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A Moving-Least-Squares Immersed Boundary Method

for simulating the fluid-structure interaction of elastic

bodies with arbitrary thickness
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Dipartimento di Meccanica, Matematica e Management, DMMM

Centro di Eccellenza in Meccanica Computazionale, CEMeC

Politecnico di Bari, Via Re David 200, 70125, Bari, Italy

Abstract

A versatile numerical method for the fluid-structure-interaction of bodies
with arbitrary thickness, immersed in an incompressible fluid, is presented,
with the aim of simulating different biological engineering applications. A
discrete-forcing immersed boundary method is adopted, based on a mov-
ing least squares approach to reconstruct the solution in the vicinity of the
immersed surface. A simple spring-network model is considered for describ-
ing the dynamics of deformable structures, in order to have the freedom of
easily model and simulate different biological systems that can not always
be described by simple continuum models, without affecting the computa-
tional time and simplicity of the overall method. The fluid and structures
are coupled in a strong way, in order to avoid instabilities related to large
accelerations of the bodies. The method gives accurate results comparable
with that of sharp direct-forcing approach, and can manage pressure differ-
ences across the surface in one grid cell, still obtaining very smooth forces.
The effectiveness of the method has been validated by means of several test
cases involving: rigid bodies, either falling in a quiescent fluid, fluttering or
tumbling, or transported by a shear flow; infinitely thin elastic structures
with mass, such as a two-dimensional flexible filament and an inverted flex-
ible filament in a free stream; a three-dimensional model of a bio-prosthetic
aortic valve opening and closing under a pulsatile flowrate. A very good
agreement is obtained in all cases, comparing with available experimental
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data and numerical results obtained by different methods.

Keywords: Immersed Boundary Method, Fluid-Structure Interaction,
Network Spring Model, Direct Forcing with Moving Least Squares, Elastic
Zero-thickness Body, Flexible Filament

1. Introduction1

Fluid-structure interaction (FSI) problems are found in many engineering2

areas. The three-dimensional computational modeling is particularly chal-3

lenging and has recently encountered the interest of several research groups.4

Among different FSI problems, biological applications are becoming of ever5

increasing interest in the scientific community and their accurate and efficient6

numerical simulation provides an essential means in understanding the funda-7

mental physics and reducing the time needed for experiments. The accurate8

description of FSI can not ignore the fact that moving and/or deforming9

bodies act on the surrounding fluid that is forced to move accordingly (no-10

slip condition), and reacts with pressure and velocity gradients distribution11

that, in turn, produces the surface forces that cause the motion of the body.12

This poses several challenges for the numerical approaches adopted. With13

no intent of being exhaustive, one can mention: rigid particle of arbitrarily14

shape transported by the fluid; deformable particles in shear flows (capsules,15

vesicles, cells), constituted by a liquid droplet enclosed by a structure with16

thickness much smaller than the particle size; elastic slender bodies immersed17

in a fluid, such as flags, insect wings, jellyfishes, bioprosthetic heart valves,18

where a thin surface is significantly deformed by the fluid. In the mentioned19

cases, describing the dynamics of the interaction between the body and the20

fluid is not a trivial task, since the numerical method needs to be able to han-21

dle in an efficient way complex and very thin geometries undergoing large22

deformations, without loosing accuracy.23

Given the large displacements/deformations of the bodies, body-fitted24

approaches [1, 2], both structured and unstructured, are not the optimal25

choice. They need the time-consuming regeneration or deformation of the26

mesh and the successive projection of the flow field solution from previous27

mesh to new one, which can lead to a decrease of accuracy. Immersed Bound-28

ary (IB) methods [3, 4] are more suitable, since the governing equations are29

solved on a fixed grid, covering the whole domain, thus including points that30

rely inside the closed boundaries (if any). Continuous forcing IB methods de-31
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rived by the classical approach proposed by Peskin [3] have been widely used,32

considering different biological and engineering applications involving elastic33

slender bodies [5, 6, 7, 8]. An advantage of these monolithic approaches is the34

inherent strong coupling for fluid-structure-interaction and their simplicity.35

On the other hand, they have a fundamental difficulty in handling structures36

with mass and the immersed interface is smeared by distributing the forcing37

terms over several grid nodes in the vicinity of the solid boundary. An alter-38

native is to consider partitioned algorithms, in which the fluid and structures39

are solved independently and then coupled, as done in [9] for studying flex-40

ible filaments, adopting a feedback forcing approach[10], but with a severe41

limitation on the numerical integration time-step. On the other hand, direct42

forcing methods [11] are particularly attractive, for their moderate limita-43

tion of the computational time step [12, 4]. They give very good results44

for fixed boundaries, but their extension to FSI problems needs particular45

attention in order to attenuate spurious oscillation of hydrodynamic forces46

that are potential source of instabilities [13, 14, 15, 16, 17]. The alterna-47

tive direct-forcing scheme of Uhlmann [13], computing the forcing term on48

Lagrangian markers (laying on the immersed body), provides smooth hydro-49

dynamic forces, with the requirement of a uniform distribution of the markers50

on the body. Vanella and Balaras [15] improved Uhlmann’s approach [13],51

by using a versatile moving-least-squares (MLS) approximation to build the52

transfer functions between the Eulerian and Lagrangian grids for rigid bodies.53

Discrete-forcing IB method have been used for studying deformable bodies54

[18, 19, 20, 21, 22] with good accuracy.55

The aim of this work is to build a numerical tool for simulating the fluid-56

structure-interaction of arbitrarily shaped, very thin surfaces, both rigid and57

deformable, so as to be able to describe the dynamics of either closed (en-58

closing a volume) particles, both solid and deformable, such as capsules or59

biological cells [23, 24], or open, describing zero-thickness slender bodies. In60

order to achieve such a goal, several ingredients are coupled together form-61

ing an accurate, efficient and simple code. A partitioned, discrete-forcing IB62

method is adopted, based on a MLS approach, similar to [15], in order to re-63

construct the solution in the vicinity of the immersed surface and to convert64

the Lagrangian forcing back to the Eulerian grid for the case of thin surfaces65

that can be rigid or undergo large deformations. With the aim of describing66

different biological systems that may consist of diversely scaled elements (e.g.67

cells, organ tissues) and that can not always be described by simple contin-68

uum models, for the case of non rigid bodies we adopted a simple but very69
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versatile methodology based on spring-network models. The surface is dis-70

cretized by a triangulated mesh and the mass is assumed to be distributed on71

the nodes of the triangles; these are connected by in-plane and out-of-plane72

(bending) springs in order to model the structural elastic behavior [25]. For73

both rigid and deformable bodies, the fluid and structures are coupled in a74

strong way, in order to avoid instabilities related to strong accelerations of75

the mass-points. A 4-th order predictor-corrector method is adopted, based76

on Hamming’s method with mop-up correction [26]. Particular attention is77

required in determining the hydrodynamic loading on the structure, consider-78

ing the thinness of the bodies. The method gives accurate results comparable79

with that of sharp direct-forcing approach, and can manage pressure differ-80

ences across the surface in one grid cell. Moreover, the method is able to81

obtain very smooth forces, needed by the FSI approach. The only restriction82

to the computational time step is related to the flow solver stability condition83

and to the accuracy needed in determining the body dynamics, depending on84

the specific problem under study. The tool has been validated by means of85

several test cases of increasing complexity, involving closed surfaces, enclos-86

ing a volume, and rigid particles: the sedimentation of an elliptic particle in87

a quiescent fluid, the fluttering and tumbling dynamics of a falling plate and88

a single sphere settling under gravity, as well as a circular particle transport89

in a planar Couette flow are considered. On the other hand, open surfaces90

representing infinitely thin elastic structures with mass are considered: a91

two-dimensional flexible filament and an inverted flexible filament in a free92

stream. Finally, a three-dimensional model of a bio-prosthetic aortic valve93

is considered, with nonlinear and anisotropic mechanical properties, open-94

ing and closing during the pulsatile cardiac cycle. A good agreement has95

been obtained in the cases where numerical and/or experimental results are96

available in the literature, considering both the rigid motion as well as the97

deformation dynamics.98

It is important to note that the procedure is very general, and both fluid99

and structure solvers can be replaced by more suitable ones, depending on100

the problem of interest. A straightforward extension is the use of a finite-101

element structural solver for describing the dynamics of deformable slender102

surfaces (e.g. membrane solver of [27]) maintaining the same data structure103

and formalism, with just an increase of the computational cost due to the104

structural solver. Moreover, the presented methodology has been adopted105

on non-uniform structured Cartesian grids, but it can be easily extended to106

unstructured meshes, provided that the minimum number of Eulerian grid107
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points in the support domain, needed by the MLS procedure is provided.108

2. Numerical method109

2.1. Flow solver110

Under the assumption of incompressible flow, the governing equations for111

the fluid dynamics are the Navier–Stokes and continuity equations:112

ρf

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u+ ρff (1)

113

∇ · u = 0 (2)

where ρf is the fluid density, u is the fluid velocity, p is the pressure, µ is the114

fluid dynamic viscosity and f contains the forcing terms, such as that of the115

IB technique. The above equations are non-dimensionalized, introducing the116

Reynolds number Re =
ρfUL

µ
, with U and L a reference velocity and length,117

respectively. The non-linear terms are discretized by an explicit Adams–118

Bashforth scheme and the linear viscous terms by an implicit Crank–Nicolson119

scheme, yielding the following semi-discrete equation:120

û− un

∆t
= −α∇pn + γ Hn + ρHn−1 +

α

2Re
∇2 (û+ un) , (3)

where un denotes the velocity at the time level n, û is the intermediate121

solution, ∆t is the time step, H contains the non-linear terms, α, γ and ρ122

are the constants of the Adam–Bashforth/Crank–Nicolson scheme [28, 29].123

Equation (3) can be written in delta-form as:124

(

1− β∇2
)

∆û =
[

−α∇pn + γ Hn + ρHn−1
]

∆t + 2 β∇2un (4)

with ∆û = û−un and β = ∆t α/(2Re). Employing a second-order-accurate125

space discretization with centered finite differences on a Cartesian staggered126

grid, the matrix associated with the left-hand-side of the equation (4) is127

sparse and its direct inversion requires, by standard methods, a huge num-128

ber of operations. Thus, an approximate factorization technique allows the129

computation of the intermediate non-solenoidal velocity field û by means130

of the solution of simple tri-diagonal matrices [28, 29]. In order to get a131

divergence-free velocity field, a scalar quantity ϕ is introduced, such that:132

un+1 = û− α∆t∇ϕ . (5)
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Figure 1: Geometry description by means of triangular elements, whose centroids coincide
with the Lagrangian markers.

If the discrete divergence operator is applied to the above equation and the133

velocity field un+1 is required to be solenoidal, an elliptic equation for ϕ is134

obtained,135

∇2ϕ =
∇ · û
α∆t

. (6)

The large-banded matrix associated with this equation is reduced to a penta-136

diagonal matrix using trigonometric expansions (FFTs) in the spanwise di-137

rection, and the resulting Helmholtz equations are then inverted using the138

FISHPACK package [30]. Finally, the pressure field is computed as139

pn+1 = pn + ϕ− α∆t

2Re
∇2ϕ . (7)

2.2. Immersed boundary treatment140

In order to overcome the presence of large fluctuations in the hydrody-141

namic forces arising when extending the direct-forcing formulation of [11]142

to cases with moving objects, a MLS approach similar to [15] is employed.143

Following the idea of [13], the forcing is computed on Lagrangian markers144

laying on the immersed surface, so as to satisfy the boundary condition,145

and then transferred to the Eulerian grid-points. The structure surface is146

discretized by means of Nt triangular elements and the Lagrangian markers147

coincide with the triangles’ centroids (figure 1). Given a Lagrangian marker,148

first the closest Eulerian node is identified, which is centered in a cell with149

dimension ∆xi in each i − th direction (see figure 2). Then, a support do-150

main is created, centered on the Lagrangian point and extending to ±ri,151

with ri = 1.5∆xi. In this way Ne Eulerian points are enclosed in the support152

domain and associated to the selected marker (27 in three dimensions). A153
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Figure 2: Scheme for IB forcing. (a) Definition of the support domain for a Lagrangian
marker. The Eulerian points are involved in the interpolation of the variables at the
Lagrangian marker. (b) Lagrangian points associated to a selected Eulerian point. The
Lagrangian points are involved in the spreading of the forcing to the Eulerian node.

volume ∆V l = Alhl is associated to the marker, where Al is the l− th trian-154

gle area and hl is the local thickness, equal to the average mesh size at the155

marker location. The MLS approximation is the key ingredient to build a156

transfer function between the Eulerian and Lagrangian grids, that is able to157

provide a smooth solution also when applied to arbitrary moving bodies [15].158

The reconstruction procedure consists in the following steps:159

1. Compute the intermediate velocity û from equation (3) in all the Eule-160

rian grid points; this involves also the Ne points of the support domain161

surrounding a Lagrangian point.162

2. Compute the velocity component, Ûi, at each Lagrangian grid point,163

l, corresponding to the non-solenoidal velocity field. Using the MLS164

approach, it can be approximated in the support domain as:165

Ûi(x) = pT (x)a(x) =

4
∑

j=1

pj(x)aj(x) , (8)

where pT (x) = [1, x, y, z] is the linear basis function vector (a cost-166

efficient choice able to represent the field variation of the variable up167
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to the accuracy of the adopted spatial discretization scheme [15]), a(x)168

is a vector of coefficients and x is the Lagrangian point position. The169

coefficient vector a(x) is obtained minimizing, with respect to a(x),170

the weighted L2-norm defined as:171

J =
Ne
∑

k=1

W (x− xk)
[

pT (xk)a(x)− ûk
i

]2
, (9)

where ûk
i and xk are the intermediate velocity component and position172

vector, respetcively, at Eulerian point k in the support domain and173

W (x− xk) is a given weight function. This operation leads to174

A(x)a(x) = B(x)ûk
i , (10)

with175

A(x) =

Ne
∑

k=1

W (x− xk)p(xk)pT (xk) , (11)

176

B(x) =
[

W (x− x1)pT (x1) ...W (x− xNe)pT (xNe)
]

(12)

and177

B =
[

û1
i ... û

Ne

i

]T
. (13)

Combining the equations, Ûi cab be rewritten as:178

Ûi(x) = Φ
T (x)ûk

i =

Ne
∑

k=1

φl
k(x) û

k
i , (14)

where Φ = p(x)A−1(x)B(x) is the transfer operator containing the179

shape function values for marker point l. In this work, the exponential180

function [31] is used, written as:181

W (x− xk) =

{

e−(rk/α)
2

rk ≤ 1
0 rk > 1

(15)

where α = 0.3 and rk is given by182

rk =
|x− xk|

rw
(16)
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with ri the size of the support domain previously defined. Note that the183

shape functions reproduce exactly the linear polynomial contained in184

their basis and possess the partition of unity property
∑Ne

k=1 φk(x) = 1.185

Moreover, the field approximation is continuous on the global domain186

as the MLS shape functions are compatible [31, 15].187

3. Calculate the volume force component Fi at all Lagrangian grid points:188

Fi =
V b
i − Ûi

∆t
, (17)

where V b
i is the velocity component on the marker to be imposed as a189

boundary condition.190

4. Transfer back Fi to the k Eulerian grid points associated with each191

Lagrangian grid point, using the same shape functions employed in192

the interpolation procedure, properly scaled by a factor cl, which is193

determined by imposing that the total force acting on the fluid is not194

changed by the transfer [15]:195

fk
i =

Nt
∑

l=1

cl φ
l
kF

l
i ; (18)

in the above equation fk
i is the volume force component in the Eulerian196

point k and Nt indicates the number of Lagrangian points associated197

with the Eulerian point k(i.e. Lagrangian point whose support domain198

contains the selected Eulerian point, as shown on the right in figure 2).199

The scaling factor cl is obtained considering a forcing volume associated200

with each Eulerian point equal to the Eulerian cell volume, ∆V k, and201

the forcing volume associated with the Lagrangian marker previously202

defined, and imposing that the total force acting on the fluid is not203

changed by the transfer:204

Ne,tot
∑

k=1

fk
i ∆V k =

Nt
∑

l=1

F l
i∆V l . (19)

Rearranging the terms, one has:205

cl =
∆V l

∑Ne

k=1 φ
l
k∆V k

(20)
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The transfer operators conserve momentum on both uniform and stretched206

grids, while the equivalence of total torque between the Eulerian and207

Lagrangian grids are guaranteed for uniform grids, with minimal errors208

for low stretched grids (about 10%) [15].209

5. Correct the intermediate velocity so as to impose the correct boundary210

conditions on the immersed body:211

u∗ = û+∆tf , (21)

where f is the volume force at Eulerian cells, obtaining a velocity field212

that is not divergence-free and that will be projected into a divergence-213

free space by applying the pressure correction which satisfies the Pois-214

son equation (6).215

2.3. Rigid body equations216

The motion of the rigid body immersed in the fluid is governed by the217

Newton–Euler equations imposing the equilibrium of translation and rota-218

tion:219

M
dV

dt
= Ftot , V =

dX

dt
, (22)

220

[I]
dΩ

dt
= Ttot , Ω =

dΘ

dt
. (23)

In the equations above, M and [I] are the mass and inertia tensor of the221

body, V and X its baricentre’s velocity and position, Ω and Θ its angu-222

lar velocity and position, respectively, and Ftot and Ttot are the total force223

and moment acting on the body. The total force and moment include the224

hydrodynamics contributions, the gravity forces, if present, and any other225

additional force depending on the problem. Concerning the hydrodynam-226

ics loadings, the overall contribution is obtained integrating over the body’s227

surface the pressure and viscous stresses as explained in section 2.5.228

2.4. Spring network model for deformable bodies229

A simple spring network model is adopted for describing the dynam-230

ics of deformable bodies, based on the minimum energy concept [25]. The231

structural model is built considering the triangulated network of Ns springs232

(edges), forming Nt triangles. The mass of the structure is concentrated on233

the Nv vertices of the triangles, uniformly distributed on the surface. The234

potential energy of the system includes in-plane elastic terms, combined with235
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bending energy and additional constraints for surface area and volume con-236

servations.237

The simplest elastic energy model is described by:238

W e =
1

2
kex

2 (24)

where W e is the related potential energy, x = l − l0, l is the length of the239

stretched spring, l0 is the length of the spring in the stress-free configuration240

and ke is the elastic constant. The elastic constant for a given edge of length241

l is obtained by the model of [32]:242

ke =
Eh

∑

i Ai

l2
, (25)

where E is the Young’s modulus for the material, h is the membrane thickness243

(here assumed uniform for all triangles), i identifies the triangles sharing the244

selected edge (here two triangles) and Ai is the triangle area. Taking the245

derivative of the potential energy with respect to displacements, the nodal246

forces corresponding to the elastic energy for nodes 1 and 2 connected by an247

edge (figure 3) are obtained by:248

F
e
1 = −ke(l − l0)

r12

l
(26)

249

F
e
2 = −ke(l − l0)

r21

l
(27)

where rij = ri − rj , with ri position vector of the node i and l = |r21| is the250

actual edge length.251

The out-of-plane deformation of two adjacent faces sharing an edge is252

modeled by means of a bending spring, as shown in figure 3. Four nodes are253

involved in the energy term. Considering a null reference curvature of the254

local surface, the free elastic energy in discrete form is given by [33]:255

W b = kb(1− n1 · n2) = kb[1− cos(θ)] (28)

where n1 and n2 are the surface vectors normal to the triangular elements256

shared by the edge, θ is the angle between n1 and n2 and kb is the bending257

constant. In case of a surface with non-zero reference curvature in the stress-258

free configuration, the bending energy can be written as259

W b = kb[1− cos(θ − θ0)] (29)
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Figure 3: Left: sketch of the two nodes (vertices of an edge) involved in the elastic spring
model. Right: four nodes (belonging to the two triangles sharing an edge) involved in the
bending spring model.

where θ0 is the value of θ in the stress-free configuration. The bending260

constant kb is related to the equivalent averaged bending modulus of the261

structure, B, as [34]:262

kb = B
2√
3
. (30)

The nodal forces corresponding to the bending energy are obtained as (see263

figure 3):264

F
E
1 = βb [b11 (n1 × r32) + b12 (n2 × r32)] (31)

265

F
E
2 = βb [b11 (n1 × r13) + b12 (n1 × r34 + n2 × r13) + b22 (n2 × r34)] (32)

266

F
E
3 = βb [b11 (n1 × r21) + b12 (n1 × r42 + n2 × r21) + b22 (n2 × r42)] (33)

267

F
E
4 = βb [b11 (n1 × r23) + b22 (n2 × r23)] (34)

with268

b11 = −cos(θ)

|n1|2
; b12 =

1

|n1||n2|
; b22 = −cos(θ)

|n2|2
; (35)

and269

βb = kb
sin(θ)cos(θ0)− cos(θ)sin(θ0)

√

1− cos2(θ)
(36)

Additional energy terms can be added, in order to give a constraint on the270

area (of each triangle and/or global area) and enclosed volume (if the surface271

is closed) changes [25, 35].272

For each node of the structure the dynamic equation of motion is solved,273

considering the internal and external forces:274

mpẍ = F
ext + F

int = F (37)
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where mp is the mass of the node, Fext are the external forces on the nodes275

(i.e. hydrodynamic loads, gravity forces) and F
int are the internal forces276

previously defined. A damping term could be added on the left hand side in277

order to take into account for the viscoelasticity of the structure.278

A comment is necessary regarding the adopted structural model. Spring279

network models are discrete, defining the elastic forces on the vertices based280

on edges’ length and triangles’ reciprocal angle variations, as well as other281

constraints such as area and volume variations. This makes the models far282

from the continuum model, which assumes the homogeinity of the mechani-283

cal properties throughout the membrane surface. Therefore, the evaluation284

of the spring constants, in order to mimic the continuum model, may not285

be trivial. There are several studies in literature aiming at defining a link286

between spring networks and continuum mechanics. Gelder [32] showed that287

such models can not represent a continuum membrane model exactly, but288

proposed an alternative formulation to evaluate the spring constant in order289

to accurately represent an isotropic continuum membrane. Delingette [36]290

introduced a novel spring type (bi-quadratic spring with tensile and angu-291

lar stiffness), based on finite strain mechanics and with great potential for292

accurate non-linear membrane simulations. In [37], the effect of network293

parameters, i.e. mesh, spring type and surface constraint have been stud-294

ied, with particular attention to the modeling of a red blood cell’s (RBC)295

membrane. They showed that an isotropic spring network is mechanically296

isotropic in small deformation while a spring network with high randomness297

tend to be mechanically isotropic even in large deformation and that the298

network elasticity is independent of the density of the network mesh. All299

spring networks are indeed vulnerable against surface area dilation. In con-300

clusion, the mechanical behavior of such models is conditionally equivalent301

to that of continuum-based membrane models [37]. Different spring mod-302

els can be used, e.g., linear, truss, neo-Hookean, worm-like-chains. Several303

application have been presented in literature, especially for RBC mechanics304

[38, 39, 34, 40, 35, 37, 41], showing that the model can give sufficiently ac-305

curate results in modeling the RBC membrane. Here, we decided to adopt a306

spring network model for its very simple formulation and reduced computa-307

tional cost. Moreover, one has to take into account that in several biologi-308

cal applications the uncertainty in determining material properties could be309

larger than the discrepancies between spring network and continuum models.310

In any case, there is no limitation of the proposed method in replacing this311

simplified solver by a more accurate, and computationally more expensive,312
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finite element membrane solver [27].313

As an example of a more complex biological tissue, the simulation of314

the dynamics of a bioprosthetic aortic valve in a pulsatile flow is presented315

in section 3.8. During the cardiac cycle, the aortic valve leaflets open and316

close by bending, undergoing large deformation with change of curvature,317

and resist diastolic pressure experiencing in-plane stresses. This complex be-318

havior is strictly related to the leaflet internal structure, therefore a proper319

specification of the material properties combined with a realistic mechanical320

model are crucial. Three layers compose the aortic leaflet tissue, each hav-321

ing different characteristics. The different fiber orientation is responsible of322

mechanical anisotropy: the circumferential elastic modulus of human aortic323

valve tissue can be 6-8 times larger than the one evaluated in the radial direc-324

tion [42]. Moreover, the material response to large strains is highly nonlinear325

and hyperelastic. Here, the presented banding model is adopted, along with326

a simplified nonlinear anisotropic material behavior for the in-plane stress.327

As shown in [43], using a continuum model, the in-plane response of the328

aortic valve tissue can be described by means of Fung-type constitutive law:329

Sij =
∂W

∂Eij

(38)

where Sij and Eij are the components of the second Piola–Kirchhoff stress330

tensor and Green strain tensor, respectively, i and j are the indices repre-331

senting the two principal directions, and W is the strain energy density. W332

can be formulated as [44]:333

W =
c

2
(eQ − 1) (39)

with334

Q = A1E
2
11 + A2E

2
22 + 2A3E11E22 + A4E

2
12 + 2A5E11E12 + 2A6E22E12 (40)

The values of the constants are obtained by fitting previously published bi-335

axial esperiments on normal aortic valve tissue [43], and are here reported for336

reference, c = 9.7Pa, A1 = 49.558, A2 = 5.2871, A3 = −3.124, A4 = 16.031,337

A5 = −0.004 and A6 = −0.02. With the aim of using a network spring338

model instead of a continuum one, as done in [43] (where the only structural339

solver is considered), the anisotropic behavior is simplified considering only340

two stress-strain curves, corresponding to equibiaxial loading (one curve for341
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(a) (b)

Figure 4: Bilinear relationship approximating the hyperelastic behavior of aortic valve
material, as in [43].

the fiber fiber direction and one for the cross-fiber direction) of the aortic342

valve tissue (see figure 4a). The nonlinear behavior in both directions is fur-343

ther simplified approximating the curves by means of a piecewise linear fit344

consisting of a segment of slope m1 passing through the origin and a second345

segment of slope m2 intersecting the first segment at some critical value of346

Green strain (indicated as stretch ratio λ∗). The undeformed (stress-free)347

configuration of the valve leaflet is taken as a reference for evaluating the348

angle between the single spring (edge) direction with respect to the material349

fiber direction (horizontal direction in this work), θ, as indicated in figure 4b.350

Then, for each edge at a given angle θ, intermediate between the the fiber and351

cross-fiber directions, the slope parameter is calculated by (m1 for example):352

m1(θ) =
√

m2
1fcos

2θ +m2
1csin

2θ (41)

where m1f and m1c are the initial slopes in the fiber and cross-fiber direc-353

tions, respectively. The same formulation is adopted to evaluate the other354

parameters, m2 and λ∗, based on the angle θ in the stress-free configuration355

of the mesh. In such a way, the line slopes as well as the stretch ratio is356

stored for each spring. The Van Gelder [32] approach is employed for calcu-357

lating elastic constant, ke, where in place of Young’s modulus, the evaluated358

slopes of the bilinear model, m1 or m2 are used, depending on whether the359

actual deformation of the spring corresponds to a value of stretch less than360
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or greater than λ∗ [43]. Two elastic constants are obtained (form small and361

large displacements, ke1 and ke2). The elastic force on one node of the spring362

(e.g. node 1 in figure 3) is evaluated by:363

F
E
1 = −ke1(l − l0)

r12

l
(42)

for springs with stretch magnitude less than λ∗, or364

F
E
1 = − [ke1l0(λ

∗ − 1) + ke2(l − λ∗l0)]
r12

l
(43)

for springs with stretch magnitude freater than λ∗.365

2.5. Force and moment evaluation366

The forces and moments in equations (22),(23) and (37) are calculated by367

considering the pressure and viscous stresses over the immersed body surface.368

Given the triangular discretization of the surface, the local force contribution369

is evaluated for each triangular element.370

For the case of a closed surface, representing a rigid or deformable solid,371

the single contributions to the force and moment are evaluated for each tri-372

angular element, l:373

Fl(t) = (τl · nl − plnl)Sl , (44)
374

Ml(t) = [(τl · nl − plnl)× rl]Sl , (45)

where τl and pl are the viscous stress tensor and pressure, evaluated at the375

centroid of each triangle (location of the Lagrangian marker, l), nl and Sl376

are the unit outward normal vector and area of each triangle, while rl is377

the position vector of the marker with respect to its baricentre. In order378

to evaluate the pressure pl and the velocity derivatives, for each Lagrangian379

marker a probe is created along its normal direction, at a distance hl, equal380

to the averaged local grid size. Using the same MLS formulation described381

above, pressure and velocity are evaluated at the probe location. Then, the382

pressure on the markers is calculated as:383

pl = p∗l +
Dul

Dt
· nl (46)

where p∗l is the pressure on the probe and the second term of the right hand384

side, involving the acceleration of the marker, Dul/Dt = dvl/dt, comes385

from the evaluation of the pressure gradient in the normal direction by the386
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selected Lagrangian marker
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probe along normal direction
probe’s support domain

Eulerian points

Figure 5: Scheme for IB forces evaluation.

momentum equation [14]. Concerning the velocity derivatives on the body387

surface, these are considered equal to the velocity derivatives evaluated at the388

probes, that is equivalent to assume a linear variation of the velocity near389

the body. This is consistent with the second-order accuracy of the space390

discretization scheme and turns out to be a good approximation provided391

that the grid is sufficiently refined near the body. For the case of rigid bodies,392

the total force and moment to be considered in equations (22) and (23) are393

obtained by summing all the contributions of equations (44) and (45) over394

the Nt triangles describing the immersed surface; on the other hand, in case395

of deformable bodies, the Fl(t) is equally distributed among the three nodes396

of the l − th triangle: the total hydrodynamic force acting on each triangle397

vertex is obtained summing all the contributions of the triangles sharing that398

node.399

In the case of vesicles or open surfaces, one has to account for the forces400

due to the presence of the fluid on both sides of the surface, namely, also in401

the opposite normal direction, for each triangle, in order to obtain the total402

force:403

Fl(t) = Sl

[(

τ+
l − τ−

l

)

· nl − (p+l − p−l )nl

]

, (47)
404

Ml(t) = Sl

[(

τ+
l − τ−

l

)

· nl − (p+l − p−l )nl

]

× rl , (48)

where + and − quantities are evaluated on the probes along the positive and405

negative nl directions, respectively (see figure 1). It is worth noting that406

with the present method one can sustain large pressure differences across407
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Figure 6: Pressure (red lines) and streamwise velocity (blue lines) distributions on the
centerline of the computational domain for the case of a uniform flow past a fixed vertical
plate.

one Eulerian cell.408

As an example, the results for the flow past a fixed, zero-thickness vertical409

plate is shown in figure 6. The flow comes from left to right with velocity U410

and impacts on a plate of height L, with Re = ρfUL/µ = 200. The compu-411

tational domain is [−2L, 6L]× [−4L, 4L]. The center of the plate is placed at412

[0.5L, 0]. Inlet and outlet boundary conditions are imposed on the vertical413

boundaries, while free-shear wall conditions are imposed for the horizontal414

boundaries. A non uniform grid of 671 × 747 nodes is used with a uniform415

grid spacing of 0.01L in the vicinity of the plate. The Lagrangian markers416

are distributed uniformly onto the plate surface, with a spacing of about 0.7417

the local Eulerian grid size in that area. Figure 6 shows the pressure and418
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streamwise velocity distributions on the centerline of the computational do-419

main. The pressure difference across the plate is shown, captured in one grid420

cell along the streamwise direction (figure 6, left). Figure 6 shows an instan-421

taneous field of the pressure contours and the pressure distribution along the422

plate considering the upstream and downstream normal probe directions.423

2.6. Fluid-structure-interaction strategy424

The evaluation of the flow and body motion at each time step is carried425

out by means of an implicit strongly coupled approach to ensure convergence426

and to allow the use of larger time steps, since the prediction of the flow field427

and of the hydrodynamic loads requires the knowledge of the motion of the428

bodies and vice–versa [45]. The adopted approach is based on Hamming’s429

4th order modified predictor-corrector method with mop-up correction [26].430

For the case of a rigid body, ẍ, ẋ and x represent the acceleration, velocity431

and position, respectively, of the body’s baricentre (in that case m = M is432

the mass of the entire body), and the same approach is adopted to evaluate433

angular acceleration, velocity and position (considering the inertial tensor).434

On the other hand, for the case of deformable body, ẍ, ẋ and x represent435

acceleration, velocity and position, respectively, of each triangle’s vertex and436

m = mp is the mass on each node, obtained by uniformly distributing the437

total mass of the structure over the Nv nodes. Subscripts indicate the time438

instant.439

For each time step,440

1. Predictor:441

• ẍn = Fn/m442

• ẋ
p
n+1 = ẋn−3 +

4
3
∆t (2ẍn − ẍn−1 + 2ẍn−2)443

• ẋ
m
n+1 = ẋ

p
n+1 − 112

121
(ẋp

n − ẋ
c
n)444

• x
p
n+1 = xn−3 +

4
3
∆t (2ẋn − ẋn−1 + 2ẋn−2)445

• x
m
n+1 = x

p
n+1 − 112

121
(xp

n − x
c
n)446

• Solve flow and structure (if deformable body) equations, using the447

predicted structural node position and velocity and evaluate F1
n+1448

2. Corrector: do loop on k, while convergence is achieved:449

• ẍ
k
n+1 = F

k
n+1/m450

• ẋ
c
n+1 =

1
8
(9ẋn − ẋn−2) +

3
8
∆t

(

2ẍk
n+1 + 2ẍn − ẍn−1

)

451
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• x
c
n+1 =

1
8
(9xn − xn−2) +

3
8
∆t

(

2ẋk
n+1 + 2ẋn − ẋn−1

)

452

• Check for converge of the structure equations: |xk+1
n+1 − x

k
n+1| < ǫ453

• If converged,454

– ẋn+1 = ẋ
c
n+1 +

9
121

(

ẋ
p
n+1 − ẋ

c
n+1

)

455

– xn+1 = x
c
n+1 +

9
121

(

x
p
n+1 − x

c
n+1

)

456

– Solve flow and structure equations (if deformable body), using457

the new structural node position and velocity and evaluate458

Fn+1459

• If not converged,460

– Solve flow and structure equations (if deformable body), using461

the actual structural node position and velocity and evaluate462

F
k+1
n+1463

– repeat the corrector procedure until convergence464

In order to provide the previous time steps solutions needed, lower-order465

method are employed for the first time steps of integration. The tolerance ǫ466

considered in this work is equal to 10−7, and the method converges in 2 − 8467

iterations, depending on the problem complexity and structure mass and468

elastic properties. In the case of large accelerations, under-relaxation could469

be considered in order to maintain the system stable.470

3. Results471

3.1. Sedimentation of an elliptic particle472

The dynamics of a single two-dimensional elliptic particle sedimenting473

in a confined channel is considered here to validate the FSI procedure. A474

systematic verification study is also performed to check the order of accuracy475

of the algorithm. The problem is configured as an elliptic particle with476

aspect ratio α = a/b = 2, where a and b are the major and minor axes,477

respectively, as shown in Figure 7. The confined channel has width L, with478

a blockage ratio β = L/a = 4. The density ratio, γ = ρs/ρf is set equal to479

1.1, where ρs and ρf are the particle and fluid densities, respectively. The480

computational domain is [0, L]× [0, 7L] in X and Y directions, respectively,481

with the gravity g pointing in the negative Y direction. The particle starts482

falling with the centroid in (0.5L, 6L), with an initial angle of θ0 = 45◦,483

to break the symmetry. Considering the terminal settling velocity of the484
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particle, VT , the major axis of the ellipse and the fluid kinematic viscosity,485

ν, the Reynolds number is ReT = VTa/ν = 12.5, while the Froude number486

is FrT = VT/
√
ga = 0.126. In physical units, the major axis of the ellipse is487

0.1 cm and the kinematic viscosity of the fluid is 0.01 cm2/s [46]. A slip wall488

boundary condition is applied at the top boundary and all other boundaries489

are treated as no-slip wall boundaries. Eight uniform Cartesian grids are490

used with nodes: 81 × 561, 101 × 701, 134 × 934, 161 × 1121, 201 × 1401,491

267×1867, 401×2801, 801×5601, corresponding to an Eulerian grid spacing,492

∆h/a, of 0.05, 0.04, 0.03, 0.025, 0.02, 0.015, 0.01, 0.005, respectively. A493

uniform Lagrangian marker spacing is adopted for all the cases, equal to 0.77494

the Eulerian grid size. With the aim of investigating the overall numerical495

accuracy in both space and time, the time steps for each grid is chosen496

in order to mantain a constant ratio between the grid spacing and time497

step, ∆h/∆t = 5Ut. In Figure 7 the present results in terms of particle498

settling velocity, trajectory (location of center of mass) and orientation for499

the grids with ∆h/a equal to 0.04, 0.02 and 0.01 are shown, compared with500

the numerical results obtained by [46] by means of a finite-element method.501

The particle settles into the center of the channel (x/L = 0.5) with a constant502

velocity, and sediments in a horizontal configuration (θ = 0). The agreement503

of the results is very good for the three grids considered. For the accuracy504

study, the solution from the finest grid, 801×5601, is used as reference. Three505

relative errors are defined, for the terminal position and velocity at time t =506

0.8 s, namely ǫP = [(Y −Y ref)/Y ref ]t=0.8s and ǫV = [(VY −V ref
Y )/V ref

Y ]t=0.8s,507

respectively, and for the time averaged value of the terminal velocity in the508

interval t = [0.8, 1.6] s, namely ǫ<V > = (< VY > − < V ref
Y >)/ < V ref

Y >.509

The relative errors are reported versus grid spacing in Figure 8, showing510

a first-order convergence rate for the coarser grids and an evident overall511

second-order accuracy on finer grids.512

3.2. Fluttering and tumbling of a plate513

The falling dynamics of a plate is considered in order to test the ability514

of the proposed technique to capture the transition between tumbling and515

fluttering. Previous experimental studies [47] on thin flat strips falling in516

a vertical cell have shown that the transition is regulated by the Reynolds517

and Froude numbers. A two-dimensional elliptical plate is considered, with518

a thickness-to-length ratio h/L equal to 0.125, as shown in Figure 9a. The519

Reynolds number, defined as Re = U0L/ν, is equal to 140 for the flutter-520

ing and to 420 for the tumbling case, where U0 =
√

2(ρs/ρf − 1)hg is the521
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(a) (b)

(c) (d)

Figure 7: (a) Geometrical parameters for the elliptic particle sedimenting in a confined
channel, with ReT = 12.5, FrT = 0.126, α = 2, β = 4, γ = 1.1 ; (b) sedimentation
velocity; (c) location of center of mass; (d) orientation of the particle. Present numerical
results (lines) are compared with finite-elements numerical results of [46] (symbols).
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Figure 8: Systematic study of accuracy for an elliptic particle sedimenting in a confined
channel, with ReT = 12.5, FrT = 0.126, α = 2, β = 4, γ = 1.1.

characteristic speed and g the module of gravitational acceleration, the latter522

pointing in the negative Y direction. The modified Froude number, defined as523

Fr =
√

M/(ρfL2) for a two-dimensional body, with M the mass of the plate524

per unit width, is equal to 0.45 and 0.89 for the fluttering and tumbling cases,525

respectively, as done in the computational work of [48]. The computational526

domain considered is [0, 30L]× [0, 30L] in X and Y directions, respectively.527

The particle starts falling with the centroid in (15L, 28L) for the fluttering528

cases, and in in (25L, 28L) for the tumbling ones, with two different initial529

angles per case, θ0, of 45
◦ and −75◦. Slip wall boundary conditions are ap-530

plied at the top boundary and at the vertical boundaries of the domain, while531

a no-slip boundary condition is imposed at the bottom boundary. A uniform532

computational grid is used, with 2300 × 2300 nodes, with an Eulerian grid533

spacing of about 0.013L, and a uniform Lagrangian marker spacing of 0.01L.534

A constant time step of ∆t = 5 · 10−3L/U0 is used. The trajectories of the535

plates are reported in figure 9. The two plates show a very similar steady536

fluttering, regardless their initial angle, with a different transient process for537

the case with θ0 = −75◦. Concerning the tumbling behavior, the plate with538

θ0 = 45◦ shows a longer transient period in which it starts fluttering and539

then falls tumbling. The descending angle with respect to the horizontal540
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Figure 9: (a) Geometrical parameters for the plate falling in a quiescent fluid. (b) Over-
lapping of plate positions for fluttering (Re = 140, Fr = 0.45) and tumbling (Re = 420,
Fr = 0.89) plates. Black: tumbling case, θ0 = 45◦; red: tumbling case, θ0 = −75◦; blue:
fluttering case, θ0 = 45◦; green: fluttering case, θ0 = −75◦ (Colour online).
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direction is the same in the two tumbling cases. Figure 10 shows the hori-541

zontal and vertical force coefficients, calculated by Ci = 2Fi/ρfU
2L, where542

Fi is the hydrodynamic force acting on the plate in the i − th direction, as543

well as the two velocity components for the fluttering and tumbling cases544

with θ0 = 45◦, compared with the numerical results of [48]. A very good545

agreement is obtained for all the cases.546

3.3. Particle migration in a planar Couette flow547

The two-dimensional motion of a single circular particle in a shear flow is548

considered, in order to evaluate the sensibility of the code in capturing the549

particle lateral migration, which is due to a vertical velocity component that550

is very small compared with the horizontal one (slow migration). The differ-551

ence in the relative velocity across a solid particle may drive it to move later-552

ally since the side with a higher relative velocity may lead to a lower pressure.553

In [49, 50], the authors suggested that three mechanisms are responsible for554

the motion in a linear shear flows: wall lubrication repulsion; inertial lift due555

to shear slip and lift due to particle rotation. An accurate evaluation of the556

forces is necessary to properly evaluate the correct dynamics. The circular557

particle has radius r and the width of the channel is h = 8r. The computa-558

tional domain considered is [−100r, 100r]× [0, 8r] in the x and y directions,559

respectively. Periodic boundary conditions are imposed in the horizontal di-560

rection. In the vertical direction, no-slip wall is imposed at the lower surface561

of the domain, while the upper surface has an imposed velocity, Uh (see fig-562

ure 11). The bulk Reynolds number considered is Reb = Uhh/ν = 40, which563

corresponds to a particle Reynolds number Rep = Uhr
2/(νh) = 0.625 that564

does not satisfy the small-Rep condition required for validity of perturbation565

theories of the viscous type or inertial type [49]. The particle is considered566

neutrally buoyant. Two initial conditions are considered, with the particle567

vertical position equal to h/4 and 3h/4. Here we consider the initial value of568

the difference between the particle streamwise velocity and the undisturbed569

velocity at the center of the particle, namely slip velocity (δU), δUinit = 0.570

Ho and Leal [51] and later Vasseur and Cox [52] showed that in conditions571

of low Reynolds number, neutrally buoyant particles in a simple shear Cou-572

ette flow will migrate toward the center plane because of the influence of573

the walls (agreeing with experimental observations by Halow and Wills [53]).574

In the present simulations for the Couette flow, the particles are observed575

to migrate toward the median plane of the channel, as shown in Figure 12,576

regardless of their initial position, with a good agreement with the results577
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Figure 10: Top: fluttering case with Re = 140, Fr = 0.45, θ0 = 45◦. (a) Horizontal force
coefficient, Cx, and vertical velocity component, v; (b) vertical force coefficient, Cy, and
horizontal velocity component, u. Bottom: tumbling case with Re = 420, Fr = 0.89,
θ0 = 45◦. (c) Horizontal force coefficient, Cx, and vertical velocity component, v; (d)
vertical force coefficient, Cy , and horizontal velocity component, u. Continuous lines
indicate present results, while dashed lines indicate numerical results of [48].
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Figure 11: Sketch of the configuration for a circular particle transported in a shear flow
between walls, at Reb = 40.

obtained by [50]. Note that the migration velocity of the particles depends578

on the initial conditions at the early migration stage. Figure 12 reports the579

particle vertical position and migration velocity in function of time. With580

the prescribed initial slip velocity, the particle migrates gradually toward the581

equilibrium position, rotating with an instantaneous angular velocity that582

reaches an equilibrium value of about the 47% of the constant shear rate of583

the undisturbed flow field. This means that the particles rotate with the584

angular velocity of the flow field to within a small correction, as found also585

by Feng et al. [50].586

3.4. Single sphere settling under gravity587

To further validate the method, a three-dimensional case involving fluid-588

structure interaction with a rigid body is considered, by simulating the mo-589

tion of a sphere falling under gravity in a closed container. Experimental590

investigations have been performed by [54], by means of particle image ve-591

locimetry, providing an accurate measure of both the sphere trajectory and592

velocity from the moment of its release until rest at the bottom of the channel.593

Given the relative small ratio between the box width and the particle diam-594

eter, the full flow field can be simulated under identical conditions. A sphere595

with diameter d = 15mm is considered. The Froude and Reynolds numbers596

are defined as Re = u∞d/ν and Fr = u∞/
√
gd, where g = 9.81m/s2 is the597

module of the gravity acceleration and u∞ is the sedimentation velocity of a598

sphere in an infinite medium. In order to determine u∞, the relation for the599
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Figure 12: Lateral migration of a circular neutrally buoyant particle in a shear flow between
walls, at Reh = 40. The particle is released at y0 = h/4 and y0 = 3h/4, with δUinit = 0.
(a) Vertical baricentre position, y, versus time. (b) Migration vertical velocity, v, versus
vertical baricentre position, y. Continuous lines indicate present results, symbols indicate
numerical results of [50].

drag coefficient of Abraham [55] is used:600

Cd = C0

(

1 +
δ0√
Re

)2

(49)

with C0δ
2
0 = 24 and δ0 = 9.06, obtaining601

u∞ =

√

4gd

3Cd
(γ − 1) (50)

Four different conditions are considered, with different density ratios, γ =602

ρs/ρf , and parameters, as reported in Table 1. The computational domain603

considered is [0, 6.67d] × [0, 6.67d] × [0, 10.67d], where the last is the grav-604

ity acceleration direction. The particle starts falling with the centroid in605

(3.33d, 3.33d, 8d). No-slip wall conditions are imposed at all the boundary606

surfaces of the domain. A uniform grid of 241×241×385 nodes is used with607

a grid spacing of about 0.028d. The Lagrangian markers are distributed uni-608

formly onto the sphere surface, with a spacing of 0.02d, that is equal to 0.71609

the Eulerian grid size. The constant time step used depends on the case con-610

sidered and is reported in Table 1. The sphere sedimentation velocity and611

trajectory are reported in Figure 13, where the present results are compared612

28



Re∞ γ u∞ (m/s) Fr∞ ∆t u∞/d
1.5 1.155 0.038 0.0991 0.0001
4.1 1.161 0.060 0.156 0.0005
11.6 1.164 0.091 0.237 0.0007
31.2 1.167 0.128 0.334 0.001

Table 1: Reynolds number, density ratio, settling velocity in an infinite medium, Froude
number and non-dimensional time step used in the simulation for the case of a sphere
settling under gravity in a closed channel.

with the experimental data of [54]. A very good agreement is obtained for613

all the configurations considered.614

3.5. Two-dimensional flexible filament in a free stream615

A flexible filament motion in a free stream is simulated in order to test616

the ability of the simplified structural model to capture the dynamics of617

deformable bodies. Also in this case, a systematic verification study is per-618

formed to check the order of accuracy of the algorithm in the deformable-619

geometry case. The geometry of the problem is reported in figure 14. A620

zero-thickness filament of length L is pinned at the leading edge and freely621

moves under the effect of incoming flow and gravity. The initial orientation622

angle of the filament with respect to the flow is θ0 = 0.1π. The filament is623

considered inextensible (ke = 250000) and flexible (kb = 0.15) in order to624

replicate the test of [21] and [9]. The ratio of solid and fluid densities, γ is625

equal to 150. The Reynolds number, based on the filament length, L, the fluid626

density, ρf and the inflow velocity, U is equal to 200. The Froude number is627

equal to 0.5. The computational domain considered is [−4L, 4L]× [−2L, 6L]628

in the x and y directions respectively, with the filament leading edge in the629

origin of the domain and the gravity acting in the flow direction (negative630

y direction). No-slip wall boundary conditions are imposed at the vertical631

boundaries, while inlet and outlet boundary conditions are imposed at the632

horizontal ones, as indicated in figure 14. The filament has no thickness633

in the present simulation. Pressure and viscous forces acting on the fila-634

ment are obtained considered two probes from each Lagrangian marker, in635

both directions, as explained in section 2.5. The mass of the nodes of the636

filament is calculated considering a thickness of 0.01L. Seven non uniform637
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(a) (b)

Figure 13: Single sphere settling under gravity in a small container. (a) Spere sedimen-
tation velocity; (b) sphere trajectory. Numerical results (continuous lines) are compared
with experimental results (symbols) of ten Cate et al. [54] at four Reynolds numbers.

(a) (b)

Figure 14: (a) Scheme of the computational setup for the simulation of the flow around
a flexible filament in a free stream. (b) Flapping filament configuration at several time
points along its flapping cycle; Re = 300, γ = 1, kb = 0.1.
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Figure 15: Comparison of trailing-edge transverse location time traces for a flexible fila-
ment in a free stream, with Re = 200, γ = 150 and kb = 0.15.

Cartesian grids are used, refined in the vicinity of the filament, with nodes:638

81×561, 101×701, 134×934, 161×1121, 201×1401, 267×1867, 401×2801,639

The grid spacing is maintained uniform in a box containing the filament of640

[−1.2L, 1.2L]× [−1L, 4L] in the x and y directions respectively, correspond-641

ing to an Eulerian grid spacing, ∆h/L, of 0.05, 0.04, 0.03, 0.025, 0.02, 0.015,642

0.01, respectively. A uniform Lagrangian marker spacing is adopted for all643

the cases, equal to 0.7 the Eulerian grid size. With the aim of investigating644

the overall numerical accuracy in both space and time, the time steps for645

each grid is chosen in order to mantain a constant ratio between the grid646

spacing and time step, ∆h/∆t = 10Ut. The filament shows a periodic flap-647

ping state after few cycles. The filament configuration during the periodic648

flapping is reported in figure 14b for the finest case, showing the symmetric649

behavior of the structure deformation. In Figure 15 the present results in650

terms of time traces of the trailing edge transverse location of the flexible651

filament for the grids with local ∆h/L equal to 0.04, 0.02 and 0.01 are shown,652

showing very similar results, with some discrepancies of the coarse mesh with653

respect to the finer ones. For the accuracy study, the solution from the finest654

grid, 801 × 5601, is used as reference. Two relative errors are defined, for655

the maximum value of the filament trailing-edge transverse location, xmax,656

namely ǫA = (xmax − xref
max)/x

ref
max and for the oscillation period, T , namely657

ǫT = (T − T ref)/Tref . The relative errors are reported versus grid spacing658

in Figure 16, showing an overall second-order accuracy on finer grids. The659

instantaneous vorticity contours at four time points along the flapping cycle660
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Figure 16: Systematic study of accuracy for a flexible filament in a free stream, with
Re = 200, γ = 150 and kb = 0.15.

are reported in figure 17. In Figures 18 and 19, the present results on the661

finest grid, in terms of time traces of the trailing-edge transverse location and662

drag and lift coefficients, respectively, are compared with numerical results663

of [21] and [9]. The results are in good agreement, with slight phase differ-664

ences. The force coefficients are calculated by CF = 2F/ρfU
2L, where F is665

the hydrodynamic force acting on the filament in the streamwise (drag) and666

transverse (lift) directions, respectively. It is worth noting that no spurious667

oscillations are present even in the presence of deforming geometries for all668

the grids.669

3.6. Three-dimensional flow around a flapping flag670

As a three-dimensional test-case considering a deformable body, the flow671

around a flapping flag in a free stream is considered. The schematic of the672

problem is reported in figure 20, where a square flag of length L is considered.673

The computational domain is a rectangular box with [−L, L] × [−4L, 4L]×674

[−L, 7L] in the x,y and z directions, respectively. The center of the leading675

edge of the flag is positioned at the origin. The initial shape of the flag676

is a flat plate, inclined of θ0 = 0.1π with respect to the xz-plane, z being677

the streamwise direction and x the vertical one. The leading-edge of the678
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Figure 17: Instantaneous vorticity contours for the simulation of the flow around a flexible
filament in a free stream, with Re = 200, γ = 150, kb = 0.15. From left to right t/T = 6,
t/T = 6.25, t/T = 6.5 and t/T = 6.75.

Figure 18: Comparison of trailing-edge transverse location time traces for a flexible fila-
ment in a free stream, with Re = 200, γ = 150 and kb = 0.15. Present results ( ),
Lee and Choi [21] ( ), Huang et al. [9] (�).
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Figure 19: Time histories of the drag (a) and lift (b) coefficients for a flexible filament in
a free stream, with Re = 200, γ = 150 and kb = 0.15. Present results ( ), Lee and
Choi [21] ( ).

flag is pinned, while the other three edges are free to move. The simula-679

tion is performed on a nonuniform grid, refined around the flag and in the680

wake, with 101 × 228 × 260, nodes and a uniform maximum resolution of681

∆x = ∆y = ∆z = 0.02L near the flag. The flag is considered inextensi-682

ble (the elastic constant is taken sufficiently large,ke = 2500), and flexible683

(kb = 0.15) in order to replicate the test of [9]. The ratio of solid and fluid684

densities, γ is equal to 100. The Reynolds number, based on L, the inflow685

velocity, U , and the fluid kinematic viscosity is equal to 200. No gravity is686

considered (Fr = 0). A constant time step is used of ∆t = 10−3 L/U . Fig-687

ure 21 shows the time traces of the middle point transverse location at the688

trailing edge of the flapping flag (filled circle in figure 20), compared with689

the numerical results of [20],[21] and [9]. A good agreement is obtained. The690

peak-to-peak excursion amplitude as well as the Strouhal number, defined691

as St = fL/U , for the middle trailing edge point, are reported in table 2, f692

being the oscillation frequency. Moreover, the time traces of force coefficients693

(drag and lift), obtained as CF = 2F/ρfU
2L2, F being the hydrodynamic694

force in z (drag) or y (lift) direction, are shown in figure 22, compared with695

numerical results of [20] and [21]. The agreement is satisfactory. Finally, the696

instantaneous vortical structures, identified by Q-criterion [56] (iso-surface697

of Q = 0.1) around the flapping flag at t/T = 2.41 are reported in figure 23,698

showing the characteristic jairpin-like structure shed at each flapping [9].699
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Figure 20: Problem description for the simulation of the flow arounf a flapping flag in a
free stream.

t/T

Y

0 1 2 3

-0.5

0

0.5

1 present
Tian et al. (2014) - Flag 1
Lee & Choi (2015)
Huang & Sung (2010)

Figure 21: Time traces of the trailing-edge transverse location (middle point) of the flap-
ping flag, for Re = 200, Fr = 0 and γ = 100.
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Amplitude A/L Strouhal number St
present 0.795 0.265
Tian et al. (2014) - Flag 1 0.812 0.263
Lee & Choi (2015) 0.752 0.265
Huang & Sung (2010) 0.780 0.260

Table 2: Flapping flag in uniform flow with Re = 200, Fr = 0 and γ = 100. Comparison
of peak-to-peak excursion amplitude, A/L, and the Strouhal number, St, for the middle
trailing-edge point.
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Figure 22: Time traces of the drag and lift coefficients of the flapping flag, for Re = 200,
Fr = 0 and γ = 100.

Figure 23: Vortical structures (q-criterion) around the flapping filament at t/T = 2.41,
for Re = 200, Fr = 0 and γ = 100.
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3.7. Three-dimensional inverted flag in a free stream700

The dynamics of an inverted flag is considered in order to test the sim-701

plified structural model in the case of very large deformation and to test the702

sensitivity of the model to the bending stiffness parameter. With the aim703

of harvesting fluid kinetic energy, flow-induced flapping of an elastic sheet704

has recently been proposed. However, an efficient system for energy har-705

vesting has to easily become unstable, even at low velocities, and have high706

excitation amplitude [57]. The configuration adopted is that of an inverted707

filament, with a free leading edge and a clamped trailing edge. Experimental708

investigations by [57] on the flapping dynamics of an inverted elastic sheet,709

have shown that the sheet response can be largely divided in three modes,710

depending on the bending stiffness of the plate. A straight mode is observed711

for high bending, with the sheet that remains straight or flutters with very712

small amplitudes around the equilibrium position; a periodic flapping from713

side to side, with large amplitudes is found for intermediate bending; an-714

other quasi-steady behavior is observed for low bending, with the sheet that715

bends in one direction and maintains a highly curved shape, fluttering with716

small amplitudes around this deflected configuration. The proposed method717

is therefore used to capture the different dynamics varying the bending coeffi-718

cient of the network-spring model. The schematic of the problem is the same719

used in the flapping flag case 20, where a square flag of length L is considered720

in a computational domain with size [−L, L] × [−4L, 4L] × [−L, 7L] in the721

x,y and z directions, respectively, with the center of the leading edge of the722

flag positioned at the origin. The initial shape of the flag is a flat plate, with723

no inclination with respect to the xz-plane, z being the streamwise direction724

and x the vertical one. The trailing-edge of the flag is clamped, while the725

other three edges are free to move. No gravity is considered. The simula-726

tion is performed on a nonuniform grid, refined around the flag and in the727

wake, with 101 × 228 × 260, nodes and a uniform maximum resolution of728

∆x = ∆y = ∆z = 0.02L near the flag. In order to compare the results729

with the experiments of [57], two non-dimensional dynamical parameters are730

considered, the bending-stiffness, β, and the mass ratio, γ, here defined as:731

β =
B

ρfU2L3
and γ =

ρsh

ρfL
, (51)

where B is the flexural rigidity of the sheet, ρf and ρs are the fluid and732

sheet densities, respectively, U is the undisturbed flow velocity and h is the733
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Figure 24: Inverted flexible filament in a free stream at Re = 200, γ = 1. From left
to right, the bending rigidity decreases, showing a straight mode (left), a flapping mode

(middle) and a deflected mode (right). No gravity is considered.

sheet thickness. The flag is considered inextensible (the elastic constant is734

taken sufficiently large,ke = 5000), while the bending constant is calculated735

by equation ??, assuming different values to replicate the abovementioned736

three different behaviors. The Reynolds number, based on L, the inflow737

velocity, U , and the fluid kinematic viscosity, ν is considered equal to 200738

(lower than that in the experiments of [57]. A constant time step is used of739

∆t = 10−3L/U .740

Figure 24 reports the superimposed filament positions in time, showing741

straight, flapping and deflected modes, respectively, as the bending rigidity742

of the model is reduced. Additionally, the free leading edge vertical position743

in time is shown in figure 25, with a clear periodic behavior for the flapping744

mode and a more complex reduced fluttering with a non clear periodicity for745

the deflected mode and (with smaller amplitude) straight mode. Finally, the746

free leading edge vertical position in time for the case with Re = 250, γ = 2,747

kb = 20, is compared with the corresponding experimental results of [57]748

with a bending stiffness parameter β equal to 0.1. A very good agreement is749

obtained also in this test.750

3.8. Three-dimensional flow through a bio-prosthetic aortic valve751

Finally, a three-dimensional test case is presented in order to test the752

thin-structure dynamics under high pressure gradients. The case considered753

is that of a bioprosthetic aortic valve, with three deformable cusps that open754

and close under a pulsatile flowrate. The flow domain considered reproduces755

the initial tract of the ascending aorta, with a geometry similar to that used756
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Figure 25: Left: inverted flexible filament in a free stream at Re = 200, γ = 1. Time
history of the y-coordinate of the tip. Right: comparison of the y-coordinate of the filament
tip for the case with Re = 250, γ = 2, kb = 20; symbols indicate experimental results
of [57] with β = 0.1.

in [58]. It is considered rigid and composed of i) an inflow circular tube757

upstream of the valve, with the same diameter of the valve and length h1; ii)758

a tract with three sinuses of Valsalva reproducing the physiological case, with759

length hs; iii) a larger tube after the sinuses, with larger diameter, D, and760

length h3. All the geometrical parameters are given in figure 26a, along with761

a schematic of the problem. The valve considered wants to mimic the Trifecta762

valve model (St Jude Medical Inc., Minneapolis), which is a trileaflet tissue763

valve constructed using a polyester and tissue-covered titanium stent. The764

leaflets are made of pericardial tissue and are attached to the exterior of the765

stent in order to mimic the hemodynamics performance of a healthy aortic766

heart valve. The valve has a diameter d0 = 23mm, and height hl, as shown in767

figure 26a. The leaflet geometry is obtained reproducing the real valve stress-768

free geometry, as reported in figure 26b. The leaflets nodes corresponding to769

the stent position (thick black lines in figure 26b) are constrained to be fixed770

in time. Moreover, a geometrical constraint is adopted considering three771

vertical planes at 120◦ and passing through the center of the orifice, allowing772

only sliding of the structural nodes on the planes and preventing the leaflets773

from passing through each other. It is worth noting that contact between two774

nodes of different structures could be easily modeled using properly defined775

interaction potentials and adding a repulsion force to the total forces acting776

on a single node, but here a geometrical approach has been adopted for777

simplicity. The elastic behavior of the pericardial tissue is modeled with778

the simplified, nonlinear anisotropic model described in section 2.4. Bending779
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Figure 26: (a) Scheme of the consiguration for the three-dimensional flow through a bio-
prosthetic aortic valve. The main geometrical parameters are shown, related to the valve
diameter, d0 = 23mm. (b) Trifecta aortic valve real model (St Jude Medical Inc., Min-
neapolis) and stress-free computational model (on the left) of the three leaflets. Thick
black lines indicate the constrained edges. (c) Pulstile flowrate adopted in the simula-
tions.
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stiffness is also added to the model, using a bending constant kb = 0.01. The780

material density is set equal to that of the fluid and a constant thickness of781

0.5mm is considered. A nonuniform grid with 257× 257× 372 nodes is used782

in x,y and z directions, respectively, z being the streamwise direction, with783

an Eulerian grid spacing near the valve 0.01d0, and an averaged Lagrangian784

marker spacing of 0.007d0 on the leaflets. A constant CFL value of 0.25 is785

adopted, leading to a variable temporal resolution ranging from 200 to 2µs786

during the simulation. A pulsatile flowrate is imposed in the inlet section787

of the domain, with a cardiac output of approximately 5l/min, at a fixed788

beat rate of 70beats/min (see figure 26c), while standard convective outflow789

conditions are imposed at the outlet section. The blood density is set to790

1060kg/m3. The peak Reynolds number is about 6700, based on the inlet791

velocity, the inflow tube diameter and the blood kinematic viscosity.792

Figure 27 shows a comparison between the real valve in in-vitro exper-793

iments (St. Jude Medical Inc., www.sjm.com) and the present numerical794

results, at two different time instants during the opening phase, indicated795

with open circles in figure 28a. Moreover, the comparison of numerical and796

experimental projected valve area (PV A) seen from the top of the domain797

in the xy plane, divided by its maximum value assumed during the cardiac798

cycle, PV Amax, is shwon in figure 28a. The agreement with experiments of799

the valve leaflets dynamics and projected area is very good, considering the800

complexity of the model and the uncertainty in the material properties. Fur-801

thermore, it is important to stress that experimental data are obtained by802

valve visualization from the valve manufacturer website, with no information803

about the exact flowrate waveform. Figure 28b reports one leaflet config-804

uration at some instants during the cycle indicated by symbols in figure805

28a. Finally, the valve configuration and the streamwise velocity contours,806

along with the instantaneous vortical structures, identified by Q-criterion [56]807

(iso-surface of Q = 0.1), at three different instants of the cardiac cycle are re-808

ported in figures 29-31. The jet-like flow that emerges from the central orifice809

of the valve is clearly shown, with high shear stresses occurring at the edge of810

the jet during the deceleration phase. Large-scale vortical structures form,811

starting from the leaflet commissures and in the three sinuses of Valsalve812

during the acceleration phase. After peak systole, instabilities occur at the813

edge of the jet and smaller scale structures are developed, still maintaining814

a clear central jet, as shown in figure 30. The flow appears more disordered815

during the deceleration phase at late systole, with decreasing flowrate and816

small scale vortical structures that fill completely the domain. It is impor-817
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(a) (b)

Figure 27: Instantaneous snapshots of the valve leaflets dynamics from an experimental
visualization (on the left of each figure) and numerical results (on the right of each figure),
at two instants during the opening phase, indicated with open circles in figure 28a.
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Figure 28: (a) Projected valve area PV A divided by its maximum value assumed on
the cycle, PV Amax for a cardiac cycle for numerical simulations (continuous line) and
experiments (dashed lines). (b) Leaflet configuration at some instants during the cycle
indicated by symbols in figure 28a.
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Figure 29: Peak of flowrate (t = 0.13 s). Left: streamwise velocity contours (in m/s) in the
yz plane. Right: instantaneous vortical structures identified by Q-criterion (isosurfaces of
Q = 0.1).

tant to note that the structural model performance are promising and the818

valve dynamics is reasonably accurate, with a very reduced computational819

cost (about 1%) with respect to the fluid solver one.820

4. Conclusions821

A versatile numerical method for the fluid-structure-interaction of bod-822

ies of arbitrary thickness, immersed in an incompressible fluid, is presented,823

with the aim of simulating different biological engineering applications. A824

partitioned, discrete-forcing immersed boundary method is adopted, based825

on a moving least squares method to reconstruct the solution in the vicin-826

ity of the immersed surface and to convert the Lagrangian forcing back to827

the Eulerian grid. A simple spring-network model is considered for describ-828

ing the dynamics of non-rigid bodies and structures, in order to have the829

freedom of easily model and simulate different biological systems that can830

not always be described by simple continuum models, without affecting the831

computational time and simplicity of the overall method. The surfaces can832

be rigid or deformable, and can be either closed, in order to describe solid833

bodies or capsules and biological cells, or open, describing slender bodies,834

such as filaments or organ tissues. Fluid and structures are coupled in a835

strong way, in order to avoid instabilities related to large accelerations due836

to the deformations of the surfaces. The evaluation of the hydrodynamic837
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Figure 30: Early systole (t = 0.16 s). Left: streamwise velocity contours (in m/s) in the
yz plane. Right: instantaneous vortical structures identified by Q-criterion (isosurfaces of
Q = 0.1).

Figure 31: Late systole (t = 0.23 s). Left: streamwise velocity contours (in m/s) in the
yz plane. Right: instantaneous vortical structures identified by Q-criterion (isosurfaces of
Q = 0.1).
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loadings on the structure requires particular attention, in particular of the838

case of structures of zero-thickness. In this case, two probes are sent from839

each location at which the forces need to be calculated, along both sides840

of the normal-to-surface direction, evaluating the pressure and velocity gra-841

dient near the body. The method gives accurate results comparable with842

that of sharp direct-forcing approach, and can manage pressure differences843

across the surface in one grid cell, still obtaining very smooth forces. The844

immersed boundary technique as well as the structural solver do not im-845

pose any restriction to the computational time step, which is determined846

based on stability conditions of the flow solver. The accuracy of the method847

has been validated by means of several test cases of increasing complexity.848

Several testcases with rigid bodies falling in a quiescent fluid, fluttering or849

tumbling, or transported by a shear flow are presented, showing a very good850

agreement with available experimental data and numerical results obtained851

by different approaches. In the abovementioned cases, the surface is closed852

and undeformable, enclosing a volume and thus representing a rigid particle.853

Then, open surfaces representing infinitely thin elastic structures with mass854

are considered: a two-dimensional flexible filament and an inverted flexible855

filament in a free stream. A very good agreement has been obtained in all856

the cases, as shown by comparison with numerical and experimental results857

available in the literature. Therefore, in all the test considered, the method858

proves to be accurate and efficient in handling both rigid and deformable859

bodies, even using a simplified description of the mechanical properties of860

the structure. Finally, a three-dimensional model of a bio-prosthetic aortic861

valve is considered, with nonlinear and anisotropic mechanical properties,862

opening and closing during a pulsatile cardiac cycle, showing a good quali-863

tative agreement with respect to in-vitro data, considering the complexity of864

both the geometry and the material properties of the biological tissue.865
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