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Abstrat

The e�et of a onstant homogeneous sution on the non-linear transient growth of loalized �nite

amplitude perturbations in a boundary-layer �ow is investigated. Using a variational tehnique,

non-linear optimal disturbanes are omputed for the asymptoti sution boundary layer (ASBL)

�ow, de�ned as those �nite amplitude disturbanes yielding the largest energy growth at a given

target time T . It is found that a strong enough wall sution remarkably redues the optimal energy

gain in the non-linear ase, and breaks the spanwise mirror symmetry whih was a robust feature of

the non-linear optimal perturbations found in the Blasius boundary-layer ase. Symmetry-breaking

appears when dereasing the Reynolds number from 10000 to 5000. Diret numerial simulations

show that the di�erent struture of the base �ow leads to a di�erent evolution of the symmetri or

non symmetri initial perturbation, due to the transport and tilting of the vorties by the mean �ow.

By biseting the initial energy of the non-linear optimal perturbations, minimal energy thresholds

for subritial transition to turbulene have been obtained. These energy thresholds are found to be

1 to 4 order of magnitude lower than the ones found in the literature for other transition senarios.

For low to moderate Reynolds numbers, these thresholds are found to sale as Re−2, suggesting a

new saling law for transition in the ASBL.

PACS numbers:

Keywords:

1

Draft version of: S.Cherubini, P. De Palma, J.C. Robinet, Non linear optimals in the asymptotic suction 
boundary layer, Physics of Fluids, American Institute of Physics, 2015, 27, pp.1.4916017. 
doi:10.1063/1.4916017



I. INTRODUCTION

Drag redution in external and internal �ow is a fundamental topi in �uid mehanis

sine it is a key issue for improving the performane of engineering systems, inreasing energy

saving, and reduing environmental impat. Flow sution through the wall was among the

�rst tehniques applied to ontrol the struture of the boundary layer in order to redue

drag. The idea, was born together with the onept of boundary layer itself [1℄, desribed

for the �rst time in 1904 by Prandtl during the Third International Mathematis Congress at

Heidelberg [2℄. About thirty years later, suh a tehnique was employed to delay transition

over airraft wings by reduing the boundary layer thikness and induing a fuller veloity

pro�le lose to the wall [1℄. The in�uene of sution on the stability of the boundary layer was

studied by analytial methods onsidering uniform sution veloity at wall. In partiular, a

very simple exponential solution for the veloity was derived by Meredith and Gri�th [1, 3℄

whih would be valid at a su�iently high distane from the leading edge of a �at plate.

This solution of the Navier-Stokes equation is known as the asymptoti sution boundary

layer (ASBL) [1℄ and is onsidered a suitable model to study boundary layers subjet to

ative ontrol by sution and to investigate the transition mehanism. Hoking (1975) [4℄

demonstrated that the ritial Reynolds number is about two orders of magnitude higher

than that of the Blasius boundary layer (BBL). In fat, the normal veloity term in the Orr-

Sommerfeld and Squires equations stabilizes the Tollmien-Shlihting (TS) waves, produing

an e�etive way of damping their asymptoti growth. This e�et has been widely employed

in di�erent forms in the design of airraft wing (see, for example, Joslin (1998) [5℄).

More reently, the development of the optimal transient growth analysis has renewed

the interest in the study of the ASBL. In fat, it is well known that for a su�iently

high level of free-stream turbulene (FST), a bypass route to transition may our in the

boundary layer whih orresponds to the growth of linear optimal perturbations (LOP) [6, 7℄.

This mehanism is based on the development of streamwise-aligned strutures omposed by

alternating low and high veloity streaks observed for the �rst time by Klebano� [8℄. The

algebrai growth of the streaks due to the lift-up e�et [9℄ leads eventually to seondary

instability and break-up to turbulene [10�12℄. From a numerial point of view, LOPs were

omputed for several shear �ows [13�17℄. In all of these works, optimal perturbations are

de�ned as those initial �ow states yielding the largest ampli�ation of the disturbane energy
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over a time/spae interval and an be omputed using a variational optimization approah

[18, 19℄. For the ase of the boundary layer at low Reynolds number, suh optimal strutures

onsists of pairs of streamwise aligned ounter-rotating vorties produing streamwise streaks

by the lift-up e�et, in perfet agreement with the above experimental �ndings. The same

mehanisms have been studied in the ASBL. Fransson and Alfredsson (2003) [20℄ performed

an experimental analysis about the development of fored TS waves and about the algebrai

growth of disturbanes indued by free-stream turbulene. They on�rmed the damping

of TS waves due to sution and were able to suppress transition in both ases. Using

a loal approah, Fransson and Corbett (2003) [21℄ omputed LOPs for the ASBL and

ompared their results with experiments. They observed a signi�ant transient growth,

although smaller than in the ase of the BBL. This indiates that the strong e�et of the

damping of the energy growth of TS waves obtained by sution is not ahieved in the ase

of the algebrai growth. Bystrom et al. (2007) [22℄ omputed LOPs for the semi-sution

boundary layer in order to take into aount the presene of a small region free of sution

lose to the leading edge of the �at plate. Using suh a model, they ould improve the

agreement of the numerial results with experimental data, demonstrating that the optimal

energy growth is indeed obtained in the upstream region without sution. Finally, Levin

et al. (2005) [23℄ studied the energy thresholds for transition to turbulene in the ASBL,

for Re = 500, 800, 1200, with perturbations having the form of oblique waves, streamwise

vorties, or random noise; whereas, Levin et al. (2007) [24℄ analyzed the energy threshold

for the same Reynolds numbers in the ase of loalized disturbanes and investigated the

formation and evolution of turbulent spots.

The ASBL has been also onsidered for testing and validating the reent dynamial sys-

tem theory of turbulene, whih analyzes the role of non-linearities in the transition proess

and for the sustainment of turbulene for shear �ows. Suh a theory relies on: 1) the obser-

vation of the existene of exat oherent states, whih an be unstable �xed points, periodi

orbits or haoti solutions of the Navier-Stokes equations, having a few unstable diretions

(see Ref. [25�30℄); 2) the idea that suh states onstitute the skeleton of transition and

regeneration proesses of turbulene and an be used to understand their nature. In parti-

ular, for analyzing the transition proess, it is interesting to study those �ow perturbations

on�ned on the boundary between the laminar and the turbulent states, alled the edge of

haos [31�34℄. Those perturbations an be very dangerous, being the losest ones to the
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laminar state apable of triggering transition. On the edge of haos, one or more relative

attrators an be found, alled edge states [31℄, whih an be �xed points [35℄, periodi orbits

[36℄ or haoti states [29℄. Conerning the ASBL, Kreilos et al. (2013) [36℄ investigated the

struture of the edge states, identifying a periodi orbit embedded in the laminar-turbulent

boundary. Suh a solution shows the same basi mehanisms of transient growth intera-

tions between streamwise-aligned vorties and streaks whih haraterize many other shear

�ows. Furthermore, it aptures also the bursting phenomenon typial of the BBL. Khapko

et al. [37, 38℄ have investigated the dynamis restrited to the laminar-turbulent boundary,

desribing the omplex spatio-temporal dynamis of di�erent loalized edge states for sev-

eral streamwise wavelength. They found that all of these states have the same struture,

onsisting of a loalised pair of low- and high-speed streaks �anked with streamwise vor-

ties. Investigating the struture of the relative attrators embedded in the edge of haos

allows one to identify the typial shape and dynamis of the oherent strutures onsituting

the skeleton of turbulene. However, for unraveling the main features of the most e�etive

(in terms of both time and energy) path to transition, the minimal-energy states on the

laminar-turbulent boundary should be analyzed [39, 40℄.

Very reently, the problem of �nding the minimal energy perturbation on the edge of tur-

bulene has been investigated by solving the non-linear optimal growth problem for �nite-

amplitude initial perturbations (see [41℄ for a review). Perturbations optimizing at a given

(target) time the growth of a funtional linked to transition (the kineti energy or the dissi-

pation, for instane), alled non-linear optimal perturbations (NLOPs), have been disovered

for a pipe �ow [42, 43℄; a boundary layer �ow [44, 45℄; and a Couette �ow [34, 39, 46, 47℄.

By optimizing the energy at large target times and biseting the initial energy to bring the

perturbation lose to the laminar-turbulent boundary, the perturbation of minimal energy

apable of bringing the �ow to the edge state and then to transition, alled the minimal

seed of turbulent transition, an be found [39℄. When small target times are onsidered, a

di�erent proedure should be used for �nding minimal-energy perturbations on the edge of

haos, diretly targeting the neighbourhood of the edge state in a �nite time [40℄.

In any ase, the NLOPs are haraterized by a very di�erent struture with respet to the

linear optimal ones and largely outgrow them in energy due to non-linear mehanisms [43,

45℄. For the boundary-layer and the Couette �ow, the NLOPs are haraterized by a similar

fundamental struture, omposed of a loalized array of vorties and low-momentum regions
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of typial length sale, apable of maximizing the energy growth most rapidly. Cherubini

et al. (2011) [45, 48℄ have disussed the ontribution of non-linear e�ets to suh a strong

energy growth mehanism, showing that non-linearity is ruial to sustain the growth of

these optimal perturbations. The knowledge of these non-linear mehanisms may allow one

to design e�etive ontrol strategies to delay transition by using wall sution or spanwise

osillations of the boundaries [49, 50℄. The aim of the present paper is to extend the analysis

of the NLOP to the ase of the ASBL, following the approah that the authors have employed

for the BBL, disussing similarities and di�erenes between these two ases, and highlighting

the role of the sution veloity.

The paper is organized as follows. In the seond setion we de�ne the problem and

desribe the non-linear optimization method. In the third setion, divided into three parts,

a thorough disussion of the results of the non-linear optimization analysis is provided. In

partiular, in the �rst part, the fous is on the haraterization of the NLOP with respet

to the LOP, also using the omparison with the results already obtained for the BBL and

Couette �ows. The seond part provides an analysis varying the Reynolds number, ahieving

superritial values; whereas, the third part deals with the optimal route to turbulene,

omputed by the DNS. Finally, onluding remarks are provided.

II. PROBLEM FORMULATION

A. Governing equations and numerial method

The behaviour of an inompressible �ow is governed by the Navier�Stokes (NS) equations:

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,

(1)

where u = (u, v, w) is the veloity vetor and p indiates the pressure term. Dimensionless

variables are de�ned with respet to the in�ow boundary-layer displaement thikness δ∗

and the freestream veloity, U∗
∞, so that the Reynolds number is Re = U∗

∞δ∗/ν∗, where ν∗ is

the kinemati visosity and the supersript ∗ indiates dimensional quantities. A Cartesian

oordinate system is onsidered, x, y and z being the streamwise, wall-normal and spanwise

diretions, respetively. The asymptoti sution boundary-layer �ow is de�ned as the �ow
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over a �at plate with a uniform wall-normal sution veloity V ∗
S = ν∗/δ∗ applied along the

wall. Therefore, imposing no-slip onditions for the streamwise and spanwise omponents

of the veloity at the wall, one obtains from equations (1) the following solution [3℄, given

in nondimensional variables:

U = ((1− e−y),−
1

Re
, 0)T . (2)

The numerial simulations are performed by integrating the NS equations with the following

boundary onditions: at the bottom boundary, no-slip onditions for the x and z omponents

of the veloity and homogeneous sution for the y omponent, v = −VS; at the upper bound-

ary, the z omponent of the veloity and of the vortiity are set to zero and homogeneous

injetion is imposed for the y omponent of the veloity; in the streamwise and spanwise

diretions, periodiity is imposed for the three veloity omponents and the pressure.

The analysis has been performed using �ve values of the Reynolds number (see table I), ob-

tained hanging the boundary-layer displaement thikness δ∗ and keeping U∗
∞ �xed. Thus,

the sution veloity, in both dimensional and nondimensional forms, sales with the in-

verse of the Reynolds number, sine V ∗
S = U∗

∞/Re. The NS equations are disretized by a

�nite-di�erene frational-step method using a staggered grid [51℄. A seond-order-aurate

entered spae disretization is used. Performing a grid-onvergene analysis, a mesh made

up by 451 × 100 × 61 points has been seleted for the referene domain at Re = 610 with

dimensions Lx = 100, Ly = 20 and Lz = 10.5. The spanwise dimension has been hosen very

lose to the one used in [23℄ for determining transition thresholds, whereas the streamwise

length is muh longer to avoid interation of the �ow strutures with its own tail for long

target times. Sine the NLOP has been found to loalize more and more with inreasing

Reynolds number, the domain length has been redued aordingly, in order to redue the

omputational ost. Table I summarizes the domain lengths and the orresponding grid

points seleted for di�erent Reynolds numbers after validations with respet to larger do-

mains. For all the values of the Reynolds number and of the target times onsidered here,

the streamwise length of the domain has been hosen large enough to allow the optimal per-

turbation to remain loalized also at target time. Whereas, onerning the spanwise length,

it has been redued with Re following the typial saling of the streaks spaing, as explained

in setion III B.
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Figure 1: Sketh of the ASBL �ow with a superposed loalized disturbane.

Re Lx × Ly × Lz Nx ×Ny ×Nz T

610 100 × 20 × 10.5 451 × 101× 61 50, 75, 100, 150, 200, 250

1200 50× 15× 7 451 × 101× 61 50, 100, 150

2500 40× 15× 5 451 × 101× 61 50, 100, 150

5000 40× 7.5 × 4 451 × 101× 91 50, 100, 150

10000 30× 7.5 × 2 601 × 101× 91 50, 100

Table I: Domain lengths, grid points and target times hosen for the optimizations at di�erent

Reynolds numbers

B. Non linear optimization

The non-linear behavior of a perturbation q = (u′, v′, w′, p′)T evolving in the laminar

asymptoti sution boundary-layer �ow is analyzed by solving the NS equations written in

perturbative formulation with respet to the steady state solution, Q = (U, P )T , with U
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given by equation (2). A zero perturbation boundary ondition is imposed for the three

veloity omponents at the y−onstant boundaries, whereas periodiity of the perturbation

is fored in the spanwise and streamwise diretions.

The goal is to �nd the perturbation at t = 0 providing the largest disturbane growth at a

given target time, T . At this purpose, a Lagrange multiplier tehnique is used [19, 42, 44, 52℄

to perform a onstrained optimization of the perturbation energy. The disturbane energy

density is de�ned as

E(t) =
1

2V

�

V

�

u′2(t) + v′
2
(t) + w′2(t)

�

dV =
1

2V
hu′(t) · u′(t)i , (3)

where V is the volume of the omputational domain. Given an initial energy E(0) = E0, we

aim at �nding the shape and amplitude of an initial perturbation q0 whih indues at target

time T the largest energy gain E(T )/E0; threfore, the objetive funtion of the optimization

proedure is ℑ = E(T )/E(0). The Lagrange multiplier tehnique onsists in searhing for

extrema of an augmented funtional, L, with respet to every independent variable, the

three-dimensional inompressible NS equations and the value of the initial energy being

imposed as onstraints. The augmented funtional reads:

L =
E(T )

E(0)
−

� T

0

�

�
† ·

�

∂u′

∂t
− u′ ·∇U+U ·∇u′ + u ·∇u′ −∇p′ −

∇2
�
′

Re

��

dt

−

� T

0

�

p† ·∇u′
�

dt− λ

�

E0

E(0)
− 1

�

.

(4)

where (u†, p†,λ) are the Lagrange multipliers, e.g. the adjoint variables. Integrating by

parts and setting to zero the �rst variation of L with respet to (u′, p′) leads to the adjoint

equations plus the ompatibility ondition (whih are provided in Ref. [45℄). The adjoint

equations are linked to the diret ones by the presene of the diret variables in the advetion

terms, so that the whole �ow �eld needs to be stored at eah time step, requiring a remarkable

storage apaity. The gradient of the augmented funtional with respet to the initial

perturbation q0 is fored to vanish by means of a onjugate gradient algorithm as detailed

in Ref. [45℄. A oupled iterative approah similar to that used in [52℄ and [42℄ is used to

solve the problem, relying on the forward and bakward solution of the diret and adjoint

NS equations, respetively, and on the update of the initial perturbation in the onjugate

gradient diretion at eah iteration, until onvergene is reahed. A detailed desription of

the optimization tehnique and of its onvergene properties is provided in Ref. [45℄ for the

ase of the BBL �ow and in Ref. [47℄ for the Couette �ow.
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Figure 2: (Color online) Optimal energy gain versus target time T for Re = 610, E0 = 3.0× 10−7.

The dashed line with triangles indiates the results of the linear optimization; the solid line with

squares (red online) indiates the results of the non-linear optimization.

III. RESULTS

A. Non linear optimal perturbations at Re = 610

The laminar pro�le of the ASBL de�ned in equation (2) is linearly stable for Re < 54382

[4℄, whih is about 100 times the ritial Reynolds for a Blasius boundary layer [1℄. For

starting the analysis, we hoose a subritial Reynolds number, Re = 610. This rather low

Reynolds number (ompared to the ritial one for the ASBL) has been hosen for om-

parison purpose with the BBL ase of ref. [44℄. Figure 2 shows the value of the optimal

energy gain versus the target time for an initial energy E0 = 3.0 × 10−7. The dashed line

refers to the results of a linear optimization, whereas the solid line represents the non-linear

optimization. As also observed for the BBL �ow [44℄, the non-linear optimal energy gain

is remarkably larger than the orresponding linear one for T > 50. The in�uene of the

parameter E0 on the value of the optimal energy is shown in Figure 3, for three values of

the target time. It appears that a non-linearity threshold value of the initial energy exists

from whih strong di�erenes are observed in the non-linear optimal energy with respet to

the linear one (ompare the solid lines with the dashed ones). Suh a threshold dereases

when the target time inreases, as one an observe by omparing the solid lines in Figure
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Figure 3: (Color online) Optimal energy for Re = 610 at target time T = 50 (blak), T = 100

(red), and T = 200 (green) versus the initial energy E(0), using the non-linear optimization (solid

lines with symbols) and the linear optimization (dashed lines).

3, onverging towards a value, E0 = 1.2 × 10−7, whih might be lose to the energy of

the minimal seed for this Reynolds number (i.e., the perturbation of minimal energy on

the laminar-turbulent boundary). Table II provides a omparison between the energy gains

obtained for the BBL and the ASBL at T = 75 (the behavior is similar for di�erent target

times) for three optimizations: a linear optimization and two non-linear optimizations with

E0 = 1.2 × 10−7 and E0 = 3.0 × 10−7, respetively. The results indiate that a signi�ant

redution of the optimal energy growth is obtained in the linear ase; however, wall sution

is muh more e�etive in damping the growth of non-linear optimal perturbations.

Crossing the non-linearity threshold also yields large modi�ations in the shape of the op-

timal perturbations. This an be observed in Figure 4, whih provides the optimal initial

perturbations obtained for the ASBL at Re = 610 and T = 75, for two values of the initial

energy, E0. For the lowest one, E0 = 1.2 × 10−7 (top frame), the perturbation is similar

to that obtained by the linear optimization in a BBL �ow [53℄, being haraterized by al-

ternated vorties elongated in the streamwise diretion (blak and white surfaes), loalized

in two di�erent positions along the �at plate. Due to weak non-linear e�ets, whih are

non-negligible for suh values of the initial energy, some spanwise modulations are present

on the streamwise perturbation (green surfaes). Conerning the amplitudes, the largest
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Test ase Linear E0 = 1.2 × 10−7 E0 = 3.0 × 10−7

BBL 275.10 801.98 1104.1

ASBL 125.16 125.15 158.37

Table II: Comparison between energy gains at T = 75 for the BBL and the ASBL.

perturbation veloity omponent is the spanwise one (|wmax| = 0.0027), followed by the

wall-normal (|vmax| = 0.0025) and the streamwise one (|umax| = 0.0003). One an notie

that the streamwise perturbation is one order of magnitude lower than the others, meaning

that for this value of the initial energy the mehanism of growth is still very lose to the

linear optimal one, based on the lift-up of the streamwise base �ow veloity by the vorties

formed by the wall-normal and spanwise perturbation. However, as one an observe in �gure

4, the shape of the optimal perturbation hanges remarkably between E0 = 1.2× 10−7 and

E0 = 3.0 × 10−7. The most striking di�erene is the strong loalization of the disturbane

in both the streamwise and spanwise diretion. In fat, for initial energies larger than the

non-linearity threshold, a strong loalization of the initial perturbation leads to larger am-

plitudes (for the same initial energy), triggering non-linear e�ets that indue a remarkable

inrease of the energy gain at target time. In fat, for an inrease of the initial energy of a

fator 2.5, we observe at t = 0 an inrease of the veloity magnitudes of a fator equal to

about 12 for v and w, whereas a fator 80 is obtained for u. These values of the perturba-

tion veloity omponents, together with the partiular shape of the disturbane, are able to

trigger non-linear e�ets whih allow a muh larger energy growth than in the linear ase.

This strong loalization appears to be a typial feature of NLOPs in shear �ows, sine it has

been also observed for the pipe [42, 43℄, the BBL [45℄, and the Couette �ows [39, 46, 47℄.

Furthermore, not only the extension, but also the struture of the perturbation hanges re-

markably. For E0 = 3.0× 10−7, the optimal perturbation is omposed by three streamwise-

alternated vorties showing a �nite inlination with respet to the streamwise diretion

(blak and white surfaes), whereas in the quasi-linear ase at E0 = 1.2× 10−7 the vorties

are streamwise-aligned. On both �anks of suh inlined vorties, loalized pathes of �nite-

amplitude streamwise disturbane are observed (green surfaes). Conerning the relative

magnitude of the veloity perturbations, the largest perturbation veloity omponent is the

spanwise one (|wmax| = 0.033), followed by the streamwise (|umax| = 0.03) and the wall-
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normal one (|vmax| = 0.024). These values are similar to those found for the Couette �ow

[47℄, whereas, for the BBL �ow at the same Re, the largest omponent is the streamwise

one, whose value is about half of the maximum value found here for the ASBL, for an initial

energy just above the non-linearity threshold, see [45℄. It is worth notiing that, for all of

these �ows, in the linear ase the streamwise veloity omponent at initial time is from one

to two orders of magnitude lower than the spanwise and the streamwise ones, whereas in the

non-linear ase all of the omponents are of the same order, learly indiating that di�erent

mehanisms are responsible for the growth of the perturbation energy. It is also noteworthy

that, for all of the values of E0, the NLOPs are haraterized by vortial strutures inlined

in the opposite diretion with respet to that of the base �ow, as one an observe in �gure

4. In fat, it is known that perturbations inlined in the opposite diretion with respet

to the base �ow allow a large growth of the energy at small times due to the tilting of the

initial spanwise vortiity into the diretion of the shear. Suh a mehanism is alled Orr

mehanism [54℄ and it is typial of most of the optimal perturbations found for shear �ows

(see [53� � ℄, for instane), in a linear and non-linear framework. In our ase, sine the

NLOPs perturbations are supposed to grow optimally, they should exploit all of the energy

prodution mehanisms in order to trigger non linear e�ets as fast as possible.

The struture of the NLOP found here shows some similarities with that found for the Cou-

ette �ow (ompare with Figure 5 of Ref. [47℄) and with that obtained for the BBL �ow (see

Figure 4, bottom). For all of these shear �ows, the NLOP is haraterized by streamwise-

inlined vortial strutures and �nite-amplitude pathes of streamwise disturbane. How-

ever, while for the Couette and the ASBL �ow (at least at low Reynolds number) the optimal

disturbane does not show any partiular symmetry, for the BBL it is mirror-symmetri with

respet to a z = const plane. This an be learly observed in Figure 4 (bottom frame), show-

ing that the NLOP for the Blasius �ow at E0 = 1.2× 10−7 is omposed by a basi struture

similar to that of the ASBL, having a mirror-symmetri shape with respet to a z−aligned

plane.

The �ow strutures an be better analyzed by taking x−onstant slies of the NLOP, as

provided in the left frame of �gure 5. One an observe that the inlined alternated vorties

are stritly loalized in a narrow zone in the spanwise diretion (2 < z < 5), surrounded

by pathes of negative (light gray) and positive (dark gray) streamwise perturbation whih

are alternated in the spanwise and wall-normal diretion. The di�erenes with respet to
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Figure 4: (Color online) Initial perturbations obtained by the non-linear optimization for the asymp-

toti sution boundary-layer at Re = 610 and target time T = 75: iso-surfaes of the optimal

perturbations (grey, green online, for the negative streamwise omponent; dark and light gray for

negative and positive streamwise vortiity, respetively) with initial energy E0 = 1.2 × 10−7 (top

frame, surfaes for u′ = −0.00017, ω′
x = ±0.01) and E0 = 3.0 × 10−7 (middle frame, u′ = −0.015,

ω′
x = ±0.1). Initial perturbations obtained by the non-linear optimization for the Blasius boundary

layer �ow at Re = 610, target time T = 75, with initial energy E0 = 1.2 × 10−7 (bottom frame,

u′ = −0.01, ω′
x = ±0.06). Axes are not in the same sale.

the BBL ase an be analyzed by omparing the left frame (ASBL) with the right frame

(BBL) of �gure 5. Conerning the latter, the vorties are loalized in two distint regions in

the spanwise diretion, onneted by alternated pathes of streamwise disturbane showing

a mirror-symmetry in the spanwise diretion. This disrepany is re�eted also at target

time, as one an notie omparing Figures 6 (a) for the ASBL, with (b), for the BBL.

For the ASBL, one an observe in �gure 6 (a)-(b) the presene of bent streaks along the

streamwise vorties, showing strong osillations in the streamwise and spanwise diretions.

Whereas, in �gures 6 ()-(d) one an notie that, for the BBL �ow, the perturbations remain

spanwise-symmetri, and the vorties as well as the streaks along them are strongly lifted

in the wall-normal diretion, showing the typial signature of an inipient hairpin vortex.
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Figure 5: (Color online) Contours and vetors of the veloity omponents of the NLOP at initial time

obtained with Re = 610, T = 75 for the asymptoti sution boundary layer with E0 = 3.0 × 10−7,

on the plane x = 211 (a); for the Blasius boundary layer with E0 = 1.2×10−7, on the plane x = 232

(b). Shaded ontours indiate the streamwise disturbane veloity (dark, red online, for positive

values; light, green online, for negative ones); vetors represent the wall-normal and the spanwise

disturbane veloity omponents.

As proposed in Ref. [42℄, the disturbane of minimum amplitude apable of triggering

turbulene is de�ned as the minimal seed for a given Reynolds number. Biseting the value

of the initial energy at T = 200, and heking whether the obtained NLOP is able to indue

transition, we have found the energy level of the minimal seed to be about 1.277 × 10−7

for Re = 610. The orresponding maximum amplitudes of the veloity omponents are

|u|max = 0.029, |v|max = 0.031, |w|max = 0.031, very lose to the values found at lower

target time (even if the wall-normal omponent is now slightly larger than the streamwise

one). The minimal seed is sandwihed between the NLOPs shown in �gure 7 (a) and (b),

for E0 = 1.2 × 10−7 and E0 = 1.35 × 10−7, both showing the basi struture provided in

�gure 4 (middle frame). It is worth notiing that the NLOP keeps the same struture of

the minimal seed also for values of the initial energy slightly lower than the minimal seed

energy. For larger values of the initial energy, loal maxima an be found, as in the ase of the

Couette �ow [47℄. Furthermore, for energies larger than the minimal seed one, onvergene

on the optimum is not assured (see [39℄), sine transition might be observed at target time.
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Figure 6: (Color online) Contours and vetors of the veloity omponents of the NLOP at target time

obtained with Re = 610, T = 75 for the asymptoti sution boundary layer with E0 = 3.0 × 10−7

on the plane x = 249 (a); for the Blasius boundary layer with E0 = 1.2×10−7 on the plane x = 267

(b). Shaded ontours indiate the streamwise disturbane veloity (dark, red online, for positive

values; light, green online, for negative ones); vetors represent the wall-normal and the spanwise

disturbane veloity omponents.

However, sine for T = 200 transition is still not observed for initial energies slightly higher

than that of the minimal seed, we have been able to perform two optimizations with two

di�erent initial onditions, in order to hek the existene of suh loal maxima. Thus, we

have hosen E0 = 2.7× 10−7 (almost double than the energy of the minimal seed), with two

di�erent initializations, namely, i) the minimal seed struture, and ii) a symmetri initial

disturbane obtained by mirroring the minimal seed struture with respet to the streamwise

axis. The energy gain for the �rst optimization is E(T )/E0 = 1641, and the optimal

shape is shown in �gure 7 (); whereas, for a mirror-symmetri initial guess, the suboptimal

struture shown in �gure 7 (d) has been found, with energy gain E(T )/E0 = 254 (even if the

optimization eventually onverges to the non symmetri solution if the onvergene proess

is ontinued to lower values of the residual). The omparison between the optimal in �gure

7 () and the suboptimal in �gure 7 (d) proves that repliation and spatial spreading of the

basi strutures is observed for large initial energies, as in the Couette �ow, but this does

not lead to a symmetrisation of the optimal (at least for Re = 610).
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(a) (b)

() (d)

Figure 7: (Color online) Isosurfaes of the initial perturbations obtained by the non-linear optimiza-

tion for the ASBL at Re = 610 and target time T = 200, with initial energies E0 = 1.2× 10−7 (a),

E0 = 1.35× 10−7 (b), E0 = 2.7× 10−7 () and a suboptimal for E0 = 2.7× 10−7 initialized with a

mirror-symmetri initial perturbation (d). Green and red, for the negative and positive streamwise

veloity omponent; dark and light, for negative and positive streamwise vortiity, respetively,

with values u′ = −0.005, ω′
x = ±0.05 (a-b), u′ = −0.01, ω′

x = ±0.08 (), u′ = −0.005, ω′
x = ±0.05

(d).

The results disussed above show that NLOPs obtained for di�erent shear �ows share

a similar struture, haraterized by inlined vorties along a path of �nite streamwise

veloity perturbation (although with a di�erent symmetry). The persistene of this basi

struture at di�erent values of the initial energy, target times and for di�erent kind of

�ows indiates that suh a struture, whih maximizes the disturbane energy over a �nite

time, has an intrinsi fundamental importane for shear �ows. However, a ruial di�erene

has been found between the basi struture of NLOP for the ASBL �ow (similar to that

of the Couette �ow) and that for the BBL �ows, namely, the spanwise symmetry of the

perturbation. This important di�erene has motivated the analysis of the struture of the

NLOP for several Reynolds numbers provided in the next subsetion.
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Figure 8: Streamwise (left) and wall-normal (right) veloity pro�lesof the base �ow veloity for the

BBL and the ASBL at R = 610 (thin solid lines) and Re = 5000 (thik solid lines), versus the

wall-normal variable y∗. For visualization purposes, the sale is not the same at di�erent values of

Re. The dashed lines in sub�gure (a) show the wall-normal derivative of the streamwise omponent

of the base �ow, dU∗/dy∗, in both �ows.
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Figure 9: Minimal energy for turbulent transition for the asymptoti sution boundary layer at

di�erent Reynolds numbers (solid line). The dashed lines show the minimal energy for di�erent

transition senarios, namely noise (NOISE), streamwise vorties (SV), oblique waves (OW), and

loalized disturbanes (LD), extrapolated from data in [24℄.

B. Reynolds number analysis

To generalize our results, we have extended the analysis to larger Reynolds numbers.

Figure 8 shows the veloity pro�les for the ASBL and the BBL (extrated at the inlet) at

two di�erent Reynolds numbers, namely, Re = 610 and Re = 5000, versus the wall-normal
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Figure 10: (Color online) Minimal seeds for the asymptoti sution boundary layer for Re = 1200

(left, with E0 = 2.08 × 10−8) and Re = 2500 (right, with E0 = 4.16 × 10−9) with target time

T = 150: iso-surfaes of the negative streamwise omponent, u′ = −0.0025 (green) and of the

negative and positive streamwise vortiity, ω′
x = −0.045 (blak and white, respetively)

Figure 11: (Color online) Non linear optimal perturbations for the asymptoti sution boundary

layer at Re = 5000 for E0 = 2.12 × 10−9 (left) and E0 = 4.24 × 10−9 (right) with target time

T = 100: iso-surfaes of the negative streamwise omponent, u′ = −0.001 (green) and of the

negative and positive streamwise vortiity, ω′
x = ±0.045 (blak and white, respetively)

oordinate y∗ (for visualization purposes, the sale is not the same at di�erent values of

Re, and δ∗ = 1 has been hosen for Re = 610). The �gure shows that, for both �ows, the

streamwise pro�le is the same at Re = 610 and Re = 5000 exept for the di�erent saling

with respet to the wall-normal oordinate y∗. One an also notie the di�erent shape of

the ASBL and BBL pro�les, the �rst one having larger veloities lose to the wall, resulting

in a 'fuller' shape lose to the wall. Conering the wall-normal veloity, for both �ows, an

inrease of one order of magnitude in the Reynolds number indues a derease of one order
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Figure 12: (Color online) Non linear optimal perturbations for the asymptoti sution boundary

layer at Re = 10000 with E0 = 2.5 × 10−9 (top), and with E0 = 1.25 × 10−8 (bottom) with target

time T = 50: iso-surfaes of the negative streamwise omponent, u′ = −0.002 (green) and of the

negative and positive streamwise vortiity, ω′
x = ±0.045 (blak and white, respetively)

of magnitude in the amplitude of the wall-normal veloity pro�le V (�gure 8 (b)).

The non-linear optimal disturbanes of the ASBL �ow have been omputed for Re =

1200, 2500, 5000, 10000. For eah value of the Reynolds number but the latter the value

of the initial energy has been biseted in order to approximate the minimal seed with a two-

digit auray. The solid line in Figure 9 shows the energy of the minimal seed, Emin, versus

the Reynolds number, for Re = 610, 1200, 2500, 5000. Whereas, the dashed lines in the �g-

ure reprodue the results of Ref. [23, 24℄, for four di�erent initial perturbation strutures: i)

random three-dimensional noise (NOISE); ii) streamwise vorties (SV), obtained by a loal

spatial optimization; iii) spatially extended oblique waves (OW), obtained by a loal spatial

optimization; iv) loalized disturbanes (LD) onsisting of two alternated ounter-rotating

pairs of streamwise vorties. One an notie that the transition threshold provided by the

minimal seed energy is almost two orders of magnitude lower than the energy thresholds

found for spatially extended disturbanes suh as the streamwise vorties and the oblique

waves. Moreover, Emin is one order of magnitude lower than the minimal energy found for
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Re = 610 1200 2500 5000 10000

lx = 18.2 8.6 4.1 2.9 1.7

lz = 8.6 4.4 2.7 1.94 1.3

Table III: Streamwise and spanwise dimensions, lx, lz of the minimal seed for several values of the

Reynolds number, measured as the largest spanwise and streamwise lengths of the �ow regions

where |u′| > 0.001

the loalized perturbations seleted in Ref. [24℄. We an also observe in �gure 9 that Emin

varies with Re following a power law Re−2, whereas Levin et al. [23℄ found a −2.1 exponent

for the SV and NOISE perturbations and a −2.8 exponent for the OW one. It is worth

notiing that in Ref. [34℄, a power law Re−2.7 has been found for the minimal seed for the

Couette �ow in a small domain (whereas the OW senario was haraterized by a −2 ex-

ponent for the same on�guration). Conerning the veloity amplitudes, for Re = 1200 the

minimal seed is haraterized by |u|max = 0.014, |v|max = 0.015, |w|max = 0.017; the minimal

LD triggering transition in Ref. [24℄ was haraterized by |v|max = 0.0124, very lose to

the minimal amplitudes found here, but with |u|max = 0.0. Thus, the large di�erene in

the transition thresholds an be linked to the omplete absene of the streamwise veloity

in the perturbation of Ref. [24℄: this appears to be a ruial feature for induing a rapid

transition to turbulene using low-energy perturbations. Two other ruial elements whih

might explain the di�erene between the energy thresholds for the LD and the minimal seed

are: i) the larger spatial extension of the LDs, whih makes them more energeti than the

minimal seed for similar assoiated amplitudes; ii) the fat that the vorties are perfetly

aligned with the streamwise axis, and sinusoidal in z, whereas the perturbations induing

the largest growth by non-linear mehanisms are haraterized by a �nite inlination with

respet to the streamwise axis and do not show any spanwise symmetry. Thus, it appears

that a non-linear optimization is neessary to evaluate the order of magnitude of the minimal

thresholds for transition to turbulene and to determine aurately the shape and typial

length sales of the minimal perturbation apable of induing transition to turbulene.

As shown in Figure 10, the shapes of the minimal seed for Re = 1200 and Re = 2500 are

very similar to the ones desribed in the previous setion for Re = 610. They are omposed

by streamwise alternated positive and negative vorties with a �nite inlination with respet
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to the streamwise and wall-normal axis. It is worth notiing that, even if the basi stru-

ture is the same, the minimal seed is muh more loalized for higher values of the Reynolds

number, as shown in table III. In partiular, the streamwise and spanwise lengths appear

to be almost halved for an inrease of Re of a fator two.

For a �uid with a given kinemati visosity, the dependene on Re of the typial length sales

of the wall-strutures, suh as the streaks, is more omplex in the ase of the ASBL than in

the ase of the BBL. For the ASBL the Reynolds number an be varied either by hanging

the freestream veloity U∗
∞ (keeping the sution veloity �xed), or by hanging the sution

veloity, thus modifying the displaement thikness δ∗ (keeping U∗
∞ �xed). Yoshioka et al.

[55℄ have experimentally measured the typial length sales of the wall strutures indued

by free stream-turbulene in the ASBL, onluding that: i) if V ∗
S and δ∗ are kept onstant,

the spanwise spaing of the streaks varies with (U∗
∞)−1; ii) if U∗

∞ is kept onstant and δ∗ is

hanged, the dimensional spaing of the streaks remains onstant. In the present work, we

hange the Reynolds number by keeping U∗
∞ onstant, modifying the sution veloity V ∗

S ;

therefore, we are inreasing the referene length, δ∗, when the Reynolds number inreases.

Thus, a derease of a fator 2 of the minimal seed size orresponding to a twofold inrease

of the referene length δ∗ is onsistent with the results in Ref. [55℄, sine the dimensional

typial length sales of the streaks will not hange with Re when U∗
∞ is kept onstant. We

an thus onlude that, at least for Reynolds numbers in the range [610, 10000], the typial

length sales of the NLOPs hange aordingly to the streak spaing measured in Ref. [55℄.

This explains why we have hosen to use smaller domain lengths for larger Re.

Another important feature of the minimal seed shown in �gure 10 for Re = 1200 and 2500 is

that, as for Re = 610, it does not present any symmetry in the spanwise diretion. However,

when the Reynolds number is inreased to Re = 5000, two types of non-linear optimal so-

lutions have been found. Figure 11 shows the results of the non-linear optimization for two

initial energies, E0 = 2 × 10−9 and E0 = 4 × 10−9, for T = 100. One an observe that the

latter is almost symmetri, roughly orresponding to a mirroring of the former with respet

to the streamwise axis. The minimal seed for this Reynolds number is sandwhihed between

these two solutions with di�erent symmetries. Further bisetions of the initial energy value,

performed with a non-symmetri initial guess in order to not impose any symmetry, indiate

that the minimal seed is not mirror-symmetri. However, the presene of a mirror-symmetri

non-linear optimal perturbation is an indiation of the hange in the optimal dynamis that
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is observed at larger Reynolds numbers. In fat, for Re = 10000, only mirror-symmetri

optimal disturbanes have been found. Figure 12 shows two of them for two energy levels

and a short target time T = 50. This result has been veri�ed by performing optimizations

at a larger superritial Reynolds number, Re = 65000, for whih a symmetri minimal

seed has been found as well, preserving the same struture. This indiates that a value of

the Reynolds number exists between 5000 and 10000 for whih the NLOP hanges from a

nonsymmetri shape to a symmetri one. Therefore, for su�iently high Reynolds numbers,

the struture of the minimal seed beomes similar to the one of the BBL. This behavior

an be explained onsidering that we are hanging the Reynolds number Re = U∗
∞/V ∗

S by

modifying the sution veloity V ∗
S (keeping U∗

∞ �xed to a given value). Therefore, inreasing

the Reynolds number, while the streamwise veloity pro�le remains unhanged (with respet

to the nondimensional wall-normal oordinate), the magnitude of V ∗
S dereases. Comparing

the streamwise and wall-normal veloity pro�les at Re = 610 and Re = 5000 shown in �gure

8, one an notie that for the latter value the di�erene between VASBL and VBBL is redued

by one order of magnitude. Thus, we onjeture that the symmetry hange of the NLOP at

some "ritial" Reynolds number is linked to suh a redution of the wall-normal veloity

omponent. This onjeture may appear in ontrast with the results in [20, 21℄, where a

linear loal transient growth analysis, performed for a hypothetial �ow with no sution but

an idential U-veloity pro�le to the ASBL, was found to bring only small di�erenes on

the transient energy gain as well as on the shape of the linear optimal with respet to the

ase in whih the sution was onsidered as well. In this work, the authors onluded that

the di�erenes values of the optimal energy gain found for the ASBL and the BBL an be

attributed to the hange in shape of the mean streamwise veloity pro�le, not to the pres-

ene of the V base �ow veloity. However, in the present work we are in a global, non-linear

framework, in whih the optimal an be loalized and not sinusoidal in the spanwise and

streamwise diretion. Thus, the base �ow wall-normal veloity V might have a onsiderable

role in seleting the symmetry of the optimal, despite the basi struture of the optimal

solution and the resulting linear ampli�ation would be mostly driven by the streamwise

veloity pro�le U .

In the next setion we will ompare the route to turbulene at low Reynolds number for the

ASBL and the BBL, in order to understand how these di�erenes in the base �ow pro�les

an indue di�erent symmetries on the non-linear optimal solutions. We will also link these
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Figure 13: (Color online) Snapshots of the evolution in time of the seleted NLOP for the ASBL:

iso-surfaes of the streamwise veloity and vortiity perturbations (yellow and blue, for u′ = ±0.15,

respetively; blak and white, ω′
x = ±0.2, respetively) at t = 40, 80, 140, 200 (from top to bottom).

results to the hange of symmetry observed at high Reynolds numbers in the ASBL.

C. The route of the non-linear optimal perturbations to turbulene

In this setion, we analyze by DNSs the evolution towards turbulene of the NLOP

obtained for the ASBL with Re = 610 and T = 75, providing a omparison with the NLOP

of the BBL for the same onditions [45℄. In order to ahieve transition, the two perturbations

have di�erent energy, namely, E0 = 3.0 × 10−7 for the ASBL and E0 = 1.2 × 10−7 for the

BBL. In the ase of the BBL, being the �ow non-parallel, we do not impose periodiity in

the streamwise diretion. Thus, we have used a domain two times longer in x than that
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Figure 14: (Color online) Snapshots of the evolution in time of the seleted NLOP for the BBL:

iso-surfaes of the streamwise veloity and vortiity perturbations (yellow and blue, for u′ = ±0.1,

respetively; blak and white, ω′
x = ±0.2, respetively) at t = 40, 80, 140 (from top to bottom).

Figure 15: (Color online) Snapshots of the evolution in time of the seleted NLOP for the BBL:

isosurfaes of the Q-riterion for t = 80, 100, 160 (from left to right) .

used for the ASBL, in order to follow the evolution of the perturbation for a su�iently long

time before the disturbane leaves the domain. The number of grid points in the streamwise

diretion has been doubled as well, in order to maintain the same loal grid resolution.

A qualitative piture of the transition proess initiated by the NLOP for the ASBL is

given in �gure 13, showing the streamwise vortiity (blak and white surfaes) and veloity

(blue and yellow) perturbations. At t = 40 (�rst frame), the initial vorties inrease their

strength and streamwise inlination, due to the Orr mehanism [54℄. This �rst phase is
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Figure 16: (Color online) Snapshots of the evolution in time of the seleted NLOP for the ASBL:

isosurfaes of the Q-riterion for t = 80, 100, 160 (from left to right) .

similar to that obtained for the BBL, and appears to depend on the ation of the non-linear

oupling terms linked to the omponents of the streamwise vortiity, suh as wwz, as

explained in detail in Ref. [45℄. At the same time, the streamwise veloity perturbation

inreases its amplitude, due to a modi�ed lift-up e�et [45℄. In fat, sine the initial

vorties are inlined, the generated streaks are modulated in the streamwise diretion,

as shown in the seond frame for t = 80. In partiular, a main high-speed bent streak

(yellow) is reated, �anked by two weaker low-speed streaks. On suh streaks, loalized

pathes of vortiity are observed (see the third frame for t = 140), whih are originated

from the splitting of the initial inlined vorties. The bent streaks ontinue to be fed by

the streamwise vorties, elongating in the streamwise diretion, as shown in the fourth

frame for t = 200. However, in the regions of larger vortiity, stronger modulations of the

streaks are indued, leading the wave paket to break-up starting from a loalized region.

Suh a senario realls the mehanism of seondary instability of streamwise streaks whih

triggers bypass transition in boundary-layer �ows [11, 56℄. In partiular, sine the initial

disturbane is not mirror-symmetri, the streaks are haraterized by sinuous osillations,

whih represent the primary instabilities of streamwise streaks [10, 11℄. However, in the

non-linear optimal ase, this mehanism is muh more rapid than the one relying on the

linear growth of streamwise-aligned streaks followed by saturation and seondary instability.

In fat, the initial inlined vorties an reate bent streaks in a short time and lead to

break-up by-passing the seondary instability due to their spanwise modulations [57℄. The

non-linear transition proess is similar to the �rst phases of the disturbane evolution on

the periodi orbit reently found by bisetion in a small domain (see Ref. [36℄). However,

sine the NLOP onsidered here does not lay on the edge of haos as the mentioned periodi

orbit, transition to turbulene is reahed after the bursting phase.
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Despite the similarity of the initial optimal disturbanes, the non-linear route to transition

desribed here shows important di�erenes with respet to that found in the non-parallel

ase. In fat, for the BBL ase, the perturbation maintains the initial symmetry of the

NLOP up to large times (obviously, before turbulene is initiated). As shown in �gure

14, the initial mirror-symmetri inlined vorties transport the �ow momentum ausing an

ampli�ation of the streamwise omponent of veloity along them and induing the reation

of low- and high-momentum zones showing a Λ and an X shape, respetively (see the blue

and yellow surfaes in the �rst frame for t = 40). This Λ struture of the perturbation

is maintained at larger time (see the seond frame for t = 80), and the mirror-symmetri

inlined vorties onnet their fronts to reate a Λ−vortex, whih eventually turns into a

hairpin vortex leading the �ow to break-up (third frame for t = 140). The formation of

the hairpin for the BBL an be learly seen in �gure 15 at times t = 80 (a), t = 100, (b),

and t = 160, where the green surfaes show the Q-riterion, highlighting the regions of high

vortiity. At t = 80, one an observe that the initial vorties, tilted by the mean �ow, are

inlined at a small angle with respet to the streamwise axis (≈ 7◦). However, at larger

times, the vorties in the heart of the wave paket inrease their inlination, reahing angles

of about 35◦. This phase oinides with the formation of the hairpin vortex (two of them

are visible in the seond frame at t = 100) whih grows in size and splits into smaller hairpin

vorties, leading very quikly to a turbulent spot (see the third frame at t = 160). On the

other hand, for the ASBL, although the initial vorties have a similar wall-normal inlination

with respet to the streamwise diretion, as shown in the �rst and seond frame of �gure

16, the head of the hairpin vortex annot be reated due to the lak of symmetry of the

perturbation. Thus, the vortiity does not spread in spae as in the BBL ase, but remains

loalized in a narrow region in the streamwise diretion (see the third frame at t = 160).

The di�erenes between the transition paths in the ASBL and BBL ase an be analyzed

by extrating the rms values of the three omponents of the veloity perturbation, as shown

in �gure 17, the thik lines referring to the ASBL, the thin ones to the BBL. In the BBL

�ow, the three omponents of veloity grow more rapidly and ahieve larger rms values

than in the ASBL ase (see �gure 17 (a)). Conerning the vortiity perturbation, shown in

�gure 17 (b), in the BBL ase all of the three omponents grow more rapidly; the largest

di�erenes between the two �ows are reovered for the wall-normal and spanwise vortiity,

whih attains values almost one order of magnitude larger than in the ASBL ase. This an
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Figure 17: (Color online) Evolution in time of the rms values of the three omponents of veloity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vortiity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the seleted NLOP for the ASBL (thik

lines) and the BBL (thin lines).

Figure 18: (Color online) Snapshots of the evolution in time of the seleted NLOP for the ASBL (left

frame) and the BBL (right frame): spanwise and wall-normal vortiity (blue surfaes for ω′
z = 0.8,

red ones for ω′
y = 0.65.

be explained by observing that the vortiity omponents ω′
z and ω′

y have large values at

the head and legs of the hairpin whih haraterize the BBL route to transition. In fat,

plotting the ω′
z and ω′

y iso-surfaes for the parallel and non-parallel �ow ases at t = 100, as

provided in �gure 18 (a) and (b), respetively, one an observe that these two omponents of

the vortiity perturbations are muh more extended in spae and larger in magnitude in the

non-parallel ase than in the parallel one (both omponents are about 30%). In partiular,

the vortiity iso-surfaes are loalized at the head and legs of the hairpin vorties, explaining
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Figure 19: (Color online) Snapshots of the evolution in time of the seleted NLOP obtained for the

BBL, injeted in the ASBL �ow: iso-surfaes of the streamwise veloity and vortiity perturbations

(yellow and blue, for u′ = ±0.1, respetively; blak and white, ω′
x = ±0.2, respetively) at t =

80, 140 (from top to bottom).

Figure 20: (Color online) Snapshots of the evolution in time of the seleted NLOP obtained for

the BBL, injeted in the ASBL �ow: isosurfaes of the Q-riterion for t = 80, 100, 160 (from left to

right).

the larger growth of suh terms with respet to the streamwise vortiity.

In order to better understand the di�erenes between the two optimal transition paths, it

is worth to analyze the evolution of the mirror-symmetri optimal perturbation superposed to

the ASBL base �ow at low Reynolds number. Thus, we injet the seleted NLOP obtained

for the BBL in the ASBL �ow, and analyze its evolution in time. Figure 19 shows the

streamwise vortiity (blak and white) and veloity (yellow and blue) perturbations at t = 80

and t = 140. Comparing with �gures 14 (b) and (), one an observe that the vorties as well

as the low- and high-momentum regions are straighten up and lose part of their inlination.

As a result, at t = 140, three alternated streaks with weak vorties on their �anks are

found. In partiular, even if the initial perturbation is mirror-symmetri with respet to a
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z = const plane, the hairpin vortex is not formed at t = 100. This is learly shown in �gure

20, providing the Q-riterion iso-surfaes. One an see that at t = 80 (a) and at t = 100 (b)

the inlination of the vorties is weak and begins to grow only at t = 160, turning eventually

in a hairpin struture at t ≈ 200. This an be also inferred by analyzing in �gure 21 the time

evolution of the rms value of the three veloity and vortiity omponents, and omparing

them with the BBL ase. As provided by the thik lines in �gure 21 (a), the initial growth

of the veloity omponents of the NLOP injeted into the ASBL is initially similar to the

one haraterizing the BBL. However, at t ≈ 40, the spanwise veloity omponent begins

to derease, and the wall-normal and the streamwise ones strongly derease their growth

rate. Conerning the vortiity omponents, at approximately the same time they all begin

to derease, the ω′
z and the ω′

y with a larger rate than the ω′
x. This derease is due to

the absene of the hairpin vortex at t ≈ 100; in fat, it begins to grow only at t ≈ 200,

when the growth of all of the vortiity omponents is observed, due to streaks breakdown

of a variose type. Thus, we an say that the mehanism of rapid formation of the hairpin,

whih is responsible for the strong growth of all of the vortiity omponents in the BBL ase,

is delayed for the ASBL due to the wall sution, making a "sinuous" instability mehanism

more e�etive in induing a rapid transition. A similar senario is obtained in the ase of the

Couette �ow [47℄. Thus, in the ase of the ASBL a mirror-symmetri optimal perturbation

is less e�etive in induing transition than a non-symmetri one. As observed in �gure 16,

the delay of the formation of the hairpin vortex appears to be due to the lower wall-normal

inlination of the vorties with respet to the streamwise axis. This an be linked to a

simple mehanism of transport of the perturbation by the mean �ow. In fat, injeting the

same initial vortial struture in the ASBL and the BBL base �ows, in the latter ase the

highest part of the vortex will experiene a lower streamwise base veloity as it is adveted

downstream, so it will deelerate with respet to its lowest part. This will indue an inrease

of the inlination of the initial vortex in the wall-normal diretion, leading to a onnetion

of the fronts of the two vorties, �nally reating an hairpin struture. This is learly shown

in �gure 22, providing the base �ow vetors at Re = 610 for the ASBL (left frame) and the

BBL (right frame) and the e�et they have on the same vortial struture evolving in time

up to t = 100. For the ASBL �ow, the pro�le is fuller than the BBL one, so the mehanism

of inlination by the mean �ow is weaker, delaying the formation of the hairpin vortex from

an initial mirror-symmetri perturbation. Therefore, the zones of strong veloity de�it (in
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Figure 21: (Color online) Evolution in time of the rms values of the three omponents of veloity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vortiity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the seleted NLOP obtained for the

BBL, injeted into the ASBL (thik lines) and the BBL (thin lines) �ows. .

Figure 22: (Color online) Snapshots of the evolution in time of the seleted NLOP obtained for the

BBL at Re = 610, injeted in the ASBL (left frame) and the BBL �ow (right frame): isosurfaes

of the Q-riterion for t = 100 and vetors of the base �ow.

blue in the �gure) remain loser to the wall, delaying the formation of in�etion points in

the mean �ow pro�le, and the onsequent transition to turbulene.

This onjeture an be veri�ed by visualizing the ativation of the transport terms of

the spanwise vortiity (haraterizing the head of the hairpin) by the mean �ow. Figure

23 shows one of these two transport terms, Uv′x, for the BBL (top frames) and the ASBL

(bottom frames) at t = 100 (left frames) and t = 150 (right frames). It appears that, for the

BBL, the terms is ativated at the head of the hairpin vorties, spreading in spae at larger

time. Whereas, for the ASBL, it is haraterized by a lower amplitude (lower than half the

one for the BBL) and is rapidly damped in time. This on�rms that the transport of the

spanwise vortiity by the mean �ow is indeed the mehanism whih an explain the large

di�erenes in the symmetry of the two non-linear optimal perturbations. Suh a result shows
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Figure 23: (Color online) Snapshots of the evolution in time of the advetion term Uv′x obtained

for the BBL (top frames) and the ASBL (bottom frames) at t = 100 (left frames) and t = 150

(right frames): isosurfaes Uv′x = ±0.13 for the BBL, Uv′x = ±0.06 for the ASBL.

that it is ruial to take into aount the non-linearity as well as the non-parallelism of a

�ow at the same time, for determining with auray the most e�etive route to transition.

For larger Reynolds numbers, sine the sution veloity V ∗
S is muh weaker, the mehanisms

of tilting and strething of the vorties tend to be loser to those of the BBL �ow. Thus,

the transition senario tends to beome similar to the BBL one, seleting mirror-symmetri

perturbations as the optimal ones. Figure 24 shows three snapshots of the evolution in time

of the NLOP obtained for Re = 5000 and E0 = 4.25×10−9, showing a behaviour very similar

to the one reovered for the BBL in �gure 14. In partiular, one an observe the formation of

Λ strutures for the negative streamwise veloity omponent and the streamwise vortiity.

Figure 25 shows the generation of a train of hairpin vorties at t = 75 and t = 100, as

well as the base �ow pro�les, whih appear muh less full than in the previous ase. This

on�rms that wall sution is a ruial parameter for the stability of a boundary-layer �ow,

sine, when it is strong enough, it an modify the dynamis of optimal perturbations and

delay the formation of strongly growing vortial strutures suh as the hairpin vorties.
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Figure 24: (Color online) Snapshots of the evolution in time of the symmetrial NLOP at Re =

5000, with initial energy E0 = 4.25 × 10−9, extrated at t = 50, 100, 150, from top to bottom.

The isosurfaes represent the streamwise veloity and vortiity perturbations (yellow and blue, for

u′ = ±0.015, 0.03, 0.1, from top to bottom; blak and white, ω′
x = ±0.15, 0.1, 0.25, from top to

bottom).

Figure 25: (Color online) Snapshots of the evolution in time of the seleted NLOP obtained for the

ASBL at Re = 5000, extrated at t = 75 (left frame) and t = 100 (right frame): isosurfaes of the

Q-riterion (Q = 20) and vetors of the base �ow.

IV. SUMMARY

A variational proedure has been employed to �nd non-linear optimal disturbanes in

the asymptoti sution boundary-layer (ASBL) �ow. These perturbations are de�ned as
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the ones yielding the largest energy growth at a given target time T , for a given Reynolds

number Re. The results have been ompared with those obtained using the same approah

in the ase of the Blasius boundary layer (BBL) �ow [44℄. The in�uene of the di�erent

struture of the ASBL veloity pro�le with respet to the BBL on the non-linear optimal

growth mehanism has been studied. It has been found that sution remarkably redues the

optimal energy gain in the non-linear ase. Moreover, the optimal perturbation obtained in

the present ase shares the same basi struture found for di�erent shear �ows suh as the

BBL and the Couette �ows. However, unlike the BBL ase, the optimal perturbation for the

ASBL �ow in the range of low to moderate Reynolds numbers, is not spanwise-symmetri.

In partiular, it has been found that a value of the Reynolds number exists between 5000 and

10000 for whih the non-linear optimal perturbation hanges from a non symmetri shape

to a symmetri one. Therefore, for su�iently high Reynolds numbers (low sution veloity

for a given freestream veloity), the struture of the non-linear optimal disturbane beomes

similar to the one of the BBL. By biseting the initial energy of the non-linear optimal

perturbations, minimal energy thresholds for subritial transition to turbulene have been

obtained. These energy thresholds are found to be 1 to 4 order of magnitude lower than the

ones found in other transition senarios suh as seondary instability of elongated streamwise

vorties, random noise, oblique waves and loalized streamwise-aligned disturbanes [23℄. For

610 < Re < 5000, these thresholds are found to sale with Re−2, suggesting a new saling

law for transition in the ASBL.

Finally, diret numerial simulations show that the di�erent struture of the base �ow with

respet to the BBL leads to a di�erent evolution of the initial perturbation. In fat, unlike

the ase of the BBL �ow, for low to moderate values of the Reynolds number, the formation

of hairpin vorties is not observed in the transition proess before break-up to turbulene,

and a sinuous transition senario is observed. This appears to be due to the lower tilting

of the vorties indued by the fuller veloity pro�le in the ASBL ase, whih delay the

formation of those vortial strutures, whih are able to rapidly lead the �ow to transition.

However, when wall sution is not strong enough (i.e., at large Re, for a given freestream

veloity) the vortiity transport and tilting mehanism responsible for the formation of the

hairpin vortex, is observed again. Future work will aim at investigate the existene of a

similar hange of symmetry in the non-linear optimal perturbations for di�erent shear �ows

suh as the plane Poiseuille �ow, as well as the in�uene of the independent parameters of
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the optimisation, suh as the initial energy and the target time, on the optimal perturbation

struture.
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