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NuVinci drive: modeling and performance analysis

Tomaselli M.2, Bottiglione F.1,∗, Lino P.2, Carbone G.1
1Dipartimento di Meccanica Matematica e Management (DMMM), Via Orabona 4 - 70125 Bari and

2Dipartimento di Ingegneria Elettrica e dell’Informazione (DEI), Via Orabona 4 - 70125 Bari

The continuous search for more efficient drives, recently motivated also by environmental issues
and innovative electro-mechanical applications, has led to a renovated interest in Continuously
Variable Transmissions (CVTs). Several novel geometries of traction drives have been proposed in
the recent past, to improve the performance sometimes with a look at miniaturization. A modified
version of the well-known Kopp variator has recently been engineered under the name of NuVinci
drive. NuVinci was designed for being installed on bicycles but with the promise to be suitable
also for a wide range of other applications. In this paper, we present a mathematical model of
this device, developed to study its performance, compare different relevant variants and improve
the design. The performances are discussed in terms of traction capabilities and efficiency. It is
shown how a slight modification of the geometry may lead to an evident change of the performance
indicators, in particular the efficiency.
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I. INTRODUCTION

In recent years, the increasing need for energy saving and reduction of pollutant or greenhouse gas emissions has
turned into an emergency. This has pushed engineering research to develop solutions for improving the efficiency of
any type of energy-consuming device. In the world of mechanical drives, besides the development of new technologies
for motors, it is common to assign this task to the mechanical transmissions. Mechanical transmissions act to adapt
the motor characteristics (engines, electric drives, others) to the torque-velocity requirements of the load [1]. For an
optimal exploitation of the given motor, the ideal transmission should be: light, small, easy to control, lossless and
able to make the whole powertrain work at its optimal efficiency, for any power request. Of course, in real applications,
the adaptation is not optimally reached, and a tradeoff must be found.

Until recent years, simplicity of the transmissions has been preferred to the functional optimization of the drive
as a whole, thus tolerating that motors work even far from their best efficiency points. However, the search for
stronger optimality is now such a pressing need that a considerable amount of research work is dedicated even to
more complicated transmissions schemes, aiming at reducing the operational costs and the environmental impact of
the drive.

The matching between motor and load is achieved through the speed ratio of the transmission. Speed ratio can be
constant or variable. In the latter case, it can be varied by steps or seamlessly between the minimum and maximum
extremes. Under a purely functional point of view, the most effective transmissions enable a seamless variation of
the speed ratio and over a wide range of values. Such transmissions are commonly named Continuously Variable
Transmissions (CVT) or Infinitely Variable Transmissions (IVT), the last being those comprising the neutral gear
(speed ratio equal to zero) in the range of allowed speed ratios. The main limitations of CVT and IVT are the
efficiency and the management of speed ratio control.

Mechanical CVTs can be developed in several ways [2]. The most widespread classes are the belt/chain CVTs [3]
and the traction drives [4, 5], all based on the transmission of torque by tangential contact forces.

Belt and chain CVTs have been studied extensively. Their behavior in steady-state [6–8] and ratio-shifting [9–11]
operating conditions have been well understood. They are commonly characterized by the fact that ratio control
needs the application of quite large forces. Indeed, for relatively large power applications like in the automotive field,
clamping and shifting are achieved by means of a hydraulic circuit. Transmission layout may lead to some difficulties
because of the relatively large wheelbase. They are widely and successfully employed in automotive applications
(almost all CVT-equipped vehicles have a belt or a chain CVT). The main power losses are velocity losses due to the
sliding contact of pulleys and belt, shifting losses due to the radial sliding, power consumption of the clamping and
shifting mechanism and, in the case of a rubber belt, the hysteresis of the belt.

Toroidal drives differ for the shape of the toroidal cavities, the number and the shape of rollers. The basic schemes
are the full-toroidal and the half-toroidal drives with almost cylindrical rollers. The half-toroidal architecture has
been also employed in the automotive field up to fifteen years ago, (e.g. Nissan Extroid transmission, developed for
high torque engines).

Full and half toroidal drives are very similar in principle but very differ considerably in the way they control the
speed ratio [12–15]. In the former case, larger forces are needed to control the ratio. The main power losses are due to
the local sliding at the contact between rollers and discs with the toroidal cavity. The local sliding is a combination
of gross creep, spin, and sideslip. Creep is a measure of the local sliding in the direction of the traction forces. Spin
is a measure of the local sliding due to the component of the relative angular velocity between contacting bodies
perpendicular to the surfaces in contact [16]. Sideslip is a measure of the local sliding in the direction perpendicular
to traction forces. All these phenomena involve power losses, but while creep is proportional to the torque transferred,
spin is passively related to the contact force (thus the clamping force). The side-slip is related to the ratio shifting so
its effect is limited to dynamic (ratio shifting) conditions [17]. It has been demonstrated that half-toroidal is better in
terms of efficiency than the full-toroidal because spin losses are smaller on average [18]. Half and full toroidal drives
have also been compared under dynamic working conditions [19] by incorporating the tribological model developed
in [18] in a dynamic rigid body model of the drives.

Spin is the primary cause of reduction of the traction drive efficiency. For this reason, to limit the spin losses, several
innovative geometries have been proposed and are currently under investigation, like the double-roller full-toroidal
variator (DFTV) [20, 21] and the logarithmic toroidal drive [22]. Also, optimization algorithm of recent generation
has been applied to optimize conventional half-toroidal drive geometry [23].

The ball CVT traction drives are similar to toroidal drives. Among them, the Kopp variator is maybe the eldest
and the most widely used in industrial applications due to its robustness. It consists of a couple of discs with an
almost cylindrical outer surface in contact with ball drives, whose rotational axis can be tilted to change the speed
ratio. Discs are in contact with balls on their outer radii, thus the balls are set outside the discs and held in place
by an outer idle ring. Performance of ball CVT has been evaluated by following the approach developed in [18] and
compared to an half-toroidal CVT working in same conditions [24]. It was found therein that the efficiency of ball
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(Kopp-type) variator can be smaller or larger than the half-toroidal efficiency depending on the value of the driven
torque.

Figure 1. Main parts of a NuVinci CVT.

Fallbrook (Motion Technologies LLC before 2004) has developed a similar drive [25], presently known as NuVinci
CVT. NuVinci was originally developed for bicycles, and later proposed also for cars under the name of VariGlide
[26], for assisted e-bikes, variable speed wind turbines and other applications. The main components of NuVinci are
shown in Figure 1. The input and output discs have narrow faces in contact with the ball elements. The rollers are
spherical (balls). The ball rollers are held in contact with two central elements named idlers (one in the original patent
[27–29]) as it appears disassembling a transmission bought in 2017, which are free to rotate. Tilting the rotational
axles of the balls controls speed ratio. This is accomplished through the longitudinal movement of the idlers or
equivalent mechanisms depending on the specific patent of the same company. The stator prevents the ball elements
from rotating around the CVT’s primary longitudinal axis by constraining movement of the ball axle ends. Typically
the efficiency of the ball drives (Kopp, NuVinci) is in the range of 70% to 89% [2]. However, NuVinci geometry differs
significantly from the Kopp type because the NuVinci’s traction contacts are set on the inside diameter of discs thus
on the outer edge of the ball variator. For a given radial encumbrance and torque transfer, the traction forces on
discs and rollers are smaller because contacts are farther from the main longitudinal axis. This means that for a given
torque requirement, the necessary clamping force is smaller in NuVinci. Since the mechanical losses are strictly related
to the clamping force, this geometry is effective for improving the efficiency of ball drives. From another perspective,
given the maximum tolerable clamping force, NuVinci torque capacity is larger than Kopp drive.

NuVinci architecture has some advantages if compared to other existing CVT technologies. Quoting [30] unlike
the shift mechanisms for all other traction type CVTs, NuVinci CVT’s shift mechanism is packaged internally, and it
only carries small shift forces. This is possible because the rolling elements form a closed force couple, thus isolating
the shift mechanism from clamp force components. Moreover, the shift mechanism also does not have to handle high
spin forces, or forces induced by “steering” to a new ratio. Since the speed ratio control system is one of the most
critical components of the commonly adopted CVTs (half and full toroidal types), this is the first reason why it is
important to determine the performance indicators of NuVinci CVT.

A second fundamental reason is that the NuVinci CVT can be easily converted to CVP (Continuously Variable
Planetary) which is a sort of planetary gear train with variable gear ratio. This operation mode is obtained by
releasing the carrier (before mentioned as stator) of the tilting roller balls and connecting it to a third usable shaft. If
all the shafts are left movable, then it can be used as a differential/combinatorial transmission, which can be suitably
used for hybrid vehicles. A second possibility is to keep one of the two discs stationary, thus obtaining a planetary
single-in single-out CVT with a different speed range compared to the original CVT. NuVinci, as a planetary CVT,
enables to change the wise of rotation of the output for one given input (as a compact power-split Infinitely Variable
Transmission or IVT), making the NuVinci almost unique in the CVT panorama. Very recently, researchers have
presented the idea to convert also half-toroidal CVT to a compact power-split transmissions [31]. However, technical
issues have yet to be solved for a practical application, whilst the NuVinci is already on the market and ready to
be used. This characteristic opens the CVT world also to non-conventional applications like wearable robots or
prosthetic devices [32] where packaging is such a strict requirement, that novel and specific CVTs [33] and planetary
CVTs [34–36] have been studied recently.

In this paper, a mathematical model of NuVinci CVT mechanics briefly presented in [37] is extensively employed for
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studying in details the kinematics, the traction performance and the efficiency. Section II describes the model. The
geometry of the most recent variant of the variator (hereafter double-idler architecture) is described, then the kinematic
quantities and characteristics are given. The relevant equilibrium equations are also presented in a convenient non-
dimensional form; the efficiency is defined and discussed. The fundamental tribological model, which is adapted
from ref. [18], is cited and conveniently reported in the Appendix A. An identical approach is applied to a different
architecture, here indicated as single-idler, which is the one of the first patent. Then, for given size of the variator,
simulations results are shown and discussed in sec. III, comparing the performance of the double-idler and single-idler
geometries.

II. VARIATOR MODEL

A. Geometrical description

Figure 2. Schematic picture of the variator and related geometrical quantities for double-idler (a) and single-idler (b) geometries.

Hereafter, the theory is derived for the architecture comprising two inner idlers (double-idler architecture), and then
it will be adapted to the single-idler architecture.

The mechanism includes the following main parts: one input and one output disc; a number N of equal spherical
rollers of radius rS , the axes of which are supported by a carrier that in the present analysis is held stationary; two
equal idle discs (idlers), radially and axially supported by a common shaft which is free to slide in the axial direction.
Figure 2 shows the geometrical quantities of the mechanism. Here the model is derived in the general case of unequal
input and output discs. Thus, the quantities r0 and r2 are the radial distances of the points of contact between the
roller and input and output discs respectively, from the axis of the device (in short, the input and output discs radii).
Analogously, ra and rb are the radial distances of the points of contact between the roller and the two idlers from the
main axis of the device (in short: idlers radii). In this analysis, the idlers are considered equal, i.e ra = rb. Input
and output disc radii r0 and r2 and also the idlers radius ri are constant quantities because the roller-discs and the
roller-idlers contact points do not change location, even when the speed ratio varies. For the given sizes of the idlers,
input and output discs, and the roller, three constant angles are defined, namely θ0, θ2 and α, as shown in Figure 2.
The tilt angle of the roller axis γ is the one formed between the roller spin axis and the axial direction (horizontal in
the Fig. 2): tilt angle can be varied to change the speed ratio. The distances between the spin axis of the roller and
all the points of contact between the roller and the input, the output and the idlers (namely, rS0, rS2, rSa and rSb)
are variable quantities with γ. In particular, from the Figure 2 it can be found that:

rS0 =rS cos(θ0 + γ)

rSa =rS cos(α− γ)

rSb =rS cos(α+ γ)

rS2 =rS cos(θ2 − γ) (1)
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Similarly, r0, r2, ri can be also written as:

r0 =r1 + rS + rS cos θ0 = rS [1 + k + cos θ0]

ra = rb =r1 + rS − rS cosα = rS [1 + k − cosα]

r2 =r1 + rS + rS cos θ2 = rS [1 + k + cos θ2] (2)

where r1 is the distance between the point of the roller closest to the axis of the device (see Fig. 2) and the axis itself,
and k = r1/rS is the aspect ratio.

To complete the geometrical description of the device, we here define the quantities r02, ra2, rb2 and r22, which
are the second principal radii of curvature along tangential direction for the points of contact, respectively for: input
disc, the idlers, and output disc, respectively.

B. Variator Kinematics
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Figure 3. The ideal speed ratio τID vs the tilt angle γ for different values of θ0 = θ2 = θ.

In the case of perfect rolling contact between discs and rollers, given the angular speed of the input disc ω0, the
following kinematical relations hold:

ω0r0 = ωidS rS0

ωid2 r2 = ωidS rS2 (3)

where ω0, ω2, ωS are the angular speeds of the input disc, the output disc and the rollers, respectively, and the
superscript id means ideal, i.e. in perfect rolling contact conditions. Combining equations (1,2,3) gives the ideal speed
ratio τID as a function of the roller axis tilt angle γ:

τID =
ωid2
ω0

=
rS2r0
rS0r2

=
cos(θ2 − γ)[1 + k + cos(θ0)]

cos(θ0 + γ)[1 + k + cos(θ2)]
= τ0

cos(θ2 − γ)

cos(θ0 + γ)
(4)

where τ0 = [1 + k + cos(θ0)]/[1 + k + cos(θ2)] is a constant quantity for a given geometry. If θ0 = θ2 = θ, i.e. input
and output discs are equal, then the ideal speed ratio is:

τID =
cos(θ − γ)

cos(θ + γ)
(5)

Because of geometrical constraint, the tilt angle has a range of admissible values. Specifically, referring to Fig. 2 it
follows that:
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γmin = max[−θ0, (θ2 − π/2)]

γmax = min[θ2, (π/2− θ0)] (6)

with γmin ≤ γ ≤ γmax. The two limiting values are derived from purely geometrical constraints and it can be noted
that the limit values of γ are those making τID = 0 or τID = ∞. In practice, it will also be necessary to consider
the actual encumbrance of mechanical parts, like the actuation system, to define the actual limits of γ. To represent
the ideal speed ratio τID as a function of the tilt angle γ (Figure 4) given the values of θ0 = θ2, we have applied a
safety factor of 0.8 to the limit values of γ given by eq. (6). It is there shown how the angles θ0 and θ2 (in case of
θ0 = θ2 = θ) affect the speed ratio range and the shape of the curve. The ideal speed ratio is equal to one when
the tilt angle is zero, it is always positive and it is an increasing, clearly nonlinear, function of the tilt angle. It is
therefore shown that the nonlinear character is emphasized as far as the speed ratio range gets larger.

1. Creep coefficients

Figure 4. Schematic picture of the CVT with specification of local references.

In the real device, perfect rolling is not feasible because of some amount of creep at the contact between the rollers
and the discs that always occurs when a tangential load is transmitted. Four creep coefficients are defined, one for
each relevant contact pair:

CR0 =
|ω0|r0 − |ωS |rS0

|ω0|r0
CRa =

|ωS |rSa − |ωa|ra
|ωS |rSa

CRb =
|ωS |rSb − |ωb|rb
|ωS |rSb

CR2 =
|ωS |rS2 − |ω1|r2
|ωS |rS2

(7)

Creep coefficients are a normalized measure of the tangential slip velocity at the contact, defined in principle as the
difference between the tangential velocity of the moving body and the moved body, divided by the tangential velocity
of the moving body. They are purely kinematic quantities that, with some exceptions as discussed below, are defined
in such a way to be normally positive. The actual speed ratio can thus be written relying on eq. (7) and (4):

τR =
ω2

ω0
=
r0rS2
rS0r2

(1− CR0)(1− CR2) = τID(1− CR0)(1− CR2) (8)

In some sense, creep is a measure of the speed loss of the transmission. A speed efficiency ηspeed is thus defined:

ηspeed =
τR
τID

= (1− CR0)(1− CR2) (9)
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2. Spin coefficients

For a given contact pair, the relative angular velocity vector of the two contacting bodies has a spin component and
a tangential component. The former is obtained by projecting the relative angular velocity vector onto a direction
orthogonal to the contact surfaces at the contact spot. Spin velocity causes losses in torque transmission and can
generate considerable side forces on the rotating bodies [16]. By Figure 2, the relevant relative angular velocity vectors
can be evaluated as follows:

ωS0 = ωSs− ω0j = ωS (cos γj− sin γk)− ω0j
ωSa = ωSs + ωaj = ωS (cos γj− sin γk) + ωaj
ωSb = ωSs + ωbj = ωS (cos γj− sin γk) + ωbj
ωS2 = ωSs− ω2j = ωS (cos γj− sin γk)− ω2j

(10)

where the unit vectors are those defined in Figure 4. The spin velocity of two bodies in contact is the component
of the relative angular velocity vector onto the normal direction evaluated at the contact point. Spin coefficients are
then calculated as spin velocities normalized by a reference angular velocity modulus. Combining the definition with
eqs. (7) and (10) gives the four spin coefficients are derived as functions of the tilt angle and the creep coefficients:

σS0 =
ωS0 · z0
|ω0|

= −r̃0 tan(θ0 + γ)(1− CR0) + sin θ0 (11)

σSa =
ωSa · za
|ωa|

= − sinα− r̃a tan(α− γ)

(1− CRa)
(12)

σSb =
ωSb · zb
|ωb|

=
r̃b tan(α+ γ)

(1− CRb)
+ sinα (13)

σS2 =
ωS2 · z2
|ω2|

=
r̃2 tan(θ2 − γ)

(1− CR2)
− sin θ2 (14)

where the unit vectors of z-axes are defined as follows:

z0 = − sin θ0j + cos θ0k

z1a = − sinαj− cosαk

z1b = sinαj− cosαk

z2 = sin θ2j + cos θ2k

Spin coefficients are purely kinematic quantities. Spin coefficients can be positive or negative, and they are here
defined in such a way to be coherently related with the spin torques defined in the next section and shown in Figure
6. Fig. 5 shows the spin coefficients as functions of the tilt angle. Calculations are performed assuming θ = θ0 = θ2,
k = 1 and no creep. Three values of θ0 are considered which correspond to different speed ratio ranges. It can be
observed that larger speed ratio ranges correspond to larger maximum values of the spin coefficients.

C. Equilibrium equations

Forces and torques equilibrium equations of each part of the variator are derived from the free-body diagrams shown
in Fig. 6. A number n of equal rollers is considered. FD0 and FD2 are the clamping forces applied to input and output
discs; in the free-body diagram, clamping forces are divided by n, considering the amount of them applied to each
single roller. A similar argument can be discussed for the axial component of the reaction force on the inner rollers
FDa and FDb. These are the axial component of the reaction forces of bearings. Rollers are distributed in such a way
to make the outer and inner discs and the carrier radially self-equilibrated, thus radial reaction forces are zero. The
normal forces FN0, FNa, FNb and FN2 are contact reaction forces between the rollers and the discs, resulting from the
contact pressure distributions. Tangential forces FS0, FSa, FSb and FS2 result from the tangential stress distribution
at contact spots and enable the torque transmission. In the free-body diagrams, torques are indicated with the capital
letter T . Specifically, T0 and T2 are the input and output (load) torques, TSP0, TSPa, TSPb and TSP2 are the spin
torques. The bearing friction torques are TBLS , TBLa and TBLb. Bearing friction torques are modeled according to
consolidated techniques [38] [20]. There, the friction torque is calculated as the sum of two contributions: the load
independent friction TB0, and the load dependent friction TB1. In particular, TB0 depends on the bearing type, the
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lubrication method and the rotational speed and is commonly determined by means of empirical formulas. In this
paper, we have used the following one (see [39]):

TB0 =

 160 · 10−10f0d
3 ηcN < 2000

10−10(ηcN)0.69f0d
3 ηcN > 2000

(15)

where ηc [mm2/s] is the kinematic viscosity of the lubricant, N [RPM] is the rotational speed of the bearing, d [mm]
is the bearing mean diameter and f0 = 12 is a coefficient that depends on the bearing type. On the other hand, the
load dependent friction torque has been evaluated as follow:

TB1 = 10−3f1P
adbm (16)

where a = b = 1, f1 = 0.003 is a coefficient that depends on the bearing type and P is bearing load, which is calculated
for each bearing by equilibrium equations.
The equilibrium of the rollers leads to the following equations:

FS0 + FSa + FSb − FS2 + FRa + FRb = 0

−FN0 cos θ0 + (FNa + FNb) cosα− FN2 cos θ2 = 0

FN0 sinϑ0 + FNa sinα− FNb sinα− FN2 sin θ2 = 0

(17)

The torque equilibrium of the rollers gives:

FS0rS0 − FSarSa − FSbrSb − FS2rS2+

+TSP0 sin(θ0 + γ)− TSPa sin(α− γ) + TSPb sin(α+ γ)− TSP2 sin(θ2 − γ)− TBL = 0
(18)

FS0 sin(θ0 + γ)rB − FSa sin(α− γ)rB − FSb sin(α+ γ)rB − FS2 sin(θ2 − γ)rB + (FRa − FRb)0.5rS+

−TSP0 cos(θ0 + γ) + TSPa cos(α− γ) + TSPb cos(α+ γ)− TSP2 cos(θ2 − γ) = 0
(19)
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In eq. (19), the bearing forces on the roller FRa and FRb are supposed to be applied half-radius far from the roller
center. The force and torque equilibrium of the input disc:

FD0 − nFN0 sin θ0 = 0 (20)

T0 − nFS0r0 − nTSP0 sin θ0 = 0 (21)

and, equivalently of the output disc:

FD2 − nFN2 sin θ2 = 0 (22)

T2 + nFS2r2 + nTSP2 sin θ2 = 0 (23)

Considering that the idlers are free to rotate, the following relations hold true:

FDa − nFNa sinα = 0 (24)

TBLa − nFSara − nTSPa sinα = 0 (25)

FDb − nFNb sinα = 0 (26)

TBLb − nFSbrb + nTSPb sinα = 0 (27)

FDa − FDb = 0 (28)

Force balance equations can be solved to find that all the normal contact forces and axial reaction forces are propor-
tional to the axial applied thrust FN0:

FN2 = FN0
sin θ0
sin θ2

= FN0

FNa = FN0
sin(θ0+θ2)
2 cosα sin θ2

= FN0
cos θ
cosα

FNb = FN0
sin(θ0+θ2)
2 cosα sin θ2

= FN0
cos θ
cosα

FD0 = nFN0 sin θ0 = nFN0 sin θ

FDa = nFN0 tanα sin(θ0+θ2)
2 sin θ2

= nFN0 tanα cos θ

FDb = nFN0 tanα sin(θ0+θ2)
2 sin θ2

= nFN0 tanα cos θ

FD2 = nFN0sinθ0 = nFN0 sin θ

(29)

D. Non-dimensional quantities

It is convenient to re-write the model equations in terms of non-dimensional quantities.
The tangential contact forces responsible of the torque transmissions divided by the related normal contact forces

are the so called traction coefficients:

µ0 = FS0/FN0

µa = FSa/FNa
µb = FSb/FNb
µ2 = FS2/FN2

(30)

Similarly, spin coefficients are defined as follows:

χ0 = TSP0/(FN0r0)

χa = TSPa/(FNara)

χb = TSPb/(FNbrb)

χ2 = TSP2/(FN2r2)

(31)

Assuming that θ = θ0 = θ2, we can rephrase the torques balance equations of outer and inner discs as it follows:

t0 = T0/(nr0FN0) = µ0 + sin(θ)χ0

tBLa = TBLa/(nraFNa) = µa + sin(α)χa
tBLb = TBLb/(nrbFNb) = µb − sin(α)χb
t2 = T2/(nr2FN2) = −µ2 − sin(θ)χ2

(32)
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Figure 6. Free-body diagrams of the transmission parts. Single arrows are forces, double arrows are torques.

where t0, tBLa, tBLb, t2 are the non-dimensional torques on the input disc, the idlers and the output disc respectively.
Similarly, using (29), the equilibrium equations of the rollers [eq. (17)] can be rephrased in non-dimensional form,
which is the form used for numerical calculations:

tBLS = r̃S0µ0 − r̃Sa cos θ
cosαµa − r̃Sa

cos θ
cosαµa − r̃S2µ2+

+r̃0 sin(θ + γ)χ0 + r̃a
cos θ
cosα sin(α− γ)χa − r̃b cos θ

cosα sin(α+ γ)χb − r̃2 sin(θ − γ)χ2

(33)

sin(θ + γ)µ0 + cos θ
cosα sin(α− γ)µa − cos θ

cosα sin(α+ γ)µb + sin(θ − γ)µ2 + 1
2 (fra − frb)+

−r̃0 cos(θ + γ)χ0 + r̃a
cos θ
cosα cos(α− γ)χa + r̃b

cos θ
cosα cos(α+ γ)χb − r̃2 cos(θ − γ)χ2 = 0

(34)

µ0 + cos θ
cosαµa + cos θ

cosαµb − µ2 + fra + frb = 0 (35)

where tBLS = TBLS/FN0rb.

E. Efficiency

Considering (5) and (9), we can spread the efficiency in terms of speed and torque components:

η =
|P2|
|P0|

=
|T2|ω2

|T0|ω0
= ηspeedτID

|T2|
|T0|

(36)

The quantity ηtorque = τID|T2|/|T0| may be rephrased using eq. (32) and (29):

ηtorque = τID
|T2|
|T0|

= −τID
t2nr2FN2

t0nr0FN0
= τID

µ2 + χ2 sin θ

µ0 + χ0 sin θ
(37)

Thus, the global efficiency is:

η =

[
µ2 + χ2 sin θ

µ0 + χ0 sin θ

]
τID(1− CR0)(1− CR2) = ηtorqueηspeed (38)
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F. Calculation of traction and spin coefficients: contact model

The traction and spin coefficients can be calculated by a tribological investigation of the contacts between roller
and discs. Such an analysis is carried out following the method proposed in [18]. The details of the application to the
present case study are given in Appendix A.

III. SIMULATION RESULTS

A. Double-idler configuration

The mathematical model developed here can be utilized for several purposes: performance analysis, design and
optimization, dynamic simulation (needs some adjustments). In this paper the focus is on the first objective, thus
we carry on numerical calculations of several performance indicators of the NuVinci drive, to highlight some relevant
performance differences among sightly different geometries. The geometrical parameters of the transmission analyzed
in this paper are reported in Table I.

Geometric properties Traction fluid properties

Aspect ratio 1.7 Absolute viscosity at the atmospheric pressure η0 = 3.25 10−3 Pa s

Roller radius rS = 0.03 m Viscosity-pressure index Z1 = 0.85

contact angle disc 0 and roller θ0 = 45◦ Pressure-viscosity coefficient ζ = 1.71 10−8 Pa−1

contact angle disc 2 and roller θ2 = 45◦ Limiting shear stress at atmospheric pressure τL0 = 0.02 109 Pa

contact angle idlers-roller α = 10◦ Limiting shear stress constant a = 0.085

Number of rollers 8 Pole pressure constant of Roelands viscosity model cP = 1.96 108 Pa

Roller bearing diameter dS = 0.01 m Pole viscosity of Roelands viscosity model η∞ = 6.31 10−5 Pa s

Idlers bearing diameter dI = 0.01 m

Table I. Geometrical parameters and traction fluid properties

Traction fluid properties considered in our calculations are the same as in [20], and reported in Table I.
Simulations results shown in Figure 7 are obtained under the following hypotheses: input speed is constant and

equal to ω0 = 2000 rpm; the clamping force is determined in order to obtain FN0 = 2.0 kN and it is not changed.
This clamping force value leads to the maximum contact pressure equal to pmax = 1.63 GPa at the contact between
the rollers and the idlers. This value is compatible with materials adopted in roller bearings, for which the contact
pressures can be up to 2-3 GPa. The simulation conditions mentioned above mimic the experimental conditions
usually adopted on a test rig. In general, the output shaft of a transmission is connected to a torque-controlled brake
and the input is connected to a speed-controlled motor or engine. Of course, in such contitions, when the speed ratio
is increased, the output power is increased too.

The calculations are performed this way: an ideal speed ratio and an output torque request are fixed; first, the
tilt angle is calculated and then all model equations are solved. Simulations start with a minimal amount of torque
request, which is then gradually increased. The output torque can be increased up to a threshold value, i.e. the
limiting torque, which depends on the given clamping force and the ideal speed ratio. Once such a value is reached,
the simulations are stopped and then are repeated with a different value of speed ratio.

Figures 7(a-c) show the speed efficiency ηspeed, the torque efficiency ηtorque and the overall efficiency η of the
transmission as functions of the output torque in the aforementioned conditions, i.e. with constant clamping force
and input disc velocity, at three different values of constant ideal speed ratio.

Speed losses are due to the effect of creep, and so it is the speed efficiency too. If the output torque is zero, the
creep is almost absent: thus, the speed efficiency is approximately equal to one, and the actual speed ratio is very
close to the ideal speed ratio. A very small amount of creep is still present because of the necessity to balance small
internal passive losses depending on the roller and disc speed and not on the output torque (e.g. bearing losses and
spin losses). This effect is emphasized when the ideal speed ratio is large (Figure 7a). When the output torque
increases, the creep must increase too: thus, the actual speed ratio is lesser than the ideal and the speed efficiency
reduces as the output torque increases. The decrease is quite gradual and linear until the limiting output torque is
almost reached. At this point, a very small increase of the output torque needs the creep to grow up very fast so that
the speed efficiency reduces abruptly.

It can be noted that for 0.5 ≤ τID < 1 the limiting torque is almost independent on the τID value, whereas when
1 < τID ≤ 2 the limiting torque decreases with increasing τID. The reason is easy to explain, also with the help
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Figure 7. Speed (a), torque (b) and overall (c) efficiency as a function of output torque at different ideal speed ratio. Clamping
force is constant and such that FN0 = 2.0 kN.
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Figure 8. Speed (a), torque (b) and overall (c) efficiency as a function of output torque at different values of clamping forces.
Ideal speed ratio is constant τID = 1.

of Figure 9. In the former case, the output torque must be larger than the input torque because speed ratio is less
than unity (if we suppose as a first approximation that the efficiency has unit value) so the critical contact is the one
between the rollers and the output torque. For the given value of clamping force, when the output torque is almost
equal to 120 Nm the roller-output disc contact starts to fail, the creep coefficient at the contact between output disc
and rollers increases (see Fig. 9d) and the limiting output torque is reached. In the latter case, instead, the torque on
the input disc is larger than on the output disc, thus the critical contacts are those between the input discs and the
rollers. For instance, when τID = 2 then T0 ' 2T2 i.e. when the output torque is almost equal to 60 Nm, the input
torque is ∼ 120 Nm, and the creep between input disc and rollers must increase abruptly, as confirmed in Figure 9a,
thus the limiting torque is reached. Of course, when τID ' 1, input and output torque are very similar. Therefore,
when the limiting value of the output torque is reached (i.e. ∼ 120 Nm), the creep increases both at the input and
output disc-rollers contact, as shown in Figure 9(a, d).

Figure 7c depicts the overall efficiency as a function of the output torque. The efficiency strongly depends on the
output torque, with a maximum value of about 90% and a quite flat behavior in a torque range between 50% up to
90% of the limit torque. From figure 7 it emerges that at small values of output torque, the overall efficiency is very
low and it very rapidly drops down to zero with decreasing torque. It can be justified by the very low and rapidly
decreasing value of the torque efficiency at small values of output torque. When the output torque is relatively small,
indeed, the system is over-clamped and the spin losses are too large.

However, as shown in Figure 8, this behavior depends on the clamping force. More specifically, increasing the
clamping force, and thus FN0 , with constant τID = 1, leads to the increase of the limiting torque, the increase
of the speed efficiency over the whole torque range (Figure 8a), and the reduction of the torque efficiency over the
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whole torque range (Figure 8b). The combined effects emerges from Figure 8c, which plots the overall efficiency at
increasing clamping force. In particular, if the clamping force is small, then the torque range is small too because
of under-clamping, but the efficiency is quite large at absolute small values of output torque. On the other hand,
when the clamping force is large, also the torque range is large but the efficiency is very low at absolute small values
of output torque, because of over-clamping. It follows that it is possible to tune the clamping force to optimize the
efficiency with respect to the desired value of the output torque. The actual efficiency curve is, in that case, the upper
envelope of the efficiency curves shown in Figure 8c. Under such circumstances, the efficiency curve would be very
flat with respect output torque, and values would be larger than 0.92 over the whole range.
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Figure 9. Creep coefficient at contacts between: (a) input disc and roller, (b) roller and first idler, (c) roller and second idler,
(d) roller and output disc as functions of output torque at different vales of transmission ratio. FN0 = 2.0 kN

Interestingly, as shown in Fig. (9), some creep coefficients, namely CRSa and CRSb , can drop down to negative
values. To get a better insight, Figure 10a depicts the two above mentioned creep coefficients as functions of the
speed ratio for an input speed ω0 = 2000 rpm and an output torque T2 = 40 Nm. In addition, we also show the spin
coefficients σSa and σSb as functions of the ideal speed ratio and for the same operative conditions (Fig. 10b). From
the figures it is also evident that the spin coefficients have a change of sign in the vicinity of the inversion points of
the creep coefficients.

The inversion of a spin coefficient can be explained considering the variator geometry. In particular, the tilt angle
affects the direction of the angular velocity vector of the rollers, thus the relative angular velocity between idlers
and rollers depends on it. The normal component may change its sign. Accordingly, since the spin torque is always
opposite wised with respect to the spin velocity, when the spin changes sign, also the spin torque must change. If we
consider the idlers, as a first approximation they rotate frictionless around their axes. Therefore, in the rotational
equilibrium, the spin torque axial component must be opposed by the torque given by the tangential force at idler-
roller contact and thus on creep. So, under this hypotheses, when the spin changes its sign, also the creep must
change. When the bearing loss is considered, things may change because the creep must equilibrate both the spin
torque and the bearing torque; however, if bearing torque is small enough, then the inversion point is almost the same
for spin and creep coefficients, thus a creep inversion is observed.

Of course, both spin and creep are still dissipative, even though the internal power flow changes when the creep
and the spin are inverted. For instance, let us consider the contact between the roller and the first idler. In normal
conditions, the roller is “faster” in the sense that its tangential velocity at the contact point is larger than the idler.
In this case, the creep is positive and the power enters from the “creep side” and gets out from the “spin side”. When
the spin sign is inverted, the opposite power flow is achieved. However, this effect is not related to the dissipation at
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Figure 10. Creep (a) and spin (b) coefficients at contact between roller and idlers as functions of the ideal speed ratio.
FN0 = 2.0 kN

contact since the power dissipated by both creep and spin depends on the relative velocities. We also calculate the
overall efficiency by considering all the dissipated power terms in the device. In particular, if the power loss Ploss can
be calculated, then the overall efficiency is given by:

η = 1− Ploss
P0

= 1− Ploss
T0ω0

(39)

where Ploss can be calculated as the sum of the creep loss PCR, the spin loss PSP and bearing loss PBL:

PCR = n (|ω0r0CR0FS0|+ |ωSrSaCRaFSa|+ |ωSrSbCRbFSb|+ |ωSrS2CR2FS2|)
PSP = n (|TSP0σS0ω0|+ |TSPaσSaωa|+ |TSPbσSbωb|+ |TSP2σS2ω2|)
PBL = n (|TSBLωS |+ |TBLaωa|+ |TBLbωb|)
Ploss = PCR + PSP + PBL

(40)

Figure 11 shows the overall efficiency of the transmission calculated by eq. 38 and by eq. 39, as a function of
the ideal speed ratio and for given values of the output torque T2 = 40 Nm and input speed ω0 = 2000 rpm. The
maximum efficiency almost equals 0.89, and this value is achieved at τID ' 1.76. The efficiency starts from 0.82 and
τID = 0.5 and has a quite slow growth, up to the maximum value. There are two points in which the curve slope
undergoes step changes: they are very close to the spin coefficients inversion points. It is worth noting that the two
methodologies used to calculate the efficiency lead to equal results.

B. Single-idler configuration

The analysis on the power flow between the roller and the inner disc leads to the conclusion that, at least when the
inner disc bearing losses are negligible, there is a certain amount of creep which is due to the axial component of spin.
Therefore, a geometry of the contact between the roller and the inner disc which vanishes the axial component of the
spin could be much better in terms of power dissipation and efficiency, since it will necessarily reduce the creep too.
Thus, we analyzed the geometry shown in Figure 2b, where the inner discs are replaced by one single annulus giving
radial support to the rollers. In this conditions, there is already a spin torque and, consequently, a spin dissipation
at the contact between the roller and the inner annulus; however, the creep is expected to be limited since the spin
has no axial component on the inner annulus. Further, also bearing losses on inner annulus are much smaller since
there is no radial or axial load to be supported by bearings, and the loss is only due to bearing rotational speed.

Figure 12 shows the creep coefficient as a function of the ideal speed ratio. The largest values of creep correspond
to the extremes of the ratio range, which also correspond to the maximum values of the spin ratio. However, as
expected, the maximum creep is two orders of magnitude smaller than obtained in the double-roller geometry (Figure
10) and, accordingly, the overall creep loss is also expected to be smaller. More importantly, the spin has no axial
component in the central element, resulting in a larger torque efficiency. At τID = 1 it is also obtained that σS1 = 0,
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Figure 11. Overall efficiency of the transmission vs ideal speed ratio. The efficiency values are calculated by the eq. (38) and
by the eq. (39) for comparison. FN0 = 2.0 kN
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Figure 12. Creep coefficient on the single-idler as a function of speed ratio. FN0 = 2.0 kN

so at τID = 1 the variator is expected to have a large efficiency. Figure (13) shows the efficiency of the single-roller
configuration in comparison with the double-roller, with ω0 = 2000 rpm, T2 = 20, 40, 60 Nm and a thrust force such
that FN0 = 2.0 kN. Observing the figure we can note that efficiency is quite larger over the whole range of τID if the
two idlers are replaced by a single one, whatever the value of the output torque. In particular, when τID = 1 the
efficiency is maximum and the difference between the single and the double-roller is maximum too; in such a point
the spin σS1 is equal to zero and, consequently, also the spin power dissipation in the contact between the roller and
the idler must vanish in the single-idler architecture.

The drawback of this configuration is that the maximum pressure of contact at the contact between the rollers and
the idler is larger for an equal value of clamping force. Indeed, in the case analyzed herein, with a clamping force
equal to 2.0 kN the maximum contact pressure is equal to 2.61 GPa (we remember that 1.63 GPa was the maximum
value on the double roller architecture at equal clamping force). The reasons are: In this case only one contact must
sustain all the radial load; The contact area is smaller because of a smaller equivalent radius of contact. This makes
the maximum admissible clamping force, and thus output torque, smaller for the single-idler than for the double idler.
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Figure 13. Drive efficiency: comparison between the double-idler architecture and the single-idler architecture. Efficiency is
shown as a function of the ideal speed ratio with constant output torques (values in the legend). FN0 = 2.0 kN.

IV. CONCLUSIONS

The following achievements are worthy of being mentioned:

• A mathematical model of a NuVinci drive has been developed, which is based upon a kinematic analysis,
equilibrium equations, and a tribological model of contacts. The model enables the calculation of the traction
capabilities of a device of a given geometry, and the estimation of the speed and torque efficiency of the traction
drive, allowing simulating the overall drive efficiency.

• Two different architectures are considered. The first one comes from a geometrical analysis of a real device
purchased and disassembled on purpose; such architecture is named double-idler since the ball rollers are radially
restrained by a couple of idlers set in the inner part of the device. The second one comes from the original
patent (see Ref. [27]) and named single-idler because the rollers are radially restrained by one single cylindrical
idler in the inner part. There is no difference in principle in terms of model construction.

• It is found that, for one given value of the thrust force, the efficiency of the single-idler architecture is larger
than the double-idler over the entire range of speed ratio, with a peak efficiency of 0.9 when speed ratio is equal
to one. Here, the peak difference with respect to the double idler is found and it is of about 3% of efficiency.
At this point in the single-idler architecture, the roller-idler contact is spin-less.

• The reason of such an evident difference is investigated, and set in relation to two factors. First, in the case of
double-idler architecture, there is no speed ratio leading to an overall zero-spin condition at roller-idler contact.
Second, the axial amount of spin at roller-idlers contact leads also a small amount of creep. A kind of internal
power circulation arises which increases the power loss further.

Further investigations are planned to study the behavior of the NuVinci as a CVP, to compare the foreseen behavior
with experimental results and to add dynamic effects.

APPENDIX A

The development of a contact model that takes into account the viscoelastic behavior of traction fluid is a mandatory
step to define the traction coefficients, the spin coefficients and thus the creep and the efficiency. The model adopted
for this purpose was developed in [18]. According to this model, considering the high contact pressure it is reasonable
to suppose that the pressure distribution is given by Hertzian theory for dry contact. The film thickness of the traction
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oil is estimated using the Hamrock-Dowson formula for hard-EHL contact, and it is supposed to be almost constant
in the contact area [40].

The first step to calculate the contact area and pressure distribution according to the theory of Hertz is to evaluate
the equivalent radius of curvature of the surfaces in the point of contact. The equivalent radius of curvature in
dimensionless form is ρ̃eqj = (rS/ρ

eq
j,x + rS/ρ

eq
j,y)−1, where ρeqj,x and ρeqj,y are the equivalent radii of curvature in the

rolling and tilting direction respectively and j indicates the j-th contact. The equivalent contact radii in the rolling
and tilting directions are thus calculated for every contact:

ρ̃eq0,x =
1

rS

(
1

r0,x
+

1

rS0,x

)−1
=

r̃0
1 + k

; ρ̃eq0,y =
1

rS

(
1

r0,y
+

1

rS0,y

)−1
=
r̃02 − 1

r̃02
(41)

ρ̃eqa,x =
1

rS

(
1

ra,x
+

1

rSa,x

)−1
=

r̃a
1 + k

; ρ̃eqa,y =
1

rS

(
1

ra,y
+

1

rSa,y

)−1
=
r̃a2 − 1

r̃a2
(42)

ρ̃eqb,x =
1

rS

(
1

rb,x
+

1

rSb,x

)−1
=

r̃b
1 + k

; ρ̃eqb,y =
1

rS

(
1

rb,y
+

1

rSb,y

)−1
=
r̃b2 − 1

r̃b2
(43)

ρ̃eq2,x =
1

rS

(
1

r2,x
+

1

rS2,x

)−1
=

r̃2
1 + k

; ρ̃eq2,y =
1

rS

(
1

r2,y
+

1

rS2,y

)−1
=
r̃22 − 1

r̃22
(44)

Where r̃k = rk/rS with k = 0, a, b, 2, 02, a2, b2, 22. The Hertzian contact area is elliptical and to evaluate the
contact pressure distribution it is necessary to calculate the semi axes of contact ellipse (ax and ay). The Hamrock
and Brewe method [40] is thus followed. Eccentricity parameter ε and elliptic integrals I1 and I2 are defined as follow:

ε =
ãy
ãx

= ξ2/π (45)

I1 =

{
π
2 −

(
π
2 − 1

)
ln(ξ) ε < 1

π
2 +

(
π
2 − 1

)
ln(ξ) ε > 1

(46)

I2 =

{
1 +

(
π
2 − 1

)
ξ ε < 1

1 +
(
π
2 − 1

)
1
ξ ε > 1

(47)

where the dimensionless coefficient ξ is given by ξ = ρeqy /ρ
eq
x . Dimensionless axes ãx and ãy in (45) are evaluated

as ax/Λ and ay/Λ where the contact length parameter Λ is:

Λ =

(
6FnrS
πE′

) 1
3

(48)

In the eq. (48) E′ = E/(1 − ν2), E and ν are the modulus of elasticity of the contacting bodies and the Poisson
ratio, respectively. The contact length parameter is evaluated for each point of contact, to simplify the discussion
and considering that the definition of the following quantities are the same for every point of contact, here in after
we avoid the use of the subscript (where unnecessary).

Equations (41) to (48) allow us to evaluate dimensionless semi-axes of contact eclipse for the three points of contact:

ãy =
(
ε2I2ρ̃

eq
y

) 1
3 ; ãx =

(
I2
ρ̃eqx
ε

) 1
3

(49)

Using the results of Hertzian theory [40], introducing half-amplitude of the subsurface orthogonal shear stress τ̃0 =
τ0Λ2/Fn and the dimensionless co-ordinates X = x/ax and Y = y/ay, we can define the dimensionless pressure
distribution as follow:

p̃Y = p̃max
√

1−X2 − Y 2 =
3

2πãX ãY

√
1−X2 − Y 2 (50)

The pressure-dependent fluid viscosity for EHL contact is calculated through the following formula:
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log(η̃) = log(η/η0) =

[(
1 +

πp̃

6Rc̃p

)z1
− 1

]
log(η0/η∞) (51)

Where c̃p = cpE
′, cp = 1.96 · (10)8, η is the absolutely viscosity at the pressure p, η0 is the absolute viscosity at

the atmospheric pressure for the given temperature, η∞ = 6.31 · 10−5 Pa s , the dimensionless constant z1 is the
viscosity-pressure index and R is the dimensionless load parameter:

R =
rS
Λ

=

(
πE′r2S
6Fn

)1/3

(52)

Using the procedure presented in [18, 20], the shear stress acting on the roller at the contacts point in rolling and
tangential directions are thus defined:
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(53)

where hj is the film thickness of the oil in the point of contact (at contact j-th), while τ̃Lj = τLj/E
′ and τLj is the

limiting shear stress at contact j-th calculated as:

τLj = τ0L + ap (54)

where τ0L is the limiting shear stress at atmospheric pressure. Dimensionless relative velocities of eq. (53) can be
evaluated:
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;
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(55)

Eqs. (53) need the value of the film thickness to be solved. Using the Hamrock model for elliptical conjunction in
EHL contact, we can calculate the dimensionless central film thickness H = h/ρeqx of lubricant in the contact region
as follows:

H0 = 2.69
(π

6

)−0.067
[(1− 0.5Cr0)(1 + k)ω̃0]

0.67
ζ̃ 0.53 ρ̃eq 0.134

0,x R 0.201
0

(
1− 0.61e−0.73ε0

)
Ha = 2.69

(π
6

)−0.067 [(1− 0.5Cra
1− Cra

)
(1 + k)ω̃a

]0.67
ζ̃ 0.53 ρ̃eq 0.134

a,x R 0.201
a

(
1− 0.61e−0.73εa

)
Hb = 2.69

(π
6

)−0.067 [(1− 0.5Crb
1− Crb

)
(1 + k)ω̃b

]0.67
ζ̃ 0.53 ρ̃eq 0.134

b,x R 0.201
b

(
1− 0.61e−0.73εa

)
H2 = 2.69

(π
6

)−0.067 [(1− 0.5Cr2
1− Cr2

)
(1 + k)ω̃2

]0.67
ζ̃ 0.53 ρ̃eq 0.134

2x R 0.201
2

(
1− 0.61e−0.73ε2

)
(56)

Given all these quantities, traction and spin coefficients can be calculated. The elemental tangential force is express
by means of shear stress in rolling direction as:



19

dFSi = τSi,xdA = τSi,xdxdy; i = {0, a, b, 2} (57)

While, according the relations from (63) to (66), the spin torque is evaluated as:

dTSPi = (τSi,yx− τSi,xy) dxdy; i = {0, a, b, 2} (58)

Combining (59) to (66) with (57) and (58), traction and spin coefficients are calculated:

µ0 = ã0,xã0,y

∫ 1

0

dR

∫ 2π

0

τ̃S0,xRdψ (59)

µa = ãa,xãa,y

∫ 1

0

dR

∫ 2π

0

τ̃Sa,xRdψ (60)

µb = ãb,xãb,y

∫ 1

0

dR

∫ 2π

0

τ̃Sb,xRdψ (61)

µ2 = ã2,xã2,y

∫ 1

0

dR

∫ 2π

0

τ̃S2,xRdψ (62)

χ0 =
ã0,xã0,y
R0r̃0

∫ 1

0

dR

∫ 2π

0

φ0(R,ψ)R2dψ (63)

χa =
ãa,xãa,y
Rar̃a

∫ 1

0

dR

∫ 2π

0

φa(R,ψ)R2dψ (64)

χb =
ãb,xãb,y
Rbr̃b

∫ 1

0

dR

∫ 2π

0

φb(R,ψ)R2dψ (65)

χ2 =
ã2,xã2,y
R2r̃2

∫ 1

0

dR

∫ 2π

0

φ2(R,ψ)R2dψ (66)

where φi(R,ψ) = (τ̃Si,y cos(ψ)− τ̃Si,x sin(ψ)), τ̃Six and τ̃Siy are respectively, the shear stress in the rolling direction
and along the normal direction for each point of contact. R is the load factor that depends on the geometry and the
normal force. ãX and ãY are the axes length of the elliptic contact in dimensionless form.
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