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Domain periodicity in an easy-plane antiferromagnet with Dzyaloshinskii-Moriya interaction
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Antiferromagnetic spintronics is a promising emerging paradigm to develop high-performance computing
and communications devices. Antiferromagnetic materials are more abundant than ferromagnets; hence, from a
theoretical point of view, it is important to implement simulation tools that can support a data-driven development
of materials having specific properties for applications. Here, we present a study focusing on the fundamental
properties of antiferromagnetic materials having an easy-plane anisotropy and interfacial Dzyaloshinskii-Moriya
interaction (IDMI). An analytical theory is developed and benchmarked against full numerical micromagnetic
simulations, describing the main properties of the ground state in antiferromagnets and how it is possible to
estimate the IDMI from experimental measurements. The effect of the IDMI on the electrical switching dynamics
of the antiferromagnetic element is also analyzed. Our theoretical results have implication in the design of
multiterminal heavy-metal/antiferromagnet memory devices.
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I. INTRODUCTION

Antiferromagnets (AFMs) are attracting a growing and
renewed interest because of the demonstration of their elec-
trical manipulation by spin-orbit torque (SOT), and unique
characteristics such as, ultrahigh velocity of domain walls
[1–3] and skyrmions [4–9], zero net magnetization [10,11], as
well as picosecond switching [12,13] and terahertz dynamics
[14,15]. These features pave the way for a number of potential
applications in spintronics, ranging from memory and neu-
romorphic computing devices, to terahertz oscillators [14,15]
and detectors [16,17].

Experimental imaging of the antiferromagnetic order, such
as x-ray dichroism, has pointed out the existence of very
complex domain patterns [18–21], including vortex and an-
tivortex configurations [22,23]. An extended explanation for
the pattern structure is attributed to the magnetoelastic energy
originating from the substrate that can be strongly spatially
nonuniform. However, a tilt of the antiferromagnetic order can
be induced by the Dzyaloshinskii-Moriya interaction (DMI)
also in ideal systems [24–26] and in the absence of magne-
toelastic contributions. The most common devices have an
adjacent heavy metal (HM) with large spin-orbit coupling,
such as platinum (Pt) interfaced directly with the AFM. In
this configuration, we expect the interfacial DMI (IDMI) to
play a significant role. Specifically, a systematic study to un-
derstand the effect of IDMI on the ground state and dynamics
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of an AFM has remained elusive to date. Previous results
[24] showed that a particular class of materials (hematite
α-Fe2O3; iron borate FeBO3; and orthoferrites) characterized
by easy-plane anisotropy (EPA) and IDMI exhibit a small net
magnetization, due to a small tilting of the spin sublattice due
to the IDMI. Therefore, the corresponding nonzero dipolar
field favors the formation of vortices [24].

In this work, we perform micromagnetic simulations show-
ing how the IDMI affects the equilibrium configuration of the
Néel vector in collinear (no net magnetization) AFM materi-
als having easy-plane anisotropy. The main result is that the
energy contribution linked to a large enough IDMI promotes
a noncollinear magnetization orientation [27], thus inducing
a ground state characterized by deformed cycloids [28] that
we identify as periodic structure of up and down domains
separated by chiral Néel domain walls (NDWs). More inter-
estingly, the periodicity of the domains is strictly connected
to the IDMI parameter and can be potentially used for its
quantification in AFMs. To this aim, we have derived a simple
analytical formula which shows a good agreement with the
numerical results achieved within a full micromagnetic frame-
work. Our approach extends to AFMs a method previously
developed for ferromagnets to estimate the IDMI constant,
which is based on the domain-wall size estimation [29]. Our
results can be crucial for developing an approach to estimate
the IDMI in AFMs, also because other standard procedures
developed for ferromagnets, such as Brillouin light scattering
(BLS) [30–33] and asymmetric expansion of a bubble do-
main [29,34], cannot be directly applied to AFMs. We further
show the implications of the presence of the periodic domain
structures in the design of multiterminal antiferromagnetic
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FIG. 1. (a) Sketch of the four-terminal device structure under
investigation along with the Cartesian coordinate system. (b) Spatial
distribution of the electrical current density through the Pt heavy
metal and the AFM (inset). The green circle represents the circular
AFM under investigation (400 nm in diameter), where the current
distribution is uniform, while the blue circle represents a larger AFM,
where the current distribution is nonuniform. The colors are linked to
the amplitude of the x component of the current density, as indicated
in the bar, while the arrows indicate its in-plane component.

memory devices. The paper is organized as follows. Section II
describes the device geometry and parameters as well as the
micromagnetic model. Section III deals with the development
of the analytical theory to estimate the NDW periodicity.
Section IV shows the results regarding the ground state of
the magnetizations together with a comparison between the
analytical theory and micromagnetic model periodicities. Sec-
tion V presents the dynamics of both NDWs and uniform
state driven by an in-plane electrical current, which can be
used to design antiferromagnetic memory devices and Sec. VI
summarizes the conclusions.

II. DEVICE AND MICROMAGNETIC MODEL

We investigate a circular AFM pillar built on top of a HM
underlayer (Pt), in a four-terminal device, as shown in Fig. 1.
The AFM has a 400-nm diameter and a 6-nm thickness. In
Fig. 1(a), a Cartesian coordinate system is also introduced,
with the z axis being the out-of-plane direction, and the x and
y axes the in-plane directions. Figure 1(b) shows the spatial
distribution of the current density flowing in the Pt HM and
the AFM (inset), as computed by finite-element simulations
[35] when the current is applied between the A-A′ terminals.
We observe that the AFM diameter has to be smaller than
half of the HM width in order to obtain a uniform current
distribution in the AFM (see green circle and corresponding
current distribution). If we consider a HM width of 1000 nm,
we can fix the AFM diameter at 400 nm in this study.

The micromagnetic calculations are based on a continu-
ous model which describes the antiferromagnetic order by
considering two sublattices characterized by a normalized
magnetization vectors m1 = M1/Ms and m2 = M2/Ms, re-
spectively (Ms is the saturation magnetization of the two
sublattices Ms1 = Ms2 = Ms). The AFM static properties are
studied numerically by solving two coupled Landau-Lifshitz-
Gilbert (LLG) equations [3,15]

dm1

dt
= −γ0m1 × Heff,1 + αm1 × dm1

dt
dm2

dt
= −γ0m2 × Heff,2 + αm2 × dm2

dt
, (1)

where γ0 is the gyromagnetic ratio, α is the Gilbert damping
parameter, and Heff,1 and Heff,2 are the effective fields for the
first and second sublattice, respectively. Both effective fields
include the exchange, EPA, as well as the IDMI contributions.
The total energy density can be written as

εtot = εexch + εani + εIDMI, (2)

where

εexch = A11(∇m1)2 + A11(∇m2)2 + A12(∇m1)(∇m2)

− 4A0

a2
m1 · m2

εani = Ku(1 − (m1 · uz)2) + Ku(1 − (m2 · uz )2)

εIDMI = D[(m1 · uz) �∇ · m1 − m1 · �∇(m1 · uz)]

+ D[(m2 · uz) �∇ · m2 − m2 · �∇(m2 · uz)], (3)

uz being the unit vector along the out-of-plane direction. From
Eq. (3), one can derive each term of the two effective fields.
In particular, the exchange fields include three contributions:

H1,exch = 2A11

μ0Ms
∇2m1 + 4A0

a2μ0Ms
m2 + A12

μ0Ms
∇2m2

H2,exch = 2A11

μ0Ms
∇2m2 + 4A0

a2μ0Ms
m1 + A12

μ0Ms
∇2m1, (4)

where μ0 is the vacuum permeability, and a is the lattice
constant. In Eqs. (3) and (4), A11 > 0 is the inhomogeneous
intralattice contribution, A12 < 0 is the inhomogeneous in-
tersublattice contribution, and A0 < 0, is the homogeneous
intersublattice contribution to the exchange energy.

The expressions for the IDMI fields are

HIDMI,1 = − 2D

μ0MS
(uz(∇ · m1) − ∇m1,z)

HIDMI,2 = − 2D

μ0MS
(uz(∇ · m2) − ∇m2,z), (5)

where D is the IDMI parameter, and m1,z and m2,z are the
out-of-plane components of the magnetization of the first and
second sublattice, respectively. Additionally, the IDMI also
affects the boundary conditions by imposing a field HIDMI,iS =

D
μ0MS

(mi × (n × uz )) at the lateral edges (x and y axes) of the
sample, where i = 1, 2 and n is a vector normal to the edge.
Therefore, the boundary conditions for the ith sublattice are
modified [3] as

2A11∂nmi + A12mi × (∂nm j × mi ) + Dmi × (n × uz ) = 0,

(6)

where j = 1, 2; j �= i. The anisotropy fields are

Hani,1 = 2Ku

μ0MS
(m1 · uk )uk

Hani,2 = 2Ku

μ0MS
(m2 · uk )uk, (7)

with Ku being the anisotropy constant. For an easy-
plane AFM, as the one considered here, Ku < 0. From
Eq. (7), the maximum amplitude of the anisotropy field is
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TABLE I. A comparison of the model developed for ferromagnets in Ref. [28] and here for antiferromagnets.

Description Ref. [28] This work

Model LLG–one sublattice (a Two exchange-coupled LLGs (two magnetization vectors m1, m2)
single magnetization vector m1)

Exchange A(∇m1)2 A11(∇m1)2 + A11(∇m2)2+A12(∇m1)(∇m2) − 4A0
a2 m1m2

energy density A (exchange constant) A11(inhomogeneous exchange constant intralattice)
A12 (inhomogeneous exchange constant interlattice)

A0 (homogeneous exchange constant interlattice)
Anisotropy Uniaxial anisotropy, out-of-plane easy axis Easy-plane anisotropy

HA = 2Ku
μ0MS

. We used a 4 × 4 × 6-nm3 discretization cell,
and fixed Ms = 400 kA/m, and A0 = −5 pJ/m. The static
results do not change in the range 300 � Ms � 500 kA/m
and −20 � A0 � −5 pJ/m (see Note 1 in the Supplemental
Material) [36].

III. ANALYTICAL THEORY

The following analytical framework extends the model
developed for ferromagnets in Ref. [28]. In particular, this
model is valid both for easy-axis and easy-plane anisotropies
with the proper definition of the initial phase of the cycloid
state. Therefore, it can be extended to our easy-plane AFM by
using the correspondences shown in Table I. Specifically, the
effective exchange 2A11 − A12 plays the role of the exchange
constant in the ferromagnet, while A0 exists only for the AFM
and does not play a role for the equilibrium configuration.

The generalization starts from the Euler-Lagrange equa-
tions for a point inside the sample, considering the energy
given in Eq. (3), which are{

− 2A11(∇2mi ) − A12(∇2m j ) + 4A0

a2
m j − 2Ku(mi · uz)uz

− 2D[∇(mi · uz) − (∇ · mi ) · uz]

}
× mi = 0. (8)

By considering the following hypotheses: (i) the modulus
of the sublattice magnetizations is constant, |mi| = 1, (ii) the
two sublattice magnetizations are perfectly aligned antiparal-
lel to each other at equilibrium, i.e., m1 = −m2 → ∇2m1 =
−∇2m2, and (iii) the rotation of the magnetization takes place
in a fixed plane, we can write for each sublattice that

∂2θi

∂x2
= −|Ku| sin θi cos θi

A11 − A12/2

∂ϕi

∂x
= 0, (9)

where θi is the angle of rotation with respect to an arbitrary
axis lying in the plane, and ϕi is the angle of rotation with
respect to the plane, which is assumed to be constant and equal
to zero [assumption (iii)]. Since the same equation is valid
for both sublattices, we will omit subindices without losing
generality. Notice that Eq. (9) is formally the same as in the
case of ferromagnets [28], where the exchange parameter A
has been replaced by the effective exchange 2A11 − A12, so
we can straightforwardly apply the same procedure already
developed for ferromagnets.

First, we consider the special case of isotropic media,
that is Ku = 0. Therefore, Eq. (9) becomes ∂2θ

∂x2 = 0 and thus
∂θ (x)
∂x = 2π

λ0
, where λ0 is a constant of integration in units of

meter, giving the periodicity. Inserting this condition in the
energy density of Eq. (3) and minimizing the energy with
respect to λ0 we obtain the periodicity

λ0 = 2π
(2A11 − A12)

D
= 2πξ, (10)

which is a function of the ratio between the IDMI and
the (inhomogeneous) exchange. In the case Ku �= 0, Eq. (9)
leads to

dθ√
C − sin2θ

= dx

�
, (11)

where C is an integration constant and � =√
(2A11 − A12)/(2|Ku|) is the static domain-wall width

for AFM [3]. Integrating over a quarter of a period, it gives a
periodicity λ

λ = 4�

∫ π/2

0

dθ√
C − sin2θ

, (12)

which depends on the first kind of elliptic integral. In order to
determine the integration constant C, we minimize the energy
density with respect to the periodicity λ

D

Dc
= π2�

λ0
= π�

2ξ
=

∫ π/2

0

√
C − sin2θ, (13)

where Dc = 2
π

√
(2A11 − A12)2|Ku| is the minimum IDMI

needed to get the cycloid state, and the right-hand term is the
second kind of elliptic integral.

IV. RESULTS

A. Statics

Figure 2 summarizes the snapshots of the ground states
of the circular AFM as a function of the EPA constant (Ku)
and the IDMI parameter (D)—the colormap codes the out-of-
plane component of the sublattice 1, which also coincides with
the one of the Néel vector. The values of the IDMI parameter
used here are consistent with the ones reported in literature
[37–39]; however, the IDMI must be large enough to promote
the phase changes described below.

The ground state at low IDMI corresponds to the uniform
configuration of the Néel vector, while a larger IDMI energy
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FIG. 2. Snapshots of the ground states of the magnetization
of sublattice 1 for different combinations of the IDMI and EPA
parameters.

fosters the formation of out-of-plane domains separated by
NDWs (the in-plane component of the magnetization within
the domain wall is perpendicular to the direction of the do-
main wall), which, in the absence of IDMI, can be oriented
in each direction inside the x-y plane due to the EPA. We
can consider two scenarios characterized by zero and nonzero
EPA, respectively. In the former, the out-of-plane domains
result from the competition between only the exchange and
IDMI energies. The reason is that, while the exchange pro-
motes the parallel alignment of the magnetization, the IDMI
promotes a misalignment, which gradually tilts the local spins
in the same direction of rotation, i.e., the IDMI creates a
chiral effect. This rotation takes place in the plane formed
by the vector perpendicular to the interface, and the vec-
tor linking both spatial positions. Consequently, out-of-plane
domains separated by NDWs are created, and the DW pe-
riodicity is obtained as the ratio between the exchange and
the IDMI energies, which determines the deviation angle. A
more complex situation occurs when the space is not isotropic,
which corresponds to the nonzero EPA case. In that case,
a deviation from the circular path towards an ellipse takes
place because the rotation of the spin is slower (or even null)
when the anisotropy stabilizes the orientation (aphelion) and
faster when it destabilizes the orientation (perihelion). We also
notice the stabilization of merons or half skyrmions [40] at the
edge of the sample which can become stable if the sample is
small enough and the IDMI is properly tuned.

A systematic study based on micromagnetic simulations
confirms that Ms and A0 do not affect the results, while A11

(see Note 1 in the Supplemental Material) [36] and A12 change
the periodicity, as shown in the next paragraph.

B. A comparison between numerical and analytical calculations

Figure 3 displays a comparison between the micromagnetic
and analytical periodicity for different values of the IDMI
parameter and EPA constant. In the micromagnetic simula-

FIG. 3. A comparison of the micromagnetic (symbols) and an-
alytical (dashed lines) domains periodicity (a) as a function of the
IDMI, for different values of A12 at zero Ku, and (b) as a function
of A12 for three values of D and for Ku = −0.10 × 105 J/m3. The
analytical results are calculated using (a) Eq. (10) and (b) Eqs. (12)
and (13). The inset in (a) shows a magnification of a snapshot where
the micromagnetic period is indicated. The colors represent the z
component of the magnetization of the sublattice 1, as indicated in
the color bar.

tions, the periodicity is computed as the distance between
two consecutive identical magnetization values [see inset of
Fig. 3(a)], while it is analytically calculated by using Eq. (10)
for zero EPA and Eqs (12) and (13) for finite EPA values. We
wish to highlight that to calculate numerically the periodicity
at low Ku with a better resolution, we have simulated larger
cross sections (not shown). Figure 3(a) shows the periodicity
dependence on IDMI constant at zero Ku as a function of
the inhomogeneous intersublattice exchange constant A12. For
each value of A12, the analytical period decreases with increas-
ing D, confirming that the IDMI promotes the proliferation of
NDWs, as also obtained by micromagnetic simulations (see
also Fig. 2). On the other hand, for a fixed D value, the period
is larger as the magnitude of A12 increases. This feature points
out that in the continuous model of AFMs, as the micromag-
netic one used in this work, the role of the inhomogeneous
intersublattice exchange term is non-negligible and should be
considered for the correct understanding of the AFM ground
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state. Figure 3(a) also shows an excellent agreement between
the micromagnetic and analytical results.

Figure 3(b) displays the periodicity dependence on A12 for
three values of D and for a nonzero Ku = −0.10 × 105 J/m3.
Similar conclusions can be drawn, i.e., the periodicity in-
creases with A12 and decreases with D. Again, the analytical
outcomes fit well with the micromagnetic ones. However, we
wish to underline that for the point D = 0.40 mJ/m2, A12 =
8 pJ/m, vortex cores are stabilized (see snapshot in the
Supplemental Material, Note 2) [36]. This means that our
analytical theory does not apply for that point, despite the
good match.

C. IDMI parameter estimation

Our model extends the method previously developed for
IDMI estimation in ferromagnets, based on the domain-size
calculation [29], and represents a possible tool to estimate the
IDMI and exchange parameters from experimental images of
NDW patterns in easy-plane AFMs. This is important since
other methods for IDMI measurement, such as spin-wave
nonreciprocity measurement via Brillouin light scattering
(BLS) [30–33], and asymmetric expansion of a bubble domain
[29,34], both of which are used in ferromagnets, cannot be
similarly used in AFM materials.

Our approach can be applied through the following steps.
From the experimental measurements, we can estimate the
value of |Ku| (see our proposal in Appendix A), and the
NDW periodicity λ, while the NDW width can be analytically

calculated � =
√

2A11−A12
2|Ku| [for our parameters of Fig. 3(b),

22 nm < � < 39 nm]. Indeed, � could be approximately ob-
tained from the experimental measurements by fitting the
out-of-plane component of the Néel vector with the Walker
ansatz [3], as also proposed in Ref. [41]. Knowing λ and
�, we can calculate the value of the elliptic integral of the
first kind [Eq. (12)], and so the value of the argument of this
function. Therefore, the combination of Eqs. (12) and (13)
gives us the value of the IDMI constant

D = 16|Ku|�2

πλ
E (1/

√
C)K (1

√
C), (14)

where K (1/√C) and E (1/√C) are the first and second kind of
elliptic integrals.

V. APPLICATION AS AN ANTIFERROMAGNETIC
MEMORY DEVICE

A. Background

The AFM order can be manipulated by using exchange bias
[42–44], strain [45,46], femtosecond lasers [47], and electri-
cal currents. As well established for ferromagnets [48–52],
the current-induced manipulation of AFMs is very promising
because it allows spintronic memories to be implemented
alongside transistors in electronic circuits [53], with electrical
read and write operations. From a fundamental point of view,
the electrical switching of AFM relies on the local transfer of
spin-angular momentum to the alternating spins, which then
promotes a rigid rotation of the whole lattice in a different
direction. In a continuous formulation of this phenomenon,

the Néel vector switches from one direction to the other one
depending on the spin polarization of the applied electric
current. The Néel vector can be read out via the anisotropic
and spin Hall magnetoresistance effects, and, depending on
its orientation, it can be used as a binary memory (coding
the bits “0” and “1”), or a memristive system (analog mem-
ory coding multiple states) when the ground state can have
multiple domains. A typical geometry designed for AFM
switching is a multiterminal device, which enables the writ-
ing operation through current pulses applied along different
device terminals, and the readout via either the transversal
resistivity (anomalous Hall, anisotropic, spin-Hall resistance)
or the longitudinal one (planar Hall effect). Wadley et al.
[18]. and Bodnar et al. [54] observed AFM switching in
CuMnAs and Mn2Au, respectively, by applying a number of
consecutive current pulses and using the AMR as a readout
mechanism. The switching process occurred via domain-wall
reorientation. Similar results were achieved by Grzybowski
et al. [19] but they observed local switching in regions of
100–200 nm in size, hence they ascribed this to the magnetoe-
lastic deformation. A different system has been proposed by
Moriyama et al. [20], who designed a Pt/NiO/Pt four-terminal
device and electrically detected the two AFM order states by
spin Hall magnetoresistance. However, these previous works
relied on materials which are hard to be integrated in con-
ventional semiconductor memory manufacturing technology
[11,18,19,53,55,56]. Recently, Shi et al. [57] demonstrated
switching dynamics in PtMn in contact with a Pt or Ta HM,
which are standard materials used in existing magnetic tunnel
junctions, and therefore easily integrable with state-of-the-art
silicon technology [58,59]. For this reason, our theoretical
study is based on PtMn magnetic material parameters.

B. Micromagnetic model

In order to study the AFM order dynamics, we add the
following spin Hall effect (SHE) torque [57] to Eq. (1):

T1 = dJ

(
θi−DLTJHM

tAFM
+ θb−DLTJAFM

)
(m1 × m1 × p)

T2 = dJ

(
θi−DLTJHM

tAFM
+ θb−DLTJAFM

)
(m2 × m2 × p), (15)

where dJ is a torque coefficient given by dJ = gμB

2eM2
S
, where

g is the Landé factor, μB is the Bohr magneton, and e is the
electron charge. The first term of both Eqs. (15) represents
the sum of the interfacial-damping-like torque (IDLT) [2]
and bulk-damping-like torque (BDLT) [1]. The coefficient
θi−DLT takes into account the efficiency of the charge/spin
current conversion of the current JHM flowing in the HM due
to mechanisms like spin Hall and spin galvanic effects. As
the thickness of the AFM, tAFM, increases, this effect pro-
portionally reduces. On the other hand, θb−DLT describes the
efficiency of the relativistic spin-orbit coupling in generating
spin current from the charge current JAFM flowing through the
metallic AFM. This latter mechanism, originating directly in
the bulk, does not depend on the tAFM. The vector p is the
direction of the spin polarization [y direction for a voltage
applied across A-A′, see Fig. 1(a)], and α = 0.05 in agreement
with Ref. [60]. Indeed, we also performed simulations as a
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FIG. 4. (a) Switching time as a function of the current density for different values of the IDMI parameter, therefore of the AFM ground
state (Uniform or NDW), and for Ku = −0.10 × 105 J/m3. (b)–(e) Spatial distribution of the first sublattice magnetization corresponding to
the initial (state “0)” and final (state “1”) configurations when D = 0.20 mJ/m2 (b), (c) and D = 0.60 mJ/m2 (d), (e).

function of α in the range 0.003–0.05 [61–63] (see Supple-
mental Material, Note 3) [36] for different current-density
values, finding a smaller switching time as α decreases. Notice
that a very small damping value can be a key ingredient for
achieving switching dynamics below the ns.

C. Results

In the following, we compute the switching time–current
relations for four values of the IDMI parameter, when the
EPA constant is fixed to −0.10 × 105 J/m3 and the electrical
current is applied along the x direction (terminals A-A′). We
define the switching time as the time interval until the y com-
ponent of the Néel vector reaches the 95% of its final value.
For D = 0.00 and 0.20 mJ/m2, the ground state is uniform
in the x direction, while for D = 0.60 and 0.80 mJ/m2, we
obtain out-of-plane domains (as previously shown in Fig. 2).
For the latter cases, we first applied a sufficiently large current
density > 10 MA/cm2 in order to orient all the random initial
NDWs along the x direction. Analogous results are achieved if
the electrical current is applied along the y direction (terminals
B-B′) and the initial in-plane Néel vector is aligned along the
y direction.

We plot, in Fig. 4(a), the switching results where we only
report switching time smaller than 20 ns. Regardless of the
ground state, the switching mechanism is characterized by
a 90° rotation of the in-plane component of the Néel vector
towards the direction of the spin polarization. In particular,
for small current densities �7.0 MA/cm2, the NDWs switch
faster than the uniform state, whereas for JHM > 7 MA/cm2,
the switching time is nearly the same for all the cases. As the
IDMI increases, there is a qualitative change in the switching
mechanism. At low IDMI, there is a uniform domain rotation
while, as the ground state becomes nonuniform, the switch-
ing is due to a domain rearrangement. As expected for an
easy-plane AFM, the domain rotation is mainly driven by
the IDLT and BDLT, which act as an effective out-of-plane
field HDLT,i ∝ JHM(mi × p), thus reorienting the in-plane
Néel vector along the y axis (see Supplemental Material,
Movie 1 for D = 0.20 mJ/m2, JHM = 10 MA/cm2, and p ≡
uy) [36]. In the case of domain rearrangement, the switching is

dominated by their motion and the final alignment of the DW
along the direction of the spin polarization (as in the case of
uniform rotation) to minimize the energy. In detail, the initial
NDWs are shifted perpendicularly to the spin-polarization
direction, as it occurs for the one-dimensional SHE-driven
NDW motion [1–3], and, subsequently, more NDWs are nu-
cleated from the sample edges. The switching finishes once
all the initial perpendicular to the spin-polarization NDWs are
expelled from the system and replaced by horizontal NDWs
parallel to the spin-polarization direction (see Supplemental
Material, Movie 2 for D = 0.60 mJ/m2, JHM = 10 MA/cm2,
and p ≡ ux) [36]. We also studied the effect of the fieldlike
torque due to the SHE up to the 60% of the DLT, observ-
ing no changes in the switching time. We wish to highlight
one more time that, at low current, the domain rearrange-
ment is faster than the uniform rotation because of the large
velocity of the DW motion [1,3] induced by the SOT as
compared to the uniform rotation driven by the change in
the field gradient originated by the SOT. We also checked
the effect of thermal fluctuations at T = 300 K (see Sup-
plemental Material, Note 4) [36] observing that the in-plane
component of the Néel vector has an equal probability to be
oriented along the ±x axis (±y axis) if the elecrical current
is applied along the y direction (x direction) and, conse-
quently, if the spin polarization is along the the x direction (y
direction).

The above-described SHE-switching dynamics at the ns
scale can be exploited in the four-terminal device depicted in
Fig. 1(a) to design AFM memories. The information is coded
in the direction of the in-plane Néel vector which rotates 90°
during the switching process [see Fig. 5(a)]. We define the
digital bits “0” and “1” as being represented by the Néel vector
along the x- and y direction, respectively. The writing protocol
starts with the application of a sufficiently large initialization
current between the terminals B-B′, in order to orient the ini-
tial random NDWs in the same direction (x direction, bit “0”).
If the other digital bit needs to be written, the current is applied
between the terminals A-A′. The reading process occurs via
the same terminals, e.g., B-B′, where the signal derived from
the in-plane component of the Néel vector is detected. It is
noteworthy that in this device concept, a single-domain AFM
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FIG. 5. (a), (b) Sketch of the two switching mechanisms occurring for current smaller and larger than the critical one, respectively. Time
trace of the normalized magnetization components of the first sublattice for D = 0.0 mJ/m2 and (c) JAA = 7.0 MA/cm2, (d), (e) total J =
0.5 GA/cm2 with a 45° spin-polarization direction for the first 133 ps, then (d) JAA = 0.25 GA/cm2 polarized along the y direction and
JBB = 0 for the next 50 ps, and (e) JAA = 0.0 and JBB = 0.25 GA/cm2 polarized along the x direction for the next 50 ps, and, for the final
125 ps, no current is applied in both (d) and (e).

is not required in order to allow the device to work as a
memory device with electrical readout. This is because the
presence of NDWs due to the IDMI ensures that the in-plane
component of the Néel vector is fully aligned along either the
x or y axis in all of the domain walls in the “0” and “1”
states, thus allowing for distinction between the two states
when reading out using an electrical readout method such as
AMR.

It can be noticed that the switching times lie in the
ns scale, while one would expect to achieve ps dynamics
(THz dynamics). This can be ascribed to two main rea-
sons: the use of a high-damping α = 0.05 (see Supplemental
Material, Note 3 for the switching times at smaller damp-
ing [61–63]) [36], and that the THz dynamics is related
to the misalignment between the magnetizations of the two
sublattices from the antiferromagnetic configuration. In par-
ticular, to access the THz dynamics via a dc-driven force,
the applied current density JHM should be larger than a
critical value JC given by JC = γ HAtAFM

2MSdJθSH
[14,15]. In fact,

above JC , the switching dynamics of the easy-plane AFM
studied in this work changes qualitatively, and therefore a
different procedure should be followed to achieve a 90°
switching:

(1) Application of a sufficiently large initialization current
between the terminals B-B′, in order to orient the initial ran-
dom NDWs in the same direction (x direction, bit “0”).

(2) Application of two equal currents JAA′ between the
terminals A-A′ and JBB′ between the terminals B-B′, both
of them larger than Jc in order to achieve a 45° spin

polarization [see Fig. 5(b), left panel] and Néel vector
self-oscillations;

(3) Switch off JAA′ (JBB′ ) to reorient the Néel vector along
the y (x) direction [see Fig. 5(b), right panel].

While the writing protocol depicted in Fig. 5(a) leads to
a reorientation of the Néel vector in a ns scale, as shown in
the time evolution of the normalized magnetization compo-
nents in Fig. 5(c), the procedure described when JHM > JC

[Fig. 5(b)] allows for a switching in less than 200 ps. In fact,
as shown in Fig. 5(d), the application of a spin current with a
45° polarization direction (step 2) excites self-oscillations of
the Néel vector in the plane perpendicular to the polarization
direction, and then, when the JBB′ is switched off, the elec-
trical current JAA′ , having a spin polarization along the y axis,
reorients the Néel vector along the y direction (step 3) and vice
versa in the scenario when JBB′ remains on and JAA′ is switched
off [Fig. 5(e)]. Also, it is worth to observe that there is still
room to reduce the switching time below 100 ps. We wish to
highlight that the 90° switching is not achievable in materials
with uniaxial anisotropy. For simplicity, we have shown the
time traces only for the uniform state and for D = 0.0 mJ/m2;
however, similar conclusions can be obtained in the presence
of NDWs.

VI. SUMMARY AND CONCLUSIONS

In summary, we have micromagnetically shown that a
sufficiently large IDMI promotes the formation of periodic
domain patterns in an AFM characterized by an EPA. The
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periodicity of those domain patterns can be calculated by
an analytical model. This allows us to extend to AFMs the
well-known approach used in ferromagnets for estimation of
the DMI value. The analytical periodicity is useful to estimate
the IDMI parameter in AFMs, once the anisotropy constant
is known. We further showed that a spin-polarized current
can orient both the uniform and NDW states along the direc-
tion of the spin polarization. Such switching dynamics can
be exploited in a four-terminal device to implement AFM
memories based on a 90° reorientation of the Néel vector,
independently of the equilibrium configuration. Our results
might be useful also for AFM device for unconventional
applications [64].
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APPENDIX A: APPROACH TO ESTIMATE THE
ANISOTROPY CONSTANT Ku

To the best of our knowledge, there is no efficient and
reliable way to measure the anisotropy of antiferromagnets
and this is a challenge several groups are focusing on. In
literature, for the estimation of the AFM anisotropy, it has
been proposed to use direct imaging procedure [65] in antifer-
romagnetic semiconductors, and currently there is an attempt
to extract this information from electrical measurements [66].

Here, we propose an indirect way to extract the AFM
anisotropy from the antiferromagnetic resonance frequency
fAFM as a function of the external field HEXT. The fAFM in
the case of easy-axis AFM [67], can be computed as fAFM =
γ0

2π

√
2HE HA ± HEXT, while, for the case of easy-plane AFM

[68], is given by

fAFM+ = γ0

2π

√
2HE HA

(
1 − H2

EXT+
4H2

E

)
≈ γ0

2π

√
2HE HA

(A1)

for the optical mode (γ0 is the gyromagnetic ratio), where the
exchange field HE = 4A0

a2μ0Ms
(μ0 is the vacuum permeability,

and a is the lattice constant, Ms is the saturation magneti-
zation and A0 is the homogeneous interlattice constant), the
anisotropy field HA = 2Ku

μ0MS
(Ku is the anisotropy constant),

and HEXT+ is the in-plane applied field for the optical mode
[68]. Please notice that both HE and HA are negative values.

One can apply an in-plane dc magnetic field HIP and mea-
sure the magnetization due to the sublattices magnetization
canting MIP. The equilibrium state under the application of
the magnetic field verifies that the effective field (for each
sublattice) and the sublattice magnetization orientation are

parallel. For an applied field along the y direction,

my,1

mx,1
= Heff,y,1

Heff,x,1
, (A2)

which leads to the following relation for the angle φ with
respect to the x direction:

sin φ = −HIP

2HE
, (A3)

while the magnetization canting is

MIP = 2MS sin φ = −HIP

HE
MS. (A4)

The resulting small magnetization canting has to be
sufficiently large to be measured with state-of-the-art super-
conducting quantum interference device magnetometry.

A similar procedure can be followed in the out-of-plane
case by applying an out-of-plane field HOOP, where the in-
duced magnetization MOOP now depends on the anisotropy.
The relations now read

mx,1

mz,1
= Heff,x,1

Heff,z,1
, cos θ = −HOOP

HA + 2HE
, (A5)

and the induced magnetization is in this case

MOOP = 2MS cos θ. (A6)

By combining Eqs. (A4)–(A6), we can write

HA

2HE
= MIP

MOOP

HOOP

HIP
− 1. (A7)

Finally, from (A1) and (A7) one can derive the expression
of the exchange field

HE =
√√√√ π2 f 2

AFM+
γ 2

0

( MIP
MOOP

HOOP
HIP

− 1
) + H2

EXT+
4

, (A8)

and therefore HA from Eq. (A7). Please notice that we are
considering an easy-plane material, thus, the in-plane induced
magnetization will always be larger than the out-of-plane
induced magnetization for a given magnetic field, and the
square root will be always real. In summary, we propose to
perform three measurements: (i) the antiferromagnetic reso-
nance frequency, where an in-plane external field HEXT+ is
applied; (ii) in-plane canting of the magnetizations, where an
in-plane HIP is applied (HIP can be different from HEXT+),
and (iii) out-of-plane canting of the magnetizations, where an
out-of-plane HOOP is applied.

APPENDIX B: EFFECT OF THE ZHANG-LI
SPIN-TRANSFER TORQUE

By performing finite-element computations [35] of the
current density distribution in the Pt/PtMn bilayer un-
der investigation, we observed that part of the current
is shunted in the PtMn because Pt and PtMn have
very similar conductivities ≈5 MS/m. Therefore, we
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can add to our micromagnetic model [Eq. (15)] the
Zhang-Li spin-transfer torque (STT) [69]:

T1 = dJ

(
θi−DLTJHM

tAFM
+ θb−DLTJAFM

)
(m1 × m1 × p)

+ dJPJAFM∇m1 − dJPJAFMβm1 × ∇m1

T2 = dJ

(
θi−DLTJHM

tAFM
+ θb−DLTJAFM

)
(m2 × m2 × p)

+ dJPJAFM∇m2 − dJPJAFMβm2 × ∇m2. (B1)

The latter two terms of Eqs. (B1) represent the STT
[69] originating from the antiferromagnetic textures, com-
posed of adiabatic and nonadiabatic contributions directly

proportional to the current JAFM flowing in the AFM. P =
0.7 is a phenomenological parameter [70], and β = 0.05 is
the nonadiabatic term. Indeed, we also performed simula-
tions as a function of β in the range 0.05–0.5 and as a
function of P in the range 0.0–0.7, for different current-
density values, finding a negligible effect when either β or P
changes.

The STT has no effect on the uniform ground state
(∇m1 = ∇m2 = 0), while it promotes a NDWs translation
along the electrical current direction [57]. However, for
the range of currents considered here and despite a large
P, these shifting dynamics are negligible compared to the
90° rotation induced by the IDLT and BDLT linked to the
SHE.
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