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We	report	a	strategy	to	modulate	the	Fano-like	signature	of	a	guided-mode	resonance	supported	by	a	graphene-
based	 grating.	 The	 shape	 of	 the	 resonance	 is	 controlled	 by	 the	 amount	 of	 damping	 introduced	 by	 graphene.	 A	
symmetric-to-asymmetric	 lineshape	 transition	 and	 a	 significant	 narrowing	 of	 the	 linewidth	 occur	 at	 relatively	
moderate	levels	of	chemical	potential.	Further	increases	of	the	chemical	potential	lead	to	a	blueshift	of	the	Fano	
resonance	due	to	the	modification	of	the	imaginary	part	of	the	conductivity	of	graphene.	Our	results	are	supported	
by	a	quasinormal	mode	analysis	of	the	grating.	Using	a	perturbative	approach,	we	provide	analytical	expressions	
for	 both	 the	 resonance	 wavelength	 shift	 and	 the	 linewidth	 modulation	 induced	 by	 changes	 of	 the	 graphene’s	
chemical	potential.	Electrostatic	or	electrochemical	gating	of	graphene	in	the	proposed	structure	provide	dynamic	
control	of	the	Fano-like	resonance	of	the	grating,	suggesting	new	opportunities	for	the	design	of	tunable	photonic	
and	optoelectronic	devices	at	infrared	wavelengths.	

OCIS codes: (050.0050) Diffraction and gratings; (230.7408) Wavelength filtering devices; (230.5750) Optical devices, resonators; 
(230.7370) Waveguides.  

http://dx.doi.org/10.1364/AO.99.09999

1. INTRODUCTION 
The integration of graphene within photonic resonators promises to 
lead to tunable and more efficient light matter interactions [1, 2]. 
While graphene displays a metallic response and supports surface 
plasmons at mid-infrared and lower frequencies [3], at optical 
wavelengths it behaves mostly like a lossy dielectric. A single layer 
of pristine graphene yields single-pass absorption of ~2.3% for 
visible and near-infrared light, increasing monotonically with the 
number of graphene layers [4]. The introduction of doping by 
electrical and/or chemical gating shifts the Fermi energy from the 
Dirac point and alters the optical response of graphene [5]. For 
example it was recently demonstrated the ability to chemically 
control the conductivity of a few-layers graphene film, reaching 
values of sheet resistance lower than 30 Ω/sq [6]. This opens the 
possibility to easily tune graphene from the lossy-dielectric to the 
quasi-metallic region. The resulting modulation capability depends 
on the strength of light-matter interactions within graphene.  
One approach to boost such interactions relies on plasmonics. The 
plasmonic response may originate from metallic structures [7], 
from graphene itself [3], or from both systems in hybrid resonators 

that allow coupling between graphene and metallic plasmons [8]. 
Another excellent platform that can host enhanced interactions with 
graphene is based on dielectric photonic cavities. Several structures 
and devices of this kind have been proposed, including 
metasurfaces, enhanced sensors, detectors, couplers, and electro-
optical light modulators [9-15]. The simplest design probably 
consists in a Fabry-Pérot cavity that includes graphene. The two 
surrounding mirrors are usually Bragg reflector multilayers 
obtained by alternating two dielectric slabs with different indexes of 
refraction [14, 16-18]. The operational principle of these structures 
relies on a uniform field enhancement at the graphene location. 
Total light absorption in mono- or multilayer graphene is obtained 
in narrow resonance bands when the reflectivity of the two mirrors 
is properly designed. This phenomenon can be exploited for 
enhanced third harmonic generation and low-threshold saturable 
absorption at visible and near-infrared wavelengths, as predicted in 
defective, asymmetric, one-dimensional photonic crystals that 
incorporate monolayer graphene [16, 17].  
Another promising technique is to exploit guided-mode resonances 
associated with dielectric gratings [19-21]. A periodically patterned 



waveguide supports guided mode resonances. Those resonances 
might be excited at either normal or oblique incidence thanks to the 
additional transverse momentum provided by the grating. Although 
these structures are more sensitive to fabrication accuracy, some of 
the advantages that these resonators offer over planar, one-
dimensional, photonic crystals are reduced thickness and larger 
local field enhancement. Total light absorption has been 
theoretically predicted at infrared wavelengths in two-dimensional, 
graphene-assisted gratings based on silicon [22]. An absorption 
peak of about 40% (30%) at visible wavelengths for the TE (TM) 
polarization has been experimentally demonstrated in monolayer-
graphene-assisted resonant gratings using a one-dimensional, 
PMMA grating grown on a tantalum pentoxide guiding film [23]. 
Coherent perfect absorption has been demonstrated in a similar 
structure with the aid of a simple mirror that provides constructive 
interference at the graphene location [24].  
In the present work, we explore the possibility to control grating, 
guided-mode resonances with graphene at telecom wavelengths. 
We adopt a simple, yet effective physical description of such 
resonances in terms of quasinormal modes (QNMs) [25]. These 
modes have complex eigenfrequency and are especially suitable for 
studying open (or leaky) and lossy cavities [26, 27]. The ability of 
graphene to alter the QNM complex eigenfrequencies is then 
assessed by adopting a first-order perturbative approach. We then 
use the QNMs to describe the grating’s guided-mode resonances 
within the framework of the Fano theory of interference between 
bright and dark modes [28]. Although this theory was originally 
developed to study interference effects in solid-state and atomic 
physics, it may be adapted to many phenomena across different 
areas of physics and engineering [29]. In the context of guided-
mode resonances, the theory predicts the existence of asymmetric 
lineshape resonances in the transmission and reflection spectra. 
These spectral features are due to the interference between a 
continuum (sometimes referred to as direct pathway, bright mode 
or background, depending on the context) and a discrete state 
(sometimes referred to as indirect pathway or dark mode). For the 
resonant grating under investigation, the continuum is the 
background response of the system in the absence of the periodic 
dielectric perturbation, whereas the discrete state or set of states are 
QNMs (sometimes referred to as quasi-guided, leaky modes or 
quasi-modes) supported by the perturbed waveguide. We explore 
the possibility to control the Fano-like or guided-mode resonances 
of such gratings by exploiting the tunability of the graphene 
conductivity at telecom wavelengths (~1.5µm). Finally, we discuss 
the design principles of this structure with the aid of both QNMs 
and Fano theory, and show how to control resonance shape, 
linewidth and characteristic wavelength of the grating resonances. 

2. QUASINORMAL MODE DESCRIPTION OF THE 
RESONANT GRATING 
The geometry of the grating under investigation and the 
illumination conditions are described in Fig. 1. The structure is 
similar to that proposed in Ref. [23]  with the difference that the 
principal TE-polarized leaky mode can be excited at normal 
incidence ( , and , with k0 indicating the 
free-space wavevector) at ~1.55 µm. The high-index guiding layer 
has a refractive index of nH = 2.1 (compatible, for example, with 

Ta2O5) and thickness tH = 150 nm; the low-index, grooved film on 
top has refractive index nL = 1.5 (for example, a polymer like 
PMMA), thickness tL = 500 nm and periodicity along the y-axis 
fixed at p = 1 µm (the width of the stripe is equal to a). The SiO2 
substrate has refractive index nS = 1.5. The graphene plane lies 
between the high- and the low-index films, with the number of 
graphene layers equal to N. 

 
Fig. 1. The grating under investigation and the TE-illumination at normal 
incidence. On the right, the unit cell of the grating in the yz-plane.  

 
For each graphene monolayer we adopt the closed-form 
conductivity formula given by Chang et al. [30],  
 

.          (1) 

 
The first two terms in Eq. (1) represent the interband response, 
while the third term arises from intraband transitions. In Eq. (1) kB is 
the Boltzmann constant, T the temperature,  is the chemical 
potential (equal to the Fermi level shift), ω the angular frequency, ħ 
is the reduced Planck constant, σ0 = e2/(4ħ) is the universal 
conductivity value for undoped graphene, and e is the elementary 
electron charge.  Henceforth, we consider T = 300 K and we 
assume an electron relaxation energy Γ= 0.66 meV, corresponding 
to a relaxation time of ~1.3 ps. The relaxation energy is a measure 
of the graphene quality. Its impact on the tuning abilities around the 
resonance wavelength will be discussed in the next section. For 
simplicity we assume that the optical response of the N-layer 
graphene may be derived from the conductivity of N graphene 
monolayers placed in parallel. Hence, the N-layer graphene 
conductivity is approximated by , thus implying that 
the graphene electromagnetic response is not significantly altered 
by the number of graphene layers. This approximation has been 
demonstrated to be valid at infrared telecom wavelengths, both 
experimentally and theoretically [31]. In this picture, the in-plane 
relative permittivity is insensitive to the number of graphene layers 
N and it reads:  inc inc ˆ=E xE inc 0ˆ= -k zk

( )
( ) ( )

c c

B B

2
c

G 0 2 2
c B

c

2 21 tanh tanh
2 4 4

2
log

2 2 4

4

k T k T

i

k T

i
i

w µ w µ

w µ
s s

p w µ

µ
p w G

ì üæ ö+ -
+ -ï ïç ÷

è øï ï
ï ïé ù+ï ïê ú= +í ý

ê ú- +ï ïë û
ï ï
ï ï
ï ï+î þ

! !

!

!

! !

cµ

G G»N Ns s



                         (2) 

where ε0 is the vacuum permittivity and tG @ 0.34 nm is the 
monolayer graphene thickness. Our calculations are based on the 
rigorous coupled wave analysis (RCWA) in which the “bulk” 
model of graphene in Eq. (2) with a finite thickness tG is adopted. 
However, RCWA predictions are in excellent agreement with 
calculations based on the frequency-domain, finite-element method 
(COMSOL) in which the graphene response is modeled as a 
surface electric current equal to the discontinuity of the tangential 
magnetic field and no assumption is made about the graphene 
thickness [17].  
Once the materials are chosen, the spectral position of the grating 
resonances is very sensitive to the high-index film thickness tH and 
the periodicity p. In particular, the phase matching condition to 
excite a leaky mode is |kinc·ŷ+2πm/p|=βm, where m = 0, ±1, ±2,… is 
the grating diffraction order and βm is the real part of the leaky-
mode complex wavenumber. The linewidth of the resonance, 
which is related to the imaginary part of the complex wavenumber, 
strongly depends on the grating duty cycle d = (p - a)/p.  
An effective tool to describe the resonant grating under 
investigation is based on the theory of QNMs [25, 26]. QNMs are 
solutions of Maxwell’s equations in the absence of sources and with 
complex eigenfrequency. In particular, in our two-dimensional 
problem, the QNMs are solutions of the time-harmonic, scalar 
Helmholtz equation 
 

            (3) 

 
in the unit cell (see Fig. 1), in which 

 and r=(x,y). Periodic boundary 
conditions are set on the y = ± p/2 edges, i.e., 

. Moreover, at the top and bottom 
edges at z = ± R, radiation boundary conditions are set of the type 

 (with indicating the unit 
vector normal to the boundary and pointing outwardly). An 
alternative way to define outgoing wave conditions is to introduce 
perfectly matched layers adjacent to the top and bottom edges, as 
reported for example in Refs. [32, 33]. We have verified that the 
adoption of either radiation boundary conditions, as defined above, 
or perfectly matched layers yields almost identical eigensolutions of 
the problem in Eq. (3). Due to presence of radiation leakage toward 
the top (air-side, z > 0) and bottom (SiO2-side, z < 0) half-spaces, 
the system is non-conservative and the problem admits 
eigensolutions  corresponding to a discrete set of complex 
eigenfrequencies . For each of these QNMs the 
real part of the eigenfrequency  represents the spectral position 
of the corresponding resonance, whereas the imaginary part is its 
half-width at half-maximum (HWHM) and it accounts for both 
radiation leakage and material absorption. We note that Eq. (3) is 
intrinsically nonlinear, since both the permittivity , which is 
generally dispersive (e.g., graphene) and the radiation boundary 
conditions depend on the solution itself. Although analytical 
approaches are possible for very simple problems, iterative 

numerical techniques must be generally adopted in order to find the 
QNMs. In this paper, we use the eigenfrequency finite-element 
method (COMSOL). If the materials taken into account in the 
cavity are weakly dispersive, as in the case of graphene at infrared 
wavelengths, and the initial guess of the eigenfrequency is fairly 
close to the actual solution, then the problem converges with just a 
few iterations. Another important aspect of QNMs is that  is 
complex hence the time evolution operator is non-Hermitian even 
in the absence of absorption losses in the cavity. As a consequence, 
the eigenfields naturally diverge for |z| ® ¥ [25], QNMs are 
difficult to normalize, and useful definitions such as inner product 
and modal volume are not trivial. However, the completeness of 
QNMs has been demonstrated in Ref. [26] even for leaky and lossy 
cavities, and the definition of inner product may be generalized as 
follows:  
 

                (4) 

 
where  is the eigensolution field corresponding to the 

eigenfrequency , . The 

first integral in Eq. (4) is extended on a surface domain S large 
enough so that the near field of the cavity mode vanishes on its 
boundary In other words, the extension of the surface S in the z 
direction should be chosen so that only radiation leakage reaches 
the boundary domain . Moreover, the permittivity of the materials 
surrounding the grating (air on the top and SiO2 on the bottom) are 
assumed to be dispersion-less in the second integral of Eq. (4). With 
these precautions in mind, even if both integrals in (4) diverge, their 
sum is finite and insensitive to the choice of the surface S. QNMs 
are a powerful tool to predict and describe many effects of the 
system under investigation. For example, if , plane 
wave excitation of the grating at  may produce a resonance in 
the spectrum. In Fig. 2(a) we map the absorption of the grating, 
obtained with RCWA, for a normally-incident plane wave tuned 
around a wavelength of 1.55 µm, and for different values of the 
grating duty cycle d. Here we assume that the number of graphene 
layers is N = 4 and (undoped graphene). The calculated 
spectra show an absorption peak whose central wavelength slightly 
shifts as a function of d. Moreover, the maximum absorption peak 
(> 0.6) is approached when d is in the range 0.5-0.6, a scenario in 
which the absorption bandwidth is wider. A simple model of the 
resonant grating based on the coupled-mode theory [34] indicates 
that the absorption spectrum near the resonance is proportional to 
the product of the absorption efficiency (due to graphene) and the 
radiation efficiency with respect to the input medium (air). 
Following the technique detailed in Ref. [35], it is possible to 
evaluate the decay rates due to leakage and absorption losses and 
demonstrate their strict dependence on the grating duty cycle. As a 
consequence, the absorption value on-resonance shows a significant 
sensitivity to the duty cycle d, as illustrated in Fig. 2.  We now 
interpret the observed absorption spectra in terms of resonant 
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excitation of the QNMs of the structure. In the wavelength range 
under investigation, we find, by solving the eigenproblem in Eq. 
(3), that the grating supports two different QNMs, that we call Q1 
and Q2. The associated eigenfrequencies are . 
The characteristic wavelengths of these two modes, 

 ( , speed of light in vacuo), are calculated as 
a function of d and plotted on top of the absorption map in Fig. 2(a). 
It is clear that the mode Q1 is resonantly excited by the input plane 
wave, therefore its wavelength  shows excellent overlap with the 
absorption peak. The linewidth of this mode, calculated as 

, is plotted in Fig. 2(b) and displays a maximum 
of ~13 nm for a duty cycle of ~0.6, in agreement with the 
absorption resonance observed with plane wave excitation. 
Although not overlapped with the resonant absorption peak, the 
characteristic wavelength of mode Q2 is not far from  [see 

Fig. 2(a)], and its linewidth, , is similar to , 
even if it decreases monotonically as a function of d [see Fig. 2(b)]. 
 

 
Fig. 2. (a) Color map of the absorption of the grating at normal incidence as 
a function of wavelength and grating duty cycle d. A four-layer graphene is 
assumed between the guiding, high-index film and the patterned film on top 
of it. The dashed, blue line is the wavelength of the dominant QNM Q1, i.e., 
λ1=2πc0/ω1, the solid green line is the wavelength of the mode Q2, 
λ2=2πc0/ω2. (b) The linewidth of the modes Q1,2, δλ1,2=2πc0γ1,2/ω2

1,2. 

 
Nevertheless, the excitation of mode Q2 seems to be forbidden at 
normal incidence under plane wave illumination, so that no 
resonant features are associated to this mode in the absorption 
spectrum. The reason for such dissimilar behavior of the system 
with respect to modes Q1 and Q2 is clarified when the associated 
eigenfields are inspected. In Figs. 3(a) and 3(b) we plot the electric 

field’s real part of modes Q1 and Q2, respectively, for a duty cycle d 
= 0.5. In both cases, the field overlap with graphene (at z = 0) 
allows strong interaction and, in principle, light absorption. 
However, only eigenmode Q1 [Fig. 3(a)] shows the other decay 
mechanism, the one related to the radiation losses into the SiO2 
substrate and the air cover. In contrast, the field profile of mode Q2 
is evanescent in the substrate and cover regions, as illustrated in Fig. 
3(b). As a consequence, the linewidth  of mode Q2 is merely 
associated with absorption losses in graphene, whereas the 
linewidth  of Q1 is also due to radiation leakage therefore it 
allows for coupling to incident plane waves. Put differently, mode 
Q1 is the dominant mode of the system, at least for plane wave 
excitation at normal incidence. In view of this fact, in the following 
we will discuss only the effects of the modulation of the graphene 
chemical potential on such mode. 
 

 
Fig. 3. (a) Real part of the electric eigenfield, relative to the mode Q1 for a 
duty cycle d = 0.5. (b) Same as (a) for the eigenfield corresponding to mode 
Q2. 

3. MODULATING THE FANO RESONANCE OF THE 
GRATING 
In the previous section we assumed undoped graphene (
and ) and therefore a scenario of maximized absorption 
and large resonance bandwidths. In what follows we analyze the 
behavior of the structure when the graphene chemical potential  
is increased. Before discussing the effects on the grating spectra, it 
is instructive to observe the behavior of the complex permittivity of 
graphene as a function of , as illustrated in Fig. 4, for a 
wavelength (1.55 µm) close to the grating resonance. We stress that 
the permittivity of graphene shows only slight dispersion across the 
entire bandwidth of the resonance.  
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Fig. 4. Graphene permittivity as a function of the chemical potential at a 
wavelength of 1.55 µm. The logarithmic scale for the imaginary part is used 
to stress the presence of two plateaus in the graphene response.  

 

The imaginary part of the permittivity decreases significantly when 
the chemical potential is ~0.5 eV, whereas the real part peaks at 

, crosses zero and drops linearly for increasing values 
of . The zero-crossing at  represents a transition 
from a lossy-dielectric response to a metallic one. Even if such 
permittivity changes are remarkable, light interaction with graphene 
is limited by the inherently small interaction length (a thickness of 
1.36 nm for a four-layer graphene film). For this reason, we use a 
perturbative approach within the theory of QNMs in order to 
evaluate the impact of modulating  on the Fano resonance 
wavelength, linewidth and shape. As discussed in Ref. [26], QNMs 
provide a discrete basis for dealing with perturbations of  
in a leaky and lossy cavity. Initially, we solve the eigenproblem in 
Eq. (3) for a certain chemical potential value . Then we 
assume the response of the system by considering only the 
dominant TE-polarized mode Q1,0, which has a complex 
eigenfrequency . A change of  around  
modulates the graphene permittivity by an amount 

, as shown in Fig. 4. The QNM 
eigenfrequency is in turn shifted from  to 

. We adapt the perturbative 
expansion for one-dimensional open cavities described in Ref. [26] 
to our two-dimensional problem in order to estimate . To 
the first order, the approximation of the perturbed eigenfrequency is 
given by , where 

 .          (5) 

In Eq. (5),  is the x-component of the electric field relative to 
the unperturbed eigenmode Q1,0 (obtained for ) and a 
uniform field distribution is assumed across the graphene thickness 

. The integration surface in the norm of Eq. (5) is the unit cell 
illustrated in Fig. 1. The unperturbed eigenmode is calculated for 

, within the dielectric-to-metal transition of 
graphene. Although this choice is arbitrary, we have noticed that 
the average error  across the range of interest 
of  decreases when the initial value , , is far from the 
dielectric and metallic plateau regions of graphene (see Fig. 4), i.e., 
a good choice is . Following this rule, 

the maximum relative error, calculated as , that 
we observe for , is ~ 0.1% on the real part of  and ~ 
5% on the imaginary part of  

We are now able to evaluate the influence of  on the grating 
resonance. The spectral shift shows a linear dependence on the 
number of graphene layers N. As an example, if N = 4 as in the 
structure of the previous section and the duty cycle is chosen either 
as d = 0.1 or d = 0.5, the resonance wavelengths vary as a function 
of  as illustrated in Fig. 5(a). For both duty cycles the resonance 
undergoes a deep wavelength shift in the considered range of ; 
in particular, for the grating with duty cycle d = 0.1, the resonance 
shift is ~18.5 nm while for the grating with d = 0.5 the shift is ~16.5 

nm. Given the linear dependence of the spectral shift with respect to 
the number of graphene layers N, we predict resonance-wavelength 
variations of 4 to 5 nm when a monolayer is used instead of the 
four layers. Our choice of N = 4 throughout the paper is only 
instrumental in providing an illustrative example of the resonance 
tunability. However, this choice is partly motivated by our recent 
experimental measurements of the sheet-resistance of chemically-
doped, multilayer CVD graphene [6]. These experiments indicate 
that stacking more than 4-5 parallel layers does not necessarily 
decrease the sheet-resistance, due to the onset of parasitic series 
resistances between adjacent layers. In Fig. 5(a), we also highlight 
the very small difference between the resonance wavelength value 

 predicted by perturbation theory and the actual 

QNM wavelength . We recall that in order to calculate  as a 
function of  it is only necessary to solve once the eigenmode 
problem (for ), and then apply the approximation in Eq. 
(5) in order to evaluate the perturbed eigenfrequencies as  
varies. On the other hand, the direct calculation of  as a function 
of  requires the solution of the eigenmode problem [Eq. (3)] for 
each value of . Therefore, the first approach reduces 
significantly the computational burden. In Fig. 5(b) we report the 
linewidth as a function of the chemical potential, for both the 
considered duty cycles and using both the value of , and the 

perturbation-theory value . It is clear that the presence of two 
plateaus reflects the dielectric-to-metal transition found in the 
graphene response as a function of  (see Fig. 4). For d = 0.1, the 
linewidth becomes about 20-times smaller as the chemical potential 
increases, going from ~11nm at low values of  to ~0.5 nm at 
larger values of . This also means that the resonance quality 
factor increases by a factor of ~20. For d = 0.1, the 
linewidth decreases from ~14 nm to ~4 nm, hence an increase of 
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quality factor of about 3.5. It is noteworthy that the first-order 
perturbation theory yields predictions with minimal deviations from 
the calculations based on the actual QNM eigenfrequencies, even 
in the presence of such deep modulations of resonance wavelengths 
and quality factors.     

 
Fig. 5. (a) Resonance wavelength of the grating as a function of chemical 
potential for two different duty cycle values, d = 0.1 and d = 0.5. The 
resonance wavelength is evaluated both by solving the full eigenvalue 
problem in Eq. (3) (black, solid lines) and by applying the approximation in 
Eq. (5) derived by the perturbation theory (red, dashed lines). (b) Linewidth 
of the resonance under the same circumstances described in (a).  

 
A significant aspect of the tunability regards its sensitivity with 
respect to the intraband electron relaxation energy , which is 
related to the quality of graphene integrated with the grating. If 
smaller relaxation times are assumed, corresponding to lower 
graphene quality, the resonance wavelength variations reported in 
Fig. 5(a) remain virtually unchanged. This is due to the fact that the 
intraband relaxation energy does not have a large impact on the real 
part of the graphene permittivity [see Eqs. (1) and (2)]. On the other 
hand, the imaginary part of the graphene permittivity is very 
sensitive to , therefore less pronounced linewidth variations 
may be obtained for gratings with lower graphene quality (larger 
values of ).  In addition to changes of resonance wavelength 
and linewidth, graphene can also efficiently change the shape of the 
resonance and the maximum absorption at resonance. In Fig. 6 we 
report the RCWA-calculated absorption [Figs. 6(a) and 6(b)] and 
transmission [Figs. 6(c) and 6(d)] maps of the grating as a function 
of the wavelength and chemical potential , assuming either d = 
0.1 or d = 0.5. The illumination is at normal incidence and TE-
polarized, as illustrated in Fig. 1. The wavelength of the dominant 
QNM, , is superimposed on the spectra, revealing good overlap 
with the absorption maxima. Not only is the absorption virtually 
suppressed when , but also the shape of the 
resonance undergoes a remarkable variation as a function of the 
chemical potential. We identify two distinct regimes, corresponding 
to the two plateaus found in the imaginary part of the graphene 
permittivity, as shown in Fig. 4. In the lossy-dielectric regime (

), the resonance shape is symmetric or Lorentzian-
like, while in the low-loss, metallic regime ( ) the 
shape becomes asymmetric or Fano-like. This strong variation is 
strictly related to the behavior of the imaginary part of the graphene 

permittivity as a function of . In order to assess the ability of the 
graphene-assisted grating to tune the shape of the resonance, we 
resort to an analytic model for the guided-mode resonance based on 
the Fano theory. In particular, we assume that the transmission 
spectrum of the structure obeys to the generalized Fano formula 
described in [36] for lossy systems, 

           (6)  

where q is the symmetry or shape factor, b is the modulation 
damping parameter and the reduced frequency is defined as 

. Following the procedure described in Ref. [35], 
the transmission of the Fabry-Pérot background, , is 
computed via transfer matrix as the transmission of an equivalent 
unpatterned structure with the top grating layer replaced by an 

effective planar film of refractive index . 
The Fano profile described by Eq. (6) is generally asymmetric, in 
the sense that the transmission undergoes an abrupt variation from a 
low to a high state near the resonance. In the damping-free case 
(i.e., b = 0), symmetric spectral features correspond usually to the 
antiresonance that one obtains for q = 0 and to the Lorentz-like 
resonance associated with large values of the shape factor q. 
However, in the model adopted here, the shape is influenced not 
only by the parameter q but also by the modulation damping 
parameter b. In fact, the presence of b prevents the transmission 
from completely vanishing. More specifically, a large value of b 
induces a low contrast in the resonance and leads to a small ratio 
between minimum and maximum transmission near the resonance.  

 

 
Fig. 6. (a) Absorption and (c) transmission of the grating as a function of 
chemical potential and input wavelength for TE-polarized plane waves at 
normal incidence, assuming d = 0.1. The white line is the characteristic 
wavelength of the perturbed QNM Q1, evaluated via Eq. (5). (b) and (d) 
Same as (a) and (c), respectively, with d = 0.5.  
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We fitted the grating RCWA-transmission at normal incidence 
with the generalized Fano formula by using the QNM 
eigenfrequency  in order to define the reduced 
frequency w in Eq. (6). Hence, the fitting was performed with the 
two parameters q and b. Two structures with different duty cycles 
(d = 0.1 in the first and d = 0.5 in the second grating) and two 
values of chemical potential (µc = 0.1 eV and µc = 0.6 eV) were 
considered in the calculations, assuming again a number of 
graphene layers N = 4. The retrieved Fano parameters are shown in 
Table 1. The comparison between the analytic Fano formula with 
parameters as in Table 1 and the corresponding RCWA-spectra is 
shown in Fig. 7. 

 

Table 1. Eigenfrequencies and Fano fitting parameters q and b, 
for four different scenarios corresponding to the combinations 
of duty cycle and chemical potential specified in the first two 
columns.  

d µc [eV] ω1 [THz] γ1 [THz] q b 
0.1 0.1 1192 8.217 ‒0.0173 0.9072 
0.1 0.6 1197 0.3933 ‒0.3500 0.0100 
0.5 0.1 1213 10.84 ‒0.1148 0.4119 
0.5 0.6 1217 3.779 ‒0.3328 0.0069 

 
 
We are now able to conclude that besides modulating the complex 
eigenfrequency of the structure, graphene also induces changes in 
shape and contrast of the Fano resonance. For example, the grating 
with duty cycle d = 0.1 shows only a shallow and symmetric 
(Lorentz-like) resonance at a low value of chemical potential (µc = 
0.1 eV); however, when µc is increased to 0.6 eV the asymmetry 
parameter q increases by a factor of 200 and the damping parameter 
b decreases by a factor of 900. Although less pronounced, similar 
variations of shape and damping are observable for the grating with 
duty cycle d = 0.5 under the same variation of chemical potential.  

4. CONCLUSIONS 
We have shown that the introduction of graphene in dielectric 
gratings operating at infrared telecom wavelengths may pave the 
way for the development of tunable resonators and absorbers. The 
guided-mode resonances of the structure were analyzed through the 
quasinormal mode theory. The ability of graphene to modulate the 
complex eigenfrequency of such modes was investigated by means 
of a first-order perturbative approach. The agreement of this 
approach with full-wave simulations has been verified in a wide 
range of graphene doping levels. The modal analysis has also been 
instrumental in describing resonant effects using a generalized Fano 
formula. We find that by increasing the graphene chemical potential 
one is able not only to reduce the resonance linewidth and shift the 
resonance wavelength, but also to significantly alter the resonance 
shape. In particular, we identify two distinct operational regimes. 
Below a certain gating threshold, the structure displays a symmetric 
absorption resonance whose characteristic wavelength and 
linewidth are virtually insensitive to the graphene chemical 

potential. Above this threshold, the real part of the graphene 
conductivity decreases significantly so that the resonance becomes 
narrower and asymmetric. In this regime, one can exploit changes 
of the imaginary part of the graphene conductivity in order to 
modulate the resonance wavelength. 
 
         

 
 
Fig. 7. (a) Transmission of the grating at normal incidence for TE-
polarization as a function of wavelength, assuming d = 0.1 and µc = 0.1 eV. 
The black line is the RCWA spectrum, while the red, dashed line is the 
Fano profile obtained from Eq. 6 with parameters taken from Table I. (b) 
Same as (a) with d = 0.5 and µc = 0.1 eV. (c) Same as (a) with µc increased 
from 0.1 to 0.6 eV. (d) Same as (b) with µc increased from 0.1 to 0.6 eV.  
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