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Abstract

Computer Aided Decision (CAD) systems can support physicians in classi-
fying different kinds of breast cancer, liver cancer and blood tumors revealed
also by images acquired via Computer Tomography, Magnetic Resonance,
and Blood Smear systems. On this proposal, this survey is focused on papers
dealing with the description of existing CAD frameworks for the classification
of the three mentioned diseases by detailing existing CAD workflows based
on identical steps for these mentioned tumors. In detail, after an accurate
image acquisition, the fundamental steps carried out by a CAD framework
can be listed as image segmentation, feature extraction and classification. In
particular, in this work specific CAD frameworks are considered, where the
task of feature extraction is performed both by using traditional handcraft
strategies and a Convolutional Neural Network-based innovative methodol-
ogy. In this latter case, the final supervised pattern classification is based
on neural/non-neural machine learning methods. The cited methodology is
focused by sharing and reviewing an amount of specific works. Then, the per-
formances of three selected case studies, designed to show how final outcomes
can vary on the basis of different choices in each step of the adopted work-
flow, are carefully reported. More in detail, these case studies concern with
breast images acquired from Tomosynthesis and Magnetic Resonance, hep-
atocellular carcinoma images acquired by Computer Tomography enhanced
by a triphasic protocol with a contrast medium, and peripheral blood smear
images for cellular blood tumors and are used to compare their performances
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from a quantitative point of view.

Keywords: CAD Frameworks, Convolutional Neural Networks, Breast
Cancer, Liver Cancer, Blood Tumors, Handcrafted Features

1. Introduction

In the last decades, the amount of deaths due to cancer has significantly
increased, overcoming the number of deaths caused by heart attacks and
stroke, as emphasized in the reports of the World Health Organization [1].
More in detail, in several industrialized countries there are determined neo-
plasias with a high incidence, but an early non-invasive diagnosis and staging
can luckily prevent bad prognosis in some of them.

The three tumour forms considered in this survey have been evaluated
among the top ten in the world for estimated number of deaths [2]. This can
be well noticed in Fig 1, where in 2012 the amount of deaths for liver tumour
has been estimated at the second position all over the world; the amount of
deaths for breast tumour is at the fifth position all over the world, whereas
the number of deaths for leukemia has the tenth value in the world in the
same figure.

It can be noticed that the same three malignant forms reveal among the
top ten in Italy, but they seem globally to present a more socially impacting
situation [3]. In fact, in 2012 the amount of deaths for breast tumour has
been the third as reported in Fig. 2, the number of deaths for liver tumour has
been estimated at the sixth position and the amount of deaths for leukemia
is at the eight place.

On this proposal, a first basic concept has to be pointed out, that is to
say, Image Diagnostics is a great choice for its high ability to stage the course
of each of the considered three diseases, without being excessively invasive.
In detail:

• for the breast cancer: (i) in tomosynthesis it is important to note that
doses of ionizing radiation far below those released in the conventional
CT are released; (ii) in magnetic resonance ionizing radiation is not
considered;

• for hepatocellular carcinoma: in CT with contrast medium, the con-
trast medium is very characteristic and therefore able to reduce the
frequency of subsequent examinations;
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Figure 1: Estimated number of deaths caused by tumours worldwide in 2012 [2]

• for leukemia: in the peripheral strips, the method of capturing the
images is absolutely non-invasive because it requires only a blood draw.

Medical imaging is a fundamental methodology for representing the inter-
nal organs of the human body, allowing a non-invasive and accurate diagnosis
of several diseases, including neoplasias [4]. On this proposal, it should be
precised that there are different imaging techniques able to highlight the
characteristics of the human body, on the basis of the sensors used to ac-
quire information and produce the representation of each internal organ [5].
Moreover, beside the diagnostic capabilities, medical imaging is also crucial
for staging and monitoring the clinical course of each disease under investi-
gation [6, 7, 8].

All the previously described advantages led the scientific community to
study and develop a large number of automatic systems, based on medical
imaging, with the aim of supporting physicians in diagnosing, staging and
monitoring different pathologies. On this proposal, a large number of works
focused on Computer Aided Diagnosis (CAD) systems can be found in the
literature, and Fig. 3 shows the number of publications per year from 2006 to
2016 in the field of medical imaging, that is, how CAD systems have become
very popular in literature [9]. In [9] authors discuss how CAD systems can
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Figure 2: Estimated number of deaths caused by tumours in Italy in 2012 [3]

support clinicians in diagnosing, offering a cheap and suitable alternative to
a data double reading intended as a mean for reducing errors.

In this work, a survey on computer-assisted frameworks for the segmen-
tation and the automatic classification of images of tumours is presented.
Existing CAD systems are herein analysed by considering the workflow on
which these automatic systems are based, starting from the acquisition meth-
ods, progressing to the image processing algorithms and finally to the classi-
fication methodology.

In particular, the topic of this survey will be focused on three typologies
of cancer, which are: breast cancer, hepatocellular carcinoma and blood
tumour. The main motivation of this choice lies in the fact that, due to
medical imaging, the detection and diagnosis of diseases can reach high levels
of accuracy for these kinds of neoplasias, still preserving the non-invasiveness
of the acquisition protocol.

The second main concept which leads the survey is based on the obser-
vation that CAD frameworks with the best performance are those CADs
that plan feature extractions (handcrafted or via CNN) and classification
approaches based on supervised machine learning techniques.

This survey is organized as follow: an introduction shows common as-
pects of the three considered malignant tumour forms, among which the
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Figure 3: Number of publications per year from 2006 to 2016. Topic: Computer Aided
Diagnosis & Medical Imaging. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-
SSH, ESCI.

potentiality of early diagnoses, and the importance of staging. Moreover,
the possibility of using not too invasive techniques is explored, as well as,
the need of doing both a continuous monitoring and a periodic one and if
conditions of familiarity exist, or what else.

It will be shown that CAD frameworks for these diseases are similarly
classified by following the same data processing chain both in literature and
in considered published applicative cases.

In Section 2 the typical workflow needed to perform an automatic classi-
fication of the different tumours is introduced, which is shared by the most
of existing CAD systems explored in the survey. In Section 3, 4, and 5 of
this survey the existing CAD systems will be detailed, focusing on the three
considered cancers. Finally, in Section 6 the examined frameworks adopted
in the analysed literature will be discussed.

2. Standard Workflow of Computer Assisted Frameworks

All CAD systems based on medical imaging share an analogous detailed
workflow, which enables to classify a particular tumour starting from the
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Figure 4: Traditional workflow implemented by CAD systems.

acquisition procedure, independently from the disease under investigation.
The flowchart depicted in Fig. 4 shows the essential steps needed to perform
the classification task. In detail, the pipeline is usually composed by four
phases as follows: (1) Image Acquisition, (2) Image Segmentation, (3) Feature
Extraction, (4) Classification.

2.1. Image Acquisition
In this paragraph, image acquisition technologies, based on tomography,

magnetic resonance imaging and hematochemic, will be in general discussed
and the available bibliography will be accurately reviewed. Screening pro-
tocols and techniques will be briefly introduced to enrich information, i.e.,
contrast media, periodicity of acquisitions, etc.

On this proposal, during the last decades, thanks to the increasing avail-
ability of computational resources, new medical imaging technologies have
been developed and commercialized. Computed tomography, MRI imag-
ing, Digital Subtraction Angiography, Doppler ultrasound-imaging, and var-
ious imaging techniques based on nuclear emission, such as Positron Emis-
sion Tomography (PET) or Single-Photon Emission Computed Tomography
(SPECT) have all been valuable additions to the radiologist’s spectrum of
imaging tools toward an ever more reliable detection and diagnosis of diseases
[10, 11, 12, 13, 14]. It can be noted that the optimal acquisition device can
be selected on the basis of the objective of investigation, in order to highlight
specific areas of the human body.

In particular, although image capture techniques may be subdivided ac-
cording to various criteria, as, for example, depending on the physical prin-
ciple on which the respective detectors or sensors are based, this survey will
focus only on the characteristics, which lead to the less invasive methods for
detecting each neoplasia and, at the same time, more targeted to acquire as
much information as possible on the basis of the most modern strategies.

More in detail, concerning with breast cancer, only the tomosynthesis
will be taken into consideration, which, compared to the conventional CT,
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provides for a lower release of ionizing radiation, together with magnetic
resonance imaging that does not exhibit any ionizing radiation. Moreover,
CADs for detecting breast tumours can support in differentiating benign
from malignant forms with a high accuracy and a short training time. As
a consequence, they are clinically very useful to reduce the number of biop-
sies of benign lesions and can offer a second reading to assist inexperienced
physicians in avoiding misdiagnosis.

Concerning with liver cancer, while taking into consideration the tradi-
tional CT, the most modern triphasic techniques with contrast medium will
be particularly discussed, as they allow to be given a more accurate ability
to recognize HCC lesions and stage the evolution of lesions more accurately
for an analogous dose, avoiding to repeat CT examinations very frequently.

Dealing with leukemia, however, minimal invasive strategies such as those
related to simple blood sampling supported by imaging for more accurate
classification of leukocyte forms and their counting will be considered.

2.2. Image Segmentation
In this paragraph, edge-based or feature-based segmentation techniques

will be globally discussed, together with pre-processing phases, such as object
recognition and ROI recognition. In particular, segmentation is a crucial task
in medical image processing. The accuracy of segmentation can directly affect
other post-processing tasks, such as image analysis and feature extraction
[15].

After the acquisition of images, a processing phase is needed for the im-
provement of their quality and an eventual removal of artifacts [16]. This is
a crucial step in order to reach an optimal result in subsequent phases, since
the outputs of this phase affect the performance of the whole workflow. As
far as medical imaging is concerned, in literature there is a huge number of
useful algorithms for pre-processing images [17, 18, 19, 20, 21].

Although image processing includes different steps, segmentation is the
most important one in medical imaging, aiming at separating images into
regions that are meaningful for a specific task, such as the detection of organs
or the computation of some metrics.

Segmentation approaches can be classified into several categories on the
basis of the involved features and the typology of implemented technique.
It has to be noticed that features of interest include pixel intensities, gradi-
ent magnitudes, or measures of texture. Segmentation techniques applied to
these features can be broadly classified into three categories: region-based,
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edge-based, or classification ones [20]. On the basis of this classification,
region-based and edge-based segmentation techniques explore intra-region
similarities and inter-region differences between features, whereas a classifi-
cation technique assigns class labels to individual pixels or voxels based on
feature values.

In some case, grey-level thresholding is a simple but effective segmentation
method [22]. Thresholding may be performed at global or local level, i.e.,
thresholds can be selected equal to a constant value throughout the image,
or spatially varying by computing different thresholds for each subsection
of the image. Thresholding methods can also be categorized as point-based
or region-based techniques. Region-based methods compute the value of a
proper threshold not only on the basis of the grey-level of an individual pixel,
but also considering the properties of its neighbourhood. Whether local or
global, point-based or region-based, thresholds are typically estimated from
the intensity histogram using different approaches.

Moreover, an a priori knowledge could be necessary to perform an appro-
priate segmentation, due to the fact that noise, artifacts or other issues could
make segmentation a tricky task, not simply achievable using only informa-
tion coming from grey level values. In [23] these problems are overcome by
considering deformable and active models or atlas-based methods.

Classification algorithms are frequently used for segmentation too. Su-
pervised classification for segmentation requires training data from users to
enable classifiers to learn how to label each pixel of the input images. On the
other side, unsupervised classifiers are based on cluster analysis to discrimi-
nate natural structures in the input images starting from the data themselves.
In recent years, however, segmentation methods based on Deep Learning ar-
chitectures have been introduced [24]. Since classification architectures are
used to classify Regions Of Interest (ROIs) in CAD system, a detailed dis-
cussion about the topic is dealt with in Section 2.4.

The previous processing phases are preparatory for the extraction of ROIs
containing the areas to be classified. In detail, the output from the segmen-
tation task is generally a binary mask, which is superimposed on the starting
image in order to filter-out all undesired areas [25]. The detected ROIs
are subsequently considered on the basis of the classification methodologies
used in the following step. More in detail, a further step for the extraction
of features is necessary in case of traditional approaches for classifications,
such as by means of Artificial Neural Networks (ANNs) of Support Vector
Machines (SVM). On the contrary, in Deep Learning approaches, e.g., con-
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sidering Convolutional Neural Networks, a subsequent step for the extraction
of features is not necessary, since these networks process images as inputs.
Medical imaging is essential in many fields of medical research and clinical
practice, because it greatly facilitates early and accurate detection and di-
agnosis of diseases. In particular, contrast enhancement is essential for an
optimal image quality and visibility.

Processing methods for enhancing morphological features of masses and
other abnormalities in medical images are also very useful [26]. The morpho-
logical method involves two steps: (1) selective extraction of target features
by mathematical morphology and (2) enhancement of the extracted features
by two contrast modification techniques. The goal of the analysed method
[26] consists in enabling the enhancement of fine morphological features of a
lesion region with a high suppression of surrounding tissues. The effectiveness
of the method is evaluated in quantitative terms of the contrast improvement
ratio. Results clearly show that the method outperforms five conventional
contrast enhancement methods. The effectiveness and usefulness of the pro-
posed method have been further demonstrated by the application to three
types of medical images: a mammographic image, a chest radiographic im-
age, and a retinal one. As a conclusion it can be affirmed that the proposed
method enables the specific extraction and enhancement of mass lesions,
which is essential for a clinical diagnosis based on medical image analysis.
Thus, the method can be expected to achieve an automatic recognition of
lesion locations and a quantitative analysis of lesion morphology. Now, con-
cerning with liver segmentation, algorithms can be categorized according to
the amount of involved user inputs: manual, semi-automated and fully au-
tomated. Manual segmentation is considered the "gold standard" in clinical
practice and research, but is expensive and time-consuming. The increase
of automated segmentation approaches is more robust, but may suffer from
certain segmentation pitfalls. Thus, emerging applications of segmentation
include surgical planning and integration with MRI-based biomarkers.

2.3. Feature Extraction
In this section, the importance of identifying appropriate features from

medical images capable of characterizing and discriminating classes of inter-
est will discussed.

For example, breast cancer segmentation could be advantaged by com-
bining morphological features with texture features. In [27] the authors have
developed a fully automated, three-stage segmentation method that includes
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clustering, active contour, and spicularities detection stages. After segmenta-
tion, morphological features describing the shape of the mass were extracted.
Texture features were also extracted from a band of pixels surrounding the
mass. Stepwise feature selection and linear discriminant analysis are em-
ployed in the morphological, texture, and combined feature spaces for clas-
sifier design. The improvement obtained by supplementing texture features
with morphological features in classification was statistically significant. In
this work the leave-one-case-out discriminant scores from different views of
a mass is combined to obtain a summary score for classifying a mass as
malignant or benign.

In [28] a Computer-Aided Diagnosis (CAD) system based on shape anal-
ysis is proposed, which proves to be highly accurate in evaluating breast
tumours. However, it takes considerable time to train the classifier and diag-
nose breast tumours, because the extraction of morphologic features require
a lot of computation. Hence, to develop a highly accurate and quick CAD
system, texture and morphologic features of ultrasound breast tumour imag-
ing are combined to evaluate breast tumours and reveal that the proposed
system reduces the training time compared to systems based only on the
morphologic analysis.

According to literature, there are several sets of features that could be
used to characterize regions of interest. From a general point of view, the
features may be distinguished between global and local, based on the localiza-
tion of the information used to compute: global features are function of the
whole image, whereas local features are a function of a local image region.

Among global features, the most used are Haralick features [29] (Table 1),
Local Binary Patterns (LBP) [30] and Threshold adjacency statistics (TAS)
[31]. On the contrary, the most used set of local features are the Speeded-Up
Robust Features (SURF) [32].

Moreover, there are some other descriptors useful for the characterization
of neoplasias or lesions based on descriptors of shape that could be computed
from Regions of Interest. In Fig.5 some examples of tumour classification
starting from the shape in benign and malignant cases is represented.

2.4. Classification
In the last years, a relevant number of studies have been proposed, from

a classification point of view. In most cases, the design of CAD systems is
based on a supervised learning approach, using Artificial Neural Networks
(ANNs) or Support Vector Machines (SVMs), as well as Swarm Intelligence
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Table 1: 14 statistics that can be calculated from the co-occurrence matrix with the intent
of describing the texture of the image from [29].

Angular Second Moment
∑

i

∑
j p(i, j)

2

Contrast
∑Ng−1

n=0 n2{
∑Ng

i=1

∑Ng

j=1 p(i, j)}, |i− j| = n

Correlation
∑

i

∑
j(ij)p(i,j)−µxµy
σxσy

where µx, µy, σx and σy
are the means and std. deviations of px and py
the partial probability density functions

Sum of Squares: Variance
∑

i

∑
j(i− µ)2p(i, j)

Inverse Difference Moment
∑

i

∑
j

1
1+(i−j)p(i,j)

Sum Average
∑2Ng

i=2 ipx+y(i) where x and y are the coordinates
(row and column) of an entry in the co-occurence matrix,
and px+y(i) is the probability of co-occurence matrix
coordinates summing to x+ y

Sum Variance
∑2Ng

i=2 (i− f8)2px+y(i)

Sum Entropy −
∑2Ng

i=2 px+y(i)log{px+y(i)} = f8

Entropy −
∑

i

∑
j p(i, j)log(p(i, j))

Difference Variance
∑Ng−1

i=0 i2px−y(i)

Difference Entropy −
∑Ng−1

i=0 px−y(i)log{px−y(i)}

Info. Measure of Correlation 1 HXY−HXY 1
max{HX,HY }

Info. Measure of Correlation 2 (1− exp−2(HXY 2−HXY ))
1
2 where

HXY = −
∑

i

∑
j p(i, j)log(p(i, j)),

HX, HY are the entropies of px and py,
HXY 1 = −

∑
i

∑
j p(i, j)log{px(i)py(j)},

HXY 2 =
∑

i

∑
j px(i)py(j)log{px(i)py(j)}

Max. Correlation Coeff. Square root of the second largest eigenvalue of Q where
Q(i, j) =

∑
k
p(i,k)p(j,k)
px(i)py(k)
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Figure 5: Tumour diagnosis from contours of breast masses: (b) benign masses, (m)
malignant tumours. Image from [33].
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or simpler Linear Discriminant Analysis (LDA) [34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50] classifiers built on radiologists’ gold
standard labelling.

In particular, ANNs may be classified in several ways based on:

• the function that the ANN is designed to serve (e.g. pattern association,
clustering);

• the degree (partial/full) of connectivity of the neurons in the network;

• the direction of flow of information within the network (recurrent and
non-recurrent);

• the type of learning algorithm, which represents a set of systematic
equations that use the outputs obtained from the network along with
an arbitrary performance measure to update the internal structure of
the ANN;

• the learning rule, as known as the diving engine of the learning algo-
rithm;

• the degree of learning supervision needed for ANN training.

In general, supervised learning involves the training of an ANN with the
correct answer (i.e, target outputs) being given for every example, and using
the deviation error of the ANN solution from corresponding target values
to determine the required amount by which each weight should be adjusted.
On the other side, the unsupervised learning does not required a correct
answer for the training examples. However the network arranges examples
into clusters based on their similarity or dissimilarity [51], through exploring
the underlying structure in data and the correlation between the various
examples themselves.

The development of an ANN requires partitioning of the parent database
into:

• training set: should include all the data belonging to the problem
domain and is used in the training phase to update the weights of the
network;
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• validation set: is used after selecting the best network to further
examine the network or confirm its accuracy before being implemented
in the neural system and/or delivered to the end user;

• test set: is used during the learning process to check the network
response for untrained data.

The data used in each set (training, validation and test) should be differ-
ent from each other. There are no mathematical rules but only some rules of
thumb derived from experience and analogy between ANNs and statistical
regression for the determination of the required sizes of the training, valida-
tion and test set. In particular, cross-validation (CV) is a popular strategy
for algorithm selection. The main idea is to split parent dataset, once or
several times, for estimating the risk of each algorithm. The popularity of
CV mostly comes from the "universality" of the data splitting heuristics.
Nevertheless, some CV procedures have been proved to fail for some model
selection problems, depending on the goal of model selection, estimation or
identification. Furthermore, many theoretical questions about CV remain
widely open, as reported in [52, 53, 54, 55, 56, 57, 58].

The advent of new competitive imaging modalities for the same diag-
nostic problem has led to performance of many studies involving compar-
isons of the information obtained from these imaging techniques. Several
of these comparisons have used Receiver Operating Characteristic (ROC)
curves [59, 60, 61]. In other words, the main goal of these studies is to judge
the discrimination ability of various statistical methods that combine various
clues and test results for predictive purposes. In [62], the authors undertake
the investigation about the issues related to the use of the statistical tech-
niques proposed for comparing the information obtained from imaging tech-
nique with ROC curves. The intuitive result that the authors show is that
in the rating method reported in [63], conventionally employed for analysing
imaging modalities using the ROC curve approach, the area under the ROC
curve represents the probability that a random pair of normal and abnormal
images will be correctly ranked as to their disease state. In particular, the
authors emphasized that this probability only conveys the intrinsic potential
for discrimination with sensitivity and specificity weighted equally; other ex-
ternal decision factors that influence diagnostic performance include the real
mixture of diseased and non-diseased patients and the relative costs of the
two types of diagnostic errors.
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Figure 6: A representation of the CNN layers. Image from [68]

In literature, two different classes of ANNs could be identified on the
basis of the number of hidden layers: Shallow and Deep Neural Networks. In
details, ANNs with a single hidden layer are named Shallow Neural Networks,
whereas a Deep architecture has a number of hidden layers greater than
one (Fig. 7).

Regarding deep architectures, different strategies have been introduced
in the literature so far; the success of deep networks in image processing is
mainly due to the spread of Convolutional Neural Networks (CNNs). These
kind of architectures are able to make a decision (i.e. classify) working di-
rectly on a raw image given as input to the network [64, 65, 66]. In fact, a
CNN is capable of automatically extracting some descriptors (feature learn-
ing capability) of an image, thus eliminating the development of algorithms
for the processing of images for the extraction of the so-called "hand-crafted"
features [67] necessary to a classical classifier, such as ANN or SVM. The gen-
eral architecture of a Convolutional Neural Network is shown in Fig. 6; it is a
combination (which depends on the specific implementation) of convolutional
layers, relu layers and pooling layers followed by a fully connected layer (as
in classic multi-class ANNs).

Recent works reported the differences, in terms of performance, between
shallow and deeper neural networks architectures 7, by highlighting the
strengths and weaknesses of both strategies for classification [69, 70, 71].
According to literature, a sufficiently wide shallow neural network could ap-
proximate any (reasonable) function given enough neurons, so there is not
an objective motivation to prefer Deep Neural Networks at all. In addition,
the quality of the final generalisation properties of ANNs strictly depends on
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(a)

(b)

Figure 7: Architectural differences between (a) shallow and (b) deep neural networks.
(Adapted from Nielsen [73] under Creative Commons Attribution-Non Commercial 3.0
Unported License)

.

the significance and classes-balance of the available training data [72].
However, a huge number of neurons for a single layer architecture in-

creases the number of parameters to be tuned during the training phase,
with the risk of over-fitting the data [74]. Making ANNs deeper, by adding
multiple layers, allow the classifier to learn features at different levels of ab-
straction, on the bases of the number of hidden layers, leading to stronger
capabilities of generalisation.

In recent years, Deep Learning (DL) and Convolutional Neural Networks
(CNNs) have been used in many applications for images segmentation and
classification, including the medical field with more than 100 papers in just
four years as reported in Fig. 8, in particular for breast cancer [75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93].

Convolutional Neural Networks are powerful architectures that may be
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Figure 8: Number of publications per year from 2006 to 2016. Topic: Convolutional
Neural Network & Medical Imaging. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S,
CPCI-SSH, ESCI.

used in three different ways:

• Training from scratch: as for ANNs, Convolutional Neural Networks
may be created from scratch, designing the overall architecture and
providing enough samples as input for training. Generally, this process
takes a lot of time using large datasets with several classes.

• Transfer Learning or Fine-Tuning: this approach allows to use an
available pre-trained model for classification purposes different from the
original classes. In details, it is possible to fine-tune the classification
layer of a CNN to predict new classes given as input.

• Features Extractors: in addition to the previous ways, it is possible
to remove the classification layer from the CNN and consider the output
as features describing the input image computed automatically from
the network. This process is iterative, so it is possible to remove more
(intermediate) layers based on the desired level of abstraction of the
features.
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Regardless of the adopted strategy for classification, a diffused structure
for representing the classifiers capability to discriminate among the different
classes is the confusion matrix. Limiting the analysis to a binary classifier
with Positive and Negative classes, a representation of a confusion matrix is
reported in Table 2, where:

• TP: is the number of instances correctly classified as Positives;

• TN: is the number of instances correctly classified as Negatives;

• FP: is the number of Negatives instances classified as Positives;

• FN: s the number of Positives instances classified as Negatives.

Table 2: A representation of a confusion matrix.

True Condition

Positive Negative

Predicted Condition Positive TP FP
Negative FN TN

Based on the representation in Table 2, several metrics may be computed
for the performance evaluation of classifiers [94, 95, 96]. The most used in
literature are Accuracy, Sensitivity (or True Positive Rate) and Specificity
(or True Negative Rate) reported in Equation 1, 2 and 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Sensitivity =
TN

TN + FP
(3)
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3. Breast Cancer

The high incidence of breast cancer in women (more than 25% of cancers
affecting women is breast cancer [2]) and the ever-increasing life expectancy of
population require an accurate assessment of the breast glands with imaging
techniques. In this field, mammography represents the gold standard imaging
tool [97]; in fact, mammographic examinations are used in several screening
programs thanks to the capability to perform a very early detection, whereas
Magnetic Resonance (MR), Computer Tomography (CT) or Digital Breast
Tomosynthesis (DBT) techniques are necessary to perform a more in-depth
analysis of risky cases, or for the follow-up of treated patients [98]. In recent
years, several works have been presented dealing with breast lesions detection
and classification considering deep strategies for classification.

In [99] Samala et al. designed a DL-CNN architecture for breast micro-
calcification classification. The authors compare a DL-CNN architecture,
whose optimal architecture was obtained by varying among 216 combinations
of parameters in the network (e.g., the number of filters and the filter kernels)
and analysing the effects of their variation in the parameter space, and a
previously designed Artificial Neural Network performing convolution on the
input images. Results show a statistically significant improvement since the
Areas Under the Curve (AUCs) of the first CNN and the subsequent DL-CNN
are equal to 0.89 and 0.93, respectively.

Kallenberg et al. present a method capable of learning from features at
multiple scales hierarchy not labelled data addressing two different tasks: (i)
breast density segmentation and (ii) scoring of mammographic texture [100].
The authors report that the scores obtained by performing the proposed
approach, based on automatic learning, have a high correlation with the
ones obtained with the manual approach. Furthermore, the learned texture
scores are predictive of breast cancer.

3.1. Experimental Studies
In the following sections, two different works for detecting and classifying

breast lesions will be analysed and discussed. In particular, a supervised
approach for the detection and classification of breast lesions from MR images
will be introduced in Section 3.1.1, whereas a supervised approach based on
deep architectures for the extraction of features in order to classify with
simpler non-neural strategies will be discussed in Section 3.1.2.
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3.1.1. Magnetic Resonance
In [34], a CAD system for detecting and classifying breast lesions in im-

ages acquired via Magnetic Resonance is presented. The workflow followed
in [34] is reported in Fig. 9 and will be discussed in this section.

Image	
Processing

Benign/Malignant
Classifier

ROIs with	Lesion
Classifier

Diagnosis

Image	
Acquisition

Feature
Extraction

Figure 9: Workflow for breast lesion classification.

The acquisition phase was conducted following the standard procedure
for breast cancer diagnosis, which consists of as follows:

• Transverse short TI inversion recovery (STIR) turbospin-echo (TSE)
sequence (TR/TE/TI = 3.800/60/165 ms, field of view (FOV) = 250x450
mm (APxRL), matrix 168x300, 50 slices with 3-mm slice thickness and
without gaps, 3 averages, turbo factor 23, resulting in a voxel size of
1.5 x 1.5 x 3.0 mm3; acquisition time: 4 minutes);

• Transverse T2-weighted TSE (TR/TE = 6.300/130 ms, FOV= 250x450
mm (APxRL), matrix 336x600, 50 slices with 3-mm slice thickness and
without gaps, 3 averages, turbo factor 59, SENSE factor 1.7, resulting
in a voxel size of 0.75x0.75x3.0 mm3; acquisition time: 3 minutes);

• Three-dimensional dynamic, contrast-enhanced (CE) T1-weighted high
resolution isotropic volume (THRIVE) sequences (TR/TE= 4.4/2.0
ms, FOV = 250x450x150 mm (APxRLxFH), matrix 168x300, 100 slices
with 4-mm slice thickness, spacing between slices: 2 mm; turbo factor
50, SENSE factor 1.6, 6 dynamic acquisitions, resulting in 1.5 mm3

isotropic voxels, a dynamic data acquisition time of 1 min 30 s, and a
total sequence duration of 9 min).

In details, the first step of the considered work consisted in the prepro-
cessing of acquired images; after a simple rescaling of the grey level of pixels,
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an algorithm for the masking of the thorax in all the slices is performed,
thus filtering out all the structures external to the breasts. As reported in
Fig. 10, three points are computed to generate a parabola with the vertex
on the sternum (point A) and passing through the side edges of the chest
(points B and C).

Figure 10: Algorithm output for thorax masking. The reference points for parabola gen-
eration are A, B and C.

A segmentation phase, necessary for the removal of all the uninteresting
parts of the image, is subsequently performed. In particular, a thresholding
operation is performed considering the 95th percentile of the grey levels his-
togram of the images acquired without contrast medium (CM). Then, areas
with diameter below 5 mm are removed and the obtained mask is applied to
the starting image in order to extract the regions of interest. The remaining
areas were characterized considering 10 features which were:

• F1: size in mm2 of the suspicious lesion;

• F2, F3: average value of the grey levels of images with and without CM
in ROIs, to determine areas with gray intensity different from standard
ones;

• F4, F5: standard deviation value of the gray levels of images with and
without CM in ROIs, respectively;
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• F6: circularity expressed as 4π( A
p2
) where A = ROI_area and p =

ROI_perimeter;

• F7: aspect ratio intended as majorAxis
minorAxis

;

• F8: eccentricity of the ellipse whose second order moments coincide
with those of each ROI;

• F9: solidity, defined as ratio of the area of the ROI and the area of
convex hull;

• F10: convexity (or edge roughness), given by the ratio between the
perimeter of the convex hull and the one of the ROI.

After the extraction of the features, two different Artificial Neural Net-
works can be designed using an evolutionary strategy, as reported in [35].
The first ANN is designed to discriminate among lesions and other structures
(e.g. vessels), while the second one is used to classify benign and malignant
lesions, taking the same set of features of the regions classified as lesions in
the previous step as input.

In particular, regarding the first classifier, the generated dataset is bal-
anced with a Synthetic Minority Over-sampling Technique (SMOTE) to in-
crease the number of patterns characterizing lesions until the amount of neg-
ative cases to achieve better classifier performance [101]. In both cases, per-
formances were measured in terms of Accuracy, Sensitivity and Specificity as
reported in Section

The results obtained in both cases are reported in Table 3, and 4. In
details, the reported tables show Accuracy, Sensitivity and Specificity as
mean values obtained performing 100 iterations of training, validation and
test of ANN, considering a different random permutation of the input dataset
at each iteration.

The reported results show that a supervised machine learning approach
for the detection of breast lesions from MR images and the subsequent clas-
sification between benign and malignant is consistent, and shows good per-
formance, especially from a False Negative reduction perspective.

3.1.2. Digital Tomosynthesis
Digital Breast Tomosynthesis (DBT) has been recently introduced for

breast cancer screening and detection, and consists in a promising inno-
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Table 3: Results obtained in [34] for the discrimination between ROIs with and without
lesions.

Min Max Mean

Accuracy 0.9624 0.9849 0.9736 ± 0.0044
Sensitivity 0.9592 0.9958 0.9791 ± 0.0075
Specificity 0.9459 0.9892 0.9684 ± 0.0075

Table 4: Results obtained in [34] for the discrimination between benign and malignant
lesions.

Min Max Mean

Accuracy 0.7308 1 0.8977 ± 0.0584
Sensitivity 0.6923 1 0.8908 ± 0.1021
Specificity 0.7692 1 0.9046 ± 0.0875

vative radiological technique for early diagnosis and staging. DBT pro-
duces a limited angle cone beam tomosynthesis of the breast glands and
has demonstrated to have a higher accuracy if compared to the most com-
monly used bi-dimensional imaging techniques, such as mammography, CT
or MR [97, 102, 103, 104]. After the acquisition of multiple thin and high-
resolution images, a 3D model of the breast is created, reducing the effect of
tissue superimposition, too [105]. DBT improves the visualisation of masses
and architectural distortions. In particular, the edges of the breast lesions are
better defined, and this allows an improvement of the final diagnosis [106].

In [107], a CAD system to support the classification of three different
kinds of lesions was designed.

As for the previous cited work, an image processing step performing seg-
mentation was needed to extract candidate regions of interest containing
suspicious lesions. In details, the extracted ROIs are labelled according to
the classification by radiologists in 4 classes:

1. None: segmented ROI not containing any kind of lesion (Fig. 12(a));

2. Ori: segmented ROI containing an irregular opacity (Fig. 12(b));

3. Oro: segmented ROI containing a regular opacity (Fig. 12(c));

4. Ost: segmented ROI containing a stellar opacity (Fig. 12(d)).
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Figure 11: Workflow for breast lesion classification.

Differently from the work described in the previous section, in [107], the
extraction of features describing the segmented ROIs is performed following
two different approaches:

• Several pre-trained models of Convolutional Neural Networks were used
as automatic features extractors by pruning the CNN architectures at
certain levels of depth;

• Hand-crafted morphological and textural features were computed using
the Grey Level Co-occurrence Matrix (GLCM) [29, 108, 109].

Since the strategies for features extraction are different, also the classifi-
cation step was performed following different approaches.

In particular, two different Artificial Neural Networks are designed by
an evolutionary approach to discriminate among the four classes taking the
hand-crafted features as input. In a first step, Ori, Oro and Ost classes have
been grouped into a single one (P), while None is the second class (N); in this
case, a binary classifier is used and the obtained performance are reported in
Table 5. Subsequently, the second ANN is used to discriminate among the
four classes, but the obtained Accuracy was lower than the binary classifier
(74.84 % ± 4.89).

This behaviour reveals predictable and reasonable considering the way
in which ANNs were designed and optimized: the extraction process of the
most discriminant features heavily influences the overall capabilities of the
classifier. In this case, the features used as inputs showed good results to
discriminate binary class samples, while these did not provide enough infor-
mation to correctly describe all the different kinds of lesions in the multi-class
approach.
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(a) (b)

(c) (d)

Figure 12: Images extracted after the segmentation phase: (a) ROI with no lesions; (b)
ROI with irregular opacity; (c) ROI with regular opacity; (d) ROI with stellar opacity.

Table 5: Results obtained for binary classification.

Accuracy Sensitivity Specificity

Mean 84.19 % 85.90 % 82.82 %
Standard Deviation 3.06 5.33 5.17
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Regarding CNNs as feature extractors, several pre-trained models are con-
sidered, which were: GoogLeNet, ResNet, AlexNet, VGG-verydeep, VGG-F,
M and S [65, 110, 111, 112, 113, 114, 115, 116].

In the second approach, the dataset is constituted by the set of features
extracted by the CNN models. The output of the CNN models (in other
words, their final activations) is used to train several non-neural learners,
which were: Linear Support Vector Machine (Linear SVM), K-Nearest Neigh-
bor (KNN), Naïve Bayes, Decision Tree and Linear Discriminant Analysis
(LDA) [117, 118, 119, 120, 121, 122].

Final tests were performed on all the considered CNN architectures. In
order to improve the overall performance, several tests for dataset processing
are performed; in particular, Activation Normalization and Images Augmen-
tation are explored leading to a slight improvement in all the architectures.
Finally, since VGG-F, VGG-S and VGG-S show the higher mean accuracies
and the lowest processing time, they are considered for final evaluation.

The results reported in [107] (Table 6) show that Naïve Bayes classifier
is not recommended in this classification; Decision Trees allow to improve
the mean accuracy in comparison to NaÃŕve Bayes, but it is far to be con-
sidered as a reliable classifier. The linear classifiers (SVM and LDA) further
increased the performance, but better results were obtained from KNN clas-
sifiers. In this case, mean performances reached very good levels of accuracy,
specificity and sensitivity with low variability. Furthermore, to substantiate
the high level of performance in terms of accuracy, it is worth to mention
that sensitivity and specificity for positive samples reveal higher than 95 %,
as reported in Table 7 where results are calculated using a 1-vs-all approach.

Table 6: Results of the selected pre-trained CNNs used as features extractor, training
several learners with normalization and augmented images.

KNN LDA LINEAR
SVM

NAÏVE
BAYES

DECISION
TREES

VGG-F 91.63 ± 0.41 64.57 ± 0.66 67.29 ± 2.02 43.82 ± 0.59 59.68 ± 1.07
VGG-M 90.74 ± 0.48 66.25 ± 0.60 69.50 ± 2.16 42.85 ± 0.57 57.03 ± 0.98
VGG-S 92.02 ± 0.48 65.24 ± 0.80 68.84 ± 1.89 44.89 ± 0.60 56.16 ± 0.93
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Table 7: Sensitivity and Specificity for the lesions evaluated through 1-vs-all approach.
Ori vs all Oro vs all Ost vs all

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
VGG-F 98.67 % 97.07 % 96.01 % 95.98 % 97.24 % 96.93 %
VGG-M 98.14 % 96.64 % 95.00 % 95.76 % 97.18 % 96.62 %
VGG-S 98.36 % 97.13 % 95.61 % 96.33 % 96.67 % 97.25 %

4. Liver Carcinoma

As for breast cancer, liver cancer shows an extremely high mortality
worldwide [2]. In recent years, several works have been presented dealing
with detection and classification of hepatic tumours considering different
strategies for classification.

A method to segment liver and lesions automatically in CT and MRI
abdomen images is proposed in [123] by using Cascaded Fully Convolutional
Neural Networks (CFCNNs), which enable the segmentation of large-scale
medical trials and quantitative image analyses. In particular, the authors
focused on CT images and applied a CFCNN on CT slices, which can sequen-
tially segment liver and lesions, leading to a significantly higher segmentation
quality and showing interesting performance on a public challenge dataset.

Moreover, a Deep Convolutional Neural Network (DCNN) is developed
to segment the liver in CT slices via an automatic procedure also in [124].
The same model has been subsequently employed for the classification of le-
sions, by considering images from the previous classification as inputs. The
developed models have been evaluated using the Liver Tumour Segmentation
Challenge dataset (LiTS) for the liver segmentation tasks. In this paper a
DICE coefficient equal to 0.67 is reached, but the lesion classification perfor-
mance is still low, as reported by the author himself.

Different machine learning techniques for diagnosis of liver disease and
hepatitis disease are developed in [125]. It is observed that Functional Trees
(FTs) provide 97.10 % of correctness for the liver disease diagnosis. The
implemented feedforward neural network correctly classifies hepatitis disease
as it provides 98 % accuracy. This survey highlights both advantages and
disadvantages of considered algorithms [126, 127, 128, 129, 130, 131].

A new method for the automatic detection and segmentation of unknown
cancers in longitudinal liver CT studies and for a burden quantification of
tumours is presented in [132]. The considered inputs are the baseline/follow-
up CT scans, the baseline delineation of tumours, and a tumour appearance
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prior model. The outputs are given by new segmentations of tumours in the
follow-up scan, tumour burden quantification in both scans, and the tumour
burden change. The method intends to find new neoplasias by integrating
information from the scans, the baseline tumours delineation, and a tumour
appearance prior model in the form of a global CNN classifier. Reported
results show that this method is superior to existing stand-alone/follow-up
methods, with both high true positive rate and precision of 86 % on a dataset
with 37 longitudinal liver CT studies with 246 tumours, among which 97 new
ones.

A fully automatic framework for liver segmentation together with its tu-
mour on contrast enhanced abdominal CT scans is developed in [133], which
is based on three steps: i) a liver localization by a simple CDNN model;
ii) a liver fine segmentation via a deeper CDNN model with doubled fea-
ture channels in each layer; iii) a tumour segmentation by a CDNN model
with enhanced liver region as additional input feature. Considered CDNN
models are fully trained in an end-to-end mode with minimum pre- and post-
processing efforts. Furthermore, two CNNs are used for liver segmentation
and metastases detection on CT examinations in [134]. Authors use CNN
architectures based on a VGG 16-layer net as in [113]. In particular, the
final classification layer is removed and substituted with a (1ÃŮ1) convolu-
tion with channel dimension equal to 2 to predict scores for lesion or liver at
each of the coarse output locations, followed by a deconvolution layer to up
sample the coarse outputs to pixel-dense outputs, whereas all the intermedi-
ate fully connected layers are substituted with convolutional layers. Starting
from the previous architectures, two variants are obtained linking lower lay-
ers to the final layer, which are FCN-8s DAG and FCN-4s DAG, respectively,
and 3D information is also taken into account by considering adjacent slices
as input to the network. Moreover, regarding with the segmentation phase,
Dice index, Sensitivity and Positive Predictive Values (PPV) are used to
evaluate the segmentation performance. In particular, higher values for all
the three indexes are reached using the FCN-8s DAG combining information
from the 2 adjacent CT slices of the considered one. Regarding the detection
of metastases, instead, the True Positive Rate (TPR) and False Positive per
Case (FPC) metrics are used for performance evaluation. In this case, the
3D information allowed to reach the highest performance with the FCN-4s
architecture. Although the results obtained in this work are very promising,
the dataset herein considered is small and needs to be increased to evaluate
the robustness of the proposed algorithms.
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A novel application of Convolutional Neural Networks (CNNs) is pre-
sented in [135] to segment liver tumours. In this work, this method is tested
on 30 CT images using leave-one-out cross validation. The reported exper-
iments show that the CNNs model produce an accurate and robust liver
tumour segmentation. If compared to traditional machine learning methods,
such as AdaBoost, RF, and SVM, the CNNs method seems to perform better.
Limitations of CNNs are still found on segmenting tumours with inhomoge-
neous density and unclear boundary, especially the under-segmentation in
the tumour adjacent to structures with similar densities.

In [136], several recent Computer Aided Diagnosis (CAD) systems used in
the diagnosis of liver diseases have been discussed. This article reviews the
various CAD systems used for the classification of liver diseases using CT
scan images. The description of the tumour segmentation process focuses
on the algorithm used to classify tumour and the corresponding results for
all the considered works. However, this article does not consider the most
modern deep learning classification techniques [137, 136, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147].

The design and implementation of a CAD system consisting of liver and
tumour segmentation, feature extraction and classification module is pre-
sented in [148], characterizing the CT liver tumour as haemangioma and
hepatoma. The experiment results show that the classification accuracy of
Fast Discrete Curvelet Transform (FDCT)-based feature extraction and clas-
sification is higher than the wavelet based method. Performance measure-
ments can be increased by increasing the number of used samples. In this
work, a pattern recognition network is used, which is a feed-forward network
with tan-sigmoid transfer functions in both the hidden layer and the output
one. The network has two output neurons, as there are two classes associ-
ated with each input vector. The performance of the classifier is evaluated
by calculating accuracy (93.3 %), selectivity (90 %) and specificity (96 %)
from the obtained confusion matrix. A Computer Aided Diagnosis (CAD)
system based on texture features and a multiple classification scheme for
the characterization of four types of hepatic tissue from Computed Tomog-
raphy (CT) images has been presented in [149]. The proposed system has
achieved a total classification performance of the order of 97 %. Regions of
Interest (ROIs) corresponding to normal liver, cyst, haemangioma, and hep-
atocellular carcinoma, are drawn by an experienced radiologist on abdominal
non-enhanced CT images. For each ROI, five distinct sets of texture features
are extracted using the following methods: first order statistics, spatial grey
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level dependence matrix, grey level difference method, Laws texture energy
measures, and fractal dimension measurements. If the dimensionality of a
feature set is greater than a predefined threshold, feature selection based on a
Genetic Algorithm (GA) is applied. Classification of the ROI is then carried
out by a system of five neural networks (NNs), each using as input one of the
above feature sets. The members of the NN system (primary classifiers) are
4-class NNs trained by the backpropagation algorithm with adaptive learn-
ing rate and momentum. The final decision of the CAD system is based on
the application of a voting scheme across the outputs of the individual NNs.
The multiple classification scheme using the five sets of texture features re-
sults in significantly enhanced performance, as compared to the classification
performance of the individual primary classifiers.

A pilot study for hepatocellular carcinoma grading and the evaluation of
microscopic vascular invasion is proposed in [150] where a shallow artificial
neural network is compared to linear models. The results obtained from
ANN in terms of AUC and Accuracy are higher than the ones obtained from
a linear logistic model in both HCC grading and MVI presence evaluation.
In [151], biorthogonal wavelet based texture features are extracted and used
to train the Probabilistic Neural Network (PNN) to classify the liver tumour
as hepatocellular carcinoma, cholangio carcinoma, hepatocellular adenoma
and haemangioma with better performance to help radiologists and medical
specialists during their medical decision process. In particular, the PNN
provides a general solution to pattern classification problem by following the
probabilistic approach based on the Bayes formula. The performance of the
PNN is compared with the performance of the Learning Vector Quantization
(LVQ) Neural Network to prove the choice of the classifier. Moreover, the
performance of the system are compared with the performance of the PNN
in the grey level domain for the selected feature set to prove the choice of
wavelet domain. In [152], 164 liver lesions (80 malignant tumours and 84
haemangiomas) are evaluated. The suspicious tumour region in the digitized
CT image was manually selected and extracted as a circular sub image. The
proposed pre-processing adjustments for sub images were used to equalize the
information needed for a differential diagnosis. The auto-covariance texture
features of sub image were extracted, and a support vector machine classifier
identified the tumour as benign or malignant. The accuracy of the proposed
diagnosis system for classifying malignancies is 81.7 %, the sensitivity is 75
%, the specificity is 88.1 %, the positive predictive value is 85.7 % and the
negative predictive value is 78.7 %.
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4.1. Experimental Studies
In the following sections, two specific works for detecting and classifying

hepatocellular carcinoma will be analysed and discussed. In particular, a
supervised approach based on the extraction of hand-crafted features for
the detection and classification of HCCs from triphasic CT protocol will be
introduced in Section 4.1.1, whereas a second approach based on a supervised
Convolutional Neural Network will be discussed in Section 4.1.2.

4.1.1. Hand-crafted Features
In [153], the acquisition system is based on Computer Tomography, a

medical imaging technique that is widely used for Hepatocellular Carcinoma
(HCC) detection. In fact, CT, as well as MRI, are always required to deter-
mine the disease extension. In fact, both the techniques are considered as
the gold standard for non-invasive evaluation of focal and diffuse diseases of
liver and biliary tract [154, 155].

These CT scans are acquired with a 320 slices Scanner (Toshiba Aquilion
One) after an automated injection of 1.5 ml/kg of iodinated contrast medium
(Iomeprole 400 mgI/ml) through a 16G Needle in antecubital vein at a flow
rate of 4ml/sec with the following protocol:

1. arterial dominant phase acquired 20 seconds after the aortic peak calcu-
lated by a bolus tracking system with a ROI positioned in the abdomi-
nal aorta at a trigger density of 150 Hounsfield Units (HU) (Fig. 13(a));

2. portal phase acquired 70 seconds after contrast injection;

3. equilibrium phase acquired 180 seconds after contrast injection Fig. 13(b)).

A double-step segmentation is carried out, after an image pre-processing
phase performed through contrast enhancement, in order to improve the
contrast of the CT images, and a cropping phase to reduce the amount of data
to be processed. In particular, liver and HCC segmentation are performed.

Concerning with liver segmentation, the histogram of the slice with the
largest connected portion of the liver is analysed to obtain the typical liver
grey intensity. By means of this evaluation, local thresholding and mor-
phological operations were performed, allowing to remove all the structures
external to the liver. The segmentation result of the first CT slice is dilated
and used as a binary mask for the previous and the following slices. Those
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(a) (b)

Figure 13: CT images acquired in the different phases: (a) Arterial phase; (b) Equilibrium
phase. The square indicates the lesion in both phases.

slices were further segmented, and the method was iteratively propagated in
both directions until the final slices are reached.

A similar procedure is performed for the HCC segmentation. Hepa-
tocellular carcinoma are subsequently segmented using an innovative two-
dimensional region growing algorithm which take into account images from
both arterial and equilibrium phases. Some morphological operation are per-
formed to refine the obtained Regions of Interest.

Textural features are then extracted using grey level co-occurrence matri-
ces, as proposed by Haralick et al. [29] and derived from his works [108, 109]
to describe ROIs. Each HCC was texturally described taking information
from the two corresponding slices in both arterial and delayed phases.

Three different subsets of features were generated from the dataset:

1. 44 features obtained considering ROIs extracted from the two consid-
ered phases (specifically, 22 features extracted from each phase);

2. 22 features coming from an algorithm of ranking based on the relative
entropy, also known as Kullback-Leibler distance or divergence [156];

3. 5 features in Haralick et al. (Contrast, Correlation, Energy, Homo-
geneity and Entropy) which have been used in similar previous work
for blood vessels and tubules classification [25] and have shown good
discrimination capabilities.

In this work, HCC grades, which could be classified into four classes (from
grade 1 to grade 4) [157], have been grouped into two classes: grade 1/2 were
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addressed like Negative Class, while grade 3/4 were addressed like Positive
Class.

A binary classifier is designed to discriminate the two groups mentioned
above using a mono-objective genetic algorithm (GA) [35]. Results, which are
expressed in terms of mean values (± standard deviation), considering 100
iterations, for accuracy, specificity, and sensitivity, are reported in Table 8.

The results obtained in this work show that HCC classes can be discrimi-
nated by using the proposed set of extracted features: the HCC wash-in and
wash-out dynamic suggests that this type of lesion can be characterized by
processing textural differences considering the most important phases in the
HCC dynamic.

Table 8: Results obtained for HCC classifier
Dataset Accuracy Sensitivity Specificity

44 Features 0.758 ± 0.062 0.755 ± 0.122 0.739 ± 0.141
22 Features 0.763 ± 0.063 0.824 ± 0.089 0.698 ± 0.156
10 Features 0.799 ± 0.073 0.795 ± 0.015 0.804 ± 0.126

4.1.2. Deep Learning Approach
As for the previous work [153], in [158] the acquisition protocol is a tripha-

sic CT acquisition characterized by an hyper-enhancement in the arterial
phase followed by portal venous or delayed phase washout appearance.

To better understand the grading process, the following block diagram of
the approach proposed in [158]is herein reported.

Regarding liver and HCC segmentations, the same procedures reported
in the previous section were applied in [158], thus obtaining binary mask that
were applied to CT images acquired during the arterial phase. A Convolu-
tional Neural Network, specifically the Google Inception v3 implementation
reported in [159], has been used by performing a retrain of the model using
the created dataset of images as input.

The implemented CNN has been trained, validated and tested 100 times
considering different permutations of the input dataset. The results reported
in Table9 show that the implemented approach show high generalization
performance regardless the input permutation; in fact, Accuracy, Sensitivity
and Specificity are higher than 90 % maintaining low the standard deviation.
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this purpose, in this work  a two-dimensional region growing algorithm is developed due to its easiness 
and interesting performance; one initial seed for each series of slices is selected. Successive once are 
derived by  computations.

The block  diagram of the proposed approach for hepatocellular carcinoma grading with samples 
of output images at each step is reported in Figure 2. Every  step of the suggested approach is described 
in detail in the following section.
3.1. CT Liver Image Preprocessing
After the acquisition phase, all original images are preprocessed. Contrast enhancement is particularly  
important for a correct segmentation and feature extractions, because CT images are scarcely  

Figure 2. Block diagram of the proposed approach for hepatocellular carcinoma grading with samples of output images at each step

Figure 14: Block diagram of the proposed approach for hepatocellular carcinoma grading
with samples of output images at each step.

34



Table 9: Results obtained for CNN classification.
Accuracy Sensitivity Specificity

Mean 0.928 0.935 0.921
Standard Deviation 0.055 0.075 0.089

5. Blood Neoplasia

As reported in Section 1, the design of CAD systems for supporting clin-
ical diagnosis of blood neoplasias is of fundamental importance since, in the
most of cases, the invasiveness of diagnosis procedure is considerably reduced
[160, 161, 162, 163, 164, 165, 166].

In [167] the proposed Super-Resolution Convolutional Neural Network
(SRCNN) is considered, which surpasses the double-cubic baseline with just
a few training iterations, and outperforms the Sparse Coding-based method
(SC) with a moderate training. Performance may be further improved with
more training iterations. In this work, different network structures are in-
vestigated, as well as parameter settings to achieve tradeoffs between perfor-
mance and speed. Moreover, the proposed network is extended to cope with
three-color channels simultaneously, and show better overall reconstruction
quality.

Then, a deep learning method for single image super-resolution (SR) is
proposed in [168]. The suggested method directly learns an end-to-end map-
ping between the low/high-resolution images and the mapping is represented
as a deep Convolutional Neural Network (CNN) that takes the low-resolution
image as the input and outputs the high-resolution one. Moreover, in the
same paper traditional Sparse Coding-based SR methods are viewed as a
deep convolutional network that jointly optimizes all layers, differently from
traditional methods that handle each component separately. This deep CNN
achieves fast speed for practical on-line usage, besides having a lightweight
structure and presenting state-of-the-art restoration quality. In [168] differ-
ent network structures are also investigated, together with parameter settings
to achieve trade-offs between performance and speed.

A SVM classifier to perform White Blood Cell (WBC) classification is
presented in [169]. The authors are particularly interested in the classifica-
tion and counting of the five main types of white blood cells (leukocytes)
in a clinical setting where the quality of microscopic imagery may be poor.
The proposed approach is mainly composed of three steps: 1. Image ac-
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quisition and discrimination of WBCs from RBCs (Red Blood Cells); 2.
Feature extraction by Dual-Tree Complex Wavelet Transform (DT-CWT);
3. Classification by means of a Support Vector Machine (SVM) in the five
WBC types. Experimental results indicate that current analysis presents re-
markable recognition accuracy even in presence of poor quality samples and
multiple classes.

5.1. Experimental Studies
In the following sections, two different approaches for detecting and clas-

sifying white blood cells (leukocytes) from peripheral blood smears will by
analysed and discussed. In particular, the first approach is based on the
extraction of hand-crafted features for a subsequent neural classifier (Sec-
tion 5.1.1), whereas the second approach considers Convolutional Neural Net-
works as features extractors and a comparison between SVM classification
and CNN classification considering images as input is shown in Section 5.1.2.

5.1.1. Hand-crafted Features
Observation under the microscope of Peripheral Blood Smears (PBS) is

fundamental in haematology as analysis of leukocyte formula and of the mor-
phological characteristics of blood cells (red blood cells, white blood cells, and
platelets) provides useful information in the clinic.

The morphological evaluation of the WBC can help specialists diagnosing
haematological pathologies such as leukaemia and non-haematological ones
such as infectious mononucleosis.

Figure 15: The five types of leucocytes to be classified: (from left to right) Lymphocytes,
Monocytes, Neutrophils, Basophils and Eosinophils

In [170], image processing techniques with low computational require-
ments have been designed, together with a CAD system able to recognize
all the five types of leukocytes (Fig. 15), named Neutrophils, Lymphocytes,
Monocytes, Eosinophils and Basophils, improving the work by Hiremath et
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al. [171], which considered a sub-sample of cells. The workflow followed in
this approach is represented in Fig. 16.

ANN
Classification

Image	
Processing Feature Extraction

Input	Images

Figure 16: Workflow for leukocites classification considering hand-creafted features.

Blood Smears are digitally acquired using the microscope D-Sight 200
(www.menarinidiagnostics.it) featuring a 40x optical zoom, with a resolution
of 0.25 µm/pixel and a JPEG 2000 compression.

The leukocytes segmentation consists of three main steps able to detect
the leukocytes position, the plasma and the leukocyte edge, respectively. In
details, a colorspace conversion into Hue Saturation Value (HSV) space, a
thresholding operation and morphological dilatation allow to generate a mask
for the detection of nuclei positions in the image (Figure 17 and 18).

Figure 17: A representation of steps to obtain the nuclei mask; (a) Sub-image extraction.
(b) S channel of HSV sub-image. (c) Nuclei mask obtained.

A thresholding operation considering the grey-scale histogram of each
window containing a leukocyte allows subsequently to separate plasma (back-
ground) from the cell; finally, leukocytes edges are detected performing mor-
phological operations on a mask obtained after a thresholding operation con-
sidering the blue channel of the RGB window.
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Figure 18: Leucocyte’s ROI and window extraction in one sub-image.

In the described work, geometric, chromatic and texture-based features
for blood cells representation have been extracted [172, 171, 173, 174] and
an Artificial Neural Network and a Decision Tree have been designed to
discriminate among the five different classes of leukocytes.

Results described in [170] are reported in Table 10 expressed in terms of
Accuracy, Sensitivity and Precision on test set for the ANN classifier, only.
In fact, the Accuracy reported in [170] for the Decision Tree is about 70 %,
therefore much lower than the ANN.

Table 10: Accuracy, Sensitivity and Specificity for leukocytes classification evaluated
through 1-vs-all approach.

Accuracy Sensitivity Specificity

Neutrophils vs all 96.78 % 95.55 % 99.73 %
Lymphocytes vs all 96.78 % 98.81 % 96.06 %

Monocytes vs all 99.61 % 92.59 % 99.76 %
Eosinophils vs all 99.45 % 90 % 99.53 %
Basophils vs all 100 % 100 % 100 %

Reported results show that the proposed approach is suitable for white
blood cells classification; it has to be noted that, even though the image
processing procedure is very simple, performance reveal very high.

5.1.2. Deep Learning Approach
In a subsequent work [175], Convolutional Neural Networks have been

proposed to perform leukocytes discrimination following two approaches.
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In a first approach, a pre-trained Convolutional Neural Network have been
deployed to extract features from the same set of segmented images of the
previous work and then have been combined SVM to perform classification.
The workflow followed in this approach is represented in Fig. 19.

SVM
Classification

Image	
Processing

Feature Extraction via	
CNN	Pretrained Model

Input	Images

Figure 19: Workflow for leukocites classification considering CNN as feature extractors.

Then, the classification capabilities of the CNN have been explored to
classify leukocytes using the segmented images as input. In this work, the
considered model was the AlexNet by Krizhevsky et al. [65]. Differently from
previous approaches, the workflow represented in Fig. 20 where the CNN is
used for classification, shows that the features extraction step is skipped.

CNN
Classification

Image	
Processing

Input	Images

Figure 20: Workflow for leukocites classification using CNN for classification.

As for the previous work, the following Table 11 and 12 report the ob-
tained results expressed in terms of Accuracy, Sensitivity and Precision on
test set.

Reported results show that both the proposed approaches based on CNN
seems very promising; in fact, the reported Accuracy values are always higher
than 95 %. On the contrary, the Sensitivity and Specificity values for both
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Table 11: Accuracy, Sensitivity and Specificity for leukocytes classification evaluated
through 1-vs-all approach with SVM classifier.

Accuracy Sensitivity Specificity

Neutrophils vs all 97.89 % 98.78 % 95.76 %
Lymphocytes vs all 98.59 % 97.93 % 98.83 %

Monocytes vs all 98.67 % 48.15 % 99.76 %
Eosinophils vs all 99.38 % 66.67 % 99.61 %
Basophils vs all 100 % 100 % 100 %

Table 12: Accuracy, Sensitivity and Specificity for leukocytes classification evaluated
through 1-vs-all approach with CNN classifier.

Accuracy Sensitivity Specificity

Neutrophils vs all 97.73 % 97.12 % 99.20 %
Lymphocytes vs all 97.73 % 99.70 % 97.03 %

Monocytes vs all 98.67 % 48.15 % 99.76 %
Eosinophils vs all 99.61 % 66.67 % 99.84 %
Basophils vs all 100 % 100 % 100 %

the approaches fluctuate depending of different kinds of cells. However, this
result is explainable considering the number of samples for certain cells, such
as Neutrophils and Lynphocytes, which is greater than the number of the
other kinds of cells.

6. Conclusions and Discussion

Given the significant incidence both at global and at Italian level of the
three neoplasias dealt with in this survey, it has to be noted that the sci-
entific community has shown a great interest in identifying diagnostic and
staging protocols which can enable a periodic monitoring of the course of the
disease and, at the same time, be widely available for the population due to
their reduced invasiveness. It has been shown that diagnosing through med-
ical imaging currently reveals to be the best strategy as it does not involve
surgical interventions, does not require hospitalization, as it is performed in
day-hospital, and guarantees the right compromise between invasiveness and
specificity.
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However, CT-based imaging techniques expose to ionizing radiation, mag-
netic resonance examinations are characterized by long waiting times and the
processing of peripheral blood stripes requires the use of innovative equip-
ment available only into specialized centres.

Starting from the reported premises, this work has focused in particu-
lar on four innovative imaging methodologies that offer in each domain the
advantages that will be summarized below and thus produce the case his-
tory useful to extract the information needed to implement decision support
systems with very high performance levels, such as those presented in the
previous paragraphs, using similar and well-established workflows.

Digital Tomosynthesis for breast cancer is an innovative method of iden-
tifying the lesions of interest with great accuracy and specificity, and, while
being a technique based on ionizing radiations, it is characterized by a dose
release lower than that of traditional CT. Therefore it can be assumed that
in the near future it can be a valid alternative to magnetic resonance imag-
ing, which, as is well known, does not exhibit ionizing radiation, but is less
specific than tomographic techniques.

The triphasic CT technique with contrast medium for hepatocellular car-
cinoma detection and staging, although characterized by ionizing radiation
exposures and by preliminary protocols for the administration of contrast
medium that, as is well known, is nephrotoxic and has to be very carefully
submitted to allergic patients, represents a novel technique, as it enables to
have more observing windows thanks to its high specificity. Overall, the in-
creasing amount of observing windows reduces the expected level of exposure
to ionizing radiation during the classical period of disease monitoring.

On the other hand, the peripheral blood smear technique is absolutely
not invasive, but requires the presence of instrumentation and specialized
personnel that, nowadays, is not available in all the centres. Therefore, it is
assumed to be a technique that can be used in the immediate future even
through teleconsultation or telemedicine, which are increasing in internal
medicine and hematology units.
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