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Abstract

This Ph.D. thesis aims to describe the research works conducted for the design, the develop-
ment and the evaluation of innovative Computer-Aided Diagnosis (CAD) systems based on
machine learning and deep learning techniques. Several CAD solutions were developed in
different medical applications trying to ensure, when possible, three main CAD requirements:
improve clinicians performance, reduce or at least not increase clinicians time and integrate
the CAD solution in standard procedures. The proposed applications involved images and
signals processing; the firsts required the use of different deep learning models to face
classification, detection and segmentation problems, while the latter allowed to investigate
machine learning as signal processing technique for movement disorder analysis and for
a more speculative research in the rehabilitation field. In order to properly validate the
proposed algorithms, all the methodologies were applied on real data provided by clinicians,
public datasets or specific acquisitions.

Potentialities, challenges and drawbacks about deep learning for medical imaging anal-
ysis are discussed in two medical fields, digital pathology and radiology, and complete
pipelines are proposed to accomplish three clinical practices: global glomerulosclerosis
analysis for Chronic Kidney Disease evaluation, kidneys volume analysis for Autosomal
Dominant Polycystic Kidney Disease evaluation and organs segmentation for generic volume
quantification. Each study case aims to identify and overcome the limitation of classical
image processing techniques, and paves the way towards the clinical use of CAD systems
based on deep learning. A second part of this thesis focuses on machine learning and deep
learning for signals processing; deep neural networks were investigated for movement disor-
ders analysis and a particular neural model for surface electromyography analysis has been
proposed for the evaluation of complex muscle activation patterns, useful in the rehabilitation
field. The developed solutions for signals and images processing, were compared with
literature standards and, if possible, a personalised classical pipelines has been proposed and
customised to face each clinical challenge.

The thesis is divided into six chapters. The first chapter provides an introduction about the
reference context. The following chapter two describes the state of the art about traditional
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CAD systems based on conventional machine learning algorithms, and the novelty that
deep learning techniques bring to CADs and medical practices; description of the main
convolutional neural network models and autoencoders, and literature about the application
of deep learning and machine learning to the concerned medical fields are reported. Chapters
three, four and five report the original contribution about the application of deep learning
and machine learning techniques to the two types of medical data: images and signals; in
detail, chapter three reports the applications in the clinical areas of digital pathology and
radiology, focusing on the development of full pipelines based on image analysis; chapter four
shows a more speculative research work for signal processing, focusing on the application
of undercomplete autoencoders for surface electromyography analysis; chapter five reports
the applications of deep neural networks for diseases assessment and grading in subjects
affected by movement disorders. The analysed study cases and the contributions reported in
this thesis were compared with standard processing techniques ad-hoc developed. Finally,
the conclusions about the research works and proposals for future researches are reported in
chapter six.
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Chapter 1

Introduction

Computer-aided diagnosis (CAD) has been an important research field in the last decades. In
medicine, CAD systems combine processing techniques proper of the application domain
and machine learning methods to analyse images, signals and patient data. The goal of CADs
is the comprehensive evaluation of input information to ease and assist clinicians in their
decision-making process, and its outcome is strictly linked to the application domain. In
general, CAD are designed to model the ratio behind traditional clinician practice, and are
used to predict or to follow-up patients conditions. A well designed and validated CAD is a
valuable support system for the diagnostic process, providing an objective double reading,
thus avoiding medical malpractices. The objectivity of CAD systems is their breakthrough
advantage; the abilities to quantitatively characterise disease information coming from
multiple biological scales and dimensions have the potential to enable the development of
preventive strategies and medical treatments precisely targeted to each class of patients.

Machine learning is a wide field of computer science accounting applications for many
research areas based on images and signals analysis. Machine learning are mathematical and
statistical algorithms applicable in multidisciplinary fields, and are able to process heteroge-
neous data to extract relevant information; the correct interpretation of these information lead
to the desired outcome prediction for a given task. Formerly, machine learning techniques
were indirectly applied on input data such as images and mono- or multi-dimensional signals,
because heterogeneous and non standardised data make their application more difficult to
validate. Then, input data were commonly pre-processed to extract meaningful domain-
dependent features that were used as inputs of machine learning algorithms. The advent of
deep learning among machine learning methods reversed this problem thanks to its ability
to automatically extract those features, limiting the necessity of hand-engineered features.
The advantages are magnified on inputs with grid-like topology, such as images or time
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series, but it introduces some drawbacks. Deep learning models are commonly more complex
than traditional counterparts requiring a more tedious learning process and a well designed
input knowledge-base; furthermore, from a clinician point of view, automatic extracted
features lose meaning and leads these models to act as black-boxes. The meaning-less is
only apparent, but the complexity of the models makes their understanding really difficult.
However, recent research about radiomic using deep learning are going in this direction,
linking specific features to clinical outcomes.

The emerging of deep learning as the state-of-the-art machine learning method, its ability
to face any kind of decisional problem and the improvements in the hardware technology
attracted new researchers, allowing the development of more performing CAD systems able
to tackle new challenging and complex clinical tasks.

1.1 Objective and Research Question

The success of deep learning in many machine learning tasks brings back interests in
research and development of CAD in various scenarios. Important examples are the recent
competitions1 of developing CAD work-flow for different classification tasks, where all
winning teams used deep learning approaches [1]. Although the impressive performance
improvements brought by the adoption of this new paradigm in the CAD field, high optimism
and expectations should be viewed with caution. Many benchmarks shown the improvement
and the robustness achievable in CAD applications with the adoption of deep learning instead
of conventional machine learning, but these new CAD pipelines have not been sufficiently
tested in clinical practise, where real scenarios pose the problem of high data variability and
heterogeneity. Furthermore, some proposed solutions claim to achieve perfect performance
or even better than expert clinicians, thus showing that solution validated on restricted
knowledge-base are worth to be investigated but they are not enough for daily clinical
applications [1].

Taking into account the precedent considerations and the compelling opportunity of deep
learning, the objective of this research work has been to investigate and develop innovative
CAD pipelines for further improve the state of the art in such systems. Several CAD solutions
were developed in different medical applications trying to ensure, when possible, three main
CAD requirements: improve clinicians performance, reduce or at least not increase clinicians
time and integrate the CAD solution in standard procedures. The proposed applications
involved images and signals processing; the firsts required the use of image processing and

1Examples: https://www.kaggle.com/competitions and http://dreamchallenges.org/

https://www.kaggle.com/competitions
http://dreamchallenges.org/
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different deep learning models to face classification, detection and segmentation problems,
while the latter allowed to investigate machine learning as signal processing technique for
diseases assessment and grading and for a more speculative research in the rehabilitation
field. In order to properly validate the proposed algorithms, all the methodologies were
applied on real data provided by clinicians, public datasets or specific acquisitions (for the
study cases involving signals).

1.2 Contribution

The aim of this thesis is to present a set of full work-flows for the development of innovative
CAD systems based on deep learning and machine learning techniques. Potentialities,
challenges and drawbacks about deep learning for medical imaging analysis are discussed in
two medical fields, digital pathology and radiology, and complete pipelines are proposed to
accomplish three clinical practices: global glomerulosclerosis analysis for Chronic Kidney
Disease evaluation, kidneys volume analysis for Autosomal Dominant Polycystic Kidney
Disease evaluation and organs segmentation for generic volume quantification. Each study
case aims to identify and overcome the limitation of classical image processing techniques,
and paves the way towards the clinical use of CAD systems based on deep learning. A second
part of this thesis focuses on machine learning and deep learning for signals processing;
deep neural networks were investigated for movement disorders analysis and a particular
neural model for surface electromyography analysis has been proposed for the evaluation of
complex muscle activation patterns, useful in the rehabilitation field. The developed solutions
for signals and images processing, were compared with literature standards and, if possible,
a personalised classical pipelines has been proposed and customised to face each clinical
challenge.

1.3 Part Outline

The thesis is divided into six chapters. The first and current Chapter 1 provides an introduction
about the reference context. The following Chapter 2 describes the state of the art about
traditional CAD systems based on conventional machine learning algorithms, and the novelty
that deep learning techniques bring to CADs and medical practices; description of the main
convolutional neural network models and autoencoders, and literature about the application of
deep learning and machine learning to the concerned medical fields are reported. Chapters 3,
4 and 5 report the original contribution about the application of deep learning and machine
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learning techniques to two types of medical data: images and signals; in detail, Chapter 3
reports the applications in the clinical areas of digital pathology and radiology, focusing
on the development of full pipelines based on image analysis; Chapter 4 shows a more
speculative research work for signal processing, focusing on the application of undercomplete
autoencoders for surface electromyography analysis; Chapter 5 reports the applications of
deep neural networks for diseases assessment and grading in subjects affected by movement
disorders. The analysed study cases and the contributions reported in this thesis were
compared with standard processing techniques ad-hoc developed. Finally, the conclusions
about the research works and future research proposes are reported in Chapter 6.



Chapter 2

State of the art

2.1 Traditional Approaches for Computer-Aided Diagno-
sis

Computer-Aided Diagnosis (CAD) systems are powerful tools supporting physicians in
management and interpretation of biomedical signals, helping them in clinical decisions.
Mono or multi-dimensional biomedical signals hide valuable information that have to be
analysed and correlated, with data coming from other domains, to give a comprehensive
evaluation, possibly, in a short time. CAD systems are able to process digital signals in
order to discover interesting hidden information, and to following suggest diseases or clinical
outcomes; the output of a CAD system will be the input for medical professionals to support
their decision.

Over time, CAD systems have been addressed with several different terms, mainly based
on the CAD specific purpose; examples are expert systems (ES), computer-aided evalua-
tion or diagnosis, computerised sound analysis (e.g., Computerised Lung Sound Analysis
(CLSA) and Computerised Heart Sound Analysis (CHSA)), computerised biomedical signal
analysis [2–6]. Also, there are many ways in which CADs may operate. Simpler automatic
systems usually emulate the decision work-flow based on diagnostic rules used by a human
expert for making diagnoses. More evolute and sophisticate systems are based on intelligent
algorithms that can give them learning capabilities, that is the ability to analyse clinical data
and infer new knowledge [7]; this new knowledge can enhance initial diagnostic rules and
enable the ability to further improve performance over time. However, the new knowledge is
ever validated by human domain experts.
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The level of sophistication of a CAD systems followed the increase of data amount and
complexity produced in the modern clinical practice, and led to the application of approaches
previously not used in the clinical fields: Artificial Intelligence (AI), Data Mining algorithms
and Machine Learning (ML). Important examples are the technological improvements of the
human body examination tools, including X-rays devices, ultrasounds, Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT), that require customised application to
process the generated data. All these improvements allowed the development of new CAD
systems that widen the support in making and supporting diagnostics decisions to diseases
and clinical conditions [8–10].

2.1.1 A Brief History of Decision Support Systems in Medicine

Researchers use of computers to investigate problems started in the late 1950s, and involved
several fields including medicine and biology. Literature of that period reports the first
attempts to deal with medical diagnosis by using computerised systems [11–13]. The firsts
automatic diagnostic systems, called expert systems in medicine, were base on the application
of rules and knowledge bases to recreate the association between symptoms and laboratory
test outcomes [14, 15]. During the 1960s several radiologists started working on an early
form of CAD system for the automatic detection of abnormalities in medical images [16–
18]. However, these systems demonstrated to be too simple to handle complex problems
such as clinical diagnosis, and could not be used in the daily clinical practice. The main
limitation was the poor automatisms in clinical diagnosis of the algorithms [19], but this
entices researches to investigate new ones based on artificial intelligence and specific fields,
such as pattern recognition and classification algorithms [20]. Today, CAD systems are
considered as an important part of a diagnostic process which also actively involves human
experts; diagnostic radiology and medical image analysis are some of the most active research
and application examples of CAD development [21]. Furthermore, the use of CAD as support
systems, implied others advantages, such as the avoid of medical malpractice with benefit
on medical healthcare costs, and they constitute cheap and suitable alternatives to double
reading as a mean for reducing diagnostic errors [22].

In the last years, CAD systems become very popular in the academic literature (Fig. 2.1).
Research activities allowed to develop intelligent systems based on signal processing al-
gorithms, new techniques for extracting features from input data, and machine learning
algorithms for developing intelligent classifiers for the different clinical objectives; then
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Fig. 2.1 Number of publications per year. Scopus search: TITLE-ABS-KEY ( ( ( deep AND
learning ) AND ( ( cad ) OR ( computer AND aided AND diagnosis ) ) ) ); results filtered from
2010 to 2020. Narrowing the research topic on medical imaging drops the overall document
count from 3094 to 1282 with the same trend.

nowadays, the design of CAD systems require several professionals, from domain experts to
system developers.

2.1.2 The Traditional Pipeline of CAD Systems

The development of a complete CAD system requires the design of several modules that
operate together to form a full work-flow, considered by the end-user as black-box that takes
data as input and provides the desired output; a simplified pipeline is depicted in Fig. 2.2.
Based on the specific clinical domain interested by the decision support system, each module
specialises its specific working methodology and procedures to accomplish the required tasks.
From the perspective of the clinical objective, CAD systems may be divided between those
aimed at classifying, i.e. diagnosis detection or suggestion, and system for segmentation
purposes, usually useful for quantification or objectification of measurements. Finally, in
order to assess the performance of the designed CAD work-flow, it is necessary to define
validation procedures aimed at verifying the correct functioning of the automatic system
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Fig. 2.2 Simplified pipeline with the main steps composing a CAD system.

during normal working conditions [21, 23, 24]. The main pipeline steps will be discussed in
the following paragraphs.

Data Processing. For each clinical domain, developing CAD systems requires a campaign
for collecting and organising data, based on which decisions can be taken. Since data can be
collected from different sources with different modalities of acquisition, or from different
clinical facilities with different protocols, they are usually heterogeneous and need to be
pre-processed in order to clean and standardise the information content [25]. This is also a
crucial step in order to facilitate and optimise the following phases, since its output affects the
performance of the whole work-flow. Based on the defects affecting data respect to the desired
standard, there are a lot of strategies and algorithms to apply in order to clean and uniform
them [26, 27]. Common examples are data re-sampling, noise reduction algorithms, or other
filtering procedures. In the case of CAD systems working on images, a pre-processing phase
is needed after the acquisition of the input data; this step is fundamental for improving the
quality of the images and removing possible artefacts [28]; literature accounts a huge number
of useful algorithms for medical imaging pre-processing [29–33].

Segmentation. In the case of images or signals, a further step allowing to segment the
input data may be required. In fact, the following feature extraction step may require or may
be able to operate only if a precise Regions of Interest (ROI) is provided. Segmentation is a
very important step in processing medical imaging, aiming at separating images into regions
that are meaningful for a specific task, such as the detection of organs; further details will be
given in Section 2.4.2.2.

Feature Extraction. After data pre-processing, the candidate regions of the input signals
are used to extract meaningful and representative features. Traditionally, the feature are
extracted to represent a particular aspect of the input space that is usually suggested by the
domain expert; as example, feature related to the shape can be useful for tumours evaluation
(Fig. 2.3), whilst features describing the texture can be useful for the evaluation of kidney
components (Section 2.4.1.2).
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Fig. 2.3 Example of tumour diagnosis from contours of breast masses: benign masses (b),
malignant tumours (m). It is possible to observe how the shape and the smoothness of a
tumour mass contour can be used to help in its malignity evaluation.
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According to literature, starting from ’70s there are several sets of features that could
be used to characterize regions of interest [34]. But, due to the different image sources,
processing procedures and analysis algorithms available for medical imaging, recent research
works raised the problem of reproducibility; a standardisation requirement is essential for
innovative field, such as radiomics [35], but it becomes useful also for general CAD systems
(note that a CAD system could involve radiomics). Furthermore, a standardised features set
is a useful comparison benchmark when innovative techniques for feature processing are
introduced, i.e. deep learning.

In the tentative to introduce standardisation, many researchers started to group features
based on their nature (i.e. intensity or morphological), or on the method used for their calcu-
lation (i.e. Gray Level Co-occurrence Matrix (GLCM) [36] or neighbourhood analysis [37]).
Before extracting features, as stated before, ROIs should be generated; two kinds of ROIs
could be defined: one describing morphological information and the other about intensity
information. The two ROIs may be identical, but not necessarily due to pre-processing steps
(e.g. segmentation procedure could be performed on the intensity mask to remove unwanted
or out of range intensity value). Table 2.1 reports the full list of the features families, the
number of features belonging to, and the required ROI mask [38], built upon the feature sets
proposed by Aerts et al. [39], Hatt et al. [40] and derived works.

Morphological features, GLMC and intensity-based statistical features, revealed to be
very frequently used in research works, together with higher-order features [45]. They are
following detailed:

• morphological features - Morphological features describe bi- or three-dimensional geomet-
ric aspects of a ROI, such as area or volume. For this purpose, shapes are approximated
to circumferences (for bi-dimensional features) or triangle meshes (for three-dimensional
features). From the generated meshes, the marching cubes algorithm is generally used to
generate the complex ROI mesh of the analysed area or volume where features will be
computed [46]. Table 2.2 reports the most employed morphological features; such features
allow describing areas of interest from the volumetric or surface point of view, making
evident structural characteristics;

• intensity-based statistical features - These features describe the distribution of voxel
intensities within the ROI. Table 2.3 reports only the most used features of such kind;

• grey level co-occurrence based features - The last set of analysed features are based on
the Grey-Level Co-occurrence Matrix. Considering a grey level image, with N grey levels,
GLCM is an N ×N matrix describing the second-order joint probability function of a ROI
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Table 2.1 List of features families and required ROI mask. Table from Brunetti et al. [41].

Feature Family Feature Count Required Mask

Morphological Intensity

Morphology 29 ✓ ✓

Local Intensity 2 ✓

Intensity-based Statistics 18 ✓

Intensity Histogram 23 ✓

Intensity-Volume Histogram 5 ✓

Gray Level Co-occurrence Matrix
(GLCM) [36] 25 ✓

Gray Level Run Length Matrix
(GLRLM)[42] 16 ✓

Gray Level Size Zone Matrix
(GLSZM) [43] 16 ✓

Gray Level Distance Zone Matrix
(GLDZM) [43] 16 ✓ ✓

Neighbourhood Grey Tone Difference Matrix
(NGTDM) [44] 5 ✓

Neighbourhood Grey Level Dependence Matrix
(NGLDM) [37] 17 ✓
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and it is defined as P(i, j|δ ,θ). The (i, j)th element of this matrix represents the number of
times the combination of levels i and j occur in two pixels in the image that are separated
by a distance of δ pixels along angle θ . Let’s consider:

- P(i, j) be the co-occurence matrix for an arbitrary δ and θ ;

- p(i, j) be the normalized co-occurence matrix and equal to P(i, j)
∑P(i, j) ;

- Ng be the number of discrete intensity levels in the image;

- px(i) = ∑
Ng
j=1 P(i, j) be the marginal row probabilities;

- py( j) = ∑
Ng
i=1 P(i, j) be the marginal column probabilities;

- µx be the mean gray level intensity of px and defined as µx = ∑
Ng
i=1 px(i)i;

- µy be the mean gray level intensity of py and defined as µy = ∑
Ng
j=1 py( j) j;

- σx be the standard deviation of px;

- σy be the standard deviation of py;

- px+y(k) = ∑
Ng
i=1 ∑

Ng
j=1 p(i, j), where i+ j = k, and k = 2,3, . . . ,2Ng;

- px−y(k) = ∑
Ng
i=1 ∑

Ng
j=1 p(i, j), where |i− j|= k, and k = 0,1, . . . ,Ng −1;

- HX =−∑
Ng
i=1 px(i) log2

(︁
px(i)+ ε

)︁
be the entropy of px;

- HY =−∑
Ng
j=1 py( j) log2

(︁
py( j)+ ε

)︁
be the entropy of py;

- HXY =−∑
Ng
i=1 ∑

Ng
j=1 p(i, j) log2

(︁
p(i, j)+ ε

)︁
be the entropy of p(i, j);

- HXY 1 =−∑
Ng
i=1 ∑

Ng
j=1 p(i, j) log2

(︁
px(i)py( j)+ ε

)︁
;

- HXY 2 =−∑
Ng
i=1 ∑

Ng
j=1 px(i)py( j) log2

(︁
px(i)py( j)+ ε

)︁
.

Based on these considerations, the features computed by GLCM and reported in Table 2.4
could be defined. More details about GLCM are in Haralick et al. paper [36].

Theoretically, to better represent the input images, a huge number of feature should be
preferred allowing a comprehensive description of the input space; but in practical application
the number of features have to be compared to the size of input data and it is usually suggested
to consider fewer features than dataset samples. Furthermore, most of the times the extracted
features are needles and correlated each other. In general, the high dimensionality of input
space could lead to relevant problems in the subsequent decision phase, seriously affecting
performance, increasing time and computational resources. For these reasons, it is possible
to further process the dataset with a feature selection or a space transformation that converts
the input space to a new one that ensures specific characteristic (e.g. feature orthogonality),
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and preserves all or a defined part of the input information content. Several techniques allow
to properly process a dataset in order to transform and reduce its dimensionality, leading
to a general increase of performance for the whole pipeline; these include feature selection
methods, e.g. Information Gain [48], or feature transformation and reduction methods, e.g.
Principal Component Analysis or Independent Component Analysis [49–57]. Some of the
features described above and PCA were widely used in the study cases reported in Chapters 3
and 4.

Devision Making After the preparation of a good feature dataset, the decision step has
the role to find and apply a model (a set of rule is the simpler one) that is able to give
the desired output according to the input (e.g. discriminate between benign and malignant
tumour or determine its grade). The model can be of any type (supervised or unsupervised)
and complexity (from simple rule to artificial neural network models).

(a)

(b)

Fig. 2.4 Simplified scheme of supervised (a) and unsupervised (b) approaches.

The goal of a decision model is to learn how to map the inner knowledge of a dataset
to satisfy the purpose of the model itself; there are two main typology of learning process:
supervised and unsupervised. The first one looks for the relation between input and output,
trying to replicate the real "model" that link them; the latter, try to find common aspects
among data allowing to aggregate them in base of some rule (e.g. minimum distance)
and giving an insight on the dataset structure. For supervised learning, in detail, there is
usually a learning algorithm that try to manipulate the model parameters to optimise an
error function; in some cases the model training is not deterministic (really common for non
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Fig. 2.5 Example of a full CAD pipeline.

convex cost function) and there is a plenty of hyper-parameters of the model or of the whole
work-flow that have to be chosen. A good practise is to split the dataset in three subset called
training, validation and test set. The first subset is used to optimise the model, the second
to take decision about the trained models (i.e. it is possible to chose the best one among
several trained with different hyper-parameters), and the last one is usually reserved for final
results only. The data used in each subset should be different, and are commonly randomly
sampled from the whole dataset There are no mathematical rules for the determination of the
correct sizes of training, validation and test sets. However, there are some rules of thumb
derived from the designer experience [58]. Another popular strategy for model design and
selection is Cross-Validation; the main idea is to sample the input dataset, once or several
times, to create more training-validation subset, and train the model considering each subset
combination. The popularity of cross-validation mostly comes from the universality of
the data splitting heuristics. Nevertheless, some procedures have been proved to fail for
some model selection problems, depending on the goal of model selection, estimation or
identification. Furthermore, many theoretical questions remain widely open [59–65]. Both,
dataset split and cross validation were widely used in the study case presented in Chapters 3
and 4.

A more detailed representation of a full CAD work-flow and reporting all the different
variables explained before, is depicted in Fig. 2.5.
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Table 2.2 List of the most employed morphological features. N f and Nv are the number of
faces defining the mesh and the number of voxels included in the ROI, respectively. Table
from Brunetti et al. [41] and pyradiomics documentation [47].

Feature Name Equation

Mesh Volume (V ) V = ∑
N f
i=1Vi, where Vi =

Oai · (Obi ×Oci)

6
Voxel Volume (Vvoxel) Vvoxel = ∑

Nv
k=1Vk

Surface Area (A) A = ∑
N f
i=1 Ai, where Ai =

1
2 |aibi × aici|

Surface Area to
Volume ratio sur f ace to volume ratio = A

V

Sphericity 3D sphericity =
3√36πV 2

A

Maximum 3D and 2D
diameters

Largest pairwise Euclidean distance between ROI surface
mesh vertices, eventually computed in a 2D plane

Major (MA), Minor (mA) and
Least (LA) Axis Length MA = 4

√︁
λma jor, mA = 4

√
λminor, LA = 4

√︁
λleast

Elongation elongation =
√︂

λminor
λma jor

Flatness f latness =
√︂

λleast
λma jor

Mesh Surface (A) A = ∑
N f
i=1 Ai, where Ai =

1
2Oai ×Obi

Pixel Surface (Apixel) Apixel =
Nv

∑
k=1

Ak

Perimeter (P) P =
N f

∑
i=1

Pi, where Pi =
√︂
(ai −bi)2

Perimeter to Surface ratio perimeter to sur f ace ratio = P
A

Sphericity 2D sphericity = 2πR
P = 2

√
πA

P
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Table 2.3 List of the most employed intensity-based statistical features. X is a set of Np
voxels; P(i) is the first-order histogram with N non-zero bins; p(i) is the normalised first-

order histogram (
P(i)
Np

). Table from Brunetti et al. [41] and pyradiomics documentation [47].

Feature Name Equation

Energy energy = ∑
Np
i=1 (X(i)+ c)2

Total Energy totalenergy =Vvoxel ∑
Np
i=1 (X(i)+ c)2

Entropy entropy =−∑
Ng
i=1 p(i) log2

(︁
p(i)+ ε

)︁
Minimum minimum = min(X)

Maximum maximum = max(X)

Mean mean = 1
Np

∑
Np
i=1 X(i)

Median the median grey level intensity in the considered ROI

Mean Absolute Deviation
(MAD) MAD = 1

Np
∑

Np
i=1 |X(i)− X̄ |

Robust Mean Absolute
Deviation (rMAD) rMAD = 1

N10−90
∑

N10−90
i=1 |X10−90(i)− X̄10−90|

Root Mean Squared (RMS) RMS =
√︂

1
Np

∑
Np
i=1 (X(i)+ c)2

Variance variance = 1
Np

∑
Np
i=1 (X(i)− X̄)2

Standard Deviation std =
√︂

1
Np

∑
Np
i=1 (X(i)− X̄)2

Skewness skewness = µ3
σ3 =

1
Np ∑

Np
i=1 (X(i)−X̄)3(︃√︃

1
Np ∑

Np
i=1 (X(i)−X̄)2

)︃3

Kurtosis kurtosis = µ4
σ4 =

1
Np ∑

Np
i=1 (X(i)−X̄)4(︂

1
Np ∑

Np
i=1 (X(i)−X̄)2

)︂2

Uniformity uni f ormity = ∑
Ng
i=1 p(i)2
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Table 2.4 List of the most employed GLCM-based features. Table from Brunetti et al. [41]
and pyradiomics documentation [47].

Feature Name Equation

Autocorrelation autocorrelation = ∑
Ng
i=1 ∑

Ng
j=1 p(i, j)i j

Cluster Prominence cluster prominence = ∑
Ng
i=1 ∑

Ng
j=1

Cluster Shade cluster shade = ∑
Ng
i=1 ∑

Ng
j=1
(︁
i+ j−µx −µy

)︁3 p(i, j)

Cluster Tendency cluster tendency = ∑
Ng
i=1 ∑

Ng
j=1
(︁
i+ j−µx −µy

)︁2 p(i, j)

Contrast contrast = ∑
Ng
i=1 ∑

Ng
j=1 (i− j)2 p(i, j)

Correlation correlation =
∑

Ng
i=1 ∑

Ng
j=1 p(i, j)i j−µxµy

σx(i)σy( j)

Difference Average (DA) di f f erence average = ∑
Ng−1
k=0 kpx−y(k)

Difference Entropy di f f erence entropy = ∑
Ng−1
k=0 px−y(k) log2

(︁
px−y(k)+ ε

)︁
Difference Variance di f f erence variance = ∑

Ng−1
k=0 (k−DA)2 px−y(k)

Joint Energy joint energy = ∑
Ng
i=1 ∑

Ng
j=1
(︁

p(i, j)
)︁2

Joint Entropy joint entropy =−∑
Ng
i=1 ∑

Ng
j=1 p(i, j) log2

(︁
p(i, j)+ ε

)︁
Informational Measure
of Correlation (IMC) IMC1 =

HXY−HXY 1
max{HX ,HY} , IMC2 =

√︁
1− e−2(HXY 2−HXY )

Maximal Correlation
Coefficient (MCC) MCC =

√︁
2nd largest Eig(Q), where Q(i, j) = ∑

Ng
k=0

p(i,k)p( j,k)
px(i)py(k)

Inverse Difference Moment
Normalised (IDMN) IDMN = ∑

Ng−1
k=0

px−y(k)

1+
(︃

k2

N2g

)︃
Inverse Variance inverse variance = ∑

Ng−1
k=1

px−y(k)
k2

Sum Average sum average = ∑
2Ng
k=2 px+y(k)k

Sum Entropy sum entropy = ∑
2Ng
k=2 px+y(k) log2

(︁
px+y(k)+ ε

)︁
Sum of Squares sum squares = ∑

Ng
i=1 ∑

Ng
j=1 (i−µx)

2 p(i, j)
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2.1.3 Traditional Machine Learning Algorithms for CAD Systems

Based on the consideration discussed in the previous section, the decision model is the
step where the semantic relation between input and output is created, allowing the CAD
systems to make decisions about a pathology or compute descriptive scores for a quantitative
evaluation. Based on the model designed for making the decision and on the employed
training techniques, different kinds of CAD systems can be defined. Among the several
learning techniques available in literature, supervised learning is the most interesting for the
aim of this thesis.

Decision Support Systems (DSS) based on supervised learning, are automatic architec-
tures producing a model that is able to discover and describe some relation already present
in a dataset but not known to the user. To allow the learning process, a good dataset or a
knowledge base is needed, and in general the information about the output given a particular
input have to be provided; as example, to design a model able to classify a disease, to detect
the presence of a tumour or to evaluate its stage (e.g. regression), the preliminary association
between the input feature set and the output have to be known.

In the last years, a relevant number of studies in the clinical area proposed approaches
based on supervised learning algorithms; the most known and used algorithms are Artificial
Neural Networks (ANN) and Support Vector Machines (SVM), as well as Swarm Intelligence
or Linear Discriminant Analysis (LDA) [66–82].

Since the importance of Artificial Neural Networks and the link between them and deep
learning (they can be considered as the deep learning ancestors), and since Artificial Neural
Networks are used in some of the study case reported in Chapter 3, a detailed description is
reported above. Furthermore, the concepts that will be reported about the learning process
are usable for deep learning model too.

Artificial Neural Networks. Artificial Neural Networks (ANN) are biologically inspired
computing systems that mimic the physiological neural networks of the human brains [83].
ANN can be considered as a set of numerical techniques, and were initially used in several
fields from solving ordinary and partial differential equations to the modelling and control of
non-linear systems [84]. ANNs can be generally defined as non-linear, multi-layered, parallel
regression techniques and can be used for signal processing, forecasting and clustering. As
for others supervised techniques, the training process of ANN is based on the learning of
distributions from examples. For example, in medical image analysis, it may learn to detect
cancer from images to support oncologists during the phases of diagnosis [10], while for
signal processing it is able to evaluate and objectify the follow-up of neurological diseases
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[85–89]. The networks topology can be described with a graph-based representation, where
the nodes, namely artificial neurons, model the physiological neurons of a biological brain,
while the connections model the synapses. The first mathematical model of a neuron, called
perceptron , was introduced by McCulloch and Pitts in 1943 [90]. The perceptron processes
the inputs by multiplying the inputs xi with corresponding weights wi, then the weighted
inputs are summed up (a bias b is usually added), and lastly the summed weighted inputs are
evaluated with an activation function f (·) producing the output y (Eq. 2.1).

y(ˆ︁X , ˆ︁W ) = f

(︄
∑

i
xiwi +b

)︄
(2.1)

The activation function is chosen depending on the problem the artificial neuron should solve,
and can be a linear or a non-linear function [91].

During the learning phase, specific algorithms are used to train an ANN model finding
the optimal ˆ︁W and ˆ︁B, that are those which minimize the error on the training set.

The limitation of the perceptron is its simplicity, since it works only as linear or binary
classifier [92]. Minsky et al. [92] showed how a relatively simple task, such as the XOR
function, can not be performed with a perceptron. Afterwards, new models topology and
training algorithms were introduced: associative memories [93], multi-layer perceptron
(MLP) [94], back-propagation learning algorithm [94]. These allowed to overcome the
perceptron limitations by increasing the complexity of the neural network, introducing
intermediate neural layer and modelling more complex functions. Nowadays, ANN generally
refers to MLP networks or feed-forward neural network (FFNN), composed by at least one
hidden layer fully connected to the others, and propagating information from input to output
in only one direction (Fig. 2.6). Equation 2.1 can be then reformulated as Equation 2.2,
where l stands for the generic hidden layer.

yk(ˆ︁X , ˆ︁W ) = fl+1

(︄
∑

j
wl+1,k j fl

(︄
∑

i
wl, jixi +bl

)︄
+bl+1

)︄
(2.2)

Even if the increase of the network complexity enables the learning of complex tasks, it
introduces the drawback about the choice of the optimal number of intermediate layers and
nodes. A useful rule of thumb is the Occam’s razor [95], for which the simplest model should
be chosen among the best performing ones.
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Fig. 2.6 Topology of a multilayer perceptron; it has at least one hidden layer and all layers
are fully connected. Arrows denote the direction of information flow through the network
during forward propagation. Image from Bishop et al. [96].

Artificial Neural Networks: The Learning Process. As stated before, an ANN model can
be defined by its neurons and their inter-connections, and the learning process "manipulate"
the parameters (i.e. weights and biases) to find the optimal ones. This process is usually
achieved looking for the optimum (usually minimum) of an error or cost function. The
function is generally defined as the discrepancy between the desired output and the actual
output of the model, but its exact form depends on the problem being solved. Most of the
real tasks resolvable by supervised learning can be defined as regression or classification
problem. For regression, the mean squared error is commonly used as error function:

E( ˆ︁W ) =
1
2 ∑

i
(yi − ti)2. (2.3)

For classification, the cross-entropy error function is used instead:

E( ˆ︁W ) =−∑
i
(ti ln(yi)(1+ ti) ln(1− yi)), (2.4)

that can be generalised to multi-class problems with K classes and N samples as [96]:

E( ˆ︁W ) =−
N

∑
i=1

K

∑
k=1

tki lnyki. (2.5)

The error function can be viewed as the surface defined by the parameter space; it is smooth
and continuous, but also non-linear and non-convex, and its optimal parameter set can not be
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analytically computed due to the presence of local minima besides the global minimum [97].
Therefore, the process is set up as an iterative procedure and compute a new and adjusted
parameters vector τ +1 in each step updating the previous one τ:

ˆ︁Wτ+1 = ˆ︁Wτ +∆ ˆ︁Wτ , (2.6)

The most common way to calculate the update ∆ ˆ︁Wτ is by using gradient information as:

ˆ︁Wτ+1 = ˆ︁Wτ −α∇E( ˆ︁Wτ) (2.7)

where α is called learning rate. This procedure is called gradient descent algorithm and
it is one of the most used base algorithm also in most complex model, such as the deep
learning ones. As suggested by the name, the error based update component always have a
descent direction, due to the gradient of the error function ∇E( ˆ︁W ) that always points into
the direction of greatest increase of the function. The learning rate α is used to control the
length of each step taken in the given direction, preventing variables over-correction, which
could lead to non-convergence of the algorithm. For this reason, the learning rate can be used
to manipulate how fast a network moves toward an optimal value. As good practise, a decay
function can be used to manipulate the learning rate over time (or over the training steps), so
that big steps are taken in the beginning of the algorithm and smaller afterwards, stabilising
the convergence.

Two different timing approaches can be used to update the parameters vectors: Gradient
Descent (GD) and Stochastic Gradient Descent (SGD). With gradient descent all the samples
of the training set are processed before a single parameters update of each iteration. This
requires to compute and store in memory all the derivative terms (Eq. 2.8), and to sum over
the gradients all the samples’ contributes to compute a single shift in the model parameters
space. When the complexity of the network or the dimension of the dataset make this not
feasible, it is possible to update the parameters each sample of after a bunch of samples
(Minibatch Stochastic gradient Descent), but ensuring that the model can fit better the data
seen in the batch and not the whole dataset. In general it is possible to observe that SGD
version converges much faster compared to GD because it does not have to process the whole
dataset before an update, but the convergence could reach a less optimal results and oscillate
around the best one. However, since the suboptimal result is close enough the desired one,
the procedure can be considered as converged. SGD is widely used when the model or the



2.1 Traditional Approaches for Computer-Aided Diagnosis 22

data make the problem non tractable with reasonable time and computational resources, as
for deep network and convolutional neural networks [98].

∇E( ˆ︁W ) =

[︄
∂E

∂ ˆ︁Wl0

,
∂E

∂ ˆ︁Wl1

, · · · ∂E

∂ ˆ︁WlL

]︄
, (2.8)

Since the gradient needs to be calculated in every update step, error back-propagation is
usually used for efficiency. The idea behind error back-propagation is to propagate the
resulting error from the output layer back to the input [99]. The error’ contribute δl to
the output error is calculated for every layer. Since the states and the outputs of hidden
layers are not known, error terms can not be directly calculated, but it can be estimated by
backward propagating the error contribute through the network. Then, layer l receives the
error contribute δl+1 from layer l +1 and updates it according to the following equation:

δl = f ′(ˆ︁zl) ·
[︂
( ˆ︁Wl+1)

⊺
δl+1

]︂
, (2.9)

where ˆ︁zl is the input vector of layer l and f ′(·) is the inverse of the activation function; the δl

contribute is then used for layer l −1. Given the layer contribute and the activation al , it is
possible to compute the gradient of the error function with respect to the parameters of the
current layer, as:

∂E( ˆ︁W )

∂ ˆ︁Wl
= δlal. (2.10)

This is repeated for every layer [97]. The basic concepts of error back-propagation are
illustrated in Fig. 2.7.

Fig. 2.7 Illustration of the calculation of δ j for hidden unit j by back-propagation of the δ ’s
from those units k to which unit j sends connections. The blue arrow denotes the direction
of information flow during forward propagation, and the red arrows indicate the backward
propagation of error information. The error message δ is propagated from output to input and
updated in every layer. In each layer, the partial derivatives with respect to the parametersˆ︁Wl are calculated using the error message. Together, these partial derivatives make up the
gradient of the error function ∇E. Image from Bishop et al. [96].

Important is to note that the core idea behind error back propagation and gradient
descent has been used in a wide range of new algorithms; it can be also applied to deep
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learning network, such as convolutional neural network, where the main difference, from an
algorithmic point of view, is the different weights and parameters arrangement.

2.2 Deep Learning for Computer-Aided Diagnosis

Deep learning represents a subset of machine learning approaches capable to process data in
the raw format [100]. As stated in Section 2.1.2, classical pipeline based on machine learning
algorithms requires a pre-processing step to extract meaningful features from data; deep
learning approaches, instead, can extract feature automatically. Although first deep learning
applications were already suggested and applied at the end of the last century [101, 102], they
become popular in the last years thanks to the new parallel computing capabilities provided
by the recent breakthroughs in graphics processing units (GPU) [100]. The explosion of deep
learning applications started with the CNN architecture AlexNet [103] winning the ImageNet
challenge1 in 2012. From that moment on, they have received an increasing attention in
different communities, including image processing and medical image analysis [104], where
convolutional neural networks (CNN) became a new processing standard. Their dominant
performance involved many other fields based on generic signal processing, leading to the
development of several network topologies, and as a consequence, nowadays, any ANN with
more than one hidden layer is considered a deep neural network.

The huge growing interest about deep learning techniques is due to their inherent ca-
pability of overcoming the drawbacks of traditional machine learning algorithms based on
hand-crafted features [50, 55, 105, 106]. Deep learning techniques have also been found
to be suitable for the analysis of big data with successful applications to computer vision,
speech recognition, pattern recognition, natural language processing, and recommendation
systems [80, 105, 107]. The quickness with whom deep learning applications diffused was
not immediately followed by a formal theory about convergence, time and topology strate-
gies; in fact, it is possible to use a deep learning models "out-of-the-box" without particular
contrivances, other than following best practices, and achieving acceptable performance.

The theory behind the training of neural networks is limited to topologies with one or
few hidden layers; whereas the theory behind multilayer networks remains largely without
formalisation [108]. Allen-Zhu et al. attempted to formalise a convergence theory behind
deep learning, and to explain the empirical findings by Goodfellow et al. [109], proving that
stochastic gradient descent algorithm is able to find a global minima in polynomial time;

1https://www.image-net.org

https://www.image-net.org
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the authors assessed the applicability of their theory to fully connected neural networks,
convolutional neural networks, and residual neural networks [108].

The problem of network convergence was faced also by Ioffe et al. The authors focused
on the difficulties of deep neural networks training due to the changing of layers distribution
over the training phase, as the parameters of the previous layers change; this phenomenon,
referred by the authors as internal covariate shift, slows down the training by requiring a lower
learning rate. Ioffe et al. successfully addressed the problem by normalizing layers inputs
and performing the normalization for each training batch; this new Batch Normalization
layer allows to increase the learning rates and to reduce the effects of the initialization [110].
Nowadays, the Batch Normalization layer is widely used and considered as a standard layer
in deep and convolutional neural networks.

Regarding the training time, despite the popularity of deep learning in wide application
fields, there is not a well know methodology to predict the timing for a specific problem.
Common applications try to infer the training time as a linear extension of the single epoch
timing or from the number of operations. These approaches are usually an over-simplification
because they ignore secondary aspects of the training such as data loading or non-optimal
parallel execution. Starting from the definition of the training time as the product of the
training time per epoch and the number of epochs which need to be performed to reach
the desired level of accuracy, Justus et al. proposed an alternative approach in which a
deep learning network is trained to predict the execution time for parts of another deep
learning network. The combination of the individual parts provide the prediction of the
whole execution time [111].

Despite the deep learning became widely used in many artificial intelligence problems,
due to its ability to outperform alternative techniques and even humans, it is not general
purpose. The main drawback is the requirement of large amount of data (and annotated output
data in most applications); this sometimes biases the researchers to work on specific data that
lack of generalization, such as benchmarked datasets, or on tasks where annotation is easy
to obtain instead of on the tasks itself. Fortunately, the research community continuously
produces and shares new public dataset, and there are techniques that allow to reduce the
need of supervision (i.e. transfer learning, unsupervised learning, and weakly supervised
learning) [112].
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2.2.1 Main Deep Learning Architectures

According to recent surveys on deep learning methods [105, 113], it can be stated that there
are five main deep learning architectures: deep neural networks (DNNs), deep recurrent
neural networks (RNN), convolutional neural networks (CNNs), autoencoders (AEs) and
deep belief networks (DBNs). CNN and AE architectures have been widely used in this
thesis, then a brief description will be reported in the next two sections. Brief information
about the others architectures can be found in Buongiorno et al. [114, 115], while for a
detailed discussion it is suggested the book by Goodfellow et al. [116].

2.2.1.1 Convolutional Neural Networks

Convolutional neural networks were defined by Goodfellow et al. as artificial neural networks
that use convolution in place of a general matrix multiplication in at least one layer [113, 116–
131]. A CNN is based on weights, biases and non-linear activation functions as ANN but,
in addition, considers a mathematical convolution operation in at least one layer. As stated
in paragraph Artificial Neural Networks of Section 2.1.3, regular fully connected networks
compute a transformation of the input by using the weights of the fully connected hidden
layers. Each neuron of each layer is connected to all the neurons of the previous one, being
independent from the other neurons of the same layer (i.e. there are not connection among
neurons belonging to the same layer). Due to their architecture, they are not suitable to
process data with grid-like topology (i.e. time series, image data); in detail, due to the huge
amount of involved weights, regular ANNs do not scale well in image processing applications;
the number of parameters to be learned, indeed, increases rapidly as the image resolution
grows up. This because each pixel in the input image counts as one input dimension; as
example, if each of these inputs were connected to a hidden layer with a "few 100 hidden
units", an image of size 200×200 would already result in 4 ·104 weights per neuron and
over 4 · 106 weights for the whole layer. Training all these weights would require a large
amount of memory. Furthermore, even overlooking the memory constrain, serialising an
image or a grid-like input is not a good idea, because the topology of the input may preserve
useful information such as local correlations among neighbouring pixels; this information is
destroyed when vectorizing grid-like data.

The convolutional layer, on which CNNs are based, carries out the computational re-
duction, and made these architecture particularly suitable when facing domains involving
multidimensional data, such as images or volumetric data. These layers force the network to
extract local features by restricting the receptive fields of hidden units to a certain neighbour-
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Fig. 2.8 Visualisation of the output of convolutional layers. It is possible to observe how
firsts layers allow the extraction of features related to classic ones such as oriented edges,
end-points or corners. Image from Lee et al. [139].

hood of the input. Such features extraction capability is automatically learned and, mainly
in the firsts layers, could be associated to classic ones, such as oriented edges, end-points
or corners (Fig. 2.8) [132, 133]. The increase of the network depth leads to more abstract
features with higher semantic meaning, but, although such features may be used in the same
way of those described in Section 2.1, they would lost significance, especially for the medical
context, as the network depth grows [134]. Thus, it would not be possible to link specific
features to clinical outcomes, but recent research about radiomic using deep learning are
going in this direction [39, 135–138].

Advancing with the analysis of convolutional layers, they can be considered as a set of
filters, commonly named kernels, whose weights are learned during the training phase. The
filter shape is properly selected and, for a bi-dimensional convolution, the filters slide on
two dimension only: heigh and width, whilst the depth size is fixed to the same value of the
input space; as example, for RGB images the filters shape of the first convolution layer is
N ×N ×3, where N is an odd number lower than the input width and height (usually 3, 5 or
7) and 3 because of the images depth (i.e. color channels). The forward computation consists
of a filter convolution across width and height, that is, a filter sliding with dot product among
corresponding inputs and filter weights (Fig. 2.9).

To bring back the concept of convolution to the one of neurons and weights, it is possible
to consider each unit of a convolutional layer as a neuron that receives inputs from a small
neighbourhood of units of the previous layer. The neighbourhood, called local receptive
field, is defined by the filter size and indicates the extent of the scope of input data a neuron
within a layer is responsible for. All the neurons whose receptive fields comes from the
same input plane defined by the convolution operation, are grouped together and share the
same weights vector (convolutional kernel weights); the advantage of this is that it maintains
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Fig. 2.9 Example of application of the convolution operation with a 2-D kernel. Image from
Goodfellow et al. [116].

the same "feature extractor" used in one part of the input, across other sections of the input
data, leading to a great reduction of the number of parameters to train. The local receptive
fields and the weights sharing, are the main breakthrough introduced by CNNs, and with the
spatial sub-sampling provided by pooling layers, allow these networks to slightly face affine
transformations of the input, such as shift, rotation and scale [96, 132].

The output of a convolutional layers is the so-called feature maps, and since several
kernels can be applied for each convolutional layer, a feature maps is a three dimensional
volume where width and height are dependent on width and height of the input, and depth is
equivalent to the chosen number of filters for the layer. This process can be also understood
as convolving the input with several different filters, each one contributing to one feature
map of the output.

Besides, the number of filters, there are two more parameters introduced by convolution
that influence the size of the feature map: stride and padding. The first is the number of
pixels by which the kernel slides over the input image; a larger stride results in reduced width
and height of the feature map and a stride of one leave width and height unchanged. The
padding can be applied to the borders of the image allowing the application of the filter to
bordering pixels; zero- and mirror-padding are the most used.

Since the convolution is a linear operation, they are arranged with non-linear layers pro-
vided by suitable activation function, and allowing CNNs to learn non linearities. Although
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Fig. 2.10 Example of application of the max and average pooling operations with a 2-D
kernel.

ANNs employ sigmoidal functions which emulate the neural biological behaviour, their use
is not efficient with CNN models, then, simpler functions became popular: Rectified Linear
Units (ReLU) (Eq. 2.11) or its derived leaky ReLU, Gaussian Error Linear Unit (GELU), or
Exponential Linear Unit (ELU).

f (x) = ReLU(x) = max(0,x) (2.11)

CNNs introduced also a new type of layer: the pooling layer. Its purpose is to down-
sample an input feature map by reducing its width and height, but leaving the depth unchanged.
The concept of receptive field is used for pooling layers too. There are several down-sampling
implementation (Fig. 2.10), such as max pooling where the maximal value inside a receptive
field is taken, or average or mean pooling, where the average or mean value is calculated.
Pooling goal is to reduce the feature dimensions and therefore, further reduce the number of
parameters (weights, biases) of the network to be learnt. Furthermore, it makes the network
invariant to small scaling.

In a convolutional neural networks, several convolutional, non linear and pooling layers
can be applied successively, and the deeper the network becomes, the better the ability
of the network to extract useful features. The outputs of such a network are high level,
low dimensional features of the input that can be finally used for classification, object
detection or segmentation purposes; for classification, one or more fully connected layers,
with appropriate activation functions, are usually used to compute the class scores.

The higher ability of the network to extract useful features when the depth increases
should not mislead, because it clearly leads to an increase of the trained parameters, and,
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Fig. 2.11 Residual block schema used in Residual Layers.

the depth of CNNs and the complexity of their topology are usually linked to performance
outcomes. In detail, accuracy degradation may occur while increasing the network depth
[130], but some trick were devised; Residual Layers introduced by Kaiming et al. , for
example, allow to "skip connections", that is, connect the output of one layer with the input
of an earlier one (Fig. 2.11).

About the learning process, based on the complexity of the problem including inputs and
outputs dimensionality and the computational resources available, training deep CNNs from
scratch may be difficult or, in some cases, impossible. In fact, the training process would
require learning a huge number of parameters, including those linked to convolution and
those related to the fully connected layers. In such cases, a technique called transfer learning
can be used [140]. Transfer learning consists in using a CNN network pre-trained on a very
large dataset as initialisation, for learning discriminating new classes, or as features extractors.
The first approach is specifically used to fine-tune the parameters of the pre-trained network
continuing the training on a new dataset. It is possible to fine-tune the whole network or
just a specific section (i.e. the first convolution layers that learn to extract generic features
could have fixed weights). The latter approach, instead, considers the pre-trained network as
a feature extractor; the fully connected layers (including also some convolutional layers) are
removed, and the feature map of the last considered layer are then used as input to new fully
connected layers or different classifiers, such as support vector machines.

Literature and applications of CNN topologies to several medical fields are reported in
Sections 2.4.1, 2.4.2 and Chapter 3.

2.2.1.2 Autoencoders

Autoencoders (AE) are particular types of neural networks trained with the aim to copy input
data to the corresponding output layer [116]; hence, the size of the input layer is the same as
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the output one. Autoencoders are trained with an "unsupervised" learning technique able to
train neural networks for a representation learning task, e.g. de-noising, feature reduction,
clustering, image processing [141–153]. Autencoders topology can implement all the element
describe above for classical ANNs and CNNs; AEs that makes use of convolutional layers
are called Convolutional Autoencoders. The peculiarity of AEs, with respect to ANNs or
CNNs, is the encoder-decoder architecture, and the identification of the output of the encoder
as latent code h, that is a particular feature set able to represent the input. The encoder part
has the role to extract (or codify) each input x into the code h = e(x), while the decoder
has to produce the reconstruction, rebuilding the input r = d(h); the learning process tries
to minimise the error between the output of the decoder, that is the output of the network,
and the input; since the input is also used as output target, the learning process is usually
considered unsupervised. A valid autoencoder is not trained to perfectly copy inputs, but to
produce outputs that resemble the training data. According to both the internal structure of the
networks and their training modalities, there are five main AE families [116]: under-complete
AE, regularized AE, sparse AE, denoising AE and variational AE.

Under-complete AE has a specific structure that is able to extract the most representative
features contained in the input data. Such property is achieved by imposing the size of code h

to a value that is smaller than the dimension of input x. By introducing such a bottleneck the
AE should be forced to learn an internal structure that exists in the input data (e.g., correlation
among input signals).

Literature and applications of under-complete AE topologies to signals processing are
reported in Section 2.4.3 and Chapter 4, respectively.

2.2.2 Deep Learning for Detection Problems

Object detection is the capability to localise and classify objects belonging to different classes
inside an image. Among the CNN-based methods for object detection, a particular mention
is devoted to the Region-Based Convolutional Neural Networks (R-CNN) family of models.
The original R-CNN (Fig. 2.12) was proposed in 2014 by Girshick et al. from UC Berkeley
[123]. The method fuses region proposal algorithms with CNNs at the purpose of performing
object detection. The first part of an R-CNN pipeline is devoted to the categories-agnostic
generation of region proposals, that will be subsequently processed looking for desired
objects. Several methods are available for the regions generation [154–156]; Girshick et al.

used selective search [156] for their model, combining the benefit of an exhaustive search
and the ability to understand the image structure to guide the sampling process; regions
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Fig. 2.12 R-CNN object detection system overview. The system takes an input image (1),
extracts around 2000 bottom-up region proposals (2), computes features for each proposal
using a large CNN (3), and then classifies each region using class-specific linear SVMs (4).
Image from Girshick et al. [123].

number is fixed to 2000. The extracted regions are warped into a 227×227×3 volume to
be fed into a CNN dedicated to the feature extraction and composed by five convolutional
layers and two fully connected layers (these force the input volume dimension to be fixed).
The resulting features vector is given as input to a set of class-specific linear support vector
machines (SVMs). To improve the localization and narrowing the bounding boxes to the
looked object, limiting the background introduced by the region proposal step, Girshick et

al. used the bounding box regression method proposed by Felzenswalb et al. [157]; authors
improved Felzenswalb et al. solution by applying regression on features computed by the
CNN instead of on geometric features computed on the inferred deformable part model
locations. The main drawback of using a general purpose region proposal algorithm is that it
is not able to learn specific domain patterns, and the fixed number of regions increase training
and inferencing time. When proposed, R-CNN outperformed comparable architectures,
achieving a mean average precision (mAP) of 53.7% on PASCAL VOC 2010.

In 2015, Girshick et al. improved the R-CNN method creating a new object detection
network named Fast R-CNN [124]. In Fast R-CNN (Fig. 2.13), the whole input image is fed
to the CNN to generate convolutional feature maps. Then, region proposal step is applied
on the convolutional feature maps, and the extracted regions are warped into squares. A
RoI-pooling layer [158], applying max-pooling on a fixed ROI grid, is adopted to reshape
the proposals to a fixed size, so that they can be forwarded to fully connected layers. The
RoI feature vector is fed into a softmax layer to predict the class of the proposed region,
and into a four outputs regressor predicting the bounding box informations. Fast R-CNN
improved performance and speed both for training and inferencing phases, with an mAP
of 66% in PASCAL VOC 2012 (compared to 62% of R-CNN), but the use of the slow and
time-consuming selective search for region proposal remains the main drawback.
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Fig. 2.13 Fast R-CNN architecture. An input image and multiple regions of interest (RoIs)
are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature map
and then mapped to a feature vector by fully connected layers (FCs). The network has two
output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets.
Image from Girshick et al. [124].

This concern was solved in 2016 with a further evolution of the R-CNN architecture
proposed by Ren et al. and named Faster R-CNN [125] (Fig. 2.14). The team of Microsoft
Research discovered that feature maps computed in the first part of Fast R-CNN can be used
to generate region proposals by using a Region Proposal Network (RPN) instead of the slower
and not-learnable selective search algorithm. The approach based on RPN differs from the
ones used in previous architectures because it exploits anchor boxes, instead of pyramids
of images or filters. Anchor boxes are a collection of rectangular bounding boxes proposals
and scores obtained by sliding a spatial window over the whole feature map. The sliding
window is realized via a small fully convolutional network having as input an n×n spatial
window of the feature map. The scale and aspect ratio of anchor boxes are hyper-parameters
and, in order to identify objects at different resolutions, it is required to employ anchor boxes
of different shapes. The use of anchor boxes introduce the further advantages of translation
invariance and multi-scale feature maps, which led also to a lower model size. Faster R-CNN
improves both the speed and the accuracy respect to its predecessors with an mAP of 73.2%
on Pascal VOC 2007 and of 70.4% on Pascal VOC 2012.

Non-Maximum Suppression Object detection pipeline usually require a post-processing
step, called Non-Maximum Suppression (NMS), to clean results from overlapped bounding
boxes; this problem is common in work-flow that operate in a sliding window fashion with
overlap between adjacent windows. Starting from the detection box B with the maximum
score, NMS suppress all other detection boxes that overlap more than a predefined threshold
(i.e. that has an IoU greater than a predefined threshold). The procedure is recursively
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Fig. 2.14 Faster R-CNN network for object detection. Image from Ren et al. [125].

reiterated on the remaining boxes until all have been processed. The NMS algorithm is
designed so that objects lying within the predefined overlap threshold lead to misses, so the
threshold have to be carefully chosen. Soft-NMS by Bodla et al. [159] attempts to solve
this problem by decaying the detection scores of all other objects as a continuous function
of their overlap with B. Authors assess that Soft-NMS improved Faster R-CNN mAP on
PASCAL VOC 2006 and MS-COCO by 1.7% and 1.1%, respectively. Anyway, both NMS
and Soft-NMS suffer from the problem of not considering the area of the detected objects,
then if an object have two detected bounding boxes, one inside the other, the algorithm can
choose the smaller box even if it has only a very slightly higher confidence score. A possible
NMS modification will be proposed and investigated in Section 3.1.6. NMS procedure is
reported in Algorithm 1.

2.2.3 Deep Learning for Segmentation Problems

Semantic segmentation is the capability to classify pixels belonging to an input image in a
image-to-image fashion, where the model output are images of class pixel confidence. In
order to accomplish this task, most CNN semantic segmentation architectures are based
on encoder-decoder networks. The encoder is devoted to the feature extraction process,
shrinking the spatial dimensions whilst increasing the depth. The decoder has the task
to recover the spatial information from the output of the encoder, and several technique,
such as transposed convolution, up-convolution or atrous convolution, can be implemented.
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Algorithm 1: Non-Maximum Suppression (NMS) [159]
input :Bi = b1, ...,bNi , the Ni initial detections

b j = (x j,y j,w j,h j), j = 1, ...,Ni
Si = si1, ...,siNi

, the Ni initial scores
Tiou, the NMS threshold on IoU

output :Bo = b1, ...,bNo , the No ≤ Ni final detections
So = so1, ...,soNo

, the No ≤ Ni final scores
1 Bo = {};
2 So = Si;
3 while Bi is not empty do
4 m = argmax(So);
5 Bo = Bo ∪{bm};
6 Bi = Bi \{bm};
7 while b j ∈ Bi do
8 if iou(bm,b j)≥ Tiou then
9 Bi = Bi \{b j};

10 So = So \{s j};
11 end
12 end
13 end

Activation function and up-sampling (by using the indexes information coming from the
corresponding encoder) can be used too. For the pixel classification task, it is used a
convolutional layer performing a 1×1 convolution and predicting the class confidence score,
instead of the common fully connected layers; then the model output is an n×m× classes

volume. The lack of fully connected layers allow these models to process input of arbitrary
size producing consistently-sized output.

Due to the several application in the medical imaging field, three main approaches based
on SegNet, DeepLab v3+ and U-Net architectures are considered in this thesis.

SegNet is a CNN architecture for semantic segmentation proposed by researchers at
University of Cambridge [160]. As other semantic segmentation architectures, SegNet
is composed of an encoder network and a corresponding decoder, followed by a final
pixel-wise classification layer (Fig. 2.15). The encoder is inspired by VGG-16 topology
and it is composed by convolutions and max pooling, but discarding the fully connected
layers. One clever point of SegNet is that it removes the necessity of learning the up-
sampling process, by storing indices used in max-pooling step in encoder and then applying
them when up-sampling in the corresponding layers of the decoder. The decoder applies
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Fig. 2.15 SegNet architecture. Image from Badrinarayanan et al. [160].

Fig. 2.16 DeepLab v3+ model. Image from Chen et al. [165].

convolutions and upsampling by using indexes from the corresponding encoder layer; finally,
a K-class softmax is used to predict the output class for each pixel. In literature, SegNet
was applied to segmentation tasks such as semantic segmentation of glomeruli for kidney
glomerulosclerosis evaluation [161], prostate cancer [162], gland segmentation from colon
cancer histology images [163] and brain tumor segmentation from multi-modal magnetic
resonance images [164].

DeepLab v3+ architecture has been proposed by Chen et al. [166] (Fig. 2.16). One of the
interesting novelties introduced, is the atrous convolution (from the French à trous, holes),
also known as dilated convolution (Fig. 2.17). The idea has been commonly used in wavelet
transform before being adapted to convolutions for deep learning. For one-dimensional
signals, the output y[i] generated applying atrous convolution to a signal x[i] with filter w[k]

of length k is computed as:

y[i] =
K

∑
k=1

x[i+ r · k]w[k], (2.12)

with r equal to the stride with which the input signal is sampled; r = 1 lead Equation 2.12
to the standard convolution. Atrous convolution consents to broaden the receptive field of
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Fig. 2.17 Example of atrous convolution in 1-D. (a) Sparse feature extraction with standard
convolution on a low resolution input feature map. (b) Dense feature extraction with atrous
convolution with rate r = 2, applied on a high resolution input feature map. Image from
Chen et al. [166].

Fig. 2.18 Atrous Spatial Pyramid Pooling. To classify the center pixel (orange), ASPP
exploits multi-scale features by employing multiple parallel filters with different rates. The
effective receptive fields are shown in different colors. Image from Chen et al. [166].

filters to incorporate larger context. Manipulating r is, therefore, a valuable techniques to
tune the field-of-view, permitting to identify the right trade-off between context assimilation
(large field-of-view) and fine localization (small field-of-view). Chen et al. proposed also a
modified version of Spatial Pyramid Pooling [167], called Atrous Spatial Pyramid Pooling
(Fig. 2.18), in which multiple parallel atrous convolutions with different sampling rates
are applied to the input feature map, and then merged together. This help to deal with
objects of the same class occurring with different scales in the image. DeepLab v3+ has
been used in different medical imaging tasks, such as semantic segmentation of glomeruli
for kidney glomerulosclerosis evaluation [161], colorectal polyps [168] and automatic liver
segmentation [169, 170].

In 2015, Ronneberger et al. introduced U-Net [171], a CNN architecture for supervised
learning, originally conceived for the task of 2D biomedical image segmentation (cell and
membrane segmentation). As depicted in Fig. 2.19, the model is based on the encoder-
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Fig. 2.19 U-net architecture example for 32×32 pixels in the lowest resolution. Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted on top
of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent
copied feature maps. The arrows denote the different operations. Image from Ronneberger et
al. [171].

decoder topology. In detail, each encoder block implements a double stack of convolutions
(3×3 kernels) and ReLU, interleaved by max pooling (2×2, stride 2); pooling layers reduce
block-by-block the spatial dimensionality of the feature maps, but also increasing their
semantic complexity. The corresponding decoders implement the same convolution-ReLU
block, but they are interleaved by transposed convolution (2×2) to restore features size. To
preserve the spatial localization of the features, the output feature maps of each encoder
are also cropped and concatenated to the corresponding ones coming from the transposed
convolution. A final 1×1 convolution is used to convert the final features map to the desired
number of classes.

U-Net-like networks have been widely applied to automate the task of segmentation;
a 3D implementation of U-Net has been proposed by Çiçek et al. [172], while Milletari
et al. proposed a variation of the standard U-Net, called V-Net, for the 3D medical image
segmentation [173], presenting the following peculiarities: use of down-convolutions with
stride 2 and kernel size 2, instead of 2 max-pooling, use of PReLu [174] non-linearities and
adoption of residual connections. All the U-Net-like networks have been easily adapted to
suit the domains of interest in several studies, such as segmentation of organs [175], aortic
dissections [176] or proximal femur [177].
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Fig. 2.20 Mask R-CNN framework for instance segmentation. Image from He et al. [178].

Fig. 2.21 Mask R-CNN head architecture. Image from He et al. [178].

2.2.4 Deep Learning for Instance Segmentation Problems

Instance segmentation is the capability to detect objects and classify pixels. These models
implement a pipeline able to both accomplish the task of object detection and semantic
segmentation, leading to bounding boxes and segmentation masks. The most popular instance
segmentation model is Mask R-CNN (Fig. 2.20); it can be considered as an improvement of
the R-CNN family detectors, and has been developed by a team of Facebook AI Research
(FAIR) in 2017 [178]. Authors discovered that with slight modification of the Faster R-CNN
model they can build a model able to perform also mask segmentation with good results.

The overall Mask R-CNN architecture is composed by two parts: a backbone architecture
performing features extraction, and a head architecture performing classification, bounding
box regression and mask prediction [178]. The backbone architecture could implement
any CNN topology such as ResNet [130]; authors exploited a modified ResNet version
implementing the Feature Pyramid Network (FPN) proposed by Lin et al. [179]. FPN
uses a top-down architecture with lateral connections (skip connection) to extract high-level
feature maps from different levels of the feature pyramid according to their scale. The authors
extended the Faster R-CNN heads starting from the ResNet and FPN papers, by adding a fully
convolutional mask prediction branch extracting masks independently for each RoI. Authors
proposed two implementations of the head architecture (Fig. 2.21); the first (image on the
left), is based on ResNet-C4 (4th stage ResNet) including the compute-intensive fifth stage,
while the latter (image on the right) is based on FPN that already includes the fifth res5 stage
allowing a more efficient head using fewer filters. As reported by the authors the addition of
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the third branch predicting object mask was a natural and intuitive idea, but since it is distinct
from class and bounding-box outputs, it requires the extraction of much finer spatial layout of
an object. Then, the main novelty was the introduction of pixel-to-pixel alignment, naturally
missing in Fast and Faster R-CNN (RoI-pooling suffers of spatial inaccuracy, as it was not
designed for pixel level evaluations). Authors introduced a RoIAlign step that overcome the
misalignments between the ROI and the extracted features caused by quantisation/rounding
of RoI-pooling; RoIAlign uses bilinear interpolation to compute the exact values of the input
features at fixed regularly sampled locations (4), and aggregate the result by means of max or
average values. He et al. claimed that RoIAlign can improve Mask R-CNN masks accuracy
from 10% to 50%, and that results are not sensitive to the exact sampling locations, or to
how many points are sampled, as long as no quantization is performed. Further detail on the
Mask R-CNN implementation can be found in the original paper [178].

Instance segmentation, as object detection architectures from the R-CNN family discussed
before, can adopt NMS to reduce the number of proposals, since many of them can be
overlapped especially if the pipeline operates in a sliding window fashion with overlap
between adjacent windows.

Mask R-CNN networks have been widely applied for glomeruli segmentation [180]
and to implement full pipelines for kidney analysis by means of kidney glomerulosclerosis
evaluation [181].

2.3 Performance Evaluation

In order to evaluate the performance of machine learning algorithms, and following, a CAD
framework based on them, literature accounts several metrics and performance indexes. The
correct evaluation of the system is crucial to assess global performance and the ability of
the model to generalise; that is the ability to process unknown new data assuming that they
preserve the same informative content or statistical property of the dataset used to create
the model. Then, the aim of performance indexes is to evaluate if the learning algorithm
is able to model the data. Common procedures are based on the division of the dataset in
three subset: training, validation and test; these are used for learning the model parameters
from data, evaluate possibles hyperparameters and calculate independent results, respectively.
Validation dataset can be also used during the learning phase to manipulate the training (e.g.
early stop) and for cross validation, but since it becomes part of the learning process an
evaluation on it will be biased; for this reason an independent test dataset is strongly advised.



2.3 Performance Evaluation 40

The performance evaluation is mainly task-dependent and indexes differ among classifi-
cation, object detection and semantic segmentation; instance segmentation results, instead,
can be considered as the joining between object detection and semantic segmentation, then
no new indexes are needed. In the following sections, for each category the performance
evaluation indexes will be discussed.

2.3.1 Classification Metrics

The classification performance can be defined starting from the output of a binary classifier
with Positive (P) and Negative (N) classes. The use of positive and negative terms is common
in clinical practice, where a positive result is commonly associated to the presence of a
particular condition, and conversely, negative for the absence of it (usually healthy condition).
Starting from the number of positive and negative output of a generic classifier, a Confusion
Matrix can be defined as in Table 2.5.

Table 2.5 Base Confusion Matrix for metrics computation.

True Condition

Positive Negative

Predicted
Condition

Positive
True Positive

TP
False Positive

FP

Negative
False Negative

FN
True Negative

TN

The confusion matrix allows the definition of four cases: True Positive (TP) indicates
the number of instances labelled as Positive, and correctly classified as Positive; True
Negative (TN) refers to the number of instances labelled as Negative and correctly classified
as Negative; False Positive (FP) refers the number of instances labelled as Negative but
misclassified as Positive; False Negative (FN) indicates the number of instances labelled as
Positive but classified as Negative. The most used metrics for classification are computed
starting from the confusion matrix table and are reported in Equations from 2.13 to 2.20.
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Accuracy =
T P+T N

T P+T N +FP+FN
(2.13)

Precision =
T P

T P+FP
(2.14)

Recall (Sensitivity) =
T P
P

=
T P

T P+FN
(2.15)

Speci f icity =
T N
N

=
T N

FP+T N
(2.16)

Jaccard Similarity Index =
T P

T P+FP+FN
(2.17)

Miss Rate =
FN

T P+FN
(2.18)

F −Measure =
2∗Precision∗Recall

Precision+Recall
(2.19)

MCC =
T P∗T N −FP∗FN√︁

(T P+FP)∗ (T P+FN)∗ (T N +FP)∗ (T N +FN)
.(2.20)

Matthews Correlation Coefficient (MCC) [182], in particular, takes into account false
negative and false positive and computes a correlation coefficient between predicted and
target classes. It assumes values in the range [−1;1], where 1 indicate perfect prediction, −1
complete disagreement and 0 is equivalent to the random predictor. As stated by Chicco [27],
among the usual performance scores, MCC is the only one that takes into account the ratio of
the confusion matrix sizes, and it revealed to be a better index of performance than accuracy
(Eq. 2.13) or F-measure (Eq. 2.19) on unbalanced datasets.

The use of different indexes is required in real application in which it is necessary to
reach a compromise between optimal performance and domain requirements. Higher TPs
and TNs than FPs and FNs is the ideal condition, but real applications are ever subject to
prediction error due to dataset variability (e.g. noise). When a model wrongly predict a false
positive (i.e. type I error), it indicates that a given input imply the existence of a particular
output condition, when it does not; a false negative error, dually, wrongly indicates that the
output condition is absent (i.e. type II error) [183]. For decision support system, the decision
of which error should be minimised is where the compromise relies on. When type I and type
II errors can not be both avoided, the chose depends on the application domain; for example,
a test for screening the population to identify pathologies in asymptomatic people, should
avoid type II errors, increasing as much as possible the sensitivity (or recall) of the system,
and can tolerate an higher number of false positives, particularly if the screening test is not
harmful or expensive. Other cases, such as diagnostic tests providing a definitive diagnosis,
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Fig. 2.22 Example of four ROC curves which correspond different values of the area under
the curve. A classifier performance may range from chance of curve D (AUC = 0.5) to
optimal of curve A (AUC = 1). Test B, in this example, shows higher AUC and then has a
better overall diagnostic performance than test C. Image from Park et al. [185]

should avoid both type I and II errors, increasing the specificity of the test and aiming to
improve diagnostic precision and accuracy [184].

Another important tool for performance evaluation are the Receiver Operating Character-
istic (ROC) curves. The use of ROC curve is strongly encouraged when several classification
techniques and hyper-parameters are tuned, and, in general, when it is necessary to evaluate
the discrimination ability of different statistical methods (e.g. it illustrates the diagnostic abil-
ity of a binary classifier as its discrimination threshold is varied) [185–189]. The ROC curve
is a curve created by plotting the True Positive Rate (TPR), or Sensitivity, against the False
Positive Rate (FPR), obtained as in Equation 2.21, at various model configuration. Starting
from the ROC curves, the Area Under the ROC Curve (AUC) can be calculated; it ranges
from 0 to 1, and it allows to assess the better performing models or model configurations. A
perfect test has AUC equal to 1, while the chance has an AUC equal to 0.5. Examples are
reported in Fig. 2.22.

False Positive Rate (FPR) =
FP
N

=
FP

FP+T N
= 1−Speci f icity (2.21)
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Fig. 2.23 Definition of IoU.

2.3.2 Object Detection Metrics

Object detection problems have to be evaluate by means of different metrics than classification
ones. To build a confusion matrix starting from detected objects and their ground truth, it is
necessary to define what is a positive or negative detection, and the new background class has
to be implicitly included. A common ratio behind the definition of detection, is the extraction
of an index about an overlap information between two bounding boxes. The analysis of
literature suggests two indexes to be used in detection task: Intersection over Union (IoU)
and Intersection over Minimum (IoM). Given two bounding boxes A and B (or any finite
sample sets), IoU can be defined as the ratio between the intersection and the union of their
areas (Equation 2.22, Fig. 2.23), while IoM as the ratio of the intersection area over the
minimum bounding box area (Equation 2.23). Both indexes range from 0 to 1, where 1
indicates a perfect match. In Equation 2.22 and 2.23, | · | denotes the set cardinality operator.

IoU(A,B) =
|A∩B|
|A∪B|

(2.22)

IoM(A,B) =
|A∩B|

min(|A|, |B|)
(2.23)

The two equation allow to define a quantitative index of boxes overlap, then a threshold is
necessary to assess the detection success or fail; to avoid problem linked with the presence
of adjacent object, common ratio is to set the threshold to 0.5.

There are other two metrics widely used in object detection challenges as PASCAL
VOC2, Google Open Images3 and COCO4: Average Precision (AP) and mean Average
Precision (mAP). These indexes offer a global level evaluation, estimating the performances
of a model on the whole dataset, and allowing simpler benchmarking; on the contrary they

2http://host.robots.ox.ac.uk/pascal/VOC/
3https://opensource.google/projects/open-images-dataset
4https://cocodataset.org/

http://host.robots.ox.ac.uk/pascal/VOC/
https://opensource.google/projects/open-images-dataset
https://cocodataset.org/
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did not provide insights on model errors. In detail, AP is defined as the area under the
precision-recall curve and mAP is the AP averaged over all classes. A naive implementation
of AP is described by the following equation:

AP =
∫︂ 1

0
p(r)dr (2.24)

In literature (e.g. PASCAL VOC) AP is usually calculated by adopting the average interpo-
lated precision value of the positive examples [190], and precision and recall can be defined
with respect to a confidence value c, as p = P(c) and r = R(c), respectively; in detail, recall
R(c) is the fraction of objects detected with confidence of at least c and precision P(c) is the
fraction of correct detections, with:

P(c) =
R(c) ·N j

R(c) ·N j +F(c)
(2.25)

In Equation 2.25, N j is the number of objects in class j and F(c) is the number of incorrect
detections with at least confidence c. Note that due to the dependence from N j, a strong
unbalanced dataset can bias the AP comparisons among different classes toward the most
represented; Hoiem et al. proposed a normalised version of AP applicable if a sufficient
dataset rebalancing is not possible [190].

Mean Average Precision (mAP) for K classes can be calculated as following:

mAP =
1
K

K

∑
j=1

APj (2.26)

With the definition of what is a detection, a confusion matrix can be built; object detection
problems have to implicitly assume that background is a class to be considered in the detection
task. When there is only one class of object to be detected, a simple confusion matrix can
be defined considering as positive the objects of the class (or all the object classes if there
are more classes to detect) and background as negative. Then, a false positive will be the
detection of a non-object (e.g. full background or object not satisfying the overlap threshold),
and false negative will be an object miss (e.g. object not satisfying the overlap threshold).
True negatives can non be considered since the correct background detection is meaningless.
All the definition can be extended to the multi-class case considering the mismatch of a class
as false positive for another and false negative for itself.

An example of the extension of the classification confusion matrix reported in Table 2.5
to a multi class object detection is reported in Table 2.6
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Table 2.6 Example of multi class object detection confusion matrix for metrics computation.

True Condition

PositiveA PositiveB Negative

Predicted
Condition

PositiveA TPA
FNB
FPA

FPA

PositiveB
FNA
FPB

TPB FPB

Negative FNA FNB -

With the definition of the confusion matrix, all the metrics defined for a classification
problem can be extended for object detection (Equations from 2.27 to 2.31). All the metrics
have to be defined with a dependence from the threshold confidence c, and indexes involving
true negative lose importance.

Precision = Pj(c) =
T Pj(c)

T Pj(c)+FPj(c)
, (2.27)

Recall (Sensitivity) = R j(c) =
T Pj(c)
Pj(c)

=
T Pj(c)

T Pj(c)+FN j(c)
, (2.28)

Jaccard Similarity Index =
T Pj(c)

T Pj(c)+FPj(c)+FN j(c)
, (2.29)

Miss Rate =
FN j(c)

T Pj(c)+FN j(c)
, (2.30)

F −Measure =
2∗Pj(c)∗R j(c)

Pj(c)+R j(c)
. (2.31)

All the object detection indexes can be also applied on instance segmentation.

2.3.3 Semantic Segmentation Metrics

Regarding the segmentation tasks, the confusion matrix can be considered, but it has to
be defined at pixel-level. In this case, each pixel can be classified as positive or negative
(or classi in a multi-class segmentation). The pixel-level classification, commonly leads to
confusion matrices with high numbers that reduce its readability; common practice is to
consider its normalised version where each matrix position is divided by the total number of
occurrences of the corresponding class. The resulting normalised confusion matrix values
will be in the range [0,1].
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A new consideration can be done for the metrics. When facing a pixels classification
problem the common metrics described before can be used, but they have to be adapted
according to the analysed level of detail. In particular, three level of metrics can be defined:
class, image and dataset metrics. Class metrics commonly used are:

• accuracy - defined as the number of correctly classified pixels in each class divided by
the number of ground truth pixels belonging to that class. Equation 2.13 can be used;

• IoU - calculated as the number of correctly classified pixels divided by the number of
all the pixels assigned to that class (both prediction and ground truth). Equation 2.22
can be used considering A and B as predicted and ground truth pixel sets, respectively;

• mean F-measure - defined as the class F-measure averaged over all images.

Image metrics are calculated for each image and are:

• global accuracy - defined as the total correctly classified pixels over the total number
pixels;

• mean accuracy - defined as the class accuracy averaged among the classes;

• mean IoU - defined as class IoU averaged among the classes;

• weighted IoU - define as the weighted average of class IoU;

• F-measure - defined as the F-measure of each class of the image.

Dataset metrics refers to global evaluation and are:

• global accuracy - calculated as the number of correctly classified pixels of the dataset
divided by the total number of dataset pixels;

• mean accuracy - defined as the mean of class accuracy;

• mean IoU - defined as the mean of class IoU;

• weighted IoU - defined as the weighted mean of class IoU;

• mean F-measure - defined as the mean of image F-measure.

All the semantic segmentation indexes can be applied on instance segmentation. Further-
more, starting from the pixel segmentation it is possible to extract the class bounding boxes,
moving the problem from a semantic segmentation task to an object detection one; then, the
appropriate metrics can be used. This problem and the required image processing steps will
be discussed in the study case presented in Section 3.1.5.

Others semantic segmentation indexes focus on the evaluation of the shape or the surface
of the segmented volume of interest. These indexes became popular thanks to SLIVER07
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and LiTS challenges [191, 192]; in detail, It is possible to make a distinction between quality
measures based on the volumetric overlap and those based on surface distances.

Relevant quality measures based on volumetric overlap are the Volumetric Overlap
Error (VOE), defined in Equation 2.33 and the Sørensen–Dice Coefficient (DSC), defined
in Equation 2.34. The VOE definition depends on the ratio between intersection and union,
namely the Jaccard Index J defined over a set. In all the definitions involved in the quality
measures, B denotes the binarised predicted segmented volume P (obtained by thresholding
P) and G the ground truth volume; the cardinality operator for a set is denoted as | · |.

J(B,G) =
|B∩G|
|B∪G|

(2.32)

VOE(B,G) = 1− J(B,G) (2.33)

DSC(B,G) =
|B∩G|
|B|+ |G|

(2.34)

A more general formulation of both DSC and Jaccard Index is the Tversky index Tα,β (B,G),
defined as:

Tα,β (B,G) =
|B∩G|

|B∪G|+α|B−G|+β |G−B|
(2.35)

Note that T0.5,0.5(B,G) corresponds to DSC(B,G), while T1,1(B,G) corresponds to J(B,G).
Besides calculating the overlap error, it is also possible to quantify the Relative Volume
Difference (RVD), defined as:

RV D(B,G) =
|B|− |G|

|G|
(2.36)

Interesting quality measures based on the external surface distances are the Maximum
Symmetric Surface Distance (MSSD, or Symmetric Hausdorff Distance) and the Average
Symmetric Surface Distance (ASSD) [192]. These measures are particularly useful for
applications like surgical planning, where make a suitable prediction of the mesh of the
organs is vital. In order to properly define these distances, let’s define a metric space (X ,d)

where X is a 3D euclidean space and d is the euclidean distance over the 3D euclidean space.
Then, let S(P), S(G) ⊆ X be the external surfaces of P and G volumes, respectively; it is
possible to define a distance function between any two non-empty sets S(P) and S(G) of X ,
also known as one-sided Hausdorff distance, as in Equation 2.37.

h(S(P),(S(G)) = sup
sp∈S(P)

{ inf
sG∈S(G)

d(sP,sG)} (2.37)
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Then, MSSD and ASSD, can be defined as Equation 2.38 and 2.39, respectively.

MSSD(S(P),S(G)) = max{h(S(P),S(G)),h(S(G),S(P))} (2.38)

ASSD(P,G) =
1

|S(P)|+ |S(G)|

(︄
∑

sP∈S(G)

d(sP,S(G))+ ∑
sG∈S(G)

d(sG,S(P))

)︄
(2.39)

2.4 Clinical Domains

In this section will be presented the medical domains of the clinical problems faced in the
study cases of Chapters 3 and 4. The deeply comprehension of the problem, from the
physician point of view, is the first requirement to design a complete CAD system. The
experience, the best practice or simply the mind work-flow of domain experts is useful to
develop optimal pipeline especially in the field of medical imaging. For each clinical problem
will be reported and discussed also the literature novelties with a particular focus on deep
learning based approaches.

2.4.1 Digital Pathology

Pathology is the branch of medical science that involves the study and diagnosis of disease
through the examination of surgically removed samples, namely biopsy samples, coming
from organs, tissues and bodily fluids [193]. Pathologists specialise in a wide range of
diseases including cancer, and the most of the cancer diagnoses are made by them; they
can also employ genetic studies and gene markers in the assessment of various diseases. A
general pathological examination is based on the microscope observation of biopsy samples
to help determine if it is cancerous or non-cancerous (benign).

Pathology accounts three main branches based on different source of information and
focusing on diverse goal: Surgical Pathology, Cytopathology and Molecular Pathology [193].
Surgical Pathology is the most significant and time consuming branch of pathology and
involves the analysis of macroscopic (gross) and microscopic (histologic) tissues; it focuses
on the examination with the naked eye or under a microscope for definitive diagnosis of
disease and to determine a possible treatment plan. Surgically removed histological sections
are processed for microscopic viewing, using either chemical fixation or frozen sections. In
particular, the latter case involves freezing the tissue and generating thin frozen slices of
the specimen, which are mounted onto glass slides; these are following either stained with
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chemicals or antibodies to reveal cellular components for the microscope viewing. Surgical
Pathology could be also applied in autopsy examination to determine the cause and manner
of death, to evaluate any disease, injury, the state of health, and the appropriateness of
any medical diagnosis and treatment before death. Cytopathology, instead, focuses on the
diagnose of diseases on a cellular level. It is usually used to aid in the diagnosis of cancer, but
also helps in the diagnosis of certain infectious diseases and other inflammatory conditions.
In contrast to histopathology, which studies whole tissues, cytopathology is generally used
on samples of free cells or tissue fragments that are spontaneously exfoliated or manually
removed from tissues by abrasion or fine needle aspiration;. Molecular Pathology, finally, is
a relatively recent discipline that has achieved remarkable progresses over the past decade. It
is focused on the study and the diagnosis of disease through the examination of molecules
within organs, tissues or bodily fluids, and starts from the assumption that many diseases,
such as cancer, are caused by mutations or alterations in the genetic code of a subject. The
identification of specific mutations allows clinicians to classify a disease and also to choose
the appropriate treatment based on the patient genetic. As a result, molecular analysis is
leading the way towards personalized medicine allowing the precise prediction of patient’s
response to therapies, and, thanks to its high levels of sensitivity, it allows the detection of
very small tumours resulting in earlier diagnosis and improved patient care and survival.

The main field of interest for this thesis is the analysis of microscopic tissues of surgical
pathology, and in particular histopatologic tissues.

Over the last decade, the advent and the proliferation of digital slide scanners lead to the
development of a new sub-field of pathology called Digital Pathology. In particular, digital
pathology focuses on the data management of Whole Slide Images (WSIs) generated by
digitised specimen slides [194]. Digitisation of tissue glass slides facilitates and improves
several medical clinical workflows, reducing the needs for storing glass slides on-site and
reducing the risk of physical slides to get broken or lost over time. Furthermore, it allows
the transfer and the remote consultation (i.e. telepathology) of pathological data, and the
following creation and availability of large digital repositories of tissue slides constitute
a huge-potential for research, diagnosis, and education [195]. With digital slide archives,
such as The Cancer Genome Atlas5 (TCGA), thousands of slides are freely available on-line,
leading to new publications about digital pathology image analysis; the large amount of new
publications confirms the growing interest in this research area. Finally, the availability of
public digital information allows the application of well-known and standardised computa-
tional imaging researches for the development of computer-aided diagnosis systems, and

5https://www.cancer.gov/tcga

 https://www.cancer.gov/tcga
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brings the opportunity for new research fields based on innovative techniques, such as deep
learning. Also, computer-based image analysis is already available in commercial diagnostic
systems, but further advances in image analysis algorithms are required in order to fully
realise the benefits of computer-aided diagnosis systems for digital pathology in medical
discovery and patient care [196].

The abilities to quantitatively characterise disease information coming from multiple
biological scales and dimensions have the potential to enable the development of preventive
strategies and medical treatments precisely targeted to each class of patients. Classically,
pathologists tissues classification was based on manually-recognised patterns, and recent
researches demonstrated that, in some cases, image analysis algorithms could reproduce
the pathologist-rendered diagnoses [197]. The advances in pathology imaging technologies,
along with comparably advances in the "-omics" and radiology domains, are revolutionising
the medical ability to rapidly capture and exploit vast amounts of multi-scale and multi-
dimensional data in combination with genetic background.

Since the use, the analysis and the application of innovative techniques on whole slide
images is a core aspect for the aim of this thesis, the following sections will delineate the
main challenges in the WSIs management and processing, and will report the main literature
about these applications on the chronic kidney disease study case.

2.4.1.1 Main Challenges in Digital Pathology

The analysis of digitalised histological tissues introduces new problems compared to standard
image processing tasks. The main challenges when dealing with digitalised slides dataset
are: images resolution, dataset unbalancing and stain color variation.

Image resolution problem. Digitalised histopathological images, and generally WSIs, are
high resolution acquisitions of specimen slides; they could reach dimensions higher than
50000× 50000pixels with usually three colour channels. This huge dimension make the
direct processing of the whole image an infeasible task and most of the time it is impossible
to process the entire image with deep learning or even common image processing algorithms.
A simpler solution could be to reduce the original image size by undersampling, but a good
trade-off between final image size and acceptable information lost should be found [198]
(consider that exists a precise correspondence between pixel and spatial resolution of the real
tissue sample).

Common WSIs are usually composed by one or more histological tissue sections sur-
rounded by background; as observable in Fig. 2.24 detecting these sections and reducing the
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Fig. 2.24 Example of full kidney biopsy in ImageScope (44999×19241×3 - 4.04GB).

region of interest could be a reasonable strategy. Furthermore the knowledge of the tissues
pose, allows its rotation to generate the minimum circumscribed bounding box leading to a
size reduction of up to 50% [199–201] (Fig. 2.25).

Other approaches, aiming to retain maximum information, applies the processing algo-
rithms on only a patch at a time of the whole image. This sliding window approach reduce
the necessity to adapt the resolution of the images to the available computational resources,
and lets the application of algorithms of any complexity requiring only the possibility to
project the results to the original image if needed. The introduced drawback is the right
choice of the windowing size and overlap between contiguous patches. Literature reports
examples of the application of this techniques also in non-medical-contexts [162, 202, 203];
Meng et al. used this approach to perform accurate small object detection from large images
(but lower than WSIs). The authors used small patches as input to a variant of Single Shot
Multibox Detector (SSD) using VGG-16 as backbone network, resulting in a patch-level
object detection. They used image pyramid to obtain scale invariance and projected the
patch-level detections to original images. Hung et al. used Faster R-CNN on bright-field
microscopy images of malaria-infected blood, outperforming their traditional segmentation
and machine learning baseline; the authors used a low patch size reaching a feasible training
and an implicit augmentation of the dataset. Kawazoe et al. used Faster R-CNN for kidney’
elements detection in kidney biopsies slides; the authors chosen a proper window size and
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Fig. 2.25 Example of kidney section rotated to minimize the circumscribed bounding box
(2491×1591×3 - 11.34MB).

overlap to ensure that the element of interest to be detected could be included in at least one
patch. Since this approach is of interest for this thesis, further information about the clinical
domain and the paper goal will be investigated in Section 2.4.1.2.

Unbalanced data problem. The second problem that should be addressed in digital pathol-
ogy is the data unbalancing; it did not occur only in the pathology domain, but it is also really
common in all the field involving machine learning applications. The common problem in
real life applications of machine learning and deep learning based classifiers is that some
classes have a significantly higher number of examples in the training set than others. The
problem has been comprehensively studied in classical machine learning, establishing that
it can have significant negative effects on training traditional classifiers [24, 204]. Several
methodologies are available to deal the problem, and the most commons make use of sam-
pling approaches: oversampling or undersampling. A simplified implementation of the first
one consist in the random replication of some data, whilst more sophisticated approaches
generate new data starting from a model that usually preserve the statistic or the informative
content of the original data, or apply some transformations, such as interpolation or image
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augmentations; example applications on WSIs will be presented in the following Stain color

variation problem paragraph. An opposite procedure is taken with undersampling, in which
a careful random selection of samples is performed with a proportion among classes adapted
to rebalance the dataset. This technique is usually effective with large datasets, where a
reduction of samples size is more affordable.

Other approaches manipulate the learning algorithm used to train the model to achieve
the balancing goal; in particular, custom cost functions are usually used introducing different
weights to the misclassification and manipulating the direction of the learning algorithm
[175, 205]. The study case presented in Section 3.3 make use of this solution.

Buda et al. conducted a systematic analysis on the class imbalance problem in deep
learning using three benchmark datasets of increasing complexity: MNIST, CIFAR-10 and
ImageNet. The authors investigated the effects of imbalance on classification and performed
an extensive comparison of several methods to address the issue. Oversampling resulted the
more suitable balancing techniques for convolutional neural network allowing also to reduce
overfitting [206].

The unbalanced dataset problems affects medical applications particularly; it is really
common to deal with dataset in which healthy samples are one or more order of magnitude
numerous than non-healthy. Regarding medical imaging, the lack of data is one of the
main problem to deal with; the application of complex model, such as the ones introduced
by deep learning, requires large dataset to avoid overfitting and the annotation procedure,
essential for supervised learning, is also really tedious. Commons applications use image
transformations to augment the dataset, customising the core operations to suit the data nature
and the research goals. Examples will be detailed in the following Stain color variation

problem paragraph, whilst a study case affected by and dealing with this problem will be
discussed in Sections 2.4.1.2 and 3.1.

Stain color variation problem. Stain variation is the phenomenon observed when distinct
pathology laboratories stain tissue slides that exhibit similar but not identical color appearance
[207]. Due to this color variability, image processing algorithms and complex machine
learning models, such as convolutional neural networks, could have difficulties to generalise
and maintain performances among different dataset.

Telleza et al. deeply analysed the problem of stain color variation and proposed several
solutions based on two categories: stain color augmentation and stain color normalization
[207]. The first category consist of image processing transformations aiming to reproduce the
variability of datasets, and could be also used as oversampling techniques (see Unbalanced
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Fig. 2.26 Examples of HSV perturbation on non-sclerotic glomeruli. In order left-right
and top-down: original image; ∆H = +0.12, ∆S = +0.04; ∆H = +0.04, ∆S = −0.01;
∆H =−0.03, ∆S =+0.06; ∆H =+0.00, ∆S =+0.01; ∆H =−0.09, ∆S =+0.04.

data problem paragraph above). The most interesting augmentation proposed by Telleza et

al. , and useful for the aim of this thesis, are the colour shift in the Hue-Saturation-Value
(HSV) colour space and the morphology transformation. The first augmentation consists in
a randomly shift of hue and saturation channels in the HSV color space, aiming to enrich
the color distributions of the dataset with slight differences; this application do not affect the
morphology of the images but the color appearance only, simulating stain color variations.
Example of HSV perturbation applications on non-sclerotic and sclerotic glomeruli are
reported in Fig. 2.26 and Fig. 2.27, respectively.

Conversely, the morphology transformation are a set of morphological perturbations (size,
texture and shape) that do not modify the color appearance; the most interesting ones are:
scaling, additive Gaussian noise (that is signal-to-noise ratio perturbation), Gaussian blurring
(able to mimic out-of-focus artefacts) and elastic deformation. Simard et al. proposed an
interesting procedure to apply elastic deformation on images [208]. The procedure was
proposed for the analysis of visual documents, but then it had a widespread application
in medical imaging, as also shown by U-Net authors [171]. Image distortions such as
translations, rotations, and skewing can be generated by applying affine displacement fields,
and it is done by computing for every pixel a new target location with respect to the original
location. A general displacement field could be described by equations ∆x(x,y) = α x̃ and
∆y(x,y) = α ỹ defining that the new pixel is shifted by a scale factor α from the origin
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Fig. 2.27 Examples of HSV perturbation on sclerotic glomeruli. In order left-right and top-
down: original image; ∆H =+0.18, ∆S =+0.03; ∆H =+0.06, ∆S =−0.06; ∆H =−0.04,
∆S =−0.02; ∆H =−0.11, ∆S =+0.10; ∆H =+0.18, ∆S =+0.09.

location (x,y) = (0,0). Since α is a real value, the new position may not be a valid pixel
integer position, then the new gray level has to be computed by interpolating the pixels
surrounding the new position; for simplicity, authors suggest bilinear interpolation algorithm.
To reproduce an elastic deformation, the authors, used a random displacement fields, define
as x(x,y) = rand(−1,+1) and x(x,y) = rand(−1,+1), where rand(−1,+1) is a random
number between −1 and +1, sampled by a uniform distribution. The fields were then
convolved with a Gaussian of standard deviation σ (in pixels) and, finally, the displacement
fields are multiplied by a scaling factor α that controls the intensity of the deformation. The
authors assess that using larger σ results in small values because the random values average
0 and the normalised displacement field (to a norm of 1) is then close to constant with a
random directions; smaller σ , instead, makes the field looks like a completely random field
after normalization. In general increasing the value of σ leads the displacements operate as
an affine distortion and in extreme cases (very large values) as translations; for intermediate
σ values, instead, the displacement fields look like elastic deformation, with an elasticity
coefficient of σ . Examples of displacement fields are depicted in Fig. 2.28, while example
of elastic deformation applications on non-sclerotic and sclerotic glomeruli are reported in
Fig. 2.29 and Fig. 2.30, respectively.

Others minor and classic augmentation, but useful for the case studies of this thesis are
image rotation and mirroring.
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Fig. 2.28 Examples of displacement fields: σ = 4.80, α = 143 (left); σ = 4.63, α = 281
(right).

The second category proposed by Telleza et al. is the stain color normalization. It
operates reducing color variation by using a normalization function that maps any given color
distribution to a template one; this eliminate the problem of stain variance and the generic
learning model no longer requires to generalise to unseen stains. Grayscale transformation
is the simpler example of normalization function that transforms images from colour to
grayscale space; this transformation is useful under the hypothesis that color information
may be redundant and most of the information is present in morphological and structural
pattern. Nevertheless, the authors observed low performance with their benchmark dataset
suggesting that colours preserve important information. Reinhard et al. proposed a simple
statistical analysis to transfer the color informations of one image to others, by choosing a
proper source image and applying its characteristics to another one [209]. This technique can
be used to normalize new images and reduce color variation inside or between datasets [210].

Others colours manipulation are based on histogram modifications. Histogram equal-
ization (Algorithm 2) is an image processing technique that aims to adjust image contrast
imposing the equal distribution of the colour intensity levels over the whole brightness scale;
it allows contrast enhancement for intensity values closer to histogram maxima and contrast
diminution near minima [211]. When the colour space dimension is greater than one, as in
WSIs, histogram equalization have to be applied on colour space in which colour information
is described by one channel only, such as LAB or HSV (the Algorithm 2 should be applied on
the L and S components for LAB and HSV, respectively). As evident from the Algorithm 2,
the transformation uses information dependent by the histogram of the original image, linking
the equalisation performance to his goodness. In particular, images with significant lighter or
darker regions will not benefit from the standard histogram equalization (an example is the
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Fig. 2.29 Examples of elastic deformation on non-sclerotic glomeruli. In order left-right
and top-down: original image; σ = 4.07, α = 101; σ = 4.14, α = 127; σ = 3.64, α = 204;
σ = 3.59, α = 277; σ = 4.29, α = 180.

wide white background present in WSIs). To overcome the problem Adaptive Histogram
Equalization (AHE) can be used. It computes several histograms, each corresponding to
a different region of the image, and uses them to redistribute the lightness values of the
image, resulting in the improvement of local contrast and in the enhancement of image
edges. A possible drawback is the contrast amplification of near-constant regions leading
to an increase of the noise of these regions. This problem is limited by the use of particular
adaptive histogram equalization, such as Contrast Limited AHE (CLAHE) [212], that aims
to limit the contrast amplification (Fig. 2.31).

The last analysed stain color normalization is the histogram matching. When automatic
enhancement is desired, histogram equalization is a good approach to consider because
the results are predictable, but no assumption or constraint about the histogram shape are
applied. Histogram matching is based on transformations aiming to obtain an histogram
corresponding to a specified one [213]; note that histogram equalization can be considered
as the particular case where the specified histogram is uniformly distributed [214].



2.4 Clinical Domains 58

Fig. 2.30 Examples of elastic deformation on sclerotic glomeruli. In order left-right and
top-down: original image; σ = 3.01, α = 270; σ = 3.35, α = 135; σ = 4.55, α = 119;
σ = 3.16, α = 104; σ = 3.79, α = 176.

Fig. 2.31 Example of histogram equalization with CLAHE algorithm. From left to right:
original image, CLAHE applied to each channel of RGB, CLAHE applied to saturation
channel of HSV, CLAHE applied to lightness channel of LAB.
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Algorithm 2: Histogram equalization from Sonka et al. [211]
• Input: Image I of size N ×M and G grey levels.

1: Initialise to 0 an array H of length G
2: ∀ pixel p ∈ I with intensity gp, perform H[gp] = H[gp]+1 (i.e., create the histogram

of I)
3: Let gmin be the minimum g for which H[g]> 0 (i.e., the lowest grey value occurring

in I)
4: Create the cumulative histogram Hc, as:

Hc[0] = H[0],
Hc[g] = Hc[g−1]+H[g], g = 1,2, . . . ,G−1

5: Set Hmin = Hc[gmin]

6: Set T [g] = round
(︁Hc[g]−Hmin

MN−Hmin
(G−1)

)︁
7: Rescan the image and write the output image with grey levels gq = T [gp]

Fig. 2.32 Example of histogram matching: source high-contrast biopsy (left), target low-
contrast biopsy (center), output (right).
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2.4.1.2 Chronic Kidney Disease

Chronic Kidney Disease (CKD) is a pathological condition consisting in a functional degener-
ation of the kidney. CKD is the 12th cause of death with up to 1.1 millions of cases worldwide,
and the increased mortality of the last years makes it one of the fastest rising causes of death,
alongside diabetes and dementia [215, 216]. Kidney transplantation represents the primary
therapy which is more effective than dialysis treatment in terms of long-term mortality risk
and, at the same time, has a smaller impact on the public health system [217, 218]. Liyanage
et al. estimated that, in 2010, 2.6 million people as against 4.9 million of patients, received
renal replacement therapy worldwide, suggesting that at least 2.3 million people might have
died prematurely because appropriate therapy could not be accessed [219].

Due to the increasing necessity of kidney transplants [220], different studies tried to
widen the criteria of inclusion, which generally exclude kidneys considering the age of the
donor and some characteristics related to quality and dimension of kidneys [221, 222]. Moore
et al. performed a comparison between dual kidney transplantation (DKT) from expanded
criteria donors (ECDs) and single kidney transplantation (SKT) from concurrent ECDs and
standard criteria donors. The authors assessed that the use of dual kidney transplantation
from marginal donors is a viable option and that renal function can be achieved provided that
both kidneys are transplanted into a single recipient [223].

Remuzzi et al. proposed techniques to assess the kidney condition by histological biopsy
[224]. The evaluation criterion, called Karpinski score, is based on the microscopic examina-
tion of the main kidney functional areas corresponding to four compartments: glomerular,
tubular, interstitial and vascular. Each compartment receive a score ranging from 0 to 3, where
0 corresponds to normal histology and 3 to the highest degree of global glomerulosclerosis,
tubular atrophy, interstitial fibrosis or arterial and arteriolar narrowing [224–226]. As a result,
kidneys with a Karpinski score ranging from 0 to 3 and from 4 to 6 are considered suitable
for single and dual transplant, respectively. Table 2.7 reports the Karpinski score. The study
cases faced in this thesis focus on the automatic evaluation of kidney biopsies, dealing with
one of the four pathological conditions evaluated in the Karpinski score: glomerulosclerosis.
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The evaluation of global glomerulosclerosis requires detection and classification of all
the glomeruli present in a kidney biopsy, and relies on their discrimination between sclerotic
(non-healthy) and non-sclerotic (healthy). A glomerulus is part of the nephron, the functional
renal unit involved in blood filtration; the main distinctions between sclerotic and non-
sclerotic glomeruli are the shape of the Bowman’s capsule, the different dimension and
the different texture due to blood vessels. Non-sclerotic glomeruli usually have an elliptic
shape and are characterized by the presence of the Bowman’s capsule separated from the
capillary tuft with the mesangium by the Bowman’s space. The ensemble of the nuclei of
cells (blue points), the capillaries lumen (white areas) and the mesangial matrix (regions
with similar tonality and different levels of saturation) shows a particular texture commonly
called pomegranate texture. Sclerotic glomeruli, instead, are characterized by an increase
in the extracellular matrix that obliterates the capillaries lumen and by a reduced or absent
Bowman’s space due to collagenous material. Fig. 2.33 and Fig. 2.34 report an example of
non-sclerotic and sclerotic glomerulus, respectively. The Karpinski score takes into account
the glomerulosclerosis information considering the ratio between sclerosed glomeruli and the
overall number of glomeruli; for this reason the correct glomeruli detection and classification
is crucial for the score assignment.

Fig. 2.33 Example of non-sclerotic glomerulus with the annotations of the main distinctive
characteristics.

CAD systems for chronic kidney disease The traditional evaluation of glomerulosclerosis
(and biopsies generally) is based on the visual analysis by trained pathologists of biopsy
slides using a light microscope that is usually a time-consuming, prone to error and subjective
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Fig. 2.34 Example of sclerotic glomerulus.

procedure; in particular, the glomeruli wide intensity variation and inconsistency in terms of
shape and size increase the task complexity, while the high variability between the observers
result in poor reproducibility among pathologists, which may cause an inappropriate organ
discard. Therefore, the development of new techniques able to objectively and rapidly
interpret donor kidney biopsy to support pathologist’s decision making is strongly fostered.
The increasing availability of whole-slide scanners, which facilitate the digitization of
histopathological tissue, generated a strong demand for the development of Computer-Aided
Diagnosis (CAD) systems; as for others medical imaging fields the spread of deep learning
techniques and frameworks has led to a revolution in the CAD development.

In the realm of digital pathology, several studies propose CAD systems for glomerulus
identification and classification in renal biopsies [161, 180, 181, 198, 200, 210, 227–234].

Traditional CAD systems for chronic kidney disease CAD systems based on image
processing approaches aim to extract meaningful features mainly based on shape and texture
analysis; the features are then usually used to feed machine learning techniques such as
classical Artificial Neural Networks (ANNs).

Simon et al. proposed a texture-based features set as a simple but effective automatic
method for glomeruli localisation [233]. The authors applied the algorithm on renal tissue
sections and biopsies of large histopathological WSIs. The features extracted from an
adaptation of the Local Binary Pattern (LBP) algorithm were used to train a Support Vector
Machine (SVM) model. The authors reported high precision (> 90%) and reasonable recall
(> 70%) as results.
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To perform a comprehensive detection of glomeruli in images of whole kidney sections,
Kato et al. proposed a new descriptor called Segmental HOG (Histogram of Oriented Gradi-
ents) [232]. The authors claimed the robustness of the solution and high-quality segmentation
outputs; furthermore, the authors compared Segmental HOG with Rectangular HOG showing
that the first approach reached significant improvements in detection performance.

Several authors focus on the analysis of glomeruli’s shape and colour. Kotyk et al.

proposed a novel solution to face the wide intensity variation and the inconsistency in terms of
shape and size of the glomeruli in the renal corpuscle [235]. The proposed approach, based on
Particles Analyzer technique, allowed the detection of the renal corpuscle and the following
measurement of glomerulus diameter and Bowman’s space width. The solution was tested
on rats renal corpuscle images acquired using a light microscope. The authors reported that
the proposed solution detected efficiently renal corpuscles, even with glomeruli deformation,
such as split of the Bowman space due to glomerular hypertrophy, and accurately measures
the glomerulus diameter and Bowman’s space width. Furthermore, the authors reported a
significant difference between the control and patients groups in terms of glomerulus diameter.
An analysis of the effects of significant diversity of colour and tissue shape on whole slide
images was performed by Zhao et al. [236], and focuses on two main study cases: automatic
detection of interstitial inflammation and tubular cast. The authors focused on the extraction
of Bowman’s capsule width to design an automated glomerulus extraction framework from
the micrograph of the entire renal tissue. The system was tested on non-human primates renal
tissues with Haematoxylin and Eosin (H&E) staining. Samsi et al. focused on the kidney
biopsies image analysis for quantifying tissue characteristics relevant to Lupus [237]. The
proposed approach is based on colour segmentation to identify the Bowman’s space around
the glomeruli, followed by a grouping procedure based on size, location and orientation.
The authors tested the developed algorithms on H&E stained mouse renal biopsies. Zheng
et al. proposed a framework based on convolutional neural network for nucleus-guided
feature extraction of breast histopathological images [238]. The detected nuclei were used
to train a convolutional neural network, then used as image-level features extractor. The
reported results show that the extracted features represent histopathological images and the
classification framework overcome the state-of-the-art methods.

Deep learning CAD systems for chronic kidney disease A complete different analysis
work-flow constitute the main core of deep learning CAD application on the chronic kidney
disease problem. Bukowy et al. developed a convolutional neural network to detect glomeruli
in trichrome-stained kidney sections. The procedure was tested on rat kidneys and the re-
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ported results, regarding the classification of healthy and damaged glomeruli, show average
precision and recall of 96.94% and 96.79%, respectively [239]. Ledbetter et al. proposed
a Convolutional Neural Network to predict kidney function (evaluated as the quantity of
primary filtrate that passes from the blood through the glomeruli per minute) in chronic
kidney disease patients from whole slide images of their kidney biopsies [200]. Gallego et

al. proposed a method based on the pretrained AlexNet model [103] to perform glomerulus
classification and detection in kidney tissue segments [210]. Gadermayr et al. focused
on the segmentation of the glomeruli. The authors proposed two different CNN cascades
for segmentation applications with sparse objects. They applied these approaches to the
glomerulus segmentation task and compared them with conventional fully-convolutional net-
works, coming to the conclusion that cascade networks can be a powerful tool for segmenting
renal glomeruli [229]. Temerinac-Ott et al. compared the performances between a CNN
classifier and a support-vector machines (SVM) classifier which exploits features extracted
by histogram of oriented gradients (HOG) [240] for the task of glomeruli detection in WSIs
with multiple stains, using a sliding window approach. The obtained results showed that the
CNN method outperformed the HOG and SVM classifier [228]. Kawazoe et al. faced the task
of glomeruli detection in multistained human kidney biopsy slides by using a Deep Learning
approach based on Faster R-CNN [198]. Marsh et al. developed a deep learning model
that recognizes and classifies sclerotic and non-sclerotic glomeruli in whole-slide images of
frozen donor kidney biopsies. They used a Fully Convolutional Network (FCN) followed by
a blob-detection algorithm [241], based on Laplacian-of-Gaussian, to post-process the FCN
probability maps into object detection predictions [231]. Ginley et al. proposed a CAD to
classify renal biopsies of patients with diabetic nephropathy [230], using a combination of
classical image processing and novel machine learning techniques. Hermsen et al. adopted
ensemble of five U-Nets, for the segmentation of ten tissue classes from WSIs of periodic
acid-Schiff (PAS) stained kidney transplant biopsies [242].

In Section 3.1 will be presented and discussed different deep learning pipelines for the
glomeruloscerosis evaluation. The problem has been investigated from classification, object
detection, semantic and instance segmentation point of view; furthermore a preliminary
insight about classical image processing algorithm has been conducted.

2.4.2 Radiology

Several works have been conducted in the field of radiological imaging in order to support
clinicians with diagnosis and staging of different pathologies, such as tumours. Most diffused
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areas of interest, due to the wide diffusion of tumours case, are breast, liver and kidney[243].
The high incidence of breast cancer in women requires an accurate assessment of breast
glands with imaging techniques. In this field, mammography still represents the gold standard
for screening purposes. Risky subjects, instead, undergo more invasive, but more sensitive
and specific, imaging analysis, such as MR, CT and Digital Breast Tomosynthesis (DBT).
Although over the years the detection, classification and segmentation of breast lesions have
been accomplished with traditional image processing techniques and ML algorithms for
supporting decisions, there are several works in the literature dealing with the characterisation
of breast lesions using different imaging systems and innovative DL strategies [244–246].
Regarding the classification of breast lesions from imaging acquisitions, a comparison
between a traditional approach based on the classification of hand-crafted features, and a
classification pipeline based on the classification by a CNN has been conducted by Bevilacqua
et al. [247]. In this work, several CNN architectures were used as feature extractors to
allow the classification by a subsequent classifier. In the traditional approach, instead,
morphological and textural features are usually evaluated by ANNs.

As for breast cancer, liver carcinoma shows extremely high mortality worldwide [243].
The segmentation of liver is crucial for several clinical procedures, including radiotherapy,
volume measurement and computer-assisted surgery. Among hepatic tumours, Hepatocellular
carcinoma (HCC) is the most common type of primary liver cancer in adults and is the most
common cause of death in people with cirrhosis [248]. As for breast cancer, several works
have been recently proposed introducing DL approaches for the segmentation of liver or
hepatic tumours, or staging carcinoma [249–252]. As an example, a comparison between
two approaches for staging HCCs has been conducted by Brunetti et al. [10]. In this work,
the authors compare an approach classifying hand-crafted features from segmented ROI of
HCCs with a second approach performing the staging of hepatic lesions with a CNN. In
particular, the Google Inception v3 [253] was retrained with the transfer learning approach
to perform such classification.

The study case about Autosomal Dominant Polycystic Kidney Disease faced in this thesis
will be deeply discussed in the following section.

2.4.2.1 Autosomal Dominant Polycystic Kidney Disease

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a hereditary disease charac-
terised by the onset of renal cysts that lead to a progressive increase of the Total Kidney
Volume (TKV). Specifically, ADPKD is a genetic disorder in which the renal tubules become
structurally abnormal, resulting in the development and growth of multiple cysts within the
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kidney parenchyma [254]. There are two different gene mutations involved in the disease.
The ADPKD type I, caused by the PKD1 gene mutation, involves the 85 - 90% of the cases,
usually affecting people older than 30; the mutation of the PKD2 gene, instead, leads to
ADPKD type II (affecting the 10 - 15% of the cases), and mostly regards children developing
cysts already when in the maternal uterus. The PKD1 and PKD2 mutations have the same
clinical characteristics, even though the latter one is associated with a milder clinical phe-
notype and a later onset of End-Stage Kidney Disease (ESKD). In all the cases, the size of
cysts is extremely variable, ranging from some millimetres to 4 - 5 centimetres [255].

Currently, there is not a specific cure for ADPKD and the Total Kidney Volume (TKV)
estimation over time is used to monitor the disease progression. Tolvaptan has been reported
to slow the rate of cysts enlargement and the following progressive kidney function decline
towards End-Stage Kidney Disease (ESKD) [256, 257]. Since all the actual pharmacological
treatments aim at slowing the growth of the cysts, the design of a non-invasive and accurate
assessment of the renal volume is of fundamental importance for the estimation and the
assessment of the ADPKD progression over time.

Literature reports several methods performing the TKV estimation and trying to corre-
late non-invasive evaluated metrics with body surface and area measurements [258, 259].
Traditional methodologies are based on imaging, such as Computed Tomography (CT) and
Magnetic Resonance (MR), and include stereology and manual segmentation [260, 261].
In detail, stereology is the superimposition of a square grid, with a defined cell positions
and spacing, on each slice of a volumetric acquisition (CT or MR). The area of all the cells
containing parts of the kidneys of each slice, combined with the information of the acquisi-
tion thickness, allows the computation of the final volume. Manual segmentation, instead,
requires the manual contouring of the kidney regions for each slice. Several tools supporting
this task have been developed, most including digital freehand contouring tools or interactive
segmentation systems to assist the clinicians while delineating the region of interest. The
main drawback of manual or near-manual segmentation is the subjectivity of the human
operator performing the task; in particular, the phenotype, the presence of co-morbidities and
cysts in neighbouring organs make difficult to achieve an accurate and objective assessment
of the TKV, requiring also experience and training. To overcome this limitation and to
standardise the segmentation methodology, several approaches for the semi-automatic kidney
segmentation and TKV estimation, such as the mid-slice or the ellipsoid methods, have been
investigated [262–264]. Although these methodologies are faster and more compliant than
the manual ones, these are far from being accurate enough to be used in clinical protocols
[265, 266].



2.4 Clinical Domains 68

In recent years, innovative approaches based on deep learning strategies have been
introduced for the classification and segmentation of images. In details, deep architectures,
such as deep neural networks or convolutional neural networks, allowed to perform image
classification tasks, detection of Regions Of Interest or semantic segmentation [10, 267–269],
reaching higher performance than traditional approaches [247].

Regarding the type of source images, recent studies about imaging acquisitions for
assessing kidneys growth suggested that MR should be preferred to other imaging techniques
[270]. Different research works allowed the estimation of TKV starting from CT images
thanks to the higher availability of the acquisition devices and the more accurate and reliable
measurement of TKV and cysts volume. On the other side, CT protocols for ADPKD are
always contrast-enhanced using a contrast medium harmful for the health of the patient under
examination; also, CT exposes the patients to ionising radiations. On these premises, the
automatic or semi-automatic segmentation of images from MR acquisitions for improving the
TKV estimation capabilities should be further investigated for improving the state-of-the-art
performances.

In Section 3.2 will be presented and discussed two different approaches based on deep
learning architectures for the automatic segmentation of polycystic kidneys starting from MR
acquisitions. These two approaches, based on object detection and semantic segmentation,
lead to a fully-automated pipeline for the detection and the segmentation of areas containing
kidney in MR images.

2.4.2.2 Organs Segmentation

The volume quantification of organs is of fundamental importance in the clinical field, for
diagnosing pathologies and monitoring their progression over time. Imaging techniques offer
fast and accurate methods for performing this task in a non-invasive way. In fact, starting
from volumetric imaging acquisitions, such as computed tomography or magnetic resonance,
it is possible to perform the three-dimensional segmentation of organs, thus obtaining their
volumetric information. This task, however, revealed to be time-consuming, requiring expert
medical doctors to manually label each bi-dimensional slice in the volumetric acquisition.
This procedure was also susceptible to differences inter- and intra-operator [271]. Taking into
account these premises, researchers made considerable efforts in developing semi-automatic
or automatic segmentation methods, especially for those body areas containing organs whose
morphology could physiologically vary over time, or due to pathologies, such as kidneys or
liver.
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Traditional approaches for liver and spleen segmentation. Traditional image process-
ing approaches for biomedical image segmentation involve thresholding algorithms, i.e.
methods that allow the segmentation of regions of interest using different thresholds that can
be found through several techniques, and Region Growing (RG) segmentation techniques, i.e.
methods that start building the segmentation mask from a set of initial points, called seeds,
then adding neighbouring points which are compliant to some homogeneity criteria.

In literature, there is a realm of region growing algorithms suited for the liver segmen-
tation task, including approaches for both 2D and 3D segmentation. Choosing the right
inclusion criteria for neighbouring pixels is crucial for obtaining acceptable segmentation
performances. Most of the algorithms focus on the definition of proper homogeneity criteria.
Gambino et al. presented an automatic 3D segmentation method that provides the seed’s
choice by minimizing an objective function and a homogeneity criterion based on Euclidean
distance between the texture features associated to the voxels [272]. Other authors used an
homogeneity criterion based on the difference between the already segmented area inten-
sity and the pixel gradient [273, 274] or the pixel intensity [275–277]. Other approaches
based on homogeneity criteria can be found in [278, 279]. Other authors focused on the
pre-processing phase. In the attempt to resolve the region isolation problem in region growing
algorithm, Lakshmipriya et al. employed a Non Sub-sampled Contourlet Transform (NSCT)
to enhance the liver’s edges and a bidirectional region growing algorithm [280]. Rafiei
et al. focused on the pre-processing phase by using a contrast stretch algorithm and an
atlas intensity distribution to create voxel probability maps [281]. Zhou et al. developed a
semi-automatic liver segmentation algorithm exploiting intensity separation, region growing
techniques and the morphological hole-filling operator to refine the segmentation results
[282]. Other pre-processing methods can be found in [283, 284]. Elmorsy et al. focused on
the post-processing phase, where they took advantage of an entropy filter to choose the best
structural element to use [285]. Czipczer et al. combined a region growing algorithm and the
results of a Convolutional Neural Network (CNN) model. To find the seed, they exploited
an active contour model, whereas the masks generated by the CNN are refined through the
GrowCut algorithm [286]. These two masks are then fused with a logical AND operation
to obtain the final mask [287]. Bevilacqua et al. applied a pre-preprocessing consisting of
contrast enhancement and cropping, followed by local thresholding, extraction of the largest
connected component and morphological operators, before of propagating the obtained mask
in both directions to reach all the slices [288]. Other approaches including image processing
procedures both before and after the region growing could be found in [289, 290].
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Different approaches have been tried in literature for spleen segmentation. Mihaylova et

al. used the Chan-Vese active contour model to realize an automatic segmentation algorithm.
To select the initial contour, they used template matching. After having segmented the
area in the first slice, they used this area as initial contour for the following slice [291].
Subsequently, Mihaylova et al. presented a multi-stage approach based on segmentation
methods, such as active contours without edges and K-means clustering. To define the
initial contour, they created two atlas models [292]. Behrad et al. combined the features
extracted from a neural network with those extracted from the image partitioned with a
watershed transform. This process is repeated, varying the parameters of the segmentation
algorithm, until the error between the features extracted from the two approaches is very
small [293]. Jiang et al. used the ISO algorithm to segment the spleen. This algorithm can
cause over-segmentation, so they used Principal Component Analysis algorithm to eliminate
the muscles that can cause misclassification [294]. Gauriau et al. adopted a multi-object
template deformation framework to segment liver, kidneys, spleen and gallbladder, and used
a random forest regression algorithm with shape priors to obtain confidence maps for each
organ. The shape of each organ is then included in an energy optimization technique that
also considers image-derived forces [295]. Reza Soroushmehr et al. proposed a slice-wise
segmentation algorithm based on the position of ribs and vertebrae to determine the ROI of
the spleen. After determining the area in the first slice, its centroid is used as initial spleen
location for the following slice [296].

Deep learning approaches for liver and liver vessels segmentation. Recent works in-
vestigated the use of convolutional neural networks, and deep learning strategies, in order to
design and implement automatic clinical decision support systems based on medical images.
Medical decision support systems also include the segmentation of organs from volumetric
imaging acquisitions [104, 297, 298]. For example, De Vos et al. made an effort for localiz-
ing anatomical structures in 3D medical images using CNNs, with the purpose to ease tasks
such as image analysis and segmentation [299]. Regarding the abdominal area, there is a
growing interest in CT scan analysis for diagnosis purposes and therapy planning. In fact,
the segmentation of organs is crucial for several clinical procedures, including radiotherapy,
volume measurement and computer-assisted surgery [300]. Rafiei et al. developed a 3D to
2D Fully Convolutional Network (3D-2D-FCN) to perform automatic liver segmentation for
accelerating the detection of trauma areas in emergencies [301]. Lu et al. developed and
validated an automatic approach integrating multi-dimensional features into graph cut refine-
ment for the liver segmentation task [300]. Kim et al. proposed a 3D patch-based U-Net,
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followed by a graph-cut post-processing, for the multi-organ segmentation of liver, stomach,
duodenum and right/left kidneys. The authors employed a Multi-Class Cross-Entropy loss
function with six classes. Their proposed method outperforms atlas-based approaches, whilst
shows comparable results with the inter-observer delineations of organs [302].

A further application of the segmentation task applied to liver regards the vessels identifi-
cation. According to Couinaud model [303], hepatic vessels represent the anatomic borders
of hepatic segments and, consequently, segmentectomies, based on the precise identifications
of these vascular landmarks, are crucial in the modern hepatic surgery because they avoid
unnecessary removal of healthy liver parenchyma and reduce the complications of most
extensive resections [304]. In literature, there are different approaches for liver vessels
segmentation. Oliveira et al. proposed a segmentation method exploiting a region-based
approach [305], where a gaussian mixture model was used to identify the threshold to be
selected for adequately separating parenchyma from hepatic veins. Yang et al. proposed
a semi-automatic method for vessels extraction. They used a connected-threshold region-
growing method from the ITK library [306] to initially segment the veins. To find the
threshold, they exploited the histogram of the masked liver. However, this process has to
be supervised by an expert user through a graphic interface [307]. Goceri et al. proposed a
method called Adaptive Vein Segmentation (AVS): they exploited K-means clustering for
initial mask generation; then they applied post-processing procedures for mask refinement,
followed by morphological operations to reconstruct the vessels [308]. Chi et al. used a
context-based voting algorithm to conduct a full vessels segmentation and recognition of
multiple vasculatures. Their approach considered context information of voxels related to
vessels intensity, saliency, direction, and connectivity [309]. Zeng et al. , instead, proposed a
liver-vessels segmentation and identification approach, based on the combination of oriented
flux symmetry and graph cuts [310].

In Section 3.3 will be presented and discussed two different approaches based on classic
image processing algorithms and deep learning architectures for the semi- and full-automatic
spleen, liver and liver vessel segmentation.

2.4.3 Electromyographic signals analysis

The arguments discussed in this section are more speculative and not directly aimed at
developing CAD systems; in this section will be discussed the application of autoencoders,
presented in Sections 2.2.1.2, to signal processing and in particular to surface electromyogra-
phy analysis. The obtained results are promising if compared to the ones obtainable from



2.4 Clinical Domains 72

standards approaches proposed by literature, and make this study case worth to be presented
and discussed in this thesis. A brief literature review about sEMG signals and the use of
machine learning and deep learning as processing techniques will be following reported
[114, 115], whilst the study case will be presented in Section 2.4.3.2 and Chapter 4.

In many medical fields surface electromyography (sEMG) is frequently used [311], such
as neurophysiology [312], ergonomics and occupational medicine [313], posture analysis
[314], movement and gait analysis [315], EMG-based biofeedback [316], exercise physiology
and sports [317], as well as human-machine interaction/interfaces (HMI) [318–320]. In detail,
electromyographic signals (EMG) are biomedical signals that provide representations of the
electrical potential fields produced by the membrane depolarization of the outest muscle fibers.
An EMG signal corresponds to a train of motor unit action potential (MUAPs) showing each
muscle response to neural stimulation and presents a random behavior. Shapes and firing rates
of MUAP in EMG signals revealed to be important source of information that can be used in
several applications. In particular, EMG signal detection requires the use of intramuscular or
surface electrodes positioned at a certain distance from sources, i.e., muscle fibers. Moreover,
EMG detectors, especially surface electrodes, collect signals from different motor units at
the same time thus leading to an interaction of different signals. Just before the amplification,
the amplitude range of the EMG signal is ±5 mV and is affected by several types of noise:
inherent noise in electronics equipment, ambient noise and motion artifacts due to the
movement of both electrode interfaces and cables. There are also other factors affecting the
EMG signals, besides noise [321]: a) electrode structures and placements, b) physiological,
anatomical, biochemical characteristics of muscles fibers and the amount and type of tissues
between muscle surfaces and electrodes, and c) crosstalk from nearby muscles. All such
factors strongly affect the characteristics of collected signals (e.g. signal amplitudes and
frequency contents), thus explaining the intra-subject / inter-subject variability that may be
observed when acquiring EMG signals. Clinical and human machine interaction applications
of EMG signals should clearly rely on reliability and repeatability of used techniques. The
repeatability of sEMG measurements has been tested by many researchers, and a critical issue
concerning features of single-channel sEMG signals, obtained in different tests and days,
concerns with the repeatability of electrode positions and inter-electrode distances [322–325].
It can be observed that the reproducibility of estimates of the sEMG characteristics under
isometric or dynamic conditions is generally not excellent. This observation is partially
caused by a persisting lack of standards in this field. A substantial contribution to this
issue has been received by some researchers’ effort in defining the standard procedures to
follow for acquiring EMG signals [326], starting from the use of electrodes grids and the
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automatic identification of regions of interest. Besides electrode design, many researchers
also started to investigate new signal processing techniques that could robustly decipher all
key information encoded in the EMG signals; some of these techniques are based on artificial
intelligence [327].

Researchers interested in myoelectric man-machine interfaces have long been aware
of the high potential of the AI in EMG signal (pre-)processing [328, 329] and myoelectric
prosthesis represent one of the most worthy application examples. In fact, thanks to the direct
association between the action potential produced by the motor neurons and the electrical
activity induced in the innervated muscle fibers, muscles cab be considered as biological
amplifiers of efferent nerve activity in applications of man-machine interfacing. Nowadays,
data-driven approaches, which are mainly based on machine learning techniques, represent
the most used solution for implementing the mapping between EMG signals and the device
to be driven [320, 330–332] after the model-driven approaches that use EMG signals as the
input to specific physical models of the musculotendon system [318, 333–337].

Over the past decades the weakness of the myoelectric prosthetic hands offered by
industry and the need to develop more intuitive and efficacious EMG-based human-prosthesis
interfaces, have clearly boosted the research on data-driven approaches [319]. Therefore,
several researchers started focusing on developing new machine learning-based methods for
detecting the intended hand gesture from forearm muscle activations and better controlling
prosthetic devices [338]. ML techniques have demonstrated to be valid in several others
domains where the quantitative EMG (or QEMG) plays an important role [339]. As an
example, ML approaches have been widely used to develop intelligent systems for supporting
clinicians in diagnosing and staging diseases that affects the human motor system, such as
myopathy, neuropathy, amyotrophic lateral sclerosis, Parkinson’s disease [86, 339–347].

In biomedical applications, as well as in other contexts, the increasing amount of multi-
modal physiological information, together with an increased problem complexity and all
subsequent difficulties concerning the extraction of meaningful hand-crafted and domain-
dependent features, limit the power of the traditional shallow machine learning approaches,
despite the considerable research works carried out for optimising performance of available
classifiers [82, 348–355]. Deep learning overcomes these limitations allowing an increasing
transformation of data into a more abstract representation.

Deep learning is actually a growing breakthrough technology in data analysis [10, 105,
119, 297, 356–361] and, as already stated, it is becoming as the leading ML approach
both in general image processing and computer vision domains [120, 362–369]. Moreover,
promising results emerge from deep learning networks in various medical fields, since deep
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learning can be intended as an improvement of artificial neural networks, based on more
layers that enable higher abstraction levels and better predictions from data [247, 370].

Researchers have therefore begun to investigate the ability of DL to process and de-
code sEMG data also thanks to the recent launch of several EMG recording benchmark
databases, e.g. NinaPro [371], BioPatRec [372], CapgMyo [373], UCI Database [374], CSL-
HDEMG [375], PhysioNet [376] and MASS-DB [377]. Such a growing trend in science
also includes many other physiological signals, for instance electroencephalogram (EEG),
electrocardiogram (ECG), and electrooculogram (EOG), as discussed in two recent surveys
[114, 378, 379].

2.4.3.1 From Raw EMG Signals to Deep Network Input

The use of different EMG signal acquisition setups, i.e. sparse and array electrodes, combined
with the possibility to employ several kind of deep learning techniques enables many solutions
for designing network inputs that are computed from the raw EMG signals. The first pre-
processing step commonly consists in filtering any EMG signal with a digital high-pass/
band-pass filter to remove the low-frequency artifacts, e.g. movement artifact and baseline
noise contamination [380, 381]. A valid alternative regards the application of the wavelet
transform (WT) that is used to reconstruct the original signal with signal components without
noise information [382]. The power line interference has also to be removed, and if it is
not done by the EMG amplifier a specific digital filter has to be used, such as the spectral
Hampel filter [383].

The pre-processing step is followed by a signal segmentation procedure that aims at
extracting several portions of EMG signals using a time-windows. All information encoded
within the time windows of every considered EMG signals will be then used to construct a
specific example used to train, validate or test an ad-hoc deep network. This means that the
employed network will provide as output for each time window, a vector of class probabilities
for a classification problem or a set of estimated variables in case of regression problems. The
time-window length is a crucial parameter to be subsequently set, a large window contains
more temporal information but at the same time causes a delay between the event to be
detected and the related network output. On the other hand, a small window is adequate
for real-time applications but considers a limited amount of information. The analysis of
literature shown a large variability of the window length, typical time-window length values
are 30ms, 50ms, 100ms, 150ms, 200ms and 300ms. The time-window length has a particular
relevance when the deep network is included in closed loop myoelectric controllers where
the input latency is a fundamental factor to consider. As an example, a maximum time delay
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of 300ms can be acceptable when controlling of prostheses through EMG signals [384].
Sliding time-window are usually extracted considering an overlap (also called increment)
that is defined as a percentage of window length. Another important factor that is considered
with the window length choice, is the sampling frequency of EMG signals [385]. It is also
important notice that many authors choose a time-window length value that is equal to the
value used by the authors of already published works thus allowing a robust comparison
of the model performance. In fact, the possibility of comparing results plays an important
role when working with public datasets. However, some authors decided not to consider
the windowing approach and prefer to provide EMG signals at each sampling instant as
input to the network [386]; such approach could be especially followed when dealing with
high-density EMG arrays since they can provide a lot of activation data at a single time
sample.

After all EMG signals have been segmented with overlapped time-windows, the process
to build network inputs is clearly highly dependent on the preferred deep network architecture.
Existing approaches can be mainly divided in two main groups according to the fact that the
selected architecture (or its first module in case of mixed architectures, e.g. CNN-RNN) is
either a CNN or a DNN, an AE, a DBN or a RNN. When dealing with DNNs, AEs, DBNs
and RNNs networks input have vector-like shapes. In most of the cases, such vectors are
composed of the values of hand-crafted features extracted by the window segment of each
acquired EMG signal. The revised literature considered both the time-domain features and
frequency-domain ones that are usually used in EMG processing [387].

A different approach has to be followed when a convolutional neural network is consid-
ered for EMG signal processing. CNNs that are employed for traditional image processing
usually take as input either an M×N or M×N×3 size array for gray or RGB images, respec-
tively. As a consequence, information contained within EMG signals have to be arranged in a
2D or 3D-dimensional array. More in details, the specific approach to follow depends on the
used setup that can consider the acquisition of either high-density sEMG signals [373, 375]
or sparse multi-channel sEMG ones [388]. A solution can intuitively consider to arrange
EMG signals in a sEMG-image where each electrode can be regarded as a pixel of the image.
Such solution is certainly valid when using high-density sEMG signals that are collected by
a grid of sEMG electrodes [386, 389]. Then in this case the size of the sEMG image will be
equal to the electrode array size. However, when considering sparse multi-channel sEMG
signals, the number of electrodes is limited and their placement is sparse, thus the above
presented approach cannot be directly implemented. Among all multiple solutions that have
been adopted to deal with sparse electrodes, the main two used techniques consider an N ×L
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dimension matrix where N is the number of electrodes and L is the time-window length, or a
matrix built assembling the spectrogram of each EMG signal computed on the time-window.

2.4.3.2 Muscle Synergy Extraction

In the last decade, electromyographic (EMG) signals have been widely used as human-
machine interface for advanced devices [330]. This is particularly relevant in clinical environ-
ments, where the adoption of this devices can provide new capabilities in neurorehabilitation
techniques [390–392]. In this context, myocontrol grabbed the attention of many researchers,
for its potential utility in the motion intention detection and prostheses control domains
[330, 393, 394] as well as teleoperation systems [395, 396], without invasive signal acquisi-
tions. Although many different strategies have been developed in the last decades, such as
direct control models [397], neuromusculoskeletal models [333, 334, 398–401] and multiple
linear regression models [336, 402], some obstacles still represent a gap between prototypes
and commercial devices. The lack of simultaneous control and the high computational cost of
some complex models [403] do head off a truly natural human–machine interaction. Pursuing
this purpose, bio-inspired models suggested a way to preserve a simple and intuitive interface,
as done in many other fields, through the exploitation of complex muscle activation patterns
called muscle synergies. This biological model comes from the hypothesis that the central
nervous system decodes high level user’s intent and drives, concurrently, a subset of motor
primitives instead of independently activating muscles. Although the neurological origin of
synergies has been supposed [404–406], this theory still remains unproven and many issues
are still unresolved [407].

Several works assessed how muscle synergies could be useful to detect abnormal co-
contraction patterns, e.g. due to stroke [408, 409] or spinal cord injury [410] or case history
evolution throughout limbs rehabilitation [411, 412]. Such evidence suggests that therapies
could be improved gathering information from muscle activation patterns. Moreover, the
acquisition of new motor skills leads to either the development of new activation patterns
or changes in the components of existing ones [413, 414]. From the application point of
view, by combining those patterns, it would be possible to achieve different, even complex,
motor tasks [415] also granting more robustness than other control strategies. Previous
studies showed how synergistic models are useful for achieving either multi-DoF planar
movements with the upper-limb [416] and wrist [417] or upper-limb force prediction during
isometric contractions [336]. In the current state-of-art, many algorithms have been used for
time-invariant synergies extraction [418], starting from surface EMG (sEMG) data, such as
principal component analysis, independent component analysis, linear discriminant analysis,



2.4 Clinical Domains 77

clustering (e.g. k-means) and Non-Negative Matrix Factorization (NNMF). The latter
gained particular attention because of its intrinsic capabilities of extracting non-negative
features that match the positive physical constraint of muscles activations [419]. These
results have encouraged EMG researchers to replicate synergies behavior as a bio-inspired
dimensionality reduction method [420] based normally on the NNMF algorithm [419]. The
use of synergies have been demonstrated to outperform traditional linear regression methods
[421] and may present more accurate results in scenarios where patterns, not contained in
the training set, appear during the validation phase [422, 423]. Hence, EMG-driven synergy-
based controllers are revealing a promising approach for achieving a natural interaction
between human and assistive/medical robots [335, 402, 424]. Nevertheless some of the
limitations that traditional approaches face when dealing with sEMG, such as cross-talk,
electrodes positioning, fatigue and many others, are magnified whenever synergies perform
dimensionality reduction [387, 425].

In this scenario, undercomplete autoencoders have been investigated for this thesis as a
new computationally efficient method for bio-signal processing and, consequently, synergies
extraction. Furthermore, a modified autoencoder has been designed as attempt to develop a
muscle synergy-based myo-controller that is tailored to the specific subject by simultaneously
considering the synergy extraction and the mapping between the synergy activations and the
variables used in the task space (forces or moments). The compressed input representation
and the motion intent estimation have been compared to the outcomes of the most used
algorithms described below, evaluating both the signal total variance reconstruction rate and
the prediction/classification performance; the complete study is reported in Chapter 4.

Non-Negative Matrix Factorization. Given a matrix M, the NNMF is a factorization
algorithm able to compute the two matrices W and C such that:

M ≈W ·C, (2.40)

with the property that all three matrices have no negative elements. Considering muscle
synergy extraction, M is a matrix N ×P containing the muscles activation observations
during a task, where N is the number of recorded muscles and P the number of total time
samples; W is the synergy matrix having size equal to N ×Q, where Q is the number of
extracted synergies; C is the matrix that contains the synergy activation signals and has
dimension equal to S×P. Given this nomenclature, m(t) and c(t) indicate a single column
(that corresponds to a single sample time) of M and C, respectively. Once the synergy model
has been defined, that is, the synergy matrix W has been computed, the synergy activation
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vector c(t) related to EMG signals vector m(t) non-considered for the W definition can be
computed as follows [402]:

c(t) =W+ ·m(t), (2.41)

where W+ is the pseudo-inverse matrix of W .

Joint moment estimation based on muscle synergies. A continuous EMG-based move-
ment intention detector module has to be able to take the processed EMG signals of the
involved muscles and compute an estimation of both the direction and amplitude of the
movement. Considering a robotic interface controlled with an admittance control, such
estimation has to be a force/torque vector. For example, an upper limb wearable exoskeleton
could assist the patient movement if it moves in the same direction as the direction the patient
arm is applying the force.

Under certain conditions [402], the EMG-based force/moment estimation can be based
on a linear combination of the processed EMG signals as follow:

T = H · fEMG (2.42)

where T represents the vector of the force/moment components, fEMG is the vector
of the instantaneous EMG-based features and H is the matrix relating EMG features to
force/moment estimated using multiple linear regressions of each applied force/moment
component. If the movement is constrained on a plane, T is 2×1 vector, fEMG is a M×1
vector, and H is a 2×M matrix, where M is the number of considered EMG-based features.

2.4.4 Movement Disorders

The term "movement disorders" refers to a group of nervous system (neurological) conditions
that cause abnormal increased movements, which may be voluntary or involuntary. Movement
disorders can also cause reduced or slow movements [426]. Among the several types of
movement disorders, dystonia and Parkinson’s disease are of interest for this thesis. Dystonia
is defined as the condition involving sustained involuntary muscle contractions with twisting,
repetitive movements; it may affect the entire body (generalized dystonia) or one part
of the body (focal dystonia) [426]. Parkinson’s disease, instead, is a slow progressive
neurodegenerative disorder, and causes tremor, stiffness (rigidity), slow decreased movement
(bradykinesia) or imbalance. It may also cause other non-movement symptoms [426].
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The following two sections will provide general medical information and analyse the
literature about Blepharospasm (a focal dystonia) evaluation and handwriting analysis as a
methodology for Parkinson’ disease assessment and grading.

2.4.4.1 Blepharospasm

Idiopathic blepharospasm (BSP) is an adult-onset focal dystonia characterised by bilateral,
synchronous and symmetric dystonic spasms in the Orbicularis Oculi (OO) muscle [427–
430]. Dystonic spasms can be phenomenologically heterogeneous, with either brief or
prolonged spasms and a narrowing or closure of the eyelids [431]. In addition to spasms,
patients affected by BSP might present a spectrum of additional signs/symptoms, including:
sensory symptoms in the eyes that indicate ocular diseases (e.g. dry eye syndrome) [432],
increased spontaneous blink rate [433], presence of sensory tricks to transiently improve
eyelid spasms (stretching, massaging or touching the eyebrow, the eyelid, or the forehead),
apraxia of eyelid opening [434] and dystonia in other body parts. Clinical evaluation of BSP
severity poses a number of challenges, and several drawbacks might limit the widespread use
of most of the existing severity scales. Since involuntary eye closure is the most disabling
BSP feature, it would be reasonable to assume that objective measures of eye closure might
be a good measure of BSP severity. Recently, algorithms based on the analysis of standard
video recordings have been developed and try to measure the percentage of time the patients’
eyes were closed while they were instructed to keep them open [435]. However, such
a methodology allows only to measure the total time of eye closure without identifying
the events contributing to the episodes of eye closure, that are, blinking, brief spasm with
complete eye closure, or prolonged spasms with complete eye closure. The relevance of
these phenomenological aspects in the evaluation of BSP severity is supported by recent
evidence indicating that the type of spasm might identify BSP subtypes that are characterised
by varying severity and the tendency of dystonia to spread to adjacent anatomic regions
[427].

Peterson et al. [435] utilised the Computer Expression Recognition Toolbox (CERT)
to compare clinical rating scales of blepharospasm severity with involuntary eye closures.
The software performs a frame-by-frame video analysis to evaluate the eye closure time
and compares the results obtained implementing three commonly used clinical rating scales:
the Burke-Fahn-Marsden Dystonia Rating Scale [436], the Global Dystonia Rating Scale
[437] and the Jankovic Rating Scale (JRS) [438]. The results demonstrated that CERT has
convergent validity with conventional clinical rating scales and, hence, it can be used with
video recordings to measure blepharospasm symptom severity automatically and objectively.
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However, the previous severity scales are limited by a number of potential drawbacks. In
particular, they comprehensively measure dystonia severity in all body parts, and severity
grading is based on the intensity of dystonic contractions merged with [436] or weighted
[437] by duration and daily frequency of the spasms. In other words, the main problem
with these scales is that they adopt the same grading modality for dystonia at different body
sites, each of which ideally requires a specific severity assessment system. To date, the only
severity scale specifically developed to assess BSP severity is the Jankovic Rating Scale
[438]. In fact, this scale includes two subscales that measure the intensity and frequency of
eyelid spasms, both based on a 5-point grading system. However, this severity scale has not
yet been validated in terms of reproducibility.

Recently, Defazio et al. presented a novel scale, called Blepharospasm Severity Rating
Scale (BSRS), for rating BSP severity; the scale allows all the above-mentioned limitations
to be overcome [431].

The visual recognition of facial movements and expressions in patients with blepharospasm
is subtle and hardly perceptible, making the objectification of blepharospasm severity a diffi-
cult task and even expert neurologists can differently rate its severity in the same patients.
To address these issues, software tools have been recently developed [435]. However, in
order to properly characterise BSP severity, facial recognition systems must be utilised and
they have to be designed not only to measure the eye closure time, but also to recognise
facial expressions and movements typically related to events contributing to the eye closure
episodes.

In a preliminary study conducted before this thesis research, a frame-by-frame video
analysis was performed to measure the geometry of specific facial features [439]. The
distances between particular reference points were measured, and investigations on how these
distances changes in BSP-related facial expressions were carried out. Threshold values were
then fixed for these distances to distinguish between pathological and non-pathological facial
movements. However, the adopted approach showed important generalisation limitations:
(i) the strategy for fixing the threshold values for the distance of facial landmarks cannot be
generalised to all the patients, requiring the determination of specific threshold values for
the distinction of pathological from non-pathologic conditions; (ii) the acquisition protocol
was not standardised due to the difficulties to set proper environmental conditions that, in
the clinical context, might change over time and from place to place. The last reason did not
allow the standardisation of the acquisition system (e.g. the CCD camera with which patients
are video-recorded), which is a requirement of crucial importance for adopting the strategy
based on threshold values.
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In Section 5.1 will be presented a CAD tool capable of overcoming the main limitations
of the previous approach implementing a deep neural model with a topology optimised
via genetic algorithms. The software, based on standard video-recordings from commonly
available video cameras, is capable not only to measure the percentage time of eye closure,
but also to recognise blinking, brief and prolonged spasms, which are the typical facial
movements that take place in patients with blepharospasm. The proposed solution is a
practical system very suited to the clinical context where the environmental conditions cannot
be easily standardised; it is a promising tool for supporting and assisting physicians to rate
blepharospasm severity according to the BSRS scale.

Blepharospasm Severity Rating Scale (BSRS). The blepharospasm severity rating scale
includes six items, for each of which a score S must be assigned [427]. In detail:

Item A1 concerns the type of eyelid spasm occurring in the patient.

• If a brief spasm (duration < 3 s) with complete rim closure take place → score
S(A1) = 1;

• if a prolonged spasm (duration ≥ s) with partial rim closure take place → score
S(A1) = 2;

• if a prolonged spasm (duration ≥ 3 s) with complete rim closure take place → score
S(A1) = 3.

Item A2 concerns the apraxia of eyelid opening.

• If apraxia is present → score S(A2) = 2;

• if apraxia is absent → score (A2) = 0.

Item A3 concerns the spasms occurring during the writing of a stereotyped sentence.

• If spasms of the orbicularis oculi occur → score S(A3) = 1;

• if spasms of the orbicularis oculi do not occur → score S(A3) = 0.

Item A4 concerns the average duration of the prolonged spasms.

• If the average duration is 3−4 s → score S(A4) = 1;

• if the average duration is 4.1−5 s → score S(A4) = 2;

• if the average duration is more than 5 s → score S(A4) = 3.

Item B1 regards the frequency of blinks and brief spasms.
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• If 1 to 18 blinks and brief spasms take place per minute → score S(B1) = 1;

• if 19 to 32 blinks and brief spasms take place per minute → score S(B1) = 2;

• if more than 32 blinks and brief spasms take place per minute → score S(B1) = 3.

Item B2 regards the frequency of prolonged spasms.

• If 1 to 3 prolonged spasms take place per minute → score S(B2) = 1;

• if 3.1 to 7 prolonged spasms take place per minute → score S(B2) = 2;

• if more than 7 prolonged spasms take place per minute → score S(B2) = 3.

The total score is given by the sum:

SIn = S(A1)+S(A2)+S(A3)+S(A4)+S(B1)+S(B2). (2.43)

2.4.4.2 Handwriting Analysis in Parkinson’ Disease

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder after
Alzheimer’s disease, that leads to several neuro-motor deficits. It is well known that PD
patients exhibit problems when they perform movements that are executed sequentially due
to the loss of coordination among the motor sequence components. As a result, sequential
movements are more segmented and characterized by pauses between sub-movements [440].

The motor coordination difficulty reflects also on handwriting which is a highly over-
learned fine and complex manual skill, as well as one of the most common activities per-
formed by people of all ages and in a variety of leisure and professional settings; handwriting
involves an intricate blend of cognitive, sensory and perceptual-motor components [441].
Therefore, it is not surprising that abnormal handwriting is a well recognized manifestation
of a neurodegenerative disease. The difficulties in the handwriting process affecting PD
patients are mainly two:

• difficulties related to the control of the movement amplitude, e.g., decreasing the size of
the characters (micrographia) and failing in keeping the stroke width of the characters
constant as the writing progresses [442–449];

• not regular and bradykinetic movements that lead to an increased movement duration,
decreased speed and accelerations, and unstable velocity and acceleration [450–455].

It follows that, if patients with PD are less able to increase speed during handwriting,
movement amplitude should have a linear relationship to movement duration. Thus, in
contrast to the peak acceleration in handwriting of age matched controls, which is governed
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by the isochrony principle, peak acceleration in parkinsonian handwriting could be unrelated
to writing size [456]. In fact, according to the isochrony principle, a strong tendency exists
to keep the execution time of these complex trajectories, independent of the movement size
[457].

Several research groups have investigated the use of computer-aided handwriting analysis
tools, based on handwriting’s features, to differentiate PD patients from healthy subjects.
Helsper et al. published a study that investigated the handwriting differences between
preclinical PD patients and healthy controls [458]. The authors analysed two lines of
the handwritten text (sampled from a longer written text) and proposed an approach that
considers (1) the extraction of 10 features from text segments written by test subjects as a
first step, and then (2) the computation of a single resulting feature set based on the mean,
the standard deviation and the frequency of the occurrences. The authors statistically proved
the validity of their approach confirming that preclinical PD handwriting may demonstrate
unique features many years before their diagnosis. Longstaff et al. studied the relation
between the inclination of PD patients to scale the character size and reduce the speed of
drawing movements and the movement variability [459]. The experiment is based on the
analysis of several geometrical writing patterns with different shape and size drawn with a
pen on a graphics tablet. By analysing the extracted features the authors stated that there is a
substantial divergence in the quality of movements between PD patients and healthy people
A different recording set-up has been used by Ünlü et al. [460] that recorded the pressure
and the inclination of an electronic pen during writing tasks. Their proposed approach
considered the extraction of 8 different features and the use ROC curves to analyse the
diagnostic possibilities both in term of sensitivity and specificity. Their results showed that
the most representative feature is based on the difference between the writing pressure and
the tremor of the pen tilt angle; it seemed that for medicated patients, the tremor control
was better achieved for movements (handwriting) than for constant pressure (pen tilt). The
obtained area under the curve in the best case resulted to be equal to 0.963. Electronic pen
and tablet have been also used by Rosenblum et al. to collect the position, the pressure and
the angle of the pen tip during the writing of two main patterns (i.e., name and fixed address)
[461]. The average values of the pressure and velocity acquired during the entire task and
other spatial and temporal characteristics of each stroke, allowed them to differentiate PD
patients from control subjects with a sensitivity of 95.0%. Finally, Drotar et al. proposed a
methodology based on 11 features, extracted from kinematic handwriting analysis of different
tasks, to build a predictive model of PD reaching an accuracy of 79.4%, and similar values
of specificity and sensitivity [450].
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Model-free handwriting analysis. The computer-aided model-free handwriting analysis
is based on the extraction and classification of particular features starting from the assumption
that the characteristics (or features) of one or more particular biometric signals/parameters
can synthesize and represent a particular aspect of the user’s handwriting. The analysis
can be done both during the execution of the task (online) and after it is executed (offline),
and usually requires the application of processing algorithms on signals and/or images that,
starting from the pattern created, can succeed to extract features of interest. Then, these are
usually used to train classifiers able to provide a separation between different subjects based
on their clinical status.

The model-free techniques that will be discussed in Section 5.2 are based on both online
and offline extraction of features, respectively during and after the handwriting task, as well
as on feature reduction and classification algorithms. Furthermore, the analysis of literature
suggested that an important aspect regarding the handwriting task is the type of the surface
on which the person is writing on, since it can deeply affect the task itself. On smooth and
slippery surfaces, such as that of a tablet or of the back of a credit card, people can have
difficulty in writing and/or signing [462]. The sensation of sliding over a slippery surface
suggests that the fine motor control required for adjusting pen movements can be disturbed
[463].

To not introduce further variables in the proposed technique, the use of devices that could
influence writing tasks, such as tablets, was avoided in a first study, and the handwritten
text/drawing from normal paper sheets were scanned and analysed by exploiting vision-
based features. A second study, instead, investigated advantages and drawbacks of features
generable by using tablets as input device for Parkinson’ disease assessment and grading.
Both the researches make also use of dynamic features extracted from sEMG signals acquired
at the arm level.



Chapter 3

Deep Learning for Medical Imaging

This chapter will focus on the application of deep learning techniques for the development of
CAD system pipelines for medical imaging processing. Three study cases will be presented
and where possible a traditional image processing pipeline has been proposed for comparison.
Each case results have been compared with the literature.

Part of this chapter has been published in international conferences and journals [161, 175,
181, 227, 297, 298, 364, 464, 465], and the complete study case described in Section 3.1.2 is
currently under review for journal publication [466].

3.1 Deep Learning in Pathology: Chronic Kidney Disease
Study Cases

The first study case is the evaluation of the global glomerulosclerosis for the Chronic Kidney
Disease presented in Section 2.4.1.2. The glomeruli evaluation has been conducted pursuing
the four main machine learning goals described in Chapter 2: classification, object detection,
semantic and instance segmentation. Furthermore, a classification pipeline based on classical
image processing algorithms has been first and foremost investigated to have a preliminary
insight of the problem.

3.1.1 Materials

All the glomeruli evaluation applications are based on the same dataset described below.

Data Description Whole Slide Images used in the following sections were collected be-
tween 07/2011 and 02/2015 by physicians from the Department of Emergency and Organ
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Transplantations (DETO) of the Bari University Hospital (Italy). All the provided biopsies
were PAS stained sections from formalin fixed paraffin embedded tissue. Slides were follow-
ing digitized using the Aperio ScanScope CS high-resolution whole-slide scanner, a scanning
objective with a 20× magnification and a corresponding resolution of 0.50µm/pixel.

The WSIs were collected from a total of 26 kidney digital biopsies coming from 19
donors and stored at full resolution in SVS file format (an Aperio file format consisting of
pyramidal tiled TIFF with non-standard metadata and compression). Each WSI contains
several biopsy sections, ranging from one to seven section per WSI. The whole dataset counts
an average value of four biopsy section per WSI and a total amount of 105 sections. The
collected images present wide differences in colour and saturation, even if all treated with
PAS staining. Examples of saturation differences are reported in Fig. 3.1.

Fig. 3.1 Example of the variability introduced by saturation differences on PAS stained
kidney biopsies.

Dataset Creation The techniques studied and reported in the following sections are all
based on supervised learning, and require an annotated ground truth. Since in common
practice, physicians use the aforementioned Aperio ImageScope software to visualize the
WSIs, the annotation capability of the same has been used. The software allow to export image
annotations through the XML file format, that is easy readable and parsable; furthermore,
a compatible XML file can be generated by the proposed workflows, easily integrated
in Aperio and used by clinician for outcome visualisation and analysis. This allows to
complete a full CAD system with seamless integration with a user-friendly software for



3.1 Deep Learning in Pathology: Chronic Kidney Disease Study Cases 87

clinicians. For the annotation, two medical graduands manually identified and labelled the
glomeruli independently; subsequently, a renal pathologist validated the final annotations.
The procedure was performed in the Aperio ImageScope tool, by outlining the real glomeruli
region and labelling the glomerulus as sclerotic and non-sclerotic. All the annotated and
labelled regions were extracted and used for the dataset creation; The obtained initial dataset
was composed of 428 sclerotic glomeruli and 2344 non-sclerotic glomeruli, with a ratio
between the two classes of 1/5.48. Specifically, a total of 2772 glomeruli were labelled, and
an average value of 26 glomeruli per section and 106 glomeruli per biopsy were collected.

The dataset was subsequently divided into two subsets for train-validation (trainval) and
a test phase. In particular, the trainval subset has been further split into train and validation
subset and the last one is used for hyperparameters tuning; 20% of the original dataset,
instead, has been used as test subset, and the information of the test targets has been used to
assess final performances only. The selection has been achieved randomly with the constraint
that if a glomerulus appears in the test subset, all the other glomeruli belonging to the same
biopsy must appear in the test subset only. This is equivalent to state that the trainval/test
division has been performed at biopsy level. The constrained division avoids that particular
context information could be present in both the datasets leading to an unfair dataset split.

A detailed overview of the dataset is reported in Table 3.1.

Table 3.1 Dataset overview.

Dataset WSIs Non-sclerotic Sclerotic Ratio

Trainval subset 19 1852 341 5.43 : 1

Test subset 7 492 87 5.66 : 1

Total 26 2344 428 5.48 : 1

3.1.2 A Classic Approach for Glomeruli Classification

One of the main task required by the Karpinski score evaluation is the classification of
the glomeruli between two main conditions: sclerotic and non-sclerotic glomerulus. As
stated in the previous sections, literature accounts several independent applications of feature
extraction algorithms to achieve this purpose; in particular, the authors make use of specific
and unique image processing algorithms applied on different types of staining and non-human
WSIs.
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In the following sections, a combination of different feature extraction algorithms has
been designed and evaluated. The proposed set of features, come from a collection of
two wide-used, well-known and general-purpose features extractor algorithms families; in
particular, morphological and texture features have been computed. These feature families
include some of the algorithms proposed in literature and they were extracted from human
WSIs with Periodic acid–Schiff (PAS) staining. The set of features was then reduced by
means of feature reduction algorithms and then used as input to a shallow Artificial Neural
Network. Starting from the dataset presented in the previous Materials section, to reduce
the variability introduced with the manual annotation, each labelled region was surrounded
by a rectangular bounding box with a 1.1 overestimation factor for each dimension. The
high number of parameters needed to tune the used image processing algorithms require a
subsequent dataset division; then, the trainval subset has been further split into a train set and
a validation set. The last one is used for tuning hyperparameters and for assessing the trend
of the loss function and of the accuracy during the training process.

As depicted in Fig. 3.2, the discrimination process could be divided in three main steps.
The first two allow the extraction of several features and the reduction of their space by
means of feature reduction algorithm; the last one leads to the assignment of the label. The
details of the full workflow are subsequently described.

Fig. 3.2 Full features extraction and classification workflow.

3.1.2.1 Features Extraction

The features extraction is the first step of the work-flow allowing the definition of a set of
characteristics able to define and discriminate between the two different types of glomeruli.
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Based on the human reasoning used by the physicians able to address the problem, the best
features to face the problem are those related to two main image processing techniques:
morphological and texture-based features.

As stated in Section 2.4.1.2, the main distinctions between sclerotic and non-sclerotic
glomeruli are the shape of the Bowman’s capsule, the different dimension and the different
texture due to blood vessels (Fig. 2.33 and Fig. 2.34). The evaluation of the output of image
processing algorithms, the threshold values and the decision regarding the best algorithms
configuration have been done on train set only.

Morphological Features Regarding the morphological characteristics, two features related
to the Bowman’s capsule and the Bowman’s space were selected.

The first feature is computed as the sum of the areas related to the Bowman’s capsule, the
blood vessels areas and the inter-capillary spaces. Due to the PAS staining, these structures
are characterized by a whiteness colouration and the detection of the mask describing the
region is based on three parallel image processing procedures. Each process took into account
the channels of three different colour space: RGB, CMYK and Lab. In detail:

• green channel of RGB colour space, as it is the most representative of the glomerulus
structure [235];

• complementary of Magenta from the CMYK colour model has been chosen due to
the detectable empirical significance of this colour component (Fig. 3.1, Fig. 2.33 and
Fig. 2.34);

• a and b components of Lab colour space due to the link with the human colour vision.

An example of the application of the processes on non-sclerotic and sclerotic glomeruli
is reported in Fig. 3.3 and Fig. 3.4, respectively.

The extraction of the masks from green and magenta channels follows the same following
steps:

1. binarisation: to keep the pixels related to white regions, a threshold value has been
empirically set to 190 [236];

2. morphological operators: to clean the image obtained from the previous step, erosion,
dilation and median filtering have been used with a disk of radius ranging from 1 to 3
as structuring element.
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Fig. 3.3 Example of application of morphological features work-flow on non-sclerotic
glomerulus. Each row depicts the results of applying the image processing steps on the
different colour spaces.

3. active contour: to clean the shape of the obtained mask, active contour algorithm [467]
has been used with 200 iterations (the chosen number of iterations avoid an extreme
smoothing of the glomerulus shape).

The three previous steps led to the computation of two masks, one for the green and
one for the magenta channel; the last mask was computed from a and b components of Lab
colour space. The ab matrix has been used as input to k-means clustering algorithm [468];
the number of clusters was set to 5, and the number of repetitions of the clustering process
using new initial cluster centroid positions to avoid local minima was set to 3. The mask
was computed subsequently by retaining just the pixels belonging to the cluster with the
greatest mean grey-scale intensity value. Then the steps two and three of the Green-Magenta
segmentation process were applied. The number of clusters has been empirically chosen as
suggested by the visual observation of the input images. The number of iteration, instead,
has been chosen as a trade-off between speed and results; the criterion for the final mask
computation and the right choice of the clusters number (5) brought to results stability despite
parameter changes.

The final mask was the composition of the resulting three masks computed with a majority
criterion: only the pixels belonging to at least two masks were considered. The obtained
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Fig. 3.4 Example of application of morphological features work-flow on sclerotic glomerulus.
Each row depicts the results of applying the image processing steps on the different colour
spaces.

mask was processed to remove artefact and not interesting regions; in detail, too small regions
(lesser than 1000 pixels) were removed, and a logical AND with a circle of radius equal to
the smaller dimension of the image subtracted by 1/8 of its value was performed. Fig. 3.5
shows the overview of the Bowman’s space segmentation workflow.

Starting from the final mask (Fig. 3.3 and Fig. 3.4), the feature of interest was the sum of
Bowman’s space, blood vessels and the inter-capillary region of the glomerulus, that is, in the
presented work-flow, the sum of white region. This value was finally normalised considering
the image area. A results comparison of the application of the work-flow mentioned above
both on sclerotic and non-sclerotic glomeruli is reported in Fig. 3.6.

The second morphological feature was related to the diameter of the glomerulus. Assum-
ing that the white region inside the mask computed for the last feature was related to the
shape of the glomerulus, the convex hull containing all these regions was computed. Then,
considering the convex hull ROI as a circle, the diameter of a circle with the equivalent area
were computed.

As a result of the morphological work-flow, a total of two features were computed: the
area and the radius.
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Fig. 3.5 Example result of the segmentation of Bowman’s space.

Texture Features Due to the particularity of the glomerulus texture and the differences in
blood vessels and inter-capillary space between sclerotic and non-sclerotic, two well-known
texture analysis algorithms were used: Local Binary Pattern (LBP) and Haralick features.

Wan et al. analysed different types of texture features, founding LBP features as rep-
resentative in classifying human breast tissue images, without tissue staining, by optical
coherence microscopy [469]. Authors proposed two LBP variants: average LBP and block
based LBP, that provided an enhanced encoding of the texture structures if compared with
the classic LBP feature. The authors tested the proposed algorithms on human breast tissue
samples, with and without breast carcinoma, and the corresponding H&E histologies were
used as ground truth for comparison. The authors reported that the classification reached up
to 93.8% of accuracy with a combination of the aforementioned features. Simon et al. [233],
instead, proposed a multi-radial colour LBP (mrcLBP) as a suitable variation of classical
LBP to face the glomerulus identification problem. In detail, it is the application of the LBP
algorithm to the three RGB colour channel with different radius values (1, 3, 9 and 27) and
with invariance to rotation. The same configuration was chosen for this application and
applied to the raw RGB glomerulus images. The obtained features were ten for each radius,
thus leading to a total number of 120 (10 features per radius, 4 radius, three channels).

The second set of texture-based features was obtained from the extraction of Haralick
features. The four Grey-Level Co-occurrence Matrix (GLCM), one for each direction, has
been computed; then, the 14 Haralick indexes were computed, leading to 56 features. To
reduce this number, the mean and the range (difference between the maximum and the
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Fig. 3.6 Results comparison between the application of Bowman,s space segmentation on
non-sclerotic (left) and sclerotic (right) glomeruli.

minimum values) among the four directions was calculated. The final features were 28 (14
mean and 14 range, one for each Haralick feature).

As a result of the texture features extraction, a total of 148 features were computed.

3.1.2.2 Features Preprocessing

The created set of features is the union of both morphologic and texture-based features. An
overall number of 150 features was achieved. Due to the possibility of correlation among the
different subsets of features, and to reduce the total number of inputs to the classification
step, Principal Component Analysis (PCA) was applied as feature reduction algorithm. Prior
to PCA, each feature was z-score normalized.

As stated in the Materials section, the dataset was previously split into train and test
set with the aim to fairly take all the image pre-processing and classification decisions on
the train set only. The feature reduction algorithm, instead, does not need or use the label
information; for this reason, the application of PCA could be done on the whole dataset or
on the training dataset only. Both methods present advantages and drawbacks. Applying the
PCA on the whole dataset has the vantage to take into account all the information inside the
dataset, but at the same time it requires the reapplication of the feature reduction process on
new data. Assuming that the statistic of the dataset is the same and equal for each subset (this
is likely true since the train and the test set were randomly created), the PCA can be applied
on the train set only, with the drawback that it is necessary to preserve the transformation
matrix to manipulate the test set before the testing phase. As an example, both the solution
were applied on the dataset, and due to the complexity of the classification problem, 99.9%
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of variance has been chosen as the threshold value. The application of PCA to reduce the
input space led to 95 and 93 features for the whole dataset and the training subset only,
respectively. Due to the small differences between the number of the two reduced dataset, to
take into account all the information inside the dataset, and to avoid the necessity to preserve
the transformation matrix for the test phase, the first approach has been chosen.

As a result of the PCA as feature reduction algorithm, a total number of 95 features were
computed and will be used for the classification phase.

3.1.2.3 Glomeruli Classification

The glomeruli classification steps are based on ANN and specifically on a shallow ANN
architecture.

The design of the ANN architecture and the tuning of its parameters were taken consider-
ing the trainval set only, whereas all the reported results and performance discussions refer to
the test set. To generalise, to avoid overfitting and to obtain a classifier independent from the
input dataset, k-fold was used as cross-validation technique. Several network initialisation
inside each fold and hard voting among the folds was used both to obtain independency from
a particular network initialisation and to compute the overall fold class label.

The input of the classifier was the features set obtained from the image processing
algorithm and the subsequent PCA feature reduction; the number of input features was 95,
and 10-fold cross validation was used. The fixed training parameters were the following:
one hidden layer, tansig and softmax as activation functions for the hidden and output layer,
respectively, crossentropy as loss function and scaled conjugate gradient as backpropagation
algorithm. A training early stop criterion, based on the validation set, was implemented to
promote generalisation and to avoid overfitting; the stop criterion occurs if performance on
validation set did not decrease inside a sliding window of 6 epochs. The other available
stop criteria (i.e., max number of epochs, time, etc.) have been set to not interfere. The last
relevant parameter is the number of neurons for the hidden layer, and the choice of the right
value is afterwards reported.

In the following paragraphs the different assumption and decision related to the network
configuration and tuning are described.

Unbalanced Dataset Problem. As reported in the Materials section, the training set was
affected by a heavy unbalanced distribution between sclerotic and non-sclerotic glomeruli
(with a proportion of 5.5 non-sclerotic over one sclerotic glomerulus). Data augmentation as
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balancing technique was not suitable in this case since the particular set of features taken
into account presents invariance to the main image transformations.

The first solution used to address the problem was the use of the Matthews Correlation
Coefficient (MCC) [182] as a general performance comparison among the folds. As described
in Section 2.3.1, MCC (Eq. 2.20) takes into account the ratio of the confusion matrix sizes
suiting better than accuracy (Eq. 2.13) or F-measure (Eq. 2.19) on unbalanced datasets.

The second solution make use of the ROC curve to choose the correct classification
threshold value. Two approaches were analysed. The first one (Approach A) assumes the
optimal value as the first intersection point between the ROC curve and a line with slope
equal to the ratio between the total number of negative and positive samples and sliding
from the upper left corner of the ROC plot ( (FPR,T PR) = (0,1) ). The second approach
(Approach B), proposed by Songet et al. [470], evaluates the point of minimum distance
from the point (0, 1) of the ROC plot. The equation is reported in Eq. 3.1.

min
i
(
√︂

(1− sensitivity(i))2 +(1− speci f icity(i))2) (3.1)

The comparison of the two methods in terms of different performance indexes (Eq. 2.13,
2.14, 2.15 and 2.20) is reported in Table 3.2. Due to the medical domain of the work, a higher
recall is preferred, thus the second method was chosen (i.e., in the medical domain, a correct
prediction of positives to a disease factor is more important than the prediction of negatives).

Table 3.2 Comparison between the two ROC thresholding approaches. The reported values
are the mean among the 10-fold.

Performance Index Approach A Approach B

Accuracy 0.9898 0.9865

Precision 0.9775 0.9332

Recall 0.9575 0.9880

MCC 0.9612 0.9520

Network Tuning The architecture of the shallow ANN chosen for glomeruli classifica-
tion was fixed to one hidden layer. To choose the right number of neurons per layer, the
performance of 95 networks were compared. In detail, several networks with the number of
neurons for the hidden layer ranging from 1 to 95 were trained (95 is the constant number of
input features). Based on the best MCC value computed as the mean MCC of the folds, the
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Fig. 3.7 MCC and accuracy trend based on number of neurons.

final number of neurons for the hidden layer was set to 27. A graphical representation of the
trend of MCC and accuracy indexes is shown in Fig. 3.7; the final artificial neural network
configuration is summarised in Table 3.3.

Table 3.3 Artificial neural network configuration for glomeruli classification. *An in-depth
explanation about the neurons number choice is reported in Network Tuning paragraph.
**See Section Glomeruli Classification for further details.

Parameter Name Value

# input 95

Topology [27*, 1]

Activation functions [tansig, softmax]

Loss function Cross-entropy

Backpropagation algorithm Scaled conjugate gradient

Early stop criterion Validation fail**

Cross validation method k-fold (k = 10)
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3.1.2.4 Results

Several metrics were considered for the evaluation. In particular, Accuracy (Eq. 2.13) and
Matthews Correlation Coefficient (MCC) (Eq. 2.20) were evaluated on the independent test
set, according to the confusion matrix reported in Table 2.5.

Table 3.4 Metrics comparison of 10 network initialization.

Performance Indexes
(mean ± standard deviation)

Accuracy 0.9874 ± 0.0018

Precision 0.9844 ± 0.0111

Recall 0.9310 ± 0.0153

MCC 0.9501 ± 0.0074

Table 3.5 Metrics comparison of the best network.

Performance Indexes

Accuracy 0.9914

Precision 1.0000

Recall 0.9425

MCC 0.9659

To evaluate the workflow stability, 10 runs of the whole process were performed, and
the corresponding results are summarized in Table 3.4; the results are reported in terms
of mean and standard deviation. The best result, instead, is reported in Table 3.5 and the
corresponding confusion matrix is reported in Table 3.6. Examples of misclassified glomeruli
are reported in Fig. 3.8.

As reported in Table 3.4, the classification workflow achieved a mean MCC and Accu-
racy of 0.95 and 0.99, respectively, and low variability over the 10 independent iterations
(MCC std = 0.01 and Accuracy std < 0.00). Good precision and recall were obtained too
(precision: 0.98± 0.01, recall: 0.93± 0.02), showing a better performance in the non-
sclerotic evaluation (all the non-sclerotic glomeruli were detected in the best case).

The misclassified glomeruli are usually affected by staining artefacts or present partial
sections due to slice preparation and staining (mainly the ones positioned on the edges);
common examples are reported in Fig. 3.8. These images were submitted to domain experts
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Fig. 3.8 Examples of false negative misclassified by the best model. Some of the misclassified
samples present staining artefacts of are partially complete due to slice preparation; the
domain experts stated that glomeruli affected by these kind of artefacts are usually discarded.

Table 3.6 Confusion Matrix of the best network.

True Condition

Positive (sclerotic) Negative (non-sclerotic)

Predicted
Condition

Positive
(sclerotic) 82 0

Negative
(non-sclerotic) 5 492

that assessed the goodness of the classification results; in particular, the staining artefacts
and the partial glomeruli makes difficult their classification and they are usually discarded by
pathologists even in the clinical practice.

Compared to the literature, the proposed workflow make use of a combination of several
image features coming from the morphological and texture feature families; furthermore, the
application of the PCA as features reduction algorithm and the optimal tuning of the artificial
neural network by means of data cross-validation, led to an improvements of the results if
compared to the reported literature [233, 239]. The work-flow overcome the common data
unbalancing problem by using MCC as performance comparison coefficient and ROC curve.
Finally, the reported results suggest that the proposed workflow set-up is a valid and reliable
solution for the investigated domain, supporting the clinical practice of discriminating the
two classes of glomeruli. However, there are still common glomeruli misclassification in
images affected by artefacts, which are usually discarded by pathologists even in the clinical
practice. Furthermore, the integration of the proposed CAD pipeline with the CAD system
designed and tested by Bevilacqua et al. [201] for the segmentation and discrimination of
blood vessels versus tubules from biopsies in kidney tissues, will allow to build-up a complete
CAD system, based on image processing, for the analysis of histopathological WSIs.
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3.1.3 A Deep Learning Approach for Glomeruli Classification

The first application of deep learning techniques on the glomerulosclerosis problem regard the
classification between sclerotic and non-sclerotic glomeruli. Since this was the first insight
about deep learning architectures, it was compared with an online service: IBM Watson
Visual Recognition [471]. The service allows the use of pre-trained networks to accomplish
common and very specific tasks, such as generic image classification, face and age detection;
the system offers the possibility to create and train a custom classifier to suit specific business
needs and extend the classification capabilities to images not available in the pre-trained
models. The Watson Visual Recognition service requires to upload images to learn and create
a new classifier. Each example file is trained against the others, and positive examples are
stored as classes. These classes are grouped to define a single classifier but return their own
scores. The steps to create a new classifier are shown in Fig. 3.9. The advantages of the
Watson service is the simplicity of use; the training of a new classifier requires to provide a
compressed file with the two classes with at least ten samples. Furthermore the tool gives
some suggestions to improve the results:

• provide images with a resolution of at least 224×224pixels. Since the whole pipeline
is a black box for the user, this size limitation leads to guess that classic topology, such
as AlexNet, constitute the backbone of the classifier;

• include a negative class. When there is more than one class, the negative class contains
all the elements that don’t belong to none of the other classes;

• include approximately the same number of negative images as positive ones. An
unequal number of images might reduce the quality of the trained classifier;

• if different models are created, to choose the best one, the creation of a validation set
is necessary. On this dataset all the model are evaluated to find the best one that will
be the final model to be used for the test.

Several models were trained using the available configuration and by using the two class
(multi class model) and the positive class only where the negative class is deduced by the
modes as "non-positive" (binary class model); furthermore, the dataset positive class was
augmented with 90◦, 180◦, 270◦ rotations and a random distortion, and all the classes were
converted to grayscale. The resulting combination are:

• augmentation only;

• augmentation and resizing;
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Fig. 3.9 Visual Recognition process with custom classifier. Image from Elhassouny et al.
[471].

• augmentation and grayscale conversion;

• augmentation, gray scale conversion and resizing.

The best model on validation set was chose and used for final results. A cross validation
could not be used because all the model training were deterministic resulting in the same
final performance (with a given input training set and model).

3.1.3.1 Custom Model

A custom and local model was created to be compared with the Watson online service. The
model is based on Inception V3 [253] and the same input resolution was used to provide the
most similar input to the Watson model. Furthermore, to reduce the computational cost and
speed up the training the images were converted to gray scale. To resolve the unbalanced data
problem the same operations were performed on the positive class: 90◦, 180◦, 270◦ rotations
and random distortion. All the images were finally normalised to zero mean and unit standard
deviation. The training phase was configured with batch size equal to 32 and Adam optimiser
with learning rate set to 10−6; to help the back-propagation steps, the under-represented,
and more important for clinician, positive class received a greater weight. The model was
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Table 3.7 Results comparison.

Model Accuracy Precision Specificity Recall F-measure MCC

Proposed 0.98 0.95 0.99 0.91 0.93 0.92

Watson 0.99 0.97 0.99 0.97 0.97 0.97

Table 3.8 Custom model results over the folds.

Fold Accuracy
(mean ± std)

Precision
(mean ± std)

Specificity
(mean ± std)

Recall
(mean ± std)

F-measure
(mean ± std)

MCC
(mean ± std)

1 0.97 ± 0.00 0.90 ± 0.02 0.98 ± 0.00 0.92 ± 0.02 0.92 ± 0.02 0.90 ± 0.01

2 0.97 ± 0.00 0.89 ± 0.00 0.98 ± 0.00 0.94 ± 0.01 0.91 ± 0.02 0.92 ± 0.00

3 0.98 ± 0.00 0.93 ± 0.01 0.99 ± 0.00 0.92 ± 0.01 0.93 ± 0.00 0.91 ± 0.00

4 0.97 ± 0.00 0.89 ± 0.01 0.98 ± 0.00 0.90 ± 0.02 0.89 ± 0.00 0.88 ± 0.01

5 0.97 ± 0.00 0.87 ± 0.01 0.98 ± 0.00 0.93 ± 0.01 0.90 ± 0.01 0.88 ± 0.01

cross-validated with 5 folds, and early stop criterion on validation loss was set to 40 epoch to
halt the training.

3.1.3.2 Results

For Watson models, the oversampled, grayscale converted and resized dataset achieved
the best performance on the validation set, and the final results on the test set are reported
in Table 3.7. Custom model performance over the five folds are reported in Table 3.8,
while result comparison between the Watson and the best custom model are summarised
in Table 3.7; Watson model provided performance slightly better than the proposed custom
model.

An important analysis can be done on the misclassified images. Fig. 3.10 depict the
images that the best execution of the custom model misclassified. Two of the three images
misclassified in Fig. 3.10a present artefacts along the whole image due to a bad acquisition
and this probably compromised the classification; Fig. 3.10b, instead, reports false negative
examples, a guess about the misclassification is that the model has been influenced by the
remaining part of the extracellular matrix.

Examples of the Watson model misclassification are depicted in Fig. 3.11; the same
considerations about the custom model errors can be done in this case.
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(a)

(b)

Fig. 3.10 Examples of misclassified glomeruli from the custom model: (a) false positive, (b)
false negative.
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(a)

(b)

Fig. 3.11 Examples of misclassified glomeruli from the Watson model: (a) false positive, (b)
false negative.
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3.1.4 A Deep Learning Approach for Glomeruli Detection

The results obtained in the previous sections permit to state that images about glomeruli
and extracted from PAS stained slices, have enough information to allow the discrimination
between sclerotic and non-sclerotic. To further investigate the capabilities of machine
learning algorithms, and in particular deep learning ones, in this section a full deep learning
based workflow for glomeruli detection will be presented; the workflow outline is reported in
Fig. 3.12. The deep learning model is based on the Faster R-CNN detector.

3.1.4.1 Work-flow Design and Model Configuration

The sections segmentation is a trivial task due to the easiness of the segmentation of coloured
regions on near-white background; at this purpose classical image processing techniques,
well-known and already used in literature [200, 201], have been used; to facilitate and reduce
the computational cost of the following steps, the extracted section ROIs were under-sampled
with a four factor. In detail, the original WSIs magnification of 20× is reduced to 5×
by under-sampling; this lead to a down-sampling of the images from a mean resolution
of about 8000× 8000 pixels to about 2000× 2000 pixels. All the resizing operations are
obtained by means of bi-cubic and nearest-neighbour interpolation for digital pathology
images and categorical masks, respectively (the annotation have to be rescale according to
the corresponding raw images to be used).

The under-sampled biopsy sections are then divided with stride of 250×250 into patches
of size 500× 500. The stride has been chosen to guarantee an overlap of 250× 250, so
that there is at least one patch in which each glomerulus is fully contained. Since the
dimensions of glomeruli in images at full resolution (20×) are lesser than 800× 800, at
undersampled resolution (5×) they are lesser than to 200×200, thus the claimed condition
is easily obtained. In this way any glomerulus is discarded from training data (the same
procedure can be applied in inferencing phase, avoiding glomeruli missing). Dividing the
original image into patches poses the problem on how the partially contained glomeruli
should be considered in the training patch (Figure 3.13a and Figure 3.13b show example
of not complete glomeruli). At the purpose of solving this issue, it has been introduced an
hyperparameter, called tolerance, indicating the maximum percentage of glomerulus size
allowed to be out of patch before considering that glomerulus as a positive example for
training. For example, a tolerance = 0 will allow only glomeruli fully contained in each
patch as positive examples for training. This means that, even if a glomerulus is out of 1px,
it will not be used as positive sample. Testes show that optimal values for this parameter are
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Fig. 3.12 Object detection work-flow based on Faster R-CNN model. The top part describes
how to perform the training of the model, exploiting the train-validation set (19 whole slide
images). The bottom part explains how to use the trained model for performing inference on
the test set sections (7 whole slide images).

approximately in the range [0.2,0.4]. The final proposed Faster R-CNN detector has been
trained with tolerance = 0.3.

Even if the dataset presented in the previous Materials section, composed of 26 WSIs and
101 sections, have an high number of glomeruli, for detection tasks the number is relatively
low. Furthermore, due to the strong unbalancing between healthy and non-healthy glomeruli
(with a ratio of 1/5.48.), oversampling has been chosen for rebalancing. In particular, each
training patch containing at least one sclerotic glomerulus (that is the underrepresented class),
has been augmented by rotating the patch by 90◦, 180◦ and 270◦. In this way, the number of
scleroic glomeruli is roughly quadruplicated. Since the augmented patch may contain also
non-sclerotic glomeruli, a slight increase of their number has to be accepted; in any case, a
more balanced dataset is obtained.

The model has been trained on small patches and it is not directly applicable for inferenc-
ing on new sections; moreover, the sections sizes may be too large (up to 2500×2500) and
infeasible to process. To use the model in the inferencing phase it necessary to pre-process
the new sections; then, the same procedure used on training data, can be applied to obtain
patches of size 500×500 with stride of 250×250. As before, this allow to reduce glomeruli
miss, but introduce the new problem of the replicate detection of glomeruli; due to overlap,
the projection of patch-level detections on original image will produce a multiple detection
of glomeruli found out the overlap region (Fig. 3.14). NMS algorithm is used to suppress
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(a)

(b)

Fig. 3.13 Effects of tolerance hyper-parameter on incomplete glomeruli. Patches with
tolerance = 0.3 (a) and tolerance = 0 (b).

duplicate bounding boxes (Algorithm 1); in detail, two iterations are applied: a first one that
make use of the standard NMS algorithm and a second one based on NMS using IoM instead
of IoU. The second modified iteration is useful in the case of small bounding boxes mainly
contained inside larger ones, and is applied only when IoM equals or exceeds a threshold
fixed to 0.5. A value of 0.3 is used for the standard NMS in the first step. The application of
NMS on the bounding boxes detected in Fig. 3.14 is depicted in Fig. 3.15.

Regarding the training of Faster R-CNN detector, the used hyper-parameters configuration
is reported in Table 3.9. Faster R-CNN is composed by four different stages, each with its
own hyper parameters; each stage is trained for ten epochs with Adam optimiser and the
learning rate is lowered in stages three and four. The tuned values are reported in Table 3.10.

3.1.4.2 Results

The trained model obtained an mAP of 0.803, with the overall results summarised in Ta-
ble 3.12 and confusion matrix in Table 3.11
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Fig. 3.14 Overlapped bounding boxes after projection in full image.

Fig. 3.15 Detection on section after Non-Maximum Suppression based on Intersection over
Union.
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Table 3.9 Faster R-CNN hyperparameters.

Faster R-CNN

Hyperparameter Value

CNN resnet50
Negative Overlap Range [0, 0.3]
Positive Overlap Range [0.6, 1]
# Regions To Sample 256
Box Pyramid Scale 1.2
# Strongest Regions 512

Table 3.10 Hyperparameters per stages of Faster R-CNN.

Hyperparameter Stage

1 2 3 4

Optimiser ADAM

Max Epochs 10

Batch Size 1

Initial Learning Rate 0.0001 0.0001 0.000001 0.000001

Table 3.11 Object detection confusion matrix with the baseline Faster R-CNN work-flow.

Prediction

Sclerotic Non-Sclerotic Background

Sclerotic 61 7 19

Ground Truth Non-Sclerotic 0 463 29

Background 35 62 –

Table 3.12 Detection metrics with the baseline Faster R-CNN workflow.

Class Recall Precision F-score

Non-Sclerotic 0.941 0.870 0.904

Sclerotic 0.701 0.635 0.667

In order to compare the clinical validity of the workflow performance, the corresponding
Karpinski score is computed and compared with that of expert pathologists. As described in
Section 2.4.1.2 and reported in Table 2.7 (the involved table section is reported in Table 3.13),
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Table 3.13 Karpinski Glomerular Score [225].

Score Description

G
lo

m
er

ul
ar 0 no globally sclerosed glomeruli

1 < 20% global glomerulosclerosis
2 20−50% global glomerulosclerosis
3 > 50% global glomerulosclerosis

the ratio is computed as the number of sclerosed glomeruli divided by the overall number of
glomeruli (Ratio = S

S+NS ), then the score is computed as following: 0, if there are no globally
sclerosed glomeruli; 1, if there is < 20% global glomerulosclerosis; 2, if there is 20−50%
global glomerulosclerosis; 3, if there is > 50% global glomerulosclerosis. The comparison
between Faster R-CNN output and ground truth is shown in Table 3.14. The results shown
that Faster R-CNN approach makes five errors in assessing the Karpiski score: four times it
gives a score of 1 instead of 2, and one time it gives a score of 2 instead of 1.

Respect to literature the proposed workflow accomplish glomerular detection in kidney
biopsies considering also the classification between non-sclerotic and sclerotic glomeruli.
Starting from the table proposed by Kawazoe et al. [198], Table 3.15 reports the full
comparison between proposed approach and recent researches; the Faster R-CNN based
model performs well in the non-sclerotic glomeruli detection, with very high recall and
precision values, but metrics for sclerotic glomeruli suffer from a higher number of false
negatives.

Even if the obtained result are promising, further investigations are needed; in particular
others deep learning techniques have to be investigated As an overall evaluation, it is possible
to observe that glomerular detection and classification tasks should be approached as an
instance segmentation tasks. Even if object detection approaches can guarantee respectable
results, they do not exploit the mask information in the dataset. Following sections will
report these applications and comparison results.
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Table 3.14 Karpinski Score, results on hold-out test set. Comparison between Faster R-CNN
and ground truth annotations. NS stands for non-sclerotic, S stands for sclerotic. Score
belongs to the range [0−3].

Donor Kidney Section Faster R-CNN Ground Truth

NS S Ratio Score NS S Ratio Score

1 Left

1 31 3 0.09 1 30 3 0.09 1

2 32 2 0.06 1 30 2 0.06 1

3 29 5 0.15 1 28 4 0.13 1

4 31 5 0.14 1 25 4 0.14 1

5 30 1 0.03 1 31 1 0.03 1

6 35 3 0.08 1 31 1 0.03 1

2 Right 1 9 8 0.47 2 10 5 0.33 2

3
Right 1 40 8 0.17 1 38 2 0.05 1

Left 1 38 3 0.07 1 41 4 0.09 1

4 Right

1 23 7 0.23 2 17 5 0.23 2

2 29 4 0.12 1 25 3 0.11 1

3 29 5 0.15 1 25 3 0.11 1

4 28 9 0.24 2 25 5 0.17 1

5 Right
1 23 3 0.12 1 22 4 0.15 1

2 27 3 0.10 1 28 5 0.15 1

6 Right

1 14 3 0.18 1 13 6 0.32 2

2 13 3 0.19 1 13 6 0.32 2

3 13 3 0.19 1 14 5 0.26 2

4 12 1 0.08 1 12 2 0.14 1

5 16 4 0.20 2 14 6 0.30 2

6 20 4 0.17 1 17 10 0.37 2
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Table 3.15 Comparison with literature extending the one proposed by Kawazoe et al. [198]

Author Sp Stain WSIs Method Class Performances

Recall Precision F-Measure

Kato et al.
[232]

R D 20
R-HOG
+ SVM A 0.911 0.777 0.838

S-HOG
+ SVM A 0.897 0.874 0.866

Temerinac-Ott et al.
[228]

H M2 80
R-HOG
+ SVM A N/A N/A 0.405-0.551

CNN A N/A N/A 0.522-0.716

Gallego et al.
[210] H PAS 108 CNN A 1.000 0.881 0.937

Simon et al.
[233]

M HE 15
mrcLBP
+ SVM

A 0.800 0.900 0.850

R M1 25 A 0.560-0.730 0.750-0.914 0.680-0.801

H PAS 25 A 0.761 0.917 0.832

Kawazoe et al.
[198]

H

PAS 200
Faster

R-CNN

A 0.919 0.931 0.925

PAM 200 A 0.918 0.939 0.928

MT 200 A 0.878 0.915 0.896

Azan 200 A 0.849 0.904 0.876

Proposed H PAS 26
Faster

R-CNN

A 0.917 0.846 0.880

NS 0.941 0.870 0.904

S 0.701 0.635 0.667
Stain acronyms: HE - Hematoxylin and eosin, PAS - Periodic acid–Schiff, D - Desmin, M1 - HE/PAS/JS/TRI/CR,

M2 - HE/PAS/CD10/SR, JS - Jones silver, TRI - Gömöri’s trichrome, CR - Congo red and SR - Sirius red.
Species (Sp) acronyms: H - Human, R - Rat, M - Mouse.
Method acronyms: R-HOG - rectangle-histogram of oriented gradients, S-HOG - segmental-histogram of oriented gradients.
Class acronyms: A - All (no distinction between non-sclerotic and sclerotic glomeruli), NS - non-sclerotic glomeruli and

S - sclerotic glomeruli.
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Fig. 3.16 Semantic segmentation work-flow. The top part describes how to perform the
training of the model. The bottom part explains how to use the trained model for performing
inference and the following morphological and clustering post-processing steps.

3.1.5 A Deep Learning Approach for Glomeruli Semantic Segmenta-
tion

A different goal, based on another deep learning technique, has been pursued in this section.
To use the finest information provided by the pathologists, that is the exact glomerulus
contour, a semantic deep learning approach has been investigated starting from a modified
version of SegNet and DeepLab v3+ networks.

The task focuses on the semantic segmentation of glomeruli, but to calculate the Karpinski
histological score and to compare the performance with the object detection approach, a
subsequent object detection like output is calculated. In particular the semantic segmentation
CNN is trained to obtain a pixel-level classification, distinguishing between pixels which
belongs to background, sclerotic and non-sclerotic glomeruli; then, the ensemble of classified
pixels are turned into object detections regions. The detected and classified regions are finally
used for the Karpinski score evaluation.



3.1 Deep Learning in Pathology: Chronic Kidney Disease Study Cases 113

Table 3.16 Augmentations.

Data Augmentation

Group Type Details

1

Rotate θ = 90, p = 0.25
Flip left-right p = 0.25

Flip upside-down p = 0.25
Resize resize ∈ [0.8,1.2], p = 0.25

2
Gaussian Noise σ ∈ [0,0.01], p = 0.1
Gaussian Blur σ ∈ [0,0.1], p = 0.1

Elastic Deformation σ ∈ [2,5], α ∈ [100,300], p = 0.2

3 HSV shift ∆S ∈ [−0.1,0.1], ∆H ∈ [−0.1,0.1], p = 0.5

3.1.5.1 Work-flow Design and Model Configuration

The semantic segmentation work-flow with final glomerular detector is depicted in Fig. 3.16.
As for object detection (Section 3.1.4), the first step is the segmentation of the tissue

sections presents in the slides; the same procedure has been applied. After the rescaling the
mean image size is about 2000×2000, that is too big to be processed by the complex CNN
models and the available hardware. Patches of size 656× 656 are then careful randomly
sampled during the train phase avoiding to feed the model with an unbalanced number of sam-
ples per class. According to Stain color variation problem paragraph from Section 2.4.1.1,
Hue-Saturation-Value (HSV) shifts and morphological transformations are considered; in
particular, elastic deformation is used in order to generate plausible alterations of glomeruli
shapes. The patches are augmented as reported in Table 3.16 and the transformation are
applied on-the-fly for each epoch within random ranges so the network always processes
slightly different input data, thus reducing the risk of overfitting. Examples of elastic defor-
mation and HSV shift are reported in Fig. 3.17 and Fig. 2.26-2.27, respectively. Regarding
the used transformations, they are applied in the order listed in Table 3.16 and, in particular,
the group one augmentations are independently performed each with a given probability
p, while only one operation is selected each time from group two and the only group three
transformation is applied with a given probability. All the transformation are as standard,
except that a mirroring padding, instead of zero padding, is used when a resize shrinks the
image size. Augmentations which alter the morphology or orientation of images are also
executed on the mask.
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Fig. 3.17 Example of elastic deformation: original image (left), application of elastic defor-
mation with σ = 6.29, α = 340 (right).

During the inference phase, patches of size 656×656pixels and an overlap of 200 pixels
are selected. Note that in the training phase, no overlap is needed; this because, the semantic
approach have to extract information about pixels and their surrounding and no constrains on
regions are required. However, in the inferencing phase, when the approach involves sliding
windows, an evaluation on a larger context is suggested [171].

Adapting a semantic segmentation network to perform object detection poses some
challenges. The task of semantic segmentation consists of labelling only individual pixels,
which mainly captures textural information. Architectures explicitly tailored for object
detection, such as Faster R-CNN [472] discusse in Section 3.1.4 or Mask R-CNN [121]
that will be discussed in Section 3.1.6, are based on procedures that make use of anchor
boxes; semantic ones, instead, just tries to classify pixels individually. To extend the semantic
segmentation model into an instance segmentation one, the patch-level pixel classification
are projected to the original WSI (5×) to get the WSI-level predicted mask; the whole WSI
is then post-processed with morphological operators and clustering algorithms.

Morphological operators are applied only on the obtained binary masks. Firstly, the
shapes of objects is smoothed by using a morphological closing with a disk of radius 5 pixels
as structuring element, and a morphological flood-fill operation. Then, small objects and
spare noisy points are deleted by a sequence of a opening operator with a disk of radius
10 pixels as structuring element, and an area opening operator able to remove connected
regions with area below 1000 pixels. Examples are shown in Fig. 3.18, where binary masks
are overlapped to the biopsy images for visualization purposes. Masks relative to non-
sclerotic and sclerotic glomeruli are green and red coloured, respectively.The sequence of
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Fig. 3.18 (Left) Semantic Segmentation output. (Right) After Morphological Operators.

Fig. 3.19 Morphological operators sequence applied to the output masks from the semantic
segmentation network. The output of the morphological post-processing is used for calculat-
ing shape descriptors in order to eventually perform clustering.

morphological operators used is reported in Fig. 3.19. Lastly, starting from the assumption
that individual glomeruli have convex shapes, so that their area is similar to their convex
area, the shape information for each of these objects is analysed to understand if there are
touching objects that have to be clustered.

The knowledge acquired with the application of classic image processing algorithms
(Section 3.1.2), suggested that clustering, could be a viable technique. A K-means clustering
is applied with a K number of cluster dependent by the information of the overall detected
area. In detail, the difference between the convex area enclosing the entire object (convex
hull) and the effective pixels area is computed according to Equation 3.2.

∆area = convexhull − pixelarea (3.2)
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(a) Sclerotic glomeruli before clustering. (b) After clustering, with K = 2.

(c) Non-sclerotic glomeruli before clustering. (d) After clustering, with K = 3.

Fig. 3.20 Examples of K-means clustering for both sclerotic and non-sclerotic glomeruli.
The number K of clusters is determined according to Equations 3.2 and 3.3.

Then a K value is empirically selected on the training dataset according to Equation 3.3.
Examples of glomeruli before clustering are reported in Fig. 3.20a and Fig. 3.20c. The
corresponding images after clustering are shown in Fig. 3.20b and Fig. 3.20d.

K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ∆area ≤ 900

2 900 < ∆area ≤ 5000

3 ∆area > 5000

(3.3)

Finally, the obtained mask is oversampled by a four factor and projected to 20× resolu-
tion.

Model configuration. As stated before, the proposed semantic approach has been inves-
tigated starting from a modified version of SegNet and DeepLab v3+ networks. In detail,
the last layer of both networks has been replaced by a pixel-wise classification layer with
the three output classes of interest: background, sclerotic and non-sclerotic glomeruli, and
accordingly pixel-wise cross-entropy as loss function and inverse class frequencies as class
weights. The training hyperparameters for each model are summarised in Table 3.17. The
high batch size difference is due to model complexity differences and hardware constraints
(DeepLab v3+ is based on ResNet-18 backbone, that is more lightweight than SegNet).
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Table 3.17 Hyperparameters.

Hyperparameter SegNet Deeplab v3+

Optimizer SGDM SGDM
Initial Learn Rate 0.001 0.001

Learning Rate Drop Schedule piecewise piecewise
Learning Rate Drop Period 10 10
Learning Rate Drop Factor 0.3 0.3

Momentum 0.9 0.9
L2 Regularization 0.005 0.005

Batch Size 1 8
Data Shuffle every epoch every epoch
Max Epochs 30 30

Validation Patience 10 10
Validation Frequency 1 per epoch 1 per epoch

3.1.5.2 Results

The proposed approach is divided into two main procedures: the glomeruli semantic segmen-
tation, that is the pixels-level classification, and the glomeruli object detection; for this reason,
results about each procedure, will be independently reported in the following paragraphs.

Regarding the the semantic segmentation task two group of metric have been calculated:
dataset metrics and class metrics. Dataset metric include all the performance indexes
evaluated over the whole dataset: global accuracy, mean accuracy, mean IoU, weighted
IoU and mean F-score. The class metrics, instead, includes semantic segmentation metrics
calculated for each class: accuracy, IoU and mean F-score. For a detailed description about
the cited performance indexes see Section 2.3.3.

Pixel-level dataset metrics for both SegNet and DeepLab v3+ are reported in Table 3.18.
The pixel-level class metrics of SegNet and DeepLab v3+ are reported in Table 3.19 and
3.21, respectively. The normalized pixel-level confusion matrices are in Table 3.20 and 3.22.
Pixel-level confusion matrices are normalized by row.

Table 3.18 Dataset Metrics.

CNN Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean F-score

SegNet 0.98346 0.86385 0.71352 0.97156 0.81784

Deeplab v3+ 0.99179 0.76884 0.72873 0.98434 0.84614
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Table 3.19 Class Metrics SegNet.

Class Accuracy IoU Mean F-score

Sclerotic 0.68594 0.49215 0.69686

Non-Sclerotic 0.91925 0.66546 0.83239

Background 0.98636 0.98294 0.99243

Table 3.20 Normalized pixel-level Confusion Matrix SegNet.

Prediction

Sclerotic Non-Sclerotic Background

Sclerotic 68.59% 0.44% 30.97%

Ground Truth Non-Sclerotic 0.00% 91.93% 8.07%

Background 0.10% 1.26% 98.64%

Table 3.21 Class Metrics Deeplab v3+.

Class Accuracy IoU Mean F-score

Background 0.99690 0.99172 0.96684

Non-Sclerotic 0.88199 0.80872 0.93306

Sclerotic 0.42764 0.38574 0.63852

Table 3.22 Normalized pixel-level Confusion Matrix Deeplab v3+.

Prediction

Sclerotic Non-Sclerotic Background

Ground Truth
Sclerotic 42.76% 6.67% 50.57%

Non-Sclerotic 0.02% 88.20% 11.78%

Background 0.03% 0.28% 99.69%

The best results on non-sclerotic glomeruli have been obtained using DeepLab v3+,
whilst for sclerotic glomeruli the best model was SegNet. An example of the output of the
semantic segmentation framework is depicted in Fig. 3.21.

Object detection extension. For the object detection task, confusion matrices are calcu-
lated assuming that a true positive match between predicted and ground truth masks has
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Fig. 3.21 Top Left: original image. Top Right: ground truth. Bottom Left: SegNet prediction.
Bottom Right: DeepLab v3+ prediction. Sclerotic glomeruli and non-sclerotic ones are white
and gray colored, respectively.

pixel-wise IoU of at least 0.2. Besides confusion matrices, the metrics used for assessing the
results of the object detection task are: precision, recall and F-score.

The object detection confusion matrices for SegNet and DeepLab v3+ are reported in
Table 3.23 and 3.24, respectively.

Analysing the results is possible to state that the proposed approach allowed to obtain
high performances both at pixel and object detection level. The semantic segmentation
achieved mean F-score higher than 0.81 and Weighted IoU higher than 0.97 for both SegNet
and Deeplab v3+ approaches; the glomeruli detection achieved 0.924 as best F-score for
non-sclerotic glomeruli and 0.730 as best F-score for sclerotic glomeruli. Analysed literature
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Table 3.23 Object Detection Confusion Matrix SegNet

Prediction

Sclerotic Non-Sclerotic Background

Ground Truth
Sclerotic 58 1 28

Non-Sclerotic 0 436 56

Background 14 86 –

Table 3.24 Object Detection Confusion Matrix Deeplab v3+

Prediction

Sclerotic Non-Sclerotic Background

Ground Truth
Sclerotic 41 7 39

Non-Sclerotic 0 449 43

Background 1 24 –

Table 3.25 Performance Comparison for Detection Metrics

Author Model Class Recall Precision F-score

Marsh et al.
[231]

FCN +
Blob-Detection

Non-Sclerotic 0.885 0.813 0.848

Sclerotic 0.698 0.607 0.649

Proposed
SegNet

Non-Sclerotic 0.886 0.834 0.859

Sclerotic 0.667 0.806 0.730

DeepLab v3+
Non-Sclerotic 0.913 0.935 0.924

Sclerotic 0.471 0.976 0.636

account three main works that face the problem of glomerular classification. Ginley et al.

considered the glomerular assessment for patients affected by diabetic nephropathy but not
for transplantation purposes [230]. Hermsen et al. considered many tissue classes, but
the number of sclerotic glomeruli in their datasets is too small for a comparison with the
proposed method [242]. Marsh et al. considered the problem of global glomerulosclerosis
from kidney transplant biopsies with haematoxylin and eosin (HE) stain [231]. The per-
formance comparison between the proposed methods and Marsh et al. paper is reported
in Table 3.25 and is possible to affirm that obtained results show improvements over the
literature. The SegNet based model obtained a better F-score for both the glomeruli classes.
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The DeepLab v3+ based model obtained a better F-score for non-sclerotic glomeruli and a
slightly worse F-score for sclerotic glomeruli. In conclusion, it is possible to state that CNNs
for semantic segmentation are a viable approach for the purpose of glomerular segmentation
and classification, allowing to obtain a reliable estimate of the global glomerulosclerosis. The
results were validated by the renal pathologists which assessed the reliability of the proposed
workflow; the applied methodology constitutes a milestone in the creation of a CAD system
for the renal transplant assessment, easing pathologists in accomplishing the laborious task
of evaluating the eligibility of a kidney for transplantation and providing a rapid and accurate
result.

3.1.6 A Deep Learning Approach for Glomeruli Istance Segmentation

The application of classic image processing algorithm and deep learning for object detection
and semantic segmentation, achieved good result in the task of glomeruli processing and in
the evaluation of global glomerulosclerosis. A last deep learning application is discussed in
this section: instance segmentation. In computer vision, the end-to-end instance segmentation
methods (e.g., Mask-RCNN [121]) have shown their advantages on the detect-then-segment
approaches, by performing detection and segmentation tasks simultaneously. As a result,
the end-to-end Mask-RCNN approach became the standard method in recent glomerular
segmentation studies [180]. The semantic segmentation networks, as the one proposed
before, can guarantee very high pixel-level results, but they may perform worse in the object
detection task, if compared to specialized architectures. In this section, will be proposed a
deep learning framework based on Mask R-CNN for glomerular detection and classification
with an end-to-end instance segmentation approach. in detail, will be evaluated the possibility
to train an end-to-end instance segmentation neural network, by exploiting Mask R-CNN,
trying to learn all the required features in a unified process, and reducing the need of post
processing operations; furthermore, a variant of the standard Non-Maximum Suppression
algorithm (Algorithm 1), named Non-Maximum-Area Suppression (NMAS), is proposed to
improve the performances in the sliding window step.

3.1.6.1 Work-flow Design and Model Configuration

The full pipeline used for the instance segmentation is reported in Fig. 3.22. As for other
approaches, during the training phase, random patches of 1024×1024 pixels are sampled
and then, for each epoch, on-the-fly randomly augmented (random selection of none, one or
two transformations reported in Table 3.26).
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Fig. 3.22 Instance segmentation work-flow based on Mask R-CNN model. The top part
describes how to perform the training of the model, exploiting the train-validation set (19
whole slide images). The bottom part explains how to use the trained model for performing
inference on the test set sections (7 whole slide images). In the inference phase the proposed
Non-Maximum-Area Suppression (NMAS) algorithm is used.

During the inferencing phase, instead, thanks to the less memory requirements, larger
windows with size 1536 × 1536 and overlap of 250 × 250 are used. To overcome the
NMS algorithm (Algorithm 1), low capability to handle overlapped bounding boxes, NMAS
algorithm (Algorithm 3) is used instead of it during the projection of the patch-level detections
to WSI-level, whit appreciable improvement. It allows to join the information of the areas
related to the involved bounding boxes and their confidence scores; the new parameters
f j = w jh js2

j has been introduced considering both the area of the bounding box (w jh j) and
the square of the confidence (s2

j) to penalise its contribution (s j ranges in [0,1]). Another
improvement comes from the use of IoM jointly with IoU to detect overlapping boxes. IoM
easily allows to recognize bounding boxes mainly contained in other ones, that is common in
overlapping sliding window approaches.

In Fig. 3.23 is possible to appreciate an example of sub-optimal bounding box and the
improvement obtained thanks to NMAS.

Regarding the model, ResNet-50 has been used as backbone, since it allows good feature
extraction despite it is lighter than ResNet-101 [130]. The training procedure starts from
the model pretrained on the COCO dataset and involved only the first part of the network
for 20 epochs; then ResNet stage four and layers above were trained for 40 epochs and,
finally, all the layers of the network were trained for 40 epochs lowering the learning rate to
0.0001. For reproducibility the others hyperparameters are reported in Table 3.27 and refer
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Table 3.26 Augmentations for Mask R-CNN approach.

Data Augmentation

Type Details

Flip upside-down P( f lipud) = 0.5

Flip left-right P( f liplr) = 0.5

Rotate θ ∈ {90◦,180◦,270◦}

Multiply α ∈ [0.8,1.1]

Gaussian Blur σ ∈ [0,0.1]

Algorithm 3: Non-Maximum-Area Suppression (NMAS).
input :Bi = b1, ...,bNi , the Ni initial detections

b j = (x j,y j,w j,h j), j = 1, ...,Ni
Si = si1, ...,siNi

, the Ni initial scores
Tiou, the NMAS threshold on IoU
Tiom, the NMAS threshold on IoM

output :Bo = b1, ...,bNo , the No ≤ Ni final detections
So = so1, ...,soNo

, the No ≤ Ni final scores
1 Bo = {};
2 So = (w1h1s2

i1,w2h2s2
i2, ...,wNihNis

2
iNi
);

3 while Bi is not empty do
4 m = argmax(So);
5 Bo = Bo ∪{bm};
6 Bi = Bi \{bm};
7 while b j ∈ Bi do
8 if iou(bm,b j)≥ Tiou ∨ iom(bm,b j)≥ Tiom then
9 Bi = Bi \{b j};

10 So = So \{s j};
11 end
12 end
13 end

to Mask R-CNN implementation developed by Waleed Abdulla from Matterport, Inc. [473]
and published under the MIT License1, then more details can be found in the documentation,
if needed. The inference configuration is slightly different, with IMAGE_RESIZE_MODE =

"pad64" and RPN_NMS_THRESHOLD = 0.7.

1https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT
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Fig. 3.23 Mask R-CNN predictions, after removal of overlapping bounding boxes with the
two considered algorithms: Non-Maximum Suppression (Left) and Non-Maximum-Area
Suppression (Right).

Fig. 3.24 Patch-level detection with Mask R-CNN.

Examples of patch-level and final WSI-level detections can be seen in Fig. 3.24 and
Fig. 3.25, respectively. Images clearly show both masks and bounding boxes as expected,
since Mask R-CNN allows to solve instance segmentation and object detection tasks at the
same time.

3.1.6.2 Results

The results obtained with the Mask R-CNN based approach are reported in Table 3.28 and
Table 3.29. Using NMAS instead of NMS for suppressing overlapped bounding boxes
leads to an improvement of mAP from 0.881 to 0.902, and of F-measure for non-sclerotic
glomeruli from 0.917 to 0.925.

Also in this case, in order to compare the clinical validity of the workflow performance,
the corresponding Karpinski score is computed and compared with that of expert pathologists.
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Table 3.27 Hyperparameters tuning for Mask R-CNN based detector.

Training Configuration

Hyperparameter Value

BACKBONE resnet50

RPN_ANCHOR_SCALES (32, 96, 160, 200, 256)

RPN_ANCHOR_RATIOS [0.5, 1, 2]

POST_NMS_ROIS_TRAINING 800

POST_NMS_ROIS_INFERENCE 1600

RPN_NMS_THRESHOLD 0.8

RPN_TRAIN_ANCHORS_PER_IMAGE 64

MEAN_PIXEL [218.85, 198.25, 207.18]

MINI_MASK_SHAPE (56, 56)

TRAIN_ROIS_PER_IMAGE 128

IMAGE_RESIZE_MODE crop

IMAGE_MIN_DIM 1024

IMAGE_MAX_DIM 1024

LEARNING_RATE 0.001

LEARNING_MOMENTUM 0.9

WEIGHT_DECAY 0.0001

GRADIENT_CLIP_NORM 5.0
Hyperparameters nomenclature refers to Mask R-CNN implementation
developed by Waleed Abdulla from Matterport, Inc. [473].

Table 3.28 Object detection confusion matrix with the proposed Mask R-CNN workflow.

Prediction

Sclerotic Non-Sclerotic Background

Ground Truth
Sclerotic 61 8 18

Non-Sclerotic 0 470 22

Background 9 46 –

As described in Section 2.4.1.2 and reported in Table 2.7 (the involved table section is



3.1 Deep Learning in Pathology: Chronic Kidney Disease Study Cases 126

Fig. 3.25 WSI-level detection with Mask R-CNN. Overlapping bounding boxes have been
eliminated with the proposed Non-Maximum-Area Suppression algorithm.

Table 3.29 Detection metrics with the proposed Mask R-CNN workflow.

Class Recall Precision F-score
Non-sclerotic 0.955 0.897 0.925

Sclerotic 0.701 0.871 0.777

reported in Table 3.13) the ratio is computed as the number of sclerosed glomeruli divided by
the overall number of glomeruli (Ratio = S

S+NS ), then the score is computed as following: 0,
if there are no globally sclerosed glomeruli; 1, if there is < 20% global glomerulosclerosis; 2,
if there is 20−50% global glomerulosclerosis; 3, if there is > 50% global glomerulosclerosis.
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The comparison between Mask R-CNN output and ground truth is shown in Table 3.30; for
completeness and ease the comparison between the object detection approach (Section 3.1.4),
results reported in Table 3.14 are replicated in Table 3.30 (only Faster R-CNN and Mask
R-CNN are compare here because they are natively built for object detection). The results
shown that Mask R-CNN approach makes only three errors in assessing the Karpinski score:
one time it gives a score of a score of 0 instead of a score of 1; two times it gives a score of 1
instead of a score of 2; Faster R-CNN, instead, makes five errors in assessing the Karpiski
score: four times it gives a score of 1 instead of 2, and one time it gives a score of 2 instead
of 1.

Table 3.30 Karpinski Score results on hold-out test set. Comparison between Faster R-
CNN, Mask R-CNN and ground truth annotations. NS stands for non-sclerotic, S stands for
sclerotic. Score belongs to the range [0−3].

Donor Kidney Section Mask R-CNN Faster R-CNN Ground Truth

NS S Ratio Score NS S Ratio Score NS S Ratio Score

1 Left

1 30 3 0.09 1 31 3 0.09 1 30 3 0.09 1

2 30 2 0.06 1 32 2 0.06 1 30 2 0.06 1

3 31 4 0.11 1 29 5 0.15 1 28 4 0.13 1

4 29 5 0.15 1 31 5 0.14 1 25 4 0.14 1

5 32 0 0.00 0 30 1 0.03 1 31 1 0.03 1

6 31 1 0.03 1 35 3 0.08 1 31 1 0.03 1

2 Right 1 11 5 0.31 2 9 8 0.47 2 10 5 0.33 2

3
Right 1 41 1 0.02 1 40 8 0.17 1 38 2 0.05 1

Left 1 39 3 0.07 1 38 3 0.07 1 41 4 0.09 1

4 Right

1 19 4 0.17 1 23 7 0.23 2 17 5 0.23 2

2 26 3 0.10 1 29 4 0.12 1 25 3 0.11 1

3 30 2 0.06 1 29 5 0.15 1 25 3 0.11 1

4 29 5 0.15 1 28 9 0.24 2 25 5 0.17 1

5 Right
1 22 4 0.15 1 23 3 0.12 1 22 4 0.15 1

2 30 5 0.14 1 27 3 0.10 1 28 5 0.15 1

6 Right

1 14 4 0.22 2 14 3 0.18 1 13 6 0.32 2

2 14 4 0.22 2 13 3 0.19 1 13 6 0.32 2

3 13 4 0.24 2 13 3 0.19 1 14 5 0.26 2

4 14 2 0.13 1 12 1 0.08 1 12 2 0.14 1

5 17 5 0.23 2 16 4 0.20 2 14 6 0.30 2

6 19 4 0.17 1 20 4 0.17 1 17 10 0.37 2



3.1 Deep Learning in Pathology: Chronic Kidney Disease Study Cases 128

The full comparison among all the deep learning approach analysed in this chapter and
the recent research works about the task of glomerular detection is reported in Table 3.31.
The proposed model performs well in the detection of non-sclerotic glomeruli, with very high
recall and precision values, but metrics for sclerotic glomeruli suffer from a higher number
of false negatives.
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Table 3.31 Comparison with literature extending the one proposed by Kawazoe et al. [198]

Author Sp Stain WSIs Method Class Performances

Recall Precision F-Measure

Kato et al.
[232]

R D 20
R-HOG
+ SVM A 0.911 0.777 0.838

S-HOG
+ SVM A 0.897 0.874 0.866

Temerinac-Ott et al.
[228]

H M2 80
R-HOG
+ SVM A N/A N/A 0.405-0.551

CNN A N/A N/A 0.522-0.716

Gallego et al.
[210] H PAS 108 CNN A 1.000 0.881 0.937

Simon et al.
[233]

M HE 15
mrcLBP
+ SVM

A 0.800 0.900 0.850

R M1 25 A 0.560-0.730 0.750-0.914 0.680-0.801

H PAS 25 A 0.761 0.917 0.832

Kawazoe et al.
[198]

H

PAS 200
Faster

R-CNN

A 0.919 0.931 0.925

PAM 200 A 0.918 0.939 0.928

MT 200 A 0.878 0.915 0.896

Azan 200 A 0.849 0.904 0.876

Marsh et al.
[231]

H HE 48
FCN +
BLOB

NS 0.885 0.813 0.848

S 0.698 0.607 0.649

Proposed
Semantic Segmentation

(Section 3.1.5)
H PAS 26

SegNet
A 0.855 0.832 0.843

NS 0.886 0.834 0.859

S 0.667 0.806 0.730

DeepLab
v3+

A 0.858 0.952 0.903

NS 0.913 0.935 0.924

S 0.471 0.976 0.636

Proposed
Object Detection
(Section 3.1.4)

H PAS 26
Faster

R-CNN

A 0.917 0.846 0.880

NS 0.941 0.870 0.904

S 0.701 0.635 0.667

Proposed
Instance Segmentation

H PAS 26
Mask

R-CNN

A 0.931 0.907 0.919

NS 0.955 0.897 0.925

S 0.701 0.871 0.777
Stain acronyms: HE - Hematoxylin and eosin, PAS - Periodic acid–Schiff, D - Desmin, M1 - HE/PAS/JS/TRI/CR,

M2 - HE/PAS/CD10/SR, JS - Jones silver, TRI - Gömöri’s trichrome, CR - Congo red and SR - Sirius red.
Species (Sp) acronyms: H - Human, R - Rat, M - Mouse.
Method acronyms: R-HOG - rectangle-histogram of oriented gradients, S-HOG - segmental-histogram of oriented gradients.
Class acronyms: A - All (no distinction between non-sclerotic and sclerotic glomeruli), NS - non-sclerotic glomeruli and

S - sclerotic glomeruli.
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3.1.7 Conclusion About Deep Learning Approaches for Glomeruloscle-
rosis Evaluation

Analysing the test performed for the deep learning approaches, it is possible to observe that
glomerular detection and classification should be approached as an instance segmentation
tasks. Even if object detection approaches can guarantee respectable results, they do not
exploit the full mask information in the dataset. Semantic segmentation approaches allow
to obtain good results too, but they are slightly worse than instance segmentation ones.
Indeed, training a CNN which classifies at pixel-level in a detection task is a less powerful
method. Difficulties that occur with semantic segmentation networks include presence
of noisy points in the output and lack of distinction between touching objects. Semantic
segmentation networks can principally exploit texture information but are less capable to
understand concepts as shapes, thus working worse on detection task compared to specialized
architectures. Nevertheless, Marsh et al. used fully convolutional network, together with
BLOB detection as post-processing of semantic segmentation network output, to measure
global glomerulosclerosis from kidney biopsies [231]. The proposed Mask R-CNN approach
outperforms the one of Marsh et al. , improving the F-score for healthy glomeruli from
0.848 to 0.925 and the F-score for sclerosed glomeruli from 0.649 to 0.777. An important
reason for these better performances may lie in the choice of a better model, relying on an
instance segmentation network instead of a semantic segmentation one. Anyway, it has to
be noted that Marsh et al. dealt with HE stained biopsies, whereas the dataset adopted for
the experiments conducted and described in this thesis, is made up by PAS stained biopsies,
which can be a better staining for glomerular recognition tasks. Although, it has to be
demonstrated that CNNs work consistently better on PAS compared to HE. It is also worth
noting that in the Marsh et al. work the unbalancing ratio is lesser, being 3.44 : 1 compared
to 5.48 : 1, thus allowing a smoother training process for the under-represented class.

Other papers found in literature do not address the task of determining glomerulosclerosis,
but focus only on glomerular detection. Though this is a simpler task, they are included in
the comparison (Table 3.31), considering healthy and sclerotic glomeruli as a single class.
The authors using classical machine learning approaches, obtaining worse results than the
proposed deep learning ones [232, 233]. Temerinac-Ott et al. compared a machine learning
approach, based on HOG (histogram of oriented gradients [240]) feature extraction and an
SVM classifier, with a deep learning one with CNN; both obtained lower performances than
the proposed end-to-end instance segmentation framework [228]. Gallego et al. exploited a
CNN for classifying if each patch is a glomerulus or not in a sliding window fashion [210].
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Fig. 3.26 CAD overview. Physicians can annotate WSIs and visualize processing results by
using Aperio ImageScope software.

Altough this may look like a more naive approach, if compared with the use of a detector
from the R-CNN family (which can also reduce the problem of redundant computation across
neighbouring patches), the results obtained in the paper are quite impressive, with a recall of
1. However, it is worth noting that Gallego et al. considered only glomeruli with area of at
least 200×200 pixel (> 100µm of diameter), whereas glomeruli considered in the dataset
used for this thesis have no size constraints, and many of the obtained false negatives are
small glomeruli. Furthermore, a precise mask for each glomerulus is found, while Gallego et

al. can only determine coarse masks composed by the union of rectangular patches. Kawazoe
et al. used Faster R-CNN for the glomerular detection task, obtaining results comparable with
the proposed Mask R-CNN approach, with an F-score of 0.925 (greater than the obtained one
of 0.919) [198]. The possibility to use a larger training dataset (200 WSIs instead of 26) can
explain why they can get comparable (or even slightly better) results even with a less powerful
model. As already noted, discussed Faster R-CNN model performs worse than Mask R-CNN
one. In conlusion, at the moment, the proposed frameworks allow to get a reliable estimate of
global glomerulosclerosis; then, the pathologists can beneficiate from glomeruli annotations
provided by the proposed CAD through an XML interface with the commonly used Aperio
ImageScope software, easing the burden of the manual annotation (Fig. 3.26). In the future it
could be extended to other kidney biopsies analysis tasks, consenting to define the complete
Karpinski histological score.
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3.2 Deep Learning in Radiology: Autosomal Dominant Poly-
cystic Kidney Disease Case Study

As discussed in Section 2.4.2.1, innovative approaches based on deep learning strategies
have been introduced in recent years for the classification and segmentation of radiologic
images. For assessing kidneys growth researchers suggest that MR should be preferred to
other imaging techniques [270]. Different research works allowed the estimation of TKV
starting from CT images thanks to the higher availability of the acquisition devices and
the more accurate and reliable measurement of TKV and cysts volume. On the other side,
CT protocols for ADPKD are always contrast-enhanced using a contrast medium harmful
for the health of the patient under examination; also, CT exposes the patients to ionising
radiations. On these premises, the automatic or semi-automatic segmentation of images from
MR acquisitions for improving the TKV estimation capabilities should be further investigated
to improve the state-of-the-art performances.

Starting from a preliminary work performed on a small set of patients [297], in the
following sections two different approaches based on DL architectures for the automatic
segmentation of polycystic kidneys starting from MR acquisitions are presented. The two
approaches, based on object detection and semantic segmentation, lead to a fully-automated
pipeline for ADPKD evaluation from MR images. Regarding of the application of object
detection for ADPKD, due to the presence of cysts in the organs near the kidneys and due to
the very similar structures of the surrounding areas, a pre-selection of the region of interest
was considered to improve a subsequent semantic segmentation step.

3.2.1 Materials

Data Description Analyses were conducted on MR images acquired from February to July
2017; 18 patients affected by ADPKD (mean age 31.25±15.52 years) underwent magnetic
resonance examinations for assessing the TKV. The acquisition protocol was carried out
by the physicians of the Department of Emergency and Organ Transplantations (DETO) of
the Bari University Hospital. Examinations and images acquisition were performed on a
1.5 Tesla MR device (Achieva, Philips Medical Systems, Best, The Netherlands) by using a
four-channel breast coil. The protocol did not use contrast material intravenous injection and
consisted of:

• Transverse and Coronal Short-TI Inversion Recovery (STIR) Turbo-Spin-Echo (TSE)
sequences (T R/T E/T I = 3.800/60/165ms, field of view (FOV ) = 250× 450mm
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(AP x RL), matrix 168×300, 50 slices with 3mm slice thickness and without gaps, 3
averages, turbo factor 23, resulting in a voxel size of 1.5×1.5×3.0mm3; sequence
duration of 4.03min);

• Transverse and Coronal T2-weighted TSE (T R/T E = 6.300/130ms, FOV = 250×
450mm (AP x RL), matrix 336×600, 50 slices with 3mm slice thickness and without
gaps, 3 averages, turbo factor 59, SENSE factor 1.7, resulting in a voxel size of
0.75×0.75×3.0mm3; sequence duration of 3.09min);

• Three-Dimensional (3D) T1-Weighted High Resolution Isotropic Volume Examination
(THRIVE) sequence (T R/T E = 4.4/2.0ms, FOV = 250×450×150mm(APxRLxFH),
matrix 168×300, 100 slices with 1.5mm slice thickness, turbo factor 50, SENSE factor
1.6, data acquisition time of 1min30s).

Dataset Creation Although patients undergo the complete protocol, only the coronal T2-
weighted TSE sequence was considered. In order to have the segmentation ground truth
for all the acquired images, a dedicated framework allowed radiologists to manually draw
contours.

3.2.2 ADPKD Study Case: Object Detection

According to Section 2.2.2, DL architectures used for object detection aim to find the location
of specific items in images or videos and it is a well-established process in literature employed
in different fields [362, 474]. The CNNs for object detection are commonly based on static
algorithms, such as EdgeBoxes [475] or Selective Search [156], for the region proposal steps;
traditional Region-CNN and Fast R-CNN are the most frequently used techniques [123, 476].
Other applications, such as Faster R-CNN [472], make use of a specific CNN to address the
region proposal mechanism, thus joining the region proposal steps in the learning procedure.

Several networks based on Fast R-CNN were investigated to detect areas containing
kidneys. To build a dataset suitable for this purpose, the manual contour of each kidney
was enclosed in a rectangular bounding box. The considered CNNs were based on layer
blocks composed by the concatenation of convolutional and ReLu layers; a max-pooling
layer was used between each block for sub-sampling (size [3×3] and stride [2×2]). Two
fully-connected layers manage the output detection step. The obtained best configurations
are reported in Table 3.32.

To help the results evaluation, the Precision-Recall and the Miss Rate plots, that are
the precision values varying recall values and the miss rate varying the FP per image, were
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Table 3.32 Configurations designed and tested for the object detection CNN. Each layer is a
sequence of a convolutional and a ReLu layer.

Network ID Number of
layers per block

Number of
convolutional filters per layer Learner

R-CNN-1 [3 3] [32 32] SGDM

R-CNN-2 [1 1] [16 32] SGDM

R-CNN-3 [3 3] [64 32] SGDM

Fig. 3.27 Example results for object detection R-CNN. Input image (left); detected ROIs and
relative confidence score (right).

computed for each R-CNN architecture. The plots for R-CNN-1, R-CNN-2 and R-CNN-3
(Table 3.32) are reported in Fig. 3.28a, Fig. 3.28b and Fig. 3.28c, respectively; an example of
object detection application is reported in Fig. 3.27.

Analysing the plots, it is possible to affirm that R-CNN-1 and R-CNN-3 had an average
precision higher than 0.75, with a low log-average miss rate. In particular, R-CNN-1 reached
a recall value of about 0.8 with precision higher than 0.65, meaning that the classifier was
able to detect 80% of the positive ROIs, accepting a high number of false positives; since
the object detections procedure has been designed as a pre-processing step for a following
semantic segmentation, R-CNN-1 can be considered as the best candidate among the analysed
architectures.
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(a)

(b)

(c)

Fig. 3.28 Precision – Recall and log Average Miss rate plots for R-CNN-1 (a), R-CNN-2 (b)
and R-CNN-3 (c).
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3.2.3 ADPKD Study Case: Semantic Segmentation

According to Section 2.2.3, DL architecture used for semantic segmentation tasks, such as
SegNet [160], are commonly based on CNNs featuring an encoder-decoder design (Fig. 2.15).
This kind of architecture includes several encoders separated by pooling layers for down-
sampling reducing step-by-step the input dimensionality; each encoder includes one or more
sequences of convolutional, normalisation and ReLU layers. Based on the encoding part,
the decoder are specularly built with up-sampling layers for reconstructing the input size.
Finally, pixel-wise scores are computed and a classification criterion labels each pixel of the
input image.

Several architectures based on CNNs encoder-decoder topologies were designed and
tested, starting from the well-known and general topology of VGG-16 and varying the
number of encoders (and decoders), the number of layers for each encoder, the number of
convolutional filters for each layer and the learner used during the training (i.e. stochastic
gradient descent with momentum (SGDM), or adaptive moment estimation (ADAM) [477]).
Several hyper-parameters were fixed allowing to keep unchanged the dimensions of the input
across each encoder (kernels size [3×3], stride [1×1] and padding [1,1,1,1]); to reduce the
features dimensionality between two consecutive encoders, down-sampling was performed
with the max-pooling layers with kernel dimension [2×2] and stride [2×2]. To reconstruct
the original image size, up-sampling was performed between two consecutive decoders.
The finale stage allowed the classification of each pixels of the input image into Kidney or
Background. Data augmentation was performed, and the following image transformations
were randomly applied:

• horizontal shift in the range [−200;200] pixels;

• horizontal flip;

• scaling with a scale factor ranging in [0.5;4].

The designed and tested configurations, the information about the number of layers
per encoder, the number of convolutional filters per layer and the learner employed are
reported in Table 3.33. The table reports only the three configurations that reached the
highest performance among all the investigated architectures.

Regarding the semantic segmentation performances, the training and testing phases of
each CNN architecture were performed using the full slice resolution and the slice obtained
as result of the object detection step.

S-CNN-1 was the model achieving better results on full image dataset reaching an
accuracy value above 88%; a comparison between the three used models is summarised
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Table 3.33 Configurations designed and tested for the semantic segmentation of the full
image. Each layer is a sequence of a convolutional layer, a batch normalization layer and a
ReLu layer.

Network ID Number of
layers per encoder

Number of
convolutional filters per layer Learner

VGG-16 [2 2 3 3 3] [64 128 256 512 512] ADAM

S-CNN-1 [3 2 3 3 3] [64 128 256 512 512] ADAM

S-CNN-2 [3 2 3 3 3] [96 128 256 512 512] ADAM

Table 3.34 Semantic segmentation results with full image dataset.

Network ID Mean Accuracy Weighted IoU Mean BF Score

VGG-16 0.88076 0.75288 0.41117

S-CNN-1 0.88359 0.76294 0.38205

S-CNN-2 0.79824 0.52781 0.38643

in Table 3.34. The use of an additional layer into the first encoder (S-CNN-1) allowed the
creation of a more meaningful features, thus leading to a more accurate classification of
the pixels. Conversely, increasing the number of convolutional filters in the first layer of
the first encoder (S-CNN-2) did not improve the overall performance. For completeness,
the normalised confusion matrices and an example of the semantic segmentation output are
reported in Table 3.35 and Fig. 3.29, respectively, whilst the overall work-flow is depicted in
Fig. 3.30.

As for the segmentation of the full images, the same architectures were considered for
performing the semantic segmentation of the ROIs generated with the R-CNN-1 model; the
workflow i reported in Fig. 3.31. Due to the different ROIs size resulting from the object

Table 3.35 Normalized Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 computed on
full image dataset.

True Condition

VGG-16 S-CNN-1 S-CNN-2

Positive Negative Positive Negative Positive Negative

Predicted
Condition

Positive 0.96629 0.20477 0.96146 0.19428 0.96595 0.21611

Negative 0.03371 0.79523 0.03854 0.80572 0.03405 0.78389
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Fig. 3.29 Example of semantic segmentation on full image. Full MR slice (top left); segmen-
tation result (top right); ground-truth mask (bottom left); superimposition of the segmentation
result onto the ground-truth mask (bottom right).
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Kidney Segmentation

Input Images

Segmentation Masks

Segmented Images

Fig. 3.30 Work-flow for the semantic segmentation starting from the full image.
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Table 3.36 Semantic segmentation results with ROIs dataset.

Network ID Mean Accuracy Weighted IoU Mean BF Score

VGG-16 0.86016 0.75426 0.34828

S-CNN-1 0.8726 0.8540 0.4332

S-CNN-2 0.8550 0.82931 0.41515

Table 3.37 Normalised Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 computed on
ROIs dataset.

True Condition

VGG-16 S-CNN-1 S-CNN-2

Positive Negative Positive Negative Positive Negative

Predicted
Condition

Positive 0.88781 0.16749 0.79742 0.05213 0.77762 0.06762

Negative 0.11219 0.83251 0.20258 0.94787 0.22238 0.93238

detection step, a rescaling procedure was performed to adapt all the ROIs to the size required
by segmentation; the different magnification factor required the augmentation step to be
adapted as follow:

• horizontal shift in the range [−25;25] pixels;

• vertical shift in the range [−25;25] pixels;

• horizontal flip;

• scaling with scale factor ranging in [0.5;1.1].

Performance indices for the semantic segmentation applied on ROIs are summarised in
Table 3.36. The final best performances were obtained from S-CNN-1. As in the previous
case, normalised confusion matrices and processing example are reported in Table 3.37 and
Fig. 3.32, respectively.
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Detection of 
Regions of Interest

Input Images

Segmentation of
Regions of Interest

Segmented
Regions of Interest

Fig. 3.31 Work-flow for the semantic segmentation starting from ROIs.
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Fig. 3.32 Example result for semantic segmentation applied on ROI. Input MR slice (top
left); R-CNN detection result (top right); detected ROIs (middle left); segmentation result
(middle right); ground-truth mask for the considered ROI (bottom left); superimposition of
the classification result onto the ground-truth mask (bottom right).
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3.2.4 ADPKD Study Case: Optimal Topology for Classification and
Segmentation

The Achilles’ heel of the two methodologies presented before is the detection of slices
containing kidneys; a right detection shown to be crucial for improving the final semantic
segmentation performance. For this reason in the following paragraph a Mono-Objective
Genetic Algorithm (MOGA) has been set-up to find the optimal subset of parameters of
a CNN architecture able to classify input slice as "Kidney" or "Not Kidney". The joint
application of classification and semantic segmentations steps, allowed the definition of a full
segmentation workflow as depicted in Fig. 3.33. In particular, the MOGA algorithm allowed
the definition of an optimal CNN classification architecture and the same topology has been
used in the subsequent semantic segmentation step (same topology for the encoder and dual
topology for decoder).

3.2.4.1 Work-flow Design and Model Configuration

Regarding the MOGA configuration, each genotype was defined to represent a convolutional
architectures composed of at least one and up to three encoders; each encoder included up to
three block of the following operators: convolution, batch normalisation and ReLU layer. The
chromosome also modelled the number of kernels and the filter size for each convolutional
layer. Finally, up to two fully connected layers, with a maximum number of 512 neurons,
were modelled, and a softmax layer was defined for the final classification between the two
classes. The chosen training algorithm for all the CNNs was ADAM [477], due to its more
limited memory usage with respect to other algorithms. In addition, a max pooling layer
(filter size [4×4], stride [4×4]) was included to perform subsampling from one block to the
subsequent. The training procedure also included dataset augmentation for improving the
overall classification performance and the generalisation capabilities of the classifier [247].
The evolutionary optimisation started from an initial random population of 100 individuals.
The crossover probability was 0.8. A simplified schema and the chromosome optimised
parameters are reported in Fig. 3.34 and Table 3.38, respectively.

Each individual within the search space was trained, validated and tested on a random
permutation of the dataset divided into a train, validation and a test sets with percentages
of 60−20−20, respectively. Each input image was then classified and labelled as positive
if it contained at least one pixel belonging to the kidney, negative otherwise. The fitness
function for evaluating the genotypes was the classification accuracy computed considering
the performance on the validation set.
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Fig. 3.33 Full workflow for kidney segmentation.

Fig. 3.34 Base schema of a CNN candidate solution by the genetic algorithm.
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Table 3.38 Parameters optimised by the GA.

Network Configuration

Layers GA Parameters

Number of Layers Number of Filters Filter Dimension
Encoder 1 [1 – 3] [8 – 256] [1 – 7]
Encoder 2 [0 – 3] [8 – 256] [1 – 7]
Encoder 3 [0 – 3] [8 – 256] [1 – 7]

Number of Neurons
Fully-Connected 1 [0 – 512]
Fully-Connected 2 [0 – 512]

Table 3.39 Confusion matrix computed on the test set for the best topology found by the
genetic algorithm.

True Condition

Positive Negative

Predicted
Condition

Positive 69 2

Negative 3 29

For designing the CNN for segmentation purposes, the optimised CNN topology obtained
in the previous step was replicated in the encoding section of the semantic classifier; then
the decoding part was also generated from it. All images containing at least one pixel of the
kidney class constituted the dataset used for the semantic segmentation. Specifically, each
image was split into a left and a right part, increasing both the number and variety of the
samples size. As for image classification, the input dataset was randomly divided into train,
validation and a test sets with percentages of 60−20−20, respectively.

3.2.4.2 Results

The optimised topology found by the application of MOGA algorithm is the following: one
block with two convolutional layers with 11 kernels of size [2× 2]; one block with two
convolutional layers with 182 kernels of size [5×5]; one block with one convolutional layer
with 32 kernels of size [5×5]; 56 and 232 neurons for the two fully-connected layers.

The confusion matrix of the classification results on the test set for the best topology is
reported in Table 3.39. As shown, it reached an accuracy of 95.15%, a sensitivity of 95.83%
and a specificity of 93.55%.
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Table 3.40 Normalised confusion matrix of the final segmentation.

True Condition

Positive Negative

Predicted
Condition

Positive 0.9441 0.1229

Negative 0.0559 0.8771

Regarding the segmentation step, it achieved an accuracy of 91.06%, an IoU of 0.8296
and a BF Score of 0.5234; the normalised confusion matrix is reported in Table 3.40.
An example of the application of the full workflow is depicted in Fig. 3.35. The full
pipeline allowed to improve the performance achieved with the semantic segmentation only
(Section 3.2.3).
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Fig. 3.35 Example of the application of the segmentation work-flow. Input images (A);
superimposition of the output of the segmentation onto the input image: the red pixels are
"kidney", whereas the green ones belong to the background (B); superimposition of the
segmentation output onto the ground: purple pixels are the segmentation output, green pixels
are the ground truth and black ones are the true positives (C).
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3.3 Deep Learning in Radiology: Liver and Spleen Seg-
mentation

As discussed in Section 2.4.2.2, researchers made considerable efforts in developing semi-
automatic or automatic segmentation methods, for the segmentation of those body areas
containing organs whose morphology could physiologically vary over time, or due to patholo-
gies, such as kidneys or liver. In this section will be presented and discussed two different
approaches based on classic image processing algorithms and deep learning architectures for
a semi- and full-automatic spleen, liver and liver vessel segmentation.

3.3.1 A Classic Approach for Liver and Spleen Segmentation

In this section will be discussed a classic approach for segmenting liver and the spleen
parenchyma from CT scans. The workflow is based on a modified version of the Region
Growing (RG) algorithm; after the selection of the starting seeds, one for each organ, all the
other seeds are discovered in a fully automatic way for the remaining slices, minimizing the
user interaction. The seed selection phase has been improved by exploiting two utility data
structures, called Moving Average Seed Heatmap (MASH) and Area Union Map (AUM),
preventing the choice of next seeds from undesired regions of the CT scan.

3.3.1.1 Materials

The liver parenchyma segmentation workflow is based on SLIVER07 dataset [192]. CT
scans presents a pixel spacing range in x/y- direction ranging from 0.55 mm to 0.8 mm and a
slice distance ranging from 1 mm to 3 mm, depending on the acquisition protocol adopted.
The algorithm parameters have been tuned on only 2 CT scans, and the remaining 18 were
used for assessing the performances.

The spleen parenchyma segmentation task, instead, is based on the Medical Segmentation
Decathlon Task 09 (MSD 09) dataset [478]. In this case the x/y-direction spacing varies
from 0.67 mm to 0.97 mm, and the z-direction ranges from 1.6 mm to 8 mm. Only CT scans
with slice distance lesser or equal than 3 mm were considered. The algorithm parameters
have been tuned on only 1 CT scans, and the remaining 9 were used for assessing the
performances.
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3.3.1.2 Segmentation workflow

The developed RG algorithm requires the user to chose an initial slice and a seed belonging
to the organ region. The initial slice must be chosen among those showing the largest liver or
spleen area. Then, the centroid of the segmented area is used as seed for the segmentation
of both the previous and the following slices (as suggested by Chen et al. [283]). Pre-
and post-processing procedures were performed to filter the input data and to improve the
segmentation algorithm, respectively. The algorithm work-flow is following reported.

Pre-processing This phase consists of two operations: first, the Hounsfield Unit (HU)
values of the images are clipped in the range [−150,350] to exclude irrelevant organs and
tissues. Then, the image is is filtered to reduce noise via a median filter with a 3×3 kernel.

Segmentation algorithm Before launching the segmentation algorithm, the slice is masked
with an Area Union Map (AUM) structure. The AUM is initialized with the segmented area
of the first segmented slice; then, it is computed as the union of the last ten segmented slices.
If there are less than ten slices, AUM is calculated with the available ones only. The AUM
allowed to exclude the components having the same intensities range of the considered organ
(liver or spleen) but that are not spatially near. For the region growing step, Edman et al. ’
approach has been investigated; it is based on the creation of a grey-scale map where the
pixels with higher values are whose closer to the seed from the intensity and spatial distance
point of view [479]. The algorithm searches for structures containing the seed with grey-level
in the range described by Equation 3.4, where Iseed is the intensity of the seed and D is the
maximum interval amplitude.

[Iseed − i, Iseed + i],∀i = 1,2, . . . ,D (3.4)

The pseudo-code for the grey scale map generation algorithm is reported in Algorithm 4,
whereas examples of the ongoing process are shown in Fig. 3.36. Finally, the gray scale
map image obtained from the previous step is binarised by using the Otsu thresholding. An
example is shown in Fig. 3.37.

Post-processing The obtained mask is refined by applying morphological operators, and in
particular: morphological closing with a sphere structuring element with a radius of 4 voxels,
hole filling and morphological opening with a sphere structuring element with a radius of 5
voxels. Fig. 3.38 shows an example of post-processing results.
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Fig. 3.36 Graphical representation of the grey scale map algorithm generation.

Fig. 3.37 Example of the application of the Otsu thresholding algorithm on the grey-scale
map (left) to obtain a binary mask (right).
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Algorithm 4: Grey-scale map generation pseudo-code
input : image, the input image

seed, the (x,y) coordinate of the seed
D, the maximum interval amplitude

output :mask, the final grey-scale map
1 mask = zeros(size(image));
2 SeedGrayLevel = image[seed];
3 for i from 0 to D do
4 MaskI = (image > SeedGrayLevel − i) ∧ (image ≤ SeedGrayLevel + i);
5 MaskILabels = labelsConnectedComponents(MaskI);
6 for j from 1 to max(MaskILabel) do
7 ConnectedComponents = extractConnectedComponents(MaskILabel, j);
8 for k from 0 to size(ConnectedComponents) do
9 if ConnectedComponent[k][seed] == 1 then

10 mask = mask + ConnectedComponent[k];
11 end
12 end
13 end
14 end

Due to the liver and spleen shape variability among the slices, the generated centroids
could fall outside the organ region or, rather, in other undesirable parts (e.g. vessels). The
problem is avoidable by computing the Intersection over Union (IoU), or Jaccard Index,
defined as in Equation 2.22, between the current and the previous slice. A new seed is
generated if the IoU is lesser than a threshold and accepted otherwise. Tests suggested 0.3 as
good threshold value.

To choose an appropriate seed, is useful to introduce a data structure named Moving
Average Seed Heatmap (MASH), which allows the determination of the most probable areas
where to place the new seed, as shown in Fig. 3.39. The procedure is initialised with the area
of the first segmented slice and proceed according to Equetion 3.5; γ has been set to 0.6.

MASHi =

⎧⎨⎩Maski i = 1

γMASHi−1 +(1+ γ)Maski i > 1
(3.5)

The MASH is updated for all the correctly segmented slices in the volume, that is if the IoU
between two consecutive slices is greater than the aforementioned threshold. Otherwise, the
MASH is exploited for generating the new seed. In detail, the new seed is chosen among the
pixels corresponding to the maximum value in the MASH and whose grey-level deviates at
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Fig. 3.38 Example of three consecutive slices before (a) and after (b) the post-processing
step. This operation helps to recover from errors during the segmentation phase.

Fig. 3.39 Example of a MASH: pixel intensities are correlated with the probability of the
corresponding pixel to be selected as seed point for the corresponding slice.
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Fig. 3.40 Algorithm workflow.

Table 3.41 Proposed method for liver parenchyma segmentation. Results are expressed as
"mean ± standard deviation".

Model VOE [%] DSC [%] RVD [%] MSSD [mm] ASSD [mm]

RG (D=20) 16.16 ± 9.20 90.91 ± 5.91 -12.18 ± 11.16 48.94 ± 20.70 2.97 ± 1.83

RG (D=25) 11.32 ± 4.10 93.95 ± 2.37 -3.97 ± 6.86 40.13 ± 17.83 1.95 ± 0.94

RG (D=30) 12.56 ± 7.30 93.13 ± 4.48 -1.12 ± 10.94 39.26 ± 17.05 2.17 ± 1.46

most 0.01% from the mean value of the area segmented in the previous slice. This process is
repeated up to 200 times and stops when the IoU between the considered slices reaches the
threshold. If this condition is not met, the seed is chosen among those pixels which allowed
to obtain the highest value of IoU.

The region growing stops when the IoU between the area of the slice and the mean of the
5 previous segmented ones is below the threshold or the current segmented area is lesser than
a certain threshold. In the liver case it has been set to 2500 pixels, whereas for the spleen
it has been set to 1000 pixels. These two values have been found by performing empirical
tests. The difference in the threshold areas is due to the different sizes of the two organs. The
steps of the previous algorithm for selecting the seed points are represented in the flow-charts
reported in Fig. 3.40 and Fig. 3.41.

3.3.1.3 Results

The same metrics defined in the SLIVER07 challenge (Equations 2.33, 2.34, 2.36, 2.39 and
2.38) and discussed in Section 2.3.3 are used. In Table 3.41 and Table 3.43 are reported the
results for liver and spleen parenchyma segmentation, respectively. Table 3.42 and Table 3.44,
instead, report the results from existing literature.
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Fig. 3.41 Slice-wise segmentation flow chart.

Table 3.42 Literature overview for liver parenchyma segmentation. Results are expressed as
"mean ± standard deviation" (if available).

Model VOE[%] DSC[%] RVD[%] MSSD[mm] ASSD[mm]

Arjun et. al. [283] N/A 86.5 N/A N/A N/A

Bevilacqua et. al. [288] N/A 90.6 ± 2.6 N/A N/A N/A

Rafiei et. al. [281] N/A 92.56 N/A N/A N/A

Czipczer et. al. [287] 9.51 95 0.50 23.94 1.85

Mostafa et. al. [275] N/A 96.04 N/A N/A N/A

Lakshmipriya et. al. [280] 6.11 97.04 N/A N/A N/A

Kumar et. al. [277] N/A 97.58 ± 0.50 N/A N/A N/A

Xu et al. [290] 2.05 ± 1.30 N/A 0.66 ± 2.04 6.88 ± 6.13 0.94 ± 0.48
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Fig. 3.42 Example of liver (top) and spleen (bottom) parenchyma segmentation: (left) ground
truth; (center) prediction; (right) difference between prediction and ground truth, where the
green label indicates the false negatives and the yellow label indicates the false positives.

Table 3.43 Proposed method for spleen parenchyma segmentation. Results are expressed as
"mean ± standard deviation".

Model VOE [%] DSC [%] RVD [%] MSSD [mm] ASSD [mm]

RG (D=20) 16.94 ± 3.98 90.69 ± 2.30 -14.54 ± 4.40 11.93 ± 4.76 1.27 ± 0.49

RG (D=25) 14.95 ± 3.60 91.88 ± 2.10 -11.33 ± 3.89 9.79 ± 2.99 1.02 ± 0.37

RG (D=30) 14.50 ± 3.60 92.14 ± 2.09 -8.70 ± 3.97 11.75 ± 5.54 1.05 ± 0.43

Table 3.44 Literature overview for spleen parenchyma segmentation. Results are expressed
as "mean ± standard deviation" (if available).

Model DSC [%] ASSD [mm]

Mihaylova et. al. [291] 79.83 N/A

Behrad et. al. [293] 93.97 ± 2.27 N/A

Gauriau et. al. [295] 87 ± 15 2.6 ± 3

Reza Soroushmehr et. al. [296] 97.3 N/A
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For the liver parenchyma segmentation, the proposed algorithm reached the best perfor-
mance with D = 25 obtaining the best DSC, VOE, MSSD and ASSD results. For the spleen
parenchyma segmentation, the best configuration among those proposed is that with D = 30,
which has a mean DSC value greater than 92%. In both cases, the results are comparable
with the literature, some of which present a more complex segmentation process. For the
spleen parenchyma segmentation, the proposed approach consents to improve the existing
results for ASSD, by obtaining a mean ASSD of 1.02mm, with a standard deviation of
0.37mm. Fig. 3.42 shows some examples for both liver parenchyma and spleen parenchyma
segmentation task.

3.3.2 A Deep Learning Approach for Liver and Liver Vessels Segmen-
tation

In this section the liver segmentation problem will be faced from the deep learning perspective,
allowing the creation of a full automatic pipeline and extending the segmentation granularity
to liver vessels.

3.3.2.1 Materials

Liver Parenchyma Segmentation The proposed automatic liver parenchyma segmenta-
tion approach, is based on two different dataset; the training dataset is the training set of
the Liver Tumor Segmentation (LiTS) Challenge, containing CT abdominal acquisitions
of 131 subjects [191], while the test dataset is the same SLIVER07 dataset used in Sec-
tion 3.3.1.1. In the CT scans of LiTS Challenge, pixel spacing ranges from 0.56mm to 1.0mm

in x/y-direction, whilst slice from 0.45mm to 6.0mm, with the number of slices varying from
42 to 1026. All the images were pre-processed by windowing the HU values in the range
[−150,350]. For the CNN model, the values were then scaled in the range [0,1].

Liver Vessels Segmentation 20 CT scans of 3D-IRCADb dataset2 were used for train-
ing and internally cross-validating the CNN model, and a private dataset provided by the
Polyclinic of Bari composed of 4 CT scans was used as an independent test set for external
validation. The 3D-IRCADb dataset contains CT scans whose axial-plane resolution ranges
from 0.56mm to 0.81mm, whilst resolution along the z-axis spans from 1mm to 4mm. The
number of slices ranges from 74 to 260. The 20 CT scans of 3D-IRCADb come from 10
women and 10 men, and the number of patients with hepatic tumours is 75% of the overall

2https://www.ircad.fr/research/3d-ircadb-01/

https://www.ircad.fr/research/3d-ircadb-01/
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Fig. 3.43 Proposed 2.5D V-Net architecture.

dataset. The dataset from the Polyclinic of Bari contains 4 CT scans with an axial plane
resolution varying from 0.76mm to 0.86mm, and a z-axis resolution spanning from 0.7mm

to 0.8mm. The number of slices is between 563 and 694. Pre-processing adopted for liver
vessels segmentation was the same used for liver parenchyma segmentation.

3.3.2.2 Segmentation workflow

In the biomedical image segmentation field, a well-known and widely used semantic segmen-
tation CNN architecture are U-Net [171] and its extensions [172, 173]

Starting from the V-Net architecture proposed by Milletari et al. [173], a 2.5D variant is
proposed. In detail, all the 3D layers are replaced by the corresponding 2D ones, with a first
layer which processes 5 slices as 5 channels. In the adopted architecture, down convolutional
layers have kernel size 2× 2 and stride 2× 2; normal convolutional layers have kernel
size 5×5, and transposed convolutional layers used as up convolutions have 2×2 kernels.
Moreover, a batch-normalization layer is added after each convolutional layer. The use of
batch-normalization has been taken into consideration by the same authors of the original
V-Net [480]. Standard ReLu is used instead of PReLu non-linearity. The 2.5D variant of the
V-Net architecture is depicted in Fig. 3.43.

For both the considered tasks, it was trained a 2.5D V-Net by taking random patches of 5
slices from the training set, assigning a higher probability to take a patch containing at least
one voxel belonging to the liver or to the vessels. The optimiser for the training process was
Adam [477], with a starting learning rate of 0.01. The network is trained for 2001 epochs,
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reducing the learning rate by 10 every 333 epochs. 200 samples were processed per each
epoch. The batch size has been set to 4.

In order to ensure lower convergence time, it is crucial to select a proper loss func-
tion, such as Binary Cross-Entropy (BCE) loss function, reported in Equation (3.6), or the
Weighted BCE (WBCE), reported in Equation (3.7).

For the following definitions, let pi ∈ P be the probability of the ith voxel to belong to the
liver and gi ∈ G its binary label with i = 1, . . . ,N; P and G respectively being the predicted
segmented volume and the ground truth volume.

BCE = − 1
N

N

∑
i=1

(gi · log(pi)+(1−gi) · log(1− pi)), (3.6)

WBCE = − 1
N

N

∑
i=1

(ω1 ·gi · log(pi)+ω0 · (1−gi) · log(1− pi)). (3.7)

In Equation 3.7, ω1 and ω0 are introduced to give a different weight for positives and
negatives. These functions act as a proxy for the optimization of the true measures used
later for the evaluation, which usually include the Dice Coefficient (Eq. 3.8). Thus, another
plausible choice for the optimization function consisted of directly adopting an objective
function based on the Dice Coefficient [173], or, more generally, the Tversky index. Salehi
et al. exploited the Tversky Loss function for lesion segmentation by means of 3D CNNs
[481]. The used implementation is reported in Equation 3.9, where p0i is the probability of
the ith voxel to be positive, g0i its binary label (i.e., 1 for positives and 0 for negatives), p1i

its probability of being a negative, g1i its negated binary label, directly obtained applying
logical NOT to g0i (i.e., 0 for positives and 1 for negatives).

D =
2 ·∑N

i=1 pigi

∑
N
i=1 pi +∑

N
i=1 gi

(3.8)

Tα,β =
2 ·∑N

i=1 p0ig0i

∑
N
i=1 p0ig0i +α ∑

N
i=1 p0ig1i +β ∑

N
i=1 p1ig0i

(3.9)

Tversky index-based loss function is used due to the unbalanced voxels problem. In
fact, the voxels belonging to the liver region are only a fraction of the whole CT scan. In
the LiTS dataset, the unbalancing ratio is approximately 40 : 1 in favour of negative voxels,
becoming more relevant for the vessels segmentation (about 200 : 1 in favour of negative
voxels). Dice Loss does not give different weights to false positives and false negatives, thus
it does not focus the learning on the maximization of the recall of the voxels of interest. With
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a Tversky Loss, thanks to the α and β coefficients, it is possible to give a major weight on
false negatives.

Different data augmentation techniques are considered, as slice-wise right-left flipping of
volume patches, gaussian blur, elastic transform with α = 2 and σ = 3, multiplicative noise,
random rotations in the range [−10◦,10◦], random brightness and contrast perturbations.

In the inference phase, instead, the volumetric images is processed in a 3D sliding window
fashion, processing sub-volumes of 512× 512× 5 voxels. Due to the adoption of a 2.5D
approach, the five processed slices were used for predicting the central one only. In order to
create patches of five slices also at the begin and at the end of the CT scans, the first and last
slices were replicated.

Morphological opening operator is used as post-processing in order to separate, if needed,
the liver and the spleen. In fact, due to the similarity between spleen and liver intensity values
and texture, the two organs could be misclassified. Then, connected components labelling
is applied retaining only the largest one, since the liver is the largest organ in the abdomen.
Finally, morphological closing and morphological hole-filling are applied to the segmented
masks. A similar procedure has been carried out for the vessels segmentation, without the
morphological and connected components labelling post-processing.

3.3.2.3 Results

To evaluate the performance of the implemented segmentation algorithms, the same indexes
(Equations 2.33, 2.34, 2.36, 2.39 and 2.38) adopted in the SLIVER07 and LiTS challenges
[191, 192] and discussed in Section 2.3.3 are used. Performances indexes, such as accuracy
(Eq. 2.13), recall (Eq. 2.15) and specificity (Eq. 2.16) are also computed, considering as
positives the voxels belonging to the liver or vessels (depending on the segmentation task)
and negatives the others.

The results obtained for the liver parenchyma and liver vessels segmentation are reported
in Table 3.45 and Table 3.46, respectively. The 2.5D V-Net trained with the Dice loss
allowed to obtain a mean Dice Coefficient of 96.13% and a mean MSSD of 140.42mm for
the liver parenchyma segmentation task. Since in a surgical planning setup is crucial to
reduce the Hausdorff distance, has been observed that the adoption of the post-processing
is very beneficial. It permitted to reduce the mean MSSD to 31.50mm, and its standard
deviation from 86.96mm to 12.05mm. A so large reduction of the MSSD can be explained by
the fact that sometimes the liver CNN model also segments the spleen region, as previously
stated. The proposed approach outperforms other methods proposed in the literature, as
reported in Table 3.45. Note that, since the liver segmentation task is not too unbalanced, the
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Table 3.45 Liver parenchyma segmentation results expressed as "mean ± standard deviation".

Model DSC [%] VOE [%] RVD [%] ASSD [mm] MSSD [mm]

Pr
op

os
ed

2.
5D

V
-N

et DL 96.13 ± 2.45 7.35 ± 4.31 1.13 ± 6.24 4.18 ± 7.95 140.42 ± 86.96

DL, PP 96.52 ± 1.84 6.66 ± 3.32 4.26 ± 3.95 1.44 ± 0.89 31.50 ± 12.05

TL (α = 0.3,β = 0.7) 96.27 ± 1.57 7.16 ± 2.86 1.24 ± 4.03 3.56 ± 7.48 141.04 ± 84.54

TL, PP (α = 0.3,β = 0.7) 96.26 ± 1.18 7.19 ± 2.18 5.11 ± 3.24 1.50 ± 0.61 31.26 ± 12.18

TL (α = 0.1,β = 0.9) 94.21 ± 3.01 10.81 ± 5.16 7.05 ± 5.90 6.03 ± 8.56 158.37 ± 65.09

TL, PP (α = 0.1,β = 0.9) 93.88 ± 2.40 11.45 ± 4.12 10.99 ± 6.15 2.43 ± 1.11 33.95 ± 13.01

Lu et al. [21] N/A 9.21 ± 2.64 1.27 ± 3.85 1.75 ± 1.41 36.17 ± 15.90

Rafiei et al. [22] - 3D-2D-FCN + CRF 93.52 N/A N/A N/A N/A

Kim et al. [23] - 3D U-Net 95.9 ± 1.8 N/A N/A 0.71 ± 0.30 8.93 ± 6.30
Acronyms: DL - Dice Loss, TL - Tversky Loss, PP - post-processing.

Table 3.46 Liver vessels segmentation results, expressed as “mean ± standard deviation”.

Model Accuracy [%] Recall [%] Specificity [%] ASSD [mm]

Pr
op

os
ed

2.
5D

V
-N

et Dice Loss 99.94 ± 0.02 56.67 ± 20.13 99.96 ± 0.03 9.51 ± 0.52

Tversky Loss 99.93 ± 0.03 62.62 ± 17.01 99.94 ± 0.03 14.84 ± 2.93

Tversky Loss 99.91 ± 0.04 68.92 ± 19.13 99.92 ± 0.05 15.79 ± 2.21

Goceri et al. [29] - AVS 89.57 ± 0.57 N/A N/A 23.1 ± 16.4

Chi et al. [30]
Context-Based Voting 98 ± 1 70 ± 1 99 ± 1 2.28 ± 1.38

Zeng et al. [31]
Oriented Flux Symmetry and Graph Cuts 97.7 79.8 98.6 N/A
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V-Net trained with Tversky loss with α = 0.3, β = 0.7 leads to results comparable with the
network trained with the Dice Loss, whereas the V-Net trained with the Tversky loss with
α = 0.1, β = 0.9 leads to worse overall results, since the coefficients penalize too much the
false negatives. Regarding the vessels segmentation task, the proposed method shows high
accuracy (higher than 99%), also compared to other approaches proposed in the literature,
as can be seen in Table 3.46. The adoption of the Tversky loss to penalize false negatives
more than false positives yields to progressively higher recall values when α is decreased
and β is increased, with a best recall of 68.92 in the configuration with α = 0.1, β = 0.9.
Thus, in case of extremely unbalanced dataset, the use of the Tversky loss function becomes
appreciable. However, it is important to note that the used test set is very small, and the
results suffer from high variability. Examples of liver segmentation results obtained with the
proposed method are depicted in Fig. 3.44, whereas examples of vessels segmentation results
are reported in Fig. 3.45 and Fig. 3.46.

Comparing the deep learning based liver segmentation with the classic approach of
Section 3.3.1, on the common SLIVER07 dataset, the proposed CNN pipeline allowed to
obtain higher voxel-level performances, with Dice Coefficient greater than 0.96 and VOE
lesser than 0.07; the region growing approach, instead, allowed to get a Dice Coefficient
greater than 0.93 and VOE lesser than 0.12. At surface-level, the CNN approach obtained
a MSSD of 31.50mm and an ASSD of 1.44mm, whereas the region growing algorithm
reached MSSD of 39.26mm and ASSD of 1.95mm. Furthermore, the CNNs deep learning
pipeline reached more stable result with lower standard deviation and, really important, it
is fully automatic methodology but, as a drowback, its workflow is more complex than the
semi-automatic procedure implementing the region growing algorithm. The obtained results
show that the 2.5D V-Net, trained with a Tversky Loss, is a very promising approach for
the liver and liver vessels segmentation in CT scans, allowing to obtain accurate volumetric
reconstructions of the segmented regions.
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Fig. 3.44 Example of slice obtained with the liver segmentation pipeline: (left) ground truth;
(center) Dice Loss-based 2.5D V-Net prediction; (right) difference between ground truth and
prediction, where false negatives and false positives are respectively evidenced in green and
in yellow.

Fig. 3.45 Example of slice obtained with the liver vessels segmentation pipeline: (left) ground
truth; (center) Tversky Loss-based 2.5D V-Net prediction; (right) difference between ground
truth and prediction where false negatives and false positives are respectively evidenced in
green and in blue.

Fig. 3.46 Example of mesh obtained by the liver vessels segmentation: (left) ground truth;
(right) Tversky Loss-based 2.5D V-Net prediction.



Chapter 4

Machine Learning and Deep Learning
for Signals Processing

The first insight of autoencoder architecture on electromyographic signals is based on the
application of an undercomplete autoencoder to extract spatial muscle synergies. The
presented bio-inspired autoencoder topology (Section 4.2) has been trained to extract muscles
synergies from EMG signals of the main upper-limb muscles, acquired during isometric
reaching tasks. The extracted synergy activations have been also used to estimate the
moments applied to the shoulder and elbow articulations. The experimental results were
compared with the standard NNMF algorithm used in muscle synergy extraction. A second
application (Section 4.3), starting from the results of the first one, make use of a customised
autoencoder-based neural model able to extract the muscle synergy patterns simultaneously
considering the performance in the task space (i.e., estimation of moments/forces exerted
by the human upper limb). Specifically, the model builds its synergy code considering both
the EMG signals reconstruction performance and the estimation quality of the upper limb
moments computed as a linear combination of the synergy activation signals, thus allowing
a task-oriented synergy extraction. The creation of a more complex model is due to the
assumption that a direct integration of task-space constraints in the algorithm used to extract
the synergies, could produce a better task-space variable estimation, thus leading to a new
class of optimized myo-controllers and, perhaps, providing a deeper understanding of the
hypothetical modularity of the central nervous system and its relationship with the motor
learning.

Part of this chapter has been published in international conferences and journals [114,
115, 332, 337].
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    VIRTUAL ENVIRONMENT

ELECTRODES PLACEMENT

TARGET

CURSOR

20 N

Fig. 4.1 The experimental set-up. The subject that is wearing the upper limb L-Exos
exoskeleton (A). The virtual environment showing the cursor and the target sphere (B). The
surface EMG electrode placement (C).

4.1 Materials

For the research purpose analysed in this section, two dataset have been considered.The first
study involved six healthy subjects, while the second extends the first with a larger number
of participant (nine right-handed healthy subjects, age 27.7±4.9 years, weight 74.1±9.1
kg). The experiments were conducted in accordance with the WMA Declaration of Helsinki
and all subjects provided written consent to participate.

Experimental Setup The setup was designed for measuring the subject upper-limb muscle
EMG signals and forces exerted at the hand level during a set of isometric contractions
(Fig. 4.1). An electromechanical upper-limb exoskeleton, designed for upper-limb rehabilita-
tion, namely L-Exos, was used for acquiring the interaction force between the subject’s hand
and the exoskeleton’s cylindrical handle featuring a triaxial force sensor. The L-Exos has
been designed as a wearable haptic interface, capable of providing a controllable force at
the center of user’s right hand palm, oriented along any direction of the space [482]. The
L-Exos has four actuated DOFs for supporting elbow and shoulder movements: shoulder
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Fig. 4.2 Main architecture of the acquisition system.

adduction/abduction; shoulder flexion/extension; shoulder internal/external rotation; elbow
flexion/extension, and one passive DOF used for measuring the wrist pronosupination angle.
All the motors of the exoskeleton have been located on the fixed frame. For each actuated
DOF, the torque is delivered from the motor to the corresponding joint by means of steel
cables and a reduction gear integrated at the joint axis. All actuated joints are driven with a
proportional-derivative control strategy with gravity compensation. The force sensor readings
have been then used to estimate the articulation moments.

Concerning the EMG acquisition system, two bio-signals amplifiers (g.USBamp, gTec,
Austria) were included in the setup to record the activity of 13 muscle heads: biceps short
head, biceps long head, brachioradial, triceps long head, triceps lateral head, deltoid anterior
head, deltoid posterior head, trapezius, pectoralis major, teres major, infraspinatus, latissimus
dorsi and rhomboid. Disposable Ag/AgCl surface electrodes were placed by following the
SENIAM1 recommendations, after a skin cleaning process, and the ground electrode attached
to the right elbow. All the surface EMG signals were acquired at 1200Hz sampling frequency
and filtered by the amplifier with a 5−500Hz band-pass filter and a 50Hz notch filter.

In order to make a more intuitive and easy experimental session, the subject was immersed
in a virtual environment (VE) by wearing a head mounted display (Oculus Rift HMD, Oculus)
to receive visual feedback. The force sensor measurements, VE signals and EMG data were
synchronized on a Master PC (Fig. 4.2), featuring Microsoft Windows 10 (64 bit), Intel i7 1.6
GHz, 8 Gb RAM and Matlab (Release 2018b). The Master PC has been also used to generate
commands for driving the exoskeleton and the VE, according to the acquisition routine.

Data Acquisition Protocol Before starting the acquisition routine, subjects were invited
to sit on a chair and wear the exoskeleton using the flip-off arm bands. By using stacked

1http://www.seniam.org/

http://www.seniam.org/
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hard plastic layers under the chair, the height of the seat was adjusted in order to align the
centres of rotation of the subject’s and exoskeleton shoulder joint. At the beginning of the
experiment the exoskeleton joint angles were automatically fixed to a pre-defined angles
set: shoulder abduction/abduction angle equal to 0 degrees, shoulder internal rotation angle
equal to 0 degrees, shoulder elevation angle equal to 10 degrees and elbow angle equal to 90
degrees. After the surface EMG electrodes were placed on the targeted muscles, elastic bands
were used to keep electrodes and wires firmly attached to the body in such a way that the
exoskeleton handle was easily reachable. Then, subjects were asked to perform 16 isometric
virtual reaching tasks along 8 directions (two trials per direction) on the sagittal plane, equally
spaced at 45 degrees and randomly sorted. Isometric contractions were achieved through the
exoskeleton end effector position control, keeping the subjects upper-limb pose fixed. In the
virtual environment, the subjects hand position corresponds to a red sphere (cursor) and the
task target is represented as a green sphere. The distance between the two spheres is covered
applying the target force of 20 kg ·m/s2 on the sensor and the radius difference allowed a
maximum positioning error equal to 3 kg ·m/s2 (1 N = 1 kg ·m/s2). Each virtual reaching
task consists of: positioning the cursor inside the target, holding it in place for 2 s and then
relaxing to move the cursor back to the rest position. The cursor position is driven by a spring
model Pc = K ∗FEE where Pc is the 3D cursor position, FEE is the applied isometric force
vector and K is the elastic constant of the virtual spring.

4.2 An Undercomplete Autoencoder for Muscle Synergies
Extraction

Among the several kinds of AE families cited in Section 2.2.1.2, an undercomplete autoen-
coder has been chosen and firstly used to extract the spatial muscle synergies of the human
upper limb while executing an isometric reaching task in a bi-dimensional space. In a second
step, the extracted muscles synergy signals have been used to predict the movement intention
by estimating the shoulder and elbow articulation moments with a linear combination.

Given the input vector I(t) = [m1(t),m2(t), . . . ,mN(t)], where mi(t) represents the pre-
processed activation of the i-th muscle and N is the number of considered muscles, the
autoencoder has the objective to extract the activations of the muscle synergies si. The
pre-processing phase considers the following steps for each raw EMG signal: high-pass
filtering (20 Hz second-order Butterworth); rectification and low-pass filtering (5 Hz second-
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Fig. 4.3 Architecture of the undercomplete autoencoder for synergies extraction.

order Butterworth); normalization over the maximum value computed during the calibration
procedure.

4.2.1 Model Design and Configuration

The structure of the designed autoencoder is shown in Fig. 4.3. The considered topology
has one hidden layer with four positive linear neurons that produce the synergy activations
named s1(t), s2(t), s3(t) and s4(t). Such configuration replicates the physiological model
of the spatial muscles synergies reported by Berger et al. [402]. The problem of selecting
the best number of the hidden neurons was not faced with the topology definition, i.e. the
number of extracted muscles synergies, but a fixed number (4) of hidden neurons has been
chosen since some studies have reported that the isometric activation of the human upper
limb muscles can be accurately described by four muscle synergies [335, 402]. Considering
the definition of autoencoders, the output layer has the same dimension as the input layer. As
suggested by Goodfellow et al. , a simple linear decoder with biases is sufficient to avoid the
copying task without extracting useful information, caused by too much learning capacity
[116].

The model has been implemented with the Neural Network toolbox of Matlab (Release
2018b) and trained using a gradient descent with momentum and adaptive learning rate
algorithm and considering 1000 training epochs. Given a single train set, the training was
repeated 20 times with different initial weights. Among the 20 models, the best one has
been chosen as the model featuring the minimum correlation index among the four synergy
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activations. Such index has been computed as the sum of the elements of the absolute
upper triangular matrix extracted by the correlation matrix of s1(t), s2(t), s3(t) and s4(t).
Considering a train set composed by about 4000 time point, the training process of each
autoencoder lasts about 1.5 seconds. All the trainings have been run on a PC featuring two
Intel XEON E5 2630 v3 CPUs and 64 GB of RAM.

4.2.2 Joint Moment Estimation Based on Muscle Synergies: Compari-
son with the State-of the Art

For this study, the bi-dimensional motion intention estimator that takes the AE-extracted
muscles synergies as input has been compared with other methods already proposed in
literature and based on the same model described by the Equation 2.42. Each model is able
to estimates the shoulder and elbow moments. In detail:

• Model Hm: T = H ·m, where m is the muscle activation signal vector processed as
the input data of the AE (Fig. 4.3) [402];

• Model HWW+m: T = H ·W ·W+ ·m, where H is exactly the same EMG-to-moment
matrix extracted for the Model Hm [402] and W is the synergy matrix extracted with
the NNMF by using the Matlab function nnm f (. . .);

• Model Ĥc: T = Ĥ · c, where c is extracted with the NNMF for the model calibration
and computed as reported in Equation 2.41 for the model evaluation [335];

• Model AE: T = HAE · S, where S is the synergy activation vector extracted by the
autoencoder.

It is worth noting that the matrix H has dimension equal to 2×N (two is the number of
moment components: shoulder and elbow joint moments), whereas the matrices Ĥ and HAE

have size 2×4 (four is the number of considered muscle synergies).

4.2.3 Model Calibration and Performance Metrics

Each subject-specific model has been independently trained with 256 (28) different train sets,
where 2 is the number of reaching trials executed for each of the target sphere positioned in
the 8 directions. Hence, a single train set contains the EMG and shoulder/elbow moment
data acquired in one trial along all directions. Fixed a single train set, then all models have
been evaluated on the complementary test set, that contains the data acquired during the
contractions that have not been considered for the calibration.
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The multivariate R2 index has been computed for each test set in order to evaluate the
synergy extraction performance of both the NNMF and AE. The multivariate R2 index
represents the fraction of total variation accounted by the synergy reconstruction and then is
a global indicator of the goodness of reconstruction. The R2 has been computed as follows
[415]:

R2 = 1− SSE
SST

= 1− ∑s ∑
ks
k=1 ∥ms(tk)−mr

s(tk)∥
2

∑s ∑
ks
k=1 ∥ms(tk)− m̄∥2 (4.1)

where SSE is the sum of the squared errors, and SST is the sum of the squared residual
from the mean activation vector m̄, i.e. the total variation multiplied by the total number of
samples K = ∑s ks.

The shoulder and elbow articulation moment reconstruction by the models presented
above has been evaluated computing the root mean square error (ERMS) between the measured
and estimated torques.

4.2.4 Statistics

In order to compare the proposed methods, the average values of the R2 and ERMS among
the 256 test sets for each subject have been computed. The two synergy extraction methods,
i.e., AE-based and NNMF, have been compared with the Wilcoxon test. The four moment
estimator models, i.e. Hm, HWW+m, Ĥc and AE-based model, have been compared
running the Friedman test and the Dunn’s pairwise post-hoc tests with Bonferroni correction.
The significance level has been set to 0.05. Non-parametric tests were adopted since the
assumptions underlying parametric tests resulted to be violated for all sets of data. All the
analyses have been performed using the SPSS2 software (Version 21).

4.2.5 Results

In order to evaluate the ability of the proposed autoencoder to extract representative muscles
synergies, the NNMF method and the autoencoder were compared in terms of the multi-
variate R2 index computed between the processed measured muscle activations mi and the
reconstructed m̃i computed as m̃i =W ·W+ ·mi.

Fig. 4.4 reports the average R2 among the several test sets for each subject. It resulted
that the R2 of the muscle activation reconstruction based on the AE is significantly higher
than the NNMF R2 (z =−2.201, p = 0.028).

2https://www.ibm.com/analytics/spss-statistics-software

https://www.ibm.com/analytics/spss-statistics-software
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Fig. 4.4 Quality index of the muscle activation reconstruction.
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Fig. 4.5 Shoulder moment estimation error.

To validate the estimation ability of the method based on the muscle synergies extracted
with the proposed autoencoder, the four models were compared in terms of ERMS between
the moments predicted by the model and reference (or measured) joint moments.

Fig. 4.5 and Fig. 4.6 report, for each subject, the averaged ERMS among the several test
sets. Concerning the shoulder joint moment estimation, the ERMS of the four methods are
significantly different (χ2(3) = 11, p = 0.012). Dunn tests with the Bonferroni correction
were used to follow up this finding. It appeared that there is only a significant difference
between the Model Hm and the model HWW+m (T = −2.167, p = 0.022). Regarding
the elbow joint moment estimation, no significant difference between the ERMS of the four
methods has been found (χ2(3) = 7.8, p = 0.050).
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Fig. 4.6 Elbow moment estimation error.

Table 4.1 ERMS performance Bonferroni corrected post-hoc comparisons for the shoulder
joint.

Pairwise comparison T Statistics p-value
Hm - HWW+m -2.167 0.022
Hm - Ĥc -1.500 0.265
Hm - AE -0.333 1.000
HWW+m - Ĥc 0.667 1.000
HWW+m - AE 1.833 0.083
Ĥc - AE 1.167 0.705

As reported in Fig.4.4, comparing the averaged R2 values computed on the test sets,
it resulted that the autoencoder performs better than the NNMF (Wilcoxon test, z=-2.201,
p=0.028). This means that the AE generates synergy activations that better reconstruct the
original muscle activation signals. It also worth noting that the AE and the NNMF have not
been tested on the reconstruction of the same EMG signals used to calibrate the synergy
model, but on different muscle activations acquired in the same condition, i.e. the same upper
limb pose.

In conclusion, summarising the results, the statistical analysis revealed that the only
found significant difference in estimating the shoulder moment is between the models Hm

and HWW+m (Dunn test with the Bonferroni correction, T =−2.167, p = 0.022). The clear
messages that arises from the statistical analysis, Fig. 4.5 and Fig. 4.6 are that: the Hm model
is better than the HWW+m, Ĥc and AE models, even if such difference is not significant in
the case of elbow moment estimation; the three methods HWW+m, Ĥc and AE performs
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similarly. This result is reasonable since the Model Hm is not synergy based, i.e. it does
not introduce any loss of EMG signal information, and it uses a bigger H matrix allowing
a better learning. However this results are limited by the fact that the estimator has been
calibrated and tested in the same upper limb pose. A synergy-based method should achieve
better performances when a complex calibrated model is tested in different conditions [335].

4.3 Autoencoder for Task-Oriented Muscle Synergy Extrac-
tion

Even though a certain number of procedures for muscles synergy extraction has been proposed
in the literature [407, 418], the main drawback of the existing approaches, such as the
one presented before, concerns the fact that muscle synergies are estimated by analysing
recorded muscle activities without having any information about neither the underlying task
nor the final application. This means that the synergy extraction procedure considers the
total variance reconstruction rate of the EMG signals as the only performance index to be
optimized. Cristiano et al. [407] reported: ”We suggest that synergy extraction methods

should explicitly take into account task execution variables, thus moving from a perspective

purely based on input-space to one grounded on task-space as well . . . In conclusion, we

believe that the evidence reviewed here provides support for the existence of muscle synergies.

However, many issues are still unresolved. A deeper investigation of the relationship between

synergies and task variables might help to address some of the open questions”. Few works
have investigated the concept of functional synergies that are an initial attempt to link muscle
synergies with task variables [407, 483–485]. However, as deeply discussed by Barradas et

al. [486] and Cristiano et al. [407], functional synergies present some issues and limitations.
After an extensive argumentation, Cristiano and his colleagues state that a novel required
technique for muscle synergy extraction ”. . . should optimize the reconstruction error of the

EMG signals, and constrain a good fit of the task-variables”.

4.3.1 Model Design and Configuration

Starting from the architecture proposed in Section 4.2, a novel architecture that is able to
learn the optimised muscles synergies patterns that lead to the optimized muscle synergy-
based movement intention detection has been designed. The structure of the presented
model (Fig. 4.7) is composed of two main blocks: an undercomplete autoencoder for muscle
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Fig. 4.7 The proposed extended autoencoder model.

synergies extraction and a feed-forward layer for movement estimation based on muscle
synergy activations.

Referring to the Fig. 4.7, part of the modified autoencoder, works to learn and extract the
muscles synergies patterns; in fact, given the input feature vector I(t)= [m1(t)m2(t) . . .mN(t)],
where mi(t) indicates the pre-processed activation of the i-th muscle and N is the number
of considered muscles, the AE preserves the objective to extract muscle synergy activations
si. The topology has one hidden layer with four positive linear neurons that encode the
muscle activations into synergy activations named s1(t), s2(t), s3(t) and s4(t). As before,
the number of hidden neurons is set to four, and the overall configuration has been chosen
with aim to replicate the physiological model of the spatial muscles synergies reported and
deeply discussed in the work of Berger et al. [402]. The same three step pre-processing
routine is also executed on each raw electromyographic signal: high-pass filtering (20 Hz

second-order Butterworth); rectification and low-pass filtering (5 Hz second-order Butter-
worth); per-channel normalization over the maximum value computed during the calibration
procedure.

Differently from the previous Section 4.2, the synergy-based movement intention detec-
tion has been achieved by adding a feed-forward block on top of the encoding hidden layer of
the AE. By adding such block, the proposed neural model is able to compute the best muscle-
synergy patterns that leads to the best trade-off between muscle activation reconstruction and
movement intention estimation, that is, hand forces or articulation moment predictions. From
the study of literature, this is the first attempt to build a model that is able to extract muscles
synergies considering the performance into the task space, i.e. movement. Regarding the
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activation function, the layer considers a linear function and no bias has been added. Such
configuration allows for the computation of the forces/moments as a linear combination
of the synergy activations. In detail, the output vector T (t) = [T1(t),T2(t)] represents the
estimated moments. It is important mentioning that the moment components T1(t) and T2(t)

have been normalized to range within the interval [−0.5,0.5].

Network Training The network has been implemented using the Neural Network toolbox
of Matlab (Release 2018b), and trained using a gradient descent with momentum and adaptive
learning rate algorithm for 1000 epochs. Given a single training set, the training of the neural
model has been repeated 10 times considering different initial weights [320], then the model
featuring the best performance has been considered for the next analysis. Considering a
training set composed of about 1000 time points, the training process of the model lasts about
4.5 s. All the training sequences have been run on a PC featuring two Intel XEON E5 2630
v3 CPUs and 64 GB of RAM.

Joint moment estimation based on muscle synergies: comparison with the state of the
art. As the previous application, the performance of the bi-dimensional motion intention
estimator has been compared with the same standard methods. In detail:

• Model Hm: T = H ·m, where m is the muscle activation signal vector processed as
the input data of the AE (see Fig. 4.7) [402];

• Model HWW+m: T = H ·W ·W+ ·m, where H is exactly the same EMG-to-moment
matrix extracted for the model Hm [402] and W is the synergy matrix extracted with
the NNMF by using the Matlab function nnm f (. . .) (Release 2018b);

• Model Ĥc: T = Ĥ · c, where c is extracted with the NNMF for the model calibration
and computed as reported in Equation (2.41) for the model evaluation [335];

• AE-based model: T = Hmodel ·S, where S is the synergy activation vector extracted
by the autoencoder and Hmodel are the weights of the model block devoted to the
synergy-based movement intention detection.

As before, the matrix H has dimension equal to 2×N (two is the number of moment
components: shoulder and elbow joint moments), whereas the matrices Ĥ and Hmodel have
size 2×4 (four is the number of considered muscle synergies). All methods have been tested
using the same set of muscle activation recordings.
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4.3.2 Results

In order to compare the proposed methods, the same model calibration, performance metrics
and statistic methodologies used before were replicated. The proposed neural model has been
evaluated both in terms of joint moment estimation and sEMG signal reconstruction. Fig. 4.8
(top-left and bottom-left) and Fig. 4.8 (top-right) report the mean value of the ERMS and the
mean R2 values among all test sets for each subject, respectively. Table 4.2 reports the ERMS

and multivariate R2 values averaged among all subjects for each compared methodology.
The Friedman test revealed that there is a significant difference among the four investi-

gated techniques in terms of ERMS relative to both shoulder moment prediction (χ2 = 18.733,
p < 0.001) and elbow moment prediction (χ2 = 15.000, p = 0.002). Dunn test with Bonfer-
roni correction was then used to perform the post-hoc tests (see Table 4.3). The results of
the post-hoc analysis showed that the shoulder moment ERMS error observed with AE-based
model is significantly lower than both the errors obtained by the HWW+m model (Z = 2.556,
p < 0.001) and Ĥc model (Z = 1.778, p = 0.021). No significant differences were found
between the AE-based model and Hm model (Z = 1.222, p = 0.268). Similar results were
found analyzing the moment elbow ERMS errors. In detail, the elbow moment ERMS error
observed with AE-based model is significantly lower than both the errors obtained by the
HWW+m model (Z = 2.111, p = 0.003) and Ĥc model (Z = 1.778, p = 0.021). No sig-
nificant differences were found between the AE-based model and Hm model (Z = 0.778,
p = 1.000).

The Friedman test also revealed that there is a significant difference among the four
investigated techniques in terms of multivariate R2 index between the measured and predicted
joint moments, χ2 = 21.400, p < 0.001. The post-hoc analysis has reported that there
is a significant difference between three pairs of models (see Table 4.3): the R2 index of
the AE-based model is higher than both the R2 index of the HWW+m model (Z =−2.667,
p< 0.001) and Ĥc model (Z =−1.889, p= 0.011), respectively; the Hm model outperforms
the HWW+m model (Z = 1.667, p = 0.037); then no significant difference was found
between the AE-based model and the Hm model (Z =−1.000, p = 0.602).

The difference between the autoencoder and the NNMF algorithm were also assessed in
terms of sEMG signals reconstruction quality by comparing the multivariate R2 index between
the acquired and reconstructed EMG signals (see Fig. 4.8 (bottom-right) and Table 4.4). The
Wilcoxon test results showed that the NNMF achieved a significant higher R2 index value
than the autoencoder (Z =−2.666, p = 0.008).

To summurise, the statistical analysis on the data acquired from nine healthy subjects
and the Fig. 4.8 revealed that: the proposed method outperforms the two synergy-based
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Fig. 4.8 Results averaged among the test sets for each subject and each compared tech-
nique/model. Shoulder moment ERMS errors (top-left). Elbow moment ERMS errors (bottom-
left). Moment Multivariate R2 index values (top-right). sEMG Multivariate R2 index values
(bottom-right).

Table 4.2 Means and standard deviations of the shoulder/elbow moment RMS errors and
multivariate R2 index values among all subjects.

Model
Shoulder Moment Elbow Moment Shoulder and Elbow Moment
RMS Error [Nm] RMS Error [Nm] Multivariate R2

(M ± SD) (M ± SD) (M ± SD)

Hm 1.15±0.24 0.72±0.17 0.75±0.09
HWW+m 1.42±0.31 0.90±0.16 0.62±0.09
Ĥc 1.40±0.30 0.90±0.16 0.63±0.08
AE model 1.06±0.26 0.62±0.14 0.80±0.07

approaches HWW+m and Ĥc and such difference is statistically significant; no statistical
difference has been found between the proposed method and the Hm model that considers
a direct mapping between the EMG signals and the joint moments. Such findings seem
promising since the proposed method is able to achieve the comparable performance of
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Table 4.3 Results of the post-hoc analysis about the joint moments (p-values lower than 0.05
are in bold text).

Shoulder Moment Elbow Moment Moment
RMS Error RMS Error Multivariate R2

Pairwise Z p-Value Z p-Value Z p-ValueComparison

Hm−HWW+m −1.333 0.171 −1.333 0.171 1.667 0.037
Hm− Ĥc −0.556 1.000 −1.000 0.602 0.889 0.865
Hm−AE model 1.222 0.268 0.778 1.000 −1.000 0.602
HWW+m− Ĥc 0.778 1.000 0.333 1.000 −0.778 1.000
HWW+m−AE model 2.556 <0.001 2.111 0.003 −2.667 <0.001
Ĥc−AE model 1.778 0.021 1.778 0.021 −1.889 0.011

Table 4.4 Means and standard deviations of the sEMG multivariate R2 index values among
all subjects. Results of the Wilcoxon Test about the comparison between the non-negative
matrix factorization (NNMF) and autoencoder.

Model sEMG multivariate R2

M ± SD Wilcoxon Test

NNMF 0.89±0.02
Z =−2.666, p = 0.008

AE 0.86±0.02

the Hm model even if introduces some loss in the EMG signal information due to the AE
bottleneck.

About the quality of the muscle activity reconstruction, as reported in Fig. 4.8, it turned
out that the proposed AE-based model has shown slightly lower performance than the NNMF
(Wilcoxon test, z = −2.666, p = 0.008). This means that the NNMF generates synergy
activations that better reconstruct the original muscle activation signals. This finding is not a
big surprise since, differently from the NNMF, the proposed neural model has simultaneously
focused on the reconstruction of both the EMG signals and joint moment. It is also worth
noting that the AE and the NNMF have not been tested on the reconstruction of the same
EMG signals used to calibrate the synergy model, but on different muscle activations acquired
in the same condition (i.e., the same upper limb pose).

This work does not address the study of the relationship between the model accuracy and
the number of considered muscles [401]. All the main superficial upper limb muscles that
contribute to the shoulder and elbow moment generation have been considered [402]. Clearly,
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a reduction in the number of considered muscles would lead to a loss of model accuracy,
and such loss would be related to the functional contribution of the specific excluded set of
muscles. A further study could investigate the role of the considered muscles in moment
estimation when using the proposed approach. However, it is important to remark that
the main goal was to propose a general methodology. The specific set-up (i.e. considered
muscles, task-space variables and acquisition procedure) needs to be customized case by
case.

In conclusion, the proposed work represents a first attempt to develop a muscle synergy-
based myo-controller that is tailored to the specific subject by simultaneously considering
the synergy extraction and the mapping between the synergy activations and the variables
used in the task space, i.e. forces or moments. Concerning the specific experimental setup
used in this study, the obtained results have clearly showed that the proposed model has lead
to a better moment estimation when compared with other synergy-based models. However,
at the same time, the quality of the EMG signals reconstruction was slightly degraded. This
finding demonstrated that a trade-off between the capability of the extracted muscle synergies
to better describe the EMG signals variability and the task performance in terms of force
reconstruction might exist and can be exploited to develop more intuitive myo-controllers
that are mainly evaluated in the task space [407, 486].



Chapter 5

Machine Learning and Deep Learning
for Movement Disorder Analysis

This chapter will focus on the application of machine learning and deep neural networks for
the development of CAD system pipelines able to objectify and follow-up movement disorder
diseases. All the proposed solution were tested and validated on real clinical scenarios.

The following two section will focus on the analysis and development of two prototyped
CAD system aiming to support the clinicians during the examination of patients affected by
Blepharospasm (a focal dystonia) and Parkinson’ disease. In detail, the blepharospasm CAD
solution aims to help the standardisation of the disease assessment carried out by physician;
the CAD developed for Parkinson’ disease evaluation, instead, investigates the possibility
to use handwriting analysis as a methodology to help physician with the assessment and
grading of the disease.

Part of this chapter has been published in international conferences and journals [85–
87, 89, 347, 487].

5.1 Deep Neural Networks for Blepharospasm Evaluation

In this section will be presented a CAD tool for blepharospasm evaluation. The proposed
software try to overcome the main limitations of a preliminary approach conducted before
this thesis research [439]. The analysis is based on standard video-recordings from commonly
available video cameras, and it allows not only to measure the percentage time of eye closure,
but also to recognise blinking, brief and prolonged spasms, which are the typical facial
movements that take place in patients with blepharospasm. The proposed software is a
practical system very suited to the clinical context where the environmental conditions cannot
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be easily standardised; it is a promising tool for supporting/assisting physicians to rate
blepharospasm severity according to the BSRS scale.

5.1.1 Materials

Nine patients with BSP were recruited (3 women and 6 men, average age 69.55±8.94 years)
to be recorded with a digital video camera1 at 29.97 frames per second. An experienced
neurologist reviewed the video-recordings identifying dystonic spasms and blinks, and
evaluated the overall Severity Index (SIn) of the recruited patients by applying the BSRS
scale. The neurologist classified the BSP symptoms observed in the recruited patients as
follows (Fig. 5.1).

1. A sudden Orbicularis Oculi (OO) muscle contraction causing lowering of the eyebrow
and narrowing/closure of the eyelid rim was classified by the neurologist as a spasm.
In turn, the spasm was classified as:

(a) brief spasm, i.e. a spasm inducing a brief eyelid closure lasting 0.3−3 s;

(b) prolonged spasm, i.e. a spasm inducing a prolonged eyelid closure with a duration
greater than 3 s.

2. A bilateral, synchronous, short duration (< 1 s) OO muscle contraction causing a
transient eyelid drop without any lowering of the eyebrow was classified by the
clinician as a blink.

3. A delay in reopening the eyelids after involuntary closure associated with no overt OO
contraction, or raising of the eyebrow above the superior orbital margin was classified
as apraxia of eyelid opening (Fig. 5.1).

Data acquisition. The following clinical procedure was performed to determine the sever-
ity index SIn, according to the BSRS scale, of the nine recruited patients. The participants
were seated on a chair placed in front of the video camera with their feet resting on the floor
and their hands on their knees (Fig. 5.2). The camera objective was zoomed in so that the
resulting field of view was entirely occupied by the patient’s head and her/his shoulders.
The video-recordings last approximately 5 minutes and were performed according to the
protocol described in the preliminary study [431]. In the first three minutes, a training phase
for the clinician took place; the neurologist asked the patient to perform some tasks and made

1Canon, Tokyo (Japan), Legria HFM306, 3.3 MP Full HD CMOS, HD Video Lens (up to 18× zoom),
DIGIC DV III
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Fig. 5.1 Example of typical symptoms observed in patients with blepharospasm.

careful observations, thus acquiring a deep knowledge of the modalities with which the BSP
symptoms took place in the patient. During the last two minutes of the test, the patient was
asked to remain at rest with their eyes open and fixed on a specific point located in front
of her/him. During this time interval, the clinician recognises and counts blinks, brief and
prolonged spasms, and apraxia of the eyelid opening.

In detail, the adopted clinical test is articulated in the following steps:
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Fig. 5.2 Set-up utilised to acquire the facial expressions of the patient during the clinical test.

(i) the patient rests with open eyes for 10 s;

(ii) the patient is asked to voluntarily and forcefully close and open eyes five times,
approximately one cycle per second (the time necessary to perform the requested task
depends on the patient and the severity of the dystonia);

(iii) the patient rests with open eyes for 10 s;

(iv) the patient is asked to voluntarily and gently close and open eyes five times, one cycle
per second;

(v) the patient rests with open eyes for other 10 s;

(vi) the neurologist poses the following questions: Are you able to avoid closing your eyes?
How? With sheer will? Or, do you need to touch your eyes, face, or neck?

(vii) the patient has 50 s to reply to the posed questions;

(viii) the patient is asked to write three times on a sheet of paper a stereotyped sentence (e.g.,
"Today is a nice sunny day");

(ix) the patient remains at rest for at least 150 s, with eyes open and fixed on a specific
point located in front of her/him. In the last 120 s, the neurologist "manually" counts
the number of blinks, brief and prolonged spasms, and apraxia of eyelid opening.



5.1 Deep Neural Networks for Blepharospasm Evaluation 183

Patients were instructed to avoid antagonistic gestures to not falsify the evaluation of
the proposed software (i.e., manoeuvres voluntarily adopted by the patient to minimise
the spasm effects, such as touching the eyelid, the temple, etc.).

The approximately first three minutes of the test included steps from (i) to (viii), whereas
during the last approximately two minutes, only the step (ix) was performed. It is worth
noting that the tasks performed in steps (ii) and (iv) are of crucial importance from the
neurologist point of view. In fact, a voluntary and forceful closure of the eyes can provide
useful information about how a spasm occurs in the patient. Similarly, a voluntary and gentle
closure of the eyes is a type of simulation of a blink and, therefore, can instruct the clinician
on how this event can take place in the patient.

5.1.2 Work-flow Design and Model Configuration

This section will reports all the steps designed and developed for the blepharospasm CAD
evaluation tool; the extracted information allows to measure the duration of the time interval
during which the patient’s eyes were closed and to automatically recognise three of the four
BSP symptoms described in Section 5.1.1, namely: blinks (2), brief (1a) and prolonged
(1b) spasms; the last symptom, the apraxia of eyelid opening, was neglected in this study
phase. The schematic overview about the principal steps followed to develop and validate
the software are depicted in Fig. 5.3.

5.1.2.1 Face Detector and Face Pose Estimator

The developed software tool is based on the dlib library2 and implements face detector and
face pose estimator algorithms as pre-processing steps to reduce the region of interest and
detect useful face landmarks.

Face detector algorithm. For each acquired frame (during the clinical test, Fig. 5.3,
Blocks 1, 2 and 3), the face detector algorithm, based on the traditional Histogram of Oriented
Gradients (HOG) descriptor combined with a linear classifier in a sliding window detection
scheme, identifies the bounding box in which the patient’s head can be inscribed (Fig. 5.3,
Block 4). Preliminary analyses revealed that the face detector was significantly robust with
respect to head movements and lighting conditions. For each of the nine recruited patients,
the percentage of frames εFD, in which the face detector algorithm was capable of reliably

2http://dlib.net/

http://dlib.net/
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Fig. 5.3 Schematic of the steps followed to develop and validate the proposed software.
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identifying the face of the patient, was computed with respect to the total number of frames
acquired for the same patient. The average value of εFD computed over all the patients is
99.960%, whereas the lowest is 99.948%. Table 5.1 lists, for each of the nine patients, the
number of frames acquired during the last two minutes of the clinical test, (i.e. during the
approximative time interval in which the patient remained at rest with the eyes open and
fixed on a point) and the corresponding value of εFD.

Table 5.1 Acquired frame and face detector results. εFD is the percentage of frames acquired
during the last two minutes of the clinical test with a successful face detection.

Patient Total number of
analysed frames

Number of frames
in which the patient’s

face was detected
εFD

P1 3897 3897 100.000
P2 3927 3925 99.949
P3 3927 3925 99.949
P4 3837 3835 99.948
P5 3867 3865 99.948
P6 3897 3895 99.949
P7 3927 3926 99.974
P8 3867 3865 99.948
P9 3897 3896 99.974

Average 99.960

Face pose estimator algorithm. The face pose estimator detects the position of 68 facial
landmarks distributed at different points on the patient’s face, such as the edges of the
mouth, the eyes, the eyebrows, the nose, etc. (Fig. 5.3, Block 5; Fig. 5.4(a)). In detail, the
pose estimator algorithm identifies firstly the position of specific face points that allow the
definition of the principal facial features, then predicts the location of the 68 facial landmarks
in near real-time. The pose estimator was created by using dlib’s implementation of the study
by Kazemi et al. [488] and was trained on the iBUG 300-W face landmark dataset [489].

The two algorithms described above were used to process the video frames acquired
from all the patients. For each analysed frame, the face of the patient was firstly detected
via the face detector algorithm, then the location of the 68 facial landmarks using the face
pose estimator was extracted. Preliminary analyses revealed that, after a training phase, the
face pose estimator algorithm was always capable of identifying the location of all the 68
landmarks in all the recorded videos. However, due to head movements and variable lighting
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Fig. 5.4 Example of the application of the correction tool to improve the face landmarks
stability. Schematic of the 68 facial landmarks placed by the face pose estimator algorithm
(a). Implementation of the algorithm on one of the acquired frames before (b) and after
(c) the application of the correction tool. The final results (d) shown more stable and more
correctly positioned facial landmarks. The red and blue points represent the facial landmarks
correctly and not correctly positioned, respectively.

conditions, the face pose estimator could not ever predict with precision the location of some
facial landmarks (Fig. 5.4(b)). A correction tool, Tcorr, was hence developed to allow the
re-training of the pose estimator utilising the facial landmarks correctly re-located (Fig. 5.3,
Block 6). The core of the tool is imglab, a dlib simple graphical tool for annotating images
with object bounding boxes. The tool requires the clinician to choose a random number of
frames (at least thirty), recorded during the first three minutes of the clinical test, showing
the patient with eyes in several states (closed eyes during a spasm, closed eyes during a blink,
and open eyes). For each frame the clinician can drag and drop, in a more correct position,
all the facial landmarks not correctly positioned. The use of the tool allowed an overall better
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face pose estimator algorithm, thus making it capable of predicting the location of the 68
facial landmarks with higher accuracy (Fig. 5.3, Block 7; Fig. 5.4(b), (c), and (d)).

In order to test the reliability of the proposed correction tool, the coordinates x and
y of the ten landmarks located on the two eyebrows were extracted (i.e., points marked
in Fig. 5.5a from 17 to 21 for the right eyebrow and from 22 to 26 for the left one). For
each patient, 10 clips with a duration of 0.3 s were considered. Therefore, the total num-
ber of frames considered for each patient and included in each portion of video was 9
(29.97 (acquisition frequency)×0.3 (duration in seconds of the video portion)). For all the
nine patients, the standard deviation of the x and y coordinates of points 17−21 and 22−26
detected in the 9 frames included in each portion of video was computed.

The duration of only 0.3 s was considered since it is the shortest time interval in which
blinks of patients with blepharospasm can occur (brief and prolonged spasms have a longer
duration). Electromyographic analyses revealed, in fact, that bursts of co-contracting activity
in the facial muscles accompanying the involuntary movements, take place in patients with
BSP and last from 200−300 ms to many seconds [490]. Therefore, it is possible to state that
in this short time, very small facial movements can occur, and hence, any changes experienced
by the facial landmarks in this time interval can be justified only by the stability/accuracy
of the face pose estimator. In other words, if the coordinates of a given landmark change
in this short time interval, it will be due to the accuracy with which the face pose estimator
algorithm predicts the landmark location and only marginally to the possible BSP symptoms
occurring in this same time interval. In general, the larger the standard deviation, the larger
the changes in the landmark coordinates and hence the lower the stability/accuracy of the
face pose estimator algorithm. Conversely, the smaller the standard deviation, the higher
the accuracy with which the algorithm predicts the location of the landmarks. Interestingly,
the values of the standard deviation computed after implementing the correction tool are
significantly lower than those obtained without its use (Fig. 5.5b), which demonstrates that it
actually increases the predictive power of the face pose estimator algorithm. The values of
standard deviation shown in Fig. 5.5b refer to video frames acquired in the first three minutes
of the clinical test with and without the correction tool; the standard deviation computed on
portions of video frames registered in the last two minutes of the clinical test lead to similar
results (Fig. 5.5c). It is possible to conclude that the correction tool allows to increase the
accuracy and the predictive power of the face pose estimator.
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(a)

(b)

(c)

Fig. 5.5 Evaluation of the landmarks correction tool. Values of standard deviations of the x
and y coordinates of the points 17−21 and 22−26 (a) computed in the first three minutes
(b) and in the last two minutes (c) of the clinical test.
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5.1.2.2 Features Extraction

Starting from the informations extracted with the algorithms presented before, eyes ROIs
were subsequently defined to focus the BSP symptoms detection. Specific facial landmarks,
predicted by the facial pose estimator, were selected and utilised to define the rectangular
bounding box delimiting each eye (Fig. 5.3, Block 8). Concerning the right eye, points 36 and
39 were used to determine the horizontal dimension of the rectangle (Fig. 5.6). In detail, the
horizontal dimension of the ROI goes from point 36′, placed 30 pixels to the left of point 36,
to point 39′, placed 30 pixels at the right of point 39 (Fig. 5.6(a)). The same offset was used
for the definition of the vertical dimension starting from points 38 and 41 to obtain points 38′

and 41′. The extraction of right eye ROI follows an analogue procedure by using points 42
and 45, and 44 and 46 for horizontal and vertical dimensions, respectively (Fig. 5.6(b)). For
each frame the two extracted ROIs were resized to 64×32 pixels and saved in gray scale.
In general, the dimensions of each extracted ROI depends on the eye size and, therefore, is
patient-dependent. The resizing procedure enables all the ROIs to have the same dimensions,
which is an essential requirement for the successive computation procedures described below.

The algorithm to crop the ROI frame by frame was implemented on the video registered
from all the patients during the first three minutes of the clinical test, i.e., during the time
interval in which the clinician asks the patient to perform some tasks and deeply observes
her/his “response”. Two categories were defined to gather the ROIs with open and closed
eyes (Fig. 5.3, Block 9; Fig. 5.6 (c) and (d)). Then, the same neurologist that assessed the
severity index SIn (according to the BSRS scale) of the nine recruited patients, manually
labelled the obtained ROIs. It is worth noting that, although this classification must be
performed for all the extracted ROIs, the described procedure is rather easy to accomplish
and requires relatively little time. In the first three minutes of the clinical test, the patient
gently or forcefully closes their eyes; then, most of the frames with open (or closed) eyes
are close in time and, therefore, it is rather easy for the neurologist to gather frames with the
same eye state.

For all the extracted and labelled ROIs, the co-occurrence matrices of oriented gradients
were computed for the classification of the eye state (Fig. 5.3, Block 10). Indeed, the typical
descriptive feature implemented in the computer vision for the eye state classification is
represented by the histogram of oriented gradients (HOG), which is a useful and commonly
utilised tool but suffers the limitation of local gradient information. The co-occurrence
matrix of oriented gradients has been proven to enhance the capability to describe the global
gradient information of eye images, thus allowing classification of the eye state with a higher
accuracy than the classical HOG [491]. The matrix is a 4D array with dimensions given by
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Fig. 5.6 Informations extracted from the face landmarks. Regions of interest extracted around
the right (a) and the left (b) eye. Examples of ROIs extracted for the right (c) and the left (d)
eye (open and closed). The five triangles with one of the vertices on the tip of the nose and
the others defined by the facial landmarks located on the eyebrows identified to detect the
eyebrow movements (schematic (e), over-imposition on an example face (f)).
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gray levels×gray levels×number o f distances×number o f angles. In detail, a value at
the coordinates xx, yy, zz, and ww, is the number of times the grey level yy occurs at the
distance zz and at the angle ww starting from the grey level xx. Following Zhang et al. [491],
the number of grey levels was set to 8, the distance to 1 pixel, and the angle to 0 radians;
further details on the computation of the co-occurrence matrix can be found in Zhang et al.

[491]. Therefore, the dimensions of the computed co-occurrence matrices, which represent
the number of features that will be given in input to the artificial neural network described
below, are: 8×8×1×1 for a total number of features nFeye−state equal to 64.

In order to detect the eyebrow movements related to the spasm events, an algorithm was
developed to measure the height of the five triangles defined by the vertices on the tip of the
nose (i.e. point 30) and the pairs of facial landmarks symmetric with respect to the sagittal
plane and located on the eyebrows (Fig. 5.3, Block 11; Fig. 5.6 (e) and (f)). To avoid sudden
changes in the height of the triangle due to possible rotations of the patient’s head, the height
was normalised with respect to that of the nose defined as the distance between points 27
and 30 (Fig. 5.6(f)). In detail, for each acquired frame k, the normalised height Y (k, j) of
the jth triangle ( j = 1,2, . . . ,5), the average normalised height value Y (k) and the standard
deviation σ(Y (k)), were computed as:

Y (k, j) =
T (k, j)
L(k)

, j = 1,2, . . . ,5, (5.1)

Y (k) =
1
5

5

∑
j=1

Y (k, j), (5.2)

σ(Y (k)) =

√︄
∑

5
j=1(Y (k, j)−Y (k))2

5
, (5.3)

where, T (k, j) is the height of the jth triangle and L(k) is the distance between points 27
and 30. Fig. 5.7 and Fig. 5.8 show the average normalised height of triangles (Y (k)) typically
registered during a blink and a spasm, respectively. It is interesting to note how in the case of
blinking (Fig. 5.7), the average height of the triangles remains practically constant, whereas
a large decrease in Y (k) occurs during a spasm (Fig. 5.8).

The total number of features given in input to the artificial network described below is
nFspasm = 7: the five normalised heights Y (k, j), the average normalised height Y (k) and the
standard deviation σ(Y (k)).

For the ’Spasms/No spasms’ classification two category were additionally defined
(Fig. 5.3, Block 12). According to its definition, the spasm event requires the eyes to
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Fig. 5.7 Typical values of the average normalised height Y (k) of triangles registered during a
blink.

be closed, then all the frames presenting closed eyes and acquired in step (ii), in which
the patient was asked to voluntarily and forcefully close and open eyes five times, were
automatically labelled as ’spasm’; on the contrary, the frames acquired before or after step (ii)
presenting open eyes were labelled as ’no spasm’. The strategy of including in the category
’No spasms’ the frames with open eyes is justified by the fact that when the patient has
eyes open, the height of the five triangles does not change over time (which is the basic
requirement for having the ’no spasm’ event). It is worth noting that preliminary analyses
revealed that during step (iv), when patients are asked to voluntarily and gently close and
open their eyes five times, as a blink simulation, the height of the triangles can change
significantly. Some patients, in fact, due to the pathology, were not able to "gently" close and
open the eyes and, due to difficulties in the re-opening phase, often moved their eyebrows.
To avoid these issues, the category ’No spasms’ included only frames recorded in the first
three minutes of the clinical test with the eyes open.
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Fig. 5.8 Typical values of the average normalised height Y (k) of triangles registered during a
spasm.

Two datasets were finally generated (Fig. 5.3, Block 13): the first one (DS1) includes
30160 entries and regards the classification of the eye state (16576 entries were labelled as
’closed eyes’ and 13584 as ’open eyes’); the second one (DS2) includes 11266 entries and
regards the classification of spasm/no spasm events (4474 entries were labelled as ’spasm’,
the remaining 6792 as ’no spasm’). The 64 nFeye−state and the 7 nFspasm features described
before were used for DS1 and DS2, respectively. Table 5.2 lists, for each patient, the number
of entries obtained for each of the two datasets.

5.1.2.3 Deep Neural Network Design

The two datasets DS1 and DS2 were given as input to two deep neural networks. The models
were utilised to automatically classify blinks, brief and prolonged spasms observed in the
nine recruited patients with BSP (Fig. 5.3, Blocks 14 and 15). In general, the performance
exhibited by such classifiers is strictly dependent on their topology expressed in terms of
number of hidden layers, neurons per layer and activation function per layer. Identifying the
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Table 5.2 Dataset entries extracted from each patient and used as model input.

Patient Entries
’closed eyes’

Entries
’open eyes’ Entries ’spasm’

Dataset eye state:
Total entries ’closed eyes’

+ ’open eyes’

Dataset spasm/no spasm:
Total entries ’spasm’

+ ’open eyes’

P1 2666 1950 978 4616 1953
P2 1544 1634 421 3178 1238
P3 2930 848 788 3778 1212
P4 1666 2112 785 3778 1841
P5 2634 784 341 3418 733
P6 1162 1596 301 2758 1099
P7 1068 1750 279 2818 1154
P8 1736 1022 325 2758 836
P9 1170 1888 256 3058 1200

Total 30160 11266

optimal topology is a task of crucial importance, indeed, incoherent choices in the design
phase can lead to unstable classification models with limited performance [78].

As for the study case presented in Section 3.2, the optimal neural network topology
was designed by using an evolutionary algorithms. According to Bevilacqua et al. [353],
a mono-objective genetic algorithm (MOGA) can be used as an optimisation strategy to
design ANNs with optimal topologies. For this purpose, a binary chromosome of 30 bits
was assembled to describe the following features characterising the topology of an artificial
neural network:

• first hidden layer: number of neurons ranging in the interval [1,256], coded with 8 bit;

• second and third hidden layers: number of neurons ranging in the interval [0,255] (0
means no-layer), coded with 8 bit for each layer;

• first, second, and third hidden layers: activation function, coded with 2 bit for each
activation function of each layer.

The four activation functions coded in the chromosome were: log-sigmoid (logsig),
hyperbolic tangent sigmoid (tansig), pure linear (purelin) and symmetric saturating linear
(satlins), whereas the activation function utilised in the output layer was the softmax function
(softmax). The model hyper-parameters not encoded in the chromosome were fixed; the
training algorithm for weights (W, Fig. 5.9) and bias (b, Fig. 5.9) update was the resilient
backpropagation algorithm [492]. The parameters used in the genetic algorithm were: initial
population with 100 randomly generated individuals, where each individual corresponds,
practically, to a candidate ANN topology; crossover with two points and probability of 0.8;
mutation with a probability of 0.2; elitism as selection system. The solution computed with
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(a)

(b)

Fig. 5.9 Neural networks with optimised topology utilised to classify the open/closed eye
state (a) and the spasm/no spasm event (b).

the genetic algorithm was the optimal ANN topology, which, after training, validation, and
testing for a given number of iterations of different permutations of the input dataset, showed
the highest mean accuracy.

The number of iteration was set to 200 and train, validation, and test datasets were
obtained from the two input datasets as: 60% of the samples for training, 20% for validation,
and 20% for the test.

The genetic algorithm described above was implemented to determine the optimal topol-
ogy of two networks: the first for the classification of the eye state and the second for the
spasm/no spasm event. For both of them, the genetic optimisation algorithm predicted an
optimal topology with three hidden layers (Fig. 5.9). In detail, the optimal topology computed
by the genetic algorithm for the eye state classifier included (Fig. 5.9a) 235, 108, 34, and
2 neurons for the first three hidden layers and the output one, respectively. The optimal
activation functions were: tansig for the first and the second hidden layer and logsig for the
third hidden layer. For the output layer, as stated above, the function was not optimised and
was set to softmax. The optimal topology of the neural network for the classification of
the spasm/no spasm event included (Fig. 5.9b) 71, 175, 24, and 2 neurons for the first three
hidden layers and the output one, respectively. The activation functions were purelin, tansig,
and logsig, for the first, the second, and the third hidden layer, respectively. Again, softmax
was utilised for the output layer.
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Table 5.3 Performance indexes over the 200 iterations. Results are expressed as mean ±
standard deviation.

Datasets Accuracy Specificity Sensitivity

Eye State (DS1) 0.9641 ± 0.0015 0.9643 ± 0.0002 0.9637 ± 0.0026

Spasm/No Spasm Event (DS2) 0.9290 ± 0.0051 0.9507 ± 0.0007 0.8743 ± 0.0136

5.1.2.4 Model Inference Criteria

The evaluation of the two optimised neural networks was performed with the frames acquired
in the last two minutes of the clinical test when patients were asked to remain at rest with
their eyes open and staring at a specific point located in front of them (Fig. 5.3, Block 16). For
each acquired frame, the ROIs were cropped and the co-occurrence matrix and the heights of
the five triangles were computed.

Two different subsets were created (Fig. 5.3, Block 17): the first dataset (DDSS1) was
given in input to the neural network for the classification of the eye state, the second (DDSS2)
to the neural network for the classification of the spasm/no spasm event. DDSS1 included a
number of entries equal to twice the number of frames acquired in the two minutes (for each
frame, two ROIs can be extracted), and DDSS2 equals to the number of frames acquired in
the two minutes. Again, each entry of DDSS1 included nFeye−state = 64 features, whereas
each entry of DDSS2 included nFspasm = 7 features. Then, the following work-flow was
implemented:

• giving DDSS1 as input to the first optimised neural network for the classification of the
eye state, the frames containing closed eyes were first identified. Then, for each frame,
the co-occurrence matrix, for both the right and the left eye, was computed and if one
of the two matrices was predicted to be ’closed eye’, the other one was automatically
hypothesised to be the same. This is since BSP is a focal dystonia with bilateral and
synchronous symptoms that simultaneously affect both eyes [428–430]. Therefore, the
output of this first classification was an array Aeye−state with length equal to the number
of frames acquired in the two minutes of the clinical test. The output was codified as 0
in the case of open eyes and 1 in the case of closed eyes (Fig. 5.3, Block 18; Fig. 5.10);

• giving DDSS2 as input to the second optimised neural network, the frames where a
lowering of the eyebrows took place were detected. The output of this second classi-
fication was the array Aspasm with the same length of Aeye−state array, and assuming
value 1 if an eyebrow narrowing occurs, 0 otherwise (Fig. 5.3, Block 18; Fig. 5.10);
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Fig. 5.10 Computation of the arrays Aeye−state and Aspasm, and classification of the ble-
pharospasm symptoms.

• the final step use the two generated arrays to distinguish spasms from blinks. The
requirements for a symptom to be classified as spasm are eye closure, lowering of the
eyebrows and a duration of at least 300 ms, which corresponds to the time necessary
to acquire approximately 10 frames with the used camera. A symptom with a shorter
duration can not be classified as a spasm but instead as a blink [490]. Furthermore, as
stated before, a spasm lasting less than 3 s, (i.e. about 100 frames) must be classified
as a brief spasm, and a spasm lasting longer than this as a prolonged spasm. Therefore,
the frames where Aeye−state assumes the value 1 (i.e. ’eyes closed’) were considered
and, in correspondence of these frames, the values of Aspasm were observed. If a set
of less than 10 consecutive frames is characterised by Aeye−state = Aspasm = 1, then
the entire set is classified as a blink. Instead, if a set includes more than 10 and less
than 100 consecutive frames with Aeye−state = Aspasm = 1, then the set is classified as
a brief spasm. If the condition Aeye−state = Aspasm = 1 is satisfied for a number of
consecutive frames higher than 100, then the set is classified as a prolonged spasm.
Finally, all the sets of consecutive frames with Aeye−state = 1 and Aspasm = 0 were
classified as a blink (Fig. 5.3, Block 19; Fig. 5.10).
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5.1.2.5 Validation Procedure

The last two minutes of the videos registered for the nine patients during the clinical test were
manually segmented in clips lasting 10−20 s. Each clip was trimmed to include just one
of the following events: brief spasm, prolonged spasm, blink, or no involuntary eye closure
(Fig. 5.3, Block 20). The segmentation was carried out by an independent expert neurologist
who did not participate to the other steps of the study. Four category were then created:
’blinks’, ’brief spasms’, ’blinks + brief spasms’, ’prolonged spasms’, and clips showing
no involuntary eye closure were also included. Therefore, for instance, the blinks category
included all the clips of blinks as well as some of those showing no involuntary eye closures.
Similarly, the category ’blinks + brief spasm’ included the clips of brief spasms, blinks and
some of those with no involuntary eye closures. The selected clips were then evaluated
by the proposed software and the expert neurologist that participated to the firsts steps of
the study (i.e. the neurologist that determined the severity index SIn of the nine recruited
patients). The severity index evaluated by the proposed software was correlated with the eye
closure time and with the severity index measured by the expert neurologist. In particular,
the Spearman rank correlation coefficient was computed, which is a non-parametric measure
of rank correlation. It allows the evaluation of how well the relation between two variables
can be described using a monotonic function. Whereas Pearson’s correlation assesses linear
relationships, Spearman’s correlation assesses, in general, monotonic relationships (that can
be either linear or non-linear). Furthermore, the Spearman correlation is particularly suited
to evaluate relationships involving ordinal variables (such as, the severity index SIn).

The sensitivity and the specificity (Fig. 5.3, Block 21) of the software were also computed
for each category.

5.1.3 Results

The values of sensitivity and specificity computed for each detected symptoms are sum-
marised in Fig. 5.11.

The clinimetric properties of the proposed software were assessed. For each patient, all
the frames recorded in the last two minutes of the clinical test when the eyes were closed,
were considered. Therefore, to determine the percentage of closure time for the investigated
symptoms, the frames with closed eyes were distinguished depending on the symptom and
counted. If fblink, fbsp, and fpsp are the numbers of frames showing blinks, brief spasms, and
prolonged spasms, respectively, and ftot the total number of frames registered in the last two



5.1 Deep Neural Networks for Blepharospasm Evaluation 199

Fig. 5.11 Values of sensitivity and specificity obtained with the proposed software for the
different investigated symptoms.

minutes, the percentage of closure time for blinks tblink, brief spasms tbsp, and prolonged
spasms tpsp can be computed as follows:

tblink =
fblink

ftot
×100 (5.4)

tbsp =
fbsp

ftot
×100 (5.5)

tpsp =
fpsp

ftot
×100 (5.6)

The values of percentage of closure time were computed for all the patients and correlated
with the severity index values SIn evaluated by the expert neurologist according to the BSRS
scale (Fig. 5.12a). The values of the severity index were also correlated with the percentage
of total closure time. If ftotce is the total number of frames registered in the last two minutes
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Table 5.4 Spearman correlation coefficients computed between the scores extracted by the
software and those determined by the expert neurologist.

BSRS Item Features Spearman rho p-value

A1 Type of eyelid spasm 0.793 0.019

A2* Apraxia of eyelid opening N/A N/A

A3*
Spasms occurring during the writing

of the stereotyped sentence N/A N/A

A4 Average duration of the prolonged spasms 0.806 0.009

B1 Frequency of blinks + brief spasms 0.676 0.046

B2 Frequency of prolonged spasms 0.756 0.030

Total ’measurable’
severity index SInm

SInm = S(A1)+S(A4)+S(B1)+S(B2) 0.863 0.003

*Items A2 and A3 were not measurable by the proposed software.

of the clinical tests and characterised from having closed eyes, the percentage of total closure
time ttot can be computed as:

ttot =
ftotce

ftot
×100 (5.7)

The values of the severity index were reported as a function of ttot , and a linear regression
line was also included in the graph of Fig. 5.12b.

It is worth noting that the proposed software is not capable of evaluating the complete
BSRS scale. The BSRS scale, in fact, includes six items, for each of which a score S must
be assigned according to specific criteria (further details on the BSRS scale can be found in
Section 2.4.4.1). Among others, the BSRS includes items regarding apraxia of eyelid opening
(A2) and spasms occurring during the writing of the stereotyped sentence (A3). Due to how
the system has been designed, it is not possible to assigning a score for the items A2 and A3.
However, considering only the remaining items and summing up the scores given to each
of them, the severity index SInm (measurable) computed by the software shows consistency
with the corresponding values determined by the expert neurologist (Spearman rho 0.863,
p-value 0.003) (Fig. 5.13). Significant values of the Spearman correlation coefficients can
also be found considering the score given to individual items computed by the software and
the score determined by the expert neurologist (Table 5.4).

Analysing the results it is possible to affirm that the software shown high sensitivity for
prolonged spasms and lower but satisfactory for brief spasms (Fig. 5.11). Lower values
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(a)

(b)

Fig. 5.12 Correlation graphs between: the severity index SIn determined by the expert
neurologist and the percentages of closure time for the investigated symptoms (a); the
severity index SIn determined by the expert neurologist and the total closure time (b).

of sensitivity were found in the case of blinks; a confusion related to the imperceptible
difference between blinks and brief spasms was probably responsible for this result. Proof
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Fig. 5.13 Correlation between the measurable severity index SInm computed by the software
and that determined by the expert neurologist.

of this is given by the satisfying level of sensitivity computed in the case of blinks and
brief spasms combined in the same category. The high levels of specificity demonstrate the
capability of the proposed software to distinguish the non-pathological conditions.

High Spearman correlation coefficients were computed for brief (Spearman rho 0.684,
p-value 0.042) and prolonged (Spearman rho 0.783, p-value 0.022) spasms (Fig. 5.12a). A
very low correlation coefficient was, by contrast, found in the case of the blinks, which
indicates that no clear correlation exists between tblink and the severity index SIn values.
Considering the relative smaller importance that blinks have in this severity scale rather than
the other symptoms (only item B1 partially depends on the number of blinks), it is possible
to guess that blinks affects marginal the severity index values, leading to a lower correlation.
A significant correlation coefficient was found between the severity index SIn values and ttot

(Spearman rho 0.735, p-value 0.038) (Fig. 5.12b).
The proposed software tool presents some limitations. First, although the software

exhibits high values of sensitivity in distinguishing brief spasms, prolonged spasms, and
blinks + brief spasms, the value computed for blinks is small. This can be justified by the fact
that the software sometimes confuses blinks with brief spasms. However, it is worth noting
that the difference between the symptoms of the blink and the symptoms of the brief spasm
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is subtle and, as often occurs in clinical practice, the task of distinguishing the two symptoms
is complex even for neurologists. This is true especially in the case of brief spasms that have
a duration close to the threshold value of 300 ms [490] that separate brief spasms from blinks.
During the clinical evaluation, the neurologist does not physically measure the time, thus,
increasing the probability of confusing the two symptoms. The proposed software instead
takes into account the exact number of frames included in the set showing the symptom
under investigation and can measure the time with an accuracy of approximately 0.03 s.
Furthermore, the distinction of blepharospasm symptoms is often subtle and imperceptible.
It is commonly known, in fact, that different expert neurologists can assign different severity
index SIn values to the same patients. Further investigations should be carried out on this
topic. The second limitation of the study is represented by the time necessary to use the
software on the specific patient, which includes: 1) the time necessary to utilise the correction
tool Tcorr (the neurologist is asked to drag and drop the incorrect facial landmarks on at least
30 frames); 2) the time necessary to re-train the face pose estimator after implementing Tcorr;
3) the time necessary to extract, from the acquired frames, all the entries to give in input to
the neural networks. Preliminary investigations revealed that for an experienced neurologist,
all these tasks require approximately and on average 30 minutes. However, considering that
an experienced neurologist spends approximately 60−90 minutes per patient observing all
the acquired video clips, it is possible to conclude that implementing the software allows to
save time ensuring the reproducibility of the results. Furthermore, the proposed software
was not conceived to ’replace’ the neurologist but to ’assist/support’ in defining the severity
of BSP. From this point of view, the limitation of the time necessary to use the software
is relevant but it is abundantly counterbalanced by the important advantage of making the
process of evaluating the BSP symptoms objective. The third limitation of the study is
represented by the fact that the datasets given in input to the deep neural networks for the
optimisation of their topology are unbalanced (Table 5.2). A measure of the quality of binary
classifications useful in this situation is the Matthews Correlation Coefficient (MCC) already
defined (Eq. 2.20) and used in the previous study cases. The average MCC obtained for the
two optimised models are: MCC = 0.9612±0.0016 for the classification of the eye state;
MCC = 0.8481±0.0055 for the classification of the spasm/no spasm event.

In conclusion, despite these limitations, it is possible to state that a correlation exists
between the total closure time ttot and the severity index values SIn (Fig. 5.9), which is
consistent with the results of Peterson et al. [435]. Furthermore, a very high level of εFD,
the percentage of frames with face detected by the face detector algorithm, was found. The
lowest percentage of face-found frames was εFD = 99.948%, which is higher than Peterson
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et al. results (93%). Finally, it is worth noting that currently, the only computerised and
automatic system capable of rating the blepharospasm severity is represented by the toolbox
CERT [435], which is capable of measuring the eyes closure time but cannot recognise, and
hence count, the specific BSP symptoms. The developed software, instead, allowed a separate
evaluation of the contribution of the individual symptoms to the global severity index, thus
opening up new perspectives in the problem of evaluating/measuring BSP symptoms; it is an
automatic tool capable of making the ’measurement’ of BSP symptoms objective and, hence,
assisting/supporting the neurologist in rating the severity of the dystonia.

5.2 Deep Neural Networks for Biometric Handwriting Anal-
ysis to Support Parkinson’s Disease Assessment and
Grading

In this section will be investigated the possibility to use handwriting analysis as a methodology
to help physician with the assessment and grading of Parkinson’ disease.

Two main study, and as many CAD tool, will be presented investigating how the joining
of dynamic features extracted from sEMG and handwritten text/drawing features, can be
used for patients evaluation. The first study make use of features extracted from scanned
paper sheets analysed by exploiting vision-based features, whilst the second one investigates
advantages and drawbacks of features generable by using tablets as input device.

5.2.1 A model-free technique based on computer vision and sEMG for
classification in Parkinson’s

A preliminary research conducted by Loconsole et al. proposed a reduced set of features,
extracted by exploiting surface electromyography signal processing and computer vision
techniques applied on the scan of common paper sheets, to differentiate PD patients from
healthy subjects [493]. To advance in the proposed direction, a larger number of features (also
considering the muscular activity) were addressed to improve classification performance, and
allowed to investigate five specific research scientific questions related to the handwriting
analysis capacity of discriminate healthy subject from patients suffering from Parkinson’s
disease: (1) which are the most representative features?; (2) which is(are) the best writing

pattern(s)?; (3) which is the best AI-based classification approach between ANN optimal

topology and SVM in terms of accuracy?; (4) which is the best AI-based classification
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approach between ANN optimal topology and SVM in terms of repeatability of the result?;
(5) which is the effect of considering the most representative features in the classification

process?

The results allowed to infer some important properties on writing patterns, classifica-
tion approaches and the role of muscular activities on the handwriting analysis applied to
Parkinson’s disease research.

5.2.1.1 Materials

Eleven participants (all males, age: 48±25 years old) took part to the experimental tests.
In detail, the control group was composed of 7 healthy subjects (age: 31± 11 years old),
whereas the PD group was composed of 4 subjects (age: 77±3). All subjects signed informed
consent forms.

System set-up and experimental description. All the subject were asked to perform three
writing patterns corresponding to as many writing tasks. They were properly differentiated
according to a writing size constrained/unconstrained point of view; in detail:

1. a fixed sentence in Italian composed of 8 words all containing equal sized letters (e.g.,
no use of d,f,g,h,l,p,q,t letters) to be written in italic;

2. a sequence of 8 "l" with a size of 2 cm (2 cm visual marker reference on the left of the
paper sheet);

3. a sequence of 8 "l" with a size of 5 cm (5 cm visual marker reference on the left of the
paper sheet).

Writing task no.1 can be considered not constrained in size (the letter size is up to the
patient) while tasks no. 2 and 3 are size constrained, thus forcing the subject to write using a
predefined size. To familiarize with the exercise, each subject was asked to perform all three
writing tasks once. Then, each subject was asked to perform 4 repetitions of all 3 writing
tasks, thus resulting in a total of 12 writing samples per subject. According to the proposed
acquisition protocol, the subject was asked to rest for at least 3 s between each writing task.

The set-up and the paper sheet template used for the experimental tests are illustrated
in Fig. 5.14. In detail, in Fig. 5.14 (left), it is possible to see the MyoT M Gesture Control
Armband3 for acquiring EMG signals from 8 different points of the forearm. It needs a
simple and a brief calibration to start the acquisition.

3www.myo.com

www.myo.com
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In Fig. 5.14 (right), instead, on the printed template of the paper sheet, it is possible to
identify two vertical visual marker of 2 cm and 5 cm used as size references for writing tasks
no. 2 and 3, respectively, and three horizontal 1 cm markers used for spatial mapping needed
for processing.

Fig. 5.14 System set-up used for the experimental tests to validate the proposed approach
(left). The paper sheet template with two vertical reference marker for writing tasks no. 2
and 3 and three horizontal markers used for spatial mapping.

5.2.1.2 Handwriting Feature

To further investigate the entire handwriting analysis process with respect to the preliminary
research work [493], a larger number of features were extracted from biometric signals. In
detail, eight dynamic and two static feature types were selected for a total of ten types of
features: static - (i) density ratio; (ii) height ratio; dynamic: (iii) execution time; (iv) execution

average linear speed; (v) acceleration norm - mean, standard deviation and maximum value;
(vi) gyroscope component - mean, standard deviation and maximum value; (vii) Root Mean

Square (RMS) of the sEMG signal; (viii) Mean Absolute Value (MAV) of the sEMG signal;
(ix) Zero Crossing (ZC) of the sEMG signal.

In next paragraphs, the selected feature will be analysed.
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Density ratio feature. Density ratio is a static feature. The variation of the pixel density
as defined by Zhi et al. [494] (dimensionless value) can represent a potential assessment
index of micrography. To extract this feature, firstly the entire written sentence is subdivided
in an arbitrary number of cells characterized by having the same width and the height
determined by the text upper and lower bounds. In this case, the number of cells is set to: (i)
3×number o f words in the case of sentence writing pattern; (ii) number o f letters in the
case of single word writing pattern. The cell width is, then, calculated as the ratio between
the entire width of the sentence and the obtained number of cells. Secondly, black pixels
contained in each cell are counted and the result is divided by the area of the belonging cell,
thus obtaining the cell density value. In case of micrography, since the size of the written
text is progressively reduced from left to right, the expected result is that the ratio of the
density of the first cells and that of the last cells (density ratio) is greater than 1. Specifically,
since it is possible to suppose that the first cell contains a capital letter (thus resulting in a
larger cell area), for the density ratio feature extraction, the ratio between the second and
the last cells was used. In writing tasks no. 2 and 3, since they consisted in writing only one
word composed of 8-"l", each written text was subdivided in 8 cells. For writing task no. 1,
instead, the number of cells was set to 24 (8×3).

Height ratio feature. Height ratio is a static feature corresponding to a measure of the
user’s ability to maintain the writing task fixed in size (dimensionless value). The feature
extraction process is similar to the density ratio, especially for cell subdivision. However, the
feature value corresponds to the ratio between the height of the second cell and that of the
last cell. Also in this case, micrography should result in a height ratio value greater than 1.
In writing task no. 1 the height ratio feature was calculated as described, while in tasks no. 2
and 3 the height ratio was calculated as the ratio between the average height of the 8 "l" and
the expected letters height, that are 2 cm and 5 cm, respectively.

Execution time feature. Execution time is a dynamic feature and is the time interval (in
seconds) during which the subject performs the writing pattern. The feature extraction from
the EMG signal can be performed off-line (i.e., after the completion of the task) and is based
on an adaptive threshold to detect the starting and the end instants of time of the writing task.
In detail, since the proposed acquisition protocol requires a rest period among each writing
tasks, the adaptive threshold is computed as the highest peak value of the EMG signal during
rest time both before and after the writing task.
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Execution average linear speed feature. Execution average linear speed is a dynamic
feature and is the ratio between the sum of the width of each written word and the execution
time (as reported by Raudmann et al. [495]). It is measured in cm/s and as reference, for the
spatial measurement of the word width, the 1 cm visual marker on the paper sheet has been
used (Fig. 5.14 (right)); thus resulting in a feature extraction process independent from the
scanning device and its resolution.

Acceleration norm features. Acceleration norm features are a set of dynamic features.
The norm of the signal is computed from the three acceleration data components. The
resulting signal is, then, processed in order to obtain three feature values: mean, standard
deviation and maximum values of the acceleration signal.

Gyroscope components features. Gyroscope component features are a set of dynamic
features. The three gyroscope components k (k ∈ {yaw, pitch, roll}) have been indepen-
dently used to compute three feature values for each of them (for a total of 9 feature values
of this type): mean (Eq. 5.8), standard deviation (Eq. 5.9) and maximum (Eq. 5.10).

µk =
1
n

n

∑
i

xki, (5.8)

σk =

√︄
1

n−1

n

∑
i
(xki − xk)2, (5.9)

Mk = max(xki)i=1,..,n (5.10)

RMS of sEMG signals features. Root Mean Square (RMS) is a dynamic feature. It is
a time domain feature and the value is computed for each sEMG channel according to
Equation 5.11.

RMS =

√︄
1
n

N

∑
i=1

|xi|2 (5.11)
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MAV of sEMG signals features. Mean Absolute Value (MAV) is a dynamic feature. It
is a time domain feature and the value is computed for each sEMG channel according to
Equation 5.12.

MAV =
1
n

N

∑
i=1

|xi| (5.12)

ZC of sEMG signals features. Zero Crossing (ZC) is a dynamic feature. It is the number
of signal sign variation. Considering two consecutive samples xk and xk+1, the ZC value is
incremented if xk > 0 and xk+1 < 0, or xk < 0 and xk+1 > 0 and |xk−xk+1| ≥ tol. A tolerance
value (tol) is used in the last condition to avoid variation due to noise signal. tol corresponds
to the standard deviation of the sEMG signal acquired over the rest time.

5.2.1.3 Feature Extraction

Regarding the feature extraction, for the static features (density and height ratio), classical
computer vision techniques (e.g., morphology operators, image segmentation, etc.) were used
to process the scanned paper sheet compiled by the subjects during the tests. In particular,
the mean and the deviation standard values were computed for both density and height ratio
features over the 4 repetitions for each subject, thus obtaining a total of 4 static feature values
per subject. For the dynamic features, instead, the followings were extracted:

• execution time. Mean and standard deviation values of the execution time over the 4
repetitions for each subject, to obtain a total of 2 execution time feature values per
subject;

• execution average linear speed. Mean and the standard deviation values of the execu-
tion average linear speed over the 4 repetitions for each subject to obtain a total of 2
values of execution average linear speed feature per subject;

• acceleration norm from the 3 acceleration components acquired with the Myo Arm-
band. In particular, for each subject and for each of the four repetitions, the mean, the
standard deviation and the maximum values of the acceleration norm were extracted.
Then, the average of the four obtained mean, standard deviation and maximum values
were computed, thus resulting in a total of 3 acceleration norm feature values per
subject;

• gyroscope component from the 3 speed components acquired with the Myo Armband.
In particular, for each subject and for each of the four repetitions, the mean, the
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standard deviation and the maximum values of each of the three gyroscope components
were extracted. Then, for each gyroscope component, the average of the four obtained
mean, standard deviation and maximum values were computed, thus resulting in a total
of 9 gyroscope component feature values per subject;

• Root Mean Square (RMS) of the sEMG signals acquired with the Myo Armband. In
particular, this feature was computed for each of the 8 sEMG signals made available
by the Myo Armband over the 4 repetitions for each subject (8 RMS feature values per
subject);

• Mean Absolute Value (MAV) of the sEMG signals acquired with the Myo Armband. In
particular, this feature was computed for each of the 8 sEMG signals made available
by the Myo Armband over the 4 repetitions for each subject (8 MAV feature values per
subject);

• Zero Crossing (ZC) of the sEMG signals acquired with the Myo Armband. In particular,
this feature was computed for each of the 8 sEMG signals made available by the Myo
Armband over the 4 repetitions for each subject (8 ZC feature values per subject);

Thus, the total number of the feature values per subject is equal to 44 of which 4 static
and 40 dynamic.

5.2.1.4 Feature Reduction and Classification

To understand which are the most representative features among the extracted ones, the
principal component analysis was exploited. Regarding writing pattern classification, instead,
two different artificial intelligence-based approaches were proposed and compared. The
first approach relies on finding the optimal topology for an deep neural network classifier
by exploiting the Multi-Objective Genetic Algorithm already used in this thesis, and by
maximizing the average test accuracy on a certain number of training, validation and test
iterations for each ANN topology using different permutations of the dataset.

For each input dataset, the MOGA was executed to find the optimal topology in terms of:
(i) number of hidden layers (ranging from 1 to 3), (ii) number of neurons per layer (ranging
from 1 to 256 for the first hidden layer, and from 0 to 255 for other hidden layers), and (iii)
activation functions in log-sigmoid (logsig), hyperpolic tangent sigmoid (tansig), pure linear

(purelin) and symmetric saturating linear (satlins), for all the neurons per-single layer. The
GA was set-up using the following parameters:

• best ANN accuracy computed on test set as leading search criterion;
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• initial population size equals to 50 individuals;

• crossover with 2 points with a probability of 0.8;

• mutation with a probability of 0.2;

• elitism selection system;

• stop criteria set to maximum generations numbers (100) or 20 consecutive generations
with fitness value unchanged.

The second approach, instead, relies on Support Vector Machine (SVM). SVM attempts
to construct an optimal separating hyperplane in the feature space by maximizing a geomet-
ric margin between points from the two classes. SVMs demonstrate good generalization
performance [496].

The performance of the classifiers were evaluated in terms of accuracy (Eq. 2.13),
specificity (Eq. 2.16) and sensitivity (Eq. 2.15).

Experimental data processing description For addressing the five specific research sci-
entific questions reported in the previous subsection, the following scheme has been used
during experiments and results evaluation:

• creation of two different feature value sets: the first (set A) including the feature values
extracted from all three writing patterns, the second (set B) including the feature values
extracted from writing patterns no.2 and no.3;

• application of the PCA on both sets to reduce the features;

• creation four different feature dataset cases:
Case 1. Dataset with all 44 feature values (40 dynamic, 4 static) extracted from set A;
Case 2. Dataset with all 44 feature values (40 dynamic, 4 static) extracted from set B;
Case 3. Dataset with only PCA-obtained feature values from set A;
Case 4. Dataset with only PCA-obtained feature values from set B.

• application of both AI-based classification approaches on all four dataset cases;

• evaluation of accuracy, specificity and sensitivity (mean values expressed in percentage
and standard deviations) obtained with ANN optimal topology approach for each of
the four dataset cases;

• evaluation of average performance (mean values expressed in percentage, standard
deviations, maximum an minimum values) obtained with the SVM approach for each
of the four dataset cases.
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5.2.1.5 Results

Two samples of one repetition of all three writing tasks respectively performed by a healthy
and a PD subject are reported in Fig. 5.15. In the following paragraphs, will be reported and
discussed the results obtained with the PCA and with the AI-based classification algorithms
to address the five research scientific questions presented before.

Fig. 5.15 Two samples of a repetition of all three writing tasks respectively performed by a
healthy subject (left) and by a PD subject (right).

PCA results. The feature reduction based on PCA has been set up to hold 99.9% of the
original information. The new space generated by the PCA is composed by only 8 feature
values for the set A and 9 for the set B. To better understand which of the features from the
original space are more representative, the new generated space has been analysed by means
of biplot graphs. In particular, the observed most representative feature values for both sets
were the ones related to all sEMG signals and, in particular, the ZC features extracted from
the eight sEMG channels. It is worth to mention that ZC feature values computed on signals
acquired by adjacent sEMG sensors have similar significance. The output features obtained
from PCA have been used for creating the feature dataset of Cases 3 and 4.).

Deep neural network results. Regarding the first approach for feature classification, the
genetic algorithm allowed to select the best performing ANN in terms of number of layers,
optimal number of neurons per layer and activation function for each layer. The ANN optimal
topologies specified by the genetic algorithm in the four cases are:

Case 1. Dataset with all 44 feature values (40 dynamic, 4 static) extracted from all
three writing patterns
ANN (Fig. 5.16) with: 3 hidden layers, with 101, 189 and 2 neurons for the hidden
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layer and 2 neurons for the output layer. The activation function found by the GA was
logsig for the hidden layers. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 86.15% (std = 0.1258), specificity: 0.9152
(std = 0.1451), sensitivity: 0.7720 (std = 0.2518).

Fig. 5.16 The ANN optimal topology for Case 1.

Case 2. Dataset with all 44 feature values (40 dynamic and 4 static) extracted from
two writing patterns (no.2 and no.3)
ANN (Fig. 5.17) with: 3 hidden layers, with 50, 5 and 1 neurons for the hidden layer
and 2 neurons for the output layer. The activation function found by the GA was
logsig for the hidden layers. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 80.24% (std = 0.1667), specificity: 0.9227
(std = 0.1896), sensitivity: 0.6220 (std = 0.3587).

Fig. 5.17 The ANN optimal topology for Case 2.

Case 3. Dataset with only 8 dynamic feature values obtained from PCA extracted from
all three writing patterns
ANN (Fig. 5.18) with: 2 hidden layers, with 26 and 8 neurons for the hidden layer
and 2 neurons for the output layer. The activation function found by the GA was
logsig for the hidden layers. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 75.75% (std = 0.1512), specificity: 0.8504
(std = 0.1815), sensitivity: 0.6027 (std = 0.2993).

Case 4. Dataset with only 9 dynamic features obtained from PCA extracted from two
writing patterns (no.2 and no.3)
ANN (Fig. 5.19) with: 3 layers, with 117, 145 and 4 neurons for the hidden layer and
2 neurons for the output layer. The activation functions found by the GA were purelin,

tansig and logsig for the hidden layer. For the output layer, the softmax function
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Fig. 5.18 The ANN optimal topology for Case 3.

was preliminary selected as activation function. Accuracy: 82.32% (std = 0.1689),
specificity: 0.9320 (std = 0.1561), sensitivity: 0.6600 (std = 0.3618).

Fig. 5.19 The ANN optimal topology for Case 4.

250 permutations of train, validation and test sets were used as input of the classifiers. For
this reason, all the reported results are expressed in terms of mean values and standard
deviation.

The ANN training, validation, and test sets were obtained from the input dataset with 60%
of samples for the training, 20% for the validation, and 20% for the test sets. Specifically,
at each iteration, the above sets were obtained through a random permutation of the input
dataset, keeping constant the ratio between the three classes.

The averaged normalized confusion matrices for the four cases of feature datasets are
shown in Tables 5.5, 5.6, 5.7 and 5.8.

Table 5.5 Averaged normalized confusion matrix for the case 1 (dataset with all 44 feature
values extracted from all three writing patterns) over 250 repetitions.

True Condition

Positive Negative

Predicted
Condition

Positive 28.95%
(0.0944)

5.30%
(0.0907)

Negative 8.55%
(0.0944)

57.20%
(0.0907)



5.2 Deep Neural Networks for Biometric Handwriting Analysis to Support Parkinson’s
Disease Assessment and Grading 215

Table 5.6 Averaged normalized confusion matrix for the case 2 (dataset with all 44 feature
values extracted from two writing patterns) over 250 repetitions.

True Condition

Positive Negative

Predicted
Condition

Positive 24.88%
(0.1435)

4.64%
(0.1137)

Negative 15,12%
(0.1435)

55.36%
(0.1137)

Table 5.7 Averaged normalized confusion matrix for the case 3 (dataset with only 8 dynamic
feature values obtained from PCA extracted from all three writing patterns) over 250 repeti-
tions.

True Condition

Positive Negative

Predicted
Condition

Positive 22.60%
(0.1122)

9.35%
(0.1135)

Negative 14.90%
(0.1122)

53.15%
(0.1135)

Table 5.8 Averaged normalized confusion matrix for the case 4 (dataset with only 8 dynamic
feature values obtained from PCA extracted from two writing patterns) over 250 repetitions.

True Condition

Positive Negative

Predicted
Condition

Positive 26.40%
(0.1447)

4,08%
(0.0937)

Negative 13.60%
(0.1447)

55.92%
(0.0937)

SVM results. Regarding the second approach for feature classification, a SVM classifier
was trained. The best found kernel parameter configuration was with the Gaussian kernel and
to ensure generalization k-fold cross validation was used with k = 5. The SVM approach
performance in the four cases of feature dataset are (250 permutations of train, validation and
test sets were used as input of the classifiers, then mean and standard deviation are reported):
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Case 1. Dataset with all 44 feature values (40 dynamic, 4 static) extracted from all
three writing patterns
Average performance: 87.25% (std = 0.0467; max = 0.9697; min = 0.6667).

Case 2. Dataset with all 44 feature values (40 dynamic, 4 static) extracted from two
writing patterns (no.2 and no.3)
Average performance: 92.98% (std = 0.0564; max = 1.0000; min = 0.7273).

Case 3. Dataset with only 8 dynamic feature values obtained from PCA extracted from
all three writing patterns
Average performance: 78.32% (std = 0.0360; max = 0.8485; min = 0.6667).

Case 4. Dataset with only 9 dynamic features obtained from PCA extracted from two
writing patterns (no.2 and no.3)
Average performance: 89.69% (std = 0.0359; max = 1.0000; min = 0.7727).

Classification comparison and discussion. For the sake of clarity, the results obtained
for all four dataset cases with both AI-based classification algorithms are tabulated. In detail,
dataset Cases 1 and 3 are reported in Table 5.9, whereas dataset Cases 2 and 4 are reported in
Table 5.10.

Table 5.9 Results comparison between AI-Algorithms applied on set A (all three writing tasks)
with and without feature reduction preprocessing. Each cell reports mean (in percentage)
and standard deviation (in brackets) values of accuracy.

NO PCA PCA

ANN optimal
topology

86.15%
(0.1258)

75.75%
(0.1512)

SVM 87.25%
(0.0467)

78.32%
(0.0360)

Analysing the obtained results, even if the number of the subjects under test was limited,
it is possible to make several important considerations regarding the computer-assisted
handwriting analysis applied to the Parkinson’s disease research field.

The first consideration is about the repeatability of the AI-based classification algorithms:
SVM presents a limited standard deviation of accuracy with respect to one presented by the
ANN optimal topology for all four dataset cases. Regarding dataset Case 1, the performance
of both classification algorithms is quite similar.
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Table 5.10 Results comparison between AI-Algorithms applied on set B (writing tasks no.2
and no. 3) with and without feature reduction preprocessing. Each cell reports mean (in
percentage) and standard deviation (in brackets) values of accuracy.

NO PCA PCA

ANN optimal
topology

80.24%
(0.1667)

82.32%
(0.1689)

SVM 92.98%
(0.0564)

89.69%
(0.0359)

In dataset Case 2, the performance obtained by the classification algorithms substantially
differs for SVM algorithm which obtained a higher percentage of accuracy. This dataset
Case including two writing constrained tasks (task no. 2 and no.3) allowed to reach the best
performance on the differentiation between healthy subjects and Parkinson’s disease patients,
thus, suggesting constrained tasks are more suitable. For both dataset Cases 3 and 4, SVM
presents higher accuracy percentage with respect to the ANN optimal topology.

To provide an answer to each of the same five research scientific questions reported
in Section 5.2.1, with respect to the application of computer-assisted handwriting analysis
to Parkinson’s disease, the results obtained from the experimental tests conducted on both
healthy subjects and PD patients allowed to infer that:

1. as reported in paragraph PCA results, the most representative feature value for dif-
ferentiating healthy subjects from PD patients is the ZC feature extracted from the
sEMG signals acquired on the forearm during the handwriting task. Considering all
the proposed static and dynamic features, it is possible to affirm that the analysis of the
muscular activity during handwriting tasks plays a fundamental role;

2. the best writing patterns to be used are those constrained in size and consisting of
repetitive movements;

3. the best AI-based classification approach in terms of accuracy is SVM;

4. the best AI-based classification approach in terms of repeatability of the result is SVM;

5. the PCA-based feature reduction involves a limited effect on the accuracy obtained
through the classification process. The only exception is dataset Case 3, in which the
accuracy obtained by both classification algorithms is lower.

In conclusion, the results obtained with the proposed model-free technique for computer-
assisted handwriting analysis showed that PD patients can be differentiated from healthy
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subjects with a good accuracy. Obtained results allowed to infer that (i) analysis of the
muscular activity during handwriting tasks should be taken into account when applied to
Parkinson’s disease research, (ii) the best writing patterns to be used should be constrained
in size and consisting of repetitive movements, (iii) the best AI-based classification approach
both in terms of accuracy and of repeatability of the results is SVM, and (iv) feature reduction
can negatively affect the performance achievable in case of no application of feature reduction
algorithms.

5.2.2 A model-free Technique Based on Biometric Signals for Parkin-
son’s Disease Assessment and Grading

To further investigate the potentiality of handwriting analysis in the differentiation of healthy
subjects and PD patients, the CAD prototype presented before was extended to include a
different set of feature. A new set-up has been proposed allowing to improve the standardis-
ation of the recorded biometrical signals (i.e., sEMG signals, pen tilt, etc.); it is based on
two different devices: an sEMG bracelet sensor and a graphics tablet providing a co-located
visual feedback.

Two new research studies were designed: the first investigated the use of the new set of
features and compared the performance of the two type of classifier proposed in the previous
section (ANN and SVM); the second study, is based on the use of deep neural network
only, and investigated the most representative features that better highlight the handwriting
differences between mild and moderate PD patients, and PD patients and healthy subjects.

5.2.2.1 Materials

The two study were carried out on two new dataset that extend the one used in the previous
section; the subjects were carefully selected to narrow the age variability.

The first new dataset accounts 18 participants (13 males, 5 females, age: 73,40±9,87
years old). In detail, the age matched control group was composed of 7 healthy subjects (3
males, 4 females, age: 73,42±10,62 years old), whereas the PD group was composed of 11
subjects (10 males, 1 female, age: 73,38±9,89).

The second dataset extends the previous and accounts 32 participants (21 males, 11
females, age: 71.4± 8.3 years old). In detail, the participants were composed of 21 PD
subjects (17 males and 4 females, age: 72.1± 8.3) and 11 healthy ones (4 males and 7
females, age: 70.2± 10.2 years old); the healthy group was selected to match the age of
the PD one. The PD group was subsequently divided into mild and moderate subgroups
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according to the degree of the disease. The subgroups were composed of 12 mild patients
(9 males and 3 females, age: 70.5±10.0) and 9 moderate ones (8 males and 1 female, age:
73.8±6.0).

All subjects signed an informed consent form.

System set-up. The system set-up is reported in Fig. 5.20. It includes the MyoT M Gesture
Control Armband used as sEMG bracelet sensor for acquiring sEMG signals from 8 different
points of the forearm, and the WACOM Cintiq 13” HD4 used as graphic tablet providing
co-located visual feedback, pen tip position (planar x-y coordinates) and pressure, and the
tilt of the pen with respect to the writing surface. The data recording and synchronisation has
been achieved by developing an ad-hoc acquisition software based on the SDKs provided
with the two devices; the software is written in C++ and implement Qt5 interfaces. The
development required the creation of two interfaces, one dedicated to the operator and one
for the patients performing the test.

Fig. 5.20 System set-up used for the experimental tests to validate the proposed approaches.

4www.wacom.com/en-ch/products/pen-displays/cintiq-13-hd
5https://www.qt.io/

www.wacom.com/en-ch/products/pen-displays/cintiq-13-hd
https://www.qt.io/
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Data acquisition. To validate the proposed approach, three writing patterns corresponding
to as many writing tasks were selected. They were properly differentiated according to a
writing size constrained/unconstrained point of view:

• Pattern 1 – a five-turn spiral drawn in anticlockwise direction;

• Pattern 2 – a sequence of 8 Latin letter ”l” with a size of 2.5 cm;

• Pattern 3 – a sequence of 8 Latin letter ”l” with a size of 5 cm.

As before, it is possible to observe that only two writing patterns (Patterns 2 and 3) were
size-constrained, and for those, a visual marker has been provided as a size reference.

To familiarize with the exercise, each subject was asked to perform all three writing
tasks once. Then, each subject was asked to perform 3 repetitions of all 3 writing tasks,
thus resulting in a total of 9 handwritten samples per subject. Each handwriting tasks was
interleaved with a rest period of three seconds, and the first pressure point on the tablet has
been used as a trigger for the tasks begin.

5.2.2.2 Handwriting Feature

Handwriting features have been derived from biometric signals obtained during handwriting
tasks. The two devices allowed to synchronously acquire different signals representing
different aspects of handwriting and to extract the following proposed features. In general,
the proposed features can be grouped into two groups based on sEMG and pen tip signals.
Features derived from sEMG signals are related to the subject’s muscle activity and are
derived from the sEMG signals obtained from the forearm of the subject; the RMS and the
ZC features presented in the previous section were selected and used also in these studies
(ZC value has been divided by the length of the signal to normalize the features among the
subjects.). The graphics tablet allowed to acquire three biometric signals: pen tip pressure
(scalar), pen tilt (2-dimensional), pen tip position (2-dimensional). The features extracted
from these signals are the following (mean and standard deviation): (i) Cartesian velocity; (ii)
X and (iii) Y velocity components; (iv) Cartesian acceleration; (v) X and (vi) Y acceleration
components; (vii) Cartesian jerk; (viii) X and (ix) Y jerk components; (x) pen tip pressure;
(xi) pen azimuth; (xii) pen altitude. In addition, specific features related to the specific type
of writing pattern were also proposed: writing size related angle for letters and precision

related index for spiral drawing. Next paragraphs focus on the new proposed feature.

Cartesian and XY-velocity component feature. The velocity features are referred to the
kinematics of the pen tip writing on the graphic tablet. The X-Y pixel position value has been
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used to compute velocity by means of first derivative. This lead to three signals: Cartesian,
X- and Y-component velocity values.

Cartesian and XY-acceleration component feature. The acceleration features are re-
ferred to the kinematics of the pen tip writing on the graphic tablet. The X-Y pixel position
value has been used to compute acceleration by means of second derivative. This lead to
three signals: Cartesian, X- and Y-component acceleration values.

Cartesian and XY-jerk component featur.e The jerk features are referred to the kinemat-
ics of the pen tip writing on the graphic tablet. The X-Y pixel position value has been used
to compute jerk by means of third derivative. This lead to three signals: Cartesian, X- and
Y-component jerk values.

Pen tip pressure feature. The pressure exerted by the pen tip on the surface of the graphic
tablet is acquired. The pen tip pressure feature is a discrete scalar number.

Azimuth and altitude feature. The azimuth feature is the value of the angle between a
reference direction (e.g., the Y axes of the tablet) and the pen direction projected on the
horizontal plane. The altitude feature is the value of the angle between the pen direction and
the horizontal plane.

Writing size related features for letter-based writing patterns. Writing size related
features are extracted from letter-based writing patterns. Starting from the X-Y pen tip
position, the upper and the lower picks of the Y coordinate of written letters are computed.
These values are, then, separately used as input data of a linear regressor leading to the
extraction of two different lines: the upper regression line Rup and the lower regression line
Rlow. The angle α between the two lines is subsequently computed. This angle is the first
proposed writing size related feature. A graphical representation of the lines extraction and
of the α angle is shown in Fig. 5.21.



5.2 Deep Neural Networks for Biometric Handwriting Analysis to Support Parkinson’s
Disease Assessment and Grading 222

Fig. 5.21 Representation of the regression lines Rup and Rlow and the angle α . Circle and
cross marks identifies respectively upper and lower peaks of the Y-coordinate of the pen tip
position.

The other two proposed writing size related features are represented by the coefficient of
determination (R2) of the two regression lines computed according to Equation 5.13. These
two features allowed to consider the variability of the letter pattern size.

y =
1
n

n

∑
i

yi,

SST = ∑
i
(yi − y)2,

SSE = ∑
i
(yi −ˆ︁yi)

2,

R2 = 1− SSE
SST

(5.13)

Spiral precision index feature. For the spiral drawing pattern, the proposed feature is
related to the variability of strokes. For each point P of the X-Y pen tip position, the vector
r⃗ with respect to the spiral centroid point C having origin in P is computed. The angle β

between r⃗ and the direction vector d⃗ tangent to the spiral in P is then calculated (a graphical
representation of r⃗, d⃗, C and β is reported in Fig. 5.22). The spiral precision index feature is
the standard deviation of the β angles computed for each point P.

To summarise, each subject generated 41 features for writing task 1 and to 43 features
for writing task 2 and 3:

• Root Mean Square (RMS) of each sEMG signal (8 RMS features for each subject and
for each task);

• Zero Crossing (ZC) of each sEMG signal (8 RMS features for each subject and for
each task);
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Fig. 5.22 Example of computation of the spiral precision index β .

• mean and standard deviation for each subject and for each task of the following signals:

– pen tip Cartesian velocity (two features);

– X and Y velocity components of the pen tip (four features);

– pen tip Cartesian acceleration (two features);

– X and Y acceleration components of the pen tip (four features);

– pen tip Cartesian jerk (two features);

– X and Y jerk components of the pen tip (four features);

– pen tip pressure (two features);

– pen azimuth (two features);

– pen altitude (two features);

• pattern specific features:

– index of precision of the spiral drawing (one feature);

– size related features for the constrained patterns (three features).

5.2.2.3 Comparison Between ANN and SVM Classifiers

The study designed on the first dataset extends the analysis conducted in Section 5.2.1; ANN
and SVM classifiers were implemented and tested.
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Feature reduction and classification. The same procedure presented in the preliminary
application has been replicated. Principal component analysis was investigated to understand
which are the most representative features among the extracted ones; deep neural networks
optimised by means a Multi-Objective Genetic Algorithm and SVM were used as classifier.

The genetic algorithm was set-up and configured as before; the performance of the
classifiers were evaluated in terms of accuracy (Eq. 2.13), specificity (Eq. 2.16) and sensitivity
(Eq. 2.15).

Experimental data processing description. For addressing the five specific research sci-
entific questions reported in the previous section, the experiments have been conducted
according to the following scheme:

• two different feature value sets were created: the first (set A) including the feature
values extracted from the writing patterns no.1 (41 feature values), the second (set B)
including the feature values extracted from writing patterns no.2 and no.3 (43 feature
values × 2 writing patterns);

• PCA was applied on both set A and B to reduce the number of feature values obtaining
a new feature space;

• four different feature dataset cases were, then, created:
Case 1. Dataset with all feature values included in set A;
Case 2. Dataset with all feature values included in set B;
Case 3. Dataset with only PCA-obtained feature values from set A;
Case 4. Dataset with only PCA-obtained feature values from set B.

• both AI-based classification approaches were applied on all four dataset cases;

• accuracy, specificity and sensitivity (percentage and standard deviation) obtained with
ANN optimal topology approach were evaluated for each of the four dataset cases;

• average performance (percentage, standard deviation, max value, min value) obtained
with the SVM approach were evaluated for each of the four dataset cases.

For sake of clarity, the scheme of the conducted experiments is shown in Fig. 5.23.

Results Two samples of one repetition of the writing tasks respectively performed by a
healthy subject and a PD subject are reported (not on real scale) in Fig. 5.24 (task no.1),
Fig. 5.25 (task no.2) and Fig. 5.26 (task no.3). The results obtained with the PCA and with
the AI-based classification algorithms are following reported.
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Fig. 5.23 Scheme of the experiment conducted to validate the proposed technique. Features
values are grouped in set A and B. By applying or not applying the PCA, four cases are
obtained. For each case, both ANN optimal topology and SVM classifier techniques are
applied.

Fig. 5.24 Two samples of one repetition of the writing task no. 1 (spiral drawing) respectively
performed by a healthy subject (top) and a PD subject (bottom).

PCA results. The feature reduction based on PCA has been set up to hold 99.9% of
the original information. The new space generated by the PCA is composed by 23 features
for set A and 25 for set B for each writing pattern. To better understand which of the features
from the original space are more representative, the new generated space has been analysed
by means of biplot graphs.
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Fig. 5.25 Two samples of one repetition of the writing task no. 2 (2.5 cm sized 8 "l" sequence)
respectively performed by a healthy subject (top) and a PD subject (bottom).

Fig. 5.26 Two samples of one repetition of the writing task no. 3 (5 cm sized 8 "l" sequence)
respectively performed by a healthy subject (top) and a PD subject (bottom).

In detail, the space generated starting from set A present as most representative features
the RMS values extracted from each of the eight sEMG channels. Other representative
features are the standard deviation of all the velocity signals (both Cartesian and X-Y
components), the ZC values of each of the eight sEMG channels and the spiral precision
index feature.

The space generated starting from set B, instead, present as most representative features
all three writing size related features for letter-based writing patterns (α angle and both
coefficients of determination) and the RMS values extracted from each of the eight sEMG
channels.

The output feature values have been used for creating the feature dataset of Case 3 and 4.

Results of the ANN optimal topology approach. Regarding the first approach for
feature classification, the ANN optimal topologies specified by the genetic algorithm in the
four cases of feature dataset are:

Case 1. Dataset with all 41 feature values extracted on writing patterns no.1
ANN with: 2 hidden layers, with 116 and 13 neurons for the hidden layer, and 2
neurons for the output layer. The activation function found by the GA was logsig
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for the hidden layers. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 94.03% (std = 0.0649), specificity: 0.9752
(std = 0.0870), sensitivity: 0.9185 (std = 0.0979).

Case 2. Dataset with all 43 feature values extracted on two writing patterns (no.2 and
no.3)
ANN with: 1 hidden layers, with 20 neurons for the hidden layer, and 2 neurons for
the output layer. The activation function found by the GA was logsig for the hidden
layers. For the output layer, the softmax function was preliminary selected as activation
function. Accuracy: 97.84% (std = 0.0305), specificity: 0.9689 (std = 0.0529),
sensitivity: 0.9846 (std = 0.0357).

Case 3. Dataset with only 23 dynamic feature values obtained from PCA extracted on
writing patterns no. 1
ANN with: 3 hidden layers, with 55, 100 and 2 neurons for the hidden layer, and 2
neurons for the output layer. The activation function found by the GA was logsig

for the hidden layers. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 93.32% (std = 0.0648), specificity: 0.9248
(std = 0.1180), sensitivity: 0.9385 (std = 0.0817).

Case 4. Dataset with only 25 dynamic features obtained from PCA extracted on two
writing patterns (no.2 and no.3)
ANN with: 4 layers, with 32, 5 and 32 neurons for the hidden layer, and 2 neurons for
the output layer. The activation functions found by the GA were logsig, logsig and

logsig for the hidden layer. For the output layer, the softmax function was preliminary
selected as activation function. Accuracy: 97.46% (std = 0.0347), specificity: 0.9631
(std = 0.0643), sensitivity: 0.9820 (std = 0.0360).

All the reported results are expressed in terms of mean values, considering 250 iterations in
terms of permutations of train, validation and test sets.

The ANN training, validation, and test sets were obtained from the input dataset with
60% of samples for the training, 20% for the validation, and 20% for the test. Specifically,
at each iteration, the above sets were obtained through a random permutation of the input
dataset, keeping constant the ratio among classes.

The averaged normalized confusion matrix for the four cases of feature datasets are
shown in Table 5.11, Table 5.12, Table 5.13 and 5.14.
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Table 5.11 Averaged normalized confusion matrix for case 1 (over 250 iterations). Standard
deviation in brackets.

True Condition

Positive Negative

Predicted
Condition

Positive 37.51%
(0.0335)

0.95%
(0.0335)

Negative 5.02%
(0.0602)

56.52%
(0.0602)

Table 5.12 Averaged normalized confusion matrix for case 2 (over 250 iterations). Standard
deviation in brackets.

True Condition

Positive Negative

Predicted
Condition

Positive 37.91%
(0.0207)

1.22%
(0.0207)

Negative 0.94%
(0.0218)

59.93%
(0.0218)

Table 5.13 Averaged normalized confusion matrix for case 3 (over 250 iterations). Standard
deviation in brackets.

True Condition

Positive Negative

Predicted
Condition

Positive 35.57%
(0.0454)

2.89%
(0.0454)

Negative 3.78%
(0.0503)

57.75%
(0.0503)

SVM results. Regarding the second approach for feature classification, a SVM classi-
fier has been trained. The best found kernel parameter configuration was the one with the
Gaussian kernel. To ensure generalization k-fold cross validation was configured with k = 5.
The SVM approach performance in the four cases of feature dataset are:

Case 1. Dataset with all 41 feature values extracted on writing patterns no. 1
Average performance: 87.91% (std = 0.0332; max = 0.9444; min = 0.7500).
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Table 5.14 Averaged normalized confusion matrix for case 4 (over 250 iterations). Standard
deviation in brackets.

True Condition

Positive Negative

Predicted
Condition

Positive 37.69%
(0.0252)

1.44%
(0.0252)

Negative 1.10%
(0.0219)

59.77%
(0.0219)

Case 2. Dataset with all 43 feature values extracted on two writing patterns (no. 2
and .3)
Average performance: 94.53% (std = 0.0197; max = 0.9907; min = 0.8796).

Case 3. Dataset with only 23 feature values obtained from PCA extracted on writing
patterns no. 1
Average performance: 87.76% (std = 0.0303; max = 0.9444; min = 0.7592).

Case 4. Dataset with only 25 features obtained from PCA extracted on two writing
patterns (no. 2 and 3)
Average performance: 94.19% (std = 0.0150; max = 0.9815; min = 0.8889).

All the reported results are expressed in terms of mean values, considering 250 iterations of
training and testing process.

Classification comparison and discussion. For the sake of clarity, the results obtained
for all four dataset cases with both AI-based classification algorithms were tabulated: dataset
cases 1 and 3 are reported in Table 5.15, whereas dataset cases 2 and 4 are reported in
Table 5.16.

Analysing the obtained results, even if the number of the subjects under test was limited,
it is possible to make several important considerations regarding the computer-assisted
handwriting analysis applied to the Parkinson’s disease research field.

The first consideration is about the repeatability of the AI-based classification algorithms:
both ANN and SVM presents a limited standard deviation (std < 0.1) of accuracy for all
four cases.

For all dataset cases, ANN optimal topology approach presents higher accuracy percent-
age with respect to SVM (3.31%<∆< 6.12%). Both classifiers obtained better performances
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on feature set B (features extracted from constrained letter-based writing patterns). For both
sets (A and B), PCA does not significantly affect the classification performance (∆ < 1%).

To provide an answer to the five research scientific questions reported and defined in
Section 5.2.1, with respect to the application of computer-assisted handwriting analysis to
Parkinson’s disease, the results obtained from the experimental tests conducted on both
healthy subjects and PD patients allowed to infer that:

1. as reported in paragraph PCA results, the most representative feature values for differ-
entiating healthy subjects from PD patients are:

- for writing pattern no. 1 (spiral drawing): RMS and ZC values extracted from
each of the eight sEMG channels, pen tip velocities and the spiral precision index
feature;

- for writing pattern no. 2 and 3 (size constrained 8 "l" sequence): RMS values
extracted from each of the eight sEMG channels and the three writing size related
features (α angle and both coefficients of determination);

2. the best writing patterns to be used are those constrained in size and letter-based;

3. the best AI-based classification approach in terms of accuracy is ANN optimal topol-
ogy;

4. both AI-based classification approach are comparable in terms of repeatability of the
result;

5. the PCA-based feature reduction does not significantly affect the accuracy obtained
through the classification process.

Table 5.15 Results comparison between AI-based classifier applied on set A (writing pattern
no.1) both in case of original and PCA feature space. Each cell reports mean (in percentage)
and standard deviation (in brackets) values of accuracy.

NO PCA PCA

ANN optimal
topology

94.03%
(0.0649)

93.32%
(0.0648)

SVM 87.91%
(0.0332)

87.76%
(0.0303)

In conclusion, the results obtained with the proposed model-free technique for computer-
assisted handwriting analysis showed that PD patients can be differentiated from healthy
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Table 5.16 Results comparison between AI-based classifier applied on set B (writing patterns
no.2 and 3) both in case of original and PCA feature space. Each cell reports mean (in
percentage) and standard deviation (in brackets) values of accuracy.

NO PCA PCA

ANN optimal
topology

97.84%
(0.0305)

97.46%
(0.0347)

SVM 94.53%
(0.0197)

94.11%
(0.0156)

subjects with a high accuracy (up to 97.84%). Obtained results allowed to infer that (i)
analysis of the muscular activity during handwriting tasks, as well as pen tip velocities, spiral
precision index feature and writing size related features should be taken into account when
applied to Parkinson’s disease research; (ii) the best writing patterns to be used should be
constrained in size and letter-based, (iii) the best AI-based classification approach in terms
of accuracy is ANN optimal topology, (iv) both ANN and SVM classifier shows a good
performance in terms of repeatability, and (v) PCA feature reduction does not significantly
affect the performance in terms of accuracy.

5.2.2.4 Inter and Intra Subjects Evaluation

This last section will focus on the capability of the proposed evaluation tool to perform
well in the intra and inter subjects classification, that is the differentiation between mild and
moderate PD patients, and PD patients and healthy subjects.

Feature selection and classification. Differently from the previous cases, a feature selec-
tion procedure has been used to understand the main representative for the subject’s status
[497]; the used approach is similar to the entropy criterion (i.e., information gain) and it is
based on a classification decision tree technique with Gini’s diversity index [498].

In the previous study case, the better classification procedure was based on the deep
neural networks optimised by means of genetic algorithm. The same procedure and genetic
algorithm configuration were used also in this case.

The used performance indexes were accuracy (Eq. 2.13), specificity (Eq. 2.16) and
sensitivity (Eq. 2.15). Due to the dependence of the ANN performances from both net
initialisation and permutation of training-validation datasets, the net training procedure
iterated over 250 data permutations.
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Experimental data processing description. The objectives of the conducted experiments
were mainly two:

1. separate PD patients from healthy subjects;

2. correctly classify mild and moderate Parkinson patients.

For each objective, the features extracted during the experiments were grouped according
to the following scheme:

• creation of three different feature datasets:

– dataset A including only the features extracted from writing pattern 1 (41 fea-
tures);

– dataset B including only the features extracted from writing pattern 2 (43 fea-
tures);

– dataset C including only the features extracted from writing pattern 3 (43 fea-
tures);

• application of the feature selection algorithm to reduce the number of the features;

• creation of six different new feature datasets:

– Case 1. Dataset including all the feature of set A;

– Case 2. Dataset including all the feature of set B;

– Case 3. Dataset including all the feature of set C

– Case 4. Dataset including only the features obtained by the application of the
feature selection algorithm on dataset A;

– Case 5. Dataset including only the features obtained by the application of the
feature selection algorithm on dataset B;

– Case 6. Dataset including only the features obtained by the application of the
feature selection algorithm on dataset C.

Fig. 5.27 depicts the scheme of the experiments.

Results. The presentation and the discussion of the results obtained from the experiments
have been subdivided according to the two objectives.

For each case the training procedure was iterated 250 times to assess the stability of
the learning process; hence, the confusion matrices and the related results are presented in
percentage with the standard deviation reported in brackets.

Objective 1 - Separating PD patients and healthy subjects:
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Fig. 5.27 Scheme of the experiment. Features are grouped in three sets: A, B and C. The
application of the feature selection algorithm leads to six cases.

• Feature Selection results: The application of the feature selection algorithm previously
reported, led to a significant reduction of the number of considered features for all
three datasets of features extracted from the writing patterns. In particular:

– for dataset A including the 41 features extracted from writing pattern 1, the sEMG
RMS value, three sEMG ZC values, the mean Cartesian velocity and the mean
acceleration on X axes were the six selected features to be classified in Case 4;

– for dataset B including the 43 features extracted from writing pattern 2, the mean
jerk on Y axes, three sEMG ZC values, the mean Cartesian acceleration and the
mean velocity on X axes were the six selected features to be classified in Case 5;

– for dataset C including the 43 features extracted from writing pattern 3, two
sEMG RMS values, a sEMG ZC value, the mean cartesian velocity, the altitude
STD, the azimuth RMS and the mean velocity on X axes were the seven selected
features to be classified in Case 6.

• Classification results: for each of the six different feature datasets, the MOGA algo-
rithm is applied to provide the optimal ANN topology. The optimal topology results
and the confusion matrices are reported in Table 5.17 and in Tables 5.18 to 5.23, re-
spectively; the performances expressed in terms of accuracy, specificity and sensitivity
have been summarised in Table 5.24.
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Table 5.17 Objective 1: results of the application of the MOGA algorithm on each of the six
different feature datasets. The output layer configuration was preliminarily fixed with two
neurons and softmax as activation function.

Case Number of
Features

Writing
Pattern

ANN Topology Accuracy
Number of Neurons Activation Function

1 41 1 186/15/2 logsig/logsig/softmax 90.76%

2 43 2 44/10/2 logsig/logsig/softmax 92.98%

3 43 3 232/82/7/2 logsig/logsig/logsig/softmax 95.95%

4 6 1 222/25/2 logsig/logsig/softmax 93.78%

5 6 2 246/12/2 logsig/logsig/softmax 91.58%

6 7 3 45/114/21/2 satlins/tansig/logsig/softmax 96.85%

Table 5.18 Confusion matrix of Case 1 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 59.75% 5.35%

Control 3.89% 31.02%

Table 5.19 Confusion matrix of Case 2 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 60.36% 3.75%

Control 3.89% 32.62%

Table 5.20 Confusion matrix of Case 3 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 61.67% 2.09%

Control 1.96% 34.27%
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Table 5.21 Confusion matrix of Case 4 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 61.40% 3.98%

Control 2.24% 32.38%

Table 5.22 Confusion matrix of Case 5 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 60.35% 5.13%

Control 2.24% 31.24%

Table 5.23 Confusion matrix of Case 6 (Objective 1)

True Condition

PD Control

Predicted
Condition

PD 62.11% 1.62%

Control 1.53% 34.75%

Table 5.24 Objective 1: performances of the application of the MOGA algorithm on each of
the six different feature datasets. Results are reported as mean and standard deviation values
over 250 iterations.

Case Accuracy Specificity Sensitivity

1 0.9076 [0.0764] 0.8530 [0.1553] 0.9389 [0.0720]

2 0.9298 [0.0523] 0.8970 [0.1212] 0.9486 [0.0587]

3 0.9595 [0.0479] 0.9425 [0.0831] 0.9691 [0.0575]

4 0.9378 [0.0566] 0.8905 [0.1356] 0.9649 [0.0537]

5 0.9158 [0.0526] 0.8590 [0.1153] 0.9483 [0.0607]

6 0.9685 [0.0405] 0.9555 [0.0805] 0.9760 [0.0500]
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Objective 2 - Separating mild and moderate PD patients:

• Feature Selection results: the application of the feature selection algorithm previously
reported, led to a significant reduction of the number of considered features for all
three datasets of features extracted from writing patterns. In particular:

– for dataset A including the 41 features extracted from writing pattern 1, two
sEMG RMS values, two sEMG ZC values, the mean pressure and the mean
altitude were the six selected features to be classified in Case 4;

– for dataset B including the 43 features extracted from writing pattern 2, two
sEMG RMS values, two sEMG ZC values and the mean Cartesian velocity were
the five selected features to be classified in Case 5;

– for dataset C including the 43 features extracted from writing pattern 3, two
sEMG RMS values, a sEMG ZC value, the mean Cartesian velocity on X axes
and the mean pressure were the five selected features to be classified in Case 6.

• Classification results: for each of the six different feature datasets, the MOGA algo-
rithm is applied to provide the optimal ANN topology. The optimal topology results
and the confusion matrices are reported in Table 5.25 and in Tables 5.26 to 5.31, re-
spectively; the performances expressed in terms of accuracy, specificity and sensitivity
have been summarised in Table 5.32.

Table 5.25 Objective 2: results of the application of the MOGA algorithm on each of the six
different feature datasets. The output layer configuration was preliminarily fixed with two
neurons and softmax as activation function.

Case Number of
Features

Writing
Pattern

ANN Topology Accuracy
Number of Neurons Activation Function

1 41 1 59/65/2/2 logsig/logsig/logsig/softmax 94.34%

2 43 2 138/18/1/2 logsig/logsig/logsig/softmax 87.26%

3 43 3 65/36/7/2 logsig/logsig/logsig/softmax 91.86%

4 6 1 123/2 logsig/softmax 96.00%

5 5 2 67/24/2 logsig/logsig/softmax 86.71%

6 5 3 17/2 tansig/softmax 91.66%
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Table 5.26 Confusion matrix of Case 1 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 39.51% 2.31%

Mild 3.34% 54.83%

Table 5.27 Confusion matrix of Case 2 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 37.43% 7.31%

Mild 5.43% 49.83%

Table 5.28 Confusion matrix of Case 3 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 39.51% 4.80%

Mild 3.34% 52.34%

Table 5.29 Confusion matrix of Case 4 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 41.31% 2.46%

Mild 1.54% 54.69%

Table 5.30 Confusion matrix of Case 5 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 36.51% 6.94%

Mild 6.34% 50.20%
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Table 5.31 Confusion matrix of Case 6 (Objective 2)

True Condition

Moderate Mild

Predicted
Condition

Moderate 39.29% 4.77%

Mild 3.57% 52.37%

Table 5.32 Objective 2: performances of the application of the MOGA algorithm on each of
the six different feature datasets. Results are reported as mean and standard deviation values
over 250 iterations.

Case Accuracy Specificity Sensitivity

1 0.9434 [0.0626] 0.9595 [0.0763] 0.9220 [0.1158]

2 0.8726 [0.0850] 0.8720 [0.1206] 0.8733 [0.1544]

3 0.9186 [0.0830] 0.9196 [0.1167] 0.9220 [0.1286]

4 0.9600 [0.0658] 0.9570 [0.0939] 0.9640 [0.0947]

5 0.8671 [0.0837] 0.8785 [0.1128] 0.8520 [0.1598]

6 0.9166 [0.0858] 0.9165 [0.1163] 0.9167 [0.1313]

For the sake of clarity, the accuracy of all cases for both objectives are summarised
in Table 5.33. As reported in the table, the proposed procedure leads to high accuracy
performances; the results for both objectives present accuracy in the range 86 < x < 97, with
a standard deviation lower than 0.09. The low value of the standard deviation allows to assess
the stability of the learning process of the optimal ANN. Similar observations can be stated
for both objectives for the classification of the selected features. In detail:

• the classification between PD patients and healthy subjects (objective 1) achieves
the best accuracy (96.85%) in Case 6 (seven features selected from the dataset of 43
features extracted from writing pattern 3). The feature selection stated that three out of
seven features were related to sEMG signals (RMS and ZC), whereas the others to pen
tilt and velocity;

• the classification between mild and moderate PD patients (objective 2) achieves the
best accuracy (96.00%) in Case 4 (six features selected from the dataset of 41 features
extracted from writing pattern 1). The feature selection stated that four out of six
features were related to sEMG signals (RMS and ZC), whereas the others to pen tilt
and velocity;
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Table 5.33 Summary of the accuracy values obtained for each of the two objectives for each
considered case. Standard deviation over 250 repetitions is reported in brackets.

Case Objective

1 2

All Feature
1 90.76% (0.0764) 94.34% (0.0626)
2 92.98% (0.0523) 87.26% (0.0850)
3 95.95% (0.0479) 91.86% (0.0830)

Selected Feature
4 93.78% (0.0566) 96.00% (0.0658)
5 91.58% (0.0526) 86.71% (0.0837)
6 96.85% (0.0405) 91.66% (0.0858)

In conclusion it is possible to state that the proposed DSSs are able to classify healthy
subjects vs PD patients and mild vs moderate PD patients with a high classification accuracy
(more than 90.0%). Furthermore, a limited set of representative feature selected by means
of a classification decision tree technique, that uses the Gini’s diversity index, improved
the overall accuracy (more than 96.0%). Further works are needed to investigate the DSS
performance with a larger cohort of subjects that includes severe PD patients too. This will
allow to classify PD patients by using more than two PD status classes and to monitor the
progress of the disease over time. Furthermore, due to the time-consuming acquisition steps,
it is desirable to reduce the required number of pattern tasks; this can be achieved through a
proper writing pattern selection among the proposed ones.



Chapter 6

Conclusion

The studies conducted in this thesis aimed to design, develop and evaluate innovative systems
to support clinician in their daily practice, focusing on the importance of a quantitative and
objective evaluation.

In all the proposed solutions, three CAD requirements were tried to be pursuit: improve
clinicians performance, reduce or at least not increase clinicians time and integrate the
CAD solution in standard procedures. Most of the proposed CAD solutions satisfy these
requirements and the Chronic Kidney Disease study cases fulfils all three. A more specu-
lative research has been conducted for signal processing. Undercomplete autoencoders for
surface electromyography analysis have been designed and validated for the evaluation of
complex muscle activation patterns. Finally, machine learning has been investigated as signal
processing technique for diseases assessment and grading in subjects affected by movement
disorders. The developed solutions for signals and images processing, were compared with
literature standards and, if possible, a personalised classical pipelines has been proposed and
customised to face each clinical challenge.

The introduction on traditional CAD systems, their evolution throw the deep learning
paradigm and the description of the study cases have been presented in Chapter 2. A deep
literature research about the deep learning research field and its application to the clinical
domains of interest have been conducted too. Chapters 3, 4 and 5 focus on the proposed and
developed solutions, reporting all the design decision taken to face the respective challenges;
the obtained results were compared with standard approaches and literature highlighting all
the advantages and drawbacks.

The evaluation of the suitability of kidney from expanded criteria donors, relies on the
histological examination of kidney biopsies performed at the time of organ retrieval by
pathologists. Several CAD pipelines were proposed facing one step of the biopsy evaluation
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from the classification, detection and segmentation perspectives. All the results were validated
by renal pathologists which confirmed the reliability of the proposed work-flow; this allows
to consider the applied methodology as a milestone in the creation of a CAD system for
the renal transplant evaluation, easing pathologists in accomplishing the laborious task of
transplantation evaluation and providing rapid and accurate results. Furthermore, the CAD
pipeline is fully integrable in the used clinical tools. In the future it could be extended to
other kidney biopsies analysis tasks, allowing to define a complete histological evaluation.

A customised and fully-automatic CNNs-based approach has been proposed for the
segmentation of liver parenchyma and liver vessels in CT scans. Appropriate loss functions
have been investigated to better tune the learning procedure, and different metrics were
used for the evaluation; some metrics and post-processing steps were carefully selected to
respectively evaluate and improve the model from a surgical planning point of view. The
obtained results show that the proposed work-flow is a very promising approach for the
vessels segmentation in CT scans, allowing to obtain accurate volumetric reconstructions
of the segmented regions. Results allow to state that the system can help radiologists in
accomplishing the laborious task of segmenting liver and vessels from CT scan, laying the
foundation for further image analysis algorithm on the segmented regions. Future works
can include further validation on datasets coming from different cohorts of subjects, and
investigation on novel analysis of the segmented regions, targeted to obtain the Couinaud
hepatic segments classification.

The proposed strategy for synergy evaluation and the relative comparison with the stan-
dard techniques shown promising results and might open new perspectives for muscle synergy
extraction techniques and, perhaps, encourages new studies related to the fundamentals of
muscle synergies and human motor learning and control. In fact, the findings of such research
might moreover be useful for implementing more intuitive simultaneous and proportional
myo-electric controls of prostheses and robotic devices, and for the development of innova-
tive diagnostic tools and rehabilitation approaches. In the future, the study of task-oriented
synergies and the relative comparison, could reveal interesting information about whether
and how those patterns might be used to improve the myo-controllers and rehabilitative
therapies.

Finally, the development of CAD solution based on deep neural networks for move-
ment disorders assessment and grading shown promising results. A new software tool for
blepharospasm evaluation has been developed; the solution, starting from video registered
on patients, is capable to recognise the main symptoms of this focal dystonia by detecting
blinks, brief and prolonged spasms. The tool results were analysed, compared with the
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human counterpart and correlated with a standard scale. Future works will deal with the
time required for the tool usage and with the inclusion of all the symptoms analysed by the
standard scale. Handwriting analysis has been investigated as a methodology for Parkinson’
disease assessment and grading. Two main study, and as many CAD tool, have been presented
investigating how the joining of dynamic features extracted from sEMG and handwritten
text/drawing features, can be used for patients evaluation. A first study make use of features
extracted from scanned paper sheets analysed by exploiting vision-based features, while a
second one investigated advantages and drawbacks of features generable by using tablets as
input device. The proposed DSSs demonstrated to be able to distinguish healthy subjects
from PD patients and mild from moderate PD patients with high performance. Future works
will analyse a wider cohort including also severe PD subjects; this will allow to classify PD
patients and to monitor their progresses of over time.
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