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a b s t r a c t 

In this work we examine a plane metamaterial subjected to a generic biaxial macrostress, obtained by coupling a 

periodic mesh of rods with a periodic mesh of extremely flexible cables. In particular, we couple a square mesh 

of rods with diagonal cables with the aim of enhancing the stability performance of the obtained metamaterial. 

By introducing appropriate restrictions on the feasible critical modes, the study can be framed into the context 

of the Eulerian stability analysis and then, by means of Floquet-Bloch theory, a closed form solution for the 

stability domain is determined. Finally, on the basis of the previous stability analysis the optimal design problem 

is addressed. 
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. Introduction 

Design of metamaterials is a very active research field for its both the-

retical and technological interest. Metamaterials generally present pe-

iodic patterns at the microscale that can be designed to achieve extreme

lectromagnetic ( Chen et al., 2010 ) or mechanical responses not exhib-

ted by natural materials. Among the various extreme mechanical prop-

rties attained by metamaterials we recall vanishing macroscopic shear

tiffness ( Schittny et al., 2013 ), negative effective dynamic modulus

 Fang et al., 2006 ), selective buckling depending on self stress ( Paulose

t al., 2015 ) and controlled propagation of mechanical waves ( Bordiga

t al., 2020; Cummer et al., 2016; Krushynska et al., 2017 ). Tunable

echanical behaviors can be also obtained by adopting microstructures

ased on tensegrity schemes ( Amendola et al., 2018; DeTommasi et al.,

017; 2018; Fraternali et al., 2014; 2012 ). 

In design of metamaterials a crucial point is the onset of critical equi-

ibrium states in which periodic metamaterials exhibit critical modes

ith wavelengths independent from the size of cell ( Geymonat et al.,

993 ). A rigorous approach to these instability phenomena is based

n Floquet-Bloch theory and within this context several periodic sys-

ems has been studied. Among these, we recall periodical trusses and

oneycombs materials, which were analyzed in Hutchinson and Fleck

2006) and Triantafyllidis and Schraad (1998) , Kelvin cell foams ( Gong

t al., 2005 ) and sequential bifurcations in bilayered structures ( Liu and

ertoldi, 2015 ). Grids of rods have been extensively studied in ( Wang

nd McDowell, 2004 ) and a numerical optimization procedure for 2D

eriodic structures has been presented in ( Boukadia et al., 2020 ). 
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The main idea of the present paper is to couple periodic patterns of

ods with periodic patterns of extremely flexible cables to enhance the

tability performance of the obtained metamaterial. Here a particular

attern made of a square mesh of rods has been examined, both because

ts mechanical performance can be significantly improved by adding di-

gonal cables and because a closed form solution for its stability do-

ain can be easily searched. However, in our opinion, many periodic

atterns of rods can get significantly enhanced structural performances

n this way, since generally the coupling with periodic pattern of cables

educe the wave (effective) length of critical modes in rods. Further-

ore, periodic microstructures of extremely flexible diagonal elements

an be easy coupled with much more rigid rod elements thanks to 3D

rinting. 

The aim of the present work is then to determine the stability do-

ain of the above described metamaterial (see Fig. 1 ) and subsequently

ddress its design. In the simpler case of absence of cables, closed form

olutions for the stability domain were obtained in ( Haghpanah et al.,

014 ), where the wave length of the critical modes was assigned a priori

n order to avoid a complete Floquet-Bloch analysis. Here, by means of

ome simplifying assumptions, suitable restrictions on the feasible crit-

cal modes are determined, which allow us to adopt the Floquet-Bloch

heory and to frame the present study into the context of the Eulerian

tability analysis. With this regard, we remark that our approach can be

pplied only if the precritical response is almost linear, so that if crit-

cal state analysis can be carried out by simply solving an eigenvalue

roblem. Closed form solutions for the stability domain are given and

he effectiveness of the obtained result is validated by FEM analysis.
 January 2021 
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Fig. 1. Periodic material subjected to a generic 

macrostress and periodic cell (RVE). 
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inally, the minimum thickness of the cables is determined for particu-

ar macrostress states. 

. Mechanical model 

The plane periodic material shown in Fig. 1 , made up of a square

esh of rods with diagonal cables, is here analyzed. The material is

ubjected to a generic plane macrostress. 

As usual in the stability analysis of slender rods, the axial and shear

eformations are neglected. Further, the bending and axial stiffnesses of

ables are assumed negligible with respect to those of rods, so that the

ollowing conditions hold 

𝐽 𝑐 

𝐽 
→ 0 , 

𝐴 𝑐 

𝐴 

→ 0 , (1)

here 𝐽 𝑐 and 𝐴 𝑐 are the moment of inertia and the cross section areas of

he diagonal cables and 𝐽 and 𝐴 are those of the rods. As a consequence

f (1) , diagonal cables immediately buckle under compression forces. 

Although this is not the only possible choice, we consider rectangular

ross sections for both cables and rods. Sections have thicknesses 𝑡 and

 𝑐 and unitary dimension in the direction orthogonal to the plane. Then

e have 

 = 

𝑡 3 

12 
, 𝐽 𝑐 = 

𝑡 3 
𝑐 

12 
, 𝐴 = 𝑡, 𝐴 𝑐 = 𝑡 𝑐 . (2)

In this periodic material ( Fig. 1 ) we distinguish joints of type 1, con-

ecting four rods and four cables and joints of type 0, connecting only

ables. In view of the assumptions (1) in the following analysis the equi-

ibrium of joints 0 will be neglected. 

The chosen periodic cell (RVE) is shown in Fig. 1 . It includes four

ods of length 𝑙, four inner diagonal cables of length 𝑙∕ 
√
2 and four

oundary cables of length 
√
2 𝑙, which are shared with the neighboring
2 
ells. For this reason in the following analysis their stiffnesses will be

alved. 

. Equilibrium of the fundamental state 

As already stated, this periodic material is subjected to a generic

lane macrostress in its fundamental state. At first, let us consider the

imple case in which the shear macrostress 𝑇 is null. In view of (1) the

raction forces in cables due to eventual macro traction states are neg-

igible and the axial (compressive) forces in the horizontal and vertical

ods are given by 

 Σ𝑥 = −Σ𝑥 𝑙, 𝑃 Σ𝑦 = −Σ𝑦 𝑙 , (3)

here Σ𝑥 and Σ𝑦 are the horizontal and vertical normal traction

acrostresses. 

Next, let us consider a pure shear state, in which the internal forces

epresented in Fig. 2 occur. We recall that, as a consequence of (1) , the

ompressed cables (thin dotted lines) immediately buckle and their axial

orces vanish, whereas in the tense (active) cables, represented by thin

ontinuous lines, the traction forces 𝑁 𝑇 are exerted. At the same time,

he axial compression forces 𝑃 𝑇 and the shear forces 𝑆 𝑇 occur in both

orizontal and vertical rods. In particular we find 

𝑁 𝑇 = 

√
2 𝜌|𝑇 |𝑙, 𝑃 𝑇 = 𝜌|𝑇 |𝑙, 𝑆 𝑇 = (1 − 𝜌) 𝑇 𝑙, (4) 

here 

= 

𝑘 𝑒 

𝑘 𝑒 + 12 
. (5) 

he distribution factor 𝜌 is determined in Appendix C and 𝑘 𝑒 is the di-

ensionless elastic stiffness of cables, given in Appendix B. 
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Fig. 2. Internal forces in a pure shear macrostress. 
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Finally, the total compression forces 𝑃 𝑥 and 𝑃 𝑦 in the horizontal and

ertical rods are determined by superposition of the two cases above

onsidered 

 𝑥 = 𝑃 Σ𝑥 + 𝑃 𝑇 , 𝑃 𝑦 = 𝑃 Σ𝑦 + 𝑃 𝑇 . (6)

. Bloch wave analysis 

The periodic critical modes of this two dimensional lattice are now

xplored. The generalized joint displacement field is represented in the

omplex form 

 ( 𝒙 ) = { 𝑢 ( 𝒙 ) , 𝑣 ( 𝒙 ) , 𝜃( 𝒙 ) } 𝑇 ∈ ℂ 

3 , 

here 𝒙 is the lattice position vector 

 = 𝜁1 𝑙 𝒊 + 𝜁2 𝑙 𝒋 , 
(
𝜁1 , 𝜁2 

)
∈ ℤ 

2 

nd 𝒖 ( 𝒙 ) is specified over the entire lattice by means of the Bloch’s the-

rem 

 ( 𝒙 ) = 𝒖 ( 𝟎 ) 𝑒 𝑖 𝒘 ⋅( 𝜁1 𝑙 𝒊 + 𝜁2 𝑙 𝒋 ) = 𝒖 ( 𝟎 ) 𝑒 𝑖 ( 𝜔 1 𝜁1 + 𝜔 2 𝜁2 ) . (7)

ere 𝒘 is the wave vector and 𝝎 = 𝑙 𝒘 is a dimensionless wave vector

hosen in such a way that 𝜔 1 , 𝜔 2 ∈ (− 𝜋, 𝜋) in the first Brillouin zone. 

.1. Inextensibility constraint 

Let us now consider the square mesh made by four rods and two

ouples cables in Fig. 3 . Notice that, due to the inextensibility of rods,

n the two diagonal directions the cable are alternatively tense (thin

ontinuous lines) and buckled (thin dotted lines). 

Since the vertical rods are axially inextensible, the horizontal rods

evelop equal rigid rotations, so that 

𝑣 ( 𝒙 + 𝑙 𝒊 ) − 𝑣 ( 𝒙 ) 
𝑙 

= 

𝑣 ( 𝒙 + 𝑙 𝒊 + 𝑙 𝒋 ) − 𝑣 ( 𝒙 + 𝑙 𝒊 ) 
𝑙 

. (8) 

hen, in view of (7) , we get 

( 𝒙 )( 𝑒 𝑖𝜔 2 − 1) = 0 , (9)
ℎ 

3 
here 

ℎ ( 𝒙 ) = 

𝑣 ( 𝒙 + 𝑙 𝒊 ) − 𝑣 ( 𝒙 ) 
𝑙 

= 

𝑒 𝑖𝜔 1 − 1 
𝑙 

𝑣 ( 𝒙 ) . (10)

n the same way we find 

𝑣 ( 𝒙 )( 𝑒 𝑖𝜔 1 − 1) = 0 , (11)

here 

𝑣 ( 𝒙 ) = 

𝑢 ( 𝒙 + 𝑙 𝒋 ) − 𝑢 ( 𝒙 ) 
𝑙 

= 

𝑒 𝑖𝜔 2 − 1 
𝑙 

𝑢 ( 𝒙 ) . (12)

he two Eqs. (9) and (11) can be simultaneously satisfied only in the

ollowing four cases: 

i) 𝑢 ( 𝒙 ) = 𝑣 ( 𝒙 ) = 0 : the nodal translations are null and all wave param-

eters 𝜔 1 , 𝜔 2 ∈ (− 𝜋, 𝜋) are feasible; 

ii ) 𝛽ℎ = 0 and 𝜔 1 = 0 : the horizontal rods do not rotate and the wave

length in horizontal direction is infinite; 

i) 𝛽𝑣 = 0 and 𝜔 2 = 0 : the vertical rods do not rotate and the wave length

in vertical direction is infinite; 

ii ) 𝜔 1 = 𝜔 2 = 0 : the wave length is infinite in both directions. Since

translational displacements are inessential in this problem, this case

can be included in the more general case i) . 

.2. Stability analysis 

Since the stiffness of a periodic cell does not depend on rigid transla-

ions, without loss of generality, the following degrees of freedom vector

an be adopted 

= 

{
𝛽ℎ , 𝛽𝑣 , 𝜃

}𝑇 = 

{
𝛽ℎ ( 𝒙 ) , 𝛽𝑣 ( 𝒙 ) , 𝜃( 𝒙 ) 

}𝑇 
. 

he hermitian stiffness matrix 𝒌 of the cell is then determined as sum of

 rods stiffness matrix 𝒌 𝑏 (Appendix A) and a cables stiffness matrix 𝒌 𝑐 
Appendix B). We find 

 = 𝒌 ( 𝝎 , 𝑞 𝑥 , 𝑞 𝑦 ) , (13)

o that 𝒌 depends on both the wave vector and the applied macrostress,

hrough the parameters (see Appendix A): 

𝑞 𝑥 = 

𝑙 

2 

√ 

𝑃 𝑥 

𝐸𝐽 
, 𝑞 𝑦 = 

𝑙 

2 

√ 

𝑃 𝑦 

𝐸𝐽 
. (14) 
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Fig. 3. A square mesh formed by four rods and two 

cables. 
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Fig. 4. Critical mode I. 

h

𝑘  

(

Let us denote by ( . ) ∗ the conjugate of a complex quantity. We require

hat in all feasible (stable or critical) states the second variation of the

otal energy is semidefinite positive, so that for a generic cell we can

rite 

1 
2 
𝜸∗ 𝒌 ( 𝝎 , 𝑞 𝑥 , 𝑞 𝑦 ) 𝜸 ≥ 0 (15)

nd in a critical state it must be 

 ( 𝝎 , 𝑞 𝑥 , 𝑞 𝑦 ) 𝜸 = 𝟎 , |𝜸| > 0 . (16)

n the following we will discuss (15) by considering separately each of

he three cases i) - iii) . 

i) From (10) and (12) we find 𝛽ℎ = 𝛽𝑣 = 0 . The stability condition

15) reduces to 

∗ 𝑘 𝑏 33 𝜃 = 4 𝜃∗ 
( 

Ψ𝑥 − Φ𝑥 cos 𝜔 1 
Ψ2 
𝑥 
− Φ2 

𝑥 

+ 

Ψ𝑦 − Φ𝑦 cos 𝜔 2 
Ψ2 
𝑦 
− Φ2 

𝑦 

) 

𝜃 ≥ 0 , (17)

here the dimensionless stiffness 𝑘 𝑏 33 and the functions Φ and Ψ are

iven in Appendix A. Since Φ( 𝑞) < 0 and Φ( 𝑞) 2 − Ψ( 𝑞) 2 ≥ 0 the minimum

alue of 𝑘 𝑏 33 is always attained when the two wave parameters 𝜔 1 and

 2 are both equal to 𝜋. Therefore from (17) we get 

1 
Ψ𝑥 − Φ𝑥 

+ 

1 
Ψ𝑥 − Φ𝑦 

≥ 0 , (18)

hich leads to 

 𝑥 cot 𝑞 𝑥 + 𝑞 𝑦 cot 𝑞 𝑦 ≥ 0 , (19)

hich has been already determined in ( Haghpanah et al., 2014 ). When

he left hand side of (19) vanishes, the critical mode I, shown in Fig. 4 ,

ccurs. 

This critical mode is not influenced neither by the axial stiffness of

ables, since joint translations are null, or by their bending stiffness,

hich is negligible in view of (1) . 

ii) In this case we have 𝛽ℎ = 0 and 𝜔 1 = 0 . The stability condition

15) reduces to 

𝛽∗ 
𝑣 
, 𝜃∗ 

}[ 𝑘 𝑏 22 + 𝑘 𝑘 𝑏 23 
𝑘 ∗ 
𝑏 23 𝑘 𝑏 33 

] { 

𝛽𝑣 
𝜃

} 

≥ 0 (20) 

here 𝑘 is the dimensionless stiffness of cables, given in Appendix B. The

tability condition (20) is satisfied if and only if the following conditions
4 
olds: 

 + 𝑘 𝑏 22 = 𝑘 + 4 

(
1 − 8 𝑞 2 

𝑦 
(Φ𝑦 + Ψ𝑦 ) 

)
Φ𝑦 + Ψ𝑦 

≥ 0 , (21a)

 𝑘 𝑏 22 + 𝑘 ) 𝑘 𝑏 33 − 𝑘 ∗ 
𝑏 23 𝑘 𝑏 23 

= 4 
⎡ ⎢ ⎢ ⎢ ⎣ cos 𝜔 2 

(
𝑘 𝑐 Φ𝑣 − 8 𝑞 2 

𝑦 
Φ𝑣 + 2 

)
(Φ𝑣 − Ψ𝑣 )(Ψ𝑣 + Φ𝑣 ) 

− 

(
Ψ𝑣 
(
𝑘 𝑐 − 8 𝑞 2 

𝑦 

)
(Ψℎ + Ψ𝑣 ) + Φℎ 

(
𝑘 𝑐 Ψ𝑣 − 8 𝑞 2 

𝑦 
Ψ𝑣 + 2 

))
(Ψℎ + Φℎ )(Φ𝑣 − Ψ𝑣 )(Ψ𝑣 + Φ𝑣 ) 

+ 

(
Ψ𝑣 
(
−Φ𝑣 

(
𝑘 𝑐 Φ𝑣 − 8 𝑞 2 

𝑦 
Φ𝑣 + 4 

)
+ 2(Ψℎ + 2Ψ𝑣 ) 

))
(Ψℎ + Φℎ )(Φ𝑣 − Ψ𝑣 )(Ψ𝑣 + Φ𝑣 ) 

⎤ ⎥ ⎥ ⎥ ⎦ ≥ 0 . (21b) 
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Fig. 5. Critical mode II. 
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Similarly to the previous case, the actual value of 𝜔 2 must minimize

he left hand side of (21b) , which linearly depends on cos 𝜔 2 . For this

eason the wave parameter 𝜔 2 can only assume the values 0 or 𝜋. Then

e get 

 ≥ 𝑘 𝑣 = max ( 𝑘 𝑣 0 , 𝑘 𝑣𝜋 , 0) , (22)

here 𝑘 𝑣 0 and 𝑘 𝑣𝜋 are the minimum values of 𝑘 satisfying (21a) and

21b) in the two cases 𝜔 2 = 0 and 𝜔 2 = 𝜋 respectively. In particular 

 𝑣 0 = 8 𝑞 3 
𝑦 

𝑞 2 
𝑥 
cot 𝑞 𝑦 + 𝑞 𝑥 𝑞 𝑦 cot 𝑞 𝑥 − 𝑞 𝑦 

𝑞 𝑥 𝑞 𝑦 
(
𝑞 𝑥 cot 𝑞 𝑦 + 𝑞 𝑦 cot 𝑞 𝑥 

)
− 𝑞 2 

𝑥 
− 𝑞 2 

𝑦 

(23a) 

 𝑣𝜋 = 8 𝑞 3 
𝑦 

cot 𝑞 𝑦 
𝑞 𝑦 cot 𝑞 𝑦 − 1 

. (23b) 

It can be shown that in any feasible state we always have 𝑘 𝑣 0 > 𝑘 𝑣𝜋
nd therefore 𝜔 2 is always null. The critical mode associated to the con-

ition 𝑘 = 𝑘 𝑣 0 is represented in Fig. 5 . 

iii) Clearly, this case can be obtained from the previous case by a

igid rotation of 𝜋∕2 . Following a procedure similar to the previous case

e find 

 ≥ 𝑘 ℎ = max ( 𝑘 ℎ 0 , 𝑘 ℎ𝜋, 0) , (24)

here 

 ℎ 0 = 8 𝑞 2 
𝑥 

𝑞 2 
𝑦 
𝑞 𝑥 cot 𝑞 𝑥 + 𝑞 𝑥 𝑞 𝑦 𝑞 𝑦 cot 𝑞 𝑦 − 𝑞 𝑥 

𝑞 𝑥 𝑞 𝑦 
(
𝑞 𝑥 cot 𝑞 𝑦 + 𝑞 𝑦 cot 𝑞 𝑥 

)
− 𝑞 2 

𝑥 
− 𝑞 2 

𝑦 

(25a) 

 ℎ𝜋 = 8 𝑞 2 
𝑥 

𝑞 𝑥 cot 𝑞 𝑥 
𝑞 𝑥 cot 𝑞 𝑥 − 1 

. (25b) 

As in the previous case, in any feasible state here we find 𝜔 1 = 0 and

 ℎ 0 > 𝑘 ℎ𝜋 . The critical mode III, associated to the condition 𝑘 = 𝑘 ℎ 0 , can

e obtained from the critical mode II by a rigid rotation of 𝜋∕2 . 

. Stability domain 

From the preceding analysis we infer that the stability domain of this

aterial is determined by the conditions 
 

𝑞 𝑥 cot 𝑞 𝑥 + 𝑞 𝑦 cot 𝑞 𝑦 ≥ 0 
𝑘 ≥ max ( 𝑘 ℎ , 𝑘 𝑣 ) = 𝑘̂ ( 𝑞 𝑥 , 𝑞 𝑦 ) 

. (26) 

ow, the dimensionless macrostresses 

̃
𝑥 = 

Σ𝑥 − 𝜌|𝑇 |
Σ𝐸 

, Σ̃𝑦 = 

Σ𝑦 − 𝜌|𝑇 |
Σ𝐸 

, (27)

re introduced, where 

𝐸 = 

𝜋2 𝐸 

(
𝑡 
)3 
. (28) 
12 𝑙 

5 
hen, in view of (14) 

 𝑥 = 

𝑖𝜋

2 

√ 

Σ̃𝑥 , 𝑞 𝑦 = 

𝑖𝜋

2 

√ 

Σ̃𝑦 . (29)

ince the dimensionless macrostresses Σ̃𝑥 and Σ̃𝑦 are always real quanti-

ies, whereas the parameters 𝑞 𝑥 and 𝑞 𝑦 are real positive or imaginary (if

ods are compressed or tense, respectively), the stability domain defined

y (26) must be represented in plane ( ̃Σ𝑥 , Σ̃𝑦 ) (see Fig. 6 ), where each

oint is associated to all macrostresses (Σ𝑥 , Σ𝑦 , 𝑇 ) satisfying (27) . 

Finally, it must be remarked that the stiffness 𝑘 in (26) (see

ppendix B) is sum of an elastic part 𝑘 𝑒 > 0 and a geometric part 𝑘 𝑇 ≥ 0 ,
roportional to the absolute value |𝑇 | of the shear macrostress. To high-

ight this circumstance, in view of (14) and (57) the second of (26) is

ewritten as 

 𝑒 

[ 
1 + 

𝜋2 

12 + 𝑘 𝑒 

( |𝑇 |
Σ𝐸 

) ] 
≥ 𝑘̄ ( ̃Σ𝑥 , ̃Σ𝑥 ) . (30)

here 

̄
 ( ̃Σ𝑥 , ̃Σ𝑥 ) = 𝑘̂ 

( 

𝑖𝜋

2 

√ 

Σ̃𝑥 , 
𝑖𝜋

2 

√ 

Σ̃𝑦 
) 

. 

Within the stability domain in Fig. 6 we can identify two zones: an

nner zone where the minimum cable stiffness 𝑘̄ ( ̃Σ𝑥 , ̃Σ𝑦 ) is null and an

uter zone where ̄𝑘 ( ̃Σ𝑥 , ̃Σ𝑦 ) is positive. Then in the inner zone the stabil-

ty condition (30) is satisfied also for null values of 𝑘 𝑒 and the material

s stable also in absence of cables. In this last case the modes II or III

ccur at the boundary of the inner zone (orange curve in Fig. 6 ), which

s defined by the conditions 

 

𝑘 𝑣 0 = 0 𝑖𝑓 Σ̃𝑥 ≥ Σ̃𝑦 ( 𝑚𝑜𝑑𝑒𝐼 𝐼 ) 
𝑘 ℎ 0 = 0 𝑖𝑓 Σ̃𝑥 ≤ Σ̃𝑦 ( 𝑚𝑜𝑑𝑒𝐼 𝐼 𝐼 ) (31) 

hich reduce to 

 

 

 

 

 

cot 𝑞 𝑥 
𝑞 𝑥 

+ 

cot 𝑞 𝑦 
𝑞 𝑦 

− 

1 
𝑞 2 𝑥 

= 0 𝑖𝑓 Σ̃𝑥 ≥ Σ̃𝑥 
cot 𝑞 𝑥 
𝑞 𝑥 

+ 

cot 𝑞 𝑦 
𝑞 𝑦 

− 

1 
𝑞 2 𝑦 

= 0 𝑖𝑓 Σ̃𝑥 ≤ Σ̃𝑦 
, (32) 

lready given in Haghpanah et al. (2014) . In the outer zone of the do-

ain cables are instead necessary for stability. We remark that, provided

hat the stability condition (30) holds, the boundary of the stability do-

ain (blue curve in Fig. 6 ) is always determined by the occurrence of

he critical mode I, which under the assumptions (1) is not influenced

y the stiffness of cables. 

In Figs. 7 and 8 the optimal dimensionless cable stiffness 𝑘̄ ( ̃Σ𝑥 , ̃Σ𝑥 ) ,
hich is the minimum value ensuring stability, is represented.

ig. 8 clearly highlights the variation of 𝑘̄ ( ̃Σ𝑥 , ̃Σ𝑥 ) on the boundary and

n the outer zone of the stability domain. The minimum value of ̄𝑘 on the

oundary of the stability domain is attained at the point 𝐴 ≡ (−1 , −1)
nd is equal to 𝜋2 , while the maximum value is attained at the limit

oints (−4 , ∞) and (∞, −4) and is 8 𝜋2 . This value is also the maximum

alue of the optimal cable stiffness on the whole stability domain, so

hat if 𝑘 𝑒 ≥ 8 𝜋2 only the mode I can occur. 

In Fig. 9 , in the particular case 𝑘 𝑒 = 8 𝜋2 , we represent a portion the

pen frontier of stability domain of the material in the three dimen-

ional space 
( 

Σ𝑥 
Σ𝐸 

, 
Σ𝑦 
Σ𝐸 

, 
𝑇 
Σ𝐸 

) 
. Clearly this frontier is always determined by

he occurrence of the mode I. 

. Design and comparisons with FEM analysis 

Now the critical states associated to the two points A and B

 Figs. 6 and 7 ) are analyzed, with the aim of designing the metama-

erial and of verifying the effectiveness of the simplifying assumptions

hich underly the proposed model. In particular, the obtained results

as been verified by a finite element analysis (FEM) carried out by the

oftware SAP2000, in which only a single cell has been considered. For

ach of the three critical modes occurring in this periodic metamate-

ial, specific kinematic conditions have been assigned to the boundary
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Fig. 6. Stability domain of the periodic material. 

Fig. 7. Stability domain and optimal values ̄𝑘 . 

6 
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Fig. 8. Optimal values ̄𝑘 . 

Fig. 9. Open frontier of the stability domain of the pe- 

riodic material for 𝑘 𝑒 = 8 𝜋2 . 

n  

w  

m  

l  

fi

 

t  

o  

t  

t  
odes of the cell (see Haghpanah et al., 2014 ), so assigning a priori the

avelength of the examined critical mode. A metamaterial with Young’s

odulus 𝐸 = 2800 𝑀𝑃 𝑎 and Poisson’s ratio 𝜈 = 0 . 2 , in which rods have

engths 𝑙 = 10 𝑚𝑚 and thickness 𝑡 = 1 𝑚𝑚, has been selected. For it we

nd Σ𝐸 = 2 . 303 𝑀𝑃 𝑎 . 
7 
The optimal design problem is not here addressed in a general set-

ing, since it should be numerically solved and this is out of the scope

f the present paper. However, for a given macrostress the minimum

hickness of the cables ̄𝑡 𝑐 can be easily determined as the value yielding

o the minimum elastic stiffness of cables 𝑘̄ 𝑒 for which (30) is satisfied.
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𝑇
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T

𝒌

herefore, from (54) in Appendix B we get 

𝑡 𝑐 

𝑡 
= 

𝑘̄ 𝑒 

6 
√
2 

(
𝑡 

𝑙 

)2 
. (33) 

As already stated, at the point A the optimal value of the (dimension-

ess) cables stiffness is 𝑘̄ (−1 , −1) = 𝜋2 . When the total stiffness of cables

 attains the above optimal value 𝜋2 , the three modes I, II and III simul-

aneously occur in all macrostress states associated to this point, such

hat 

1 = 

Σ𝑥 − 𝜌|𝑇 |
Σ𝐸 

, −1 = 

Σ𝑦 − 𝜌|𝑇 |
Σ𝐸 

. (34)

mong all states satisfying (34) we consider only the equi-biaxial com-

ression 

Σ𝑥 = −Σ𝐸 , Σ𝑦 = −Σ𝐸 , 𝑇 = 0) (35)

nd the pure shear 
 

Σ𝑥 = 0 , Σ𝑦 = 0 , 𝑇 = 

Σ𝐸 
𝜌

) 

. (36) 

n the equi-biaxial compression, (30) reduces to 𝑘̄ 𝑒 = 𝜋2 and from

33) the minumum thickness ratio is ̄𝑡 𝑐 ∕ 𝑡 = 0 . 0116 . 
In the pure shear state (36) , the stability condition (30) reduces to

 𝑒 + 𝜋2 ≥ 𝜋2 , so the optimal value of the elastic stiffness of cables ̄𝑘 𝑒 van-

shes and the minimum thickness of the cables 𝑡 𝑐 tends to zero. In this

ondition, in view of (5) also the distribution factor 𝜌 vanishes and there-

ore the critical shear macrostress 𝑇 = Σ𝐸 ∕ 𝜌 tends to infinity. Clearly,

ince cables and rods have finite strength, this design is not physically

dmissible. However, to verify the accuracy of the model we consider

 suboptimal value of elastic cables stiffness fixed to 𝑘 𝑒 = 

𝜋2 

100 . So do-

ng, in this critical state only the mode I occurs, while the modes I and

I become nearly critical. FEM analysis has shown that in all examined

ases the error between numerical and analytical results is about 1 . 5%
nd that it can be drastically reduced if shear deformations are annulled

n FEM modeling. 

The point B of coordinates (0 , −1 . 6681) is now examined. Here the op-

imal value of the total cables stiffness is 𝑘̄ (0 , −1 . 6681) = 2 . 3468 𝜋2 . Con-

idering this value, in all macrostress states such as 

 = 

Σ𝑥 − 𝜌|𝑇 |
Σ𝐸 

, −1 . 6681 = 

Σ𝑦 − 𝜌|𝑇 |
Σ𝐸 

, (37)

he two modes I and II simultaneously occur. Among the critical stress

tates satisfying (37) only the uniaxial compression 

Σ𝑥 = 0 , Σ𝑦 = −1 . 6681Σ𝐸 , 𝑇 = 0) (38)

nd the biaxial state 
 

Σ𝑥 = 0 , Σ𝑦 = 

−1 . 6681 
2 

Σ𝐸 , 𝑇 = 

1 . 6681Σ𝐸 
2 𝜌

) 

(39) 

re here considered. In the uniaxial compression (38) , stability condition

30) leads to 𝑘̄ 𝑒 = 2 . 3468 𝜋2 and from (33) we find 
𝑡 𝑐 

𝑡 
= 0 . 0273 . In the

iaxial state (39) , the stability condition (30) reduces to 

 𝑒 

[ 
1 + 

1 . 6681 𝜋2 
2 𝑘 𝑒 

] 
≥ 2 . 3468 𝜋2 , (40)

hich leads to the optimal value of the elastic stiffness 𝑘̄ 𝑒 = 1 . 51275 𝜋2 
nd subsequently to the minimal thickness ratio ̄𝑡 𝑐 ∕ 𝑡 = 0 . 0176 . 

Also in these last two cases the error between the FEM results and

nalytic results is about 1 . 5% and it is essentially due to the absence of

hear deformability in our modeling. 

onclusions 

In this paper a metamaterial obtained by coupling a periodic square

esh of rods with a periodic pattern of diagonal cables has been stud-

ed. By introducing some simplifying assumptions, whose effectiveness
8 
as been confirmed by FEM analysis, closed form solutions for the criti-

al modes and the stability domain have been determined. The obtained

olutions have allowed us to address the optimal design of this metama-

erial, whose stability performance has been significantly improved by

he coupling with cables. 
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ppendix A. Rod stiffness matrix of a unit cell 

Let us consider a generic inextensible beam of length 𝑙, subjected

o an axial compressive load 𝑃 and to the bending moments 𝑀 𝑎 and

 𝑏 at the end sections, as shown in Fig. 10 . Since rigid translations are

nessential, the rigid rotation 𝛽 and the rotations of the end sections 𝜗 𝑎 
nd 𝜗 𝑏 can be assumed as degrees of freedom. 

The following relations (see Stephen P. Timoshenko, 2009 ) can be

stablished 

 

 

 

 

 

𝜗 𝑎 − 𝛽 = 𝑚 𝑎 Ψ( 𝑞) + 𝑚 𝑏 Φ( 𝑞) 
𝜗 𝑏 − 𝛽 = 𝑚 𝑎 Φ( 𝑞) + 𝑚 𝑏 Ψ( 𝑞) 
𝛽 = − 

𝑚 𝑎 + 𝑚 𝑏 + 𝑠 
4 𝑞 2 

(41) 

here: 

( 𝑞) = 

1 
2 𝑞 

( 

1 
2 𝑞 

− 

1 
sin 2 𝑞 

) 

, Ψ( 𝑞) = 

1 
2 𝑞 

( 

1 
2 𝑞 

− 

1 
tan 2 𝑞 

) 

, 

𝑚 𝑎 = 

𝑀 𝑎 𝑙 

𝐸𝐽 
, 𝑚 𝑏 = 

𝑀 𝑏 𝑙 

𝐸𝐽 
, 𝑠 = 

𝑆𝑙 2 

𝐸𝐽 
, 

𝑞 = 

𝑙 

2 

√ 

𝑃 

𝐸𝐽 
(42) 

From (41) , we get 

 

 

 

 

 

𝑚 𝑎 

𝑚 𝑏 

𝑠 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎢ ⎣ 
Ψ( 𝑞) 

Ψ( 𝑞 ) 2 −Φ( 𝑞 ) 2 
Φ( 𝑞) 

Φ( 𝑞 ) 2 −Ψ( 𝑞 ) 2 − 

1 
Φ( 𝑞 )+Ψ( 𝑞 ) 

Φ( 𝑞) 
Φ( 𝑞 ) 2 −Ψ( 𝑞 ) 2 

Ψ( 𝑞) 
Ψ( 𝑞 ) 2 −Φ( 𝑞 ) 2 − 

1 
Φ( 𝑞 )+Ψ( 𝑞 ) 

− 

1 
Φ( 𝑞 )+Ψ( 𝑞 ) − 

1 
Φ( 𝑞 )+Ψ( 𝑞 ) 

2 
Φ( 𝑞 )+Ψ( 𝑞 ) − 4 𝑞 2 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜗 𝑎 
𝜗 𝑏 
𝛽

⎫ ⎪ ⎬ ⎪ ⎭ , (43) 

hat can be also written as 

𝑙 

𝐸𝐽 

)⎧ ⎪ ⎨ ⎪ ⎩ 
𝑀 𝑎 

𝑀 𝑏 

𝑆𝑙 

⎫ ⎪ ⎬ ⎪ ⎭ = 𝒌̂ ( 𝑞) 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜗 𝑎 
𝜗 𝑏 
𝛽

⎫ ⎪ ⎬ ⎪ ⎭ = 𝒌̂ ( 𝑞) 𝜹 . (44)

Now, from (7) the kinematic relations 𝜸 = 𝑻 𝑗 𝜹𝑗 between the cell

egrees of freedom vector 𝜸 and the rods degrees of freedom vectors

𝑗 ( 𝑗=1 , 2 , 3 , 4) can be established (see Fig. 11 ), where the matrices 𝑻 𝑗 have

he following expressions 

 1 = 

⎡ ⎢ ⎢ ⎣ 
0 0 𝑒 𝑖𝜔 1 

0 0 1 
1 0 0 

⎤ ⎥ ⎥ ⎦ , 𝑇 2 = 

⎡ ⎢ ⎢ ⎣ 
0 0 1 
0 0 𝑒 − 𝑖𝜔 1 

𝑒 − 𝑖𝜔 1 0 0 

⎤ ⎥ ⎥ ⎦ , 
 3 = 

⎡ ⎢ ⎢ ⎣ 
0 0 𝑒 𝑖𝜔 2 

0 0 1 
1 0 0 

⎤ ⎥ ⎥ ⎦ , 𝑇 4 = 

⎡ ⎢ ⎢ ⎣ 
0 0 1 
0 0 𝑒 − 𝑖𝜔 2 

𝑒 − 𝑖𝜔 2 0 0 

⎤ ⎥ ⎥ ⎦ . (45) 

he rods stiffness matrix of the cell is then determined as 

 𝑏 = 

4 ∑
𝑗=1 

𝑻 𝐻 
𝑗 
𝒌̂ 𝑗 𝑻 𝑗 , (46) 
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Fig. 10. Free inexentsible beam. 

Fig. 11. Displacements of the joints of type 1 in a pe- 

riodic cell and numeration of the rods. 
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𝐾

w  

t

𝑘  
here 

̂
 1 = 𝒌̂ 2 = 𝒌̂ ( 𝑞 𝑥 ) , 𝒌̂ 2 = 𝒌̂ 3 = 𝒌̂ ( 𝑞 𝑦 ) , (47)

 𝑥 and 𝑞 𝑦 are given in (14) and 𝑻 𝐻 
𝑎 

are the conjugate transposes of 𝑻 𝑎 .

rom (45), (46) and (47) we find the hermitian matrix 

𝒌 𝑏 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑘 𝑏 11 0 𝑘 𝑏 13 

0 𝑘 𝑏 22 𝑘 𝑏 23 

𝑘 ∗ 
𝑏 13 𝑘 ∗ 

𝑏 23 𝑘 𝑏 33 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

 𝑏 11 = 

4(1 − 8 𝑞 2 
𝑥 
(Φ𝑥 + Ψ𝑥 ) ) 

Φ𝑥 + Ψ𝑥 
, 𝑘 𝑏 13 = − 

2( cos 𝜔 1 + 𝑖 sin 𝜔 1 + 1) 
Φ𝑥 + Ψ𝑥 

, 

 𝑏 22 = 

4 
(
1 − 8 𝑞 𝑦 2 (Φ𝑦 + Ψ𝑦 ) 

)
Φ𝑦 + Ψ𝑦 

, 𝑘 𝑏 23 = − 

2( cos 𝜔 2 + 𝑖 sin 𝜔 2 + 1) 
Φ𝑥 + Ψ𝑥 

, 

 𝑏 33 = 4 

( 

Ψ𝑥 − Φ𝑥 cos 𝜔 1 
Ψ2 
𝑥 
− Φ2 

𝑥 

+ 

Ψ𝑦 − Φ𝑦 cos 𝜔 2 
Ψ2 
𝑦 
− Φ2 

𝑦 

) 

, (48) 
9 
here 

Ψ𝑥 = Ψ( 𝑞 𝑥 ) , Φ𝑥 = Φ( 𝑞 𝑥 ) 

Ψ𝑦 = Ψ( 𝑞 𝑦 ) , Φ𝑦 = Φ( 𝑞 𝑦 ) 
. (49) 

ppendix B. Stiffness of cables 

The dimensionless cables stiffness matrix 𝒌 𝑐 is here determined. Let

s recall that in view of (1) only traction forces can be exerted by cables

nd the bending stiffness of cables is negligible with respect that of the

ods. For sake of semplicity, let us consider the scheme in Fig. 12 in

hich we set 𝛽ℎ = 0 . The cables with indexes from 5 to 8 are in traction

continuous thin lines), while the other cables (dotted lines) are buckled.

The virtual work of the cable traction forces can be written as 

 𝛽∗ 
𝑣 
𝛽𝑣 , (50) 

here 𝐾 is the total stiffness of the cables in a cell. Now let us introduce

he dimensionless stiffness of cables 𝑘 

 = 

(
𝑙 
)
𝐾 , (51)
𝐸𝐽 
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Fig. 12. Cables in tractions and cables buckled in a 

cell. 
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hich is sum of an elastic term 𝑘 𝑒 and a geometric term 𝑘 𝑇 depending

n the traction forces 𝑁 𝑇 , given in (4) : 

 = 𝑘 𝑒 + 𝑘 𝑇 . (52)

ince the stiffnesses and the axial forces of the cables 5 and 7 are halved,

e find 

∗ 
𝑣 
𝑘𝛽𝑣 = 

(
𝑙 

𝐸𝐽 

) [ 
𝑙𝛽∗ 
𝑣 √
2 

( 

𝐸𝐴 𝑐 + 𝑁 𝑇 

2 
√
2 𝑙 

) 

(1 + 𝑒 − 𝑖𝜔 2 𝑒 𝑖𝜔 2 ) 
𝑙𝛽𝑣 √
2 

+ 

𝑙𝛽∗ 
𝑣 

2 
√
2 

( 

𝐸𝐴 𝑐 + 𝑁 𝑇 

𝑙∕ 
√
2 

) 

(1 + 𝑒 − 𝑖𝜔 2 𝑒 𝑖𝜔 2 ) 
𝑙𝛽𝑣 

2 
√
2 

] 

= 

(
𝑙 

𝐸𝐽 

)(𝐸𝐴 𝑐 + 𝑁 𝑇 

)
𝑙 √

2 
𝛽∗ 
𝑣 
𝛽𝑣 . (53) 

rom which we get the dimensionless elastic stiffness 

 𝑒 = 

𝐸𝐴 𝑐 𝑙 
2 

𝐸𝐽 
√
2 
= 6 

√
2 
( 

𝑡 𝑐 

𝑡 

) (
𝑙 

𝑡 

)2 
(54)

nd the dimensionless geometric stiffness that, in view of (4) , becomes

 𝑇 = 

𝑁 𝑇 𝑙 
2 

𝐸𝐽 
√
2 
= 

( 

𝜋2 𝜌

Σ𝐸 

) |𝑇 | . (55)

y analyzing the general case in which both 𝛽ℎ and 𝛽𝑣 are not null, the

able stiffness matrix is determined as 

 𝑐 = 

⎡ ⎢ ⎢ ⎣ 
𝑘 − 𝑘 0 
− 𝑘 𝑘 0 
0 0 0 

⎤ ⎥ ⎥ ⎦ , (56) 

here, from (4), (54) and (55) 

 = 𝑘 𝑒 

[ 
1 + 

𝜋2 
( |𝑇 |) ] 

(57)

12 + 𝑘 𝑒 Σ𝐸 

10 
ppendix C. Distribution factor 𝝆

As usual in Eulerian stability analysis, in precritical states the me-

hanical response of the metamaterial is assumed linear. Then the dis-

ribution factor 𝜌 is determined with reference to the unstressed initial

tate in which the stiffness of cables reduces to its elastic part 𝑘 𝑒 only,

hich is given in (54) . In this state wave length is infinite in both direc-

ions ( 𝝎 = 𝟎 ) and, since rigid rotations are inessential, we assume 𝛽ℎ = 0 .
hen in a precritical shear macrostress the joint displacements can be

etermined as 
 

𝛽𝑣 
𝜃

} 

= 

(
𝑙 

𝐸𝐽 

)
𝒌 −1 
𝐼𝐼 
( 𝟎 , 0 , 0) 

{ 

2 𝑇 𝑙 2 
0 

} 

, (58)

here 𝒌 𝐼𝐼 is formed by the last two rods and the last two columns of 𝒌 .

rom (58) we find 
 

𝛽𝑣 
𝜃

} 

= 

2 𝑇 𝑙 2 
12 + 𝑘 𝑒 

{ 

1 
1∕2 

} 

(59) 

nd then 

 𝑇 = 

𝐸𝐴 𝑐 √
2 𝑙 

𝑙|𝛽𝑣 |√
2 

= 

√
2 

𝑘 𝑒 

12 + 𝑘 𝑒 
|𝑇 |𝑙 (60)

hich leads to (5) . 
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