
03 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Evolutionary and Iterative Training of Recurrent Neural Networks via the Singular Value Decomposition / Mcneill, Daniel
Kyle. - ELETTRONICO. - (2021). [10.60576/poliba/iris/mcneill-daniel-kyle_phd2021]

This is a PhD Thesis

Original Citation:

Evolutionary and Iterative Training of Recurrent Neural Networks via the Singular Value Decomposition

Published version
DOI:10.60576/poliba/iris/mcneill-daniel-kyle_phd2021

Terms of use:
Altro tipo di accesso

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/216712 since: 2021-01-29

Politecnico di Bari

Department of Electrical and Information Engineering

ELECTRICAL AND INFORMATION ENGINEERING

PH.D. PROGRAM

SSD: ING-INF/04 – AUTOMATICA

Final Dissertation

Evolutionary and Iterative Training of Recurrent Neural

Networks via the Singular Value Decomposition

by

Daniel K. McNeill

Supervisor:

Prof. David Naso

Coordinator of Ph.D. Program:

Prof. Alfredo Grieco

Course n◦ 32, 01/11/2016–31/10/2019

Abstract

This work examines the use of the singular value decomposition (SVD) from linear

algebra as a tool for the analysis of neural networks, as well as its use to speed up

or even limit learning (to prevent over-fitting or maintain stability, for example) and

as the basis for iterative and evolutionary learning algorithms.

In the process of describing our methods, we wish the reader to keep one main

idea in mind: the layers of neural networks, whether recurrent or feedforward, are

transformations from one space to another and generally this transformation is an

affine transformation composed with a nonlinear transfer function (whose main pur-

pose is to limit the range of the transformation). The affine part of this transforma-

tion is simply multiplication by a matrix and addition of a bias vector — and these

two elements are the focus of neural network learning – that is, finding the appro-

priate values for the entries of the matrix and the bias vector.

If one thinks of the simplest possible learning algorithms for adjusting the co-

efficients of the transformation matrix — perhaps random sampling, retaining the

fittest, random sampling again in a smaller neighborhood around the fittest candi-

date — these methods forget all the structure of the transformation, that is, they treat

the matrix as a simple vector.

What we present here are methods of taking the inherent structure of the trans-

formation into account — even while using evolutionary methods — using the sin-

gular value decomposition. Of course, preserving some structure of the transforma-

iii

tions is not completely new — whether this means preserving sparseness or some

type of invariance, as in the shift invariance of a convolutional layer.

However, we believe this is one of the first works to try to preserve not some

extra or imposed structure of neural network layers during the learning process (as

in convolutional networks) — but to try to use the structure inherent in the affine

transformation at the core of a neural network work to facilitate learning, at least

when considering evolutionary algorithms.

We describe several methods for using the SVD in neural network training, pa-

rameter reduction and modification — some of these, in particular the evolutionary

method, the application to recurrent neural networks, and the pre-training of net-

works (either on a similar problem or with domain knowledge) and then retraining

of the singular values to speed up training are new techniques with this work (and

the author’s paper [58]). In supervised learning, our methods may begin with lin-

ear (or non-linear) least squares models — which we then elaborate and refine with

various methods. The first method of training being a simple iterative method based

on the decomposition of a matrix into the sum of rank one matrices. Others being

a “compact” evolutionary algorithm similar to that described by Mininno, Cuper-

tino & Naso in [59], and an evolutionary algorithm based on “crossing” the singular

value decompositions of two matrices developed herein.

Moving to unsupervised learning, we can apply essentially all of the same learn-

ing techniques — the main difference being that of discovering a reasonably good

initial starting point. However, this can be done by either using the iterative method

for the first round of learning (decreasing the dimension of the search spaces), or, if

some domain knowledge is available (as in the virtual car control example), some

of this knowledge can be “pre-programmed” into the matrix of connections for the

controller. Here we even combine these two techniques — beginning an iterative

search through the individual singular vectors using the singular vectors of a “pre-

iv

programmed” matrix as initial starting points, just as one would do when beginning

with a least squares starting model.

After training for a particular task, we consider how one might use essentially

the same neural network for a similar problem — but retrain or fine-tune the network

by modifying only the singular values (of which there are n rather than n2 in our

examples). The examples we give are using a price prediction model originally

trained for Bitcoin and retuned for Ethereum and fine-tuning a virtual racing car for

different types of tracks. We expected both of these models to exhibit similarities

between the different cases (with the cryptocurrency models being quite choatic and

the driving models being quite continuous), but enough variation that the models

could show improvement through retuning of the singular values.

A related application considers how one might use the same decomposition to

efficiently store any neural network, throwing away the smaller singular values (and

their associated singular vectors), allowing a small amount of performance degra-

dation — but helping to generalize, preventing over-fitting, and then fine tune the

network again as needed — this time by modifying not just the singular values, but

also the singular vectors associated to the smaller singular values. In fact, one may

do this in such a way to maintain the same regions of stability of the original net-

work — so long as the sum of the singular values one changes does not exceed 1

(assuming the transfer function is a contraction).

The final result of the work is a general algorithm for learning models for pre-

diction, system identification and control — where those models are of the form:

m(t +1) = ϕ(Am(t)+b), (1)

where A is a matrix, m is a vector of variables under consideration, including input

variables, output variables, and hidden variables, b is a bias vector, and ϕ is a trans-

v

fer function (generally a non-linear contraction or a linear function with bounds).

We note that such models, while simple, are computationally powerful in general.

The summarized steps of our learning method are:

1. Assuming a supervised learning setting, perform standard analyses of vari-

ables for selection and perform scaling/shifting/normalization of variables as

necessary.

2. Create a least squares model for the outputs desired using the desired (or

required) input variables. This may be a linear least squares solution or a

non-linear model. The least squares solution will provide the first singular

triple (the first singular vector pair and associated singular value), or, at least,

a starting point for an iterative search for the first singular triple.

3. Enlarge the model with hidden variables (hidden neurons). This may be done

one (or a few) neurons at a time until one achieves a model of sufficient accu-

racy, until gains in accuracy are no longer significant or until computing limits

are reached. A practical upper limit that we have found, after which model

accuracy does not seem to increase is a few more hidden variables than the

the sum of the given numbers of input and output variables.

4. Apply the iterative procedure to obtain singular triples according to the di-

mension of the matrix A — similarly for the bias b. Each iteration has a

reduced dimension for the search space, speeding up the search as it goes —

and each singular value has a reduced interval to search.

5. After a single pass of the iterative procedure, each of the singular triples has

been optimized — but only with respect to the preceding singular triples.

Were this not a recurrent network, were it simply a mapping from a partic-

ular set of input variables to a disjoint set of output variables, this may be

sufficient. In the case of a recurrent neural network, it may not be.

vi

6. To remedy Point 5, we have several options: run the iterative algorithm a

few more times (preferably not by changing the matrix from the first round,

but running the algorithm on a new matrix to be added to the first), apply a

random search or apply a singular value decomposition evolutionary search

as presented herein.

7. In the case of unsupervised learning (or in the case of improving a model first

developed by supervised training), we can directly apply either the iterative

method (which has the best early convergence if we have no idea for an initial

model) or the singular value evolutionary methods (especially if some initial

model can be obtained by expert domain knowledge or previous supervised

learning).

8. A major benefit of our technique is this last step — allowing very controlled

training in either a supervised or unsupervised situations. Here we maintain

most of the information of our model by fixing the singular vectors (what we

think of as the “qualitative” aspects of the model — as it encodes the direc-

tion of the output for a certain input) and allowing training of the singular

values (what we think of as “quantitative” aspects of the model — as they

encode the magnitude of an output response for a particular input) — allow-

ing us to fine-tune the network for slightly different purposes by training n

rather than n2 parameters. We may, similarly, elect to allow only the last few

singular vectors (those with the smallest singular values and smallest effects)

to be fine-tuned as well. This conserves the “gross” behavior of the network

and can allow one to limit the network response so that it remains within a

particular region, for stability concerns, for example.

Beyond fine-tuning, we also maintain direct control over the singular values

— in the case where we may be concerned about maintaining the stability of

vii

the model (or maintaining a particular region of stability), this direct control

allows us to achieve this fairly easily.

These methods allow us to train recurrent neural networks for a variety of prob-

lems with changes through time, including price prediction, predictive maintenance

and model identification, and automatic control. Our method does not rely on back

propogation and can be used in either supervised or unsupervised settings. Further,

our models can be easily initialized by using either domain knowledge or (linear)

least squares to “pre-program” the model and begin optimization in an area of the

solution space likely to yield results. Finally, given a neural network previously

trained in one domain, our models and methods allow the reuse and quick retrain-

ing for a similar domain, by preserving the inherent structure of the transformation

at the heart of the neural network.

viii

Acknowledgements

First, I would like to thank Prof. David Naso and all of the people of the Robotics

and PRINCE Labs for their help and guidance during the project. Also, thanks

to Dora Tarantino and her parents Michele Tarantino and Domenica Campolongo

for the years of support. The greatest thanks must go to my family, including my

son, Phillip McNeill, for the motivation to complete this work and to my parents,

Phillip and Jo McNeill, who, though far away now, certainly started me on the

journey down the path I tread. I would like to thank many other friends, teachers and

mentors along the way, including Kenny, Gail, Anita, Jack, and Enzo. My thanks

also extends to my friends and colleagues at Exprivia, we’ve had many interesting

discussions and you’ve been more welcoming than I could have hoped for. And,

finally, I would like to thank those who read this work and helped to correct many

errors of style and substance, though your contribution is somewhat hidden, you

have made my life much better during this process. Saying that, any errors which

do remain are my own — and I hope the reader can find something of interest in

this work.

ix

Contents

1 Introduction 1

2 Preliminaries 4

2.1 The Singular Value Decomposition 4

3 Background 9

3.1 Time Series . 10

3.2 Neural Networks: Evolution and SVD methods 15

3.3 Application Areas . 19

3.3.1 Price Prediction . 20

3.3.2 System Modelling and Predictive Maintenance 20

3.3.3 Self-driving cars and TORCS 21

3.3.4 TORCS, SCRC and SnakeOil 22

4 Iterative SVD Approach 26

4.1 Comparison to Stochastic Descent 31

5 Supervised SVD Learning 43

5.1 Price Modelling . 45

5.1.1 Experiment Design . 45

5.1.2 ARIMA Models . 47

5.1.3 Recurrent Neural Network Model 50

5.1.4 Retraining Singular Values 51

x

5.1.5 Remarks . 51

5.2 Predictive Maintenance . 52

5.2.1 Model Development . 52

5.2.2 Remarks on the Neural Network Model 57

5.3 Driving in TORCS/SCRC . 58

5.3.1 Experiment Design . 58

5.3.2 Programmed Controller 60

5.3.3 Supervised Learning . 63

5.3.4 Neural Network Model . 69

6 Unsupervised Evolutionary SVD 71

6.1 TORCS/SCRC Experiment . 71

6.2 SVD Evolutionary Method . 72

6.2.1 Entirely Unsupervised Method 74

6.2.2 Unsupervised Refinement of Previous Model 76

6.3 Compact Evolutionary SVD . 77

7 Concluding Remarks 79

xi

Chapter 1

Introduction

The singular value decomposition has been well known, and well used, in linear

algebra for many years — both for the algebraic insights it provides about matrices

(or linear operators on finite vector spaces) and for the fact that a proper implemen-

tation provides good numerical stability for various problems, finding a linear least

squares solution, for example [39].

This work describes various uses of the singular value decomposition (SVD)

in the context of neural networks. Some of these uses or applications are a direct

application of well-known properties of the SVD in the realm of matrices or linear

algebra, with simply an interpretation in the area of neural networks applied. Other

properties of the SVD take on additional significance however.

The SVD provides an effective way to tune both the speed of learning as well as,

and perhaps more importantly, a way to limit the searched solution space — which

can have benefits for both search speed and stability of solutions, depending on our

objectives.

We can limit the search space in several different ways:

• We may fix the first few summands of the SVD expansion and learn only

the last few to “fine tune” a network — perfectly retaining the lower rank

approximation and not allowing the method to drift into a larger (and perhaps

unproductive or unstable) solution space.

1

• We may take the opposite route at first and attempt to find a low-rank approxi-

mation, considerably lowering the number of parameters to learn (thereby de-

creasing the dimension of the solution space under consideration). Depending

on implementation, we may also lower computation costs (performing inner

products of vectors rather than matrix multiplication).

• We may have a good solution for a similar problem (examples might be a

controller for a different car, or a controller for a particular car on a different

track). Then, rather than attempting to train an entirely new network (and then

store it), we might assume that the fine-tuned controller will perform exactly

the same actions, but perhaps with different intensities or weights. We can

then attempt to train only the singular values of the network (reducing our

parameters from n2 to n). It may then even be reasonable to store these fine-

tuned singular values for different situations.

As an example, in the first training of a network, we wish to train quickly, learn-

ing which inputs (and their relations) have the greatest immediate effect on the

output. This is to say, we wish to train the first few singular vectors and their corre-

sponding large singular values.

Given a network trained for a similar task, on the other hand, training using

the singular value decomposition allows us to maintain the first few singular val-

ues/vectors (or change them only slightly), while focusing the majority of the train-

ing on the specifics which make this problem different, i.e. learning the less signifi-

cant singular values/vectors.

This means that we can maintain a sort of basic ‘memory’ in the network, while

still adapting — either learning the specifics of a different job, or adapting to new

information as it becomes available — we simply restrict the magnitude of the sin-

gular values we are allowed to modify.

2

In particular, supposing we have obtained the larger singular values which result

in a stable solution for a particular problem, we may wish to restrict the fine-tuning

of the solution to the smaller singular values which don’t force the solution outside

the region of stability.

In what follows, we will discuss some preliminaries of the singular value decom-

postion, some background in time series and neural networks and consider previous

work at the intersection of these fields — particularly in the area of our primary

application of real-time control. We then examine our various experiments in the

chosen application areas of price prediction, system identification and predictive

maintenance, and real-time control, using the methods and models of learning de-

veloped herein.

We note here that the literature on each of these subjects is vast, but that ours

is the first work to consider using the SVD in all the ways we mention as a tool to

manage the learning of neural networks.

3

Chapter 2

Preliminaries

2.1 The Singular Value Decomposition

The singular value decomposition (SVD) has been a powerful tool in linear algebra

for many decades (see [30, 39]), used, for example, to find least-squares solutions.

For those who may not be familiar with it, we mention that it is in some ways similar

to principle components analysis and we provide some basic results and equations

we have used.

The SVD allows a matrix M ∈ Rm×n to be decomposed in the following way:

M =UΣV T
,

where Σ ∈ Rm×n has non-zero entries only on the main diagonal, further, these

values are non-negative and non-decreasing, while U and V (and V T) are square

orthogonal matrices (with columns which are orthonormal), U ∈ Rm×m and V ∈

Rn×n.

This decomposition allows for a simple view of a linear transformation as well

as several algebraic and numerical insights. The first is that when we consider the

map:

M : Rn → Rm by x 7→Mx,

4

we can see this as the composition of three simpler maps:

x 7→U(Σ(V T x)).

First, V T , being an orthonormal matrix, simply performs a collection of rotations

and/or reflections on Rn. Next, Σ maps Rn to Rm, but as it is a diagonal matrix, it

does so in a very simple way, simply stretching or shrinking the unit basis vectors

(some of which may go to zero). Finally, U performs another action similar to V T ;

it is simply rotation and/or reflection in Rm.

Let us consider M ∈Rn×n, i.e. a square matrix, for the remainder of the work. In

this case, we have that each of U , Σ and V T are square matrices in Rn×n. Therefore,

since U and V T are orthogonal matrices (and full-rank), the rank of M corresponds

to the rank of Σ.

The construction of Σ, however, with non-zero (and non-negative) entries only

on the diagonal, means that the rank of Σ corresponds exactly to the number of non-

zero entries on the diagonal (or the dimension of the kernel/nullspace corresponds

exactly to the number of zeros on the diagonal).

While this explanation of the decomposition is extremely useful and leads to

many insights, further decomposition may be even more so. Given always a matrix

M ∈ Rn×n, we can write

M =UΣV T =
n

∑
i=1

siuiv
T
i ,

where si is the “ith singular value,” that is, the ith entry on the diagonal of Σ, while

ui and vi are the ith left and right singular vectors respectively, i.e. the ith columns

of U and V .

This explicitly expresses M as the sum of outer products, or the sum of rank

one matrices. Further, as the values si are decreasing, and the vectors ui and vi

5

have norm one, each additional summand contributes less and less to the total. This

suggests a method to approximate the matrix M, in the “best” possible way, using a

matrix of lower rank — iteratively searching for each of the “singular triples” (right

and left singular vectors and the associated singular value) successively.

To speak of finding a “best” approximation, we must define what we mean by

“best” — of course we mean the nearest approximation with respect to a particular

matrix norm. Two of the most used, and those which we will use throughout the

paper are the L2 norm and the Frobenius norm.

The L2 norm is the induced matrix norm from the standard Euclidian norm of

the vector x:

||x||2 =
√

xT x.

The L2 norm of the matrix (or linear operator) M is then the maximum L2 norm

of the image of the unit ball:

||M||2 = max{||Mx||2 : ||x||2 = 1}.

A well-known result is that the L2 norm of the matrix M corresponds to the first

(largest) singular value in the singular value decomposition of M. That is, if

M =UΣV T and σ1 = Σ1,1 = maxΣ

then

||M||2 = σ1.

Minimizing the L2 norm of a residual matrix then is precisely the same as min-

imzing the largest singular value of said matrix.

6

The Frobenius norm of a matrix A is defined to be the square root of the sum of

the squares of the entries of the matrix:

||A||F =

√
n

∑
i, j=1

a2
i j.

This matrix norm is often used as it represents, in some sense, the total error in a

matrix approximation. And frequently the total error (or average error) can still be

reduced even if the maximum error (which is given by the L2 norm) cannot.

This becomes even more apparent when we consider the formulation of this

norm using the singular value decomposition. Letting

A =UΣV T and σi = Σi,i,

we have that:

||A||F =

√
n

∑
i=1

σ2
i .

That is, the Frobenius norm of A is simply the square root of the sum of the squares

of the singular values.

Clearly then, reduction of any of the singular values will reduce the Frobenius

norm of A — while the L2 norm will remain the same so long as the largest singular

value remains the same. However, the most efficient method to reduce the Frobenius

norm of A is to reduce the largest term in the sum

√
n

∑
i=1

σ2
i ,

namely, the largest singular value, σ1.

Given two matrices A,B, if we consider the L2 norms of images:

||Ax−Bx||2,

7

what we notice is that reduction of the induced L2 norm between A and B will reduce

the maximum error observed. While reduction of the Frobenius norm will reduce

the total or average error.

Given what we have seen, relating these two norms and the singular value de-

composition, we will always use the Frobenius norm in combination with the L2

norm when possible — always attempting to reduce the Frobenius norm, by reduc-

tion of the L2 norm when possible.

We note how the SVD decomposes a matrix — a linear transformation — into

elements which show us the “most important” actions of that linear transformation

— both in “quantitative” terms (changing the singular values changes the norm of

the matrix/transformation) and in “qualitative” terms (changing the singular vectors

changes the directions of the actions of the transformation). We hope to use what

the SVD gives us in the way of control of a transformation and apply it to learning

for neural networks in what follows.

8

Chapter 3

Background

It is well-known that recurrent neural networks are useful for learning sequences or

analyzing time-series data [23, 88, 25, 78, 38, 54]. Since price prediction over time

and control of simulated vehicles are our intended applications, we have therefore

chosen to use this type of network.

There have been many recent advances in recurrent neural networks (see [73]),

but many, if not most, of these developments have be based on structural or model

changes. It is also well-known that recurrent neural networks are difficult to train,

especially via gradient methods, i.e. backpropagation through time, due to the ex-

ploding/vanishing gradient problem [67, 87]. There are various solutions to this,

[67] suggests a method of simply limiting the magnitude of the gradient, and there-

fore the speed of learning, for example. We mitigate this problem with the use of

iterative and evolutionary training algorithms based on the singular value decompo-

sition (SVD) of a matrix as we will see in the rest of this work, however, we must

realize that the exploding/vanishing gradient problem is inherent in the learning of

recurrent neural networks, and that any mitigation is exactly that and not a total

avoidance of the problem.

To accelerate the learning using these methods, we use “pre-programming” or

“pre-training” of our controllers using domain knowledge or least squares models

derived from example data as a starting point. This general idea has been explored

9

before, as in [54], but not in the same manner as we discuss here, as TimeNet is

a deep reccurent network meant to be a general time series classifier which can

be used off-the-shelf. Our method simply adjusts the “quantitative” response of

a network for a domain similar to that on which it was previously trained — or,

when using a single layer, allows a domain expert to directly program the network,

providing a base on which to begin learning.

3.1 Time Series

In the most general sense, we will be considering vector-valued nonlinear autore-

gressive exogenous models of time series. That is, models of the form

yt = F(yt−1,yt−2, . . . ,ut ,ut−1, . . .)+ εt , (3.1)

where y is the variable of interest, F is a nonlinear function, u is the externally

defined variable and ε is the error of the model.

Typical models for time series prediction and forecasting are the SARIMAX

models — or Seasonal, AutoRegressive, Integrated, Moving Average models with

eXogeneous variables.

As our own models are recurrent non-linear modifications of the general SARI-

MAX model (with the addition of hidden variables as well), we will explain how

each part of these models (and the whole) function in some detail.

Generally the first step in time series modelling is to attemp to remove any

seasonality or trends in the series — making the result more “stationary.” Remov-

ing seasonality and trends can be a sophisitcated topic — particularly for multi-

year time series with monthly seasonality (especially since months are not the same

length) or concerning movable holidays like Easter or Thanksgiving. This can lead

to sophisticated Fourier analysis to remove seasonality and the use of carefully cho-

10

sen nonlinear functions to capture trends — and the combination of the two, partic-

ularly in data where the variation tends to be a percentage of the value.

We will however, stick to relatively simple models to reduce trend and seasonal-

ity in this work. For data which tends to have variation as a percentage of the value,

we will use the logarithmic transformation of the data. For data which has a clear

trend, we will use differencing methods to reduce this. In fact, this is the “integra-

tion” component of the SARIMAX model — the use of first, second or higher order

differences (i.e. numerical derivatives) of the time series to obtain a more stationary

series.

An autoregressive (AR) model for a time series Yt is a model which uses a linear

combination of the previous time series values to predict the next value. For this to

function, the time series needs to show correlation from one value to the next (even

if that is negative correlation). Assuming a positive correlation, the simplest form

of AR model is simply to take the current value as an estimate for the next value(s).

That is, given a time series Yt , we model the series as:

Yt+1 ≈ Yt .

If Yt has some trend, we may have the slightly more complicated model:

Yt+1 ≈ αYt +µ,

where µ captures either an upward or downward trend depending on the sign. As we

have said, we will generally assume that any seasonality or trend has been removed

from our series, so we can also write this as:

Yt+1−µ ≈ αYt .

11

The last component to introduce is a “white noise” (or error) term, ε , so that we

have:

Yt+1 = αYt +µ + εt+1.

Finally, when Yt has high (partial) correlations with terms further removed from just

the previous term, we have:

Yt+1 = µ +
n

∑
i=0

αiYt−i + εt+1. (3.2)

The coefficients, αi may be solved for in many ways, including least squares —

where, essentially, the goal is to reduce the influence of the noise term, i.e. to have

it come from a distribution with as little variance as possible.

We note that the model:

Yt+1 ≈ µ +
n

∑
i=0

αiYt−i,

without the white noise term, is a deterministic model, providing a precise predic-

tion for the next value of Y . Meanwhile,

Yt+1 = µ +
n

∑
i=0

αiYt−i + εt+1,

where εt+1 is a random value chosen from a probability distribution (generally a dis-

tribution determined by the errors of the deterministic model) provides a stochastic

model. Applying this model several times, with different values of εt+1 chosen from

our probability distribution provides a range of possible values for the next step in

our time series — allowing us to provide estimates of confidence intervals and other

statistics.

12

A moving average (MA) model, on the other hand, uses previous “white noise”

terms to model the current value. In the simplest form we have:

Yt+1 = µ + εt+1,

where, again, µ is a trend term and εt+1 is a “white noise” term — a random value

chosen from a distribution, generally determined by the errors when modelling sim-

ply with µ .

A more sophisticated MA model uses a linear combination of several previous

noise terms:

Yt+1 = µ +
n

∑
i=0

αiεt−i + εt+1. (3.3)

This seems to have a very similar form to the autoregressive model of before,

however, whereas in the training stage of developing the autoregressive model the

time series values are known and one can perform least-squares optimization for the

coefficients over a range of values for t, this model requires non-linear optimization

methods to find appropriate values for the coefficients.

The other great difference between the two is that while the “white noise” term

in the moving average model explictly has effects on a finite number of the succes-

sive terms, the “white noise” term of the autoregressive model is incorporated com-

pletely into the next term, and its effects may even be compounded in successive

terms. This is important to note as we are not always concerned with finding exact

forecasts or predictions, but ranges — or even investigations of stability, whether

this is interpreted to mean “stays relatively near some mean value,” “does not suffer

oscillations,” or, quite simply “does not explode.”

An exogeneous variable for time series modelling and forecasting is simply any

related variable which is not the variable being modelled — but the values of which

the modelled variable may depend upon. If one were modelling the price of a par-

ticular stock, for example, prices of related stocks, market activity as a whole or

13

knowledge about happenings in that sector could be useful. That is, we think of

the variable in question as being dependent on the values of some other variable or

variables.

Given a time series Yt and exogeneous variables (related, but different time se-

ries) Xt , and a function µt capturing trend and seasonality SARMAX models (with-

out the “integration”) are simply linear models of the form:

Yt+1 = µt +
n

∑
i=0

αiYt−i +
m

∑
j=0

β jεt− j +
p

∑
k=0

γγγT
k Xt−k + εt+1. (3.4)

When one uses an “integrated” model, rather than applying the ARMA model to

the original time series Yt , one instead applies it to the “differences” (i.e. derivatives)

of first, second, or some higher order. This is generally done until the difference

term seems to be a stationary series — allowing its distribution to be used as the

“white noise” term.

Our modelling, prediction, and control models, are in some ways a slight gener-

alization of what we have seen before in the SARIMAX model and in some ways a

simplification. In general, for example, we concern ourselves not with a real-valued

time series Yt , but with a vector-valued time series yt . Further, we will include hid-

den variables (hidden neurons) which serve to capture some of the dynamics of the

system which may not be apparent or possible to capture with a simple least squares

model.

In particular, we will generally use a model of the following form:

yt+1

ht+1

= ϕ(A(yT

t ,x
T
t ,εεε

T
t ,h

T
t)

T +b)+ εεε t+1. (3.5)

14

Note (yT
t ,x

T
t ,εεε

T
t ,h

T
t)

T is simply another way to write the column vector:

yt

xt

εεε t

ht

.

Here ϕ is a nonlinear “transfer” function (separating our model from the linear

examples above), A is a matrix (i.e. a linear transformation), x represents external

inputs (exogeneous variables), h represents hidden values (again, separating our

model from the models above), b is a vector providing a shift (or “bias”) and εεε is

a vector of “white noise” (which we may or may not use depending on whether we

desire a range of predicted values or deterministic control).

In other words, we use a single layer recurrent network as our vector-valued

nonlinear autoregressive moving average exogenous time series model. Generally,

we will use only one previous step in our model — relying either on explicit com-

putation of derivatives and the like given in x (i.e. as an “exogenous variable”) or

for effects through time to be absorbed in the hidden neurons h.

3.2 Neural Networks: Evolution and SVD methods

While we will be exploring prediction of time series and real-time control in this

work, the method by which we will mostly do so will be recurrent neural networks.

McCulloch and Pitts [57] developed a computational model for neural networks

based on mathematical algorithms in 1943. After Rosenblatt’s [72] creation of the

perceptron, neural networks enjoyed a short summer and a great deal of research.

Research in neural networks slowed considerably after Minsky and Papert [60]

discovered two significant difficulties. One problem was that the exclusive-or circuit

is impossible to process on single-layer (feedforward) neural networks. The second

15

was that computers simply weren’t powerful enough to run, or worse, train, large

neural networks.

Research in artificial neural networks slowed until great advances in computer

processing power were achieved. In fact, in recent years, neural networks, espe-

cially in the guise of “deep-learning” with very deep networks, has had a massive

resurgence [34]. However, other than a few simple architectural modifications (such

as very deep networks), many of the advances can be attributed more to advances in

processing power than to theoretical advances in neural networks.

Neural networks are used in many areas of machine learning, including predic-

tion and control, image recognition and classification, image (re)creation, game play

(e.g. chess, go and Atari), and many others [42, 29, 56, 76, 61]. However, while

there have certainly been advances in neural network design and learning (particu-

larly adversarial learning), many of the greatest leaps seem to come from also using

the latest and most powerful hardware, GPUs and TPUs, for example [66, 82].

The basic learning algorithm for most neural networks is some kind of back-

propagation, where gradients of the loss function are calculated and used to reduce

errors for each layer of the neural network [37]. Even adversarial networks, which

use two “adversarial” networks in competition in order to improve both, generally

use backpropagation as their basic individual learning mechanism. Recurrent neural

networks also often use a type of backpropagation, called “backpropagation through

time” in which the network is “unrolled in time” (for some defined interval of time)

and errors are backpropagated much the same as the usual way (but where each

“layer” in the “unrolling” is a copy of the network in question) [83].

There are, however, limitations to the backpropagation learning mechanism.

When speaking of feed-forward networks (those with only forward connections

from inputs to outputs and no loops), backpropagation can optimize a particular

chosen neural network architecture for a particular objective function — however,

it cannot optimize the architecture itself. That is, it can optimize the weights of

16

the connections between the neurons between each layer, but it cannot optimize the

number of layers, the size of the layers, the type of neurons (e.g. transfer function)

in each layer, etc.

Each of these parameters is generally chosen heuristically by the machine learn-

ing practitioner — frequently with the practitioner trying several different combina-

tions and honing in on the best one for their purposes. Some learning mechanisms,

such as genetic or evolutionary algorithms, can be used to optimize these parameters

automatically [52, 6, 41, 20].

Backpropagation also has difficulty training recurrent neural networks (RNNs)

— that is, artificial neural networks with closed circuits in their connection network.

This is due to the “exploding/vanishing gradient” problem and can also create diffi-

culties with very deep networks [67, 33].

In fact, the general method of training RNNs is “backpropagation through time,”

where the RNN is “unrolled” into a deep feedforward network over several timesteps,

with a certain structure to map the weights back to the smaller RNN. This is often

effective, especially if the particular training problem is of the “vanishing gradient”

kind. If the gradient “explodes” instead, this works less well. Further, even when it

works, it presents yet another parameter of the machine learning method to optimize

— that is, how far back in time should the network be “unrolled” [83].

Since recurrent networks can be difficult to train via backpropagation, and since

they can have relatively few neurons and/or explicit layers and still be infinitely deep

for all practical purposes, evolutionary or genetic training algorithms are sometimes

used and have often been explored [21, 31, 9, 8, 44, 3, 74].

Many different kinds of genetic and evolutionary algorithms have been used in

this context. Even stochastic gradient descent can be thought of as a kind of evo-

lutionary algorithm in some of its simplest implementations. In fact, as shown in

[55], a simple random search can sometimes be a competitive approach to reinfor-

ment learning.

17

Our method also leverages the singular value decomposition of a matrix in a

new way, however, the SVD, a powerful tool, has been used in the training of neural

networks by Abid, Fnaiech & Najim [1] and by Psichogios & Ungar [70] — specif-

ically, in relation to pruning extraneous hidden neurons in feed-forward networks.

Similarly, Kanjilal, Dey & Banerjee [45] have developed reduced size feed-

forward neural networks using the singular value decomposition and subset selec-

tion.

More recently, the work of Xue, Li & Gong [85] is similar in that it first trains a

deep (feed forward) neural network, then uses the SVD to “compress” the network.

Extracting the most important pathways and weights and allowing the elimation

of some connections, thereby reducing the size (and cost) of the network. The

resulting network, its architecture somewhat changed, can then be retrained (or have

its weights refined) by another round of the usual backpropagation training.

Huynh & Won [40] have used the singular value decomposition for training sin-

gle hidden layer feed-forward networks, and a recent paper of Fontenla-Romero,

Pérez-Sánchez & Guijarro-Berdiñas [28] develops a non-iterative method for train-

ing single hidden layer feed-forward neural networks based on the singular value

decomposition. We note that these works, while focusing on training single hid-

den layer neural networks using the singular value decomposition, are somewhat

different from our work as they restrict themselves to feed-forward networks.

Jia [43] has considered training feed-forward neural networks with the constraint

that the singular values of the connection matrix be bounded near 1, i.e. the con-

nection matrix is nearly orthogonal, and achieved state-of-the-art results on various

benchmarks. Essentially, this is a way of conditioning the matrix and forcing the

exploding/vanishing gradient problem away. A more recent work, [89], uses the

SVD as a method to stabilize gradients for deep neural networks. While not directly

related to our work, the concept, similar to the idea of throwing away small singular

18

values, can be useful. Perhaps this is especially so in the case of recurrent neural

networks, though this is not an idea which we have explored to date.

Cox [24] has considered the degredation of short-term memory from parameter

compression in recurrent neural networks using the singular value decomposition.

His work indicating that considerable compression can be achieved, without too

much degration, and that this kind of compression could allow more use of such

neural networks on low-power and resource-constrained devices.

Meanwhile, Teoh, Tan & Xiang [79] and Santos, Barreto & Medeiros [75] have

applied the singular value decomposition to estimating the number of hidden neu-

rons in a feed-forward network. Finally, Cai, et al., in [16] consider using the SVD

for fast learning in deep (feed-forward) neural networks.

A work quite close to our own, and apparently contemporaneous, is [7], which

gives a good overview of the singular value decomposition and some ideas of how

it might be used in multi-layered neural networks. Our networks will be single-

layer recurrent networks, but the recurrence clearly has some of the same effects as

multiple layers.

3.3 Application Areas

Now that we have given an overview of the methods we will use, and pointed to how

our methods and models differ in some way from each of them, combining previous

ideas in a novel way, we turn to the various applications we have tested our methods

and model against.

Each of these is a very well-researched field, with a literature frankly too large

to survey completely. We will mention some of the literature with the greatest

overlap with our work — indicating that the models should be effective in the chosen

domains as well as highlighting the difference with our work.

19

3.3.1 Price Prediction

Our first example comes from price prediction. Prediction of prices or other chaotic

time series is a well-researched field, and neural networks, even recurrent neural

networks, have been applied and have been shown to perform well [36, 53, 47, 46].

The work of Han, et al. ([36]) is of particular interest for us as it demonstrates

the effectiveness of recurrent neural networks for these kinds of time series.

For our experiments, we use public data for the price of Bitcoin to develop var-

ious models, particularly of the ARIMA type and the type we have described —

but without exogenous variables. After developing a model for Bitcoin price pre-

diction which performs better than using the first lag (i.e. the previous day’s price),

we apply the same model to the Ethereum cryptocurrency. We then re-optimize the

model, adjusting only the singular values, to obtain a model again better than using

the previous day’s price as a prediction.

3.3.2 System Modelling and Predictive Maintenance

Another area of interest is that of System Identification and Modelling and Predic-

tive Maintenance.

Here we point to the study of Ho, et al. ([38]) which compare the effectiveness

of ARIMA, feed-forward neural networks and recurrent neural network for time

series prediction in the area of predicting mechanical failures. In their experiments,

ARIMA and recurrent neural network models outperformed feed-forward models.

We take our lead from them developing first ARIMAX models and then our single-

layer recurrent neural network model.

In our example, we have no previous information on actual breakage of the

machine (or even simulations of such breakage), but we develop a predictor for

the process variables using our model based on the process variables of a previous

time step as well as the setpoint and PID outputs. Our model allows us to estimate

20

the probability that the machine will go out of the normal operating range (for the

particular current state) in the near future.

Here, again, we develop the model in a more or less agnogstic manner — with-

out detailed domain knowledge of the physical processes or control systems utilized.

Again, we obtain a model with errors of the same order of magnitude as the first lag

model — but with significantly more time allowance, something necessary in the

event that the machine needs to be shut down to avoid going outside its limits.

3.3.3 Self-driving cars and TORCS

Developing self-driving control systems with realistic actions can be a difficult

task — and one which has received much study both in simulation and in real au-

tonomous vehicles (see [81] and [32]). First, we focus on those works which have

used the TORCS/SCRC [84, 50] system to have the most direct comparison to our

work.

The Simulated Car Racing Championship (SCRC) has been held in 2007, 2009,

2010, 2011, 2012, 2013, and 2015 [51, 50].

Butz & Lönneker [15] have developed an effective TORCS/SCRC controller

dubbed COBOSTAR. Butz, Linhardt & Lönneker [14] have subsequently developed

this controller further.

Cardamone, Loiacono & Lanzi [17, 18] have applied on-line neuroevolution to

the problem of developing a controller for TORCS/SCRC.

Muñoz, Gutierrez & Sanchis [63] have developed a “human-like” TORCS con-

troller for the SCRC, as well as a controller created by imitation of hand-coded

controllers and human play [62] and considered a multi-objective optimization of

their controller via evolutionary algorithms [64].

Yee & Teo [86] have developed evolutionary spiking neural networks as con-

trollers for the SCRC/TORCS.

21

Preuss, Quadflieg & Rudolph [69] have considered TORCS/SCRC sensor noise

removal and multi-objective track selection for adapting the driving style of a con-

troller.

Botta, Gautieri, Loiacono & Lanzi [10] have considered the problem of evolving

the optimal racing line for a track in the TORCS simulator.

Athanasiadis, Galanopoulos & Tefas [4] have developed a progressive neural

network and a training methodology for it for TORCS.

Quadflieg, Rudolph & Preuss [71] have examined the difficulty of optimizing

parameters for a controller to perform well on many tracks — and the trade-offs

inherent to that attempt.

Turning to autonomous vehicle control in general, the list of papers is too nu-

merous to list in its entirety in this work. As our work is mostly concerned with

methods of learning for recurrent neural networks, with control of the simulated car

being simply an example for both supervised and unsupervised learning, we note a

few which have considered neural network or similar controllers for some aspect of

the vehicle.

Pérez, Milanés & Onieva [68] have considered cascade architectures applied to

lateral control of real autonomous vehicles. Deep neural networks have been used

by Li, Mei, Prokhorov & Tao [49] for structural prediction and lane detection in

traffic scenes.

3.3.4 TORCS, SCRC and SnakeOil

Our example in the realm of automatic control focuses on using a Python implemen-

tation of a recurrent neural network as a controller for a car as in the Simulated Car

Racing Championship (SCRC) [50] — which is built atop The Open Racing Car

Simulator (TORCS) [84]. We use SnakeOil [26] as a client for SCRC to maintain

focus on developing a controller for the car and to allow the use of Python.

22

TORCS/SCRC has a number of features that lend it to researching self-driving

vehicles and video game AIs. First, TORCS is a quite realistic simulator with a so-

phisticated physics engine taking into account many aspects of driving such as colli-

sions and traction under various conditions of wheel spin and acceleration. TORCS

also provides many different tracks with varying lengths, road surfaces, changing

altitudes (i.e. roads with a high grade), and various types and degrees or lengths of

straight-aways and curves. We, however, will restrict ourselves to eight tracks here.

Two alpine tracks with road grade changes: Alpine 1 and Alpine 2

Figure 3.1: Alpine 1 Figure 3.2: Alpine 2

Two relatively fast tracks: Forza and Ruudskogen

Figure 3.3: Forza Figure 3.4: Ruudskogen

Two curvy tracks: Aalborg and Brondehach

Two relatively fast tracks with hard corners tracks: Wheel 1 and Wheel 2

These tracks represent a selection of most of the track types, except those with

dirt surface, while not being extremely long. They are also some of the most com-

23

monly used for both the TORCS and SCRC competitions allowing some compari-

son to other controllers.

The SCRC modification of TORCS provides a collection of simple sensors for

observing the local environment at small time steps (with the option that the sensors

are noisy), a standardized racing car and a real-time client/server modularity —

allowing one to develop the car controller without learning a great deal about the

functionality of TORCS as well as forcing one to use only the given local sensor

information and to develop a controller capable of operating in real-time.

SnakeOil simply implements the client in Python — allowing us to focus exclu-

sively on developing the controllers in our programming language of choice.

24

Figure 3.5: Aalborg Figure 3.6: Brondehach

Figure 3.7: Wheel 1 Figure 3.8: Wheel 2

Figure 3.9: Screenshot of TORCS

25

Chapter 4

Iterative SVD Approach

The simplest way to think of the iterative singular value approach is in comparison

to coordinate descent method. The coordinate descent method is a simple way of

minimizing a function by following along one coordinate until further movement

does not decrease the function value, then switching to the next coordinate and

doing the same. This very simple approach does not converge as quickly as gradient

descent, but it has the advantage of not needing to compute derivatives or gradients

— something which may be time-consuming or impossible in some cases.

However, the method is not always guaranteed to converge and can theoretically

become “stuck” if, for example, the gradient is at a 45◦ angle to all coordinates and

the curvature of the function is sufficiently tight. Small random perturbations are

sufficient to prevent this from happening on well-behaved functions, however.

Were one to apply this method to minimize the norm of:

|| f (x)−ϕ(Ax+b)|| (4.1)

where A ∈ Rn×n, this would entail incrementing each of the n2 values of A in turn

(as well as the n terms of b), then looping back through this procedure until the

minimum is found. For the singular value decomposition iterative method, rather

than iterating through each of the parameters and optimizing them regardless of their

26

importance, the method attempts to optimize iteratively according to the importance

of each coordinate — in fact, a major part of the method is finding the directions (or

coordinate transformations) which are the most important.

Recalling that given a matrix M with singular value decomposition UΣV T , we

note that this can be written also as the sum of the outer products of the singular

vectors along with their associated singular value:

M =UΣV T = ∑
i

siuiv
T
i ,

where si is the ith singular value, while ui and vi are the ith left and right singular

vectors respectively.

As the singular values are ordered by their magnitude, each successive partial

sum provides the best possible approximation to the matrix (using various matrix

norms) of that rank.

This suggests a particular way to approach learning using the SVD — we wish

to learn the “most important” parts of our connection matrix first.

Whether we work with an unsupervised or supervised training method, we will

attempt to learn first a low rank (or even rank one) matrix which performs as well

as possible before moving on to a higher rank matrix. We note here that we may

actually use full rank matrices, but the learning will be focused on one particular sin-

gular vector pair and the associated singular value — what we may call a “singular

triple.”

However, we must also note that modifying a singular vector must necessarily

change some of the following singular vectors. This means when working with

full rank matrices, though we may intend to apply an iterative procedure, to each

singular vector/triple in turn, this is not strictly the case. In fact, the impossibility

of maintaining the same singular vectors when one changes is one reason to use the

evolutionary precedures in Chapter 6.

27

If, on the other hand, one allows U and V to stray from the orthogonal, one

can train each column iteratively — but one is no longer training singular vectors

directly.

Depending on what information we have available, we can proceed as follows.

First, we assume that the process yt = P(xt), that we wish to model can be modelled

as a vector-valued nonlinear autoregressive time series with exogenous variables as

we saw before:

yt = ϕ(Axt +b)+ εt ,

or, more completely, expanding out xt into previous values of y, exogenous variables

(u), previous errors/white noise (εεε), and hidden variables (h), and concatenating the

next values of the hidden variables with our intended output:

yt

ht

= ϕ

A

yt−1

ut

εεε t−1

ht−1

+b

+ εεε t , (4.2)

Let us first assume, here and throughout the work, that we have scaled both

the values of the coordinates of x and the coordinates of y. This is always possi-

ble, using the “tanh” function, for example, though we should remain cognizant of

the range of feasible values before simply scaling in this manner — clearly better

knowledge of the statistics of these values can lead to better scaling and better learn-

ing. We will generally try to apply scaling (and perhaps centering) which maintains

separation of values within the possible (or normal) range, if possible.

If we are allowed to input chosen values into the function P, and to observe

the resulting outputs, this is clearly the best possible position we can be in. Our

first action in this case is to determine the image of the zero vector under P, i.e.

P(0), this allows us to have a better initial approximation for b, which otherwise we

28

would initialize to near 0, under the assumption that the mean of the input values

should produce an output near the mean of the output values (though centering our

variables is necessary for this assumption to apply well).

Next we wish to find that unit vector x1 for which the output vector, y = P(x),

has the greatest magnitude, suppose this is y1. Then we can construct a rank one

approximation for A as, very simply, the outer product of x1 and y1, namely

A = y1xT
1 ,

or, identifying x1 = v1 as x1 is a unit vector and letting y1 = σ1u1 where u1 is a unit

vector and σ1 is the magnitude of y1, we have:

A = σ1u1vT
1 .

So far, assuming we have a good sample of data, this process (except evaluation

at x = 0 to obtain a better initial value for b) could be done with any supervised

learning method we will consider. That is, for a supervised learning problem, we can

always very quickly construct a rank one approximation — disregarding, however,

the effects of hidden neurons and errors/white noise.

To obtain the best quality rank two approximation to our matrix A, we would like

to sample the input space which is perpendicular (orthogonal) to the vector x1 which

we used to produce the rank one approximation. Clearly, this is not possible in all

situations — though we can consider finding an input vector “nearly” orthogonal to

the first and which has the image vector with the greatest magnitude of those.

In general, one can continue this iterative process, and though it is impossible to

guarantee that each iteration will produce the singular vectors associated to the next

largest singular value, with some cleverness, one can make that more likely.

29

Assuming we are working with a linear (or bounded linear) transfer function,

we may set our first approximate singular value somewhat above the limit of what

it reasonably could be. Writing our approximation of s1 as s̃1, we start with s̃1 > s1.

Using ũ1 and ṽ1 as our approximations for the first singular vectors, then the only

way to minimize

||A− s̃1ũ1ṽT
1 ||F

is to let ũ1 and ṽ1 approach u1 and v1. On the other hand, if s̃1 = 1, then the

Frobenius norm above is minimized for any ũ1, ṽ1 which form a singular vector pair

with a corresponding singular value greater than or equal to 1. That is, we may not

converge to a unique pair of singular vectors, in particular to the singular vectors

corresponding to the largest singular value, which we desire — but may instead

converge to any singular vector pair which will allow reduction of the Frobenius

norm.

It is important to note that we first allow the singular vectors to converge as much

as possible or necessary, after which we may decrease the approximated singular

value s̃1 — while doing so improves performance.

We next approximate s2, u2 and v2. This time we may use s̃2 = s̃1 as the first

approximation of s2, as we can be sure that s2 is less than or equal to s1. We can also

restrict our choices for ũ2 and ṽ2 to be (nearly) orthogonal to ũ1 and ṽ1 respectively.

Three things work in our favor here: most importantly, by selecting candidates

ũ2 and ṽ2 orthogonal to the first singular vectors, we have reduced the dimension of

our problem. Second, we have a firm starting value for s̃2, one which is often not far

from the true value. Third, though we are doing less work for each iteration, each

iteration also becomes less important for the outcome, we may choose to stop when

we think the problem has been modelled well enough.

Since each iteration only gives us an approximation, it is important to allow our

approximations for the next iteration to wander slightly out of the space orthogonal

30

to the space spanned by the previous singular vector approximations, clearly the

amount we allow is closely related to the accuracy of the previous approximations.

However, if we don’t allow this, our approximations of each succesive singular

vector pair will get progressively worse.

If desired, we can, of course, obtain a perfectly orthonormal basis by simply

applying the SVD to the final result.

We present below several figures which illustrate the convergence of the iterative

SVD method in various situations. We also note that these could be optimized more

than we have done, and that we restricted ourselves to situations where a single run

lasted less than a minute on four 2.7 GHz processors with 7 GB of RAM in Scilab

on Ubuntu 18.04 LTS. It is interesting to note some differences in the convergence

when using different transfer functions — however, this is directly related to the

range of possible norms of the output.

4.1 Comparison to Stochastic Descent

One of the key elements of a learning algorithm is the comparison to a simple type

of random search. We therefore decided to test our iterated learning method against

a very simple implementation of stochastic descent in learning a test function of the

form:

yt = ϕ (M (yt−1)+b) . (4.3)

Where ϕ is the transfer function and M is the matrix we are trying to find or approx-

imate. That is, we are in the best case scenario of trying to approximate functions

of the exact same type as our models — trying to highlight the differences between

the simple stochastic descent method and the iterated SVD method in learning not

general functions, but learning within the class of functions of our models.

31

Our “random” method to test against here is a very simple implementation of

stochastic descent which consists simply of testing two potential matrices, retaining

the better matrix and then obtaining a new candidate by perturbing the retained

candidate by an amount proportional to the difference in the norms of the previous

candidate solutions, approximately in the direction of their difference — clearly this

is much more efficient than simple random guessing and places some bounds on the

next candidate solution.

Clearly, there is an inverse relationship between the speed of convergence and

the amount to which the solution space is explored. We determined the learning rate

for each of our experiments experimentally, settling on a value for each function

which provided very good convergence for almost all examples.

The simple stochastic descent search sometimes performed better, but had a

greater variability in results, as can be seen in tables and graphs from Table 4.1

(page 33) to Figure 4.24 (page 38). (In the figures and tables, “SD” refers to the

“stochastic descent” method, while “ISVD” refers to our “iterative SVD” method.)

Here, both the function we wished to approximate and the models we used were

of the form:

yt = ϕ (Myt−1) , (4.4)

where M was a random matrix in [−1,1]25×25. Given an approximating matrix A,

to measure nearness to our desired function, we used the Frobenius norm:

|ϕ(AY)−ϕ(MY)|F, (4.5)

where Y ∈ [−1,1]25×25 was a random matrix, i.e. a random sample of the domain

space.

For each approximation attempt we allowed up to 10,000 iterations of the tech-

nique — stopping if the Frobenius norm dropped below 1. For each transfer func-

32

tion ϕ we ran 1000 trials to produce the statistics in Tables 4.1 to 4.8, meanwhile

the figures show the decrease in the Frobenius norms for a selection of these trials.

Naturally, one method to attempt to take advantage of both types is to use a

hybrid approach. As the rate of convergence tends to be greatest for the random

search in the beginning, while the iterative SVD method accelerates toward the end

(due to the reduced dimension of the search space) — this would seem to indicate

that using the random method in the beginning and then switching to the iterative

method as the random method levels off may be the best combination of the two.

By using a hybrid method, we can take a sample of the entire search space, and,

by focusing on a region suggested by the sample, we can considerably reduce the

search space for the first singular vectors — if not the dimension of the space.

Supposing our random search has given us a matrix A, with SVD

A =UΣV T
,

we can focus our search for singular vectors on relatively narrow cones about the

singular vectors of A (conditioned further by orthogonality constraints for subse-

quent singular vectors).

The algorithms used have been somewhat optimized for smooth transfer func-

tions. However, an iterative SVD-like method is particularly well-suited to the step-

Final Norm Statistics

Identity Transfer Function

SD ISVD Hybrid

min 0.872 1.00 0.925

Q1 0.967 1.80 0.978

Q2 0.988 2.16 0.992

Q3 0.995 2.65 0.998

max 1.00 4.01 1.15

Table 4.1: Quartiles Figure 4.1: Convergence of SD

33

Figure 4.2: Convergence of ISVD Figure 4.3: Convergence of Hybrid

Final Norm Statistics

Tanh Transfer Function

SD ISVD Hybrid

min 0.834 1.00 0.760

Q1 0.953 1.01 0.947

Q2 0.976 1.02 0.969

Q3 0.992 1.05 0.990

max 2.43 1.42 1.24

Table 4.2: Quartiles Figure 4.4: Convergence of SD

Figure 4.5: Convergence of ISVD Figure 4.6: Convergence of Hybrid

34

Final Norm Statistics

Sigmoid Transfer Function

SD ISVD Hybrid

min 0.869 0.538 0.860

Q1 0.957 0.670 0.952

Q2 0.971 0.736 0.974

Q3 0.986 0.780 0.989

max 1.06 0.868 1.00

Table 4.3: Quartiles Figure 4.7: Convergence of SD

Figure 4.8: Convergence of ISVD Figure 4.9: Convergence of Hybrid

Final Norm Statistics

ReLu Transfer Function

SD ISVD Hybrid

min 0.828 0.847 0.736

Q1 0.966 1.03 0.954

Q2 0.999 1.26 0.988

Q3 2.05 1.73 1.36

max 4.82 3.29 3.77

Table 4.4: Quartiles Figure 4.10: Convergence of SD

35

Figure 4.11: Convergence of ISVD Figure 4.12: Convergence of Hybrid

Final Norm Statistics

Bounded Id Transfer Function

SD ISVD Hybrid

min 0.825 1.00 0.650

Q1 0.964 1.01 0.960

Q2 0.994 1.05 0.988

Q3 1.38 1.17 1.03

max 3.73 1.79 2.97

Table 4.5: Quartiles Figure 4.13: Convergence of SD

Figure 4.14: Convergence of ISVD Figure 4.15: Convergence of Hybrid

36

Final Norm Statistics

Bounded ReLu Transfer Function

SD ISVD Hybrid

min 0.811 0.522 0.439

Q1 0.970 0.885 0.906

Q2 0.997 0.982 0.956

Q3 1.29 1.01 0.994

max 2.24 1.45 1.71

Table 4.6: Quartiles Figure 4.16: Convergence of SD

Figure 4.17: Convergence of ISVD Figure 4.18: Convergence of Hybrid

Final Norm Statistics

Sign Transfer Function

SD ISVD Hybrid

min 2.00 2.00 0.00

Q1 3.46 2.00 2.00

Q2 4.47 2.83 2.83

Q3 5.29 3.46 3.46

max 6.93 5.00 5.66

Table 4.7: Quartiles Figure 4.19: Convergence of SD

37

Figure 4.20: Convergence of ISVD Figure 4.21: Convergence of Hybrid

Final Norm Statistics

0/1 Transfer Function

SD ISVD Hybrid

min 1.00 1.41 1.00

Q1 1.73 1.73 1.41

Q2 2.24 2.00 1.73

Q3 2.65 2.24 2.00

max 3.32 2.65 2.45

Table 4.8: Quartiles Figure 4.22: Convergence of SD

Figure 4.23: Convergence of ISVD Figure 4.24: Convergence of Hybrid

38

Figure 4.25: Volume of n-sphere Figure 4.26: Surface Area of n-sphere

wise transfer functions — the main difference being that one can (or must) relax the

orthogonality constraint. On the step-wise transfer functions, the SVD algorithm

can be improved upon by switching to seaching for a new “singular vector” pair

whenever the error falls. However, one cannot expect subsequent vector pairs to be

anywhere near orthogonal to the previous pairs.

Considering the volume (or surface area) of the n-sphere, we can see that the

method becomes more efficient in comparison with the simple stochastic gradient

descent search as the dimension increases beyond approximately 5. That is, the

surface area and volume of the n-sphere decreases as n grows larger, as can be seen

in Figure 4.25 — whereas the volume of the n-cube increases exponentially.

In general, given that we want to find a matrix A ∈ [−1,1]n×n, a random search

will potentially search a volume of

Vol = 2n2

,

meanwhile, each iteration of our method searchs for the ith singular vectors, ui,vi ∈

Sn−i, and the ith singular value, σi ∈ [0,1]. The total volume potentially searched is

therefore:

Vol =
n−1

∑
i=0

(2Si +1),

39

where Si is the surface area of the i-sphere (a ball in i+1-dimensional space), and

Si =
2π

i+1
2

Γ
(

i+1
2

) .

We can see in Figure 4.27 how Si, and hence the volume to search, increases

only very slowly after n = 15. This is, naturally, somewhat offset by the compu-

tation required at each step to (nearly) orthogonalize the new prospective singular

vectors to the previous singular vectors. However, with careful attention to how

these vectors are updated during their convergence, this step need only be done at

the very beginning. Further, while this orthogonalization step becomes more expen-

sive with each iteration (that is, with each new singular vector pair), the space to be

searched becomes smaller.

Figure 4.27: Volume searched by Iterative Method

Of course, TANSTAAFL, “there ain’t no such thing as a free lunch.” When we

consider the real parameter space to be searched, whether by the the random search,

or by the iterative SVD method, they are of equal dimension.

40

That is, given a matrix A ∈ [−1,1]n×n, it is clear that with the random search,

the real parameter space has dimension n2. With the iterative SVD search, u1 and

v1, being on the surface of the ball in Rn, require n− 1 real parameters each and

the singular value σ1 another. The singular vectors u2 and v2 require n− 2 and σ2

another. This continues until un and vn require a choice between two directions (i.e.

they are not real parameters) while σn requires another real parameter.

The sum of all of these parameters is then, again, n2. However, as we have stated

many times, each successive singular triple becomes less and less important —

allowing us the option to halt the search without searching those parameter spaces

if desired.

To tie this iterative search to our later novel evolutionary SVD search, we wish

to make note of a few things. The main thing to note is that one round of the iterative

SVD search, even if one goes until convergence for each of the singular triples in

order, may not find the optimal model (even restricting our view to the chosen space

of models).

The iterative SVD method first finds the best rank one matrix approximation for

our model. Then it finds, not the best rank two matrix approximation for our model,

but the best rank two correction of the previous rank one model. This means the

iterative SVD method should be run again if we wish to find the best model within

the space.

But changing our found matrix, in particular changing the first singular vectors,

means altering all subsequent singular vectors as well. Suppose then, that we have

reached an approximation A1 with a single round of the iterative search:

y = ϕ (A1x+b) . (4.6)

41

Rather than changing A1, we can insert another matrix A2, intended as a correc-

tion for A1,

y = ϕ ((A1 +A2)x+b) , (4.7)

and run the iterative SVD algorithm on A2. Finding a rank one, then rank two, etc.

approximation for A2, until the sequence converges again. We may continue if we

like, finding A3, A4, etc., so that we have:

y = ϕ

((
n

∑
i=1

Ai

)
x+b

)
, (4.8)

where n is the number of times we are willing to run the iterative SVD algorithm.

42

Chapter 5

Supervised SVD Learning

The supervised learning method involves training from examples. Examples of

supervised learning are learning to assign labels to images given a set of similar

labelled images as in [19], or, as we have mentioned earlier, learning models for

time series or learning continuous control behaviors (as for a car) from examples.

Generally supervised learning considers the problem of learning as either a clas-

sification problem or a regression problem. While SVD methods may also work for

classification problems (as these are often carefully formed into a type of regres-

sion), they are particularly useful in regression problems.

Let’s first consider the simplest possible case: the linear regression. Given a

collection of observations {(x,y)n}, we wish to find a linear (or affine) map f (x) of

the form:

f (x) = Mx+b

so that f (x)≈ y. This is generally taken to mean that we should minimize:

∑
n

(y− f (xn))
2
,

the familiar “least squares” minimization.

The SVD, by way of the pseudoinverse, gives a straightforward (and, if imple-

mented correctly, numerically stable) way to solve the linear regression. However,

43

even when one intends to obtain a non-linear regression through iterative methods,

often the linear regression provides a good starting point for the iteration [77].

With regard to neural networks, we often use transfer functions which are nearly

linear near the origin, and intentionally scale, center and normalize our variables in

such a way as to concentrate their values near the origin. This being the case, we

maximize the usefulness of the linear regression as a starting point, and the SVD as

a method of performing regression.

Our experiments with supervised learning using the SVD consist of two parts.

In one we consider time series approximation, starting with ARIMAX models (or

truncated ARIMAX models) and then elaborating them with the addition of non-

linear transfer functions and hidden variables/neurons. The second part involves

learning a control mechanism for the TORCS/SCRC simulator. To this end, we

first developed a traditional physics-based controller, which was able to complete

several tracks in times comparable to the qualifiers of SCRC 2009 [51] and others

[86, 10, 15, 14] without tuning parameters for each track or maintaining a map of

the track, to act as input for the supervised method. We did not use human inputs as

a sufficiently skilled driver was not available.

One of the most important elements of the supervised method (or any case in

which we have sample inputs and outputs) is that we may be able to determine the

true dimension of the output space and the necessary rank of the connection matrix

— assuming a very thorough sample of the output space has been obtained with

the given inputs. Of course, it should always be the case that we have some upper

bound on the output space — namely the number of output variables. However,

frequently these variables have dependencies among them, which we may use to

our advantage — either by selecting candidate singular vectors only from the image

space (reducing the dimension of the search space) and/or simply not searching the

space of higher rank matrices, for example.

44

Figure 5.1: BTC price history (logarithmic scale)

5.1 Price Modelling

Our example of supervised learning is the modelling of Bitcoin price data. We

obtained daily Bitcoin closing prices in euros from CoinDesk from 2013/04/28 to

2018/04/16 — a total of 1813 daily prices.

As usual with financial data where percentage change is the norm, we use the

logarithm to obatin a more managable graph and condition the problem better for

linear models — this means that any error we report is a relative error [27, 48, 65,

80]. While Figure 5.1, shows simply the logarithm of the price, to train and test our

models, we will also normalize and center our data for training and testing.

5.1.1 Experiment Design

We will consider several different ARIMA type models, by way of comparison,

before testing our fully recurrent neural network model.

45

Mean Standard Deviation

Training 0.001203 0.0458867

Validation 0.002866 0.0318813

Test 0.004742 0.0555125

Table 5.1: First Differences Statistics

Figure 5.2: Histogram of First Differences of Training Set

We divided the data set into training, validation and test sets chronologically,

using the first 1087 prices for training, the next 363 prices for validation, and the

final 363 prices for testing.

Considering the first differences, Table 5.1 and the histograms in Figures 5.2 and

5.3 indicate we have fairly similar distributions of first differences between the dif-

ferent sets. However, the KolmogorovSmirnov test, indicates that the distributions

may not be exactly the same — they are not, however, normal distributions.

46

Figure 5.3: Histogram of First Differences of Validation Set

5.1.2 ARIMA Models

Our baseline model is the autoregressive model with a single term, namely if Yt is

the logarithm of the price (plus 1) at t, we model it by:

Yt+1 = αYt + εt+1,

where ε comes from the distribution defined by Yt −Yt−1. This should be a good

baseline model as the correlation between Yt and Yt−1 is more than 0.999. Using

least squares we find α = 0.9993314 — which we will round to 1, with the sum of

least squares error of 2.4229876 and mean squared error of 1.3365×10−3.

We note here that α = 0.9993314 would provide an asymptotically stable model

(converging to 0) if the approximation were left to run rather than being corrected

by true values for each new timestep. Using α = 1 instead, we obtain a simply

stable model, rather than asymptotically stable, but, this model, predicting the next

value with simply the previous value, is one of the simplest baseline models — the

persistence forecast.

47

Figure 5.4: Differences in logarithm of prices

We can see in Figure 5.4 the first differences of Yt , namely Yt −Yt−1 — which

is centered near zero and has no apparent patterns. Further the correlation of one

value to the next is approximately −0.003 — a very low correlation. Other tests for

stationarity similarly indicate that the first difference is a stationary series. Figure

5.5 clearly shows a well centered histogram for the first differences of Yt . The

KolmogorovSmirnov test indicates that the distribution is not normal.

Using the model below with the constant µ:

Yt+1 = µ +αYt + εt+1,

reduces the error to 2.4221776 and mean squared error to 1.336×10−3.

Our next example uses the error from the in the first autoregressive term for the

estimate of the previous value to correct the prediction for the next value. That is,

our model is of the form:

Yt+1 = αYt +βet + εt+1, (5.1)

48

Figure 5.5: Histogram of First Differences

where et is the error in the prediction of Yt . However, since the first differences have

very little correlation, we shave a little off the sum of the squared error to 2.4221552

with a mean squared error of 1.336×10−3.

Combining the two methods, we get:

Yt+1 = µ +αYt +βet + εt+1, (5.2)

where we obtain again a sum of squared error 2.4221552 and the same MSE of

1.336×10−3.

Using an integral of the original function with exponentially decaying weights

as input as well, we have a model:

Yt+1 = µ +αYt +βet + γ

∫ t

0
eκ(t−τ)Yτdτ + εt+1, (5.3)

for which we get the total error of 2.4211501 with MSE 1.3354×10−3.

Using a two-sample Kolmogorov-Smirnov test on our test set, we have D =

0.0589319 which is larger than the cut-off of 0.0547389 for significance at level

49

α = 0.05 — allowing us to reject the null hypothesis and say that the distributions

of errors for the lag model and this model are significantly different.

However, on the validation set, we get D = 0.0248619 while the cut-off is

0.0999392 — we cannot therefore reject the null hypothesis that the distribution

of the errors in prediction are the same in this case.

Clearly, using slightly more complicated models, we can slowly shave the error

down — up to some limit. But our examples so far have been linear models, and

the error term they use (not the stochastic white noise term) is derived only from the

error of the first autoregressive term.

5.1.3 Recurrent Neural Network Model

Let us move now to our more complete model, with hidden units and an error term

based on the errors of it’s own prediction. Our model is of the form:

Yt+1

ht+1

= ϕ(A(Yt ,x

T
t ,et ,h

T
t)

T +b)+ εεε t+1, (5.4)

where ϕ is a transfer function (here simply a limit on the minimum and maximum

values), Yt is as before, xt are chosen exogenous variables (the integral in Eqn. 5.3,

for example), et is the error of the previous approximation (not just that of the first

autoregressive term), ht is a collection of hidden variables, and εεε t is a white noise

or stochastic term if ranges of predictions are desired.

In fact, we use an example very similar to that of Eqn. 5.3, with simply the ad-

dition of hidden terms — and begin our training of the model with the least squares

solution from that example.

Using a single hidden variable, we obtain a sum of squared error of 2.421098,

MSE of 1.3354×10−3.

50

Coin Method Error MSE

Bitcoin Yt+1 = αYt + εt+1 2.4230 1.3365×10−3

Bitcoin Yt+1 = µ +αYt + εt+1 2.4222 1.3360×10−3

Bitcoin Yt+1 = αYt +βet + εt+1 2.4222 1.3360×10−3

Bitcoin Yt+1 = µ +αYt +βet + εt+1 2.4222 1.3360×10−3

Bitcoin Yt+1 = µ +αYt +βet + γ
∫ t

0 eκ(t−τ)Yτdτ + εt+1 2.4212 1.3354×10−3

Bitcoin Equation 5.4 (single hidden variable) 2.4211 1.3354×10−3

Ethereum Yt+1 = αYt + εt+1 1.4347 9.603×10−4

Ethereum Equation 5.4 (Bitcoin model) 1.4396 9.636×10−4

Ethereum Equation 5.4 (singular values retrained) 1.4328 9.59×10−4

Table 5.2: Summary of Price Prediction Results

5.1.4 Retraining Singular Values

To further demonstrate the usefulness of the method, we trained a network first on

time series data for the Bitcoin price. Then we trained the same model again to

model the Ethereum price, but modified only the singular values and the shift or

bias vector making the transformation affine — holding the singular vector pairs

fixed from the training for Bitcoin.

Using only the lagged values for the Ethereum price resulted in a sum of squares

error of 1.4346877 with an MSE of 9.603× 10−4 . When using the model trained

directly on Bitcoin, meanwhile, the error was 1.4396236 with an MSE of 9.636×

10−4. After training only the singular values and the shift vector (training 2n param-

eters rather than n2+n parameters), we obtain a sum of squared errors of 1.4328113

with an MSE of 9.59×10−4.

The results of our experiments with Bitcoin and Etherium price prediction are

summarized in Table 5.2.

5.1.5 Remarks

The previous section concerns one of the main benefits of our method — which

should be highlighted. We developed and trained our original model on one set

of data (Bitcoin prices), obtaining results better than the standard autoregressive

51

models, but then we were able to turn to a similar problem and reuse most of our

model — not just the general structure of the model, but also the “structure” of the

connections between the the variables given by the singular vectors.

In fact, besides the novel method of learning, using the SVD in an evolutionary

method (which we will see later), this is one of the main contributions of this work

— the idea of reusing the structure of recurrent neural networks (as defined by

the singular vectors) and retraining only the relative strengths of those structural

components for a new problem. Clearly, in general, the reuse of neural network

“structures” is widespread — however, the “structure” intended in these contexts

has almost always meant the neural network architecture. However, reusing just the

architecture means retraining all the connections as well — possibly n2 connections

between two layers of n neurons. Meanwhile, reusing the “structure” given by the

SVD means retraining just n singular values between those two layers of n neurons.

5.2 Predictive Maintenance

Another example we consider is the development of a model for the prediction of the

operation of an industrial machine, used to test resistance of materials and electronic

components to temperature fluctuation, and, particularly, stochastic models which

allow us to develop intervals of normal operation.

5.2.1 Model Development

We examine the various variables of the machine and first develop a deterministic

model to predict the main variables. Our first step was to consider the correlations,

specifically the Spearman correlation, between the various variables and transfor-

mations of the variables. We used 0.5 as the cut-off for the strength of correlation

to consider.

52

Using the 35 variables themselves, we obtained 232 pairs with an absolute corre-

lation above 0.5. Considering correlations of first differences (i.e. numerical deriva-

tives) of the variables we obtained only 12 pairs with a correlation above the 0.5

level. Next we considered the original variables against the derivatives, from which

we obtained again 12 pairs of correlates above the 0.5 level.

Then the original variables against the cumulative sum of each of the others —

leading to 19 pairs of correlations, always considering those above the level of 0.5.

Finally, we considered the original variables against a rolling exponentially

weighted integral of the form:

IX(t +1) = X(t +1)+0.999IX(t). (5.5)

From these comparisons, we obtained 329 correlations above the level of 0.5.

Taking the intersection of all the variables appearing as a correlate, we obtained

only the four variables: T1, T2, T3, T4 — four temperature readings within the

machine.

As the machine is used to test resistance to changes in temperature, these are

indeed the most important variables. After this simple analysis our work became to

provide a model for the temperature, to predict future values (or a probable range

of values), and inform the operator if these values fall outside the range of normal

operation.

Our goal was a prediction which has an error of approximately the same as the

simple first lag prediction, but with as much warning time as possible.

The variables with the highest correlation (> 0.8) to the variable T1 (tempera-

ture reading one) are as in Table 5.3 as an example of the main variables used and

their inter-correlations. The other temperature readings had similar correlations. Of

course, to make predictions into the future, we will need to consider lagged versions

of most of these variables — which also have high correlations.

53

Description Name Correlation

T1 lagged by 1 T1(t−1) 0.9999

T2 T2 0.9909

T3 T3 0.9942

T4 T4 0.9927

Setpoint SP 0.8696

Rolling integral of PID1 IPID1 0.9386

Rolling integral of PID2 IPID2 0.9375

Rolling integral of PID5 IPID5 0.9393

Table 5.3: Correlations to T1

Of particular importance, however, is the Setpoint of the machine, which, as the

name suggests is the setpoint for the temperature given as a control by the human

operator. The differences between the Setpoint variable and the various temperature

measurements are used as the input for the PID controllers — which control various

heating and cooling systems in an effort to reach and maintain the temperature given

by the Setpoint.

We note that the parameters of the various PIDs and how they were obtained,

were not available to us.

Besides the fact that the Setpoint variable provides us with the intended value

of the temperature, it is interesting as, under normal operation, it is a discontinuous

function (see Figure 5.6) and, most importantly, it is known in advance — meaning

we can use not only current values, but future values to predict future states of the

machine.

As mentioned earlier, we wish to develop a model which has error in predictions

at the same order of magnitude as using just the previous value for an estimate of

the current temperature. That is, if we consider the model:

T 1(t +1) = T 1(t)+ ε(t +1), (5.6)

we wish to develop a model with errors (ε) of the same magnitude, but with as much

forewarning to the operator as possible.

54

Figure 5.6: Setpoint

Figure 5.7: T1 vs Rolling Integral of PID1

55

After centering and normalization, the sum of squared error between the first

lagged value and T1 is 0.3828, while the MSE is 6.59×10−5. Therefore, our goal is

to develop a model which predicts as far into the future as possible, with errors of the

same order of magnitude. See Figures 5.8 and 5.10 for the error and a histogram of

the errors from this model. Note, of course, that the greatest errors come around the

time that the Setpoint changes and the machine alters the temperature very quickly.

As a first attempt, we considered the autoregressive model with the exogenous

variables above, with a lag of 5 timesteps, except for the Setpoint variable, for which

we used the current value. That is, our model is of the form:

T 1(t +5) =
4

∑
i=1

αiTi(t)+βSP(t +5)+ ∑
i=1,2,5

γiIPIDi(t)+δe(t)+µ + ε(t +5),

(5.7)

where e(t) = T 1(t)− T 1(t − 5) is the actual difference in temperature from time

t−5 to time t — one can think of this as either a derivative or the error one would

get by simply using T (t−5) as a model.

This model provided a sum of squared errors of 0.6631 and a MSE of 1.141×

10−4 — just above, but very near the limits of error which was our goal. See Figures

5.9 and 5.11 for the errors and an error histogram for this model.

Figure 5.8: Error in approximating T1

with the first lag

Figure 5.9: Error in approximating T1 as

in Eqn. 5.7

Using the distribution of the error from the deterministic part of the model, we

can provide a range of expected values for T1. That is, adding and stochastic term,

with values taken from the distribution of errors we found and running our stochastic

56

Figure 5.10: Histogram of error in ap-

proximating T1 with the first lag

Figure 5.11: Histogram of error in ap-

proximating T1 as in Eqn. 5.7

model several (in this case 1000) times, we obtain a range of values for the t + 5

value of T 1. Maintaining just the middle 95% of the values allows us to obtain a

confidence interval for the value of T 1 as in 5.2.1. In fact, counting the number

of times the value of T 1 is outside of this interval, we get 242 instances of 5811

timesteps, or a percentage of about 4.2.

Figure 5.12: T1 and Confidence Interval Figure 5.13: Zoom In of T1 and Confi-

dence Interval in HOLD UP State

5.2.2 Remarks on the Neural Network Model

Our next step was an attempt to improve the model, as with the Bitcoin example,

with the addition of a hidden variables and a non-linear transfer function. However,

though we achieved results comparable to the previous models, the results using the

fully recurrent neural network model were not an improvement.

So here we saw some of the limits of the fully recurrent model — in that, given

the same variables and information, the extra model complexity provided no ben-

57

efit, at least not for the prediction of the value of a single temperature sensor. We

are left with the possibility of training the neural network model for one tempera-

ture sensor and then retraining only the singular values for the others, or, perhaps,

producing a holistic vector valued predictor for all temperature sensors. However,

these possibilities must be left to future work due to the limitations of time.

5.3 Driving in TORCS/SCRC

Our main experiment was to design, implement, train and test a neural network

controller for the Simulated Car Racing Championship (SCRC) real-time driving

simulator based on The Open Racing Car Simulator (TORCS). The TORCS/SCRC

simulator provides several variables about the car’s position and movement as well

as controls for steering, acceleration, braking and gear shifting — all of these vari-

ables and controls are updated on very short time intervals (20ms, essentially real-

time), requiring potential controllers to maintain a high response time for optimal

performance [50].

5.3.1 Experiment Design

The first step of our experiment design was to select a number of tracks available

in TORCS, according to the criteria below. We then split the tracks into three sets:

training, validation and test. As the tracks are few in number and in the interest

of optimizing learning time, different tracks were carefully chosen for these pur-

poses. First, the training and validation tracks are generally shorter than the test

tracks. Second, the tracks have been divided into essentially four types: fast, curvy,

alpine (changes in elevation), and general (fast with hard turn). Three of the classes,

fast, curvy and alpine, are represented in the training set, a “general” type for the

validation, and all four types are represented in the test set.

58

The training set consisted of tracks: Ruudskogen (fast), Aalborg (curvy) and

Alpine 2 (alpine).

Figure 5.14: Ruudskogen — fast train-

ing

Figure 5.15: Aalborg — curvy training

Figure 5.16: Alpine 2 — alpine training Figure 5.17: Wheel 1 — general valida-

tion

The validation set consisted of the track Wheel 1 (general).

Finally the test tracks consisted of: Forza (fast), Brondehach (curvy), Alpine 1

(alpine), and Wheel 2 (general).

Figure 5.18: Forza — fast test Figure 5.19: Brondehach — curvy test

59

Figure 5.20: Alpine 1 — alpine test Figure 5.21: Wheel 2 — general test

5.3.2 Programmed Controller

Before attempting supervised learning for our neural networks, we first needed a

controller to model. SnakeOil provides a very simple controller, but it is extremely

slow and maintains a position directly in the center of the track. Though in future

experiments this type of controller may be an interesting starting point — modelling

a very conservative controller and then attempt to improve upon it using unsuper-

vised learning — we instead elected to produce a physics-based controller which

could complete the chosen tracks in a fairly competitive time.

To this end, we developed a relatively simple controller based on “desired” set-

points for speed (actually for kinetic energy) and steering angle as well as PIDs for

smooth control to reach these setpoints and deal with traction control — these PIDs

were not highly optimized but sufficient for our purposes. For throttle and brake

control, in particular, an anti-skid/traction control (ABS) system was implemented

— limiting either throttle or brake when overspin or skidding was detected.

We developed a controller much faster than the simple SnakeOil controller by

using a setpoint for kinetic energy rather than speed. The setpoint was based on how

much track the car needed to come to a complete stop (assuming braking distance

being proportional to kinetic energy) and the amount of track available. That is,

the setpoint for kinetic energy was the maximum value for which the car would

have enough track to stop given the visible track ahead. As we did not consider the

60

internal workings of TORCS, this value was approximated experimentally — using

a value which allowed the controller to complete all chosen tracks in a competitive

time. Certainly, on different road surfaces, such as the dirt tracks which were not a

part of our experiment, this value would change.

For steering, rather than simply sticking to the middle of the track, we based the

steering setpoint on the direction in which the longest length of track was available.

That is, whichever angle provided the most visible track became the setpoint for

steering. This, together with a small offset to prevent the wheels going off the track

(especially on sharp turns), allowed the controller to cut turns quite effectively. (We

also modified the forward track sensors of the SCRC car to be more heavily focused

to the front of the car, rather than equally spaced in the forward semi-circle as is the

default for the SCRC/SnakeOil software.)

We note that the controller developed did not have maps for planning future

actions — to optimize speed around corners by following the best line or to drift to

the outside before a corner, for example. Instead, the maximum speed allowed (or

maximum allowed kinetic energy) was, as previously mentioned, simply based on

the required stopping distance at that speed and the amount of track locally visible

in front of the car. Put another way, the programmed controller didn’t “know” that

a turn wasn’t simply a dead-end as the only information available to it was the local

track information described more fully in Table 5.5 on page 64.

It is of note that the range-finding variables used have an i.i.d. normal noise of

10% of the sensor’s current real value when the “noisy sensors” option is enabled —

which we have enabled for our work. For our hand-coded example we did nothing

to counteract or filter this. Also, interactions with other cars, overtaking, etc., were

not considered, both for simplicity and as this would also best be tackled with maps

or models of the track and perhaps the opponents as well.

Having the set-points for speed (or actually kinetic energy) and direction, we

then developed very simple PID controllers for acceleration, braking and steering

61

SnakeOil Hand-Coded Median SCRC 2009 COBOSTAR

Ruudskogen 118 82 ≈ 72

Aalborg 151 84

Alpine 2 156 110 118 ≈ 136

Wheel 1 165 109

Forza 208 115 111

Brondehach 149 100

Alpine 1 262 169

Wheel 2 233 146

Table 5.4: Track Times in Seconds

to acheive responsive and relatively smooth control. As the set-points were almost

continually changing, the proportional element of the controllers was the most im-

portant element. These parameters had to be arrived at experimentally (though they

were not perfectly optimized) by examining the controller’s acceleration and brak-

ing (particularly whether large amounts of over- or under-spin or whether high fre-

quency switching between acceleration and braking were present) and examination

of whether the controller was able to make turns appropriately. (We also maintained

a very simple traction control system, reducing braking or accelleration whenever

under- or over-spin of the tires was detected.)

The various parameters of this controller were then tuned to run the chosen

tracks as quickly as it could, and after a few iterations, we were able to develop a

controller with best track times as in Table 5.4 — acheiving times comparable with

those of SCRC competitors and others appearing in the literature [51].

In addition to our hand-coded controller, we list the best one-lap times (in sec-

onds) of the provided SnakeOil controller, median times for the 2009 SCRC ranking

competitors, and times reported for the COBOSTAR controller of the 2009 SCRC

in Table 5.4 [13, 51]. (Other SCRC competitions used entirely new tracks generated

for the competition and unseen previously by the competitors.)

Though the data is sparse, we note that the controller seems to be somewhat

slower on fast tracks and somewhat faster on curvier tracks than the SCRC 2009

62

competitors — we speculate that the speed on fast tracks could be improved with

maps and planning, but that is outside the scope of this work.

5.3.3 Supervised Learning

Given our construction of the physics and PID based controller, we considered two

different methods of control for the neural network. First, we could train the neural

network to control the steering and acceleration directly (though we would keep the

traction control), or we could have the neural network simply set the setpoints and

allow the steering and acceleration PIDs to function as before.

We chose to control the steering and acceleration/braking directly, as a more ro-

bust test of the real-time control properties of the neural network method. However,

we may consider the setpoint method in the future, given the smoothness, robustness

and transparency of the PID control.

As in the previous examples, we first developed an VARX (“V” for vector) type

model to model or predict the next state (outputs and inputs) of the physics based

controller. This example was clearly more complex than the previous models, being

vector valued — though this could have been explored in the previous example.

Most of the variables used were a subset of those in the TORCS/SCRC imple-

mentation (see [84]). In particular, we used the variables in Table 5.5 directly from

TORCS/SCRC.

In addition, we used some calculated variables, which were also used by the

physics based controller, as inputs for the neural network. These were acceleration

and kinetic energy in the X (forward) and Y (side) directions and also appear in

Table 5.6.

Meanwhile, the outputs of the physics based controller from the previous timestep,

as in Table 5.7, were available as inputs to the recurrent neural network during train-

63

ing. These variables were also, of course, available to the neural network during

operation.

We did apply smoothing to the track distance sensors during training and oper-

ation of the neural network — optimizing the smoothing parameter against a clean

run. Using smoothing of the form:

smoothTrack(t) = (1−α)track(t)+αsmoothTrack(t−1),

with the smoothing factor of α = 0.9, we had a relative error against the noisy

sensors of about 3.03% and a relative error against the non-noisy sensors of about

9.82%. The graphs of two of the track sensors and the associated smoothed track

variables for one of the chosen tracks can be seen in Figure 5.22.

We first simplified our model by not considering acceleration (or gas) and brak-

ing separately — but by combining the two, with positive numbers indicating ac-

celeration and negative numbers indicating braking.

We then developed least squares models to fit the “acceleration minus braking”

(amb) and steering output variables of our hand-coded model. The model for the

Name Description

distRaced Distance covered by car from the beginning of the

race

speedX Speed of car along logitudinal axis (i.e. the usual

speed)

speedY Speed of the car along the transverse axis

track Vector of 19 range sensors returning distance to

the edge of the track at specific angles in front of

the car

trackPos Normalized distance between the car and track

axis

Table 5.5: Input Variables from TORCS/SCRC

64

Name Description

accX Acceleration in X direction

accY Acceleration in Y direction

keX Kinetic energy in X direction

keY Kinetic energy in Y direction

Table 5.6: Calculated Input Variables

Name Description

accel Virtual gas pedal

brake Virtual brake pedal

steer Steering value

Table 5.7: Output Variables Used as Input Variables for Neural Network

Figure 5.22: Raw versus Smoothed Track Range Sensors

65

“amb” variable was:

amb(t +1) = ϕ (c1angleN2(t)+ c2speedXN(t)+ c3keXN(t)

+ c4steer2(t)+(c5, · · · ,c23)smoothTrackN(t)

+ c24trackPos2(t)+b),

where the variables are as above and in [50], with the addition of “N” indicating

scaling the indicated variable to have unit standard deviation. Note that the “an-

gleN,” “steer,” and “trackPos” variables are squared — making all variables used

here non-negative. The chosen transfer function, either a bounded identity function

or the tanh function, is represented by ϕ .

When we considered modelling the “acceleration minus brake” variable (range

[−1,1]) using the bounded linear (identity) transfer function, we obtained a MSE

of 4.167× 10−2. Whereas, using non-linear least squares, we obtained a MSE of

4.274× 10−2 using the tanh transfer function. Graphs comparing the hand-coded

“amb” variable with the models developed here, using the two different transfer

functions, can be seen in Figures 5.23 and 5.24.

Meanwhile the model for the “steer” variable was:

steer(t +1) = T (c1angleN(t)+ c2speedXN(t)+ c3keXN(t)

+c4amb(t)+(c5, · · · ,c23)(sinθθθ ∗ smoothTrackN(t))

+c24trackPos(t)+b).

Notice here that the variables “angleN” and “trackPos” are not squared, but retain

their sign. Meanwhile sinθθθ ∗ smoothTrackN(t) is the element-wise product of the

track sensors with the sine of their angle from forward — encoding the direction of

the sensor as well as the magnitude for steering.

66

Figure 5.23: Hand coded versus Bounded Linear Least Squares Model for Accel-

Brake

Figure 5.24: Hand coded versus Tanh Least Squares Model for Accel-Brake

67

Figure 5.25: Hand coded versus Bounded Linear Least Squares Model for Steer

Error for steering (again range of [−1,1]) using the bounded linear (identity)

transfer function gave a MSE of 5.797×10−3. In fact, the result was much smoother

than the hand-coded steering, as can be seen in Figure 5.25. Though the magnitude

of the coefficient vector for this model is greater than 1, indicating that the model

may be unstable, not a pleasant thought for a steering model, this is a result of the

very low weighting of the central track sensors. If these weightings are instead

considered to be a part of the coefficients, we obtain a norm less than 1 — and

a stable model, meaning our steering will naturally track toward the center after

perturbation.

Using the tanh transfer function allowed for a MSE of 5.730×10−3 — with the

result being again smoother than the original (see Figure 5.26). And, again, after

adjustment by the sine of the track sensor angle, the norm of our coefficient vector

is less than 1 — lending stability to the model in the face of perturbation.

The next step was to test our models obtained by least-squares fitting to the

Acceleration-Brake and Steer variables against the tracks we had chosen. In Table

68

Figure 5.26: Hand coded versus Tanh Least Squares Model for Steer

Hand Coded Controller BLLS Tanh LS

Ruudskogen 82 83 85

Aalborg 84 88 86

Alpine 2 110 113 114

Wheel 1 109 110 113

Forza 115 118 117

Brondehach 100 105 102

Alpine 1 169 176 175

Wheel 2 146 150 150

Table 5.8: Track Times

5.8 we list the resulting times, “BL” stands for the “bounded linear” transfer function

— all times are the second best of 5 runs rounded to the nearest second.

5.3.4 Neural Network Model

Our next step was to apply the procedure we have outlined, using the iterative SVD

search with the addition of 5 hidden variables. We considered only the model with

the tanh transfer function as it had performed better on the test tracks.

After this we attempted to “fine tune” the neural network for each type of track

by changing only the singular values. Doing this, we acheived times on the test track

69

Hand Coded Controller Tanh LS Supervised SVD Fine-tuned

Ruudskogen 82 85 83 82

Aalborg 84 86 83 82

Alpine 2 110 114 108 106

Wheel 1 109 113 107 105

Forza 115 117 113 112

Brondehach 100 102 98 95

Alpine 1 169 175 173 171

Wheel 2 146 150 145 145

Table 5.9: Track Times

approximately 1% better than the “general” controller. But this will be discussed

futher in Chapter 6 on the unsupervised evolutionary SVD algorithm.

70

Chapter 6

Unsupervised Evolutionary SVD

The unsupervised evolutionary SVD algorithm is, in some sense, the simplest —

but, if starting from a random initialization, requires the longest time to converge

as it must learn directly from interaction with the environment and adaptation to it,

rather than copying a model.

Because of the possible time needed to converge upon an usable solution using

only unsupervised methods, it is clearly beneficial to use the supervised methods

whenever possible, however, we have also tested the unsupervised method on prob-

lems for which the supervised methods are also applicable — as a method of com-

parison for its efficiency. Also, we note that there are occasions when we would

like to attempt to improve upon the model developed by supervised learning —

something we will discuss at some length.

In this method we construct single layer recurrent neural networks as in the pre-

vious methods. Naturally, we require some fitness function for our learning prob-

lem, which we seek to minimize.

6.1 TORCS/SCRC Experiment

Our example experiment is again to develop a controller for the TORCS/SCRC

simulated car. Given a particular track, our fitness function was simply the distance

71

travelled along the track in a fixed length of simulation time. We note that the 2009

SCRC competition used distance raced in 10,000 game ticks (about 3 minutes and

20 seconds of real time) on each track as the qualifying stage [51].

The unsupervised method for training our fully recurrent neural networks con-

sists of seeding several initial controllers with random connections. We note, again,

however, that one benefit of using the single- layer fully connected neural network

(allowing connections directly from input to output), is that we can “pre-program”

the network with weights which are, at least, probably of the correct sign — this

can speed up convergence to a usable controller.

Another method, providing even faster convergence in the unsupervised stage,

is to use networks previously trained using supervised methods. Of course, further

refining models trained under supervised methods may not always be possible in the

context of a particular problem, but in the case of the TORCS/SCRC controller, we

were able to shorten the time needed for the learning to converge by a considerable

amount.

6.2 SVD Evolutionary Method

Our SVD evolutionary method is based on “mixing” or “crossing” the singular value

decompositions of two candidate solutions. Given two matrices M1 and M2, we

“cross” or combine the two by crossing the “left side” of SVD of one matrix with

the “right side” of the other. Meanwhile, we create a new set of singular values

— this may be done with the geometric mean of the parent singular values, or

some other way, perhaps even the drastic measure of setting them all near one and

retraining.

Given two matrices M1 and M2,

M1 =U1Σ1V T
1 and M2 =U2Σ2V T

2 ,

72

and letting “ ·̂ ” denote a perturbation to be defined below, we obtain a “child”

matrix, M, in the following way:

M = Û1ΣV̂2
T
, (6.1)

where Û1 and V̂2 are slight rotations of U1 and V2 respectively.

(We will come back to this point in the concluding remarks, but it may be that the

control of this perturbation is the most important part of the method. We note here

that these are rotations because we are generally assuming that the singular vectors

of U1 and V2 are already fairly close to their appropriate values — reflections being,

therefore, unnecessary.)

The singular values for M may be obtained in various ways. One is to use a

perturbation of the geometric mean of Σ1 and Σ2, that is,

Σ = (Σ̂1Σ2)
0.5
, (6.2)

using the geometric mean as the values are all non-negative. The perturbation in

this case being multiplication by Î, a diagonal perturbation of the identity matrix.

Note that the matrix Σ, in this way, remains a diagonal matrix with non-negative

values on the diagonal. However, depending on the magnitude of the perturbation,

and the relative differences between the singular values, the values on the diagonal

may no longer be in decreasing order.

There are a few methods to combine two matrices using the singular value de-

composition. One, and the simplest, is to do exactly as we have described above.

When one simply applies this method, the order of the singular vectors is affected

by the order of the associated singular values. Hence, even if two matrices have very

similar singular vector pairs, but singular values which happen to be in a different

73

order, one can break the pairing of the left and right singular vectors. Therefore the

order of the singular values is vitally important.

This method can have difficulties converging, in fact, without an objective func-

tion to minimize, the norm may increase through time. That is, generating two ran-

dom matrices, “crossing” them in this manner (with a small random perturbation),

and continuing to cross the resulting matrices, may not converge to any matrix. And

it’s fairly clear why this is the case. Though the singular values may quickly con-

verge, the right and left singular vectors simply get swapped back and forth (first U1

is matched with V1, then with V2, then with V1 again, and so on) with small random

perturbations.

Without any “pressure” from an objective function or without some kind of in-

terchange of information or “averaging” between the pairs of singular vectors, there

is no impetus to converge, just the switching of the singular vector pairs ad infini-

tum (with random perturbations). However, we should keep in mind that there is no

expection of convergent behavior in the abscence of an objective function.

A more sophisticated method involves ranking the pairs of singular vectors by

their similarity. This has the advantage of allowing singular values to change order

while still maintaining the same or similar singular vector pairs. This allows the

“magnitude” of response, encoded in the singular values, to be learned almost inde-

pendently from the “method” or type of response, encoded by the pairs of singular

vectors — and this, frankly, is one of the very reasons to use an SVD method of

learning.

6.2.1 Entirely Unsupervised Method

Combining these methods, and the iterative approach which we have explained

above we obtain the following:

74

1. Initialize the evolutionary process with random networks (preferably using

rank one connection matrices), or programmed networks (as we have done

for the TORCS/SCRC problem) if some information about the problem is

known or networks obtained from previous supervised learning.

2. Test the population of initial networks.

3. Retain the best few networks and apply crossing and mutation to their singular

value decompositions to obtain the next generation.

4. Repeat testing, selection and crossing/mutation for each generation.

One major area where this basic algorithm can be optimized the most is the

method of crossing and mutation. The method we have found to be the best, whether

beginning with random rank one networks or with pre-programmed networks, is to

apply an approach similar to the iterative approach.

When starting with the rank one networks, it is fairly clear how to do this from

the examples we have already given:

1. Intitialize random first singular vector pairs and choose a first singular value

greater than necessesary.

2. Combine (average) and mutate the singular vector pairs of the best performers

until performance no longer improves, the singular vectors have sufficiently

converged, or an iteration limit is reached.

3. Reduce the magnitude of the approximate singular value as long as doing so

improves performance.

4. Now that the first singular vector pair and singular value are set, choose a

second singular value approximation equal to the first, and random singular

vector pairs approximately orthogonal to the first pair.

75

5. Repeat the process of combination/mutation for the new pairs, the process of

magnitude reduction for the singular value, and continue for the rest of the

singular vector pairs and values.

6. This will, as we have mentioned before, optimize the later singular triples

with respect to the previous values, but further iterations or the holistic evo-

lutionary approach is necessary to re-optimize the first singular triples with

respect to the later ones.

6.2.2 Unsupervised Refinement of Previous Model

Finally rather than starting with either random or “hand-initialized” matrices, we

tried initializing the unsupervised training with some of the results of the supervised

training.

This followed the same method as above, and as with the supervised method,

we started with a set of training tracks: Ruudskogen (fast), Aalborg (curvy) and

Alpine 2 (alpine); a validation track: Wheel 1; and a set of test tracks: Forza (fast),

Brondehach (curvy), Alpine 1 (alpine) and Wheel 2 (fast with hairpin).

Recall from Chapter 5 that we wished to see if we could “fine tune” the singular

values of our controllers for each track. Clearly this type of fine tuning cannot be

done using the same split of training, validation and test tracks that we have used.

The type of fine tuning we wish to accomplish is based on running each track as

quickly as possible, so that the training and testing should simply be on the same

track. Rather than try to fine tune for every track and note the differences, however,

we decided to attempt fine tuning for three classes of tracks: fast, curvy and alpine.

Since we knew the controllers would run on every track, our only goal was to

show that fine tuning using the singular values was possible. And since we wanted

only further proof that singular values could be tuned in this way, reducing the

76

Hand-Coded Fine Supervised Unsupervised Fine Unsup

Ruudskogen 82 82 88 87

Aalborg 84 82 88 86

Alpine 2 110 106 117 117

Wheel 1 109 105 117 116

Forza 115 112 122 123

Brondehach 100 95 105 104

Alpine 1 169 171 179 174

Wheel 2 146 145 154 151

Table 6.1: Track Times

number of parameters to tune, we used only the best performing controller for this

experiment.

The results, in the Table 6.1, show an improvement in performance for the tracks

within a class, with the improvement most marked in the “curvy” track class. How-

ever, we note that the controllers specially fine-tuned for the “fast” tracks obtained

abyssimal performance in the “curvy” and “alpine” tracks. This was due to crashing

or going off track.

It’s important to note that any type of neural network may be “fine-tuned” in

the manner above, when one expects similar types of responses from a certain input

(similar “qualitative” responses), but with varying magnitudes. We emphasize that

this is because we are maintaining an awareness of the properties of the transforma-

tion at the heart of a neural network layer by using the SVD. The singular vectors

encode many of the “qualitative” aspects of a neural network response, while the

singular values encode “quantitative” aspects — especially, it might be noted, when

the transfer function is restricting the range of the transformation and the possibility

of explosive divergence.

6.3 Compact Evolutionary SVD

This method defines a distribution for each of the singular vectors and singular val-

ues — sampling from the distributions, testing and then refining the distributions on

77

each iteration. Note that a selection of previous singular vectors restricts the choice

of subsequent singular vectors to be orthogonal. However, we did not explicitly

implement this dependance of the distributions in the experiments we conducted —

instead sampling according to the normal distribution around the parameters under

consideration similar to [59] and then orthogonalizing afterward. The distributions

do have a tendency to orthogonalize themselves after a few iterations however.

In fact, this method can be used in either an iterative method, where one defines

and allows to converge distributions for each of the singular triples in turn. Or, it

may be used in a more holistic search — always keeping a distribution for each of

the singular vectors and values, but searching for all of them at once.

This method performed very similarly to the iterative method when based on it,

but quite poorly when used as a holistic method — unless begun with a very good

initial population and very small initial standard deviations for the distributions. We

presume that this is because the distributions cannot easily encode the orthogonal-

ity constraint and the synergistic effects of the singular vectors with each other in

the context of recurrent neural networks. This, or a way to efficiently encode the

orthogonality constraint in the distribution may be an area of future research.

78

Chapter 7

Concluding Remarks

In an effort to better respect the nature of the affine transformation at the heart of

a neural network layer during the learning phase and to allow learning of “qual-

itative” structure and then reuse of the structure and fine-tuning of “quantitative”

responses in similar domains, we have developed a collection of machine learning

methods based on the singular value decomposition of a matrix — a way of viewing

a matrix or linear transformation as a mapping from certain “important” inputs to

“important” outputs and an inherent quality of the neural network layer as a trans-

formation.

Whether one requires a method for supervised learning or unsupervised learn-

ing, for the single layer recurrent neural networks we have considered, our method

is capable of producing results on par with other methods in domains as diverse as

price prediction, predictive maintenance, and automatic control (as for a self-driving

car).

Several methods and benefits of using the singular value decomposition have

been presented. Of the methods, these include:

1. Supervised Methods

(a) Iterative method from zero: Using the further decomposition of the SVD

into a sum of rank one matrices, or the sum of outer products, we start

79

with a zero matrix and attempt to find the most important singular triples

(two vectors and the associated singular value) in order.

(b) Iterative method from linear model: Assuming we are given a linear

model for the process or function we wish to model, using the variables

we have available, we can decide how many hidden variables may be

useful — or simply increase the number of hidden variables until we

reach the level of accuracy desired, or until further increases do not im-

prove the model.

When we begin this method, we note that the first singular triple (the first

singular value and the first pair of singular vectors) should correspond

very closely to the linear model — if the transfer function is nearly linear

in the range of the linear model. With a non-linear transfer function

(assuming it is chosen with the appropriate range of values), more work

is likely necessary — choosing a transfer function similar to the identity

reduces this work.

Going forward with the method, supposing our matrix is n× n, this

means 3n parameters to train (assuming the original shift from the linear

model is left unchanged) for each new singular triple. Further, the di-

mension of the search space is reduced for each iteration (including the

“first” as the linear model provides the primary singular triple). Further,

we can bound the other singular values as we like, perhaps well below

the first, ensuring that our modifications are only small improvements to

the linear model — not changing its regions of stability, for example.

2. Unsupervised Methods

(a) Iterative method from zero: As before, even without a particular func-

tion to model — as in our unsupervised self-driving experiment — we

may think of the SVD as further decomposed into a sum of rank one

80

matrices, or outer products of vectors. We take a sample of possible sin-

gular vectors and values and, after constructing our connection matrix

using the outer product, test our solutions. Whichever solutions per-

form best, we retain and perturb to obtain the next iteration of possible

solutions (still of the same rank).

After these solutions converge, whether by equivalent performance on

the test or convergence of the matrices, we then move on to the same

type of search for the next singular triplet — always with the note that

each new search for a singular vector pair must be orthogonal to all the

previous singular vector pairs, therefore reducing the dimension of the

search space.

(b) Compact evolutionary method: This method defines a distribution for

each of the singular vectors and singular values — sampling from the

distributions, testing and then refining the distributions on each iter-

ation. Note that a selection of previous singular vectors restricts the

choice of subsequent singular vectors to be orthogonal. However, we

did not explicitly implement this dependance of the distributions in the

experiments we conducted — instead sampling similar to [59] and then

orthogonalizing afterward. The distributions do have a tendency to or-

thogonalize themselves after a few iterations however.

In fact, this method can be used in either an iterative method, where one

defines and allows to converge the distributions for each of the singular

triples in turn. Or, it may be used in a more holistic search — always

keeping a distribution for each of the singular vectors and values, but

searching for all of them at once.

(c) Evolutionary SVD method: As described before, this method attempts

to find solutions by using the left singular vectors from one candidate

81

solution and the right singular vectors from another. The singular values

may be averaged (using the geometric mean) and/or retrained for this

network.

This “mixing” of two different candidate solutions using the singular

value decomposition in this manner leads to the “strongest” inputs of

one candidate solution being “connected to” the “strongest” outputs of

the other in the new resulting network. That is, the first right singular

vector of one matrix is associated to first left singular vector of the other,

the second right singular vector of one to the second left singular vector

of the other and down the line.

For completely random initializations, this kind of “mixing” or “cross-

over” may not make much sense — and an iterative or even random

search may be more useful. However, if the controllers have been “pre-

programmed” in the manner we suggested in Chapter 6 — or have gone

through an initial stage of random search — then the evolutionary SVD

algorithm is effective at refining these networks.

We note again here that perhaps one of the most important elements of

this method is not the evolutionary mixing, but the method of perturba-

tion — perhaps particularly of the right and left singular vectors. That

is, that we perturb the matrices U and V using rotations.

In future work we would like to examine this on its own, particularly

since one could apply different degrees of rotation (different magnitudes

of perturbation) to the different singular vectors — applying a relatively

small perturbation to the first singular vectors and a relatively large per-

turbation to the last singular vectors, for example.

Clearly, the magnitude of a perturbation is extremely important in stochas-

tic methods — to our knowledge, this is the first work to consider the

82

possibility of tuning the levels of perturbation to the inherent proper-

ties of the neural network transformation which are separated out by the

SVD.

(d) Of particular importance for our methods is the ability to convert the

method from supervised to unsupervised learning with very little change

— meanwhile, the magnitude and kind of learning effected can be kept

within certain bounds.

This can be done by only reoptimizing new singular values — allowing

the type of network response to remain the same and allowing one to

train only n (or 2n if the shift/bias is also trained) values rather than n2.

Or, this could be retraining only the singular triples with singular values

below a certain value — e.g. limiting the learning to singular values

which will not allow the solution to blow up (when the transfer function

is unbounded, for example).

These combination of methods allow us to train recurrent neural networks for a

variety of problems with changes through time, including price prediction, predic-

tive maintenance and model identification, and automatic control. Our method does

not rely on back propogation and can be used in either supervised or unsupervised

settings. Further, our models can be “seeded” (and convergence sped up) by using

either domain knowledge or (linear) least squares to “pre-program” the model to an

area of the solution space likely to be most useful. And, given a neural network

previously trained in one domain, they allow the reuse and quick retraining for a

similar domain, by preserving the inherent structure of the transformation at the

heart of the neural network.

83

Bibliography

[1] Sabeur Abid, Farhat Fnaiech, and Mohamed Najim. A new neural network

pruning method based on the singular value decomposition and the weight

initialisation. In Signal Processing Conference, 2002 11th European, pages

1–4. IEEE, 2002. Cited on 18

[2] Florent Altché and Arnaud de La Fortelle. Partitioning of the free space-time

for on-road navigation of autonomous ground vehicles. In 2017 IEEE 56th

Annual Conference on Decision and Control (CDC), pages 2126–2133. IEEE,

2017. Cited on

[3] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An evolutionary

algorithm that constructs recurrent neural networks. IEEE transactions on

Neural Networks, 5(1):54–65, 1994. Cited on 17

[4] Christos Athanasiadis, Damianos Galanopoulos, and Anastasios Tefas. Pro-

gressive neural network training for the open racing car simulator. In Com-

putational Intelligence and Games (CIG), 2012 IEEE Conference on, pages

116–123. IEEE, 2012. Cited on 22

[5] Laura Balzano and Stephen J Wright. On GROUSE and incremental SVD. In

2013 5th IEEE International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP), pages 1–4. IEEE, 2013. Cited on

[6] PG Benardos and G-C Vosniakos. Optimizing feedforward artificial neu-

ral network architecture. Engineering Applications of Artificial Intelligence,

20(3):365–382, 2007. Cited on 17

[7] Bernhard Bermeitinger, Tomas Hrycej, and Siegfried Handschuh. Singular

value decomposition and neural networks. In International Conference on

Artificial Neural Networks, pages 153–164. Springer, 2019. Cited on 19

[8] Armando Blanco, Miguel Delgado, and Maria C Pegalajar. A real-coded

genetic algorithm for training recurrent neural networks. Neural networks,

14(1):93–105, 2001. Cited on 17

[9] Armando Blanco, Miguel Delgado, and MC Pegalajar. A genetic algorithm to

obtain the optimal recurrent neural network. International Journal of Approx-

imate Reasoning, 23(1):67–83, 2000. Cited on 17

84

[10] Matteo Botta, Vincenzo Gautieri, Daniele Loiacono, and Pier Luca Lanzi.

Evolving the optimal racing line in a high-end racing game. In Computational

Intelligence and Games (CIG), 2012 IEEE Conference on, pages 108–115.

IEEE, 2012. Cited on 22, 44

[11] Matthew Brand. Incremental singular value decomposition of uncertain data

with missing values. In European Conference on Computer Vision, pages 707–

720. Springer, 2002. Cited on

[12] Matthew Brand. Fast low-rank modifications of the thin singular value de-

composition. Linear algebra and its applications, 415(1):20–30, 2006. Cited

on

[13] Martin V Butz, Matthias J Linhardt, and Thies D Lonneker. Effective racing on

partially observable tracks: Indirectly coupling anticipatory egocentric sensors

with motor commands. IEEE Transactions on Computational Intelligence and

AI in Games, 3(1):31–42, 2010. Cited on 62

[14] Martin V Butz, Matthias J Linhardt, and Thies D Lonneker. Effective racing on

partially observable tracks: Indirectly coupling anticipatory egocentric sensors

with motor commands. IEEE Transactions on Computational Intelligence and

AI in Games, 3(1):31–42, 2011. Cited on 21, 44

[15] Martin V Butz and Thies D Lonneker. Optimized sensory-motor couplings

plus strategy extensions for the TORCS car racing challenge. In Computa-

tional Intelligence and Games, 2009. CIG 2009. IEEE Symposium on, pages

317–324. IEEE, 2009. Cited on 21, 44

[16] Chenghao Cai, Dengfeng Ke, Yanyan Xu, and Kaile Su. Fast learning of deep

neural networks via singular value decomposition. In Pacific Rim International

Conference on Artificial Intelligence, pages 820–826. Springer, 2014. Cited

on 19

[17] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. On-line neuroevo-

lution applied to the open racing car simulator. In Evolutionary Computation,

2009. CEC’09. IEEE Congress on, pages 2622–2629. IEEE, 2009. Cited on

21

[18] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Learning to drive

in the open racing car simulator using online neuroevolution. IEEE Transac-

tions on Computational Intelligence and AI in Games, 2(3):176–190, 2010.

Cited on 21

[19] Gustavo Carneiro, Antoni B Chan, Pedro J Moreno, and Nuno Vasconcelos.

Supervised learning of semantic classes for image annotation and retrieval.

IEEE transactions on pattern analysis and machine intelligence, 29(3):394–

410, 2007. Cited on 43

85

[20] Adenilson R Carvalho, Fernando M Ramos, and Antonio A Chaves. Meta-

heuristics for the feedforward artificial neural network (ANN) architecture op-

timization problem. Neural Computing and Applications, 20(8):1273–1284,

2011. Cited on 17

[21] Rohitash Chandra and Mengjie Zhang. Cooperative coevolution of Elman

recurrent neural networks for chaotic time series prediction. Neurocomputing,

86:116–123, 2012. Cited on 17

[22] KyungHyun Cho and Nima Reyhani. An iterative algorithm for singular value

decomposition on noisy incomplete matrices. In The 2012 International Joint

Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2012. Cited on

[23] Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural net-

works and robust time series prediction. IEEE transactions on neural net-

works, 5(2):240–254, 1994. Cited on 9

[24] Jonathan A Cox. Parameter compression of recurrent neural networks and

degradation of short-term memory. In Neural Networks (IJCNN), 2017 Inter-

national Joint Conference on, pages 867–872. IEEE, 2017. Cited on 19

[25] Georg Dorffner. Neural networks for time series processing. Neural Network

World, 6:447–468, 1996. Cited on 9

[26] Chris X Edwards. SnakeOil. http://xed.ch/project/snakeoil/index.html, 2016.

Cited on 22

[27] Carl JG Evertsz. Fractal geometry of financial time series. Fractals,

3(03):609–616, 1995. Cited on 45

[28] Oscar Fontenla-Romero, Beatriz Pérez-Sánchez, and Bertha Guijarro-

Berdiñas. LANN-SVD: a non-iterative SVD-based learning algorithm for one-

layer neural networks. IEEE Transactions on Neural Networks and Learning

Systems, 2017. Cited on 18

[29] Giorgio Giacinto and Fabio Roli. Design of effective neural network ensem-

bles for image classification purposes. Image and Vision Computing, 19(9-

10):699–707, 2001. Cited on 16

[30] Gene H Golub and Christian Reinsch. Singular value decomposition and least

squares solutions. In Linear Algebra, pages 134–151. Springer, 1971. Cited

on 4

[31] Garrison W Greenwood. Training partially recurrent neural networks using

evolutionary strategies. IEEE transactions on speech and audio processing,

5(2):192–194, 1997. Cited on 17

[32] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A

survey of deep learning techniques for autonomous driving. Journal of Field

Robotics, 37(3):362–386, 2020. Cited on 21

86

[33] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.

Inverse Problems, 34(1):014004, 2017. Cited on 17

[34] Wilfried Haensch, Tayfun Gokmen, and Ruchir Puri. The next generation

of deep learning hardware: Analog computing. Proceedings of the IEEE,

107(1):108–122, 2018. Cited on 16

[35] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing approximate ma-

trix decompositions. SIAM review, 53(2):217–288, 2011. Cited on

[36] Min Han, Jianhui Xi, Shiguo Xu, and Fu-Liang Yin. Prediction of chaotic time

series based on the recurrent predictor neural network. IEEE transactions on

signal processing, 52(12):3409–3416, 2004. Cited on 20

[37] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In

Neural networks for perception, pages 65–93. Elsevier, 1992. Cited on 16

[38] Sui-Lau Ho, Min Xie, and Thong Ngee Goh. A comparative study of neural

network and Box-Jenkins ARIMA modeling in time series prediction. Com-

puters & Industrial Engineering, 42(2-4):371–375, 2002. Cited on 9, 20

[39] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University

Press, 2012. Cited on 1, 4

[40] Hieu Trung Huynh and Yonggwan Won. Training single hidden layer feedfor-

ward neural networks by singular value decomposition. In Computer Sciences

and Convergence Information Technology, 2009. ICCIT’09. Fourth Interna-

tional Conference on, pages 1300–1304. IEEE, 2009. Cited on 18

[41] Mohammed Amine Janati Idrissi, Hassan Ramchoun, Youssef Ghanou, and

Mohamed Ettaouil. Genetic algorithm for neural network architecture opti-

mization. In 2016 3rd International Conference on Logistics Operations Man-

agement (GOL), pages 1–4. IEEE, 2016. Cited on 17

[42] George William Irwin, George William Irwin, K Warwick, and Kenneth J

Hunt. Neural network applications in control. Number 53. Iet, 1995. Cited on

16

[43] Kui Jia. Improving training of deep neural networks via singular value bound-

ing. CoRR, abs/1611.06013, 2016. Cited on 18

[44] Chia-Feng Juang. A hybrid of genetic algorithm and particle swarm optimiza-

tion for recurrent network design. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 34(2):997–1006, 2004. Cited on 17

[45] PP Kanjilal, PK Dey, and DN Banerjee. Reduced-size neural networks

through singular value decomposition and subset selection. Electronics Let-

ters, 29(17):1516–1518, 1993. Cited on 18

87

[46] Dulakshi SK Karunasinghe and Shie-Yui Liong. Chaotic time series prediction

with a global model: Artificial neural network. Journal of Hydrology, 323(1-

4):92–105, 2006. Cited on 20

[47] Henry Leung, Titus Lo, and Sichun Wang. Prediction of noisy chaotic time se-

ries using an optimal radial basis function neural network. IEEE Transactions

on Neural Networks, 12(5):1163–1172, 2001. Cited on 20

[48] Moshe Levy and Sorin Solomon. Power laws are logarithmic Boltzmann laws.

International Journal of Modern Physics C, 7(04):595–601, 1996. Cited on

45

[49] Jun Li, Xue Mei, Danil Prokhorov, and Dacheng Tao. Deep neural network

for structural prediction and lane detection in traffic scene. IEEE transactions

on neural networks and learning systems, 28(3):690–703, 2017. Cited on 22

[50] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Simulated Car

Racing Championship: Competition Software Manual. CoRR, abs/1304.1672,

2013. Cited on 21, 22, 58, 66

[51] Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva, David A

Pelta, Martin V Butz, Thies D Lonneker, Luigi Cardamone, Diego Perez, Yago

Sáez, et al. The 2009 Simulated Car Racing Championship. IEEE Transac-

tions on Computational Intelligence and AI in Games, 2(2):131–147, 2010.

Cited on 21, 44, 62, 72

[52] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural archi-

tecture optimization. In Advances in neural information processing systems,

pages 7816–7827, 2018. Cited on 17

[53] Liam P. Maguire, B Roche, T. Martin McGinnity, and LJ McDaid. Predicting

a chaotic time series using a fuzzy neural network. Information Sciences,

112(1-4):125–136, 1998. Cited on 20

[54] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam

Shroff. TimeNet: Pre-trained deep recurrent neural network for time series

classification. arXiv preprint arXiv:1706.08838, 2017. Cited on 9, 10

[55] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search

provides a competitive approach to reinforcement learning. arXiv preprint

arXiv:1803.07055, 2018. Cited on 17

[56] Marco Marchesi. Megapixel size image creation using generative adversarial

networks. arXiv preprint arXiv:1706.00082, 2017. Cited on 16

[57] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133, 1943. Cited on 15

88

[58] Daniel K McNeill. Training RNN simulated vehicle controllers using the SVD

and evolutionary algorithms. In 2018 IEEE Intelligent Vehicles Symposium

(IV), pages 1949–1953. IEEE, 2018. Cited on iv

[59] Ernesto Mininno, Francesco Cupertino, and David Naso. Real-valued compact

genetic algorithms for embedded microcontroller optimization. Evolutionary

Computation, IEEE Transactions on, 12:203 – 219, 05 2008. Cited on iv, 78,

81

[60] Marvin Minsky and Seymour Papert. An introduction to computational geom-

etry. Cambridge tiass., HIT, 1969. Cited on 15

[61] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. Cited on 16

[62] Jorge Muñoz, German Gutierrez, and Araceli Sanchis. Controller for TORCS

created by imitation. In Computational Intelligence and Games, 2009. CIG

2009. IEEE Symposium on, pages 271–278. IEEE, 2009. Cited on 21

[63] Jorge Muñoz, German Gutierrez, and Araceli Sanchis. A human-like TORCS

controller for the Simulated Car Racing Championship. In Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 473–480.

IEEE, 2010. Cited on 21

[64] Jorge Muñoz, German Gutierrez, and Araceli Sanchis. Multi-objective evolu-

tion for car setup optimization. In Computational Intelligence (UKCI), 2010

UK Workshop on, pages 1–5. IEEE, 2010. Cited on 21

[65] Jean-François Muzy, Jean Delour, and Emmanuel Bacry. Modelling fluctu-

ations of financial time series: from cascade process to stochastic volatility

model. The European Physical Journal B-Condensed Matter and Complex

Systems, 17(3):537–548, 2000. Cited on 45

[66] Kyoung-Su Oh and Keechul Jung. Gpu implementation of neural networks.

Pattern Recognition, 37(6):1311–1314, 2004. Cited on 16

[67] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of

training recurrent neural networks. In International conference on machine

learning, pages 1310–1318, 2013. Cited on 9, 17

[68] Joshué Pérez, Vicente Milanés, and Enrique Onieva. Cascade architecture

for lateral control in autonomous vehicles. IEEE Transactions on Intelligent

Transportation Systems, 12(1):73–82, 2011. Cited on 22

[69] Mike Preuss, Jan Quadflieg, and Günter Rudolph. TORCS sensor noise re-

moval and multi-objective track selection for driving style adaptation. In Com-

putational Intelligence and Games (CIG), 2011 IEEE Conference on, pages

337–344. IEEE, 2011. Cited on 22

89

[70] Dimitris C Psichogios and Lyle H Ungar. SVD-NET: An algorithm that auto-

matically selects network structure. IEEE Transactions on Neural Networks,

5(3):513–515, 1994. Cited on 18

[71] Jan Quadflieg, Günter Rudolph, and Mike Preuss. How costly is a good com-

promise: Multi-objective TORCS controller parameter optimization. In Com-

putational Intelligence and Games (CIG), 2015 IEEE Conference on, pages

454–460. IEEE, 2015. Cited on 22

[72] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386, 1958.

Cited on 15

[73] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh

Valaee. Recent advances in recurrent neural networks. arXiv preprint

arXiv:1801.01078, 2017. Cited on 9

[74] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strate-

gies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864, 2017. Cited on 17

[75] Jose Daniel A Santos, Guilherme A Barreto, and Claudio MS Medeiros. Esti-

mating the number of hidden neurons of the MLP using singular value decom-

position and principal components analysis: a novel approach. In Neural Net-

works (SBRN), 2010 Eleventh Brazilian Symposium on, pages 19–24. IEEE,

2010. Cited on 19

[76] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of Go with deep

neural networks and tree search. nature, 529(7587):484–489, 2016. Cited on

16

[77] Jonas Sjoberg. On estimation of nonlinear black-box models: How to obtain a

good initialization. In Neural Networks for Signal Processing VII. Proceedings

of the 1997 IEEE Signal Processing Society Workshop, pages 72–81. IEEE,

1997. Cited on 44

[78] Christopher Smith and Yaochu Jin. Evolutionary multi-objective generation

of recurrent neural network ensembles for time series prediction. Neurocom-

puting, 143:302–311, 2014. Cited on 9

[79] Eu Jin Teoh, Kay Chen Tan, and Cheng Xiang. Estimating the number of hid-

den neurons in a feedforward network using the singular value decomposition.

IEEE Transactions on Neural Networks, 17(6):1623–1629, 2006. Cited on 19

[80] Ruey S Tsay. Analysis of financial time series, volume 543. John Wiley &

Sons, 2005. Cited on 45

90

[81] Miguel I Valls, Hubertus FC Hendrikx, Victor JF Reijgwart, Fabio V Meier,

Inkyu Sa, Renaud Dubé, Abel Gawel, Mathias Bürki, and Roland Siegwart.

Design of an autonomous racecar: Perception, state estimation and system in-

tegration. In 2018 IEEE international conference on robotics and automation

(ICRA), pages 2048–2055. IEEE, 2018. Cited on 21

[82] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking TPU, GPU,

and CPU platforms for deep learning. arXiv preprint arXiv:1907.10701, 2019.

Cited on 16

[83] Paul J Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990. Cited on 16, 17

[84] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,

Rémi Coulom, and Andrew Sumner. TORCS, The Open Racing Car Simula-

tor. http://www.torcs.org, 2014. Cited on 21, 22, 63

[85] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network

acoustic models with singular value decomposition. In Interspeech, pages

2365–2369, 2013. Cited on 18

[86] Elias Yee and Jason Teo. Evolutionary spiking neural networks as racing car

controllers. In Hybrid Intelligent Systems (HIS), 2011 11th International Con-

ference on, pages 411–416. IEEE, 2011. Cited on 21, 44

[87] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural net-

work regularization. arXiv preprint arXiv:1409.2329, 2014. Cited on 9

[88] Jia-Shu Zhang and Xian-Ci Xiao. Predicting chaotic time series using recur-

rent neural network. Chinese Physics Letters, 17(2):88, 2000. Cited on 9

[89] Jiong Zhang, Qi Lei, and Inderjit S Dhillon. Stabilizing gradients for

deep neural networks via efficient SVD parameterization. arXiv preprint

arXiv:1803.09327, 2018. Cited on 18

91

