase. This


on�rms that wall su
tion is a 
ru
ial parameter for the stability of a boundary-layer �ow,

sin
e, when it is strong enough, it 
an modify the dynami
s of optimal perturbations and

delay the formation of strongly growing vorti
al stru
tures su
h as the hairpin vorti
es.
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Figure 24: (Color online) Snapshots of the evolution in time of the symmetri
al NLOP at Re =

5000, with initial energy E0 = 4.25 × 10−9, extra
ted at t = 50, 100, 150, from top to bottom.

The isosurfa
es represent the streamwise velo
ity and vorti
ity perturbations (yellow and blue, for

u′ = ±0.015, 0.03, 0.1, from top to bottom; bla
k and white, ω′
x = ±0.15, 0.1, 0.25, from top to

bottom).

Figure 25: (Color online) Snapshots of the evolution in time of the sele
ted NLOP obtained for the

ASBL at Re = 5000, extra
ted at t = 75 (left frame) and t = 100 (right frame): isosurfa
es of the

Q-
riterion (Q = 20) and ve
tors of the base �ow.

IV. SUMMARY

A variational pro
edure has been employed to �nd non-linear optimal disturban
es in

the asymptoti
 su
tion boundary-layer (ASBL) �ow. These perturbations are de�ned as
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the ones yielding the largest energy growth at a given target time T , for a given Reynolds

number Re. The results have been 
ompared with those obtained using the same approa
h

in the 
ase of the Blasius boundary layer (BBL) �ow [44℄. The in�uen
e of the di�erent

stru
ture of the ASBL velo
ity pro�le with respe
t to the BBL on the non-linear optimal

growth me
hanism has been studied. It has been found that su
tion remarkably redu
es the

optimal energy gain in the non-linear 
ase. Moreover, the optimal perturbation obtained in

the present 
ase shares the same basi
 stru
ture found for di�erent shear �ows su
h as the

BBL and the Couette �ows. However, unlike the BBL 
ase, the optimal perturbation for the

ASBL �ow in the range of low to moderate Reynolds numbers, is not spanwise-symmetri
.

In parti
ular, it has been found that a value of the Reynolds number exists between 5000 and

10000 for whi
h the non-linear optimal perturbation 
hanges from a non symmetri
 shape

to a symmetri
 one. Therefore, for su�
iently high Reynolds numbers (low su
tion velo
ity

for a given freestream velo
ity), the stru
ture of the non-linear optimal disturban
e be
omes

similar to the one of the BBL. By bise
ting the initial energy of the non-linear optimal

perturbations, minimal energy thresholds for sub
riti
al transition to turbulen
e have been

obtained. These energy thresholds are found to be 1 to 4 order of magnitude lower than the

ones found in other transition s
enarios su
h as se
ondary instability of elongated streamwise

vorti
es, random noise, oblique waves and lo
alized streamwise-aligned disturban
es [23℄. For

610 < Re < 5000, these thresholds are found to s
ale with Re−2, suggesting a new s
aling

law for transition in the ASBL.

Finally, dire
t numeri
al simulations show that the di�erent stru
ture of the base �ow with

respe
t to the BBL leads to a di�erent evolution of the initial perturbation. In fa
t, unlike

the 
ase of the BBL �ow, for low to moderate values of the Reynolds number, the formation

of hairpin vorti
es is not observed in the transition pro
ess before break-up to turbulen
e,

and a sinuous transition s
enario is observed. This appears to be due to the lower tilting

of the vorti
es indu
ed by the fuller velo
ity pro�le in the ASBL 
ase, whi
h delay the

formation of those vorti
al stru
tures, whi
h are able to rapidly lead the �ow to transition.

However, when wall su
tion is not strong enough (i.e., at large Re, for a given freestream

velo
ity) the vorti
ity transport and tilting me
hanism responsible for the formation of the

hairpin vortex, is observed again. Future work will aim at investigate the existen
e of a

similar 
hange of symmetry in the non-linear optimal perturbations for di�erent shear �ows

su
h as the plane Poiseuille �ow, as well as the in�uen
e of the independent parameters of
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the optimisation, su
h as the initial energy and the target time, on the optimal perturbation

stru
ture.
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