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Abstract: Urban stormwater runoff represents a significant challenge for the practical assessment of
diffuse pollution sources on receiving water bodies. Given the high dimensionality of the problem,
the main goal of this study was the comparison of linear and non-linear machine learning (ML)
methods to characterize urban nutrient runoff from impervious surfaces. In particular, the principal
component analysis (PCA) for the linear technique and the self-organizing map (SOM) for the non-
linear technique were chosen and compared considering the high number of successful applications
in the water quality field. To strengthen this comparison, these techniques were supported by
well-known linear and non-linear methods. Those techniques were applied to a complete dataset
with precipitation, flow rate, and water quality (sediments and nutrients) records of 577 events
gathered for a watershed located in Southern Italy. According to the results, both linear and non-
linear techniques can represent build-up and wash-off, the two main processes that characterize
urban nutrient runoff. In particular, non-linear methods are able to capture and represent better the
rainfall-runoff process and the transport of dissolved nutrients in urban runoff (dilution process).
However, their computational time is higher than the linear technique (0.0054 s vs. 15.24 s, for linear
and non-linear, respectively, in our study). The outcomes of this study provide significant insights
into the application of ML methods for the water quality field.

Keywords: nutrients; urban runoff; PCA; SOM; machine learning

1. Introduction

Surface freshwater, among the aquatic ecosystems, is one of the fundamental com-
ponents of the water cycle for human life worldwide. It is generated from surface water
bodies, which provide drinking water, preserve biodiversity, control climate, and maintain
phosphorus and nitrate cycling [1]. However, in recent decades, the quality of these water
bodies has been threatened by anthropogenic activities (e.g., urbanization, agriculture,
water extraction, sewage discharge) [2–5]. Therefore, in the management plan of pollution
control at a watershed scale, a worthwhile initial step is the identification of the pollution
sources. They can be point sources (PS) or non-point sources (NPS). PS control is more
direct and quantifiable and, in several countries, its mitigation has been linked to water
treatment, achieving lower pollutant concentrations before discharge. Instead, NPS pollu-
tion occurs when contaminants from diverse and widely spread sources are transported
by runoff into water bodies. NPS pollution is more difficult to quantify due to its diffuse
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nature and the fact that many small sources might contribute to the generation of NPS
pollutants [6–8]. Stormwater runoff from urban areas has been considered one of the
most critical types of NPS pollution [8]. Thus, in this context, efficient and sustainable
strategies for urban catchment management play a significant role in the protection of
surface water quality.

The dynamic and random nature of urban runoff quality may be related to different
local factors [9]. Previous studies have categorized such factors into four main groups:
(i) pollutant type (with its characteristics like composition, load, decay rate) [10]; (ii)
water quality physical characteristics (temperature, pH, salinity) [11]; (iii) temporal factors
(seasonality, antecedent dry days, first flush pattern) [12]; and (iv) spatial factors (land cover,
land use, slope, soil type, and other catchment physical characteristics) [1,13]. In addition
to the intrinsic random nature of urban runoff quality, most of the works mentioned above
have also demonstrated that many multifaceted interactions among these factors have
occurred in multi-dimensions. In such conditions, conventional univariate (e.g., ANOVA)
and multivariate (e.g., linear regression) statistical techniques have been widely adopted to
investigate the correlation among water quality characteristics and influential factors [3,14].
However, the outcomes were often affected by several sources of statistical bias, unless
all the analysis requirements (e.g., model selection criteria, parametric assumptions, and
interaction terms) were rigidly tackled or fixed [9,15]. Therefore, considering that these
issues may prevent an in-depth understanding of water quality changes and their different
effects on water bodies in response to various rainfall events, the challenge in evaluating
the variability of urban stormwater quality is clear.

In this context, machine learning (ML) methods are used to explore the hidden informa-
tion in a multidimensional water quality dataset [16,17]. During the last decade, linear and
non-linear ML techniques have been well reviewed for surface water quality assessments
due to their outstanding capability to overcome the above-mentioned issues by processing
and analyzing large amounts of data in a relatively short time. Gorgoglione et al. [7]
adopted principal component analysis (PCA) to assess the effect of rainfall, watershed,
and drainage network characteristics on urban nutrient runoff in poorly gauged areas.
Furthermore, they used hierarchical cluster analysis (HCA) to evaluate the performance of
a hydrologic/hydraulic and water quality model implemented in two different study areas.
Dutta et al. [18] also used PCA and HCA to investigate the geospatial differences in water
quality monitoring locations and identify potential water pollution sources. Liu et al. [19]
carried out a comprehensive investigation into the relationship between land-use type and
mineral components in river sediments by exploiting the PCA technique.

However, several researchers have stated that the linear multivariate ML techniques
are constrained by the assumption of linearity, which is an unverified hypothesis for the
urban nutrient runoff process [17,20,21]. For this reason, lately, non-linear multivariate
methods have received significant attention from environmental researchers. Among
several techniques, the self-organizing map (SOM) is one of the most adopted in the water
quality field [20,22,23]. It is a type of artificial neural network (ANN) composed of fully
connected neuron arrays, able to describe an environmental phenomenon depending on
different physical variables (represented by a high-dimensional space) through a new
low-dimensional space (usually two dimensions) [24]. Nevertheless, prior to the network
training, the user has to define the number and arrangement of neurons to outline the
topology structure, which directly affects the classification results. On its side, the SOM has
the advantages of providing a suitable representation of non-linear processes, as well as a
large number of parallel distributed structures, and is capable of learning and induction.
Ding et al. [4] used the SOM training to improve linear techniques to identify the temporal
and spatial patterns of several water quality variables. The authors found that the sampling-
site elevation affected the water quality throughout different seasons. In fact, the reservoir
water quality was poorer in the rainy season and particularly for reservoirs located on
plains than the ones located on the mountains. For a similar purpose, Jiang et al. [17]
adopted SOM and the growing hierarchical self-organizing map (GHSOM) in the Songhua
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river basin (China). These techniques were able to explore spatial and temporal features,
the correlation between water quality parameters, and the major contaminants presented
in the river (chemical oxygen demand, ammonia nitrogen, total phosphorus, and fecal
coliform). Ki et al. [9] applied the SOM technique to the storm water monitored dataset
to gain new insights about stream water quality profiles under different precipitation
conditions. Among the several outcomes of this study, it was found that, for different
monitoring sites and rainfall events, the SOM showed significant variability in trace metal
concentrations, with a greater impact of runoff on river water quality at the upstream
stations than at the downstream ones, except under low rainfall conditions (≤4 mm).

Taking into account the successful applications of the PCA and SOM, this study
aims to compare the results of these two approaches, which respectively belong to the
linear and non-linear ML techniques, regarding the characterization of nutrient runoff
from impervious surfaces in urban watersheds. In particular, the comparison is carried
out following three main aspects: (i) the ability to represent the correlation among the
selected variables to represent the system and, therefore, depict the build-up and wash-
off processes (feature correlation); (ii) the capability to group the dataset, based on the
variables that represent the build-up and wash-off processes (data point grouping); (iii) the
ability to quantify the importance of each variable (feature importance). PCA and SOM are
supported by other linear and non-linear methods to strengthen this comparison. These
two techniques are both used for dimension-reduction but, as far as we know in the recent
literature, they have never been computed for the same dataset and their results have never
been compared.

A watershed located in Southern Italy was used as a case study, where: (i) precip-
itation, flow rate, and water quality (sediments and nutrients) were monitored; (ii) a
hydrologic/hydraulic and water quality model was calibrated and validated; (iii) a model
for synthetic rainfall generation was implemented. The findings of this study will provide
essential insights into the application of ML techniques for water quality data exploration
in urban areas.

2. Materials and Methods
2.1. Methodology Description

A flowchart that summarizes the methodology adopted in this study to accomplish the
main and the specific objectives is presented in Figure 1. Four main steps can be identified.
The first one is represented by the dataset creation, including a monitoring campaign, a
precipitation-generation model, and a hydrologic/hydraulic/water quality model (see
Section 2.3). The second and third steps include data analysis performed by PCA and SOM,
respectively (see Section 3). The last step compares the outcomes obtained by the previous
two phases (see Section 3). It is worth remarking that the comparison includes not only the
physical processes that characterize urban nutrient runoff but also the computational cost
(computational time and hardware resource requirements) of the two algorithms.

2.2. Study Area

The urban area that we took into account for this work is located in Southern Italy
(Puglia region), in Sannicandro di Bari (SB). From the climatic point of view, this region
belongs to the southeastern Mediterranean area [25]. In the Koppen classification, the
climate is designated as Cs to indicate a sub-tropical climate with dry summers [26].
Mainly, the Cs climate is characterized by rainy winters and dry summers, with peaks of
precipitation in the shoulder seasons [27].

SB watershed has a surface equal to 31.24 ha. The average slope is equal to 1.56% and
the average elevation is 169 m above sea level. The mean annual temperature is equal to
15.0 ◦C and the mean annual rainfall is equal to 586 mm. The impervious area represents
the dominant land cover (70% of the entire catchment), while only 3.80% of the watershed
is covered by green area (source: SIT Puglia) [28]. The stormwater drainage network is
1.96 km long and collects water into a concrete rectangular channel that is 1.20 m × 1.70 m.
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Figure 1. Flowchart of the methodology adopted in this study.

In Figure 2, the area of the watershed, the drainage network, and the outfall are shown.

Figure 2. Sannicandro di Bari (SB) study area: basin surface, drainage network, and outfall (equip-
ment location) (source: Google Earth).

2.3. Dataset
2.3.1. Observations

A monitoring campaign was carried out in SB to collect precipitation, flow rate, and
water quality records. A rain gauge (ISCO 674 model), installed close to the basin’s outlet,
was used for recording the precipitation. A bubble flowmeter (ISCO 730 model) was
adopted to measure discharge. Water quality data were monitored by collecting samples
through an autosampler with 24 bottles of 0.5 L each and evaluated by adopting the
standardized methods reported in Eaton et al. [29]. In Di Modugno et al. [30], we provided
more details about the equipment used for the monitoring campaign. The monitored
water quality variables were total suspended solids (TSS), total nitrogen (TN), and total
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phosphorus (TP). Data of five rainfall events were collected (11/10/2006, 11/22/2006,
12/17/2006, 01/24/2007, and 02/10/2007).

Summaries of the observed rainfall-runoff (antecedent dry period (ADP), total rainfall,
event duration, maximum rainfall intensity, runoff volume, and runoff peak) and water
quality (minimum, maximum, and event mean concentration (EMC)) data are presented in
Tables 1 and 2. Hereafter, this dataset is called “observations.”

Table 1. Summary of the rainfall-runoff data for the monitored events at the SB basin.

Event ADP (days) Total Rainfall
(mm)

Event
Duration (min)

Max. Rainfall
Intensity (mm/h)

Runoff
Volume (m3)

Runoff Peak
(m3/s)

10 November 2006 6 2.4 50 24 113.49 0.04
22 November 2006 11 4.3 112 6 148.86 0.04
1 December 2006 18 5.9 251 12 286.88 0.05
24 January 2007 19 1.6 37 12 111.62 0.05

10 February 2007 6 12.9 398 36 460.11 0.05

Table 2. Summary of the water quality data for the monitored events at the SB basin.

Event
TSS (mg/L) TN (mg/L) TP (mg/L)

min max EMC min max EMC min max EMC

11/10/2006 224.0 420.0 19.54 7.0 8.3 0.47 0.70 1.00 0.05
11/22/2006 124.0 2160.0 86.40 3.6 14.0 0.45 0.24 2.96 0.11
12/17/2006 6.0 217.0 6.040 - - - - - -
01/24/2007 177.0 807.0 47.96 5.4 10.0 0.48 0.65 0.99 0.03
02/10/2007 541.0 2090.0 40.00 6.3 13.0 0.25 2.08 3.63 0.08

2.3.2. Simulations

From now on, we will call “simulations” those events characterized by observed
precipitation (rainfall data described in Section 2.3.1) and simulated flow rate and water
quality variables (TSS, TP, and TN). The simulations were obtained using the Storm Water
Management Model (SWMM), a well-known, worldwide hydrologic/hydraulic and water
quality model used to simulate hydrographs and pollutographs in urban areas [31]. It is
worth mentioning that recent bibliographic works have used this model for characterizing
urban runoff and for estimating pollutant loadings [32–37]. For our work, the observed
precipitation of each monitored event was the input for the SWMM model, along with
the physical characteristics of the watershed and the drainage network. Therefore, five
“simulation events” were added to the global dataset adopted in this study.

SWMM operates in blocks or units. For the current study, we adopted the runoff
and the transport block. In particular, the kinematic wave was implemented to simulate
the runoff from impervious surfaces. The water losses considered in the system were
represented by the infiltration process (Horton’s equation) and the depression storage
of the impervious portion of the watershed. Pollutant build-up, pollutant wash-off, and
first-order decay were the water quality processes simulated by the model. The first two
processes occur at a watershed scale, while the third occurs in the drainage network. Build-
up and wash-off were both simulated with an exponential function (Equation (1) and
Equation (2), respectively) [31]:

b = Bmax

(
1− e−kBt

)
(1)

w(t) = bCwqkw (2)

where b is the pollutant build-up during the dry period [kg/ha], Bmax is the maximum
asymptotical limit of the build-up curve [kg/ha], kB represents the build-up rate constant
[1/d], t is the interval dry time [d], w(t) is the cumulative mass of constituent washed off at



Sustainability 2021, 13, 2054 6 of 19

time t, Cw is the wash-off coefficient [1/mm], kw represents the wash-off exponent, and q is
the runoff rate over the subcatchment [mm/hr].

A comprehensive description of the above-mentioned physical processes can be found
in the scientific literature [30,38,39].

The model was implemented in the study area, and the calibration and validation
processes for the quantity and quality components were already successfully tackled in
our previous work [30]. The calibrated parameters of Eq. 1 and Eq. 2 are summarized in
Table 3.

Table 3. Water quality parameters (build-up and wash-off) calibrated at SB.

Process Parameter Range Value

Build-up Bmax 87.000–446.000 115
kB 0.002–6.000 0.08

Wash-off Cw 0.110–0.190 0.18
kw 0.000–3.000 2.35

2.3.3. Generations

Thereafter, we will call “generations” those events characterized by synthetic precipi-
tation, produced by the Iterated Random Pulse (IRP) model, and simulated flow rate and
water quality variables (TSS, TP, and TN) obtained using the SWMM model. In this case,
the synthetic precipitation events were used as input of the SWMM model for generating
hydrographs and pollutographs for each event at SB.

The IRP model was proposed by Veneziano and Iacobellis [40] and Veneziano et al. [41].
It adopts the classical depiction of the exterior process of the precipitation as an alternating
sequence of dry and wet periods with independent lengths that describe the arrival,
duration, and average intensity of rainfall events at the synoptic scale. The dry and wet
periods are assumed to follow a Weibull and exponential distribution, respectively. The
average precipitation intensities in various wet periods are independent and follow an
exponential distribution. Precisely, the wet periods of the exterior model are scattered
through the “interior” scheme, where the precipitation is represented as the overlapping
of pulses with a hierarchically nested structure of temporal occurrences, with multifractal
properties of intensity and location [42].

The IRP model was implemented at SB and provided a 15-year-long precipitation time
series with 15 min of aggregation. Considering the regional regulation [43], single rainfall
events were identified considering 48 h of the antecedent dry period. Consequently, 567
synthetic rainfall events were defined and introduced in SWMM for getting the simulated
flow rate and water quality load and concentration.

2.4. Variable Selection

Suitable rainfall and water quality characteristics were chosen to better represent the
cause–effect process of nutrient urban runoff.

For the rainfall characteristics, antecedent dry period (ADP), total rainfall (Tot_Rainfall),
and runoff volume (Runoff_Vol) were chosen. Respectively, they represent the no-rainy days
before the rainfall event (dry period), the input (Tot_Rainfall), and the output (Runoff_Vol)
of the hydrologic component (wet period).

For the water quality characteristics, the event mean concentration (EMC) and the
event mean load (EML) of TSS, TN, and TP were considered to not overshadow any process
related to dissolved and particulate nutrients. In particular, the following equations were
adopted [44]:

EMC =
∑n

i=1 CiVi

V
(3)

EML = ∑n
i=1 CiVi = EMC·V (4)
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where V is the total runoff volume for each event [L], Ci is the average pollutant concentra-
tion at time step i [mg/L], Vi represents the runoff volume proportional to the flow rate at
the time i [L], and n is the total number of samples collected during a rainfall event. EMC
and EML were calculated for TSS (EMC_TSS and EML_TSS), TN (EMC_TN and EML_TN),
and TP (EMC_TP and EML_TP).

2.5. Machine Learning Techniques

The two groups of ML techniques adopted for this study were linear and non-linear.
For the linear methods, PCA was chosen and supported by Pearson’s correlation coefficient
(r). For the non-linear algorithms, SOM was selected and supported by Spearman’s rank
correlation coefficient (ρ).

The main objective of PCA and SOM is reducing the dimensionality of a dataset that
contains a large number of interrelated variables while preserving most of the dataset
variance [45]. In this study, Pearson’s r and Spearman’s ρ were adopted as supporting
techniques (linear and non-linear, respectively) to investigate beforehand the correlation
among data points to confirm or add further information to the outcomes obtained with
both dimension-reduction methods.

Both groups of techniques belong to the family of unsupervised methods, where
information about other response variables or group belonging is not used to obtain results.
This makes these techniques suitable for exploratory analysis, where the main aim is
hypothesis generation rather than hypothesis verification [5,46].

2.5.1. Linear Techniques: PCA and Pearson’s r

The PCA decreases the dimensionality and, therefore, the complexity of a given
dataset of independent variables. This method generates a new set of variables containing
orthogonal-uncorrelated variables. The latter, known as principal components (PCs), are
linear combinations of the original features and are arranged by decreasing variance [47,48].
The eigenvalues quantify the importance of the PCs. They are able to expose possible
emerging characteristics of the system that may be hidden if we emphasize one original
variable at a time [44].

Pearson’s r is a measure of linear correlation between two variables. Its value lies
between –1 and +1, –1 indicates a total negative linear correlation, 0 shows no linear
correlation, and 1 indicates a total positive linear correlation.

2.5.2. Non-Linear Techniques: SOM and Spearman’s ρ

The SOM is an ANN proposed by Kohonen [24]. It is a competitive self-organizing
network, constituted by fully connected neuron arrays, which can create a two-dimensional
space mapping starting from a multidimensional space. In SOM, neurons learn in an
unsupervised way since no network is required to provide a specific target or objective.
Neurons compete with each other to better describe the input data, with the activation
of only one neuron (or one node of neurons) when a data pattern is defined (competition
phase) [1,49]. In the training phase, the input values are progressively adjusted to maintain
the neighborhood relationship in the given input dataset (adaptation phase). This phase
generates a mapping between the multidimensional space input and the two-dimensional
space output (co-operation phase). In this way, the SOM clusters alike data close to each
other in the 2D space [50,51].

Spearman’s ρ is a measure of the monotonic correlation between two variables, and,
therefore, works better in catching non-linear monotonic correlations than Pearson’s r. Its
value ranges between –1 and +1, –1 indicates a total negative monotonic correlation, 0
shows no monotonic correlation and 1 indicates a total positive monotonic correlation.
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3. Results and Discussion
3.1. Dataset Profiling

The resulting dataset was composed of 577 storm events: 5 observed, 5 simulated, and
567 generated. The data profiling process was programmed and run in Python 3.8, using
the pandas_profiling library [52]. In Table 4, the quintile statistics (minimum, 5th percentile,
median, 95th percentile, and maximum) and the descriptive statistics (standard deviation,
coefficient of variation, kurtosis, mean, and variance) of each variable of the dataset (577
storm events) are reported. The histograms that represent the frequency of each variable
are reported in the Supplementary Materials (SM-1).

Table 4. Quintile and descriptive statistics of the dataset.

ADP
(days)

Tot_Rainfall
(mm)

Runoff_Vol
(m3)

EMC_TSS
(mg/L)

EML_TSS
(mg)

EMC_TN
(mg/L)

EML_TN
(mg)

EMC_TP
(mg/L)

EML_TP
(mg)

min 2.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5th percentile 2.177 0.617 5.580 × 104 4.104 × 10−6 0.214 1.991 × 10−7 1.444 1.050 × 10−7 0.022

median 5.031 13.684 2.791 × 106 1.617 × 10−4 735.796 1.562 × 10−6 4.415 7.628 × 10−7 2.225
95th percentile 18.140 100.346 2.105 × 107 6.576 × 10−4 2209.532 3.635 × 10−5 12.721 2.376 × 10−6 5.323

max 59.135 422.099 1.489 × 108 1.428 × 10−3 3655.108 2.185 × 10−4 36.648 5.462 × 10−6 10.780
sd 6.041 39.059 1.171 × 107 2.221 × 10−4 743.537 1.951 × 10−5 3.929 7.648 × 10−7 1.649

coef. variat. 0.879 1.472 1.966 1.004 0.893 2.413 0.724 0.799 0.700
kurtosis 18.812 26.378 65.981 6.231 0.306 37.433 10.376 4.182 2.129

mean 6.874 26.529 5.960 × 106 2.211 × 10−4 832.201 8.084 5.425 9.572 × 10−7 2.355
variance 36.489 1525.611 1.373 × 1014 4.934 × 10−8 55,2847.603 3.805 × 10−10 15.435 5.850 × 10−13 2.720

The correlation among variables was investigated in advance by calculating the
Pearson’s r and the Spearman’s ρ (Figure 3).

Figure 3. Matrix of (a) the Pearson’s correlation coefficient (r) and (b) the Spearman’s rank correlation coefficient (ρ).

From Figure 3a, it is possible to identify a high linear correlation between Runoff_Vol
and Tot_Rainfall, EML_TN and ADP, EML_TP, and EML_TSS. It is noteworthy to remark
that Pearson’s r is not able to comprehensively describe the non-linear rainfall-runoff
process represented by the variables Runoff_Vol and Tot_Rainfall, which, instead, is well
represented by Spearman’s ρ (Figure 3b). Furthermore, it was able to catch the nutrient
transport driven by sediments (EML_TP and EML_TSS), showing, in particular, the highest
particulate nature of TP compared to TN. However, no information about the dissolved
portion of nutrients is provided.

Further information about non-linear processes is given by Spearman’s ρ (Figure 3b).
In this matrix, not only the correlation between Runoff_Vol and Tot_Rainfall is higher, as
mentioned before, but it is also able to represent the dilution process of the dissolved
nutrient portion: the higher Tot_Rainfall, and therefore Runoff_Vol, the lower the concen-



Sustainability 2021, 13, 2054 9 of 19

tration of TP and TN (EMC_TP and EMC_TN). Furthermore, it is possible to see that the
phosphorus off-site movement occurs mainly due to sediment transport. In contrast, the
nitrogen mobilization occurs primarily due to water surface runoff (EMC_TN has a stronger
correlation with Tot_Rainfall and Runoff_Vol compared to EMC_TP).

The plots that represent each of these correlations are reported in the Supplementary
Materials (SM-2).

3.2. PCA and SOM Run

A (577 × 9) matrix was used as input for the PCA and SOM analysis, where 577 refers
to the number of events that occurred at SB (observed + simulated + generated) and 9 are
the selected variables. Prior to the analysis, the variables were standard normalized (i.e.,
mean = 0, standard deviation = 1) to give equal weight to each of them and deal with their
various measurement units.

In this work, we coded all the algorithms in Python 3.8 and ran them on a 2.6 GHz
Intel i7 PC with 32 GB of memory.

The first two PCs were selected for SB since they represent 66.61% of the total variance
(39.19% is represented by PC1 and 27.42% by PC2). PCA was implemented using the
scikit-learn library [53]. Regarding the computing time, solving PCA with our dataset on
our PC took 0.0054 s.

For evaluating the SOM map size, we calculated the neuron number from the number
of data points of the training dataset using the equation proposed by Vesanto et al. [54]:

M ≈ 5
√

N (5)

where M represents the number of neurons, rounded to the nearest integer, and N is the
number of data points. In this work, N = 577, therefore M ≈ 121; this means a map with
11 × 11 neurons.

In this study, SOM implementation was programmed using the minisom package [55].
Solving SOM with the same input of PCA on the same PC took 15.24 s.

It is noteworthy that SOM’s computational load increases quadratically with the
number of data points. In our study, there is a four orders of magnitude difference, in terms
of computational time consumption, between PCA and SOM.

3.3. Feature Correlation

The first aspect that was compared between PCA and SOM was the ability to correlate
rainfall characteristics to water quality variables, in other words, to correctly represent
build-up and wash-off processes. With this aim, the PCA-loading plot and the SOM weight
map are represented in Figure 4.

It is important to remark that in the PCA-graphical representation, vectors representing
variables that form an acute angle are considered as correlated features, while those that
are perpendicular are considered as uncorrelated. In the SOM weight map, variables are
correlated if they activate the same neurons in the map (red neurons, also called positive
neurons). The phases of the map-weights initialization and the map training were both
realized by picking samples at random from the input dataset. After a training phase of
10,000 epochs (all the input data samples were used 10,000 times), a quantization error of
0.57 and a topographic error of 0.042 were obtained, assuring the resulting map’s quality.

Regarding the rainfall-related features (ADP, Tot_Rainfall, and Runoff_Vol), in both
plots, it is possible to detect the strong relationship between Tot_Rainfall and Runoff_Vol.,
while ADP is independent of these two variables. In particular, from Figure 4b, it is possible
to observe that ADP activates exactly the symmetric neurons of Runoff_Vol (neurons (1, 11)
and (1, 10)) and slightly activates neuron (1, 9), whose symmetric neuron is activated by
Tot_Rainfall.
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Figure 4. (a) PCA (principal component analysis)-loading plot and (b) SOM (self-organizing map)
weight map for identifying feature correlations at SB.

Considering the water-quality-related variables, in the biplot (Figure 4a), we can
identify two groups of variables: pollutant EMCs and EMLs. For both groups, one of
the most significant results is represented by the reliable correlation between TSS and TP,
and a weaker relationship between TSS and TN. These correlations suggest that sediment
transport is critical in the process of nutrient mobilization from impervious surfaces.
Notably, in our study watershed, phosphorus had a higher particle-bound component
than nitrogen. It is possible to also identify these patterns in Figure 4b, where the stronger
correlation between EML_TSS and EML_TP is represented by the same dark red neurons.
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Furthermore, this graphical representation shows that the variable EML_TSS covers the
highest variance of the system since it activates the highest number of neurons.

If we look at all the features (rainfall and water quality characteristics), Tot_Rainfall
and Runoff_Vol are inversely correlated to EMC_TP and EMC_TN; this means that the
more it rains, the higher the runoff volume from impervious surfaces and the smaller the
nutrient concentration due to a dilution process. In both plots, this effect is more evident
for EMC_TN, confirming the hypothesis mentioned above about the dissolved TN and the
particle-bound TP. In particular, in Figure 4b, EMC_TN activates the two opposite neurons
to Runoff_Vol that is the variable that represents the wash-off process. Furthermore, only
in the SOM weight map, the actual strong relationship between EMC_TSS and EMC_TP
is clear that, instead, is not clearly visible in the PCA biplot. Again, the assumption of
dominant particulate TP at SB is confirmed. Another aspect that can be better depicted in
the SOM weight map is the high correlation between ADP and pollutant loads, particularly
EML_TN: the longer the no-rainy period, the more significant the amount of pollutant load
accumulated on the impervious surfaces. However, this process is usually characterized by
an asymptotic superior limit and degradation processes (e.g., street cleaning, wind) that
cannot be described by these techniques.

Another important aspect to highlight in this comparison is that, to make a human-
readable-graphical representation, it is common to plot only the first two (or three) PCs
that, in our case, cover 66.61% of the variance of the system under study. SOM, instead,
considers 100% of the variance in two dimensions.

3.4. Data Point Grouping

The second aspect that was considered in this comparison was the ability of the
PCA and SOM techniques to group data points based on a specific feature. In particular,
their capability to graphically represent data point similarities was discussed. Since we
are representing nutrient build-up and wash-off (respectively depicted by dry and wet
days), we tested the two methods by grouping the data points based on the ADP and the
Tot_Rainfall values. We identified three categories for both variables:{

ADP ≤ 5th percentile
Tot_Rain f all ≤ 5th percentile

low values

{
5th percentile < ADP ≤ 95th percentile

5th percentile < Tot_Rain f all ≤ 95th percentile
medium values{

ADP > 95thh percentile
Tot_Rain f all > 95th percentile

high values

In Figures 5 and 6, the PCA biplot and the SOM distance frequency map for both
variables are shown. The PCA biplot is a combination of the PCA loading plot (shown
in Figure 4a) and the score plot. The latter represents the original data points in the
new rotated coordinated system. The grouping was applied to the scores. The SOM
distance map is a tool that visualizes how much neurons differ from each other in a two-
dimensional space. When two neurons correspond to different sets of data points, they
would be separated by a larger distance, represented by a lighter color. On the contrary,
neurons representing similar data points are separated by shorter distances, symbolized
by a darker color. In the SOM frequency map, data points are plotted in the cell of the
corresponding activated neuron, i.e., the winner of the competition phase.
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Figure 5. (a) PCA biplot and (b) SOM distance frequencies map for grouping data points based on ADP.

Figure 6. (a) PCA biplot and (b) SOM distance frequencies map for grouping data points based on Tot_Rainfall.

Overall, it is possible to appreciate that both techniques are able to group data points
well based on ADP and Tot_Rainfall features. It is interesting to see that for both PCA and
SOM the groups are better defined with Tot_Rainfall (Figure 6) than with ADP (Figure 5).

The PCA groups data points following the same direction of the vector chosen for
labeling them. This can be seen for both ADP and Tot_Rainfall vectors: data points charac-
terized by a high value of ADP (or Tot_Rainfall) are closer to the head of the ADP vector (or
Tot_Rainfall vector), while the points with a low ADP (or Tot_Rainfall) value are located in
the opposite quadrant of the ADP vector (or Tot_Rainfall vector).

From the visual point of view, SOM provides the distance map that helps in better
identifying the grouping borders just by checking the shade of the neurons: the darker
the neuron, the more different the data points that belong to that neuron are from their
neighbors. Furthermore, it is possible to combine different results to get further information.
For instance, by overlapping the distance map with the frequency map, we can identify the
storm events that belong to each neuron. In this case, knowing that data points that belong
to the same neuron are very similar, it is possible to identify more substantial similarities
(or dissimilarities) within groups that cannot be detected in the PCA. Moreover, it is easier
to detect events that belong to different groups but that are similar to each other since they
belong to the same neuron. Additionally, we can understand which is the feature that
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characterizes each neuron (the most important one) by combining the feature-importance
map (see Section 3.5) with the previous maps. Consequently, only with the SOM can we
identify the most significant variable for each data point.

It is clear that one of the advantages of the SOM technique is the possibility to overlap
maps that contain different information and combine their insights to get new results.

3.5. Feature Importance

The third aspect considered for this comparison study is the ability of both methods
to represent feature importance. To correctly compare this capability, it is worth noting that
the PCA is able to calculate the meaningful features for each PC with reference to the entire
system (or, at least, for the percentage of the system represented by the PCs chosen). While,
the SOM, even though it represents 100% of the system variance, identifies the most critical
features only for each neuron (local feature importance) and not for the entire system.

The PCA-feature importance can be visualized by looking at the eigenvalues (loadings)
showed in Table 5. For the SOM, it is possible to map the n most important features in
each neuron (Figure 7). For this example, we use the first four PCs, whose variance is
respectively equal to 39.19%, 27.42%, 13.53%, and 7.65%.

Table 5. PCA loadings.

ADP Tot_Rainfall Runoff_Vol EMC_TSS EMC_TN EMC_TP EML_TSS EML_TN EML_TP
PC1 0.278 0.361 0.258 0.157 −0.203 −0.124 0.493 0.404 0.489
PC2 0.407 −0.330 −0.319 0.423 0.211 0.525 −0.002 0.352 −0.024
PC3 0.374 0.203 0.283 −0.456 0.675 −0.035 −0.126 0.201 −0.134
PC4 −0.021 0.193 0.716 0.331 −0.140 0.449 −0.260 −0.145 −0.176

Note: Loadings with absolute value higher or equal to 0.5 are highlighted in blue.

Figure 7. SOM feature-importance map.
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PCA loadings with an absolute value higher or equal to 0.5 are usually considered to
have a significant influence on the related factor [18,56] (highlighted in blue in Table 5). It
is worth noting that PC1 is described by EML_TSS and EML_TP, and partially by EML_TN.
This component can be interpreted as representative of the particle-bound nutrient wash-off.
PC2 and PC3 can be mainly explained by EMC_TP and EML_TSS − EMC_TN, respectively.
These two components represent the nutrient dilution process occurring during wash-off.
It is noteworthy that for the first time, the linear technique is able to detect this process well.
PC4 symbolizes the runoff process since it is represented by Runoff_Vol. In conclusion, it is
possible to state that nutrient runoff in our study area is well represented by the first three
PCs since EMCs and EMLs are the most important features for the entire system. However,
this is not always true. In fact, in some cases, more than three PCs may be needed to
represent this process. In such a case, even though the PCA loadings table is readable, the
corresponding biplot would not be a human-readable-graphical representation anymore,
and a non-linear technique has to be adopted.

In the feature-importance map computed by SOM (Figure 7), it is possible to arbitrarily
decide the number of the most important variables to plot per neuron (three in our case).
This representation allows identifying areas characterized by particular features. For
instance, the bottom part, from left to right, is represented by EMC_TN, EMC_TP, and
EMC_TSS. ADP, Tot_Rainfall, and Runoff_Vol, from left to right, characterize the upper
part of the map. EMLs contribute to the middle area. These results confirm the previous
findings, particularly those obtained from the weight map (Figure 4b). As previously
mentioned, the SOM technique’s advantage is represented by the possibility of coupling
these different maps and detecting further hidden information.

3.6. Further Discussion

Wash-off from impervious polluted surfaces generates transport phenomenon from
a range of pollutants (i.e., nutrients) such as TN and TP. Therefore, a comprehensive
understanding of urban nutrient runoff is essential for water managers and environmental
engineers for an efficient stormwater-treatment design in the context of sustainable urban
watershed management and surface water quality protection. In this work, we aimed to
assess the capability of the adopted ML methods to characterize the main processes of
urban nutrient runoff. Particularly, three main aspects were analyzed: (i) the ability to
represent the correlation among water quality and water quantity variables that describe
the build-up and wash-off processes aiming at finding interesting insights; (ii) the ability
to group the dataset to detect similarities or dissimilarities among data points; (iii) the
capability to quantify the importance of each variable. In this section, the main findings are
compared to the previous scientific literature related to urban runoff.

In the recent literature, some authors confirmed strong relationships between TSS
and different common pollutants that can be found in urban runoff (i.e., nutrients, metals,
pesticides) [57–60]. This is in accordance with the correlations highlighted in Figure 3
between TSS and TP (obtained by using Pearson’s and Spearman’s coefficients). This is
also confirmed by Borda et al. [61]. They evaluated agronomic management’s effect on the
potential risk of P losses from soil to water bodies, where P losses were estimated using
a simple dispersion test and the amount of suspended solids. Viviano et al. [62] found
different relationships between turbidity and TP concentration in the investigated urban
watershed, distinguishing between the TP from point (domestic wastewaters) and diffuse
(surface runoff) sources.

Considering the results reported in Figure 4a,b, a reliable correlation between TSS
and TP is evident. This confirms that phosphorus off-site movement occurs mainly due
to sediment transport that is able to trigger the nutrient mobilization from impervious
surfaces. In contrast, a weaker relationship between TSS and TN suggests that the nitrogen
mobilization occurs primarily due to water-surface runoff (EMC_TN has a stronger corre-
lation with Total_Rainfall than EMC_TP). In this context, Ciaponi et al. [60] corroborated
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a stronger correlation between TP and TSS rather than TN and TSS. Moreover, different
recent studies confirmed the N transport carried out by surface runoff [63–66].

Looking at Figure 3a,b, it is possible to recognize a strong dependence between
nutrient load (EML_TN and EML_TP) and runoff volume. This is confirmed by the detailed
study conducted by De Girolamo et al. on the Celone river, located in the same region of
our study area (Puglia Region—Southern Italy) [67]. This work quantified the nutrient
loads delivered to the downstream reservoir (Capaccio dam) on a seasonal and annual
time scale. In particular, De Girolamo et al. [67] demonstrated the importance of flood
event contribution to the annual nutrient load, stating that “nitrogen and phosphorus loads
tend to be substantially higher during years of high precipitation, because of increased
erosion and transport of the nutrients to stream channels.” They also found that in the
winter season, the high level of nutrient load is primarily due to surface runoff.

Another aspect that can be better depicted in the SOM weight map (Figure 4b) is
the high correlation between ADP and pollutant loads, particularly EML_TN: the longer
the no-rainy period, the more significant the amount of pollutant load accumulated on
the impervious surfaces. This is confirmed by Gorgoglione et al. [7,20]. Moreover, in this
context, Li et al. [68] found that the antecedent dry weather period and runoff volume
were the determining factors in the generation of urban pollution runoff. Bian et al. [69]
presented a significant positive correlation between water quality parameters and the ADP.

Considering the relationship between ADP and EMC_TSS, well represented in
Figures 3 and 4, Lee et al. [70], analyzing four events in South Korea, found that the ADP
and rainfall intensity were the main factors affecting TSS and COD concentrations and the
loading mass of highway runoff in urban areas.

Further information about non-linear processes is given by Spearman’s ρ (Figure 3b),
where the dilution process of the dissolved nutrient portion is represented: the higher
Tot_Rainfall, and therefore Runoff_Vol, the lower the concentration of TP and TN, mean-
ing that the more it rains, the higher the runoff volume from impervious surface and
the smaller the nutrient concentration due to dilution process. This is confirmed by
Gorgoglione et al. [7,20].

4. Conclusions

The primary purpose of this work was the comparison of linear and non-linear ML
techniques, PCA and SOM, respectively, to characterize urban nutrient runoff. In particular,
this comparison was based on three main aspects: (i) the ability to represent the correlation
among the variables chosen to represent the system and, therefore, depict the build-up
and wash-off processes (cause–effect process) (feature correlation); (ii) the ability to group
the dataset based on the two variables that symbolize build-up and wash-off processes
(ADP and Tot_Rainfall) (data point grouping); (iii) the ability to identify and quantify the
importance of each variable (feature importance). To strengthen this comparison, these
techniques were supported by other linear (Pearson’s r) and non-linear (Spearman’s ρ)
methods. The main results can be summarized as follows:

• Pearson’s r was able to represent the main urban nutrient runoff processes detected
in the study area: rainfall-runoff and phosphorus transport driven by sediments.
Spearman’s ρ, by strengthening the rainfall-runoff process, was also able to depict the
transport of dissolved nutrients in urban runoff.

• Regarding feature correlation, both PCA and SOM methodologies captured the pri-
mary process that symbolizes nutrient build-up and wash-off. Notably, both were able
to represent the critical role played by TSS in the nutrient mobilization from impervi-
ous surfaces. This was proved particularly for phosphorus, which dominantly was
particle-bound, while nitrogen transport mainly occurred through water (dissolved).
The latter was better depicted by the SOM analysis.

• Regarding datapoint grouping, both techniques were able to group data points well.
The PCA groups data points following the same direction of the vector chosen for
labeling them. The SOM better delineates the groups by assigning different shades
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to the neurons: the lighter, the more similar to its neighbors (distance map). Further-
more, by overlapping distance and frequency map, we can identify similarities (or
dissimilarities) among data points that belong to the same group.

• Concerning feature importance, the main difference between the two techniques is
that the PCA can compute the meaningful variables for the system, while the SOM can
only provide the feature importance for each neuron. PCA loadings are able to detect
the dilution process that was never well detected by previous linear techniques. The
SOM outcomes can detect the main processes under study by confirming the previous
results. Furthermore, SOM maps can be coupled to extract further information.

To conclude, according to the outcomes of this work, we suggest that the SOM
technique can provide a useful complementary tool to other methods, such as PCA, and
can be successfully adopted for water quality research. Although both techniques can be
run with the same hardware resources, it must be considered that the benefits of SOM,
regarding data insights, come at a high computational cost, particularly when compared
to PCA. In fact, in our study, there was a four orders of magnitude difference in terms of
computational time.

The results presented in this work are expected to assist researchers and water man-
agers in improving their water quality assessment ability. Furthermore, they support
decision-making in the design of management strategies to reduce pollution impacts on
receiving waters and, consequently, protect the surrounding ecological environment. An
interesting aspect that will support the findings of this study is a more extensive monitoring
campaign at the study area to enlarge the observation dataset. However, it is important to
highlight that by exploiting accurate models that were properly calibrated and validated
(IRP and SWMM), we were able to successfully characterize the nutrient urban runoff with
both PCA and SOM. Based on these considerations, further steps to be considered in future
works include an integrating field campaign, planned for considering more rainfall events
and various pollutants.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071
-1050/13/4/2054/s1, SM-1: Rain gauge and bubble flowmeter specifications, SM-2: Frequency
histograms of all the variables involved in the system, SM-3: Correlation plots among variables.
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