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ON A CLASS OF SUPERLINEAR (p, q)–LAPLACIAN TYPE

EQUATIONS ON RN

R. BARTOLO, A.M. CANDELA, AND A. SALVATORE

Abstract. Starting from a new sum decomposition of W 1,p(RN )∩W 1,q(RN )
and using a variational approach, we investigate the existence of multiple weak

solutions of a (p, q)–Laplacian equation on RN , for 1 < q < p < N , with

a sign–changing potential and a Carathéodory reaction term satisfying the
celebrated Ambrosetti–Rabinowitz condition. Our assumptions are mild and

different from those used in related papers and moreover our results improve

or complement previous ones for the single p–Laplacian.

1. Introduction

We consider the following nonlinear equation of (p, q)–Laplacian type on RN :{
−∆pu+ V (x)|u|p−2u−∆qu+W (x)|u|q−2u = f(x, u) in RN ,

u ∈W 1,p(RN ) ∩W 1,q(RN ),
(1.1)

where 1 < q < p < N , ∆ru = div(|∇u|r−2∇u) for any 1 < r < +∞, V , W are
potential functions on RN and f : RN × R → R is a superlinear, but subcritical,
nonlinearity (namely, it satisfies the Ambrosetti–Rabinowitz condition (f2) here
below, henceforth simply denoted by (AR)). As it is conceivable, the coexistence
of both the p and the q–Laplacian operators calls for a very careful analysis.

Clearly, when p = q = 2, the equation in (1.1) turns out to be a semilinear
Schrödinger one of the form

−∆u+ U(x)u = f(x, u), u ∈ H1(RN ), (1.2)

which is considered in [7] if U is constant. More in general, problem (1.2) has been
widely studied firstly for a constant sign potential U (cf. [5, 23, 27, 28]), later on
for sign–changing potentials (cf. [13, 14, 30]). Classical proofs in this last case are
based on the fact that the spectrum of the self–adjoint operator −∆ +U induces a
suitable direct sum decomposition of H1(RN ).

Since an exhaustive description of the spectrum of the p–Laplace operator is
not available for p 6= 2, the study of this kind of equations is far more difficult
and the linking theorem over cones by Degiovanni and Lancelotti in [12] becomes
a keypoint.
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Namely, when only the p–Laplacian operator appears with p > 1 but p 6= 2,
contributions to the case of constant sign potentials can be found in [3, 17, 22],
while, based on [12], advances for equations with sign–changing potentials and
subcritical (p−1)–superlinear f , satisfying a condition complementary to the (AR)
one, have been obtained in [18, 21]. Let us point out that, for a class of problems
alike this, once we consider the associated energy functional, a typical setting is
the Mountain Pass Geometry near zero ensured by the (p− 1)–superlinearity at 0
and at +∞, while the subcriticality at +∞, plus the (AR) condition, guarantees
the boundedness of Palais–Smale sequences, if the loss of compactness is balanced
by extra assumptions.

In this paper we look for solutions of (1.1) in the general case p 6= q. The interest
in this kind of problem is twofold: from one hand since it is quite challenging from an
analytical viewpoint and moreover because it has a relevant physical interpretation
in applied sciences. In fact, if we denote by u a concentration, the equation derives
from a general reaction–diffusion system:

ut = div[(|∇u|p−2∇u) + (|∇u|q−2∇u)] + ϕ(x, u)

which arises not only in physics, bur also in biophysics, plasma physics and chemical
reaction design. In most cases, ϕ is a polynomial with variable coefficients (cf., e.g.,
[11, 16]).

We are aware of a very few contributions concerning problem (1.1). Superlinear
(p, q)–equations without the Ambrosetti–Rabinowitz condition have been studied
both in bounded domains (see [24]) and in RN but when the weights V and W are
continuous, positive and coercive (see [10]). For the unbounded case we refer also
to [19] where, taking V ≡W ≡ 1, the set of conditions on f includes (AR) and the
Concentration–Compactness Principle is used (cf. also [15, 20]). Finally, we refer
to [2] and references therein for the special case of (p, 2)–equations.

Even if (1.1) has a variational structure, the main problems in the application
of classical variational tools are due to the lack both of homogeneity of the (p, q)–
Laplacian operator and of compactness of the Sobolev’s embeddings on the whole
space RN . Here, we overcome the first defect by looking for a sharp decomposition
of the ambient space and the second one by introducing some properties on the
weight functions, one of which may change sign.

Namely, we assume that:

(H1) the potentials V,W : RN → R are Lebesgue measurable functions such that

ess inf
x∈RN

V (x) > 0, ess inf
x∈RN

W (x) > −∞ (1.3)

and

lim
|x|→+∞

∫
B1(x)

1

V (y)
dy = 0, lim

|x|→+∞

∫
B1(x)

1

W (y)
dy = 0,

where B1(x) = {y ∈ RN : |x− y| < 1};
(H2) f : RN × R → R is a Carathéodory function (i.e., f(·, t) is measurable in

RN for all t ∈ R and f(x, ·) is continuous in R for a.e. x ∈ RN ) such that
there exist a > 0, s ∈ ]p, p∗[, µ > p, satisfying the following conditions:
(f1) |f(x, t)| ≤ a(|t|s−1 + |t|p−1) for a.e. x ∈ RN , all t ∈ R,
(f2) f(x, t)t ≥ µF (x, t) > 0 for a.e. x ∈ RN , all t ∈ R \ {0},

with F (x, t) :=

∫ t

0

f(x, r) dr.
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Some remarks on the role of the hypoteses are in order. The assumptions in
(H1) were introduced in [6] in the study of the linear Schrödinger equation and
then used in [3, 4] for the single p–Laplacian.

Notice that in [27] the existence of a nontrivial solution of (1.2) is shown by
using the Mountain Pass Theorem if U ∈ C1(RN ,R) is positive and coercive; later
on in [5], by means of the Symmetric Mountain Pass Theorem (cf. [1, Theorem
2.8]), Bartsch and Wang find infinitely many solutions if f is odd in t and U is a
positive continuous function such that

meas
({
x ∈ RN : U(x) ≤ b

})
< +∞ for all b > 0.

As shown in [28, Proposition 3.1], the hypotheses on U both in [5] and in [27] imply
that

ess inf
x∈RN

U(x) > 0 and lim
|x|→+∞

∫
B1(x)

1

U(y)
dy = 0. (1.4)

Therefore, for the (p, q)–equation in (1.1) the assumptions on the weights V and
W in (H1) are weaker than those ones in [10] also because W may change sign.

Now, we can state our main result.

Theorem 1.1. Assume that (H1)–(H2) hold. Then (1.1) has a non–trivial solution.
Moreover, if f(x, ·) is odd for a.e. x ∈ RN , then (1.1) has infinitely many solutions.

The paper is organized as follows: in Section 2 we introduce the variational
setting of our problem and a decomposition for W 1,p(RN ) ∩ W 1,q(RN ), then in
Section 3 we prove Theorem 1.1.

Notations. Throughout this paper we denote by

• r∗ = rN
N−r if r ∈]1, N [, r∗ = +∞ otherwise;

• r′ the conjugate exponent of r ≥ 1, namely r′ = r
r−1 if r > 1 and r′ = +∞

if r = 1;
• | · |r the standard norm in the Lebesgue space Lr(RN ), 1 ≤ r ≤ +∞;
• (X, ‖ · ‖X) a Banach space with dual space (X ′, ‖ · ‖X′);
• BR = {u ∈ X : ‖u‖X < R}, ∂BR = {u ∈ X : ‖u‖X = R} for all R > 0.

2. Variational set–up

Let U : RN → R be a Lebesgue measurable function such that

ess inf
x∈RN

U(x) > 0. (2.1)

Hence, for any r > 1 we consider the weighted Sobolev space

ErU := W 1,r
U (RN ) =

{
u ∈ W 1,r(RN ) :

∫
RN

U(x)|u|rdx < +∞
}

(2.2)

endowed with the norm

‖u‖r,U =

[∫
RN
|∇u|rdx+

∫
RN

U(x)|u|rdx
] 1
r

. (2.3)

The space (ErU , ‖ · ‖r,U ) is a separable and reflexive Banach space; even more, it is
a uniformly convex space (cf. [3, Proposition 2.1]).

Before stating a finite dimensional decomposition of ErU as in [3, 9], we recall
the following compact embedding theorem which plays a crucial role in it (cf. [6,
Theorem 3.1]).
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Theorem 2.1. Taking U : RN → R such that (1.4) holds, we have the following
embeddings:

(i) (ErU , ‖ · ‖r,U ) ↪→ (Ls(RN ), | · |s) continuously if s ∈ [r, r∗];
(ii) (ErU , ‖ · ‖r,U ) ↪→↪→ (Ls(RN ), | · |s) compactly if s ∈ [r, r∗[.

In order to present the announced decomposition, we recall that if Y ⊆ X is a
closed subspace of a Banach spaceX, a subspace Z ⊆ X is a topological complement
of Y , briefly X = Y ⊕ Z, if Z is closed, Y ∩ Z = {0} and X = Y + Z. Then we
define codimZ = dimY and every x ∈ X can be written uniquely as x = y + z,
with y ∈ Y and z ∈ Z; moreover, the projection operators onto Y and Z are (linear
and) continuous, hence there exists β = β(Y,Z) > 0 such that

‖y‖+ ‖z‖ ≤ β‖y + z‖.
In general, if X = Y + Z and Y has finite dimension, we say that Z has finite
codimension, with codimZ ≤ dimY . We recall also that each closed subspace
having finite codimension admits a topological complement (cf., e.g., [8, p. 38]).

Let us define the subset

Sr,U = {v ∈ ErU : |v|r = 1},
the functional Φr,U : ErU → R by

Φr,U (u) = ‖u‖rr,U
and

η1
r,U = inf

v∈Sr,U
Φr,U (v) ≥ 0.

In [3, Section 2] and [9, Section 5], starting from η1
r,U , it is shown the existence of an

increasing diverging sequence (ηkr,U )k of positive real numbers, with corresponding

functions (ψkr,U )k such that ψir,U 6= ψjr,U if i 6= j. They generate the whole space
ErU and are such that

ErU = Y kr,U ⊕ Zkr,U for all k ∈ N, (2.4)

where Y kr,U = span{ψ1
r,U , . . . , ψ

k
r,U} and its complement Zkr,U is a closed subspace

that can be explicitely described.
Remarkably, for all k ∈ N on the infinite dimensional subspace Zkr,U we have the

following inequality:

ηk+1
r,U |z|

r
r ≤ ‖z‖rr,U for all z ∈ Zkr,U (2.5)

(cf. [9, Lemma 5.4]).

Now, let us consider two potentials V and W such that (H1) holds. By (1.3),
condition (2.1) holds with U replaced by V or by W +α, by taking α > 0 such that

ess inf
x∈RN

(W (x) + α) > 0.

Therefore, taking p, q ∈ ]1,+∞[, we can introduce the spaces (EpV , ‖ · ‖p,V ) and
(EqW+α, ‖ · ‖q,W+α) defined as in (2.2)–(2.3).

From now on, we set
E := EpV ∩ E

q
W+α (2.6)

equipped with the norm

‖u‖E := ‖u‖p,V + ‖u‖q,W+α.
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In particular, by (2.4)–(2.5) applied to (EpV , ‖ · ‖p,V ) and (EqW+α, ‖ · ‖q,W+α), fixing
any k ∈ N we get

EpV = Y kp,V ⊕ Zkp,V and EqW+α = Y kq,W+α ⊕ Zkq,W+α.

Then, setting

Zk := Zkp,V ∩ Zkq,W+α, (2.7)

the following inequalities hold:

ηk+1
p,V |z|

p
p ≤ ‖z‖

p
p,V and ηk+1

q,W+α |z|
q
q ≤ ‖z‖

q
q,W+α for all z ∈ Zk, (2.8)

where

ηkp,V ↗ +∞ and ηkq,W+α ↗ +∞ as k → +∞. (2.9)

Being Zk a closed subspace of E of finite codimension, then a finite dimensional
subspace Y k of E exists which is its topological complement, i.e.

E = Y k ⊕ Zk.

We highlight a straightforward consequence of Theorem 2.1.

Corollary 2.2. Assume that (H1) holds. Then,

(i) (E, ‖ · ‖E) ↪→ (Ls(RN ), | · |s) continuously if s ∈ [q, q∗] ∪ [p, p∗];
(ii) (E, ‖ · ‖E) ↪→↪→ (Ls(RN ), | · |s) compactly if s ∈ [q, q∗[ ∪ [p, p∗[.

Remark 2.3. In particular, [q, q∗]∪ [p, p∗] = [q, p∗] and [q, q∗[ ∪ [p, p∗[ = [q, p∗[ if
p ≤ q∗.

Remark 2.4. For further use we observe that, defining

‖u‖max := max{‖u‖p,V , ‖u‖q,W+α},

‖ · ‖E and ‖ · ‖max are equivalent norms, i.e., there exist c1, c2 > 0 such that

c1‖u‖max ≤ ‖u‖E ≤ c2‖u‖max for all u ∈ E.

As a direct consequence of Corollary 2.2 and [31, Theorem 1.22] we can state
the following lemma.

Lemma 2.5. Assume that (f1) holds. Then, setting g : E → R as

g(u) =

∫
RN

F (x, u) dx for all u ∈ E,

it results that g ∈ C1(E,R) with

dg(u)[ϕ] =

∫
RN

f(x, u)ϕ dx for all u, ϕ ∈ E.

Moreover, dg : E → E′ is compact.

By Lemma 2.5 and standard variational arguments, the functional J : E → R,
defined as

J(u) =
1

p

∫
RN

(|∇u|p + V (x)|u|p) dx+
1

q

∫
RN

(|∇u|q +W (x)|u|q) dx

−
∫
RN

F (x, u) dx,
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is C1 with

dJ(u)[ϕ] =

∫
RN
|∇u|p−2∇u · ∇ϕ dx+

∫
RN

V (x)|u|p−2uϕ dx

+

∫
RN
|∇u|q−2∇u · ∇ϕ dx+

∫
RN

W (x)|u|q−2uϕ dx

−
∫
RN

f(x, u)ϕ dx for all u, ϕ ∈ E.

(2.10)

Hence, its critical points in E are the weak solutions of (1.1).
Let us point out that by (2.3) the functional J can be written as follows:

J(u) =
1

p
‖u‖pp,V +

1

q
‖u‖qq,W+α −

α

q
|u|qq −

∫
RN

F (x, u) dx, u ∈ E. (2.11)

Since we are looking for existence and multiplicity of solutions of (1.1), our aim
is to use the Linking Theorem and the Symmetric Mountain Pass Theorem. Here,
we recall their statements and the well–known Cerami’s variant of the Palais–Smale
condition (cf., e.g., [26, 29]).

Definition 2.6. Let I : X → R be a C1 functional on the Banach space (X, ‖·‖X).
The functional I satisfies the Cerami’s variant of the Palais–Smale condition, briefly
(CPS), if any sequence (un)n ⊆ X such that

(I(un))n is bounded and lim
n→+∞

‖dI(un)‖X′(1 + ‖un‖X) = 0 (2.12)

converges in X, up to subsequences. We say that (un)n is a (CPS) sequence if it
verifies (2.12).

Theorem 2.7. Consider α, β ∈ R such that α < β. Assume that:

(i) the functional I satisfies (CPS);
(ii) there exist a closed S ⊆ X and Q ⊆ Y , being Y a subspace of X, with

boundary ∂Q in Y , satisfying:
(a) I(u) ≤ α for all u ∈ ∂Q and I(u) ≥ β for all u ∈ S;
(b) S and ∂Q link, i.e. S∩∂Q = ∅ and φ(Q)∩S 6= ∅, for any φ ∈ C(X,X)

such that φ
∣∣
∂Q

= id;

(c) sup
u∈Q

I(u) < +∞.

Then, there exists a critical level c of I given by

c = inf
φ∈Γ

sup
u∈Q

I(φ(u)), with β ≤ c ≤ sup
u∈Q

I(u),

where Γ =
{
φ ∈ C(X,X) : φ

∣∣
∂Q

= id
}

.

Theorem 2.8. Let X be an infinite dimensional Banach space and let I ∈ C1(X,R)
be even, satisfy (CPS) and I(0) = 0. If X = Y ⊕Z, where Y is finite dimensional,
and I satisfies

(i) there are constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α,

(ii) for each finite dimensional subspace X̃ ⊂ X, there is an R = R(X̃) > 0

such that I ≤ 0 on X̃ \BR,

then I possesses an unbounded sequence of critical values.
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3. Proof of Theorem 1.1

From now on, if (H1) and (f1) hold, let J be the C1 functional in (2.11) defined
on the Banach space E in (2.6).

Remark 3.1. From (f2) and direct computations it follows that for all R0 > 0
there exists a0 > 0 such that

F (x, t) ≥ a0|t|µ for a.e. x ∈ Ω if |t| ≥ R0. (3.1)

On the other hand, (f1) implies that

|F (x, t)| ≤ a

s
|t|s +

a

p
|t|p for a.e. x ∈ Ω, all t ∈ R. (3.2)

Hence, if (H1) holds then it has to be µ ≤ s.

In order to apply Theorem 2.8, we need some technical lemmas.

Lemma 3.2. Assume that (H1)–(H2) hold. Then, for any finite dimensional sub-
space F ⊂ E it results

lim
v∈F

‖v‖E→+∞

J(v) = −∞. (3.3)

Proof. Arguing by contradiction, we assume that a finite dimensional subspace F
of E exists which does not satisfy (3.3). Hence, a sequence (un)n ⊂ F can be found
so that

‖un‖E → +∞ as n→ +∞ (3.4)

and for some M > 0 it is J(un) ≥ −M for all n ∈ N. Then, setting vn = un
‖un‖E , it

follows that ‖vn‖E = 1 and vn ⇀ v weakly in E (up to subsequences), or better,
since dimF < +∞, vn → v strongly in F and almost everywhere in RN . Thus,
‖v‖E = 1 and, setting A := {x ∈ RN : v(x) 6= 0}, it is measA > 0. Hence, for a.e.
x ∈ A it is lim

n
|vn(x)| = |v(x)| > 0, so by (3.4) it follows |un(x)| → +∞. Thus,

(3.1) implies that

lim
n

F (x, un(x))

|un(x)|p
|vn(x)|p = +∞ for a.e. x ∈ A. (3.5)

On the other hand, for n large enough, by standard calculations we get

1

p

‖un‖pp,V
‖un‖pE

+
1

q

‖un‖qq,W+α

‖un‖pE
≤ 1

q

‖un‖pp,V + ‖un‖qq,W+α

‖un‖pE
≤ 2

q

‖un‖pE
‖un‖pE

=
2

q

(without loss of generality, by (3.4) we assume ‖un‖E ≥ 1 for all n ∈ N). Then, by
(2.11) and the Fatou’s Lemma (let us recall that (f2) implies F (x, t) ≥ 0 for a.e.
x ∈ RN and all t ∈ R) we infer that

0 = lim
n

−M
‖un‖pE

≤ lim sup
n

J(un)

‖un‖pE
≤ lim sup

n

(
2

q
−
∫
RN

F (x, un(x))

‖un‖pE
dx

)
=

2

q
− lim inf

n

∫
RN

F (x, un(x))

‖un‖pE
dx ≤ 2

q
−
∫
RN

lim inf
n

F (x, un(x))

|un(x)|p
|vn(x)|p dx

=
2

q
−
∫
RN

lim
n

F (x, un(x))

|un(x)|p
|vn(x)|p dx;

whence, ∫
RN

lim
n

F (x, un(x))

|un(x)|p
|vn(x)|p dx ≤ 2

q
, (3.6)
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in contradiction with (3.5) as measA > 0. �

Lemma 3.3. Assume that (H1) and (f1) hold. Then, for any k ∈ N large enough
there exist ρ, c > 0 such that

J(u) ≥ c for all u ∈ ∂Bρ ∩ Zk.

Proof. By (3.2) and (2.11) we have that

J(u) ≥ 1

p
‖u‖pp,V +

1

q
‖u‖qq,W+α −

α

q
|u|qq −

a

p
|u|pp −

a

s
|u|ss.

Fixing any k ∈ N, by applying inequality (2.8) and by Corollary 2.2 a constant
a1 > 0 exists such that

J(u) ≥ 1

p
‖u‖pp,V +

1

q
‖u‖qq,W+α −

α

qηk+1
q,W+α

‖u‖qq,W+α −
a

pηk+1
p,V

‖u‖pp,V − a1‖u‖sE

for all u ∈ Zk (cf. (2.7)). Hence, by (2.9) we can take k large enough such that
1− α

ηk+1
q,W+α

> 0 and 1− a

ηk+1
p,V

> 0, so by standard calculations, taking

mk = min

{
1− α

ηk+1
q,W+α

, 1− a

ηk+1
p,V

}
> 0,

we get

J(u) ≥ 1

p

(
1− a

ηk+1
p,V

)
‖u‖pp,V +

1

p

(
1− α

ηk+1
q,W+α

)
‖u‖qq,W+α − a1‖u‖sE

≥ mk

p

(
‖u‖pp,V + ‖u‖qq,W+α

)
− a1‖u‖sE

for all u ∈ Zk. Now, since for ‖u‖E < 1 we have ‖u‖q,W+α < 1, it results

‖u‖pE ≤ 2p−1(‖u‖pp,V + ‖u‖qq,W+α),

then we infer
J(u) ≥ mk

2p−1p
‖u‖pE − a1‖u‖sE ,

so, being s > p, the proof is complete once we fix ‖u‖E = ρ small enough. �

Lemma 3.4. Assume that hypotheses (H1)–(H2) hold. Then, the functional J
satisfies the (CPS) condition in E.

Proof. Let (un)n be a (CPS) sequence, hence (2.12) holds with I replaced by J .
Then, for some γ > 0 and for n large enough we have

J(un)− 1

µ
dJ(un)[un] ≤ γ.

Hence, by (2.10)–(2.11) we get that

γ ≥
(

1

p
− 1

µ

)
‖un‖pp,V +

(
1

q
− 1

µ

)
‖un‖qq,W+α − α

(
1

q
− 1

µ

)
|un|qq

+

∫
RN

(
1

µ
f(x, un)un − F (x, un)

)
dx,

thus (f2) implies

γ ≥
(

1

p
− 1

µ

)
‖un‖pp,V +

(
1

q
− 1

µ

)
‖un‖qq,W+α − α

(
1

q
− 1

µ

)
|un|qq. (3.7)
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We claim that (un)n is bounded in E. In fact, arguing by contradiction, we assume
that the limit (3.4) holds up to subsequences. Setting vn = un

‖un‖E it follows ‖vn‖E =

1 for all n ∈ N large enough, vn ⇀ v weakly in E and, by Corollary 2.2, if r ∈
[q, q∗[ ∪ [p, p∗[ then vn → v strongly in Lr(RN ) and vn(x)→ v(x) for a.e. x ∈ RN .
If v 6= 0, setting A := {x ∈ RN : v(x) 6= 0}, we have that measA > 0; thus, since

lim
n

J(un)

‖un‖pE
= 0,

we can reason as in the proof of Lemma 3.2 so that (3.6) still holds and we get a
contradiction.
On the other hand, if v = 0 by Remark 2.4 and (3.4) also ‖un‖max → +∞ and, up
to subsequences, it may be either

‖un‖max = ‖un‖p,V → +∞ (3.8)

or
‖un‖max = ‖un‖q,W+α → +∞. (3.9)

If (3.8) holds, dividing (3.7) by ‖un‖pp,V we obtain

γ

‖un‖pp,V
≥
(

1

p
− 1

µ

)
− α

(
1

q
− 1

µ

) |un|qq
‖un‖pp,V

, (3.10)

where
|un|qq
‖un‖pp,V

= |vn|qq
‖un‖pE
‖un‖pp,V

1

‖un‖p−qE

.

Hence, by Remark 2.4, (3.8) and since vn → 0 in Lq(RN ), (3.10) yields to a contra-
diction. Therefore, (‖un‖p,V )n must be bounded and (3.9) holds. Thus, dividing
(3.7) by ‖un‖qq,W+α, we have that

γ

‖un‖qq,W+α

≥
(

1

q
− 1

µ

)
− α

(
1

q
− 1

µ

) |un|qq
‖un‖qq,W+α

.

In this case, we observe that

|un|qq
‖un‖qq,W+α

= |vn|qq
‖un‖qE
‖un‖qq,W+α

,

therefore we get a contradiction by (3.9) and again Remark 2.4 as vn → 0 in Lq(RN ).
Hence, also (‖un‖q,W+α)n must be bounded and the boundedness of (un)n in E
holds.
Next, let ū ∈ E be such that un ⇀ ū weakly in E, up to subsequences. We prove
that un → ū strongly in E, too. To this aim, let us observe that Corollary 2.2 and
the Hölder inequality imply that

lim
n

∫
RN
|un|q−2un|un − ū|dx = 0. (3.11)

Moreover, by (f1) and again the Hölder inequality we get that∫
RN
|f(x, un)||un − ū|dx ≤ a|un|s−1

s |un − ū|s + a|un|p−1
p |un − ū|p,

therefore Corollary 2.2 implies

lim
n

∫
RN
|f(x, un)||un − ū|dx = 0. (3.12)
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Thus, by (2.12), (3.11) and (3.12) we infer in particular that∫
RN
|∇un|p−2∇un · ∇(un − ū) dx+

∫
RN

V (x)|un|p−2un (un − ū) dx

+

∫
RN
|∇un|q−2∇un · ∇(un − ū) dx

+

∫
RN

(W (x) + α)|un|q−2un (un − ū) dx = o(1),

(3.13)

while the weak convergence of un ⇀ ū implies that∫
RN
|∇ū|q−2∇ū · ∇(un − ū) dx+

∫
RN

(W (x) + α)|ū|q−2ū (un − ū) dx

+

∫
RN

V (x)|ū|p−2ū (un − ū) dx = o(1),

(3.14)

where o(1)→ 0 as n→ +∞.
On the other hand, by [25, Lemma 6.3] (see also [25, Example 6.4]) the following
operators are monotone on E:

u 7→ ∆pu, u 7→ ∆qu, u 7→ V (x)|u|p−2u, u 7→ (W (x) + α)|u|q−2u;

hence, it follows∫
RN
|∇un|p−2∇un · ∇(un − ū) dx ≤

∫
RN
|∇un|p−2∇un · ∇(un − ū) dx

+

∫
RN

V (x)|un|p−2un (un − ū) dx+

∫
RN
|∇un|q−2∇un · ∇(un − ū) dx

+

∫
RN

(W (x) + α)|un|q−2un (un − ū) dx−
∫
RN
|∇ū|q−2∇ū · ∇(un − ū) dx

−
∫
RN

(W (x) + α)|ū|q−2ū (un − ū) dx−
∫
RN

V (x)|ū|p−2ū (un − ū) dx.

Therefore, by (3.13) and (3.14) it follows that

lim sup
n

∫
RN
|∇un|p−2∇un · ∇(un − ū) dx ≤ 0. (3.15)

Similar arguments yield also the following estimates:

lim sup
n

∫
RN
|∇un|q−2∇un · ∇(un − ū) dx ≤ 0, (3.16)

lim sup
n

∫
RN

V (x)|un|p−2un(un − ū) dx ≤ 0 (3.17)

and

lim sup
n

∫
RN

(W (x) + α)|un|q−2un(un − ū) dx ≤ 0. (3.18)

At last, let us recall that by [8, Proposition 3.20] it is also un ⇀ ū weakly both in
Ep,V and in Eq,W+α. Whence, by (3.15) and (3.17) firstly, (3.16) and (3.18) then,
it follows that, up to subsequences, it is

lim
n
un = ū in Ep,V and lim

n
un = ū in Eq,W+α

which implies

lim
n
un = ū in E
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and the proof is complete. �

Proof of Theorem 1.1. By Lemmas 3.2, 3.3 and 3.4 it follows that for k large enough
some constants ρ, c, R1, R2 > 0 exist such that

R2 > ρ, inf
u∈S

J(u) ≥ c > 0, sup
u∈∂Q

J(u) ≤ 0,

where S = ∂Bρ ∩ Zk and

Q = {u+ te ∈ E : u ∈ Y k, e ∈ Zk, ‖u‖E ≤ R1, t ∈ [0, R2]}.

Then, as S and ∂Q link, by Theorem 2.7 problem (1.1) has a nontrivial solution.
Furthermore, if f(x, ·) is odd for a.e. x ∈ RN , then the same lemmas allow one to
apply Theorem 2.8; whence, (1.1) admits infinitely many nontrivial weak solutions.

�
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[11] L. Cherfils, Y. Ilýasov, On the stationary solutions of generalized reaction diffusion equations

with p&qLaplacian, Commun. Pure Appl. Anal. 4 (2005), 9-22.
[12] M. Degiovanni, S. Lancelotti, Linking over cones and nontrivial solutions for p–Laplace

equations with p–superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 24
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