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Abstract

In this paper we show and discuss the use of a versatile interaction potential
approach coupled with an immersed boundary method to simulate a variety of
flows involving deformable bodies. In particular, we focus on two kinds of prob-
lems, namely (i) deformation of liquid-liquid interfaces and (ii) flow in the left
ventricle of the heart with either a mechanical or a natural valve. Both examples
have in common the two-way interaction of the flow with a deformable interface
or a membrane. The interaction potential approach (de Tullio & Pascazio, Jou.
Comp. Phys., 2016; Tanaka, Wada and Nakamura, Computational Biomechan-
ics, 2016) with minor modifications can be used to capture the deformation
dynamics in both classes of problems. We show that the approach can be used
to replicate the deformation dynamics of liquid-liquid interfaces through the use
of ad-hoc elastic constants. The results from our simulations agree very well
with previous studies on the deformation of drops in standard flow configura-
tions such as deforming drop in a shear flow or a cross flow. We show that the
same potential approach can also be used to study the flow in the left ventricle
of the heart. The flow imposed into the ventricle interacts dynamically with
the mitral valve (mechanical or natural) and the ventricle which are simulated
using the same model. Results from these simulations are compared with ad-
hoc in-house experimental measurements. Finally, a parallelisation scheme is
presented, as parallelisation is unavoidable when studying large scale problems
involving several thousands of simultaneously deforming bodies on hundreds of
distributed memory computing processors.
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1. Introduction

The interaction between fluid flow and an immersed elastic body (fluid or
solid) has been studied extensively over the last few decades due to its wide range
of applications, for example, bubbles and drops dispersed in a turbulent flow [1,
2], red blood cells flowing through blood vessels [3], pumping motion of ventricles
and valves in the heart [4, 5], oscillation of large structures such as aircraft
wings and high-rise buildings [6], etc. While the source of elasticity of the
immersed body in each of these phenomena is different, the interplay between a
deformable immersed body and a surrounding inhomogeneous time dependent
flow can result in a complex non-linear system where they determine each other’s
behaviour in a coupled manner. Additionally, the presence of multiple bodies
with different static and dynamic properties interacting with each other gives
rise to a wide range of control parameters which makes these systems extremely
challenging to study. Over the last few decades, tremendous amount of effort has
been devoted to the modelling and simulation of such systems which are often
classified in literature as Fluid-Structure Interaction (FSI) problems. Among a
variety of techniques developed to tackle FSI problems, the immersed boundary
method (IBM) [7–9] has gained immense popularity and has been instrumental
in making efficient and accurate simulations of several complex flow systems
such as cardiac and vascular hemodynamics [4, 5], suspensions of rigid spheres
[10–13], deformable bubbles or drops [14], vehicle aerodynamics [15, 16] etc.
possible.

One of the biggest advantages of the IBM is that it relies on the use of a single
underlying mesh for the fluid flow (hereafter referred to as Eulerian mesh) which
does not have to conform/adapt with the moving/deforming immersed body
[7–9]. This eliminates the complex and computationally expensive procedure
of Eulerian mesh regeneration every time step as the immersed body moves or
deforms, resulting in the decoupling of the mesh required for the flow solver
from the position and morphology of the immersed body. The surface of the
immersed body is discretised independently of the Eulerian mesh and is often
called a Lagrangian or a structural mesh. The influence of the immersed body
on the flow can be achieved through a volume averaged body force in the fluid
governing equations after a careful transfer of information between the Eulerian
and Lagrangian meshes. Additionally, the time invariant nature of the Eulerian
mesh makes IBM promising for parallelisation on multiple distributed memory
computing processors and this has led to breakthroughs in simulations of highly
turbulent flows around complex geometries.

In this paper, we build upon the work of de Tullio and Pascazio [17] and
describe the coupling of a multi-physics interaction potential approach with a
finite-difference Navier-Stokes solver which can be used to simulate a variety
of fluid-structure interaction problems with different sources of elasticity. In
particular, we focus on two problems which have been the focus of a large part
of the fluid-dynamics community for several years, namely (i) deformable fluid-
fluid interfaces (drops or bubbles) in a given flow and (ii) flow dynamics in the
left ventricle of the human heart with either a mechanical or natural mitral
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valve.
Understanding the behaviour of dispersed particles, bubbles or drops in a

turbulent flow is a standalone field in itself and several techniques have been de-
veloped explicitly to tackle such problems (e.g. point-particle, Volume of Fluid,
level-set, front tracking, Physalis etc.) [18]. The complexity in the simulation of
such flows arises from the wide range of length and time scales and the regimes
involved, see [2, 19, 20] for detailed reviews. When the dispersed phase is rigid,
smaller than the smallest length scale (Kolmogorov scale) in the flow and can
be described using simple shapes (spherical or ellipsoidal), the drop/bubble
momentum equations can be simplified into computationally inexpensive force
balances which rely on empirical correlations [1]. However, when the bubbles or
drops become larger and experience inhomogeneous flow conditions over their
surfaces they can deform into complex shapes while strongly interacting with the
fluid. In such cases the singularity of the surface tension term in the governing
equations gives rise to several numerical hurdles [21]. The complex algorithms
and procedures put in place to tackle these numerical instabilities have restricted
the scale of multiphase flows that can be studied, for example, state-of-art par-
allel simulations can only reach up to O(102) deformable drops/bubbles in a
reasonably turbulent flow [2].

The emergence of IBM in simulating turbulent multiphase flows began with
the seminal work of Uhlmann [22]. He proposed an alternative direct forcing
scheme which requires computing the IBM forcing term on Lagrangian markers
uniformly distributed over the surface of the immersed body. Several additional
features and improvements to this initial idea has led to a massive growth in
the use of IBM for dispersed multiphase flows. Breugem [23] built upon the
work of Uhlmann [22] and used a multi-direct forcing scheme for a better ap-
proximation of the interfacial no-slip boundary condition. Vanella and Balaras
[24] used a relatively costlier moving-least-squares (MLS) interpolation to build
transfer functions between the Eulerian and Lagrangian meshes. More recently,
Schwarz et al. [25] proposed a ‘virtual mass’ approach to overcome the numer-
ical instabilities arising from added mass effects of dispersed light bodies. The
same group also demonstrated the use of spherical harmonics to simulate bub-
bles or drops of varying shape which is computed through a minimization of the
local displacement energy induced by the pressure and surface tension forces
[14]. To simulate deformable bodies with several degrees of freedom, de Tullio
and Pascazio [17] employ a simple spring network model with an interaction
potential along with a Navier-Stokes solver. They demonstrated that numerical
simulations of a variety of problems involving large accelerations can be realised
using this strongly coupled interaction potential Navier-Stokes IBM solver (e.g.
motion of rigid bodies, thin elastic structures, flapping or flexible bodies like
flags or leaflets of bio-prosthetic aortic valve etc.).

In the first part of this paper, we extend the approach used by de Tullio
and Pascazio [17] to be able to simulate closed liquid-liquid interfaces such as
drops/bubbles under certain flow conditions. Given the complexity and nu-
merical challenges of more advanced methods (for e.g. V.O.F, level-set, front-
tracking), we show that reasonably accurate simulations of flows involving de-
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formable interfaces can be achieved through this simple multi-physics approach.
The interfacial boundary condition involving liquid-liquid interfaces is taken to
be no-slip given its straight-forward implementation. In most of real-life situ-
ations drops or bubbles dispersed in a liquid are contaminated either through
surfactants or impurities which leads to a no-slip interfacial boundary condition.
The IBM algorithm can also be modified accordingly to account for a stress-free
interfacial boundary condition as shown by Kempe et al. [26].

IBM has also emerged as a front runner in the field of cardio-vascular hemo-
dynamics as has been evidenced in several recent studies [27–34]. A main im-
pulse in developing this area of study from a computational fluid dynamics point
of view is the increasing demand from the medical community for scientifically
rigorous and quantitative investigations of cardiovascular diseases. Detailed
computational studies can assist surgeons in understanding how various surgical
solutions can affect blood circulation and guide the choice of the most appro-
priate procedure for a specific patient or type of patients. Moreover, they are
of course non-invasive in contrast to in vivo investigation and potentially yield
more complete and detailed information than in vitro experiments. The major
bottleneck in conducting fully resolved simulations of the complete human heart
is created by the complex deformation dynamics of the various ventricles and
valves which interact with the pulsatile blood flow (see [5] for a recent review).
Various approaches have been employed over the years to achieve realistic and
reliable cardiac hemodynamic simulations. One approach makes use of medi-
cal imaging techniques such as 4D cardiac tomography (CT)/Echo and cardiac
magnetic resonance (CMR) imaging to reconstruct a patient-specific time de-
pendent kinematic model of the heart walls. An alternative approach is to use
available models of the heart functionality along with the biophysical compo-
nent of cardiac electromechanics. This approach has been used in the ‘Living
Heart Project’ [35], where a fully coupled electro-mechanic and hemodynamic
simulation is realised, and more recently by Choi et al. [27], who coupled a
multi scale model for electromechanics with the Navier-Stokes equations for the
flow dynamics. The work of Zheng et al. [31] and Seo and Mittal [32] focussed
on intra-ventricular flow and the accompanying pathologies under the effect of
a diastolic flow pattern. In these simulations, the left ventricle was deformed
with a prescribed motion derived from various imaging techniques. A similar
hemodynamic model for the left ventricle is used by Seo et al. [33] to analyse
the effect of mitral valve on the flow dynamics where the motion of the mi-
tral valve is imposed through a kinematic model but not with a fully coupled
fluid-structure interaction simulation.

The motivation in employing kinematic models to describe the motion of
ventricles and valves instead of a fully coupled FSI simulation is to eliminate
the massive computational cost in solving the three dimensional Cauchy-Navier
equations for the immersed elastic body along with the Navier-Stokes equations.
Although numerical simulations with pre-defined ventricle/valve motion is a
challenging task in itself, in reality the motion of the ventricle, valves, and the
fluid are coupled to each other and can govern each other’s motion.

In the second part of this paper, we show that a full fluid-structure inter-
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action simulation of a ventricle with a mechanical or biological valve can be
made possible through the use of the interaction potential approach for elastic
deformation. In particular, we focus on the simulation of the left ventricle of
the human heart along with a physical mitral valve in both pathological and
physiological conditions.

In addition to having a versatile FSI approach which can simulate a variety of
elastic interfaces or membranes such as bubbles, drop, ventricles, valves etc., it
is also necessary to ensure that the method is not computationally too demand-
ing. The full FSI simulation of the left ventricle with a physical valve which is
described in detail later is performed within the equivalent of 48 CPU hours on
a single processor with an Eulerian grid of 150x150x150 and a Lagrangian mesh
on the ventricle with approximately 50000 triangular elements which shows the
computationally inexpensive nature of the interaction potential approach. Ad-
ditionally, these simulations were compared and validated with in-house ad-hoc
laboratory experiments to ensure the reliability of the results.

However, the IBM described in this paper makes use of MLS interpolations
whose computational cost increases rapidly with increase in the resolution of
the immersed bodies. New algorithms or parallel implementation of the com-
putation on distributed memory processors thus become an invaluable tool in
scaling up fully resolved flows interacting with multiple moving/deforming im-
mersed bodies. In particular, parallelisation is an attractive prospect given the
increasing availability of cost-efficient high performance computing facilities.

A parallel implementation of a flow solver involving multiple deforming bod-
ies is not a straightforward task due to many algorithmic complexities. The
challenge lies underneath the fact that two different meshes (Eulerian and La-
grangian) are required for the complete solution and different parallelisation
strategies would be required to make use of multiple processors effectively. To
understand this, we briefly describe the various steps that are need to be com-
pleted on both the Eulerian and Lagrangian mesh to fully simulate a FSI prob-
lem: (i) Computing the solution for the fluid phase governing equations on the
Eulerian mesh. (ii) Interpolating the Eulerian flow velocity on the Lagrangian
markers and computing the required volume averaged IBM forcing term. (iii)
Enforcing the interfacial boundary condition on the Eulerian mesh through the
volume averaged forcing term in the fluid governing equations. (iv) Transferring
the local flow conditions onto the Lagrangian mesh followed by transporting and
deforming the immersed body. While the Eulerian mesh is fixed in space and
time, the Lagrangian mesh can move with multiple degrees of freedom and be
distributed over several processors. It is also important to note that unlike the
Eulerian mesh, the connectivity of the Lagrangian mesh needs to be stored by all
processors. Additionally, the transfer functions built to exchange information
between the Eulerian and Lagrangian mesh may require data from neighbouring
processors, thus requiring the storage of multiple ghost layers (information from
neighbouring processors) in the processor’s memory.

Given all the above challenges, devising a simple and effective parallelisation
algorithm can be highly non-trivial. Keeping this in mind, in the last part
of this paper we describe a parallelisation scheme designed to track the time
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evolution of several deformable bodies (e.g. vesicles, drops, biological tissues
etc.) immersed in turbulent flows. This strategy is built upon the already
underlying parallelisation scheme implemented for the fluid solver, thus reducing
the downtime of overall code development. In particular, the benefits of the
parallelisation is oriented towards simulation of dispersed phase systems with
several thousand deforming drops, bubbles, vesicles or bodies moving in a highly
turbulent carrier fluid phase.

In the next section we give a brief overview of the governing equations for the
solution of the fluid phase, implementation of the immersed boundary method
using Moving Least Squares (MLS) and the interaction potential approach for
computing the deformation of elastic bodies. In section 3, we show how the in-
teraction potential approach can be used to study deformation of drops/bubbles
where the flow is dynamically coupled with the interface morphology. These re-
sults are validated with analytical solutions and experimental measurements
taken from literature. In section 4, we describe the simulation of the full left
ventricle with both mechanical and natural mitral valves in addition to com-
paring the results from our simulations with ad-hoc in-house experiments. In
section 5, we discuss the data structures required and also the parallelisation
strategy to scale up the problem to study several thousand deforming immersed
bodies. Finally, we provide a summary and outlook in section 6.

2. Governing equations and numerical scheme

2.1. Fluid phase

For the fluid phase we solve the incompressible Navier-Stokes equations in
a Cartesian box as given in equations (1), (2).

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + fb, (1)

∇ · u = 0. (2)

The Reynolds number of the flow is defined based on a characteristic length
scale L and velocity scale U as Re = UL/ν; ν is the kinematic viscosity of the
fluid. u, p are the velocities and pressure in the flow while fb is the volume
averaged force arising from the IBM and is included to enforce the interfa-
cial boundary condition. A conservative second-order centred finite-difference
scheme with velocities on a staggered grid is used for spatial discretisation; ex-
plicit Adams-Bashforth scheme is used to discretise the non-linear terms while
an implicit Crank-Nicholson scheme is used for the viscous terms. Treating all
the viscous terms implicitly results in a large sparse matrix which is avoided
by an approximate factorisation of the sparse matrix into a tridiagonal ma-
trix. Time integration is performed via a self starting fractional step third order
Runge-Kutta (RK3) scheme. The pressure required to enforce mass conserva-
tion is computed by solving a Poisson equation for a pressure correction. The
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code for single phase flows has already been tested extensively in previous stud-
ies for a variety of flow configurations and additional details of the numerical
scheme can be found in [36, 37].

2.2. Dispersed phase: Immersed Boundary Method

We now describe the procedure of constructing the Lagrangian mesh and the
schemes used to transfer flow quantities between the Lagrangian and Eulerian
mesh which is a crucial ingredient in IBM. In figure 1, we show a schematic of
the various Lagrangian meshes used in this study. Any given surface (closed
or open) is discretised into triangular elements where each element is composed
of three vertices (v1, v2, v3) which are connected by edges (e1, e2, e3). The
position of the centroid (c1) of each triangular element is computed based on
the co-ordinates of the vertices, the mass being uniformly distributed on the
single triangular element. Figure 1(a) shows a sphere discretised into triangular
elements along with a schematic showing the composition of each triangle. In
figure 1(b), we show the discretised geometry of the left ventricle and figure 1(c)
shows the remaining auxiliary components.

Following the idea of Uhlmann [22] the force required to enforce the interfa-
cial boundary condition is first computed on markers laid out on the Lagrangian
mesh and then transferred to the Eulerian mesh. Here, we consider the triangle
centroids to be the Lagrangian markers and are responsible for enforcing the
interfacial boundary condition. The vertices and edges of the discretised triangu-
lar elements play a role in the deformation dynamics and will be explained later.
The next step is to build a transfer function around each Lagrangian marker
(here the centroid ci) which would be used to exchange information between
the Eulerian and Lagrangian mesh. We adopt the Moving Least Squares (MLS)
[38, 39] approach which is part of the class of meshless approximations and has
been used previously in several fields such as element free Galerkin methods
[40–44], computer graphics [45–49], and also recently for IBM [17, 24]. In order
to compute this transfer function we first need to build a support domain cen-
tred around each Lagrangian marker which consists of all Eulerian grid nodes
closer than a threshold value in each direction. By taking a threshold value
of 1.5∆xi in each direction, a three-dimensional support domain consisting of
Ne = 27 (3x3x3) Eulerian nodes is built around each Lagrangian marker. The
next step is to use these Eulerian nodes and build a transfer function through
which any quantity qi defined on the Eulerian nodes can be interpolated on the
Lagrangian marker (ci). The same transfer function can be used to extrapolate
the force computed on the Lagrangian markers (Fi) to the Eulerian mesh (fi).

The MLS interpolation of qi at a Lagrangian marker (ci) is defined as follows.

Qi(xxx) = pppT (xxx)aaa(xxx) =

m∑
j=1

pj(xxx)aj(xxx) (3)

In equation (3), Qi is the quantity interpolated on the Lagrangian marker while
pppT (xxx) is a basis function vector with dimension m. aaa(xxx) is the vector of coeffi-
cients obtained by minimising the weighted L2 norm and xxx is the position vector
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Figure 1: Schematic of the Lagrangian mesh (a) A sphere discretised using triangular elements.
On the right a single triangular element is decomposed into three vertices v1,v2,v3 (circles),
three edges e1,e2,e3 and one centroid c1 (square). (b) Full structure of the left ventricle with
a zoomed-in area showing the triangulated network. (c) Rest of the components of the full
left ventricle structure. The left panel shows the leaflets of prosthetic mechanical mitral valve,
the middle panel shows the natural mitral valve and the right panel the channels for mitral
and aortic valves.
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of the Lagrangian marker. In this work we consider a linear basis function with
pppT (xxx) = [1, x, y, z], i.e. m = 4, which is cost-efficient and also able to represent
the gradients in the Eulerian field with second order accuracy.

J =

Ne∑
k=1

W (xxx− xxxk)[pppT (xxxk)aaa(xxx)− qki ]2 (4)

Here W (xxx − xxxk) is a weight function; we use the exponential weight function
which is given as follows.

W (xxx− xxxk) =

{
e−(rk/α)

2

, rk ≤ 1

0, rk > 1
(5)

where α is a constant of shape parameter and rk is given by

rk =
|xxx− xxxk|

ri
(6)

ri is the size of the support domain in the ith direction. Other commonly used
shape functions are the cubic spline and quadratic spline functions and a spline
function with any order of continuity can be constructed using the steps detailed
in Liu and Gao [39]. Minimising J in equation (4) leads to AAA(xxx)aaa(xxx) = BBB(xxx)qqqki
where

AAA(xxx) =

Ne∑
k=1

W (xxx− xxxk)ppp(xxx)pppT (xxxk) (7)

BBB(xxx) = [W (xxx− xxx1)pppT (xxx1)...W (xxx− xxxNe)pppT (xxxNe)] (8)

qqqi = [q1i ...q
Ne
i ]T (9)

Combining all the above equations, the interpolated quantity Qi can be ex-
pressed as follows.

Qi(xxx) = φφφT (xxx)qqqi =

Ne∑
k=1

φlk(xxx)qki (10)

φφφT (xxx) = pppT (xxx)AAA−1(xxx)B(xxx) is the transfer function containing the shape function
coefficients for each Lagrangian marker. This shape function is used to inter-
polate the value of the intermediate Eulerian velocity ûi at the exact location
of all Lagrangian markers and the volume force in each direction is calculated
as Fi = (V bi − Ui)/∆t, where V bi is the desired velocity boundary condition on
the Lagrangian marker (ci) and Ui is the Eulerian flow velocity interpolated on
the Lagrangian marker using MLS. This force needs to be transferred back to
the Eulerian mesh using the same transfer function built for interpolation in
equation (10) under the constraint that the total force is conserved during the

extrapolation. This gives the Eulerian force as fkb,i =
∑Nl

k=1 clφ
l
kF

l
i , where Nl is

the number of Lagrangian markers associated with a Eulerian point k. cl is a
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scaling factor obtained by imposing the condition that there is no net-gain/loss
in the IBM force while transferring flow information from the Lagrangian mesh
to the Eulerian mesh which results in the following.

cl =
∆V l∑Ne

k=1 φ
l
k∆V K

(11)

where ∆V l is the forcing volume associated with each Lagrangian marker and
is computed as ∆V l = Alhl. Al is the area of the triangular element associated
with the Lagrangian marker (area composed by v1, v2, v3 in figure 1) and hl =

1/3
∑Ne

k=1 φ
l
k(∆xk + ∆yk + ∆zk). Here it is important to note that the transfer

functions built using this approach conserves momentum on both uniform and
stretched grids while reasonable accuracy is retained for torque equivalence on
slightly stretched grids [17, 24]. For example, Vanella and Balaras [24] report
that with 10 % grid stretching, the net loss/gain in torque conservation is less
than 0.5 %.

The calculation of hydrodynamic forces (pressure and viscous stresses) acting
on the surface of any dispersed body in an IBM simulation is not straightforward
as the Lagrangian and the Eulerian meshes do not necessarily align with each
other at a given time instant. Since the surface of the dispersed bodies are
discretised using triangular elements, the local pressure and viscous forces are
first computed on the Lagrangian markers (centroids of triangular elements); the
total external force on a triangular element l with area Al and surface normal
nnnl is calculated as FFF lext = (−plnnnl + τττ l · nnnl)Al. To evaluate pl and τl, which are
the pressure and viscous forces acting on a triangular element l, respectively
a probe is sent along the normal of each triangular element with its centroid
as the origin. The length of the probe hl is equal to the mean local grid size
and the MLS interpolation described above is used to interpolate both pressure
and velocity gradients at the end point of the probe. The pressure on the
Lagrangian marker (centroid) is computed as pl = p∗l + hl

Duuul

Dt · nnnl; p∗l is the

pressure at the probe endpoint and Duuul

Dt is the acceleration of the Lagrangian
marker [17, 24, 50]. The shear stress τττ l on the Lagrangian marker is computed
based on the velocity gradients interpolated at the probe endpoint. This holds
true under the assumption that the velocity of the fluid near the surface of the
body varies linearly. An important note here is that when the immersed body is
an open surface such as a flag, ventricle or a valve, the pressure and viscous forces
need to computed on both sides of the surface thus requiring two probes sent
along the normal to every triangular element, one each along the positive and
negative normal, respectively i.e. FFF lext = [(−(p+l − p−l )nnn+l + (τττ+l − τττ−l ) ·nnn+l )]Al;
the subscripts + and − represent quantities evaluated on the end points of the
probe on either side of the surface. Additional details on this can be found in
[17, 24, 50].

2.3. Interaction potential approach for deformation

As mentioned in section 1, the dynamics of deformation is computed based
on a minimum energy concept which we describe here briefly (see [17] for more
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details). The surface of any immersed body is first discretised using trian-
gular elements (c.f. figure 1) the edges of which are composed of hypothetical
linear/non-linear springs thus resulting in a two-dimensional network of springs.
The mass of the immersed body is assumed to be uniformly distributed among
the vertices of the triangular elements, i.e. the mass of each triangular node
m = Ashρm/Nvertices, where As is the total surface area of the elastic mem-
brane, h is its thickness, ρm is the density of the membrane and Nvertices are the
total number of vertices in the spring network. Under the influence of external
forces such as pressure fluctuations or viscous stresses, the spring network under-
goes deformation thus storing potential energy into the system. The potential
is converted to nodal forces acting on individual triangular vertices through a
spatial derivative operation. The acceleration of each triangle vertex is com-
puted from the force and integrated based on Newton’s second law of motion;
thus the position of each individual vertex is updated independently of which
immersed body it belongs to.

The first form of potential is the in-plane elastic potential (We) which comes
from the work done by an external force parallel to the plane of a triangular
face and is converted into elastic energy stored into every spring connecting the
triangle. We also consider an out-of-plane deformation (Wb) for which the total
potential is computed based on a bending spring connecting the centroids of
two adjacent triangular faces. This out-of-plane bending potential is stored in a
pair of two faces sharing an edge and is a function of the contact angle between
them. Additional potentials can be included which constrain the geometrical
properties of the overall immersed body. For example, we can include a volume
or area potential (Wv or Wa) which is a function of the change in volume/area
of a single element with respect to an initial reference state. All the individual
potentials are calculated as given in the equations below.

We =
1

2
kexxx

2 (12)

Wb = kb(1− cosθ) (13)

Wv =
1

2
kv

(
V − V0
V0

)2

V0 (14)

Wa =
1

2
ka

(
A−A0

A0

)2

A0 (15)

In the above equations, ke, kb, kv, and ka are the elastic constants for in-plane
deformation, out-of-plane deformation, volume constraint and area constraint
potentials, respectively. xxx is the change in length of a single edge; θ is the
angle between the normals of two triangular faces sharing an edge; V0, V and
A0, A are the corresponding initial (reference) and deformed volumes and areas
of each triangular element, respectively. While the equations (12)-(15) can
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be used to simulate homogeneous isotropic materials, the interaction potential
approach can also used for inhomogeneous anisotropic materials by changing
the functional form of the elastic potentials [17].

Once the forces on each of the triangular node (vertex) is known, individual
nodes are moved based on the equation mẍxxvi = F vi

ext + F vi

int; F
vi
ext and F vi

int are
the external and internal forces acting on the triangular nodes (vi), ẍxx and m
are the acceleration and mass of individual nodes. In the previous section Fext

was calculated on the centroid of each triangle. This force is transferred to an
individual triangular vertex as F vi

ext =
∑nfi

j=1(1/3)F
cj
ext; where nfi is the number

of faces each vertex is connected to and F
cj
ext is the external force computed

on the triangle centroid (Lagrangian marker) cj . As described previously, the
calculation of m which is the mass of individual triangular node is straightfor-
ward for surfaces made of materials where the density and thickness is known
a priori. In cases where the immersed bodies are drops or bubbles, calculating
m of the triangular nodes becomes tricky as there is no physical definition of
the density and thickness of a liquid-liquid interface. In such a case m of the
triangular nodes becomes a free parameter and to overcome this we fix the value
of m = 1 and then correspondingly tune the elastic constants. This is detailed
more in the next section. Computing the individual potentials according to
equations (12)-(15) in the interaction potential approach requires selection of
several parameters (ke, kb, kv, ka). Once again, this step is straightforward for
membranes where the elastic moduli are already known [17]. It is important to
note that when the surface is discretised with non-uniform triangles such that
the lengths of the edges of triangle vary, ke should be computed based on the
model proposed by van Gelder [51]. Simulating liquid-liquid interfaces using the
interaction potential approach would require the use of ad-hoc elastic constants
as again there is no direct physical correlation between the elastic constants and
the surface properties of a liquid-liquid interface. The procedure of estimating
these ad-hoc elastic constants will be described in detail in the next section.

Here it is important to note that modelling an elastic membrane or an in-
terface using the interaction potential approach is a discrete formulation of the
elasticity governing equations and thus a simplification of the existing continuum
models. Such a formulation is useful and necessary for complex simulations of
several immersed deformable bodies owing to its simplicity and lower computa-
tional cost. It has been shown in previous studies that through a careful design
of the spring network and the selection of appropriate elastic constants the me-
chanics of several elastic membranes can be exactly reproduced [17, 52, 53]. Here
we would like to note that the derivation of the interaction potential approach
is not unique to our work and variants of this method have already been used
previously to predominantly study red blood cells [52–55]. In this work we show
that this approach can be used for large scale flows with dispersed drops/bubbles
and also biological membranes with full fluid-structure interaction, for example
flow in heart ventricles with valves.

Another important issue in the simulations involving FSI problems is the
type of coupling used i.e. loose (explicit) versus strong (implicit). In the loosely
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coupled (explicit) case, the fluid and the immersed body governing equations are
solved separately one after the another with a transfer of information between
them every time step. On the other hand, in the strongly coupled (implicit)
case the governing equations are solved in an iterative manner for each time step
using a predictor corrector scheme until sufficient convergence is achieved. A
detailed solution procedure for a strongly coupled IBM-FSI Navier Stokes solver
with the provision for the interaction potential approach is given in de Tullio
and Pascazio [17] where the governing equations are solved using a Hammingś
fourth order predictor-corrector scheme. In our code, we have provisions for
both a strong (implicit) and weak (explicit) coupling between the fluid and
the immersed body. For the simulations shown in the following sections, loose
coupling is used given its computationally inexpensive nature. Also it has to
be remembered that strong coupling is only needed when added mass effects
from the immersed body become important and the recent work of Schwarz
et al. [25] gives insights into how this can be tackled smartly while there is
still loose coupling between the fluid and the immersed body. We now move
on to combining DNS of the fluid governing equations along with a moving
least squares IBM coupled with the interaction potential approach to simulate
deformable drops/bubbles and heart ventricles/valves.

3. Liquid-liquid interface dynamics using the potential approach

In order to simulate the interfacial behaviour of drops or bubbles using the
interaction potential approach (hereafter called the IP model), we first need
to devise a method to compute the elastic constants of a given spring network
which can represent a liquid-liquid interface with a given surface tension. As
mentioned earlier, this is not straight-forward since there is no direct physical
correlation between the elastic constants and the surface tension of a liquid-
liquid interface. Here we use a reverse-engineered approach and perform a single
simulation with a set of intuitively chosen elastic constants and estimate the sur-
face tension of the immersed drop by comparing its morphology with previously
known analytical solutions. By using the same set of elastic constants but for
different flow conditions we also show that such an approach is self-consistent
and reliable. Our goal here is to show that the IP model for deformation can be
reliably used to replicate the deformation dynamics of liquid-liquid interfaces
under given flow conditions.

3.1. Deformation of a neutrally buoyant drop in shear flow

For the first test case we choose the system of a neutrally buoyant drop de-
forming in a laminar shear flow which has a simple configuration and a limited
set of control parameters. Variants of this problem have been studied for a long
time and several analytical and phenomenological models already exist in liter-
ature which can accurately predict the deformation dynamics of the immersed
drop [56–58]. The deformation of an initially spherical drop immersed in a shear
flow arises from competing actions of the viscous drag which tends to stretch
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the drop and the surface tension forces acting to recover the initial spherical
shape. For this simulation, we use a Cartesian box which is wall-bounded in
the vertical direction (êz) and fully periodic in the horizontal directions. The
top and bottom walls move in the opposite direction parallel to each other with
the same velocity to generate a laminar shear in the domain. A triangulated
sphere as shown in figure 1(a) is positioned in the flow at a distance 0.5Lz from
the walls (Lz is the gap between the walls).

The degree of deformation and orientation of a viscous drop in the presence
of a velocity gradient depends on the Capillary number Ca = µfRγ̇/σ, where
R, γ̇, σ and µf are the drop radius, local shear rate, surface tension and fluid
viscosity, respectively. For these simulations the viscosity ratio of the droplet
and the carrier phase is set to 1, i.e. µ̂ = µd/µc = 1. Since this simulation will
be used to ‘tune’ the elastic constants to replicate a liquid-liquid interface, the
IBM forcing fff in equation (1) is set to zero. This is done so that the immersed
sphere only experiences the forces generated due to the laminar shear from the
moving walls and not due to any boundary layer formation on the sphere surface.

To estimate the ad-hoc surface tension value for any given spring network
the following steps are undertaken. We first fix the Lagrangian resolution i.e the
number of vertices on the surface of a sphere and initialize a spherical drop under
a given shear rate γ̇ with a set of elastic constants. For the first set of elastic
constants, ke and ka are fixed to large values in comparison to kb thus resulting
in an extremely stiff drop. kv is chosen to be much larger than the rest of all
constants as this ensures incompressibility of the immersed drop. Once the first
set of elastic constants are chosen the drop is allowed to deform under the action
of the velocity gradient γ̇ according to the potential approach described in the
previous section. If the final state of the drop is close to spherical, the elastic
constant ke and area constant ka are reduced simultaneously which reduces
the overall stiffness resulting in deformation of the spring network. Here it is
important to note that if both kv and ka are fixed to a large value, which would
imply conservation of both the volume and total area, the triangulated sphere
would represent a vesicle. To represent a drop, both ke and ka are reduced to
a low enough value such that the drop deforms approximately into an ellipsoid
as shown in figures 2(a), (b). The initial and final states of the triangulated
sphere shown in figure 2(a),(b) are for two different Lagrangian resolutions i.e
the spheres are discretised using 320 and 1280 vertices, respectively.

Once the deformation of the drop has reached a steady state, we compute the
semi-major axis (L) and semi-minor axis (B) of the deformed sphere using the
IP model. Next, we use a phenomenological model proposed by Maffettone and
Minale [58] (hereafter called ‘MM’ model) to estimate the Capillary number Ca
for which a neutrally buoyant immersed drop would have the same final state
under similar flow conditions. The model proposed by MM [58] predicts the
deformation of a drop in an arbitrary velocity field under the assumption that
the drop is ellipsoidal in shape. For a simple flow field such as a laminar shear
flow the model can be analytically solved to give the steady state values of the
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Figure 2: Deformation of a neutrally buoyant drop in a laminar shear flow using the IP model.
Lagrangian resolution of (a) Nvertices = 640, (b) Nvertices = 1280. In both cases, the viscosity
ratio is set to µ̂ = 1 (c) Comparison of the semi-axes lengths versus the Capillary number
(b) Comparison of the angle formed by the major-axis in the shear plane with the velocity
direction.
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semi-major (L) and semi-minor axis (B) of the deformed drop as given below.

L2 =
f21 + Ca2 + f2Ca

√
f21 + Ca2

(f21 + Ca2)1/3(f21 + Ca2 − f22Ca2)2/3
(16)

B2 =
f21 + Ca2 − f2Ca

√
f21 + Ca2

(f21 + Ca2)1/3(f21 + Ca2 − f22Ca2)2/3
(17)

In equations (16) and (17), f1 and f2 are constants which depend on the viscosity
ratio (µ̂) and Ca is the Capillary number.

f1 =
40(µ̂+ 1)

(2µ̂+ 3)(19µ̂+ 16)
f2 =

5

2µ̂+ 3
, (18)

This model has already been used in other studies; for example to predict
hemolysis of red blood cells [59] and also deformation and orientation statistics
of drops in turbulent flows [60, 61]. Additionally, experimental studies have
shown that under moderate deformations the steady-state droplet shape can be
very well described by an ellipsoid [62, 63].

In figure 2(c), (d) we plot the analytical solutions (MM model - solid lines) in
the form of the lengths of the semi-axes and the orientation angle of the major
axis (corresponding to the axes with length L) with the stream-wise direction
versus the Capillary number. Using this as a reference, we check the position of
overlap of the semi-axes lengths computed through the IP model with the MM
model to estimate the corresponding Capillary number. This match is shown
through a vertical dotted line in figure 2(c) and since the flow configuration such
as drop radius, viscosity and shear rate are already fixed in the simulation, this
Capillary number can be directly used to estimate the ad-hoc surface tension
value for the chosen elastic constants. The left and right panels in figure 2
correspond to different Lagrangian resolutions. The important point to observe
here is the reasonably good match between the semi-axes lengths computed from
the IP model and the MM model. Small differences in the semi-axes lengths
could arise due to multiple reasons, (i) lack of sufficient Lagrangian resolution
since in the IP model the surface of the sphere is discretised using markers (ii)
MM model assumes a perfectly shaped sphere which deforms into an ellipsoid
while the IP model has no constraint of deforming into an ellipsoid (iii) the
elastic constants would need further tuning.

Next, we keep the elastic constants the same and change the Capillary num-
ber which can be done by either changing the shear rate or the viscosity of the
fluid. As shown in figure 2(c,d) again the semi-axes lengths computed from
the IP model agree reasonably well with the analytical solutions from the MM
model. This shows that the ad-hoc surface tension computed by fitting the re-
sults from a single simulation using the IP model with MM model is reliable to
extend the approach to other flow conditions. A good agreement with the MM
model is found also for the orientation angle of the semi-major axes as shown
in figure 2(d). At higher Capillary numbers (Ca = 0.2) there is some difference
found in the lengths computed from the IP model as compared to MM model
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Figure 3: Left panels show the contours of velocity in êz direction along with the deforming
drop at two different time instants. Right panels show the corresponding drop in the form
of the deformed triangulated spring network. The Reynolds number of the flow based on the
initial drop diameter is set to Re = 150, while the elastic constants chosen correspond to a
Weber number We = 2.

(left panel of figure 2(c)). However, this is just an effect of the Lagrangian reso-
lution and can be corrected by increasing the number of vertices on the surface
of the sphere as is seen in the right panel of 2(d).

3.2. Dynamics of a liquid-liquid interface deforming in cross-flow

In the previous subsection we demonstrated that by tuning the elastic con-
stants for a single flow configuration to compute an ad-hoc surface tension, the
IP model can be used to reliably simulate a neutrally buoyant drop deforming in
a laminar shear flow. We now move on to simulating a more dynamic problem
where the interface is strongly linked to the local flow conditions. In order to
do this we take the same test case as done by Schwarz et al. [14] and have a
drop immersed in a cross flow and compute the mean shape arising from the
resulting flow conditions. Here, it is important to note that unlike the previ-
ous sub-section the IBM forcing is turned on i.e. fb 6= 0 and is computed as
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Figure 4: Comparison of the inverse aspect ratio (X−1) of the deformed drop versus Weber
number at Re = 150 with data from Loth [64] for contaminated drops or bubbles

described in the previous section. For such a flow, the aspect ratio of the de-
forming drop depends strongly on the Weber number We = ρfU

2
refdeq/σ, which

is the ratio of inertia forces acting on the drop in comparison the surface tension
forces (for more details see the review by Loth [64]). The cross-stream set up
in the domain is influenced by the interface of the spherical drop leading to the
development of a boundary layer on the drop surface and a corresponding wake.

The computational domain is taken to be of size L = (10, 5, 5)deq, deq is
the diameter of the drop in its initial spherical shape. The spherical drop is
triangulated with Nv = 2562 nodes and is placed at xxx = (0.5, 0.5, 0.5)Lz. The
vertical direction (êz) is wall bounded with stationary free-slip walls; êy direction
is periodic in nature and a uniform flow of UUU = Uêx is imposed in the êx
direction.

The control parameters for such a problem are the Reynolds number, Re =
Udeq/νf and the Weber number, We = ρfU

2
refdeq/σ. The response of the sys-

tem can be measured through the quantification of the wake of the drop and
also through the morphology of the drop. The combined action of the dynamic
pressure acting on the faces of the drop and the shear stresses generated from the
boundary layer development on the surface of the drop leads to its deformation.
In figure 3 we show the wall-normal component of the velocity field (uz) and
the corresponding deformed drop represented through the triangulated spring
network. The two snapshots shown in figure 3 are at two different instants show-
ing the starting up phase and the deforming phase. To quantify the shape of
the immersed drop we compute the mean aspect ratio of the bubble measured
as the ratio of the lengths of the drop bounding box in the wall-normal and
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stream-wise directions i.e. X = lz/lx, where X is the aspect ratio and lz, lx are
the lengths of the box surrounding the deformed drop in the êz, êx directions,
respectively. In figure 4 we plot the inverse of the measured aspect ratios of the
deformed drop versus the corresponding Weber number and compare it with
experimental data from multiple measurements [64]. For these simulations the
Reynolds number is fixed to Re = 150 and the Weber number is changed by
modifying the elastic constants for each simulation. A very good match is found
between the aspect ratios computed from the IP model and the several exper-
imental measurements of drop shapes found in literature. These simulations
further show that the IP model can be reliably used to simulate deformation in
liquid-liquid interfaces under given flow conditions.

4. Dynamics of the left heart ventricle

We now move on to simulating the flow inside the left ventricle of the heart
where the motion of the ventricle and the valves are fully coupled to the flow
dynamics. The results from the numerical simulations are compared against
ad-hoc experiments where the ventricle is made up of silcone rubber.

The various structures used for this simulation are shown in figure 1 and
it is important to note that each structure is made up of a different material
i.e. each material has a different elastic property. The left ventricle and the
natural mitral valve can move and deform based on the local flow; the leaflets
of the mechanical mitral valve, while rigid in shape, can move depending on
the forces acting on their faces and more specifically on the moments of the
pressure and viscous forces about the hinges of the leaflets; the channels for
the aortic and mitral valves are completely rigid, fixed in space and provide a
passage for the influx and outflux of the flow. The aortic valve is not simulated
explicitly in these simulations but only through an opening/closing mechanism
that is imposed by the immersed boundary depending on the phase of the cycle.
While this has been done to limit the computational effort, it has no major
consequences on the results because we are only interested in the ventricular
flow and the aortic valve influences flow mainly in the ascending aorta. The
dynamics of the aorta could affect the ventricular flow because of the timing of
the opening and closure of the aperture, but it is driven by the impedance of
the circulatory system downstream and its simulation is much more complicated
and out of scope of this paper.

In reality, the configuration of the left ventricle is determined by the dynam-
ics of the myocardium contraction and relaxation along with the deformation
of the valves and vessel walls. The complete structure adjusts to the forces
induced by the hydrodynamic loads (pressure and shear stresses), body forces,
internal damping and the internal elastic forces. In our simulations, the flow
into the ventricle is governed through an inflow-outflow channel rather than a
myocardium contraction to facilitate comparison with experiments. Similar to
the experiments, the ventricle is assumed to be made of a homogeneous material
i.e. silcone rubber. With minor modifications the IP approach works equally

19



well for hyper elastic or inhomogeneous (orthotropic) materials as discussed in
section 2 and by de Tullio and Pascazio [17].

4.1. Experimental and numerical setup

In figure 5(a) we show a CAD rendering of the experimental apparatus used
to replicate the dynamics of the left ventricle with a mechanical mitral valve
and results from this will be used to validate the numerical model. An electric
motor is used to drive a cam which imposes a prescribed displacement in time
of the pneumatic piston/cylinder. The cylinder is directly linked to a Plexiglass
box which is transparent and allows for the observation of the evolution of the
left ventricle model inside. The time law imposed by the pneumatic cylinder
is replicated by the fluid in the tank in which the left ventricle is immersed
and is the only deformable element. Additionally, the evolution of the flow rate
imposed by the motion of the cylinder is captured versus time and this is used
as a boundary condition in the numerical simulations (figure 6). This is shown
in figure 6 where we plot the flow rate versus time. As can be seen in figure 6,
the first part of the cycle has one strong peak (E-wave) and a secondary weak
peak (A-wave) which is the result of the shape of the cam. The shape of the
cam can be modified to achieve any desired flow rate profile. In the case shown
here the ratio of amplitudes of A-wave to the E-wave is approximately 0.15. The
profile of the cam is chosen in such a way that the flow rate resembles that of
an inefficient and failing left ventricle and is generally observed in old people or
heart patients. In a healthy condition, the time evolution of the flow rate versus
time is similar to that shown in figure 6 but with an amplitude ratio of A-wave
to E-wave of approximately 0.5. The efficiency/healthiness of the ventricle can
also be quantified using ejection fraction (EF ) which quantifies the pumping
efficiency of the ventricle and is calculated as EF = 100(Vmax − Vmin)/Vmax;
Vmin and Vmax being the minimum and maximum values of the volume of the
left ventricle, respectively during the cycle.

The left ventricle is transparent and made up of silicone rubber, fixed to the
upper surface of the box by a rigid plate and consists of a mechanical mitral
and aortic valves. The fluid (deionized water here) inside the left ventricle is
pumped into the aorta which then flows into the hydraulic circuit composed
of two branches. In one, the windkessel, there is a box connected in series to
simulate the vascular capacitance while there are gate valves to regulate the
impedance of the systemic circulation or to exclude one branch or another.
The fluid after passing through the hydraulic circuit returns into the ventricle
through the duct and a new cardiac cycle starts. In order to compare experi-
mental measurements and numerical simulations we make use of Particle Image
Velocimetry (PIV) measurements [65] where the fluid is seeded with tracer par-
ticles (10 µm diameter pine pollen) and illuminated by a laser sheet. The motion
of the particles is captured using a high-speed camera and a robust algorithm is
used to compare image windows in subsequent frames and estimate the velocity
field in the flow on a regular grid.

In figure 5(b) we show the computational domain and the setup of the com-
plete left ventricle along with the mechanical mitral valves and the channels
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Figure 5: (a) CAD rendering of the experimental setup built for validating the numerical
approach (b) Cartesian computational box with the inflow-outflow channel, mitral valve and
the left ventricle. Individual components are shown in figure 1
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Figure 6: Flow rate (scaled by the diameter d of the opening to the mitral valve) versus time
(normalised using time T required for one cardiac cycle. The flow rate regulates the expansion
(positive flow-rate or dyastolic phase) and relaxation (negative flow-rate or systolic phase) of
the ventricle.

for the aortic and mitral valves. The geometry of the structures, the material
properties and the boundary conditions have been chosen to replicate the ex-
perimental conditions as close as possible. The channels connected to the mitral
and aortic valve perform the function for allowing the influx/outflux of the fluid
into/from the ventricle. Since we use the IBM formulation for representing any
immersed body, the whole domain is filled with a single fluid. The domain is
periodic in all the directions êx, êy and while it is confined in the êz direc-
tion it allows for inflow-outflow boundary conditions on selected regions. The
flow rate evolution shown in figure 6 is used as the boundary condition on the
inflow/outflow channels and is linked to an amplification factor that regulates
its amplitude, i.e. the higher the amplitude the higher the ejection fraction of
the left ventricle. In the numerical simulations we set the value of EF to 30%
which is what is imposed in the experiments in order to study the flow in a se-
vere failing left ventricle. After performing grid independence tests, a resolution
of 150x150x150 was chosen for the Eulerian field. The surface of the ventricle
is discretised with 51142 triangular elements; mechanical valves with 2578 ele-
ments and the natural valves with 3794 elements each. Both experiments and
the simulations are performed in dynamic similitude with a real left ventricle
i.e. since the dimensions in the experiments and simulations are set to a 1:1
ratio in comparison with a real left ventricle and water is four times less viscous
than blood, the total system is pulsated four times slower to maintain the same
Reynolds number. The characteristic Reynolds number in the flow based on the
mitral orifice diameter and maximum inflow velocity is around 5000.

We first look at the large scale flow structures created inside the ventricle.
In figure 7 we plot the instantaneous snapshots of the flow velocity vectors in
the mid-Y plane at certain time instants. All the left panels correspond to
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Figure 7: Snapshots of the flow inside the ventricle during the diastolic phase in the cardiac
cycle. (left panels) Numerical simulations; (right panels) Experimental measurements

23



0 5 10 15 20 25 30

t/T

0.96

0.97

0.98

0.99

1.00

x
/d

Numerics Experiments

0 5 10 15 20 25 30

t/T

0.94

0.96

0.98

1.00

z
/d

Figure 8: Comparison of the mean position of the left ventricle in the êx and êz directions
versus time.
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numerical simulations while the right panels show the measurements from the
PIV experiments. It can be seen that the large scale flow dynamics can be
reliably captured in the numerical simulations as compared to the experiments.
During the initial part of the cardiac cycle i.e. the diastole, the jet from the
mitral valve passes through the prosthetic mechanical leaflets which starts to
open. The flow over the two leaflets results in the propagation of two vortices
into the ventricle, one close to the left wall and the other in the centre. The
two vortices are directed towards the apex of the ventricle, but since in both
the simulations and experiments we reproduce the dynamics of a failing left
ventricle the vortices soon dissipate into small scales and the mitral jet is not
able to penetrate down to the apex and wash out the stagnant fluid. This is
shown more clearly later.

We now compare the mean position of the left ventricle in the êx and êz
directions to further validate the dynamics of the deforming ventricle from the
numerical simulations. This is shown in figure 8 where the mean position x/d
and z/d is plotted against time. The position obtained from the numerical
simulations have reasonably good agreement with its experimental counterpart
except from small oscillations which cannot be captured in the experiments.
This shows that not only the large scale flow structures, but also the dynamics
of the deforming left ventricle which is modelled using the interaction potential
approach can be simulated with reasonable accuracy.

4.2. Mechanical and natural mitral valve

An important element affecting the dynamics and nature of the flow is the
presence of the mitral valve. To this purpose we couple our computational model
of the left ventricle with two kinds of mitral valve (i) prosthetic mechanical valve
(ii) natural mitral valve. While the mechanical valve is structurally rigid the
natural valve is similar to a flexible membrane and can deform based on the
local flow conditions (c.f. figure 1). In figure 9 we show both the mechanical
and natural valve during their initial state and when they are close to being fully
open. Here we would like to emphasize that since the numerical set up is a full
fluid-structure interaction approach, the valve dynamics are solely determined
by the hydrodynamic loads and any geometrical constraints set up by the user.
The panels on the right in figure 9 show a clear difference in the shape of the
ventricle. The shape of the ventricle depends heavily on the hydrodynamic loads
exerted on it from the fluid inside it. The mechanical and natural mitral valves
lead to different flow structures inside the ventricle and thus a different shape
of the ventricle. We now show the difference in flow structures arising from the
different valves used.

First, we consider the case of a prosthetic mechanical mitral valve which in
a sense obstructs the flow through the mitral orifice. For the dynamics of the
full valve, we allow each leaflet to rotate around a fixed axis which is symmetric
about a plane situated in the centre of the mitral orifice. In figure 10 we show the
dynamics of the leaflets which go in opposite directions and close asymmetrically
since the backward flow induced by the systole comes from different regions of
the ventricle for the anterior and posterior leaflets. The opening phase starts at
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Figure 9: Left panels show snapshots of (a) Mechanical and (b) Natural valves at two different
time instants in the diastolic phase of the cardiac cycle. The right panels show the full set up
of the ventricle along with the valves and the inflow/outflow channels.
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Figure 10: Axial position of the centre of mass of prosthetic mechanical leaflets for an healthy
left ventricle in a single cardiac cycle. The solid line and dashed line represent two different
leaflets. d is the diameter of the mitral orifice, while T is the time taken for one full cardiac
cycle.

the beginning of the diastole as the flow starts accelerating and finishes before
the end of the flow acceleration when the fully open position is reached. The
closing phase starts when the flow rate reaches its peak and ends when the
minimum negative value of the flow rate function is achieved, thus positioning
the leaflets in the fully closed position.

In figure 11 we show instantaneous velocity fields during the diastolic phase of
the cardiac cycle with both a prosthetic mechanical and natural mitral valve. In
the case of mechanical valves (top panels of figure 11), the leaflets start rotating
during the early opening phase and destabilise the mitral jet. In the bottom
panels of figure 11 we show the flow structure in the presence of a natural mitral
valve which is also made up of two leaflets but has different dynamics due to the
inherent deformability of the natural valves. In the presence of the mechanical
valve, the flow is split into three different jets thus causing high vorticity regions
in the wake of the valve. This results in the mitral jet not reaching the bottom
of the ventricle as desired. It is evident that the disturbance generated by
the mechanical leaflets destabilizes the mitral jet, creating vortex rings thus
further decreasing its capability to penetrate the ventricular region. The flow
soon degenerates into small scales that are dissipated during the diastatic phase
of the cycle. Unlike the prosthetic mechanical valves, the natural valves can
deform based on the local hydrodynamics forces allowing for a much smoother
flow of the mitral jet into the ventricle. Due to this the natural valves evolve
differently resulting in a different flow structure in the ventricle which reaches
the bottom of the ventricle which is a desired flow condition.

From the discussion of figure 11 it is clear that the behaviour of the flow inside
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Figure 11: Snapshots of the flow inside the ventricle at the two different time instants (left
and right panels) in the diastolic phase of the cardiac cycle. Top panels show the ventricle
with a mechanical natural valve while the bottom panels show the ventricle with a deformable
natural valve. The colour represents the iso-surface of the velocity magnitude of the flow
inside.

28



the left ventricle depends strongly on the kind of mitral valve used. Overall, we
have been able to show that the complete dynamics of the left heart ventricle
with either mechanical or biological valves can be simulated reliably using IBM
coupled with an interaction potential approach for deformation.

5. Data Structure and Parallelisation Strategy

In this section we describe the parallelisation strategy implemented and the
data structures required for the simulations described in the previous sections.
For parallelising an IBM code which deals with a suspension of spherical parti-
cles, Uhlmann [66] proposed a ‘master’ and ‘slave’ strategy, where each particle
is allocated an individual ‘master’ processor which is responsible for all the com-
putations related to it. Additional ‘slave’ processors may be allocated to help
the ‘master’ processor. Wang et al. [67] employ a ‘gathering-scattering’ strategy
where a single master processor is responsible for the computation of the La-
grangian force on the immersed bodies and advecting them and this information
is scattered to the slave processors which solve the Navier-Stokes equations in
parallel. While both parallelisation approaches have been shown to produce rea-
sonable performances, there exist some drawbacks and challenges. The strategy
implemented by Uhlmann [66] requires continuous exchange of control on the
Lagrangian mesh by the processors which may lead to a complex programming
environment. The approach of Wang et al. [67] eliminates this issue leading
to a simple structure of the code, increase in the memory usage on the master
processor and data transfer between the master and slaves are some hurdles.
In this work, we propose a different parallelisation approach for the IBM where
the information of all triangle nodes is present with all processors, while the
computation required for each Lagrangian node/structure is performed only by
specific processors depending on the type of computation that needs to be per-
formed. In other words the allocation of processor for the IBM depends on the
task that needs to be performed which results in a task-based parallelism for
the FSI-IBM computation.

We will first describe in brief the parallelisation strategy employed for the
flow solver and later explain the data structures and parallelisation implemented
for the FSI-IBM. For the flow solver we employ domain decomposition and split
the Cartesian box into slabs (‘one-dimensional slab’ parallelisation). In addition
to the slabs, each processor needs to store information from the neighbouring
processors which would be required for computing the derivatives and is stored
in what is called as a ‘halo/ghost’ layer. Since the flow solver employs a second-
order finite difference spatial discretisation at most one halo layer is required on
each side of a slab for single phase flows. However, as we explain later when this
solver is coupled with a FSI-IBM solver for finite-size bodies which makes use of
MLS interpolations, multiple halo layers become necessary. It is important to
keep in mind that an unrestricted increase in the number of stored halo layers
would automatically result in an increase in the communication time which may
deteriorate the overall performance of the code. For the MLS interpolations
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which need a support domain of 27 (3x3x3) Eulerian points at most 3 halo
layers are necessary.

The Lagrangian meshes shown in figure 1 are unstructured and are exported
in the form of a GTS (GNU Triangulated Surface) data format which contains
information about the spatial positions of the vertices of the triangular elements,
the various vertices which are connected by edges and also the edges which con-
stitute a face. Using this information we construct additional auxiliary arrays
which will be required while computing the total force acting on the triangle
nodes based on the potentials described in the section 2. The total number of
vertices, edges and faces on a single immersed body is stored in N vert, N edge,
N face, respectively while N particle is the total number of immersed bodies
to be simulated and N edge vert is the maximum number of edges that any
single vertex can be connected to. A brief overview of the required auxiliary
integer arrays is given below.

1. vert of edge[2, N edge, N particle] : Contains pairs of vertices shar-
ing a single edge.

2. face of edge[2, N edge, N particle] : Contains pairs of faces sharing
a single edge.

3. vert of face[3, N face, N particle] : Contains the three vertices that
constitute a single face.

4. edge of face[3, N face, N particle] : Contains the three edges that
constitute a single face.

5. vert of vert[N edge vert, N vert, N particle] : Contains all the ver-
tices that a single vertex is connected to.

6. edge of vert[N edge vert, N vert, N particle] : Contains all the edges
that a single vertex is connected to.

7. v1234[4, N edge, N particle] : Contains all the four vertices that is
contained in two faces sharing an edge.

8. pind[3, N face, N particle] : Stores the [N x,N y,N z] indices of each
centroid relative to the Eulerian mesh and tells us inside which Eulerian
computational cell the centroid resides in. This array is updated every
time step.

9. bboxind[6,N particle] : Stores the indices of the bounding box of each
immersed body.

Consider two arbitrarily shaped deformable bodies immersed in a flow as
shown in figure 12, where the squares represent the Lagrangian markers/centroids
of the triangular elements. The allocation of Eulerian slabs to each processor is
straight forward as the Eulerian mesh stays fixed in time and this is done at the
start of the simulation. For the flow solver each processor with identity myid is
allocated the task of solving equation 1 on a slab of [1:N 1,1:N 2,N 3 start:N 3 end].
Given below are the steps undertaken to complete one full time step of the
simulation. As given below there are four major steps and multiple sub-steps
involved in completing one full iteration. The steps shown here are applicable
for a loosely coupled approach which has been used for the simulations in this
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Figure 12: Schematic of two bodies immersed in a flow. Flow solver is 1D slab parallelised.
êz is the wall-normal direction.

paper; details on the strongly coupled approach are elaborated in the paper by
de Tullio and Pascazio [17].

1. Compute the indices of all markers/centroids on the Lagrangian mesh
relative to the Eulerian mesh.

2. Compute the properties of the Lagrangian mesh, i.e. surface areas and
normals of each face of the Lagrangian mesh.

3. Compute flow configuration along with IBM forcing i.e. all three sub-steps
of RK3 integration.

(a) Compute intermediate fluid velocity under the RK3 framework.
(b) Interpolate velocity on the centroids of the Lagrangian mesh using

MLS interpolation.
(c) Communicate the forces in the halo cells to neighbouring processors.
(d) Correct intermediate velocity using the MLS-interpolated force.
(e) Solve pressure correction equation and compute the pressure and

solenoidal velocity field.

4. Compute external and internal loads on the immersed body.

(a) Compute the external loads which is the sum of pressure and viscous
forces on each face using MLS interpolation.

(b) Sum up external loads on all faces across all processors.
(c) Compute internal loads which are derived from the potentials de-

scribed in section 2.
(d) Sum up internal loads across all processors.
(e) Update the nodes of the triangles using Newton’s law of motion.

In the first step, we compute the indices of all the centroids on every tri-
angular element and store it in a global array pind. In addition to the ax-
ial index of every triangular element we also compute the mean axial index
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of every immersed body i.e for an immersed body i the mean axial index is
bboxind[1:3,i]=0.5*(max(pind[1:3,:,i]+min(pind[1:3,:,i])). In step
2, we compute the geometrical properties of the triangulated mesh (i.e. sur-
face areas and normals of each triangular element). Both steps (1 and 2) are
done by all processors (i.e. MPI COMM WORLD) on all immersed bodies and at
the end of this operation every processor has information on all three indices
[pind(1:3,N face,N particle)] of every centroid immersed in the flow, surface
areas and normals of every triangular element.

For steps 3(a), 3(d) and 3(e) each processor performs all the operations re-
quired on its respective slabs. Step 3(b), which consists of interpolation using
MLS and computing the IBM force has to be performed on the Lagrangian
markers (centroids here) and this is done only on the centroids lying within
the processors slab (c.f. right panel of figure 12). This allocation is regardless
of which immersed body it belongs to. This is achieved by first performing a
check on the axial index of every centroid (stored in pind[3,:,:] and com-
puted in step 1); for example, if the processor Ci is responsible for the slab
[1:N 1,1:N 2,N 3 start:N 3 end] the following procedure is undertaken.

do i=1,N_particle

do j=1,N_face

if pind(3,j,i) >= N_start(myid).AND.pind(3,j,i) < N_end(myid)

- Perform MLS interpolation around the centroid.

- Compute IBM forcing.

end if

end do

end do

As explained in section 2, MLS interpolations require a support domain built
from 3 Eulerian grid nodes in each direction. Thus the forcing computed from a
centroid lying right next to a processor boundary would be stored in a halo layer
and this is communicated to the neighbouring processors in step 3(c). Every
processor adds the IBM forcing received from the halo cells of the neighbouring
processors to the already existing forcing thus accounting for the forcing from
the centroids lying on processor boundaries.

Step 4 involves computing the external forces on the immersed body (i.e.
pressure and viscous forces) which are performed following the procedure de-
scribed in section 2. The allocation of processor for computing the external
processors is done in a similar manner to step 3(b). Here it is important to note
that for centroids lying on the processor boundaries the probes may lie in the
neighbouring processor. For example, a centroid belonging to processor Ci may
have an axial index of N 3 start and the axial index of the corresponding probe
would be N 3 start-1. Building a support domain around N 3 start-1 would
require information from [N 3 start-2, N 3 start-1, N 3 start] i.e. at least
two halo layers need to be stored by each processor.
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do i=1,N_particle

do j=1,N_face

if pind(3,j,i) >= N_start(myid).AND.pind(3,j,i) < N_end(myid)

- Compute probe and build support domain around the probe.

- Perform MLS interpolation around the probe.

- Compute pressure and viscous forces on faces.

- Distribute the forces from faces to nodes.

end if

end do

end do

In step 4(b), we reduce the external forces (FFF ext) over all the triangle nodes
immersed in the flow. MPI ALLREDUCE is used to perform this operation which
results in all the processors having information on the external forces acting on
all triangular nodes. The total force acting on each triangular node is computed
as the summation of the external forces (pressure + viscous) and the internal
forces arising from the elastic potentials i.e. FFF = FFF ext + FFF int; for the first
time step the immersed body is in its reference state and all internal forces are
equal to zero and in every succeeding time step Fint is the internal elastic forces
computed in the previous time step. With this step every processor updates the
position of the triangle nodes based on the total force.

Step 4(d) involves computing the internal elastic forces derived from the po-
tentials on each immersed body. Since this requires the full body to be treated
as a whole, we compute the location of the mean axial index of every individual
immersed body from the information in the array pind. The processor respon-
sible for this axial index takes care of computing all the internal elastic forces
(i.e. in-plane deformation, out-of-plane deformation, volume constraint and area
constraint) and computing the net internal force acting on each node belonging
to its allocated immersed body. While computing the internal forces on each
immersed body does not require any information from the Eulerian mesh, such
an allocation ensures the computing load is distributed evenly across all pro-
cessors. Also it is important to note that MLS interpolations which are the
computationally expensive steps in this FSI-IBM code are still performed only
by processors containing the Lagrangian markers. The pseudo code for this
operation is given below.

do i=1,N_particle

if z_ave(i) >= N_start(myid).AND.z_ave(i) < N_end(myid)

- Compute forces from in-plane deformation.

- Compute forces from out-of-plane deformation.

- Compute forces from volume potential.

- Compute forces from area potential.

- Sum up forces from all potential on the nodes.
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Figure 13: (a) Scaling plot showing the time step for one full iteration of the solver versus the
number of cores used. (b) Corresponding speed up versus the number of cores.

end if

end do

In step 4(d), we reduce the internal forces (FFF int) over all triangle nodes with
an MPI ALLREDUCE operation similar to the operation in 4(b). With this we
complete all the steps required for one full iteration of the flow solver and the
IBM coupled with the deformation.

5.1. Scaling performance

In figure 13, we show the computational performance of the previously dis-
cussed parallelisation strategy. These simulations were performed on the thin
nodes of the Dutch supercomputing facility ’Cartesius’ where each node is com-
posed of 2x12 core 2.6 GHz Intel Xeon E5-2690 v3 CPU’s. As can be seen from
the plots in figure 13 strong scaling is achieved up to 1000 cores. This simula-
tion was performed on a grid of 720x720x3840 with a total of 25000 spherical
particles each discretised using 320 faces, i.e. a total of 8 Million Lagrangian
markers were simulated simultaneously.

As discussed in section 1, the costliest steps in the FSI-IBM part are the ones
involving MLS interpolation since each interpolation requires the construction
of multiple coefficient matrices and a subsequent inversion of a 4x4 matrix (in
3D). For each Lagrangian marker (centroid) immersed in the flow two MLS in-
terpolations are required; one at the Lagrangian marker itself to compute the
IBM forcing and another at the position of the probe projected from the centroid
which is used for the computing the value pressure and velocity gradients. Ad-
ditional matrix operations are required for the velocity gradients since instead
of the shape function we need to compute the derivative of the shape function
[39]. On a single processor, increasing the number of Lagrangian markers by
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Figure 14: Time taken for one full iteration normalised using the time taken for the first data
point versus the total number of triangular elements or faces immersed in the domain. In the
left panel the immersed bodies are stationary and fixed in shape while in the right panel the
bodies can both move and deform.

two times results in a three fold increase in the simulation time. It is thus cru-
cial to see how the parallel code performs with increase in the total number of
Lagrangian markers or triangular faces.

In figure 14 we plot the non-dimensional time taken for one full iteration
with increasing total number of faces for two different types of simulations. The
time is normalised using the time taken for the first data point i.e. Nface = 320.
For these simulations the Eulerian grid is kept fixed to 120x120x720 and a total
of 120 cores were used. In the left panel of figure 14, the immersed bodies are
kept fixed in position and shape i.e. the computation of the structural solver
is fully eliminated. Such simulations are useful to compute the hydrodynamic
forces acting on stationary bodies with an mean flow imposed in the domain. As
can be seen, with increase in the number of faces there is negligible increase in
the computational time. In comparison to simulations involving moving and de-
forming objects, IBM simulations with stationary and fixed bodies require only
one MLS interpolation and this is the reason for the negligible time increase.
On the right panel we show the increase in time for simulations involving both
moving and deforming bodies. These simulations require an additional MLS
interpolation at the probe and also the computation of shape function deriva-
tives. For such simulations, a 100 times increase in the number of faces results
in approximately 1.3 times increase in the computational time. This shows that
the increasing cost of MLS interpolations on the Lagrangian markers can be
offset by parallelising the task over multiple processors.

6. Summary and Outlook

In this paper we have demonstrated the implementation of a finite-difference
based flow solver capable of handling multiple deforming immersed bodies with
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full fluid-structure interaction. A multi-physics interaction potential approach
is used for simulating the deformation dynamics of liquid-liquid interfaces and
elastic membranes. An immersed boundary method based on moving least
squares interpolation is used to enforce the interfacial boundary condition on
the underlying flow. In the case of liquid-liquid interfaces with the use of ad-hoc
elastic constants, we have shown that the potential approach can be used to cap-
ture the deformation dynamics of neutrally buoyant drops with contaminated
interfaces. By comparing with already existing analytical solutions and exper-
imental measurements of standard configurations (deforming drop in a shear
flow and cross flow), we have shown that such an approach can be reliable and
self-consistent. In the second part of the paper, we have shown that the same
potential approach with minor modifications to the governing equations can be
used to successfully simulate the complete dynamics of the left heart ventricle
with a mechanical or biological valve. In contrast to previous studies where
the motion of the ventricle or the valves are imposed a priori through kinematic
models, in this paper a full fluid-structure interaction simulation of the left heart
ventricle was carried out on a single computing processor. The results from the
simulations have been validated with ad-hoc in-house experiments. While the
interaction potential approach for deformation is computationally inexpensive,
parallelisation is a necessary step to simulate large scale turbulent flows with
several thousands of simultaneously deforming bodies. To this effect, in the last
part of the paper, we present a parallelisation strategy which was implemented
for such a solver.

An exciting feature of the solver presented in this work is the computation-
ally inexpensive and versatile nature of the algorithms used. In particular, the
interaction potential approach combined with an immersed boundary based flow
solver can be used to study a large class of cardiac hemodynamics problems with
no pre-determined valve or ventricle dynamics. Additionally, the approach can
be extended to study multiphase flows involving deformation of thousands of
deforming drops and bubbles in highly turbulent flows. In our future work we
are focussing on eliminating some drawbacks of the IBM used here and improv-
ing further the speed of such simulations. For example, wall-bounded turbulent
flows need enhanced resolution in the Eulerian mesh near the walls to capture
the boundary layers which might add a severe constraint on the Lagrangian
resolution. In order to tackle this we are currently implementing a fast mov-
ing least squares implementation with adaptive Lagrangian mesh refinement to
decouple the Lagrangian mesh into one for IBM forcing and another for de-
formation. Novel algorithms are also required to implement collision dynamics
between the immersed bodies which will become crucial when several thousands
of such bodies are interacting within a flow.
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[14] S. Schwarz, T. Kempe, J. Fröhlich, An immersed boundary method for the
simulation of bubbles with varying shape, J. of Comp. Phys. 315 (2016)
124–149.

[15] G. Iaccarino, R. Verzicco, Immersed boundary technique for turbulent flow
simulations, App. Mech. Rev. 56 (3) (2003) 331–347.

[16] M. de Tullio, P. De Palma, M. Napolitano, G. Pascazio, Recent advances
in the development of an immersed boundary method for industrial appli-
cations, in: Computational Fluid Dynamics, Springer, 2011, pp. 601–606.

[17] M. de Tullio, G. Pascazio, A Moving-Least-Squares immersed boundary
method for simulating the fluid-structure interaction of elastic bodies with
arbitrary thickness, J. Comp. Phys. 325 (2016) 201–225.

[18] A. Prosperetti, G. Tryggvason, Computational methods for multiphase
flow, Cambridge university press, 2007.

[19] C. Crowe, T. Troutt, J. Chung, Numerical models for two-phase turbulent
flows, Ann. Rev. Fluid Mech. 28 (1) (1996) 11–43.

[20] J. Magnaudet, I. Eames, The motion of high-reynolds-number bubbles in
inhomogeneous flows, Annu. Rev. Fluid Mech. 32 (1) (2000) 659–708.

[21] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and
interfacial flow, Ann. Rev. Fluid Mech. 31 (1) (1999) 567–603.

[22] M. Uhlmann, An immersed boundary method with direct forcing for the
simulation of particulate flows, J. Comp. Phys. 209 (2) (2005) 448–476.

[23] W.-P. Breugem, A second-order accurate immersed boundary method for
fully resolved simulations of particle-laden flows, J. Comp. Phys. 231 (13)
(2012) 4469–4498.

[24] M. Vanella, E. Balaras, A moving-least-squares reconstruction for
embedded-boundary formulations, J. Comp. Phys. 228 (18) (2009) 6617–
6628.
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