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On DMT methods to calculate adhesion in rough contacts
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Abstract
In this paper, we compare different rough contact-mechanics theories with the assumption of

weak interfacial adhesion. Two different approaches for the local modeling of adhesion are also

considered: the DMT force approach (DMT-F) and the Maugis’ approximation (DMT-M). The

first approach is based on the idea of summing up attractive interactions that act outside the

contact zone; the latter considers a constant adhesive load for each asperity in contact.

A comparison with numerical data proves the DMT-F approach is very accurate when hard

solids and low adhesive interactions are considered. The DMT-M approach shows, instead, less

accuracy especially at low fractal dimensions.
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I. INTRODUCTION

One of the main recent challenges in the rough contact mechanics is the evaluation of the
pull-off force necessary to detach sticky surfaces. The pull-off force plays a crucial role in
various fields such as medicine, engineering, and biology. For example, to study processes of
pulmonary drug delivery for asthma treatment, Beach et al. [1] measured the pull-off force
between pharmaceutical particles and rough polymeric surfaces. They found the surface
roughness strongly influences the pull-off force. Ramakrishna et al. [2] obtained similar
results studying adhesion and friction properties of the elastic contact between a sphere
and nanoparticle gradient surfaces. They performed pull-off force measurements at various
levels of particle density. At high particle density, the short ranged adhesion mechanism
is preponderant. Decreasing particle density, long ranged non-contact interactions become
dominant. The first case falls under the Johnson, Kendall & Roberts (JKR) theory [3],
which well describes the contact of soft materials with high values of surface energy. In the
latter case, we are in the framework of the Derjaguin, Muller & Toporov (DMT) theory
[4], which well captures the adhesion behavior of hard elastic materials with small values of
surface energy.

In the design of biomimetic adhesive surfaces, controlling the detachment force is of cru-
cial importance [5]. Biomimetic surfaces often show strong adhesive properties and are not
adequate for locomotion devices. Recent studies analyzed the influence of the surface to-
pography on detachment mechanisms [6, 7]. In particular, in the case of complex rough
geometries, surface anisotropy can be exploited in the design of direction-dependent adhe-
sives [8]. Dening et al. [9] studied the contact between a spherical indenter and an inflatable
membrane, showing that the pull-off force reduces by decreasing the radius of curvature of
the membrane.

In particular, with reference to a rigid sphere of radius R squeezed over an elastic half-
space, the pull-off force predicted by the JKR and DMT theories is, respectively, 1.5π∆γR

and 2π∆γR, being ∆γ the surface energy of the two bodies in contact. The Tabor parameter
µ [10] governs the transition from the JKR to DMT limit. Many authors give different,
although similar, definitions of the Tabor parameter. In this work, we use the definition
proposed by Greenwood in Ref. [11], according to which µ = (R∆γ2/E∗2)1/3/ε, where E∗

is the composite elastic modulus and ε is the range of action of adhesive forces.
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Numerous theories and models have been formulated over the past years to investigate
the effect of roughness on adhesion. A Boundary Element Method (BEM) based on the use
of proper Green’s functions has been developed in Refs. [12, 13] for 1D one-length scale
rough profiles, and in Ref. [14] for 1D self-affine fractal profiles. A multiscale approach has
been instead proposed in Ref. [15] to describe the elastic contact between 1D rough profiles.
Here the solution for partial contact of a sinusoidal profile is used to develop a relationship
between the pressures at different magnifications; then the contact area is calculated in
terms of the magnification with a recursive formula.

Muser, instead, developed a Green’s Function Molecular Dynamics (GFMD) method to
study the contact mechanics of 2D randomly rough surfaces [16, 17], using a Fourier spacing
formulation. Persson proposed a very robust analytical theory [18, 19], which has been also
extended to the adhesive case [20, 21]. Medina & Dini [22] presented a model based on a
Multi-Level Multi-Integration technique that solves adhesive rough contact by integrating
the Lennard-Jones potential. Pastewka & Robbins (PR) [23] developed a theory to capture
the interplay between elasticity, interatomic attraction, and surface roughness. Also, they
formulated a criterion for sticky adhesion. Rey et al. [24] implemented an algorithm based
on the Fast Fourier Transform (FFT) to compute the solution of adhesive normal contact
between rough surfaces.

Many of the aforementioned models, although very accurate in returning the contact
problem solution, require heavy computational costs.

Inspired from the excellent results obtained in the recent Contact Mechanics Challenge
with the Interacting and Coalescing Hertzian Asperity model, we extend such model to
the adhesive case in the limit of hard solids and small values of surface adhesion energy.
Therefore, adhesive stresses can be assumed not involving deformations, according to the
DMT theory. Adhesion is introduced in the model in two ways: (i) by integrating an
interaction potential law above the non-contact area (DMT force approach, DMT-F), and
(ii) using the Maugis’ idea [26] which assumes constant adhesive load on each asperity in
contact (DMT-M). In the latter case, the total adhesive force is then obtained by summing
all asperities contributions. A comparison with numerical data available in the literature
and Persson’s theoretical predictions shows the DMT-F approach leads to good results,
while non-negligible qualitative and quantitative discrepancies are found with the DMT-M
method.
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II. METHODS

Consider a linear elastic half-space, with Young’s modulus E and Poisson’s ratio ν,
squeezed against a hard randomly rough substrate. Roughness is described by a self-affine
fractal geometry, i.e. the surface does not change its morphology if we make a scale change.
For an isotropic self-affine surface the power spectral density (PSD) has a power law relation
with the magnitude q = |q| of the wave vector q. Moreover, since many real surfaces have a
long distance roll-off wavelength λ0 corresponding to a wavevector q0 = 2π/λ0, in this work
we consider isotropic self-affine fractal surfaces with PSD

C(q) =

 C0

C0q
−2(H+1)

if qL ≤ q ≤ q0

if q0 ≤ q ≤ q1
(1)

and zero otherwise. The parameter H is the Hurst exponent, which is related to the fractal
dimension Df = 3 − H. Further, we have indicated with qL = 2π/L the smallest possible
wave vector which depends on the lateral size L of the surface region and with q1 = Nq0

the high-frequency cut-off, where N is the number of scales. Rough surfaces are numerically
generated according to the spectral method developed in Ref. [28].

A. Interacting and Coalescing Hertzian Asperities (ICHA) model

In Ref. [29], an advanced multiasperity model is developed to study the contact mechanics
of rough surfaces. The model is based on the original idea of GW theory [30] to replace
the surface summits with spherical asperities with the same radius. However, numerous
improvements are implemented. First, summits are replaced with spheres with radius equal
to the geometric mean of the two principal radii of curvature. Indeed, Greenwood [31]
showed that, in this way, almost the same results are obtained as in the Bush, Gibson, and
Thomas (BGT) theory [32], who modeled the asperities as paraboloids with two different
radii of curvature.

Furthermore, the elastic coupling between asperities is taken into account according to
Ref. [33], where the asperity displacement is calculated using the Hertz theory and even
considering the effect of the other asperities, which is added to the self-displacement. For a
single rigid axisymmetric parabolic asperity approaching the elastic half-space, the standard
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Hertzian formulas for the surface displacements can be found in Ref. [34]

u (r) =
1

R

(
a2 − r2

2

)
, r ≤ a

u (r) =
1

πR

[(
2a2 − r

)
arcsin

a

r
+ a

√
r2 − a2

]
, r > a

where a is the radius of the contact spot and R is the geometric mean of the principal radii
of curvature.

For a given distribution of contact radii ai, the displacement of the elastic half-space at
the kth asperity is then obtained by summing the contribution of all asperities in contact.

The coalescence of contact spots is also taken into account. In fact, when two contact
spots of adjacent asperities grow up to overlap, a single contact patch is formed. In Ref.
[35] the coalescence of crystallite grains is studied and the mutual adhesion stresses are
calculated. Freund & Chason [36] proposed a theoretical approach to calculate stresses
generated upon contact of neighboring patches. However, the complexity of rough surfaces
requires to look for empirical solutions. Specifically, in Ref. [29] merging asperities are
replaced with a new equivalent one, which preserves the total contact area of the coalescing
spots and their volume centroid. The radius of curvature of the new asperity Reqv is instead
assumed equal to

(
R2

i +R2
j

)1/2, being Ri and Rj the radii of curvature of the merging
asperities.

Finally, the local gap outside the contact spots in a generic point P is obtained by
summing the contribution due to each asperity, as explained in Ref. [37], i.e.

u (P ) =
1

π

nc∑
k=1

(
2a2k − r2Pk

Rk

arcsin
ak
rPk

+
ak
Rk

√
r2Pk − a2k

)
(2)

being rPk the distance of the point P from the kth asperity and nc the total number of
asperities in contact.

In the limit of hard elastic solids with long ranged adhesive interactions (i.e. small values
of the Tabor parameter µ), adhesion can be described by the DMT theory, which assumes
no adhesive stresses act within the contact area. Adhesion interactions are concentrated
outside the contact area, and deformation is exclusively due to the mechanical compressive
component of the load.
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More than one version of the DMT theory exists in the literature. In particular, Muller
et al. [38] solved the adhesive elastic contact between spheres with two different approaches.
The first one (known as DMT thermodynamic approach) is based on the calculation of the
derivative of the adhesive interaction energy. The second approach (DMT force approach),
instead, returns adhesive load by summing the attractive interactions acting between bodies.
As shown by Pashley [39] and later by Greenwood [11], in the case of adhesive spherical
contact, the DMT force approach correctly estimates the pull-off force value when µ < 0.24.

In this work, according to the procedure developed in Ref. [21], the force approach is
extended to complex rough geometries. To this end, a gap dependent adhesive force per
unit area σa (u) is introduced

σa(u) =
8

3

∆γ

ε

[(
ε

u+ ε

)3

−
(

ε

u+ ε

)9
]

(3)

where ε is the range of action of attractive forces, which is of the order of magnitude of the
atomic spacing. Therefore, the adhesive load Fad is calculated as

Fad =

∫
Anc

d2xσa [u (x)] (4)

where Anc is the non-contact area. Moreover, if P (u) denotes the probability gap distribu-
tion, then (4) can be written as

Fad = A0

∫ ∞

0

σa(u)P (u)du (5)

being A0 the nominal contact area.
In the DMT limit, adhesive interactions don not affect deformations; however, it is as-

sumed that deformations are due to an effective load F0, which contains the external applied
load FN and the contribution from the adhesive force Fad, F0 = FN + Fad.

Maugis, in Ref. [26], proposed a different, but very simple approach, to extend the GW
theory to the adhesive problem. For each asperity, the adhesive load is assumed to be
constant and equal to the value of the tensile force which appears at the pull-off of a sphere
with the same radius R of the asperity. As a result, the adhesive term can be calculated
by assigning to each asperity in contact an adhesive load equal to 2π∆γR. Therefore, when
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asperities with different radii of curvature Ri are considered, the adhesive load would write
as

Fad =
nc∑
i=1

2π∆γRi (6)

B. Persson’s theory: a brief outline

In the framework of Persson’s theory [40], the relative contact area is

A

A0

= erf

(
FN

A0

√
⟨∇h2⟩ /2E∗

)
(7)

where ⟨∇h2⟩ =
∫ q1
qL

d2q q2C (q) is the averaged square slope of the surface heights. Eq. (7) re-
turns the correct solution close to complete contact, but, as we move towards small loads, the
estimation of the contact area becomes less accurate. A better estimation of the contact area
(see Ref. [41]) can be obtained by replacing ⟨∇h2⟩ with ⟨∇u2⟩ =

∫ q1
qL

d2q q2C (q)S (q), which
can be interpreted as the averaged square slope of the deformed surface. Therefore, the orig-
inal assumption to consider the PSD of the deformed profile in partial contact equal to that
in full contact is corrected by scaling C (q) with the quantity S(q) = γ+(1− γ) [A (q) /A0]

2.
The parameter γ is a universal constant which can be approximately assumed equal to 0.45.

As above mentioned, in Ref. [21] solution of the adhesive problem is obtained by substi-
tuting FN with the effective load F0 in the area vs. load relation (7). Moreover, the adhesive
force Fad is calculated according to (5), where the gap probability distribution, originally
derived in Ref. [42], is calculated in terms of the separation u and magnification ζ = q1/qL

P (u) ≈ 1

A0

∫
dζ

−A
′
(ζ)

(2πh2
rms(ζ))

1/2
×[

exp

(
−(u− u1(ζ))

2

2h2
rms(ζ)

)
+ exp

(
−(u+ u1(ζ))

2

2h2
rms(ζ)

)]
(8)

where u1 (ζ) is the (average) separation in the surface area which (appears) to move out
of contact as the magnification increases from ζ to ζ + dζ and is predicted by the Persson
theory according to [43]

u1 (ζ) = ū (ζ) + ū′ (ζ)A (ζ) /A′ (ζ) (9)

where the apex symbol denotes the derivative with respect to the magnification ζ.
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The quantity h2
rms(ζ) is the mean of the square of the surface roughness amplitude in-

cluding only roughness components with the wavevector q > q0ζ, i.e.

h2
rms(ζ) =

∫
q>q0ζ

d2q C(q). (10)

Recently, in Ref. [37], a slightly more accurate expression for P (u) is introduced, in
which the term hrms(ζ) is replaced with

heff
rms(ζ) =

[
h−2
rms(ζ) + u−2

1 (ζ)
]−1/2 . (11)

The new expression takes into account that fluctuations in the separation, occurring in the
surface area dA(ζ) which moves out of contact as the magnification increases from ζ to
ζ + dζ, can be larger than u1(ζ).

In this work, Persson’s results are presented by considering both the corrections given in
Refs. [37, 41] about the contact area and probability distribution of interfacial separations.

III. RESULTS

This section is divided into two parts. In the first one, the advanced version of the Pers-
son’s theory and ICHA model are compared with numerical data available in the literature.

The Maugis’ approximation is very often quoted in the literature as the actual DMT’s
contribution (see Ref. [11]). Moreover, the extension of the original GW theory to the
adhesive case is frequently developed in the framework of the Maugis’ approximation (Refs.
[26, 27]). For this reason, in the second part of this section, a comparison between the
Maugis’ approach [26] and DMT force method [38] is proposed in the framework of the
ICHA model.

A. Persson’s theory and ICHA model

Figs. 1-3 show a comparison between the advanced Persson’s theory and ICHA model
with the exact numerical simulations given in Persson & Scaraggi (PS) [21].

In particular, we refer to the PS data obtained on self-affine fractal surfaces with Hurst
exponent H = 0.8, cut-off spatial frequency qL = 2.5×105 m−1, and roll-off spatial frequency
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q0 = 4qL. The PSD was truncated at q1 = 64qL, resulting in a root mean square roughness
hrms = 0.52 nm and root mean square slope h′

rms = 0.00115. Moreover, simulations were
carried out for E∗ = 1.33 × 103 GPa and different values of the adhesion surface energy
∆γ = 0.1, 0.2, 0.3, 0.4 J/m2 (corresponding to a Tabor parameter µ ranging from 0.114 to
0.287).

FIG. 1: The relative contact area A/A0 as a function of the dimensionless applied pressure
FN/(E

∗A0h
′
rms) for different values of the surface energy of adhesion ∆γ. Results are

obtained on a self-affine surface with H = 0.8, qL = 2.5× 105 m−1, and q0 = 4qL. The PSD
was truncated at q1 = 64qL, resulting in a root mean square roughness hrms = 0.52 nm and

root mean square slope h′
rms = 0.00115.

Fig. 1 shows the relative contact area A/A0 as a function of the dimensionless applied
pressure FN/(E

∗A0h
′
rms) for different values of the surface energy of adhesion ∆γ. The

agreement with numerical simulations (red lines with triangular markers) is very satisfactory.
However, at the higher values of ∆γ the ICHA model (blue line with circular markers) seems
slightly overestimating the adhesive force at the smaller values of the contact area. The
advanced version of the Persson’s theory (green line with square markers) is instead always
in perfect agreement with numerical data.

In the DMT limit, adhesive hysteresis is neglected, then no differences occur between
loading and unloading curves. Under such a hypothesis, the pull-off force is equal to the
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FIG. 2: The dimensionless pull-off force FNpull−off
/(E∗A0h

′
rms) as a function of the Tabor

parameter µ. Results are obtained on a self-affine surface with H = 0.8, qL = 2.5× 105

m−1, and q0 = 4qL. The PSD was truncated at q1 = 64qL, resulting in a root mean square
roughness hrms = 0.52 nm and root mean square slope h′

rms = 0.00115.

magnitude of the largest tensile load. The influence of the Tabor parameter on the pull-off
force is shown in Fig. 2. As expected, the pull-off force increases with µ. The theoretical
models well agree with the numerical data again.

Fig. 3 shows the normalized mean interfacial separation ū/hrms as a function of the
applied force. Both Persson’s theory and ICHA model closely match numerical data with
some small discrepancy in the range of low gaps at the higher values of ∆γ (in particular as
far as the Persson’s predictions are concerned).

The above results suggest adhesive models based on the DMT theory rightly predict the
main contact quantities of rough contacts in the range of µ < 0.3.

A comparison with the numerical simulations of Pastewka&Robbins (PR) [23] is also
proposed to investigate the contact behavior for higher values of the Tabor parameter. This
choice is related to the observation that in the numerical cases investigated in Ref. [23]
adhesion produces a small change in surface deformation, indicating that we are still close
to the DMT limit.
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FIG. 3: The dimensionless mean interfacial separation ū/hrms as a function of the
dimensionless applied pressure FN/(E

∗A0h
′
rms) for different values of the surface energy of

adhesion ∆γ. Results are obtained on a self-affine surface with H = 0.8, qL = 2.5× 105

m−1, and q0 = 4qL. The PSD was truncated at q1 = 64qL, resulting in a root mean square
roughness hrms = 0.52 nm and root mean square slope h′

rms = 0.00115.

Specifically, we refer to PR calculations performed on self-affine surfaces with H = 0.3,

0.5, 0.8 and number of scales N = q1/q0 = 32, ... 256. Moreover, data are obtained for
E∗ = 103 GPa and ∆γ = 5, 10 J/m2 (corresponding to values of the Tabor parameter
µ = 0.552 and µ = 0.876, respectively). However, PR used a small amount of roll-off
(q0 = 2qL), and this entails scatter in results and finite size effects. For this reason, the
ICHA predictions were averaged on results obtained from 10 different realizations of the
surface. For all surfaces, roughness was generated by keeping constant the root mean square
slope h′

rms = 0.1.
In Fig. 4 the relative contact area A/A0 is plotted in terms of the contact pressure

FN/(E
∗A0h

′
rms) for µ = 0.552 (Fig. 4a) and µ = 0.876 (Fig. 4b). Results are shown for a

surface with H = 0.8 and N = 64.
At µ = 0.552, the ICHA model (blue line with circular markers) and Persson’s theory

predictions (green line with square markers) are very close to PR data (red line with tri-

11



(a) (b)

FIG. 4: The relative contact area A/A0 as a function of the dimensionless applied pressure
FN/(E

∗A0h
′
rms) for µ = 0.552 (la/a0 = ∆γ/ (E∗a0) = 0.025) (Fig. 4a) and µ = 0.876

(la/a0 = 0.05) (Fig. 4b). Error bars (dotted arrows) show scatter of results of the ICHA
model as they are averaged on 10 different surface realizations. Calculations are performed

on self-affine fractal surfaces with N = 64, H = 0.8, and h′
rms = 0.1.

angular markers). Error bars (dotted arrows), relative to the ICHA results, make clear the
existence of a non-negligible scatter in results due to the very little roll-off used (q0/qL = 2)
to generate the surfaces.

At µ = 0.876, both Persson theory and ICHA model return larger adhesive effects than
PR numerical results. Such discrepancy can be justified by observing that PR data are
obtained on a single realization of the self-affine surface, which can significantly deviate
from a Gaussian one [44] because of the very little roll-off used in generating the surface.
Persson’s and ICHA model predictions instead refer to average results. Secondly, increasing
the Tabor parameter, adhesion involves bodies deformation, and thus we are no longer in a
strict DMT limit. Finally, we notice PR use a different relationship for the attractive force.
In particular, attractive interactions are described by a spline potential law which considers
a repulsive contribution for separations smaller than the atomic spacing a0. On the contrary,
the potential law returning the adhesive force per unit area of Eq. (3) neglects repulsive
interactions.

Fig. 5 shows the normalized pull-off force as a function of N for three different values
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FIG. 5: The normalized pull-off force for different values of the number of scales N and
Hurst exponent (H = 0.3, 0.5, 0.8). Calculations are performed for µ = 0.876 (la/a0 = 0.05)
and on surfaces with h′

rms = 0.1. Error bars refer to the minimum and maximum pull-off
force obtained with ICHA model, as they are averaged on 10 different surface realizations.

of H. The force normalization is the same as proposed by PR in Ref. [23]. Red triangles
refer to PR data, while green squares and blue circles refer to Persson’s theory and ICHA
model, respectively. Error bars denote the minimum and maximum values of the pull-off
force predicted by the ICHA model. Scatter is much more relevant for surfaces with few
asperities (i.e., with high H and low N). ICHA predictions are very close to the Persson
ones but are higher than PR data. Such difference can be explained by observing that at
µ = 0.876 adhesive interactions are sufficiently large to deform the half-space, then the
validity of the DMT approximation becomes questionable. Nevertheless, the trend with H

and N is very similar to PR data (except the outlier observed at H = 0.8 and N = 128,
which can be partly explained in terms of the scatter of results as PR performed calculations
only on a single surface realization).

Finally, in Fig. 6, we observe the pull-off force decays with the rms roughness amplitude
hrms.
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FIG. 6: The normalized pull-off force as a function of the dimensionless rms roughness
amplitude hrms/a0. Calculations are performed for µ = 0.876 (la/a0 = 0.05) and on

surfaces with h′
rms = 0.1.

B. On DMT methods to calculate adhesive interactions

In this section, results obtained implementing the DMT force approach (DMT-F) in the
ICHA model are compared with a different method to include adhesion, based on the Maugis’
idea (DMT-M) [26].

Calculations are performed on a squared area with lateral size L = 2π/(2.5 · 105) m
and self-affine fractal surfaces characterized by hrms = 0.52 nm and wavevector frequencies
qL = 2π/L, q0 = 4qL, and q1 = Nq0. Moreover, we have assumed ∆γ = 0.2 J/m2 and
E∗ = 1.33× 103 GPa.

Fig. 7 shows the relative contact area A/A0 as a function of the dimensionless applied
pressure FN/(E

∗A0h
′
rms) for N = 64 and H = 0.8. Results are presented for both the

DMT-F (blue circles), and DMT-M (red triangles) approaches. Persson’s predictions (green
squares) are also plotted for comparison.

The Maugis approach leads to very different results in terms of area-load relation, while
a very good agreement is observed between Persson’s theory and ICHA model based on
DMT-F approach.

The same type of comparison is proposed in Fig. 8 in terms of the dimensionless interfacial
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mean separation ū/hrms. Once again the DMT-M results significantly deviate from the
predictions of Persson’s theory, which instead are in close agreement with the DMT-F ones.

FIG. 7: The relative contact area A/A0 as a function of the dimensionless applied load
FN/(E

∗A0h
′
rms). Calculations are performed for ∆γ = 0.2 J/m2, E∗ = 1.33× 103 GPa and

on a surface with N = 64, H = 0.8 and hrms = 0.52 nm, resulting in a Tabor parameter
µ = 0.107. Persson’s predictions are also plotted for comparison.

Fig. 9 shows the normalized pull-off force FNpull−off
/(A0E

∗) as a function of the modified
Fuller & Tabor adhesion parameter θFT = E∗h

3/2
rmsR1/2/(∆γR) [45], which can be interpreted

as the ratio between the elastic (repulsive) and adhesive contributions to the total load.
Increasing θFT , a decay of the pull-off force is expected as the adhesion term reduces with
respect to the elastic one. Results obtained with the DMT-F approach are consistent with
this observation, while results based on the DMT-M approach give different trends depending
on the value of the Hurst exponent H. In particular, we notice the pull-off force increases
with θFT when H > 0.5.

Such apparent odd behavior can be explained by observing that the Maugis approxima-
tion gives an adhesive force contribution proportional to the product between the number
of asperities in contact nc and their mean radius of curvature R̄c. Therefore, in first ap-
proximation, we can consider the adhesive force dependent on the total number of surface
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FIG. 8: The normalized mean interfacial separation ū/hrms as a function of the
dimensionless applied load FN/(E

∗A0h
′
rms). Calculations are performed for ∆γ = 0.2 J/m2,

E∗ = 1.33× 103 GPa and on a surface with N = 64, H = 0.8 and hrms = 0.52 nm, resulting
in a Tabor parameter µ = 0.107. Persson’s predictions are also plotted for comparison.

FIG. 9: The normalized pull-off force FNpull−off
/(A0E

∗) as a function of the adhesion
parameter θFT . Results are given for different values of the Hurst exponent, hrms = 0.52

nm, and for both the DMT-F and DMT-M approaches. Symbols size decreases as N
increases.
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asperities nasp and surface mean radius of curvature R̄, related to the rms curvature h′′
rms

by R̄ = 2/h′′
rms. The total number of asperities, in turn, depends on the summits density

dsum in the nominal area A0. According to Nayak’s random process theory, we can estimate
the density of summits as dsum ∼ (h′′

rms/h
′
rms)

2. Therefore, taking into account that the
mechanical repulsive contribution F0 is proportional to the rms surface slope h′

rms [46–48],
within the framework of Maugis approximation, we can write

F0

Fad

∝ h′3
rms

h′′
rms

(12)

Now, observing that h′
rms and h′′

rms are both functions of the scales number N and Hurst
exponent H (or, equivalently, of the magnification ζ = q1/qL and H)

h′
rms ∼

√
ζ2−2H − 1

1−H
; h′′

rms ∼
√

ζ4−2H − 1

2−H
, (13)

Eq. (12) becomes

F0

Fad

∝ φ(ζ,H) =
ζ2−2H − 1

1−H

√
2−H

1−H

ζ2−2H − 1

ζ4−2H − 1
(14)

At high fractal dimensions (namely H < 0.5), the function φ increases with the magni-
fication ζ, that is the adhesive contribution reduces in comparison to the repulsive one. In
such case, a decay of the pull-off force is expected according to the predictions given in Fig.
9b. This trend reverses at low fractal dimensions, then explaining the increase in pull-off
force with θFT observed in Fig. 9b when H > 0.5 (being θFT an increasing function of ζ).

IV. CONCLUSIONS

In this paper, the adhesion between rough surfaces has been investigated with an advanced
multiasperity contact model in the framework of the DMT theory. In particular, we have
implemented adhesion according to (i) the DMT force approach (DMT-F), and the Maugis’s
approximation (DMT-F). The DMT-F approach assumes adhesive interactions act outside
the contact area and do not deform the surface. The DMT-F approximation considers the
adhesive load on each asperity to be constant and equal to the pull-off force of a sphere with

17



the same radius.
The DMT-F approach shows good qualitative agreement with numerical data provided

by Persson & Scaraggi [21] and Pastewka & Robbins [23]. However, some discrepancy with
PR data occurs for Tabor parameter close to 1. Such differences are partly due to the
lack of statistic in PR results, which are calculated on a single realization of a surface with
little roll-off. Moreover, increasing the Tabor parameter, the bodies deformation due to the
adhesive interactions may not be neglected anymore, then we are no longer in a strict DMT
limit.

About the DMT-M approach, results show non-negligible discrepancies with the reference
data, especially at low fractal dimensions. Indeed, differently from what expected, a growth
trend of the pull-off force with the modified Fuller & Tabor adhesion parameter θFT is
observed when H > 0.5.
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