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Abstract

In the era of big data, the massive data availability has created a tough
world to navigate for users, who are often overwhelmed by alternatives
of products, services,music,movies. Big data is also the fuel ofmachine
learning applications and powerful tools like recommender systems that
help users choose among the myriad of alternatives. Regrettably, this
big data often contains sensitive information (e.g., socio-demographic
attributes, social relations, browsing history, patterns of visited location
or played music) that reflects their personal behavior. Although the per-
formance of machine learning-powered services is strictly related to the
amount of collected data, today, people pay more and more attention to
their privacy, and international jurisdictions have legislated new laws
to limit and control data collection. In this context, federated learning
is a recent paradigm for performing on-device machine learning model
training without requiring personal data collection. Today, federated
learning is considered, together with privacy-preserving techniques
like differential privacy and encryption, the best candidate to face the
data privacy challenges in machine learning. This thesis summarizes
our effort to bring the opportunities offered by federated learning in
recommender systems.We propose a model that puts users in control of
their data and grants high-quality recommendations even when users
decide not to disclose part of their sensitive preferences. Moreover,
we propose an entirely new federated recommender model based on
a sparse entropy-weighted combination of feature embeddings. This
work is motivated by our significant findings on the relation between
federated data distribution and training efficiency and makes us realize
that the on-device training of federated learning can lead not only to
data privacy and control but also to highly personalized user-targeted
recommender systems. All our findings are supported by extensive ex-
periments and analyses on awide range of recommendation dimensions.
Finally, this dissertation is enriched by an extensive literature review on
recommender systems, privacy-preserving paradigms and techniques,
and a survey on the increasingly pivotal branch of privacy-preserving
recommender systems.
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Part I

PRELIMINARIES

That is, what can you expect from this thesis, what I have
studied and what I have worked for, what you need to know
before going on. Preliminaries is my "Where are you and
where do you want to go? Which are your shoes?".





1Introduction

The massive information available in the World Wide Web, with its
explosion in the last three decades, has made the users closer to each
other as well as to unexplored and unknown products, services, music,
movies. As a drawback, the larger the information availability, the
more challenging it is to retrieve the most acceptable content in this
gold mine. Users are often overwhelmed by the alternatives and faced
with the difficult task of choosing among a wide range of contents
using some limited budgets or a set of constraints [171]. For example,
by typing computer science in a book search engine, the system could
still return thousands of results.
In such situations, recommender systems can significantly help users

in deciding what to choose, given that they point them towards not yet
experienced items that are most likely relevant and of interest to the
user, for instance, returning a ranked list of items [172]. Modern recom-
mender systems usually provide personalized and tailored recommen-
dations to different users or user groups. Based on their formulation,
they make suggestions based on different assumptions (e.g., users can
make decisions based on their tastes; users’ decisions may rely on the
behavior of similar users). As a consequence, recommender systems
make online services more and more competitive against traditional
stores, increasing at the same time the user experience, the provider
revenue, and the diversity of the items sold.
As a common factor, all these systems collect information from users

regarding their preferences. User ratings and evaluations for movies,
books, services, and products, constitute a set of explicit preferences
about items enjoyed in the past. Alternatively, the service providers may
infer user preferences by interpreting the actions of the user (e.g., clicks,
navigation history, listening playlist, search patterns, or mouse move-
ments), which indirectly reflect opinions. Even socio-demographic at-
tributes (e.g., age, gender, job, education),multimedia content, social re-
lations, and contextual information are used to mine the user needs and
feed personalized recommender systems exploiting user models [68].
Although the quality of recommendation is strictly related to the

amount, richness, and freshness of the data used for user modeling [30,
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4 Introduction

104], its collection could be a severe flaw under the lens of users’
privacy. More in general, almost all the industries providing services
powered by machine learning systems benefit from big data, due to its
potential to solve many of the challenging problems in several sectors.
These systems have can understand the patterns and provide insights by
learning from the data. To extract meaningful information and capture
patterns of data, traditional machine learning systems need to collect
the data to train statistical models centrally.
In this context, traditional machine learning systems are facing, in

recent years, several challenges. In fact, the public awareness of pri-
vacy issues has been steadily increasing after large-scale data breaches
such as Cambridge Analytica in 2018, which shared and harvested
data from a massive number of users for political campaigning without
their consent [49]. At the same time, these incidents made international
headlines and have spurred the European Union, US Congress, and
other jurisdictions to legislate new disclosure laws. As an example, in
2018 the European Union proposed GDPR [80], which removes the de-
fault option for collecting, storing, and harnessing individuals’ data and
requires explicit authorization from the users to use their data. Other
representative examples are the CCPA in California [52] and the Cy-
bersecurity Law in China [187]. Despite these laws’ fundamental role
in protecting users’ privacy, the consequent data scarcity can thereby
jeopardize the training of high-quality models.
In recent years, various solutions have been proposed to preserve

the users’ privacy in machine learning applications, ranging from bar-
riers for untrusted parties to algorithmic solutions like anonymization,
differential privacy, and cryptography-based approaches. In parallel,
Google has recently proposed federated learning as a privacy-oriented
training paradigm to tackle data isolation while meeting the need for
big data [117, 146]. This paradigm embraces the idea of minimization
of data collection with a decentralized architecture. Federated learning
trains a machine learning model by keeping data on the devices they
were generated on (e.g., smartphones, tablets, etc.) without sharing it
with a central server. Today, federated learning is often implemented in
conjunction with privacy-preserving techniques for providing privacy
guarantees and is considered the best candidate to face the data privacy,
control, and property challenges posed by the data regulations.
The work at hand, whose investigation started in 2018, takes up the

goals and the challenges of federated learning and explores, for the
first time, its applications and implications in recommender systems.
In detail, this thesis guides the reader towards three core contributions:



1.1 Research Contributions 5

• the introduction of a federated pair-wise recommender system,
with an extensive study on the impact of limited information
availability due to users exercising the right of property and
control on their data;

• the proposal of a client-aware strategy for federated learning,
attempting to improve the model by favoring the impact of users
providing a higher quality contribution to the global model;

• the presentation of a knowledge-aware recommendation model
that takes the best from latent factor approaches and content-
based approaches and ensures that specific parts of the federated
model are updated only by those users able to provide a high
quality contribution in terms of expertise.

In the next section, we deeply analyze the research questions that
guided our work towards its contributions and form the content of this
dissertation.

1.1 Research Contributions

The four concepts that more often will occur in this dissertation are rec-
ommendation, data, privacy, and federated learning. Their connection
is extremely tight since recommender systems, as already mentioned,
could not exist and provide suggestions without data. Despite their use-
fulness for users, content creators, and content providers, data harvest-
ing may often be a synonym of privacy threat, and federated learning is
the way we believe users can place their trust in a recommender system
and obtain from it an incoming in terms of utility and personalization.
In the following, we present the research questions that guided this

three-year investigation and led to the contributions that outline the
main part of this dissertation (see The Showcase, Part II).

1.1.1 Federated Learning for Data Property and Control in Recom-
mender Systems

Research Questions A
Is it possible to build a federated recommender system in which users
are completely in control of their data? Which is the effect of feedback
deprivation when users exercise the right of control on their data? Are
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we able to replicate the performance of a centralized recommender sys-
tem? What is the optimal trade-off between communication costs and
recommendation utility? What is the impact of federated computation
parameters on the quality of the recommendation?

Federated learning has opened the doors to a new machine learning
model class that does not need to collect training data in a centralized
location. Nevertheless, when our investigation started, most of the work
implementing the federated learning paradigm was concerned with
image classification or natural language understanding tasks.
Chapter 4 presents our contribution to move a step in the literature of

recommender systems towards architectural and algorithmic solutions
accounting for data property and control. We propose a novel factor-
ization model that embraces the federated learning paradigm. Users
participating in the federation process can decide if and how they are
willing to disclose their private sensitive preferences and fully control
their data. The proposed model pushes recommender systems towards
the EuropeanGDPR specifications, which remove the default option for
collecting, storing, and harnessing individual data and require explicit
authorization from the users to use their data. An extensive analysis
of the system lets us know the behavior of federated recommendation
when users decide to share only a small amount of sensitive information
and how incomplete data impacts the system performance from a wide
range of perspectives. Leveraging non-sensitive information, we show
that our model avoids the risk of preserving privacy at the cost of a
worse tailored recommendation, which may frustrate users and reduce
the acceptance of the recommender system.

1.1.2 User-Level Knowledge for Improved Aggregation in Federated
Learning

Research Questions B
What should be the impact of the contribution of each user on a fed-
erated model? Does the distribution of the local datasets affect the
convergence of the model? Can we define some criteria based on data
distribution or user expertise to speed up the training of the model?

The pioneering work about federated learning introduced an algorithm
based on federated stochastic gradient descent with contributions com-
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ing from a large number of users. Such contributions, in the form of
model updates, were usually aggregated with naive methods.
In Chapter 5, we study whether other criteria can be used during the

aggregation process to improve the effectiveness of the whole global
model. Specifically, we formalize a method for assigning a score to
each client based on a suite of criteria and their priority. With the
support of an extensive set of experiments, we show how important is
that each user in the federation updates the model based on her portion
of knowledge of the ideal non-federated data distribution.

1.1.3 Federated Learning for Personalization in Recommender Sys-
tems

Research Questions C
Is federated learning also suitable for providing higher personaliza-
tion in recommender systems? How should the users collaborate to
train the federated model based on their expertise? Can a hybrid
collaborative/content-based model be used in this scenario and to this
aim?

Although federated learning was conceived for preserving the property
of personal data, we assert that the recommender models trained in a
federated fashion, if properly designed, can provide users with a higher
degree of personalization.
Chapter 6 of this thesis introduces a knowledge-aware federated rec-

ommender system that couples the advantages of collaborative filtering
and content-based filtering recommendation. The proposed model as-
sociates items and users with a set of features, each of themweighted by
an entropy measure representing the impact it has on the user decision
process. Each feature is then embedded into a manifold representation,
accounting for each user’s perspective and feeling on it. Following the
findings of Chapter 5, we apply a principle of expertise, facilitating
the training process by letting users update only those relevant features
on which they base their decisions. The resulting recommender sys-
tem shows a high degree of expressiveness, which positively affects
recommendation performance in terms of accuracy, diversity, bias, and
semantics preservation.



8 Introduction

1.2 Organization of the Thesis

The chapters of this thesis are as self-contained as possible and present
the notions of specific problems, architectures, paradigms, data struc-
tures, and metrics related with their content. Moreover, each chapter
independently surveys the state-of-the-art of the specific problem it
deals with, showing the most interesting solutions and their limitations
in the literature of that field.
However, in the next two chapters, we propose a brief but com-

prehensive introduction to the most important recurring topics of this
dissertation. In detail, we analyze the recommendation problem with
its models, solutions, and evaluation techniques (Chapter 2), and the
problem of privacy in machine learning (Chapter 3), with an exten-
sive view on privacy-oriented paradigm like federated learning, and
privacy-preserving algorithms, like differential privacy, secure multi-
party computation, and homomorphic encryption.
All the chapters in Part II have their specific research questions, and

they present the experimentation of the proposed approach that we have
designed to answer the research questions with an extensive discussion
of the results. However, the three chapters together constitute the unique
path that guided this three-year work and helped to shed light on some
of the privacy and personalization challenges we wanted to address.



2Recommender Systems

Outline
Recommender systems can provide users with recommendations when
faced with choosing among an extensive catalog of items or whenever
they want to receive suggestions. Recommender systems model the
users by learning from their past behavioral data (e.g., movies they
watched, ratings they gave, items they bought, webpages they visited)
and point them towards not yet experienced items that are most likely
of interest based on different assumptions.
In this chapter, we will first provide a formal definition of the rec-

ommendation problem. Then, we will survey the pioneer models and
architectures along with their taxonomy. Finally, we will provide an
overview on evaluation of performance, with some in-depth considera-
tions on the metrics used in this dissertation.

2.1 Definition

Formally, let U be the set of users in the system and I the set of
the items (e.g., the catalog of an online shop). Then, let R ∈ R|U|×|I|

be the user-item preference matrix containing either explicit feedback
or implicit feedback. In the former case, we can have, for instance,
𝑟𝑢𝑖 ∈ {∅} ∪ {1, . . . , 5} if the users are asked to leave up to 5 stars for
a product, with ∅ denoting a missing rating. With implicit feedback,
we can observe, for instance, data in the form of 𝑟𝑢𝑖 ∈ {∅} ∪ {1} with
𝑟𝑢𝑖 = 1 if 𝑢 interacted with 𝑖 (e.g., the user visited a webpage, clicked
on a video, bought a product) and 𝑟𝑢𝑖 = ∅ if not, or in the form of
𝑟𝑢𝑖 ∈ {∅} ∪ {like (1), dislike (0)}. Since the items of a catalog often
number in the thousands to millions, most users naturally rate or enjoy
only a small percentage of them. Usually, the proportion of missing
ratings of several well-known datasets in recommendation literature
(e.g., MovieLens, Netflix) is higher than 95%. Often, when the user is
asked to give explicit ratings, the datasets exhibit a large skew favoring

9
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very high or very low values. Notably, we define I𝑢 as the set of items
user 𝑢 interacted with, i.e.,

I𝑢 = {𝑖 ∈ I | 𝑟𝑢𝑖 ≠ ∅}. (2.1)

In general, recommendation problems are associated with a wide
range of different tasks, from finding all the possible good items for a
user to recommending an ordered sequence or a bundle of items. How-
ever, the most important and most studied tasks in literature concern
with rating prediction and top-k recommendation [62, 153].

Definition 2.1 (Rating prediction task). Given a user 𝑢 ∈ U and an
item 𝑖 ∈ I \I𝑢 not rated by 𝑢, the rating prediction task aims to predict
the missing rating of 𝑢 to 𝑖. Formally, the goal is to learn a function
𝑓 : U ×I → R, often defined as a regression or a classification.

Definition 2.2 (Top-𝑘 recommendation task). Given a user 𝑢 ∈ U, the
top-𝑘 recommendation task aims to provide 𝑢 with a list containing 𝑘
items from I \ I𝑢 most likely to interest 𝑢, ordered by a proper utility
function 𝑠 : U ×I → R.

Often, the top-𝑘 recommendation task is solved by ranking the items
ofI based on the predictions given by 𝑓 , which acts as a utility function.
The solution to the above-mentioned recommendation problems

heavily depends on the selected utility function 𝑠 or the prediction
function 𝑓 — usually, but not necessarily, a machine learning model
— and on the type of information encoded in the data.While the idea
of utility may be often exclusively associated with user satisfaction, it
actually includes the revenue of content creators and content providers
(e.g., depending on the number and the diversity of the items sold),
and the users’ loyalty to the service. The prediction of the utility, or at
least the comparison of the utility of some items, is the core function
of recommender systems for understanding whether an item is worth
recommending [172].
In the following, we present a taxonomy of the most common recom-

mendation approaches, along with their standard and simplest formu-
lations, usually aiming to predict and estimate the value of the missing
ratings.

2.2 Overview of Recommendation Approaches

Recommender systems solve the recommendation problem previously
defined by relying on different assumptions. For instance, they may
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assume that users can make decisions about new items based on the
similaritywith items already consumed.Alternatively, theymay assume
that users’ decisions may rely on the behavior of similar users.
The most common recommendation strategies can be classified into

collaborative filtering, content-based filtering, and hybridmodels [153].
In the following, we will present a brief but comprehensive overview
of recommendation methods along with their taxonomy.

2.2.1 Collaborative Filtering Approaches

The core idea of collaborative filtering recommender system is that the
rating of a user for a new item is likely to be similar to that of another
user who has rated other items in a similar way [120]. Moreover, these
systems assume that a user is likely to similarly rate two items if other
users have given similar ratings to these two items. The methods using
collaborative filtering approaches are able to provide recommendations
to users through the feedback of other users and can recommend items
with very different content if other users have shown interest in all these
different items.Due to their formulation, these algorithms’ performance
highly relies on the availability of user transactions, but they have the
advantage of not needing any other data source (e.g., attributes of the
items).
Collaborative filtering methods can be grouped into neighborhood-

and model-based methods [120]. While the first class of methods uses
the collected ratings to predict the missing ratings, the model-based
approaches aim to build a predictive model able to represent latent
characteristics of the users and the items in the system.

2.2.1.1 Neighborhood-based collaborative approaches

Neighborhood-based recommender systems, also known as memory-
based recommenders, assume that, in the user perspective, the opinion
of like-minded users is useful for evaluating the value of an item.
In principle, similar users prefer similar items, and similar items are
preferred by similar users.
The 𝑘-nearest-neighbors (𝑘-NN) approach, with its user-based and

item-based variants (e.g., [69, 70]), is the most used one in memory-
based recommendation.

User-based 𝑘-Nearest-Neighbors
In this schema, the 𝑘-NN algorithm computes a similarity matrix W
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encoding how similar are the users between each other. Then, the 𝑘 users
𝑣 with the highest similarity 𝑤𝑢𝑣 to a user 𝑢 constitute the 𝑘-nearest-
neighborhood N(𝑢) of 𝑢. To estimate a missing rating 𝑟𝑢𝑖, user-based
𝑘-NN considers the subset N𝑖 (𝑢) ⊆ N (𝑢) containing the neighbors of
𝑢 who have rated 𝑖. Then, considering one of the simplest formulations
of the algorithm, the rating 𝑟𝑢𝑖 can be estimated as:

𝑟𝑢𝑖 =

∑
𝑣∈N𝑖 (𝑢) 𝑤𝑢𝑣𝑟𝑣𝑖∑
𝑣∈N𝑖 (𝑢) |𝑤𝑢𝑣 | (2.2)

Intuitively, user 𝑢 asks the like-minded users in 𝑁𝑖 (𝑢) their opinion
about 𝑖, and considers it for making a decision.

Item-based 𝑘-Nearest-Neighbors
With item-based 𝑘-NN, the core idea is to find similarities between
items by looking at the ratings they have received. Once the item
similarity matrix W has been computed, each item can be associated
with a set of neighbors N(𝑖). To estimate a missing rating 𝑟𝑢𝑖, only
the items in N𝑢 (𝑖) (i.e., similar to 𝑖 that have been rated by 𝑢) are
considered:

𝑟𝑢𝑖 =

∑
𝑗∈N𝑢 (𝑖) 𝑤𝑖 𝑗𝑟𝑢 𝑗∑
𝑗∈N𝑢 (𝑖) |𝑤𝑖 𝑗 | (2.3)

The similarity between two users in user- based methods, which
determines the neighbors of a user, is normally obtained by comparing
the ratings made by these users on the same items. Conversely, in
item-based methods, the similarity between two items is obtained by
comparing the ratings they have received from different users. The
computation of the similarity weights is one of the most critical aspects
of building a neighborhood-based recommender system, as it can have a
significant impact on both its accuracy and its performance. Among the
most used approaches, it is common to find Cosine similarity, Pearson
correlation, Jaccard index, and Euclidean distance [120].
There are several factors to be considered when choosing between

user- and item-based 𝑘-NN. In terms of recommendation performance,
a small number of high-confidence neighbors is preferable to a large
number of neighbors for which the similarity weights are not trustable.
Thus, where the number of users is much greater than the number of
items, item-based methods are preferred [84]. Conversely, user-based
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methods usually provide more original recommendations, which may
lead users to a more satisfying experience [78]. The choice is also
affected by memory and computational efficiency requirements since
similarity estimation complexity quadratically grows with the number
of users in user-based models and with the number of items in item-
based models [153].
Overall, neighborhood-based collaborative approaches are intuitive

and simple, produce explainable recommendations, and are efficient in
prediction (once the similarity matrix has been computed), albeit they
can suffer from problems like limited coverage of items (when users
have no common ratings, they are necessarily classified as non-neighbor
users, thus causing some their favorite items not to be recommended
to each other) and high-performance sensitivity to the lack of available
data.

2.2.1.2 Model-Based Collaborative Approaches

Model-based collaborative filtering approaches use the ratings in the
matrix R to learn a predictive machine learning model representing
latent characteristics of the users and the items in the system able to
explain the ratings.
These approaches are numerous and have shown improved perfor-

mance with respect to memory-based collaborative filtering algorithms,
especially in the context of the million-dollar prize competition opened
by Netflix in October 2006 [37], where they gain significant attention.
Thanks to that competition, the research community gained access to
a large-scale, industrial-strength dataset of 100 million movie ratings
that encouraged the rapid development of model-based recommender
systems.
Typical model-based approaches include Bayesian Clustering, La-

tent Semantic Analysis, Latent Dirichlet Allocation, Support Vector
Machines, and neural networks [120]. However, the most popular mod-
els are the ones induced by factorization of the user-item rating matrix,
thanks to their attractive accuracy and scalability. Singular Value De-
composition is one of the most established techniques for decomposing
a matrix and identifying latent factors [121]. Nevertheless, the high
portion of missing values leads to difficulties that force to train the
model on the few available data and to use regularization for averting
the risk of overfitting.
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Matrix Factorization with Singular Value Decomposition
Matrix factorization aims to represent both items and users as vectors
in a latent spaceR 𝑓 . The latent space tries to explain ratings with latent
factors, automatically inferred from user feedback, representing prop-
erties (e.g., the genre of a movie) that cannot be directly interpreted by
a human being observing the decomposed matrix. The value assumed
by each latent factor represents, in the user vector, her interest towards
that property, while, in the item vector, the extent to which the item
possesses the same property. The dot product between a user vector and
an item vector will capture the user’s estimated interest in that item.
Notably, given the vector q𝑖 representing the item 𝑖 in the latent space

R 𝑓 , and the vector p𝑢 representing the user 𝑢 in the same space, we
estimate a missing rating as:

𝑟𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + q𝑇
𝑖 p𝑢, (2.4)

where 𝜇, 𝑏𝑢, and 𝑏𝑖 are the overall rating average, the user 𝑢’s rating
average, and item 𝑖’s rating average, respectively. These three terms
constitute the baseline predictor for 𝑟𝑢𝑖, which has a detrimental im-
pact on collaborative filtering since feedback data usually exhibit large
biases (e.g., some users have systematic tendencies to give very high
or low ratings and some items to receive very high or low ratings).
The vectors of all the users and items in the system can be learned with
techniques like stochastic gradient descent and alternating least squares
by exploiting the available ratings.
The prediction in Eq. 2.4 can be extended and used as a building

block for more complex models (e.g., to take into account other types
of feedback or to build time-aware factor models).

Generally, model-based approaches exhibit prediction accuracy su-
perior to other collaborative filtering techniques [120] with a relatively
memory-efficient and easy-to-train compact model. Moreover, these
techniques are also convenient thanks to the possibility of injecting
multiple forms of user feedback and modeling specific behaviors [118,
157, 177]. Once the rating prediction estimation has been modeled,
based on the task and the assumptions, the loss function to minimize
can be differently written (e.g., BPR [167], that we describe in Chap-
ter 4). Then, we can also choose among various training strategies for
learning the model parameters (e.g., stochastic gradient descent [86]
and alternating least squares [102]). We will see more about the flexi-
bility of these models in Chapter 6, where we propose a recommender
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system using a revisited latent factor model to represent feelings on the
attributes of the items.

2.2.2 Content-Based Filtering Approaches

Recommender systems with content-based filtering exploit attributes
of items and users to produce recommendations by matching up the
characteristics of a target user with the attributes of the items [153].
The characterization of items with content information that can effec-
tively feed the recommendation process is usually a non-trivial task.
In most cases, the items’ attributes are simple keywords that are ex-
tracted from their description or metadata, albeit an increasing number
of works has moved from a keyword-based to a concept-based approach
by characterizing the items with semantic information extracted from
structured knowledge sources, such as Wikipedia, DBpedia, Freebase,
and BabelNet.
The steps to perform a content-based recommendation include [87] i)

a content analyzer that uses information coming from the most diverse
sources to represent the items in a specific description space (e.g.,
vector space model); ii) a profile learner that collects all the users’
preference data and with a chosen strategy (e.g., probabilistic methods,
relevance feedback, and k-nearest neighbors) tries to generalize this
data in order to build the user profile; iii) a filtering component that
suggests relevant items by matching the profile representations against
the item descriptions.
Content-based recommender systems provide several advantages, in-

cluding the possibility to explain the produced recommendation based
on the attributes, and the absence of the cold-start problem for the items,
since no collaborative information is needed to feed the recommender.
Content-based filtering recommenders also present some shortcom-
ings [87]: they include the cold-start problem for new users, because of
the dependence of their profile on their rating history. Moreover, often
these systems tend to suffer from an overspecialization problem (or lack
of serendipity) since they tend to suggest merely items homogeneous
with the ones experienced in the past. Finally, another known problem
is the availability of structured knowledge about the domain, which
would consistently improve the recommendation performance.
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2.2.3 Hybrid Approaches

In some cases, the limitations of collaborative filtering methods and
content-based filtering methods can be partially overcome by realizing
a hybrid combination of the two approaches. Hybrid recommenders
aim to improve the performance of the system by exploiting the best
of both techniques. Some ways to implement hybrid recommenders
consider implementing both the approaches separately and then using
an aggregation function to merge the results, or injecting content infor-
mation into a collaborative-filtering method, or vice versa, or building
a system exploiting both the sources of information [7].
In Chapter 6, we present a hybrid recommender system that exploits

both collaborative data and content information coming from knowl-
edge graphs. In particular, the content information helps to effectively
combine the embeddings of a latent factor model to obtain higher
personalization with a reduced number of operations for training and
inference.

2.2.4 Evaluation

We have already seen how many algorithms and approaches can be
used to build a recommender system. Its choice depends on a large
and variable number of factors, including a wide range of properties
of the dataset (e.g., its sparsity, the ratio between users and items).
Indeed, all these factors jointly impact different dimensions of the
performance of the recommender system. All these dimensions, in
turn, may enormously impact the user experience and the acceptance
of both the recommendation and the whole system. This makes the
evaluation of a recommender system a complex task that focuses on
both users and items [91].
It is noteworthy that the evaluation of a recommender system should

follow an online protocol, proposing recommendations to the users
and waiting for their feedback. Practically, this is not feasible for most
researchers due to the limited number of users they can involve in an
experiment. To perform an offline evaluation, the set of available feed-
back is divided into a training set used for learning the utility function
and a test set for assessing the quality of the learned function. Generally,
the interactions of each user are independently split, thus generating for
each of them the train set of items with an interaction Itrain𝑢 ⊂ I𝑢 and
the test set of items with an interaction Itest𝑢 ⊂ I𝑢. Depending on the
strategy, a user can be provided with a recommendation list containing
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only items present in the test set (i.e., already liked in the past) or con-
taining only items not present in the training set (also items without
ratings in the test set could be recommended) [188]. In the former case,
we refer to rated test-items protocol, in the latter to all unrated items
protocol. In this dissertation, we perform offline tests on all unrated
items since they reflect much better the situation in many real-world
recommendation tasks [188].
In the following, we briefly survey the metrics used along with this

dissertation. Hereinafter, wemainly consider the recommendation prob-
lem in the form of top-𝑘 recommendation task, which is the mainstream
of recommender system research. Indeed, our evaluation is oriented to
assessing the quality of the ranking rather than evaluating the predic-
tion score. Thus, the metrics in the following are presented with their
definition specifically designed for evaluating the top-𝑘/ranking task
with the all unrated items protocol.

2.2.4.1 Accuracy Metrics

Accuracy metrics in top-𝑘 recommendation look for the presence of
relevant items in the top-𝑘 elements of the recommended list, with
𝑘 usually in {1, 5, 10, 50, 100}. Datasets with implicit feedback have
an inherent definition of relevance (e.g., positive feedback as clicks,
purchases, likes). Explicit feedback data like ratings, instead, have to
be discretized into binary values according to a relevance threshold.
Thus, I+𝑢 ⊆ I𝑢 is the set of items relevant to user 𝑢, and I+,test𝑢 ⊆ Itest𝑢

contains the relevant items in the test set.

Definition 2.3 (Precision). For each user 𝑢 ∈ U, let L𝑢 be a recom-
mendation list ranked according to Eq. 2.2, andL (1,...,𝑘)𝑢 its top-𝑘 . Then,
the precision P@k is defined as the average, over all the users, of the
proportion of items in the top-𝑘 of each user that are also relevant to
the user.

P@k = 1
|U|

∑︁
𝑢∈U

|L (1,...,𝑘)𝑢 ∩I+,test𝑢 |
𝑘

(2.5)

Intuitively, precision measures the system’s ability to reject any non-
relevant item in the retrieved set. Recall, instead, aims to measure the
system’s ability to find all the relevant items.
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Definition 2.4 (Recall). Given the premises in Definition 2.3, the recall
R@k is defined as the average of the proportion of relevant items that
are retrieved in top-𝑘 of each user.

R@k = 1
|U|

∑︁
𝑢∈U

|L (1,...,𝑘)𝑢 ∩I+,test𝑢 |
|I+,test𝑢 | (2.6)

To offer an aggregate measure of the accuracy, precision and recall
are sometimes combined with each other in the F1@k measure [173]
computed as their harmonic mean:

F1@k = 2 P@k · R@kP@k + R@k (2.7)

Finally, a widely used accuracy metric is the discounted cumulative
gain [107] from information retrieval, which assesses the quality of a
ranking based on the position of the ranked elements.

Definition 2.5 (Normalized Discounted Cumulative Gain). For each
user, let 𝑙𝑢(𝑖) ∈ L (1,...,𝑘)𝑢 the recommended item in position 𝑖 ≤ 𝑘 , and
𝑣𝑙𝑢 (𝑖) = 1 if 𝑙𝑢(𝑖) ∈ I+,test𝑢 , 0 otherwise.

nDCG@k = 1
|U|

∑︁
𝑢∈U

𝑘∑︁
𝑖=1

2𝑣𝑙𝑢 (𝑖) − 1
log2(𝑖 + 1)

(2.8)

In nDCG@k, the numerator represents the gain that 𝑢 has from being
recommended item 𝑙𝑢(𝑖) , with its relative positions in the list discounted
logarithmically.

2.2.4.2 Beyond-Accuracy Metrics

The presence of relevant items in the recommended list may not be
sufficient for the evaluation of a recommender system. We have already
mentioned that, among the other things, recommendations should be
engaging for the users, should increase their trust and serendipity, and
should generate revenue for content providers.
Some algorithms may provide accurate recommendations, but may

polarize and homogenize users’ interest towards a small portion of the
items (the short head), i.e., the ones rated by the majority of users. This
is usually caused by popularity bias since recommender systems often
exacerbates and perpetuates social biases present in the rating data by
reinforcing the popularity of already popular products (rich-get-richer
effect). This behavior is often referred to as the long tail problem, since
the unpopular items, which represent the vast majority of the items, are
not recommended at all.
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As a consequence, there is need for item diversity in recommendation
lists to encourage serendipity, and increase users’ satisfaction and sales.
In the following, we introduce three sales diversity metrics widely
employed in recommender systems.

Definition 2.6 (Item Coverage). Given the premises in Definition 2.3,
the item coverage computes the number of items that are shown to at
least one user.

𝐼𝐶@𝑘 =
|⋃𝑢∈U L (1,...,𝑘)𝑢 |

|I | (2.9)

A higher value of item coverage implies high diversity of the recom-
mendation lists, which may suggest a good performance in terms of
personalization with respect to the users.
The other diversity measures considered in this dissertation are Gini

Index (𝐺) and Shannon Entropy (𝑆𝐸), that measure the distributional
inequality [56], i.e., in this context, how unequally different items are
recommended to the users. A recommender system equally recommend-
ing its items is likely providing diverse recommendations and equally
favoring all the elements in the catalog.

Definition 2.7 (Gini Index). Given the premises in Definition 2.3, let
(L𝑘 ,𝑚) be a multiset, with L𝑘 =

⋃
𝑢∈U L (1,...,𝑘)𝑢 being the set of all the

recommended items and 𝑚 : L𝑘 →N a function giving the number of
times an item is recommended. Suppose that the elements 𝑙 ∈ L𝑘 are
in ascending order by the value of 𝑚(𝑙) and 𝑙 (𝑖) denotes the item in the
𝑖-th position. Then, the Gini Index is defined as:

𝐺̂@k = 1
|L𝑘 | − 1

∑|L𝑘 |
𝑖=1 (2𝑖 − |L𝑘 | − 1)𝑚(𝑙 (𝑖))∑|L𝑘 |

𝑖=1 𝑚(𝑙 (𝑖))
(2.10)

A value of 𝐺̂@k close to 0 reflects diversity and means that the items
are equally recommended (all products have equal sales), whereas 1
represents concentration (a single item is recommended to all users).
In the remainder of this dissertation, the values of Gini Index will be
always provided in their higher is better version G@k = 1 − 𝐺̂@k.
Definition 2.8 (Shannon Entropy). Given the premises inDefinition 2.7,
the Shannon entropy is defined as:

SE@k = −
|L𝑘 |∑︁
𝑖=1

𝑚(𝑙 (𝑖))∑|L𝑘 |
𝑖=1 𝑚(𝑙 (𝑖))

log

(
𝑚(𝑙 (𝑖))∑|L𝑘 |

𝑖=1 𝑚(𝑙 (𝑖))

)
(2.11)

The entropy is 0 when a single item is always recommended, and
log( |L𝑘 |) when all the items are recommended equally often.
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2.2.4.3 Algorithmic Bias

The problem of unfair outputs in machine learning applications is
well studied [46, 76] and also it has been extended to recommender
systems [142]. Indeed, bias and fairness analysis is gaining momentum
in the last years [67, 165], since it unveils several essential aspects of
the recommenders’ behavior.
One of the possible fairness problems with recommender systems,

which has already come up in the previous sections, is connected to the
popularity bias [36, 44]. Collaborative filtering recommenders, which
will be used along with this thesis, typically emphasize popular items
and leave the long-tail items underrepresented. Unfortunately, deliver-
ing only popular items does not enhance new item discovery and may
be unfair to the creators of less popular or newer items since they are
rated by a small set of users.
Three bias metrics will be used in this dissertation to evaluate the

degree of underrepresentation of items from the long-tail. The first
metric, whose abbreviation is ACLT, measures the fraction of the long-
tail items the recommender has covered.

Definition 2.9 (Average Percentage of Long Tail Items [3]). Given the
premises in Definition 2.7, it is defined as:

ACLT@k = 1
|U|

∑︁
𝑢∈U
|L (1,...,𝑘)𝑢 ∩ Γ|, (2.12)

where Γ is the set containing the long-tail items.

Moreover, we have also evaluated PopREO and PopRSP, which are
specific applications of RSP and REO [237]. Notably, PopREO esti-
mates the equal opportunity of items, encouraging the true positive rate
of popular and unpopular items to be the same. PopRSP is a measure
of statistical parity, assessing whether the ranking probability distribu-
tions for popular and unpopular items are the same in recommendation.
For both the measures, lower values indicate that the recommendations
are less biased.
Another factor that may impact fairness is the bias disparity, which

represents the degree to which a group’s preferences on various item
categories fail to be reflected in the recommendations they receive [48].
This disparity among users will degrade users’ satisfaction, loyalty,
and effectiveness of recommender system. In detail, in this dissertation,
we are sometimes interested in checking whether the recommendation
list deviate from the users’ original preferences towards different item
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categories. In order to do that, we measure the bias disparity defined
in Mansoury et al. [142] considering a unique group of users.

Definition 2.10 (Bias disparity). Let {C1, . . . ,C𝑃} a partition of I into
𝑃 categories of items. Then, the bias disparity on a category of items
C𝑖 is defined as:

𝐵𝐷 (C𝑖) = 𝐵𝑅 (C𝑖) − 𝐵𝑇 (C𝑖)
𝐵𝑇 (C𝑖) , (2.13)

where 𝐵𝑇 (C𝑖) is the source bias on category C𝑖, i.e., how much users
were biased towards category C𝑖 in the training set, and 𝐵𝑅 (C𝑖) is the
bias on C𝑖 in recommendation lists. In detail:

𝐵𝑇 (C𝑖) =
∑

𝑢∈U |C𝑖 ∩I+,train𝑢 |∑
𝑢∈U |I+,train𝑢 |

1
|C𝑖 |
|I |
, (2.14)

where the first term is the preference ratio of users on category C𝑖, and
the denominator of the second term is the ratio of item category C𝑖 in
the dataset. Analogously:

𝐵𝑅 (C𝑖) =
∑

𝑢∈U |C𝑖 ∩ L𝑢 |∑
𝑢∈U |L𝑢 |

1
|C𝑖 |
|I |
. (2.15)

Bias disparity shows positive or negative values if the recommender
systems deviate the users respectively towards or away from a certain
category. Thus, the closer to 0, the more the recommendation lists
reflect the users’ behavior encoded in the data.





3Privacy-Preserving Machine
Learning

Outline
Massive data collection required for machine learning presents obvious
privacy issues. Users’ sensitive data is kept indefinitely by the compa-
nies that collect it, and it may be subject to a wide range of risks.
Furthermore, some attackers with a white- or black-box knowledge of
the machine learning model may mine sensitive user information.
This chapter analyzes the most crucial privacy risks and challenges

in machine learning and presents architectural solutions like federated
learning and algorithmic strategies, from differential privacy to encryp-
tion. Finally, we thoroughly survey the literature of privacy-preserving
recommender systems with a new classification that, based on the archi-
tecture, privatization algorithm, and recommendation model, positions
the works in an intersection of taxonomies.
Part of the content of this chapter has been presented in the tutorial

"Pursuing Privacy in Recommender Systems: the View of Users and
Researchers from Regulations to Applications" held at the 15th ACM
Conference on Recommender Systems.

3.1 Introduction

In recent years, privacy has become a dominant concern in big data ap-
plications. The public opinion about this topic has been hugely spurred
by large-scale data breaches such as Cambridge Analytica in 2018,
which shared and harvested data from a massive number of users for
political campaigning without their consent [49].
All the data coming from identity, biometrics, health, facial recogni-

tion, use of smartphones and Wi-Fi, use of transportation and vehicles,
video surveillance are examples of information collected by corpo-
rations, organizations, and government and further used for analyses
or for feeding machine learning or data mining algorithms. However,
most of this data is personally related and contains private or sensitive
information.

23
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As we will see in this chapter, privacy violations may occur either
in data collection, if the collector is not trustworthy, or when statistics
are published, even though the collector is trusted and applies several
simple anonymization techniques. For instance, in 2007, Netflix offered
a 1,000,000 $ prize for a 10% improvement in its recommendation
system and released a training dataset with 500,000 anonymous movie
ratings. To protect the users, all personal information was removed and
the users’ identifiers replaced by randomly assigned numbers. However,
by linking it with the International Movie DataBase (IMDB) dataset,
Narayanan et al. [151] partly deanonymized the Netflix training dataset.
The possibilities of denanomyzation are very large and can be applied to
awide range of contexts, frommedical data [178] to national censorship
datasets [191]. Even more, De Montjoye et al. [66] showed that in a
dataset where the location of an individual is specified hourly, four
location points are sufficient to uniquely identify 95%of the individuals.
In this context, statistical analyses, machine learning techniques, and

artificial intelligence strategies have to be applied by keeping in mind
the new privacy challenges that may limit the uptake of these appli-
cations [184]. The data leakage and privacy violation incidents have
brought about heightened public awareness of the need for artificial
intelligence systems to be able to preserve user privacy and data con-
fidentiality. For all these reasons, the vulnerabilities of the systems
should be analyzed in order to define and implement an adequate pri-
vacy model.
Recently, European Union, US Congress, and other jurisdictions leg-

islated new laws about privacy. As an example, in 2018 the European
Union proposed GDPR [80], which removes the default option for col-
lecting, storing, and harnessing individuals’ data and requires explicit
authorization from the users to use their data. Other representative ex-
amples are the CCPA in California [52] and the Cybersecurity Law in
China [187]. The GDPR applies to all uses of European data that could
potentially identify a data subject, prohibiting the use of automated
decision-making, so long as that decision-making occurs without hu-
man intervention and produces significant effects on data subjects. This
is the case of any model that makes a decision without a human be-
ing involved in the decision (e.g., profiling users). In practice, users
should allow data to be used by a model, and they should be able to
do that at any time, and the consent management needs to be granular
(allowing many different forms of consent), dynamic (allowing con-
sent to be withdrawn), and user friendly. In most cases, this makes the
deployment and management of machine learning models and their in-



3.2 Why Privacy-Preserving Machine Learning 25

put data increasingly difficult. Minimization and ephemerality of data
collection to what and how long is necessary concerning the purposes
of processing make data collection harder and harder. The traditional
machine learning approaches based on centralization of data collection
may be no longer compliant with these strict data protection laws. Solv-
ing the problem of data fragmentation and isolation while complying
with the new stricter privacy-protection laws is a significant challenge
for artificial intelligence researchers. Moreover, effectively preserving
users’ privacy is not as easy as limiting data collection since a privacy
threat may happen at any stage of a data cycle. Indeed, the privacy of
training data may not be the only concern, given that the model itself
stores precious information able to predict future user preferences and
behaviors. Thus, privacy and data protection must be guaranteed at all
stages of an artificial intelligence system’s life cycle.
In addition, while privacy concerns about disclosing personal in-

formation may frighten the users of machine learning systems, they
actually want to receive accurate predictions, raising a personalization-
versus-privacy paradox. In recommender systems, this is even more
evident if we think of the great value for users in receiving recom-
mendations galvanizing their intended purchases. However, they can
be discouraged from sharing a large amount of sensitive data to receive
such highly personalized recommendations.
In this chapter, we will first survey the privacy threats we can witness

in machine learning. Then, the analysis will more deeply focus on the
major risks observable in recommender systems. Finally, wewill survey
solutions based on privacy-oriented learning paradigms (e.g., federated
learning) and privacy-preserving algorithmic strategies, mainly differ-
ential privacy and cryptography.

3.2 Why Privacy-Preserving Machine Learning

Privacy-preserving machine learning aims to equip machine learning
with defense measures for protecting user privacy and data security. It
should be distinguished from secure machine learning, which attempts
instead to preserve integrity and availability of a machine learning
system from intentional attacks like adversarial or poisoning attacks.
The main target of privacy attacks is the confidentiality of the users’

sensitive data. These attacks can be performed by different adversaries
and against different parties of the system’s life cycle, during any stage
of the data cycle, including data publishing, model training, and pre-
diction.
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Risks connected with data collection. A server hosting the recom-
mender system usually collects the users’ data in a centralized fashion.
On the one hand, learning is for sure easier when data is stored in one
place. On the other hand, a consequent risk is that online services may
attempt to collect even unsolicited user data, either because it might be
useful in the future or because it can be monetized. Moreover, centrally
collected data can be subject to the risk of being shared with other
parties, sold, or accessed by unauthorized actors. Oftentimes, collected
data can be used by a malicious server and cross-linked with additional
sources to infer sensitive user information such as age, gender, ethnicity,
or political orientation [123, 233].
Typical recommender systems rely on a central entity, which accesses

personal user data for the purpose of personalizing a service and ex-
pose data to the above-mentioned risks. The previous inference attack
performed on the anonymized Netflix dataset is an example of this risk.
Other examples include possible reconstruction of demographic infor-
mation such as age, gender, ethnicity, or political orientation [212].
Moreover, by exploiting semantic relations between user interests in
music, Abdelberi et al. [2] found demographic similarities between
users with similar music tastes, thus inferring gender, age, and country.

Other privacy risks. Even when the data collector is trusted, or
data collection step is somehow skipped, some scenarios may lead to
unintended data disclosure [135]. In fact, some external entities may
threaten user privacy during some steps of the data cycle. For instance,
inmodel extraction attacks, an attacker attempts to duplicate or approx-
imate the machine learning model without any prior knowledge about
the model parameters or the training data. In detail, the attacker may at-
tempt to query the model, observe the outputs and use equation-solving
methods, meta-models and reverse engineering strategies to estimate
the model parameters. Once the model has been stolen, the attacker
can freely make prediction and inference or try to estimate statistical
properties of the data (feature estimation attack) or even try to recon-
struct some of the original data (reconstruction attack). In some cases,
the attacker may perform a membership inference attack to learn if a
specific sample was used for training the model. Usually, the adversary
infers whether a sample belongs to the training set or not based on the
machine learning model output.
Various works explored the possible privacy risks in machine learn-

ing, coming from malicious servers, external attackers, or colluding
users [135]. For instance, Song et al. [186] show how service providers
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can modify the training algorithm so that the model encodes more
information about the users dataset than is strictly necessary. Wang
et al. [210] perform a reconstruction attack targeting user-level privacy,
Tramèr et al. [194] perform an efficient model extraction. Examples
of these risks in recommender systems include the work by Calan-
drino et al. [50] and will be presented along with possible solutions in
Section 3.5.

3.3 Federated Learning for Privacy-by-Design

Privacy protection can be performed at various levels and with sub-
stantially different approaches, eventually integrated with each other to
limit as much as possible the risks of sensitive data leakage. A promi-
nent category of privacy-oriented practices attempts to mitigate risks
connected with data collection by moving machine learning into archi-
tectures and training paradigms that minimize data centralization, thus
limiting the data leakage threats and the ability of external entities to
access user data or to infer new data. This category mainly includes
the distributed architectures, which eliminate the single point of failure
typical to centralized machine learning systems, including centralized
recommenders.
In 2016, Google introduced the notion of federated learning [146], a

paradigm for collaborative learning that provides an attractive structure
for decomposing the overall machine learning workflow into modular
units. In federated learning, many clients (e.g., a very large number of
mobile or IoT devices) collaboratively train a machine learning model
under the orchestration of a central server. The strategy adopted by
federated learning is the decentralization of training data supported by
an on-device learning approach.
Intuitively, each client of the federation downloads from the central

server the current shared global model and improves it by learning
from the sensitive data on its device and incorporating the changes
in a focused update. Then, all the local updates are collected by the
central server and combined in the new shared global model. From
a privacy perspective, the federated learning paradigm is structurally
built on practical strategies servicing by design the principle of data
minimization: the collected updates are narrowly scoped to contain the
minimum information necessary for the specific learning task (focused
collection), aggregation is performed as early as possible (early aggre-
gation), and both collected and processed data is discarded as soon
as possible (minimal retention). By moving computation to the node
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Figure 3.1: Information flow over the network in four machine learning
paradigms. Solid lines represent training data flow, dashed lines
represent model parameter flow.

where that data resides, federated learning also embraces the principle
of data locality, thus guaranteeing to users data ownership, i.e., posses-
sion and control on their own data. All these principles, together with
data anonymization, eventually provided by privacy-preserving tech-
nologies (see Section 3.4), ensure user privacy and data confidentiality,
especially when considering specific goals that can be advanced by
computation on privacy-sensitive user data on which users claim their
ownership.
In the following, supported by Figure 3.1, we compare federated

learning with the other most used learning paradigms. In detail, four
architectures are compared, focusing on the location and distribution of
data and on the information exchanged over the network: in the figure,
the solid lines represent training data flow, the dashed lines represent
model parameters flow.

Centralized learning A central server is in charge of data collection,
data aggregation, and model training (the data flows from clients



3.3 Federated Learning for Privacy-by-Design 29

to the server). In terms of privacy, the central server is a single
point of failure.

Decentralized learning Also known as a peer-to-peer (P2P) architec-
ture, in this scenario, clients share resources directly with each
other without the need for centralized control. Data can remain
on the local devices, but some communication and coordination
strategies are needed (e.g., blockchain).

Distributed learning Acentral server holds all the training data and uni-
formly redistributes them to other computational nodes in order
to exploit their computational resources. This learning paradigm
is not conceived for privacy concerns, and the data needs to be
previously collected.

Federated learning A central server makes use of computational re-
sources of other clients without the need to collect their data:
users’ data remain on their clients, and only focused parameters
are exchanged between the server and the clients.

In recent years, federated learning is being applied in commercial
digital products. Google makes extensive use of federated learning in
the Gboard mobile keyboard [94], Apple is using cross-device feder-
ated learning for applications like the QuickType keyboard, and the
vocal classifier for "Hey Siri" [27, 28]. As an innovative modeling
mechanism that can build privacy-oriented personalized models on
data decentralized among multiple parties, federated learning created
a vibrant and dynamic research community aiming to integrate this
paradigm in many important fields such as sales, finance, healthcare,
education, urban computing, edge computing, blockchain, and recom-
mender systems (see Section 3.5).
In the following, we formalize federated learning and describe its

defining characteristics and challenges, highlighting the aspects of ma-
jor interest for this thesis.

3.3.1 Formal Definition

Consider we want to solve a machine learning problem with any finite-
sum objective function:

min
Θ

𝑓 (Θ), where 𝑓 (Θ) = 1
|K |

∑︁
𝑖∈K

ℓ(𝑖;Θ), (3.1)
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with ℓ𝑖 (Θ) representing the loss of the 𝑖-th training sample made when
using the machine learning model Θ, and K is the set of samples used
to solve the problem by training the model Θ. In this context, federated
learning assumes the existence of a federation of clients that want to
jointly solve the problem above.

Definition 3.1 (Federated learning). Let Θ be the parameters of a
machine learning model, and consider a learning scenario where the
objective is to minimize a generic loss function. Federated learning is
a paradigm in which the learning problem is solved by training the
model across the devices of the users of a federation U, each of them
using its private data, under the coordination of a central server 𝑆. The
training is performed without requiring the users to share or exchange
their raw data with any other party in the system.

Federated learning assumes a synchronous update scheme that pro-
ceeds in rounds of communication. The federation U is a fixed set of
users, each with a fixed local dataset1. Assuming the training data inK
partitioned and distributed over the clients in U in user-specific train-
ing sets K𝑢 with 𝑢 ∈ U, a locally computed loss 𝑓𝑢 can be formulated
as it follows:

𝑓𝑢 (Θ) = 1
|K𝑢 |

∑︁
𝑖∈K𝑢

ℓ(𝑖;Θ), (3.2)

and the global objective function reformulated as:

min
Θ

𝑓 (Θ), where 𝑓 (Θ) =
∑︁
𝑢∈U

|K𝑢 |
|K | 𝑓𝑢 (Θ). (3.3)

The main problem with the formulation in Equation 3.3 is related to
the distribution of the training data. In federated settings,K is an ideal
training set, while K𝑢, for all 𝑢 ∈ U, is a local dataset formed by the
private samples of user 𝑢. The training data on a given client is local data
from end-user devices, typically based on the behavior of a particular
user, and hence not representative of the whole population distribution
(non-IIDdata). Thus, it does not hold the equationEK𝑢

[ 𝑓𝑢 (Θ)] = 𝑓 (Θ),

1 In federated learning literature, each user corresponds with a client. Thus, hereinafter
we will use the terms user and client interchangeably.
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which instead would hold with uniformly distributed data. With these
premises, we can observe that:

E[ 𝑓 (Θ)] =
∑︁
𝑢∈U

EK𝑢

[
|K𝑢 |
|K | 𝑓𝑢 (Θ)

]
=

∑︁
𝑢∈U

EK𝑢

[
|K𝑢 |
|K |

1
|K𝑢 |

∑︁
𝑖∈K𝑢

ℓ(𝑖;Θ)
]

=
1
|K |

∑︁
𝑢∈U

EK𝑢

[ ∑︁
𝑖∈K𝑢

ℓ(𝑖;Θ)
]
=
1
|K |

∑︁
𝑢∈U

EK𝑢
[ 𝑓𝑢 (Θ)]

(3.4)

Given that, in general, EK𝑢
[ 𝑓𝑢 (Θ)] ≠ 𝑓 (Θ), we can only hope for the

unbiasedness of the mean in Eq. 3.4, while the individual clients’ con-
tributions will be biased towards their local datasets and each of them
will tend deviate the model towards a different convergence point [232].

Federated Averaging
From an algorithmic point of view, inMcMahan et al. [146], authors re-
alize Federated Averaging (FedAvg), a federated optimization inspired
by stochastic gradient descent (SGD) that serves as a template for train-
ing in federated settings.
For a certain number of rounds of communication, until the training

is stopped, the central server 𝑆 repeats the following steps:

1. selects a subset of clientsU− ⊆ U;
2. sends them the current global model parameter Θ;
3. each selected client 𝑢 ∈ U− locally updates the received model
(e.g., with SGD) by using its own private data K𝑢;

4. the clients inU− return to 𝑆 the gradient ∇ 𝑓𝑢 (Θ);
5. the central server 𝑆 performs a weighted global aggregation of
the received local gradients and updates the model as it follows:

Θ← Θ − 𝛼
∑︁
𝑢∈U−

|K𝑢 |
|K | ∇ 𝑓𝑢 (Θ), (3.5)

where 𝛼 is the learning rate. Equivalently, the clients inU− can
compute Θ𝑢 ← Θ − 𝛼∇ 𝑓𝑢 (Θ), so that the server can build the
new Θ as:

Θ←
∑︁
𝑢∈U−

|K𝑢 |
|K | Θ𝑢. (3.6)

In principle, SGD can be applied naively to the federated optimiza-
tion problem, selecting one client per round of communication per-
forming a single batch gradient calculation. However, this approach
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would require a very large number of rounds of training to produce
good models. Therefore, FedAvg, with a little cost in wall-clock time,
involves more clients per round, each of them locally taking more SGD
steps (i.e., more local computation is added before sending the update,
thus making the algorithm more communication-efficient).

3.3.2 System Challenges in Federated Learning

Beyond the statistical challenges presented above, a federated learning
setting can encompass a wide range of other problems, mainly coming
from the massive number of devices and their limited communication
bandwidth [204]. Moreover, only a fraction of clients are available at
any one time, and their reliability is very low (e.g., because the device
becomes ineligible due to battery, network, or idleness issues). It is
interesting to notice how federated learning was originally conceived
as a cross-device architecture involving up to 1010 users’ mobile de-
vices and edge device applications, e.g., for Google’s Gboard mobile
keyboard [94].
Nonetheless, federated learning also extended towards cross-silo ar-

chitectures [110], for multiple organizations willing to train a model in
inherently sensitive domains (e.g., financial or medical). For example,
in healthcare, regulations prohibit medical institutions from sharing
medical data (e.g., to improve medical imaging performance [197]);
however, federated learning makes centralization unnecessary by allow-
ing data to remain isolated in the individual organizations while still
improving medical AI models [224]. In cross-silo federated learning,
some challenges are reduced due to the small number of participating
organizations and their computational nodes’ relatively high availability
and reliability.
To give an idea of the number of challenges and possible solutions

raised with federated learning, we can refer to the increasing number
of surveys [110, 129, 130, 133, 219] effectively organizing the vast
literature about known federated learning problems such as commu-
nication costs, resource allocation, systems heterogeneity, statistical
heterogeneity, security (e.g., model poisoning [33] and Byzantine ad-
versaries [189]), fairness, and bias.
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3.3.3 Privacy Challenges in Federated Learning

In a system with perfect privacy, each actor would learn nothing more
than the information needed to play its role. For instance, analysts
should only observe some quality metrics to decide whether to de-
ploy the model or not. End users, in turn, should only observe their
predictions and nothing else. However, providing such perfect privacy
features in machine learning systems is generally considered a tricky
and daunting activity.
Federated learning provides a strategy for decomposing the data

lifecycle in modular units that can be independently studied from the
privacy perspective.We have previouslymentioned that federated learn-
ing embodies the data minimization principle and focused collection,
which reduce the risk of data leak and offer significant privacy im-
provements over centralizing all training data. Nevertheless, the naive
definition of federated learning is not able to provide rigorous and for-
mal privacy guarantees with respect to the other privacy risks presented
in Section 3.2.
Lyu et al. [140] reviewed some privacy issues regarding federated

learning, while a wide range of works in literature focuses on improving
the privacy preservation of federated learning on private user data and
avoiding privacy leakages [138, 159, 164, 211, 213].
Indeed, depending on the malicious actor, different threats can be

presented to the federated architecture. For instance, a malicious client
or amalicious server can inspect all themessages exchanged and tamper
with the training process. An honest-but-curious server may inspect the
received gradient updates and try to infer training examples held by
the users. Analogously, engineers and analysts can observe the global
model and may potentially learn some information from that, as well
as malicious actors, may gain a black-box or white-box access to the
deployedmodel on the thousands ormillions of end devices. Techniques
from secure computation, including secure multi-party computation,
and differential privacy, a rigorous mathematical definition helping
to understand how much information about users may be eventually
disclosed, are of particular relevance to addressing these concerns.
Section 3.4 formally presents these privacy-preserving techniques and
surveys their use in privacy-preserving machine learning, with a focus
on their applicability in federated learning.
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3.3.4 Personalization with Federated Learning

Due to its distributed architecture, federated learning may allow scenar-
ios with different users running inference with different model param-
eters. On-device training and inference allow for the local personaliza-
tion of global models to better suit the needs of individual users. For
instance, a language model for next word prediction can be positively
affected by on-device personalization if we locally account for different
uses of the language. This outcome can be obtained both by fine-tuning
a global model on locally stored data [206] and enriching the model
with a variety of other user and context features.
In Chapter 6 of this thesis, we present a new federated recommender

system that integrates on the users’ devices some local extensions of
the model accounting for users’ personal feelings on the item character-
istics. We experimentally prove that such a on-device extension of the
model can provide a high degree of personalization, which contributes
to improving the recommender system’s performance.

3.4 Algorithms for Privacy Protection

In the following, we present an overview of the privacy-preserving tools
and techniques most used in machine learning for protecting models
and data against malicious actors.

3.4.1 Differential Privacy

Differential privacy [77] represents a formal mathematical definition
for quantifying and limiting information disclosure about individuals.

Definition 3.2 ((𝜖 , 𝛿)-differential privacy2). A randomized mechanism
M : N|X| → R preserves (𝜖 , 𝛿)-differential privacy if given any two
adjacent datasetsK1 andK2 (i.e., they differ by only one record3), and
for all S ⊆ R,

Pr [M(K1) ∈ S] ≤ 𝑒𝜖Pr [M(K2) ∈ S] + 𝛿 (3.7)

IfM is 𝛿 = 0, we say thatM is 𝜖-differentially private.
2 Note that, in the context of federated learning, a dataset/database K ∈ N |X | is often
represented as a collection of records from a universeX, with each entry representing
the number of elements of the universe in the database.

3 In other problems, K1 and K2 may correspond to datasets such that K2 can be
obtained from K1 by adding or subtracting all the records of a single user (user-level
differential privacy [147]).
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Notably, differential privacy provides a theoretic security guarantee
for the outcome of a function to be similar when changing or removing
one record. The degree of similarity depends on the privacy budget 𝜖 ,
where a smaller value corresponds to increased privacy. The quantity

ℓM(K1),M(K2) (𝜉) = ln
(
Pr [M(K1) = 𝜉]
Pr [M(K2) = 𝜉]

)
, (3.8)

known as privacy loss, corresponds to the actual information gain
that the attacker is obtaining about the presence of a target record
within the dataset by observing the output 𝜉. Therefore, differential
privacy can be used to resist the membership inference attack. The
𝜖-differential privacy ensures that, for every run of the randomized
mechanism, the output observed is almost equally likely to be observed
on every neighboring database (the privacy loss is limited by 𝜖). The
(𝜖 , 𝛿)-differential privacy, instead, ensures that, for all adjacent datasets
K1 and K2, the absolute value of the privacy loss will be bounded by
𝜖 with probability at least 1 − 𝛿. However, there is a probability 𝛿 to
find a database K2 such that 𝜉 is much more likely to be produced on
K2 than on K1. Informally, it corresponds to a (very small) probability
that something goes wrong with differential privacy.
The practical idea behind differential privacy is to use the random-

ized mechanism M to perturb the output of a query randomly. As a
consequence, the attacker has limited possibilities to distinguish the
presence of an individual from the query result. Typically, the mecha-
nismM works by adding noise to the output of a function according to
its sensitivity or according to an exponential distribution among a set
of discrete values. Due to its definition, the smaller the value of 𝜖 , the
higher the privacy, but the more difficult it is to realize a mechanism
with high accuracy, i.e., smaller values of 𝜖 entail accuracy degradation.

Definition 3.3 (Sensitivity). Let K1 and K2 be two adjacent datasets,
and 𝑓 : N|X| → R𝑛 a function interpreting queries thatmap a database
to 𝑛 real numbers. The sensitivity of 𝑓 is the maximum change in the
output of 𝑓 using a dataset instead of the other one:

Δ 𝑓 = max ‖ 𝑓 (K1) − 𝑓 (K2)‖ , (3.9)

where ‖·‖ is the norm of the vector. Based on the usage of 𝑙1- or 𝑙2-norm,
we refer to 𝑙1-sensitivity Δ1 𝑓 or 𝑙2-sensitivity Δ2 𝑓 .

Intuitively, the sensitivity captures the magnitude by which an indi-
vidual in the dataset can change 𝑓 in the worst case, i.e., the maximum
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contribution of a sample to the final value4. To effectively evaluate
Δ 𝑓 in the worst case, all the possible entries in the dataset should be
considered. This value gives the uncertainty in the released response
that should be introduced in order to hide the presence of a sample in
the dataset, i.e., how much the response should be perturbed.
The Laplace distribution is one of the most effective sources of noise

used for providing a mechanism with differential privacy.

Definition 3.4 (Laplace distribution). The Laplace distribution is the
distribution with probability density function:

Lap(𝑥 |𝑏) = 1
2𝑏
exp

(
− |𝑥 |

𝑏

)
, (3.10)

where 𝑏 is the scale of the random function.Hereinafter, wewill simplify
the notation with Lap(𝑏) to denote a random variable 𝑋 ∼ Lap(𝑏).

Definition 3.5 (Laplace mechanism). Given any function 𝑓 : N|X| →
R𝑛 with 𝑙1-sensitivity Δ1 𝑓 , the Laplace mechanism is defined as:

M𝐿 (K, 𝑓 , 𝜖) = 𝑓 (K) + 〈𝐿1, . . . , 𝐿𝑛〉 , (3.11)

where 𝐿𝑖 are random variables drawn from Lap(Δ1 𝑓 /𝜖).

Theorem 3.1. TheLaplacemechanism is proven to preserve 𝜖-differential
privacy.

In the following, we intuitively explain how the Laplace mechanism
noise can preserve differential privacy, according to the definition.

Example 3.1. Let us suppose our attacker wants to know about the
presence of a single user in the database and is asking how many users
in the database are older than 25. Suppose the attacker already knows
about the presence of 100 users older than 25 in the database, so the
answer 101 would reveal the presence of the target user. The sensitivity
of this counting function is 1, given that a single contributes at most
with 1 to the final count. Then, to provide (0.5, 0)-differential privacy
with Laplace mechanism, Lap

( 1
0.5

)
noise (see Figure 3.2a) should be

added to the real count.

4 In general, sensitivity should be measured according to what differential privacy
is meant to protect (e.g., the contribution of a sample in sample-level differential
privacy or the overall contribution of a user’s records in user-level differential privacy).
However, the evaluation of sensitivity is a general idea and can be otherwise modeled
for peculiar needs.
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Figure 3.2: Laplacian mechanism on the adjacent counts 100 (red) and 101
(blue). Once a value has been released, an attacker can suppose
with higher probability that it comes from the red or the blue line.

In the example above, based on the release value, the attacker could
increase or decrease his initial knowledge (see Figure 3.2b). For in-
stance, releasing the value 103, the hypothesis 101 would be more
likely. Releasing the value 98, the attacker would think of 100 as a
more likely hypothesis. Anyway, the ratio between these likelihoods
is proven to be always limited by 𝑒𝜖 , which corresponds to guarantee
(𝜖 , 0)-differential privacy.

Example 3.2. Suppose each individual can have a larger contribution
on a single count (e.g., the number of ratings left by a user on a movie
platform). Suppose that a user left five ratings so that her presence
affects the count with 5. If 𝜖 = 0.5, the distributions with Lap( 10.5 )
noise of the possible answers coming from the dataset with or without
the target user (see Figure 3.3a) are now very far, and their ratio is
limited by 𝑒5𝜖 . Thus, only (5𝜖 , 0)-differential privacy is guaranteed. To
provide (𝜖 , 0)-differential privacy and confuse the attacker, much more
noise is needed. In particular, to provide (𝜖 , 0)-differential privacy, the
Laplacian noise should be scaled by 5/𝜖 (see Figure 3.3b).

In general, the contribution of an individual may be unbounded. In
that case, the value of the function 𝑓 should be clamped to a maximum
in order to estimate the sensitivity of the function. Then, the noise can
be safely applied.
A fixed but arbitrary list of 𝑚 counting queries can be viewed as a

vector-valued query. As long as a single individual might change the
value of only one count, adding noise based on the sensitivity Δ1 𝑓 is
enough to guarantee (𝜖 , 0)-differential privacy. In case the individual
can affect every count, releasing all the counts degrades the Laplacian
mechanism to (𝑚𝜖 , 0)-differential privacy. Equivalently, answering 𝑚
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Figure 3.3: Laplacian mechanism on the adjacent counts 100 (red) and 105
(blue). Larger sensitivities require scaling the Laplacian noise.

times to the same query degrades the algorithm to (𝑚𝜖 , 0)-differential
privacy. This happens because the average of the answer given by each
instance of the mechanism will eventually converge to the true value of
the statistic. The other side of the coin is that the combination of more
differentially private mechanisms still guarantees differential privacy.
This behavior is proven by the composition theorem.

Theorem 3.2 (Composition theorem). Let M𝑖 : N|X| → R𝑖 be an
(𝜖𝑖, 𝛿𝑖)-differentially private algorithm, for 𝑖 ∈ 1, . . . ,𝑚. Then the com-
posedmechanismM : N|X| →∏𝑚

𝑖=1 R𝑖, withM(K) = 〈M1(K), . . . ,M𝑚 (K)〉,
guarantees (∑𝑚

𝑖=1 𝜖𝑖,
∑𝑚

𝑖=1 𝛿𝑖)-differential privacy.

Thus, having a privacy budget 𝜖 , it can be split between the different
answers or mechanisms that compose a more complex algorithm.
An alternative to adding Laplacian noise is to add Gaussian noise.

In this case, rather than scaling the noise to the 𝑙1-sensitivity, the 𝑙2-
sensitivity is used. This sensitivity grows much more slowly than the
𝑙1-sensitivity with respect to the number of released statistics (i.e., el-
ements of the released vector) that are affected by a single data point,
thus reducing the required noise. However, Gaussian mechanism pro-
vides (𝜖 , 𝛿)-differential privacy with 𝛿 > 0. It means that it allows for
an (extremely unlikely) distinguishing event that makes the attacker
understand whether the dataset K1 or K2 has been used. The exact
formula that gives the parameters for calibrating the Gaussian noise
based on 𝜖 , 𝛿 and Δ2 𝑓 has been first proposed by Dwork et al. [77],
then improved in Balle et al. [34].
Another way for realizing differential privacy is the exponential

mechanism. The exponential mechanism was designed for situations
in which the best response should be chosen but adding noise directly
to the computed quantity can completely destroy its value (e.g., in the
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context of the auction theory [77]) or when the output is a categorical
value (e.g., choosing the most convenient day for a meeting). Given
a quality function 𝑞 that scores the possible outcomes of a calcula-
tion, where higher scores are better, the quality function induces an
exponential distribution over the output domain, from which the expo-
nential mechanism samples the outcome to be released, while ensuring
𝜖-differential privacy.

Definition 3.6 (Exponential mechanism). Given an utility function
𝑢 : N|X| ×R → R, which maps database/output pairs to utility scores,
the exponential mechanism returns each 𝑟 ∈ R with probability pro-
portional to exp

( 𝜖𝑢(K,𝑟)
2Δ𝑢

)
, where

Δ𝑢 = max
𝑟∈R,K1,K2

‖𝑢(K1, 𝑟) − 𝑢(K2, 𝑟)‖1 , (3.12)

for any possible pair of adjacent datasets K1 and K2.

Theorem 3.3. The exponential mechanism is proven to preserve 𝜖-
differential privacy.

The applications of differential privacy to machine learning consid-
erably differ according to the potential risks, the system settings, and
the mechanism used [234]. The rationale for its application includes
limiting privacy issues due to centralization, model-inversion attacks,
attackers having the full knowledge of the training mechanism and the
model parameters or attackers making malicious inference with the
model’s inputs and outputs [234]. However, directly applying noise
within a machine learning model yields inferior performance due to
the high sensitivity of non-convex functions, which require too much
noise, and the additivity of privacy budget since iterative training pro-
cesses correspond to the composition of multiple mechanisms. Indeed,
differential privacy trades accuracy for privacy. As a possible solution
to these challenges, Abadi et al. [1] consider a centralized setting where
they clipped the objective function of a deep learning model to bound
its sensitivity and applied a moment accountant method to estimate the
consumed privacy loss. On the contrary, Shokri et al. [184] designed a
distributed deep learning model with differential privacy applied to the
parameter updates shared during training. In general, the methods pro-
posed in literature rely on adding noise to the execution process of an
existing optimization algorithm or perturbing the objective functions
of the given optimization problem.
It is clear how the system architecture and the trustworthiness of

the involved actors play a fundamental role in determining how the
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differentially private mechanism should be implemented. For instance,
in a centralized scenario with a trusted data collector, each user sends
data to the aggregator without noise, while one straightforward way to
protect the privacy of training data against external leaks is to add noise
to the trained parameters resulting from the learning algorithm or to the
final predictions. A trusted aggregator can also be present in a federated
scenario so that users do not need to send noisy gradients. This favorable
situation, known as central differential privacy, allows applying the
differentially private mechanism once, with big advantages in terms of
accuracy. On the contrary, an untrusted aggregator requires the use of
differential mechanisms before the data or the model parameters are
submitted to the server. This may also be useful when the network
layer is a potential point of failure. This model, already implemented in
commercial products [79, 193] and known as local differential privacy,
has the advantage of no longer requiring trust, but the resulting total
noise is much larger.

3.4.2 Secure Multi-Party Computation

Secure multi-party computation (SMPC) [221] is a subfield of cryptog-
raphy considering multiple parties with the objective of jointly com-
puting a function from their private inputs, without revealing them to
each other.
Secret sharing is the most important SMPC technique, allowing

to distribute the computation across multiple parties and to perform
training and inference on encrypted data (property of homomorphism).

Definition 3.7 (Secret sharing [180]). Given a secret 𝑥, secret sharing
splits it into random parts (a.k.a. shares) and distributes them to dif-
ferent parties so that each party has only one share and thus only one
piece of the secret. Depending on the specific secret sharing schemes
used, all or a known threshold of shares are needed to reconstruct the
original value of 𝑥.

The shares contain only a piece of information, which is meaningless
without a proper number of other shares. Secure multi-party computa-
tion allows to exactly reconstruct the value of 𝑥, thusmaking the process
lossless in terms of accuracy. However, the execution of such schemes
requires significant computational and communication overheads.

Definition 3.8 (Arithmetic secret sharing). Consider that a party 𝑢 ∈
U wants to share a secret 𝑥 among the parties in U in a finite field
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𝐹𝑞. To share 𝑥, the party 𝑢 randomly samples |U| − 1 values {𝑥𝑖} |U|−1𝑖=1
from Z𝑞 and sets

𝑥 |U| = 𝑥 −
|U|−1∑︁
𝑖=1

𝑥𝑖 mod 𝑞. (3.13)

The secret can be reconstructed as 𝑥 =
∑|U|

𝑖=1 𝑥𝑖 mod 𝑞.

With this scheme, |U| shares are needed to reconstruct the value of
𝑥. Thus, in arithmetic secret sharing, 𝑥 remains hidden as long as at
most |U| − 1 parties collaborate to violate the secret. Other schemes
require a smaller number of parties to reconstruct the original value,
thus accounting for parties dropping out from the protocol. For in-
stance, Shamir’s secret sharing [180] controls the minimum number 𝑅
of shares needed to reconstruct a secret 𝑥. It samples |U| points from
a polynomial 𝑓 of degree 𝑅 (with 𝑅 < |U|) with the condition that
𝑓 (0) = 𝑥. Therefore, the polynomial (and hence 𝑥) can be retrieved by
knowing just 𝑅 points.
Arithmetic secret sharing is homomorphic with respect to addition

with other encrypted values and with respect to addition and multi-
plication with non-encrypted values. This means that, once the secret
has been shared, we can perform addition with other shares and finally
retrieve the sum of the secrets.

Example 3.3. Three colleagues, Alice, Bob, and Caroline, want to
compute their average salary without revealing to each other howmuch
they earn. Suppose that Alice earns 1,000€, Bob earns 2,000€, and
Caroline receives 3,000€. To solve the problem, they share their secret
salaries as reported in Table 3.1. Each party can now locally sum (by
columns in the table) the three received secret shares, actually obtaining
a share of the sum of the three secrets. The three obtained shares can
now be reconstructed to obtain the sum of the three initial secrets
(6,000€) and their average.

Other protocols extend SMPC to support more operations. For in-
stance, SPDZ [65] introduces multiplication with the support of an
honest crypto provider. Moreover, it shifts part of the computation in
an offline preprocessing phase, thus speeding up the online phase.
A common aspect of cryptographic solutions is that operations are

often done on a finite field, which poses difficulties when representing
real numbers. To make machine learning models work with secure
multi-party computation, they must operate on normalized quantities
and rely on careful quantization.
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Table 3.1: Example of additive secret sharing for computing the average of
three salaries.

Alice Bob Caroline

Alice (1,000€) 500 € 300 € 200 €
Bob (2,000€) -800 € 1,000 € 1,800 €

Caroline (3,000€) € 3,500 € -500 €

Local sum -300 € 4,800 € 1,500 €

Global sum 6,000 €
Average 2,000 €

Most SMPC-based machine learning approaches leverage a two-
phase architecture comprising an offline phase and an online phase.
The majority of cryptographic operations are conducted in the offline
phase. Then the machine learning model is then trained in the online
phase. Secure multi-party computation fits well federated learning, for
instance, distributing arithmetic shares of the private data [150] or
guaranteeing the privacy of each user’s model gradients [42].
Nevertheless, these works are typically of practical implementation

in cross-silo settings. Porting these protocols to the cross-device setting
is not straightforward, as they require a significant amount of commu-
nication and are generally sensitive to clients dropping out [42].

3.4.3 Homomorphic Encryption

Homomorphic encryption (HE) is a cryptographical scheme allowing
certainmathematical operations to be performed directly on ciphertexts
without prior decryption. Formally, given two messages 𝑥1 and 𝑥2 in
the plaintext space X and a function Enc mapping them in a space C,

Enc(𝑥1 �X 𝑥2) ← Enc(𝑥1) �C Enc(𝑥2), (3.14)

with← meaning can obtained from. For instance, with the EncP and
DecP functions from the Pailler’s scheme [156], given two messages
𝑥1, 𝑥2 ∈ Z𝑞 and 𝑘 ∈ N, the following equalities hold:

DecP (EncP (𝑥1)EncP (𝑥2) mod 𝑛2) = 𝑥1 + 𝑥2 mod 𝑛, (3.15)
DecP (EncP (𝑥1)EncP (𝑥2) mod 𝑛2) = 𝑥1𝑥2 mod 𝑛, (3.16)
DecP (EncP (𝑥2)EncP (𝑥1) mod 𝑛2) = 𝑥1𝑥2 mod 𝑛, (3.17)
DecP (EncP (𝑥1)𝑘 mod 𝑛2) = 𝑘𝑥1 mod 𝑛. (3.18)
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Based on the supported operators, homomorphic encryptionmethods
can be divided into three categories [5]:

• partially homomorphic encryption (e.g., Paillier [156]), that can
reach additive homomorphism or multiplicative homomorphism;

• somewhat homomorphic encryption (e.g., Brakerski et al. [47]),
where operations can be applied for a limited number of times,
since noise is used;

• fully homomorphic encryption (e.g., Dijk et al. [74]), that allows
unlimited number of additions and multiplications over cypher-
texts (it performs a highly costly operation called bootstrap).

Homomorphic encryption schemes have been widely studied in ma-
chine learning algorithms. For example, Hardy et al. [95] leverage
Paillier’s scheme in secure gradient descent to train a two-party lo-
gistic regression model. Also use homomorphic encryption during
the training of logistic regression with an approximation method, im-
proving computational efficiency. Gilad-Bachrach et al. [88] proposed
CryptoNets, a homomorphic encryption-based methodology that al-
lows secure inference of encrypted queries over already trained neural
networks on cloud servers, while FedMF [57] uses Paillier’s scheme
for secure federated matrix factorization.
Homomorphic encryption shows clear advantages in machine learn-

ing, including the possibility of performing inference on encrypted data
so that themodel owner never sees the client’s private data and therefore
cannot leak it or misuse it. Moreover, homomorphic encryption does
require any kind of interactivity between the data and model owners
to perform the computation. Finally, it is lossless in terms of accuracy,
given its definition shown in Eq. 3.14. Nevertheless, the price to pay
for these advantages is a restricted set of calculations, together with a
high computational cost.
Homomorphic encryption has been usually studied with simple mod-

els like linear regression [83] or logistic regression [26, 185], since it
usually requires expensive summation and multiplication protocols and
trades efficiency for privacy. However, homomorphic protocols are of
great importance for use cases in which the central server is not trusted.
Moreover, homomorphic properties remain detrimental for implement-
ing secure multiparty computation when multiple parties want to carry
out joint computations on sensitive data.
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3.5 Privacy-Preserving Recommender Systems

Researchers have seriously considered the potential for a breach of
privacy in the recommendation process, and the wide literature observ-
ing how with some background information it is possible to infer the
individual’s rating or transaction history is evidence of this. With the
primary concern of protecting user privacy without compromising the
quality of the recommendations, many approaches have been proposed,
mainly relying on intersections of solutions ranging from architectural
paradigms, such as federated learning, to algorithmic techniques.
Federated learning is considered a promising solution for alleviat-

ing privacy problems in recommender systems. Indeed, user’s private
data are kept in the client device and only model updates are uploaded.
For instance, the paper by Ammad-ud-din et al. [9] represents one of
the first examples of federated matrix factorization. However, solutions
avoiding sharing personal data with a central server had already been
proposed before federated learning. For instance, in Shokri et al. [183],
both a local offline user profile and a centralized online user profile
exists. Users independently synchronize their online profile with the
offline profile but inject in the former also ratings coming from other
peers with which they have communicated, thus confusing an untrusted
server. Moreover, Vallet et al. [196] explored the possibility of decou-
pling matrix factorization on a local training part and a central training
part, but still considering sharing data.
Federated learning also opened the doors to more complex models,

such as the one in Lin et al. [134], leveraging the distributed architec-
ture. They consider a collaborative matrix and a meta-recommender
stored on the server and a prediction module on the user devices. The
collaborative matrix, interacting with a user embedding, generates a
collaborative vector that is fed into the meta-recommender, a neural
network that returns a private decomposition of the item latent factor
matrix. Combining the private user embedding with the reconstructed
item latent factor matrix, a local prediction neural network is able to
predict the missing ratings. Also the work by Chen et al. [60] tried to
overcome the statistical and systematic challenges of federated learning
with a shared parameterized algorithm (or meta-learner) instead of a
global model, obtaining significant improvements in terms of recom-
mendation accuracy, convergence speed, and communication cost.
Beyond federated learning, also decentralized architectures repre-

sented an essential stage for privacy-oriented recommender systems.
Chen et al. [59] proposed a decentralized approach for point-of-interest
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Table 3.2: Categorization of relevant publications on the topic of privacy-
preserving recommender systems.
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Ammad-ud-din et al. [9] X X

Shokri et al. [183] X X X

Vallet et al. [196] X X

Lin et al. [134] X X

Chen et al. [60] X X

Chen et al. [59] X X

Chai et al. [57] X X X

Canny [54] X X X X

Jeckmans et al. [108] X X X

Wang et al. [205] X X X

Polat et al. [160] X X X

McSherry et al. [149] X X

Friedman et al. [85] X X X X X

Hua et al. [103] X X X

Zhang et al. [225] X X X

Machanavajjhala et al. [141] X X X

Guo et al. [93] X X X

Kim et al. [114] X X X X

Zhang et al. [226] X X X

Zhu et al. [235] X X X

Qi et al. [161] X X X X

Kharitonov [113] X X X

recommendation in which users send each other portions of addi-
tively decomposed item embeddings. Moreover, they use a random
walk strategy to solve the trade-off between collaboration and costs
of communication. Indeed, in this kind of architecture, the further the
communication is, the more users can collaborate, but the larger is the
communication cost.
In general, architectures that shift computation to the client-side

are particularly useful for mitigating privacy risks that follow from
data retention on a centralized server. Nevertheless, some works, such
as the one by Chai et al. [57] for matrix factorization, attempted to
demonstrate that even in these scenarios, data is not safe. For instance,
they proved that by observing the gradients of subsequent iterations of
federated matrix factorization training, it is possible to reconstruct the
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user profile and then infer the ratings. Their solution considers using
encryption strategies for securely sending gradients over the network
without decreasing the performance. Canny [54] was the very first
application of securemulti-party computation to recommender systems,
with a federated or decentralized community of users computing a
public aggregate of their data. That work considered the collaborative
filtering task as an iterative calculation of the aggregate, requiring only
the addition of vectors of user data, with homomorphic encryption
to allow sums of encrypted vectors without exposing individual data.
Also Jeckmans et al. [108] considered multi-party computation for
two companies wanting to generate predictions based on a securely
computed user-to-user similarity.
The usage of encryption for preserving privacy in recommender sys-

tems is also popular in centralized models. For instance, Wang et al.
[205] proposed the encryption of the rating vector with a homomorphic
scheme to obtain predictions from a pretrained model. They also pro-
posed a fine-tuning strategy for training an encrypted model, together
with some sparsification and quantization tricks that increase the possi-
bility of obtaining similar values and then reusing some multiplicative
operations, thus reducing the costs of the homomorphic encryption.
Unfortunately, secure computations produce the same recommenda-

tions as non-private protocols, but this comes at the cost of computa-
tional overhead [54], making these protocols suitable mainly for offline
recommendations. On the other side, a significant number of works
integrated perturbation mechanisms as a computationally lightweight
solution. Polat et al. [160] proposed the first idea of data perturbation
in recommender systems in such a way that the central place can only
know the range of the data, and such range is broad enough to preserve
users’ privacy. If the number of users is significantly large, the aggregate
information of these users can be estimated with decent accuracy.
The formal idea of differential privacy was introduced for the first

time into collaborative filtering recommender systems by McSherry
et al. [149], who pioneered a study that randomized each user’s rating
before submitting it to the system. In detail, they proposed to measure
some noisy global effects of the dataset (such as global averages, item
and user averages)with carefully calibrated Laplacian noise. Then, their
work considers to center and clamp all the ratings, thus reducing the
sensitivity of the function and giving the possibility to create a noisy
covariance matrix to be used in a non-private recommender algorithm
to predict ratings. Later, Friedman et al. [85] used this approach to feed
matrix factorization, with noisy ratings clamped to limit the influence
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of excessive noise.Moreover, they studied thematrix factorization algo-
rithmwith other privatization strategies to maintain differential privacy,
such as a perturbed version of stochastic gradient descent with a cal-
ibrated Laplace noise applied to the error computed in each iteration
of the training algorithm. Alternatively, Hua et al. [103] proposed to
inject the noise directly into the objective function of matrix factoriza-
tion. However, they stated that, an untrusted server could be able to
eliminate such noise iteration after iteration performing a difference
attack. Therefore, they proposed to add additional noises, which they
proved to guarantee differential privacy. Also Zhang et al. [225] in-
jected Laplacian noise into the objective function to satisfy differential
privacy. They used the idea of k-coRating that pursues privacy by cre-
ating groups of equivalent users, eventually injecting some fake ratings
to reach the equivalence.
Machanavajjhala et al. [141] studied privacy-preserving social rec-

ommendations on the basis of a graph linking users and items. Given
the graph, they derived utility vectors that capture the utility of items
for users and wanted to keep the utility vector private. The authors con-
cluded that good recommendations were achievable only under weak
privacy parameters since privacy guarantees require modifying social
links that could have a negligible effect on the overall accuracy. This
work showed that in some settings (e.g., social recommendations), it
might be impossible to obtain privacy and accuracy guarantees simulta-
neously due to the high sensitivity of the involved functions. However,
Guo et al. [93] revised the estimation of the sensitivity, thus saving
utility also with stricter privacy requirements.
Privacy-preserving techniques have been widely applied in the do-

main of point-of-interest recommendation. Indeed, it is estimated [66]
that only four locations are enough to identify most people. Kim et
al. [114], for instance, proposed to apply differential privacy to tran-
sition patterns by perturbing them before sending them to the central
server. The point-of-interest recommender based on Markov chains
and proposed by Zhang et al. [226], instead, uses the relaxed version
of (𝜖 , 𝛿)-differential privacy by means of a protection module that re-
ceives the aggregated statistics from the database and elaborates the
queries from the recommender system answering with noisy statistics.
Beyond model-based recommender systems, Zhu et al. [235] pro-

posed differentially private neighborhood-based collaborative recom-
mendations, aiming specifically at the sybil attack presented by Calan-
drino et al. [50] claiming that if a recommendation algorithm and its
parameters are known by an attacker knowing the partial ratings his-
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tory of active user, then the attacker can infer user’s remaining rating
history. Therefore, Zhu et al. [235] considered a differentially-private
𝑘-NN algorithm, introducing randomness to the neighbors’ selection
while ensuring that, with high probability, the selected neighbors have
high similarity scores.
Other works integrated federated learning with local differential pri-

vacy. For instance, we can mention the news recommendation model
by Qi et al. [161], the work by Kharitonov [113] realizing a differen-
tially private federated online learning-to-rank system with evolution
strategy optimization.



Part II

THE SHOWCASE

Namely, my efforts, thus the successes and the failures.
In a word, my results. The Showcase is here to respond
to "Where have you been to? Which have been your path,
your climbs and descents?".





4Federated Learning for Data
Property and Control in
Recommender Systems

Outline
This chapter presents our approach to put users in complete control of
their data in a federated recommender system with learning to rank.
We move a step in the literature of recommender systems towards solu-
tions embracing the federated learning paradigm and the recent privacy
regulations. In particular, we study the behavior of our recommender
when users decide to share only a small amount of sensitive information
and how incomplete data impacts the system performance from a wide
range of perspectives.
The content of this chapter is a summary of the long paper "FedeR-

ank:UserControlled Feedbackwith Federated Recommender Systems",
presented at the 43rd European Conference on Information Retrieval,
and the short paper "How to Put Users in Control of their Data in Fed-
erated Top-N Recommendation with Learning to Rank", discussed at
the 36th ACMSIGAPP SymposiumOnApplied Computing. This work
has been also accepted for publication in the Journal of Intelligent Infor-
mation Systems within the paper "User-Controlled Federated Matrix
Factorization for Recommender Systems". Finally, some of this content
also appeared in "Federated Recommender Systems with Learning to
Rank", presented at 29th Italian Symposium on Advanced Database
Systems.

4.1 Introduction

Recommender systems have emerged as a solution to better support
users’ decision-making and promote business by recommending novel
and personalized items. These models are generally hosted on central-
ized servers and train their models by exploiting massive proprietary
and sensitive data. For instance, collaborative filtering models, which
have been the mainstream research line in the recommender system
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community over the last two decades [145, 223], need sufficient in-
domain interaction data to discover similar behavioral/preference pat-
terns in a user community. In principle, this could result in a grave threat
to users’ privacy. Moreover, the European Union, the US Congress, and
other jurisdictions legislated new disclosure laws in recent years. As an
example, in 2018, GDPR [80] was proposed by the EU that removes
the default option for collecting, storing, and harnessing individual data
and requires explicit authorization from the users to use their data. Al-
though the fundamental role played by these laws is to protect users’
privacy, the consequent data scarcity dilemma can thereby jeopardize
the training of high-quality models.
In this context, federated learnign has been proposed by Google

in recent years as a means to offer a privacy-by-design solution for
machine-learned models [116, 117, 146]. Federated learning aims to
meet machine learning privacy shortcomings by horizontally distribut-
ing the model’s training over user devices; thus, clients locally train the
global model exploiting private data without sharing it [146]. As we
have already analyzed in Section 3.3, federated learning differs from
distributed computing, since in the latter we witness a well-balanced
computational effort among devices. Instead, with federated learning,
the overall data is supposed to be massive in amount and unbalanced
between personal devices.
Recently, the benefits of federated learning in recommender systems

have led to advantages for the privacy of the users of those systems (see
Section 3.5). In this work, we introduce a novel factorization model,
called FPL (short for Federated Pair-wise Learning), that embraces the
federated learning paradigm. A disruptive effect of employing FPL is
that users participating in the federation process can decide if and how
they are willing to disclose their private sensitive preferences. Indeed,
FPL mainly leverages non-sensitive information (e.g., items the user
has not experienced). Here, we show that even only a small amount
of sensitive information (i.e., items the user has experienced) lets FPL
reach a competitive accuracy. In this work, instead of focusing on how
to protect personal information from privacy breaches (that is explored
in other active research fields), we investigate how to guarantee the
users the control and property of their data as determined by regula-
tions. Nevertheless, for the sake of completeness, we also propose both
a privacy analysis and a convergence analysis of FPL. The work’s con-
tributions are manifold due to the number of open challenges that still
exist with the federated learning paradigm and answer to the following
research questions:
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RQ1. Is it possible to integrate pair-wise learning with federated
learning principles to build a federated version of factorization mod-
els? What is the impact of federated parameters (i.e., computation
parallelism, and local computation amount) on the quality of recom-
mendation?

RQ2. The protection of the user’s feedback can put the recommen-
dation service in jeopardy. Can users receive a high-quality recommen-
dation while limiting the amount of disclosed sensitive data?

RQ3. The sequentiality of the original pair-wise algorithms can be
replicated at the price of increased communication costs. What is the
optimal (or sub-optimal) trade-off between communication costs and
recommendation utility?

RQ4. With limited training information, the recommendation al-
gorithm might learn differently and unexpectedly. Does the federated
recommendation (and the possible reduced information budget) inject
additional biases in the final recommendation?
To answer the above questions, we have carried out extensive exper-

iments by considering the accuracy of recommendation and diversity
metrics (Item Coverage and Gini Index). Afterward, we analyzed com-
munication cost and accuracy in a multi-objective perspective and fair-
ness (i.e., the Bias Disparity) of FPL recommendations. The experimen-
tal evaluation shows that FPL provides high-quality recommendations,
putting the user in control of the amount of sensitive data disclosed.

4.2 Related Work

Academia and industry have proposed several competitive recommen-
dation algorithms. Algorithms based on nearest-neighbors, latent fac-
tor models and artificial neural networks are undoubtedly the most
representative examples of the collaborative filtering systems, that ex-
tract user preference patterns in a collaborative fashion. The nearest-
neighbors scheme has shown its competitiveness for quite a long time.
The user-based scheme and the item-based scheme find the nearest user
neighbors and the nearest item neighbors based on a similarity function.
It then exploits them to predict a score for each user-item pair. Although
they use the same logic behind the scenes, user-based and item-based
schemes show their effectiveness in different contexts.
After these models, the most innovative idea to implement collabo-

rative filtering has been decomposing the user-item rating matrix and
exploiting the dot product to reconstruct the matrix and compute sim-
ilarities. This idea led to the matrix factorization technique, which is
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probably the most representative of the factorization-based recommen-
dation family. Nevertheless, several generalized/specialized variants
have been proposed, such as FM [166], SVD++ [118], PITF [170],
FPMC [168]. Unfortunately, rating-prediction-oriented optimization
has shown its limits in the recommendation research [148]. Conse-
quently, a new class of learning to rank algorithms has been developed
in the last decade, mainly ranging from point-wise [122] to pair-wise
[167], through list-wise [182] approaches. Among pair-wise methods,
BPR [167] is one of the most broadly adopted, thanks to its outstanding
capabilities to correctly rank preserving an acceptable computational
complexity. It exploits a stochastic gradient descent algorithm to learn
the relative order between positive and negative items.
As we have already discussed, recommender systems need to collect

user information related to attributes, demands, and preferences to work
properly [109]. As a rule of thumb, the accuracy of recommendations
is directly proportional to the level of detail of the gathered informa-
tion [104]. Regrettably, the more detailed the knowledge about users is
the more significant the threat to the user’s privacy becomes [39]. In
contexts like this, federated learning was introduced to learn models
from a population while learning as little as possible about individu-
als. It meets the privacy shortcomings by horizontally distributing the
model’s training over user devices [146].
In this work, we focus on the application federated learning the-

oretical and practical principles to a learning to rank recommender
system, in order to address the need for user control on data and to
meet the privacy regulations mentioned above. A federated implemen-
tation of collaborative filtering has been proposed in [9], which uses
the SVD-MF method for implicit feedback [102]. Here, the training is
a mixture of Alternating Least Squares (ALS) and Stochastic Gradi-
ent Descent (SGD) for preserving users’ privacy. However, its security
limits have been analyzed in Chai et al. [57]. Recently, the federated
learning paradigm spread to the recommendation tasks, thanks to its
capability of dealing with sensitive data. Many examples have been
proposed in Section 3.5. Nevertheless, incomprehensibly, at the time
of this research, almost no work addressed top-𝑘 recommendation ex-
ploiting the learning to rank paradigm. In this sense, one rare example
is the work by Kharitonov [113], who recently proposed to combine
evolution strategy optimization with a privatization procedure based
on differential privacy.
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4.3 Background

In this section, we introduce the fundamentals of the pair-wise learning
to rank approach in the context of the factorizationmodels. In detail, we
provide the essential mathematical background, the formal definition
of the main concepts, and the notation that is adopted in the following.
A recommendation problem is usually conceived as the activity of

finding the items of a catalog a particular user might be interested in.
Formally, letR ∈ R|U|×|I| be the user-itemmatrix where each entity 𝑥𝑢𝑖
represents an explicit or binary implicit feedback (e.g., explicit rating
or check-in, respectively) of user 𝑢 ∈ U for item 𝑖 ∈ I. In the work at
hand, an implicit feedback scenario is considered — i.e., feedback is,
e.g., purchases, visits, clicks, views, check-ins —, with R containing
binary values. Therefore, 𝑟𝑢𝑖 = 1 and 𝑟𝑢𝑖 = 0 denote either user 𝑢 has
consumed or not item 𝑖, respectively.
In FPL, the underlying data model is a factorization model, inspired

by MF [121], a recommendation model that became popular in the last
decade thanks to its state-of-the-art recommendation accuracy [40],
that we have already introduced in Section 2.2.1.2.

Definition 4.1 (Matrix Factorization). Given a set of users U, a set
of items I, and a matrix R ∈ R|U|×|I|, Matrix Factorization builds a
model Θ in which each user 𝑢 and each item 𝑖 is represented by the
embedding vectors p𝑢 and q𝑖, respectively, in the shared latent space
R 𝑓 . The core of the algorithm relies on the assumption that R can be
factorized such that the dot product between p𝑢 and q𝑖 can explain any
observed user-item interaction 𝑟𝑢𝑖, and that any non-observed interac-
tion can be estimated as:

𝑟𝑢𝑖 = 𝑏𝑖 + q𝑇
𝑖 p𝑢 (Θ), (4.1)

where 𝑏𝑖 is a term denoting the bias of the item 𝑖.

The global average 𝜇 and the user bias 𝑏𝑢 are not reported here since
their effects will be eliminated in Eq. 4.2.
Among pair-wise approaches for learning to rank the items of a

catalog, Bayesian Personalized Ranking (BPR) [167] is one of the
most broadly adopted, thanks to its capabilities to correctly rank with
acceptable computational complexity.

Definition 4.2 (Bayesian Personalized Ranking). Let K : U ×I × I
be a training set defined by K = {(𝑢, 𝑖+, 𝑖−) | 𝑟𝑢𝑖+ = 1 ∧ 𝑟𝑢𝑖− = 0}.
Bayesian Personalized Ranking is an optimization approach aiming to
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learn a model Θ that solves the personalized ranking task according to
the following optimization criterion:

max
Θ

∑︁
(𝑢,𝑖+,𝑖−)∈K

ln 𝜎(𝑟𝑢𝑖+𝑖− (Θ)) − 𝜆‖Θ‖2, (4.2)

where 𝑟𝑢𝑖+𝑖− (Θ) = 𝑟𝑢𝑖+ (Θ) − 𝑟𝑢𝑖− (Θ) is a real value modeling the rela-
tion between user 𝑢, item 𝑖+ and item 𝑖−, 𝜎(·) is the sigmoid function,
and 𝜆 is a model-specific regularization parameter to prevent overfit-
ting.

Pair-wise optimization can be applied to a wide range of recommen-
dation models, included factorization. Hereafter, we denote the model
Θ = 〈P,Q,b〉, where P ∈ R|U|× 𝑓 is a matrix whose 𝑢-th row corre-
sponds to the vector p𝑢, and Q ∈ R|I |× 𝑓 is a matrix in which the 𝑖-th
row corresponds to the vector q𝑖. Finally, b ∈ R|I | is a vector whose
element 𝑖 corresponds to the item 𝑖.

4.4 Federated Pair-wise Learning

In this section,we introduce the fundamental concepts regarding the col-
laborative filtering recommendation using a federated learning scheme.
Along with the problem definition, the notation we adopt is presented.
Hereby, we want to make the reader aware that FPL is a tool for putting
users in control of their data. In detail, here we focus on analyzing
how different levels of data disclosure affect the recommendation. Pro-
viding privacy guarantees, e.g., by incorporating FPL in dedicated
frameworks [1, 42, 57], remains out of the scope of this work.

4.4.1 Architecture

Following the federated learning principles, let U be the set of users
(clients) with a server 𝑆 coordinating them. Assume users consume
items from a catalog I and give feedback about them (as in the recom-
mendation problem of Section 4.3). 𝑆 is aware of the catalog I, while
exclusively user 𝑢 knows her own set of consumed items.
To setup the federation for FPL, a shared global model is built on the

server 𝑆, while different private local models are built on each user’s
device.

Definition 4.3 (FPL Global Model). In FPL, the server 𝑆 builds a
global model Θ𝑆 = 〈Q,b〉, where Q ∈ R|I |× 𝑓 and b ∈ R|I | are the
item-factor matrix and the bias vector introduced in Section 4.3.
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Figure 4.1: Training protocol of FPL. In the middle, item factor Matrix is sent
by the server to the federation of devices. On the left, local training
phase is represented. The local output, together with the output of
the other devices, is sent to the server. On the right, server-side,
aggregation of received updates is performed.

Definition 4.4 (FPL LocalModel). On each user 𝑢’s device FPL builds
a model Θ𝑢 = 〈p𝑢〉, which corresponds to the representation of user 𝑢
in the latent space of dimensionality 𝑓 .

Hence, in FPL, Θ𝑢 and Θ𝑆 are privately combined together. The
client produces tailored recommendations by scalar multiplying local
p𝑢 and q𝑖. Each user 𝑢 holds her own private dataset r𝑢 ∈ RI , which,
analogously to a centralized recommender system, corresponds to the
𝑢-th row of matrix R. Each FPL client 𝑢 hosts a user-specific training
set K𝑢 : U ×I × I defined by K𝑢 = {(𝑢, 𝑖+, 𝑖−) | 𝑟𝑢𝑖+ = 1 ∧ 𝑟𝑢𝑖− = 0}.
Please note that we refer to 𝑅+ =

∑
𝑢∈U |{𝑟𝑢𝑖 | 𝑟𝑢𝑖 = 1}| as the total

number of positive interactions in the system.

4.4.2 Training Procedure

The classic BPR-MF learning procedure [167] for model training can
not be directly applied to the FPL model, since we have decoupled
the representation of users and items respectively on the local devices
and the server. In the following, we show the FPL learning procedure
that is executed for a number 𝐶 of rounds of communication and
envisages Distribution to Devices → Federated Optimization →
Transmission to Server → Global Aggregation sequences between
the server and the clients. The notation {·}𝑡𝑆 denotes an object computed
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by the server 𝑆 at round 𝑡, while {·}𝑡𝑢 indicates an object computed by
a specific client 𝑢 at round 𝑡.
(1)Distribution to Devices. Let {U−}𝑡𝑆 be a subset ofU with cardinal-
ity𝑚, containing𝑚 clients 𝑢 ∈ U. The set {U−}𝑡𝑆 can be either defined
by 𝑆, or the result of a request for availability sent by 𝑆 to the clients in
U. Each client 𝑢 ∈ {U−}𝑡𝑆 receives from 𝑆 the latest snapshot of Θ𝑆,
namely {Θ𝑆}𝑡−1𝑆 .
(2) Federated Optimization. Each user 𝑢 ∈ {U−}𝑡𝑆 generates the set
{K−𝑢 }𝑡𝑢 containing 𝑇 random triples (𝑢, 𝑖+, 𝑖−) from K𝑢, with 𝑇 repre-
senting the number of local stochastic updates performed by each client
in a round. It is worth underlining that Rendle et al. [167] suggest, for a
centralized scenario, to train the recommendation model by randomly
choosing the training triples from K, to avoid data is traversed item-
wise or user-wise, since this may lead to slow convergence. Conversely,
in a federated approach, we are required to train the model user-wise.
Indeed, the learning is separately performed on each device 𝑢, that only
knows the data in K𝑢. Thanks to the user-wise traversing, FPL can
decide who controls (the designer or the user) the number of triples 𝑇
in the training set {K−𝑢 }𝑡𝑢, to tune the degree of local computation, i.e.
howmuch the sampling is user-wise traversing. As a consequence, their
updates are independent and computed in parallel, unlike in stochastic
centralized learning.
With the local training set, the user 𝑢 can compute her contribution

to the overall optimization of Θ𝑆 with the following update:

{ΔΘ𝑆}𝑡𝑢 :=
∑︁

(𝑢,𝑖+,𝑖−)∈{K−𝑢 }𝑡𝑢

𝜕

𝜕{Θ𝑆}𝑡−1𝑆

ln 𝜎(𝑟𝑢𝑖+𝑖− ({Θ𝑆}𝑡−1𝑆 ; {Θ𝑢}𝑡−1𝑢 )),

(4.3)

plus a regularization term. At the same time, the client 𝑢 updates its
local model Θ𝑢, and incorporates it in the current model by using:

{ΔΘ𝑢}𝑡𝑢 :=
∑︁

(𝑢,𝑖+,𝑖−)∈{K−𝑢 }𝑡𝑢

𝜕

𝜕{Θ𝑢}𝑡−1𝑢

ln 𝜎(𝑟𝑢𝑖+𝑖− ({Θ𝑆}𝑡−1𝑆 ; {Θ𝑢}𝑡−1𝑢 )),

(4.4)

plus a regularization term. In detail, given:

{𝑟𝑢𝑖+𝑖−}𝑡𝑢 := 𝑟𝑢𝑖+𝑖− ({Θ𝑆}𝑡−1𝑆 ; {Θ𝑢}𝑡−1𝑢 )
= [{𝑏𝑖+}𝑡−1𝑆 + ({p𝑢}𝑡−1𝑢 )𝑇 · {q𝑖+}𝑡−1𝑆 ]
− [{𝑏𝑖−}𝑡−1𝑆 + ({p𝑢}𝑡−1𝑢 )𝑇 · {q𝑖−}𝑡−1𝑆 ],

(4.5)
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and following Rendle et al. [167], the client 𝑢 can compute:

𝜕

𝜕𝜃
{𝑟𝑢𝑖+𝑖−}𝑡𝑢 =



({q𝑖+}𝑡−1𝑆 − {q𝑖−}𝑡−1𝑆 ) if 𝜃 = {p𝑢}𝑡−1𝑢 ,

{p𝑢}𝑡−1𝑢 if 𝜃 = {q𝑖+}𝑡−1𝑆 ,

−{p𝑢}𝑡−1𝑢 if 𝜃 = {q𝑖−}𝑡−1𝑆 ,

1 if 𝜃 = {𝑏𝑖+}𝑡−1𝑆 ,

−1 if 𝜃 = {𝑏𝑖−}𝑡−1𝑆 .

(4.6)

At the end of the federated computation, given a shared learning rate
𝛼, each client can update its local model Θ𝑢 — containing the user
profile — by aggregating the computed update:

{Θ𝑢}𝑡𝑢 := {Θ𝑢}𝑡−1𝑢 + 𝛼{ΔΘ𝑢}𝑡𝑢. (4.7)

(3) Transmission to Server. In a purely distributed architecture, each
user in {U−}𝑡𝑆 returns to 𝑆 the computed update. Here, instead of
sending {ΔΘ𝑆}𝑡𝑢, each user transmits a modified version {ΔΘΦ

𝑆 }𝑡𝑢. To
introduce this aspect of FPL, let us define F = {𝑖+, ∀(𝑢, 𝑖+, 𝑖−) ∈
{K−𝑢 }𝑡𝑢}, and a randomized object Φ =

〈
QΦ,bΦ

〉
, with QΦ ∈ R|I |× 𝑓 ,

and bΦ ∈ R|I |. Each row qΦ
𝑖 ofQΦ and each element 𝑏Φ𝑖 of bΦ assume

their value according to the probabilities:

𝑃(qΦ
𝑖 = 1, 𝑏Φ𝑖 = 1 | 𝑖 ∈ F ) = 𝜋,

𝑃(qΦ
𝑖 = 0, 𝑏Φ𝑖 = 0 | 𝑖 ∈ F ) = 1 − 𝜋,

𝑃(qΦ
𝑖 = 1, 𝑏Φ𝑖 = 1 | 𝑖 ∉ F ) = 1

(4.8)

Based on {QΦ}𝑡𝑢 and {bΦ}𝑡𝑢, ΔΘΦ
𝑆 can be computed as it follows:

{ΔΘΦ
𝑆 }𝑡𝑢 = {ΔΘ𝑆}𝑡𝑢 � {Φ}𝑡𝑢 :=

〈{ΔQ}𝑡𝑢 � {QΦ}𝑡𝑢, {Δb}𝑡𝑢 � {bΦ}𝑡𝑢
〉
,

(4.9)

where the operator � denotes the Hadamard product. This transforma-
tion is motivated by a possible privacy issue. The update ΔQ computed
in Eq. 4.3 by user 𝑢 is a matrix whose rows are non-zero in correspon-
dence of the items 𝑖+ and 𝑖− of all the triples (𝑢, 𝑖+, 𝑖−) ∈ K−𝑢 [167]. An
analogous behavior can be observed for the elements ofΔb. Focusing on
the non-zero elements, we observe that, for each triple (𝑢, 𝑖+, 𝑖−) ∈ K−𝑢 ,
the updates {Δq𝑖+}𝑡𝑢 and {Δq𝑖−}𝑡𝑢, as well as {Δ𝑏𝑖+}𝑡𝑢 and {Δ𝑏𝑖−}𝑡𝑢, show
the same absolute value with opposite sign [167]. In fact, sharing all
the updates may lead to a significant users’ private data disclosure that
may lead to a privacy issue if the server 𝑆 is honest-but-curious. On
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the one hand, each pair of updates for a consumed item 𝑖+ and for a
non-consumed item 𝑖− contains equal but opposite gradients. Thus, if
the user 𝑢 sends all of them to 𝑆, they may reveal patterns of like/dislike
user tastes. On the other hand, items rated by a user are more likely
to be sampled and their corresponding vectors to be updated, thus al-
lowing the server 𝑆 to reconstruct, after some epochs, part of the user
datasetK𝑢. Section 4.4.4 goes deeper into the details of these and other
weaknesses. Since our primary goal is to put users in control of their
data, we leave users the possibility to choose a fraction 𝜋 of positive
item updates to send. The remaining positive item updates (a fraction
1 − 𝜋) are masked by setting them to zero, by means of the transfor-
mation in Eq. 4.9. Conversely, the negative updates are always sent to
𝑆, since their corresponding rows are always multiplied by a 1 vector.
Indeed, these updates are related to non-consumed items, which are in-
distinguishably negative or missing values, assumed to be non-sensitive
data.
(4)Global Aggregation. Once 𝑆 has received {ΔΘΦ

𝑆 }𝑡𝑢 from all clients
𝑢 ∈ {U−}𝑡𝑆, it aggregates the received updates in {Q}𝑡−1𝑆 and {b}𝑡−1𝑆 to
build the new global model, with 𝛼 being the learning rate:

{Θ𝑆}𝑡𝑆 := {Θ𝑆}𝑡−1𝑆 + 𝛼
∑︁

𝑢∈{U−}𝑡
𝑆

{ΔΘΦ
𝑆 }𝑡𝑢. (4.10)

Intuitively, each row of {Q}𝑡𝑆 and each element of {b}𝑡𝑆 are obtained
by summing up to {Q}𝑡−1𝑆 and {b}𝑡−1𝑆 the contribution of all clients in
{U−}𝑡𝑆 for the corresponding item.
FPL reshapes the training scheme of centralized BPR-MF. However,

it does not affect the computation for the model optimization, thus
FPL has the same computational complexity of BPR-MF. Nonetheless,
it is important to consider that some hyperparameters, analyzed in
Section 4.4.3, can affect the convergence of FPL, increasing/decreasing
the computation and communication costs.

4.4.3 Convergence Analysis of FPL

Unlike other learning paradigms, in federated learning, the training data
is not independent and identically distributed (non-IID). The user’s lo-
cal data is not representative of the overall data distribution. Therefore,
one cannot replace them with samples drawn from the overall distri-
bution. In 2020, Li et al. [131] have shown that, given 𝐿-smooth and
𝜇-strongly convex local losses like BPR, a federated optimization based
on averaging of local parameters converges to the global optimum with
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a convergence rate of O( 1𝐶𝑇 ). FPL may converge to a sub-optimal solu-
tion at least Ω(𝛼(𝑇 − 1)) away from the optimal one if weight decay is
not considered. The number of rounds needed to reach a target perfor-
mance is a function of the number of local epochs 𝑇 , both linearly and
inversely dependent on it [131]. Therefore, over-small and over-large
values of 𝑇 may lead to a large number of rounds of communication.
In particular, if data is non-IID and 𝑇 exceeds O(𝐶𝑇), convergence is
not guaranteed, since the sum of local minima may not correspond to
the global minimum. If sampling probabilities are highly non-uniform
across the users, convergence may be slower [232]. However, some
novel schemes have been recently proposed to address this issue [131],
and we will test them in future investigations. Finally, under the non-
IID setting, the convergence rate has a weak dependence on the size
of U−. In practice, the participation ratio can be set small or large,
according to the communication requirements and without affecting
FPL convergence.

4.4.4 Privacy Analysis of FPL

Section 4.4 starts by stating that FPL has not been conceived to be a
privacy-preserving framework.Rather, it is a tool to control the trade-off
between (potentially) exposed sensitive data and the recommendation
quality. Federated learning hides, by design, users’ raw data to the
server: the updates sent by clients are anonymously aggregated, and
only the aggregated information is deployed. Nevertheless, some mali-
cious actors might still try to learn sensitive information if they have
access to parts of the system, as already discussed in Section 4.4.2.
For this reason, federated learning alone is not considered to provide
privacy guarantees to users. FPL is a federated recommender system
fed by implicit feedback. Consequently, providing privacy guarantees
implies that the existence of each transaction in the user’s history must
be kept secret. With reference to Eq. 4.6, suppose a pair of positive and
negative items 𝑖+ and 𝑖−. Simplifying the notation and focusing on a
single latent factor ℎ, the values of Δq𝑡

𝑖+ and Δq𝑡
𝑖− could be rewritten as:

Δq𝑡
𝑖+,ℎ = p𝑡−1

𝑢,ℎ𝜎(p𝑡−1
𝑢,ℎ · (q𝑡−1

𝑖+,ℎ − q𝑡−1
𝑖−,ℎ)), (4.11)

Δq𝑡
𝑖−,ℎ = −p𝑡−1

𝑢,ℎ𝜎(p𝑡−1
𝑢,ℎ · (q𝑡−1

𝑖+,ℎ − q𝑡−1
𝑖−,ℎ)), (4.12)

where 𝜎(·) returns values in the range (0, 1). These equations show
that the modules of Δq𝑡

𝑖+,ℎ and Δq𝑡
𝑖−,ℎ (that have to be sent to the server)

are identical, while their signs are opposite. Moreover, the sign of the
update depends on both the existence/absence of a transaction for 𝑘 and



62 FL for Data Property and Control in RSs

on 𝑠𝑔𝑛(p𝑡−1
𝑢,ℎ ). Therefore, the sign of a gradient does not directly reveal

the presence or absence of an item in the user’s training set, but the pairs
of positive and negative gradients disclose user preference patterns. In
a round of communication, all the updates for the consumed items
share the same sign, as well as all the updates for the non-consumed
items have the same positive or negative sign, depending on 𝑠𝑔𝑛(p𝑡−1

𝑢,ℎ ).
Suppose the server 𝑆 is a honest-but-curious agent, i.e., it may try to
inspect the updates to obtain some user information. Let us assume
that, as soon as it obtains enough information adequate to identify
one or more consumed/non-consumed items, the entire user dataset
will be exposed. To avoid this problem, FPL puts users in control of
their data. If the users adopt the privacy-oriented masking procedure
discussed in Section 4.4.2, they can decide the fraction of updates for
positive items to send. In the case of exposure of the user transactions,
only a fraction (actively decided by the users) is given up. This work
studies and analyzes the recommendation performance in this data
scarcity scenario. While we do not explicitly define a user-specific
protocol for privacy level tuning, the system allows both possibilities:
the system designer defines a fixed portion of data users should share,
or users actively decide the fraction of data to share. For instance, the
users might choose among a set of privacy/accuracy trade-off levels, as
already happens with location data in some commercial products. If a
user is not satisfied with the accuracy performance, she might modify
the privacy/accuracy trade-off level at any moment.
Other possible issues, like active reconstruction of the user profile,

are not considered here and are out of the scope of this work. However,
federated learning literature already provides privacy protocols like
differential privacy and cryptographic methods. They have been proven
to guarantee user privacy, FPL architecture has been explicitly designed
to work with them.

4.5 Experimental Setup

In this section,we introduce the experimental setting designed to answer
the research questions.

4.5.1 Datasets

The evaluation of FPL needs to meet some particular constraints: the
availability of transaction data to obtain a reliable experimental setting
and a domain that guarantees the presence of data the user may prefer to
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Table 4.1: Characteristics of the evaluation datasets used in the offline experi-
ment: |U| is the number of users, |I | the number of items, 𝑅+ the
number of records.

Dataset |U| |I| 𝑅+ 𝑅+
|U |

𝑅+
|I |

𝑅+
|L | · |U |%

Brazil 17,473 47,270 599,958 34.34 12.69 0.00073%
Canada 1,340 29,518 63,514 47.40 2.15 0.00161%
Italy 1,353 25,522 54,088 39.98 2.20 0.00157%
Amazon DM 1,835 41,488 75,932 41.38 1.83 0.000997%
LibraryThing 7,279 37,232 749,401 102.95 20.13 0.002765%
MovieLens 1M 6,040 3,706 1,000,209 165.60 269.89 0.044684%

protect. Following these constraints, we believe that an optimal domain
to test FPL would be that of the Point-of-Interest (PoI), which concerns
data that users usually perceive as sensitive. Among the many available
datasets, a very good candidate is the Foursquare dataset [218]. In fact,
it is often considered as a reference for evaluating PoI recommendation
models. To mimic a federation of devices in a single country, we have
extracted check-ins for three countries, namely Brazil, Canada, and
Italy. While selecting the different countries, our only constraint was
to obtain datasets with different size/sparsity characteristics. Hence,
we choose three countries in three different regions of the world. Fur-
thermore, we have investigated the performance of FPL considering
three well-known datasets in recommendation: Amazon Digital Mu-
sic [144], LibraryThing [230], and MovieLens 1M [96]. The former
includes the users’ satisfaction explicit feedback for a catalog of mu-
sic tracks available with Amazon Digital Music service. LibraryThing
collects the users’ ratings on a book catalog. The latter is MovieLens
1M dataset, which collects users’ ratings in the movie domain. To fairly
evaluate FPL against the baselines, we have kept users with more than
20 interactions1. Moreover, we have split the datasets by adopting a
realistic temporal hold-out 80-20 splitting on a per-user basis [25, 91].
The resulting training and test sets have been used with all the meth-
ods in comparison, including the state-of-the-art algorithms. Table 4.1
shows the characteristics of the resulting training sets adopted in the
experiments.

1 The limitations of collaborative filtering in a cold-start user setting are well-known
in literature. However, they are beyond the scope of this work.
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4.5.2 Collaborative Filtering Baselines

To evaluate the efficacy of FPL, we have conducted the experiments
by considering non-personalized methods (random and most popular
recommendation), and different recommendation approaches, includ-
ing the centralized BPR-MF implementation [167], User-kNN and
Item-kNN [119], VAE [132], and FCF [9], which is, to date, the only
federated recommendation approach based onMF2. Following [64], we
considered only VAE as representative of the neural approaches.
To evaluate the impact of exploiting only a partial user feedback on

recommendation accuracy, we have evaluated different values of 𝜋 in
[0.0, 1.0] with step 0.1, with 𝜋 = 0.0 meaning that 𝑢 is not sharing any
positive feedback with the server, and 𝜋 = 1.0 meaning that 𝑢 is sharing
the updates on all positive items. Hence, we have considered four
different configurations regarding computation and communication:

• sFPL: it reproduces the centralized stochastic learning, where the
central model is updated sequentially; thus, we set |{U−}𝑡𝑆 | = 1
for all values of 𝑡 to involve just one random client 𝑢 in each
round 𝑡, and it extracts solely one triple (𝑢, 𝑖+, 𝑖−) from its dataset
K𝑢 for the training phase, i.e., |{K−𝑢 }𝑡𝑢 | = 𝑇 = 1;

• sFPL+: we increase client local computation by raising to 𝑅+
|U|

the number of triples𝑇 extracted fromK𝑢 by each client involved
in the round of communication;

• pFPL: we enable parallelism by involving all clients in each
round of communication ({U−}𝑡𝑆 = U for each 𝑡) and we keep
𝑇 = 1;

• pFPL+: we extend pFPL by letting each client sample 𝑇 = 𝑅+
|U|

triples from K𝑢; the rationale is that the overall training samples
are exactly 𝑅+, as in centralized BPR-MF.

Rendle et al. [167] suggest to set the number of triples used for training
in one epoch of BPR to 𝑅+. This corresponds to the number of total num-
ber of positive interactions in the system. Therefore, the federated train-
ing is comparable to BPR when 𝑅+ optimization steps are performed.
To this extent, we introduce the number of rounds of communication
per epoch (rpe). Consequently, FPL computation after rpe rounds is
comparable to one epoch of centralized BPR when |U− | ·𝑇 · rpe = 𝑅+.

2 Since no source code is available, we implemented it from scratch and considered it
in the reader’s interest.
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This results in rpe = 𝑅+ for sFPL, rpe = |U| for sFPL+, rpe = 𝑅+
|U| for

pFPL, and rpe = 1 for pFPL+.

4.5.3 Reproducibility

For what regards the splitting strategy, we have adopted a temporal
hold-out 80/20 to separate our datasets in training and test set. More-
over, to find the most promising learning rate 𝛼, we have further split
the training set, adopting a temporal hold-out 80-20 strategy on a user
basis to extract her validation set. User-kNN and Item-kNN have
been experimented for 𝑘 ∈ {10, 20, ..., 10} considering Cosine Vector
Similarity. VAE has been trained by considering three autoencoder
topologies, with the following number of neurons per layer: 200-100-
200, 300-100-300, 600-200-600. We have chosen candidate models by
considering the best models after training for 50, 100, and 200 epochs,
respectively. For the factorization models, we have performed a grid
search in BPR-MF for 𝛼 ∈ {0.005, 0.05, 0.5} varying the number of la-
tent factors in {10, 20, 50}. Then, to ensure a fair comparison, we have
exploited the same learning rate and number of latent factors to train
FPL andFCF, and we explored themodels in the range of {10, . . . , 50}
iterations. We have set user- and positive item-regularization parameter
to 1
20 of the learning rate. The negative item-regularization parameter

is 1
200 of the learning rate, as suggested in mymedialite

3 implementa-
tion as well as by Anelli et al. [23]. We made the implementation of
FPL publicly available4. Moreover, it will be soon integrated into the
reproducibility framework Elliot [13].

4.5.4 Evaluation Metrics

The RQs (see Section 4.1) cover a broad spectrum of different recom-
mendation dimensions. To this end, we have decided to measure several
metrics to evaluate the approaches under the different perspectives.

Accuracy The accuracy of the models is measured by exploiting preci-
sion (𝑃@𝑘) and recall (𝑅@𝑘). They respectively represent, for
each user, the proportion of relevant recommended items in the
recommendation list, and the fraction of relevant items that have
been altogether suggested. Section 2.2.4.1 goes deeper into the
details of these metrics. We have assessed the statistical signifi-

3 http://www.mymedialite.net/
4 https://split.to/sisinflab-fpl

http://www.mymedialite.net/
https://split.to/sisinflab-fpl
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cance of results by adopting Student’s paired 𝑡-test considering
p-values < 0.055.

Beyond-Accuracy To measure the diversity of recommendations, we
have measured the Item Coverage (IC@𝑘), and the Gini Index
(𝐺@𝑘). IC provides the number of diverse items recommended
to users. It also conveys the sense of the degree of personaliza-
tion [6]. Gini (𝐺) is a metric about distributional inequality. It
measures how unequally different items a RS provides users with
[56]. In the formulation adopted [91], a higher value of 𝐺 corre-
sponds to higher personalization. See Section 2.2.4.2 for further
details.

Fairness The problem of unfair outputs in machine learning applica-
tions is well studied [46, 76] and also it has been extended to
recommender systems [142]. In detail, in this work, we check
whether items belonging to specific groups have equal chance
to be shown in the recommended lists. In order to do that, we
measure bias disparity (𝐵𝐷) [142] for groups of items. With
this metric we quantify, for each category of items, the devation
of the proposed recommendations from the initial dataset bias.
Section 2.2.4.3 thoroughly presents this metric.

4.6 Results and Discussion

In this Section, we focus on the different experiments conducted to ex-
plore the dimensions covered by the Research Questions (see Section
4.1). First, to position FPL with respect to the baselines, we analyze
the accuracy, beyond-accuracy, and bias disparity of the recommen-
dations. Once the analysis is completed, we investigate the impact of
communication costs, and we study the multi-objective optimization of
maximizing the accuracy while minimizing the communication costs.
To this extent, we have explored the Pareto frontier, considering the two
different dimensions.

4.6.1 Recommendation Accuracy

To answer RQ1, we want to assess whether it is possible to obtain a
recommendation performance comparable to a centralized pair-wise
learning approach while allowing the users to control their data. In this

5 The complete results are available in the implementation repository.
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Table 4.2: Results of accuracy metrics for baselines and FPL on the three
datasets. For each configuration of FPL and for each dataset, the
experiment with the best 𝜋 is shown (see the bottom part for details).
For all metrics, the greater the better. Among federated algorithms,
the best performance is in boldface.

Brazil Canada Italy
P@10 R@10 P@10 R@10 P@10 R@10

Ce
nt

ra
liz

ed

Random 0.00013 0.00015 0.00030 0.00035 0.00030 0.00029
Top-Pop 0.01909 0.02375 0.04239 0.04679 0.04634 0.05506
User-kNN 0.10600 0.13480 0.07639 0.07533 0.06881 0.07833
Item-kNN 0.07716 0.09607 0.04006 0.03881 0.04663 0.05356
VAE 0.10320 0.13153 0.06060 0.06317 0.10421 0.21324
BPR-MF 0.07702 0.09494 0.03694 0.03650 0.04560 0.05458

Fe
de

ra
te

d FCF 0.03089 0.03749 0.03724 0.03836 0.03126 0.03708
sFPL 0.07757 0.09581 0.04515 0.04550 0.04701 0.05600
sFPL+ 0.08682 0.11004 0.05701 0.05665 0.05595 0.06229
pFPL 0.07771 0.09582 0.04582 0.04637 0.04642 0.05465
pFPL+ 0.08733 0.11085 0.05761 0.05755 0.05565 0.06291

Amazon DM LibraryThing MovieLens 1M
P@10 R@10 P@10 R@10 P@10 R@10

Ce
nt

ra
liz

ed

Random 0.00005 0.00005 0.00054 0.00028 0.00871 0.00283
Top-Pop 0.00469 0.00603 0.05013 0.03044 0.10224 0.03924
User-kNN 0.01940 0.02757 0.14193 0.10115 0.12613 0.06701
Item-kNN 0.02147 0.03171 0.20214 0.14778 0.08873 0.05475
VAE 0.01580 0.02289 0.10834 0.07711 0.11735 0.06192
BPR-MF 0.00921 0.01298 0.07009 0.04303 0.11911 0.05817

Fe
de

ra
te

d

FCF 0.00839 0.01222 0.10760 0.04392 0.10760 0.04392
sFPL 0.00610 0.00889 0.06309 0.03738 0.11805 0.05902
sFPL+ 0.01422 0.02060 0.08512 0.05627 0.11599 0.05571
pFPL 0.00812 0.01165 0.06210 0.03643 0.12275 0.05806
pFPL+ 0.01351 0.01970 0.07691 0.04965 0.11217 0.05030

respect, Table 4.2 shows the accuracy results of the comparison be-
tween the state-of-the-art baselines and the four configurations of FPL
presented in Section 4.5. By focusing on accuracy metrics, we may
notice that VAE outperforms the other approaches in the three datasets.
However, who is familiar withVAEknows that, since it restricts training
data by applying k-core, it does not always produce recommendations
for all the users. With regards to User-kNN, we notice that it outper-
forms all the other approaches in all the datasets but Amazon Digital
Music and LibraryThing, where Item-kNN performs better. The per-
formance of Item-kNN and BPR-MF approximately settle in the same



68 FL for Data Property and Control in RSs

range of values, except for Amazon Digital Music and LibraryThing,
where BPR-MF works significantly worse.
Moreover, it is important to investigate the differences of FPL with

respect to BPR-MF, which is a pair-wise centralized approach, being
FPL the first federated pair-wise recommender based on a factorization
model. The performance of BPR-MF against FPL, in the configuration
sFPL, shows how precision and recall in sFPL are slightly outper-
forming BPR-MF with Foursquare datasets. The consideration that the
performance is comparable is surprising since the two methods share
the sequential training, but sFPL exploits a 𝜋 reduced to 0.5, 0.1, and
0.4, respectively, for Brazil, Canada, and Italy. This behavior is more
evident in Figure 4.2, where the harmonic mean between precision and
recall (F1) is plotted for different values of 𝜋. If we look at the dark
blue line with squares, we may observe how the best result does not
correspond to 𝜋 = 1. We can also note that sFPL outperforms BPR-
MF with MovieLens 1M, but it remains at about 67% and 88% of the
centralized algorithm for Amazon Digital Music and LibraryThing, re-
spectively. Compared to FCF, FPL generally behaves better or similarly
and preserves privacy to a greater extent, since sharing gradients of all
rated items in FCF can result in a data leak [57].
In the last three rows of Table 4.2, we explore an increasing of

the local computation (sFPL+), or an increased parallelism (pFPL),
or a combination of both (pFPL+). In detail, we observe that sFPL+
takes advantage of the increased local computation, and FPL signif-
icantly outperforms BPR-MF for five over six datasets; for instance,
for Canada, we observe an interesting increase in precision, while for
Amazon Digital Music and LibraryThing improves accuracy metrics of
about 50% and 25% with respect to BPR-MF. It is worth noticing that
these results partially contradict Rendle et al. [167] since they hypoth-
esize that traversing user-wise the training triples would worsen the
recommendation performance. The same accuracy improvements are
not visible in MovieLens 1M, where we witness results comparable or
worse than BPR-MF, probably due to the overfitting caused by the very
high ratio between ratings and items. Instead, when comparing pFPL
with sFPL, we observe that the increased parallelism does not affect the
performance significantly. Even then, the increased local computation
boosts the Precision and Recall performance, up to 24% for precision
in the Italy dataset. The results confirm RQ1, since the proposed system
can generate recommendations with a quality that is comparable with
the centralized pair-wise learning approach. Moreover, the increased
local computation causes a considerable improvement in the accuracy
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Figure 4.2: F1 performance at different values of 𝜋 in the range [0.1, 1]. The
colors represent the four configurations: blue squares refer to sFPL,
green squares to sFPL+, blue circles to pFPL, and green circles to
pFPL+.

of recommendations. On the other side, the training parallelism does
not significantly affects results. Finally, when the local computation is
combined with parallelism, the results show a further improvement.
To answer RQ2, we varied 𝜋 in the range [0.1, . . . , 1.0] to assess

how removal of the updates for consumed items affects the final rec-
ommendation accuracy, and we plotted the accuracy performance by
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considering 𝐹1 in Figure 4.2. As previously observed, the best perfor-
mance rarely corresponds to 𝜋 = 1. On the contrary, a general trend
can be observed: the training reaches a peak for a certain value of 𝜋—
depending on the dataset —, and then the system performance decays
in accuracy when increasing the value of 𝜋. In rare cases, e.g., sFPL,
and pFPL for Brazil and LibraryThing, the decay is absent, but results
that are very close for different values of 𝜋. The general behavior sug-
gests that the system learning exploits the updates of positive items
to absorb information about popularity. This consideration is coherent
with the mathematical formulation of the learning procedure, and it
is also supported by the observation that for Canada and Italy FPL
reaches the peak before with respect to Brazil. Indeed, Canada and
Italy datasets are less sparse than Brazil, and the increase of informa-
tion about positive items may lead to push up too much the popular
items (this is a characteristic of pair-wise learning), while the same
behavior in Brazil can be observed for values of 𝜋 very close to 1.
The same mathematical background, for sFPL+ and pFPL+ with Brazil
dataset, which is very sparse, explains the higher value of 𝜋 needed to
reach good performance. Here, the lack of positive information with
a vast catalog of items, confuses the training that cannot exploit item
popularity. A similar behavior is observable in MovieLens 1M, where
FPL shows accuracy performance extremely close to the best value by
sharing only 10% of positive interactions. This behavior may be due
to several reasons. Firstly, MovieLens1M is a relatively dense dataset
in the recommendation scenario (it has a sparsity of 0.955). Secondly,
it shows a very high user-item ratio [8] (i.e., 1.63) compared to Ama-
zon Digital Music (0.04), and LibraryThing (0.20), and it shows high
values for the average number of ratings per user (132.87), and ratings
per item (216, 56). All these clues suggest that the system learns how
to rank items even without the need for the totality of ratings. Now,
we can positively answer to RQ2: user can receive high-quality recom-
mendations also when she decides to disclose a small amount of her
sensitive data. However, it should be noted that the more the dataset is
sparse, the more the amount of sensitive data should be large.

4.6.2 Accuracy or Diversity: Analysis of the Trade-Off

In Table 4.3,we have depicted the diversitymetrics results of each exper-
iment, i.e., item coverage, and Gini Index. What immediately catches
our attention is an increase in IC and Gini in accord with the increase of
local computation, except forMovieLens 1M. In this sense, FPL shows
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Table 4.3: Results of beyond-accuracy metrics for baselines and FPL on the
six datasets. For each configuration of FPL and for each dataset,
the experiment with the best 𝜋 is shown (see the bottom part for
details). For all metrics, the greater the better. Among federated
algorithms, the best performance is in boldface.

Brazil Canada Italy
IC@10 G@10 IC@10 G@10 IC@10 G@10

Ce
nt

ra
liz

ed

Random 46120 0.70946 10815 0.26809 10478 0.28914
Top-Pop 19 0.00020 18 0.00030 19 0.00035
User-kNN 3083 0.01159 609 0.00321 577 0.00282
Item-kNN 16535 0.07449 4393 0.05404 3241 0.03293
VAE 5503 0.02117 1044 0.00652 165 0.02336
BPR-MF 2552 0.00756 1216 0.00998 19 0.00036

Fe
de

ra
te

d FCF 911 0.00095 504 0.00174 403 0.00158
sFPL 1581 0.00561 451 0.00243 18 0.00036
sFPL+ 5200 0.01449 1510 0.01259 932 0.00789
pFPL 2114 0.00638 425 0.00213 96 0.00056
pFPL+ 3820 0.01106 1214 0.00981 936 0.00725

Amazon DM LibraryThing MovieLens 1M
IC@10 G@10 IC@10 G@10 IC@10 G@10

Ce
nt

ra
liz

ed

Random 14186 0.28069 31918 0.60964 3666 0.85426
Top-Pop 24 0.00023 36 0.00031 118 0.00569
User-kNN 4809 0.04115 3833 0.01485 737 0.04636
Item-kNN 4516 0.03801 12737 0.09979 2134 0.19292
VAE 3919 0.04179 7800 0.04638 1476 0.09259
BPR-MF 739 0.00415 3082 0.01359 1444 0.08508

Fe
de

ra
te

d FCF 2655 0.01861 829 0.01305 829 0.01305
sFPL 349 0.00136 1650 0.00512 1041 0.06608
sFPL+ 2586 0.02153 5404 0.02784 1326 0.02513
pFPL 1052 0.00737 1895 0.00760 901 0.04933
pFPL+ 2614 0.02163 5912 0.03133 792 0.01451

a consistent prominence on BPR-MF. This performance is motivated
by mere observation of the algorithm. By increasing local computa-
tion, each client compares each positive item with a significantly larger
number of negative samples (i.e., wider spread).
For the Foursquare datasets, we have also explored the values of IC

against the values of precision for each dataset and for each configura-
tion while varying the parameter 𝜋. In Figure 4.3, we plot these values
by considering increasing 𝜋 in the direction of the arrows. The plots
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Figure 4.3: Item Coverage (IC@10) versus Precision (P@10) with cutoff 10.
The colors represent the four configurations: blue squares refer to
sFPL, green squares to sFPL+, blue circles to pFPL, and green
circles to pFPL+. The white points denote 𝜋 = 1.0 to specify the
direction of increasing 𝜋.

unveil that, for Canada and Italy, by increasing the local computation
(sFPL+ and pFPL+), the plots develop rightwards, i.e., a significant IC
increase. Although such an increase may lead to low precision (as in the
random recommender), we observe that the same configurations also
push up the value of precision, so that the green points are positioned at
the top of the plots. We also note that the value of 𝜋 affects more IC in
configurations with high computation than those with low computation.
However, while IC seems to increase when increasing 𝜋, precision fol-
lows the previously described behavior. At first glance, Brazil seems to
behave differently from the other datasets. Even here, we may discern
a better combination of IC and precision for configurations with high
computation. FPL needs to reach a higher value of 𝜋 to witness a high
precision and high IC. This behavior was also evident in the accuracy
analysis, considering the different values of 𝜋.
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Figure 4.4: Normalized number of item updates during the training: the 1,000
most updated items for different values of 𝜋 (from 𝜋 = 0.0 in red
to 𝜋 = 1.0 in blue).
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Figure 4.5: Normalized number of recommendations for each item (colored
curves from 𝜋 = 0.0 in red to 𝜋 = 1.0 in blue) vs. normalized
amount of positive feedback per item (black dashed curve). The
250 most popular items are shown.

4.6.3 Impact of the Popularity Bias

In this section, we study how incomplete transmission of user feed-
back affects the item popularity in the recommendations and during
the learning process. It is essential to discover whether the exploita-
tion of a federated learning approach influences the algorithmic bias,
determining popular items to be over-represented [32, 53]. We have
re-trained sFPL and sFPL+ on Amazon Digital Music, LibraryThing
and MovieLens 1M with all the values of 𝜋 in the range [0.0, . . . , 1.0].
For each experiment, we analyzed the data flow between the clients
and the server. Afterward, we have extracted the number of updates for
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each item. Figure 4.4 illustrates the occurrences for the 1, 000 most up-
dated items. In the figure, the curve colors denote the different 𝜋, while
the values represent the update frequency during the training process
for each item on the horizontal axis. Analogously, we considered the
final top-10 recommendation list of each user. Following the same strat-
egy, we analyzed the occurrences of the items in the recommendation.
Then, we ordered items from the most to the least recommended, and
we plotted the occurrences of the first 250 in Figure 4.5. To compare
the different datasets, we have normalized the values considering the
overall dataset occurrences. Figure 4.4 shows that data disclosure, i.e.,
the value of 𝜋, highly influences the information exchanged during the
training process. Additionally, the update frequency curve exhibits a
constant behavior for all the datasets, when 𝜋 = 0.0. This trend shows
that items are randomly updated without taking into account any in-
formation about item popularity, suggesting that, when 𝜋 = 0.0, FPL
acts like a random recommender. The curve for 𝜋 = 0.1 shows that
the exchanged data is enough to provide the system with information
about item popularity. The curves suggest that the information on item
popularity is being injected into the system. By increasing the value
of 𝜋, the trend becomes more evident. Due to the original rating dis-
tribution, the system initially exchanges more information about the
very popular items. To analyze the algorithmic bias, we can observe
Figure 4.5, where the colored curves represent the frequency of item
recommendation on the horizontal axis, and the black dashed curve the
amount of positive feedback for that item in the dataset. Remarkably,
item popularity in recommendation lists does not vary as wemay expect
based on the previous analysis. The setting 𝜋 = 0.0 is an exception, as
explained before. Focusing on the curves for 𝜋 > 0.0, it is noteworthy
that they behave similarly, and they propose the same proportion of
popular items. The curves show the model absorbs the initial variation
in exchanged item distribution, unveiling an unknown aspect of factor-
ization models, and partially explaining the acceptable (and sometimes
outperforming) results with 𝜋 < 1.0 observed in Figure 4.2.

4.6.4 Accuracy and Communication: A Multi-Objective Analysis

In a federated learning setting, communication rounds between clients
and server play a crucial role. In fact, a large amount of information
exchanged might hinder the effectiveness of the overall approach as
it requires high network costs. This perspective has led us to define a
metric, the Communication Cost per Epoch (𝐶𝐶𝐸), which calculates



4.6 Results and Discussion 75

Table 4.4: Total Communication Cost (×10−12) (TCC) versus Precision
(𝑃@10) on Brazil dataset. TCC is the product between the value
of CCE and the actual number of epochs needed to obtain the best
accuracy value. For each configuration, the best precision value is
in boldface and reported in the summary graph in Figure 4.6.

sFPL sFPL+ pFPL pFPL+

𝜋 TCC 𝑃@10 TCC 𝑃@10 TCC 𝑃@10 TCC 𝑃@10

0.1 1.27623 0.06961 1.41913 0.03347 1.27623 0.07026 0.99339 0.04358
0.2 1.27623 0.07327 1.41924 0.05241 1.27623 0.07366 0.99347 0.05022
0.3 1.27624 0.07551 1.41934 0.06269 1.27624 0.07497 0.99354 0.05598
0.4 1.27624 0.07686 1.41944 0.06949 1.27624 0.07582 0.99361 0.06382
0.5 1.27624 0.07757 1.41955 0.07298 1.27624 0.07671 0.99368 0.07648
0.6 1.27624 0.07733 1.41965 0.08121 1.27624 0.07723 0.99375 0.08247
0.7 1.27625 0.07714 1.41975 0.08506 1.27625 0.07758 0.99383 0.08590
0.8 1.27625 0.07730 1.41985 0.08660 1.27625 0.07771 0.99390 0.08733
0.9 1.27625 0.07724 1.41996 0.08682 1.27625 0.07726 0.99397 0.08699
1.0 1.27625 0.07702 1.42006 0.08523 1.27625 0.07703 0.99404 0.08582

communication costs that each particular FPL configuration requires as
the number of bidirectionally exchanged vectors. Let 𝑇 be the number
of sent updates for non-consumed items and 𝜋𝑇 the number of sent
updates for consumed items. For rpe rounds the server establishes a
communication with |U− | clients, sending to each of them |I | vectors
and receiving from each of them 𝑇 (1 + 𝜋) update vectors. Therefore,
𝐶𝐶𝐸 is estimated as CCE = rpe · |U− | · ( |I| +𝑇 (1 + 𝜋)). Given these
definitions, in this section, wewant to analyze the effects of the different
configurations and 𝜋 values on the communication cost.
For convenience, we focus the analysis on Brazil, the biggest and

sparsest dataset. In Table 4.4, we show the values of precision and com-
munication cost for each FPL configuration and each value of 𝜋. The
Total Communication Cost (TCC) is computed as the product between
𝐶𝐶𝐸 and the number of epochs needed to reach such precision value.
At a first glance, it is noteworthy how, within a specific configuration,
the value of 𝜋 does not affect significantly the total communication cost,
while it highly impacts on the best precision value. For each configura-
tion, we plot in Figure 4.6 the best values of precision (in boldface in
Table 4.4) against their TCC. Here, the total communication cost should
be minimized, while the precision should be maximized. The optimal
solution in terms of multi-objective optimization corresponds to the
pFPL+ configuration. Instead, in absence of parallelism, we witness a
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Figure 4.6: Total Communication Cost (×10−12) compared to precision
(P@10) on Brazil dataset. The colors represents the four con-
figurations: dark blue is sFPL, dark green is sFPL+, light blue
is pFPL, light green is pFPL+. For each configuration, the best
accuracy performance is shown. The top-left corner of the plot is
the best trade-off between accuracy and communication costs.

much higher communication cost for reaching the best precision. More-
over, it is interesting how sFPL and pFPL are perfectly overlapping both
in terms of accuracy (as also confirmed by the previous analyses) and
in terms of communication costs. However, increasing the local com-
putation in a parallel setting make FPL to reach the best performance
with the minimum overall communication cost.
The multi-objective analysis between communication cost and accu-

racy may help the designer in providing the best setup for the federation
of clients. Here, the analysis suggests holding high parallelism config-
urations with high local computation as the set of optimal settings. The
experiment shows that in FPL there is no need for sacrificing accuracy
for communication costs. Instead, the user can freely choose the value
of 𝜋 without affecting the communication costs. In order to answer the
RQ3 we can state that deciding to limit the communication costs does
not particularly affect the recommendation accuracy. Overall, FPL
shows its best trade-off between communication costs and accuracy
when both parallelism and high local computation are set.

4.6.5 Bias Disparity: A Fairness Analysis

When depriving the recommender of a part of the user’s feedback, one
of the biggest concerns is the potential bias shift [48]. Bias analysis,
and fairness are gaining momentum in the last years [67], they unveil
several essential aspects of the recommenders’ behavior. To explore
what happens the category biases in the different configurations and
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Table 4.5: Bias values 𝐵𝑇 [142] of population on the different categories in
Foursquare training data (A&E: Arts & Entertainment, C&U: Col-
lege & University, NS: Nightlife Spot, O&R: Outdoors & Recre-
ation, P&OP: Professional & Other Places, S&S: Shop & Service,
T&T: Travel & Transport).

Dataset A&E C&U Food NS O&R P&OP Res. S&S T&T
Brazil 1.4949 0.6289 1.1024 1.3286 1.1340 0.6424 0.5202 0.8314 1.3699
Canada 1.7224 0.8310 1.0879 1.6594 0.9719 0.6610 0.4134 0.8087 1.2328
Italy 1.4130 0.8221 0.9317 1.3559 1.3292 0.7868 0.4171 0.8482 1.2678

values of 𝜋, we measure the bias disparity (𝐵𝐷) in recommendation
lists for the categories of the venues. Thismetric analyzes howmuch the
output of a recommendation algorithm deviates the natural propensity
of the users for particular categories of items towards other categories
(see Section 2.2.4.3 for further details). Table 4.5 shows the source bias
value 𝐵𝑇 [142] for the different categories in training data, with a value
above 1 denoting a higher susceptibility to choose the category items.
Table 4.6 shows the results in terms of Bias Disparity (𝐵𝐷) for FPL
and the other baselines. Here, the closer to 0, the closer to the initial
bias. As expected, Top-Pop changed the recommendation towards T&T,
which is the most popular category in the training set. By focusing on
FPL, we may notice that it bias positively and negatively the same cat-
egories of the other state-of-the-art algorithms. Notably, it particularly
pushes the bias of recommendation towards popular categories (e.g.,
A&E, Food, T&T), while it emphasizes the unpopularity of specific
categories — above all C&U, P&OP, Residence —. This is probably
due to the pair-wise nature of the approach, which works by iteratively
increasing the difference values between enjoyed items and the others
(the same behavior is evident for BPR-MF). The Bias Disparity analy-
sis helps to answer RQ4. Hence, we draw the following consideration:
the proposed system generates recommendations that are biased to the
initial user preferences since it emphasizes the differences between con-
sumed and non-consumed items. This behavior is also coherent with
the recommendations of the other state-of-the-art algorithms.

4.7 Conclusion and Future Perspectives

This work proposes Federated Pair-wise Learning (FPL), a novel feder-
ated learning framework that exploits pair-wise learning for factoriza-
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Table 4.6: Results of recommendation bias disparity for each category in
Brazil dataset (see Table 4.1) for baselines and FPL. For each con-
figuration of FPL and for each dataset, the experiment with the best
𝜋 is shown. The closer to 0 the better. Among federated algorithms,
the best performance is in boldface.

A&E C&U Food NS O&R P&OP Res. S&S T&T
Ce

nt
ra

liz
ed

Random -0.325 0.559 -0.080 -0.245 -0.143 0.549 0.911 0.203 -0.273
Top-Pop -1.000 -1.000 -0.302 -1.000 -0.999 -1.000 -1.000 -1.000 6.660
User-kNN 0.445 -0.832 0.261 -0.213 0.162 -0.842 -0.969 -0.431 0.621
Item-kNN 0.346 0.140 0.068 -0.102 0.153 -0.347 -0.381 -0.227 0.083
VAE 0.393 -0.723 0.223 -0.315 0.194 -0.776 -0.911 -0.310 0.572
BPR-MF 0.301 -0.712 0.232 -0.710 0.142 -0.758 -0.992 -0.434 1.165

Fe
de

ra
te

d FCF -0.464 -0.968 0.687 -0.910 0.135 -0.960 -0.994 -0.946 1.239
sFPL 0.272 -0.738 0.263 -0.756 0.161 -0.814 -0.997 -0.368 1.072
sFPL+ 0.311 -0.675 0.160 -0.396 0.278 -0.806 -0.903 -0.291 0.812
pFPL 0.253 -0.813 0.218 -0.613 0.143 -0.739 -0.992 -0.479 1.239
pFPL+ 0.154 -0.566 0.190 -0.351 0.345 -0.764 -0.913 -0.410 0.778

tion models in a recommendation scenario. The model leaves the user-
specific information of the original factorization model in the clients’
devices so that a user may be entirely in control of her sensitive data and
could share no positive feedback with the server. The framework can be
envisioned as a general factorization model in which clients can tune
the amount of information shared among devices. To analyze the de-
gree of accuracy, the diversity of the recommendation results, we have
conducted an extensive experimental evaluation. However, even a vast
evaluation is not enough to gain a more in-depth understanding of how
FPL operates. Therefore, we have extended the evaluation to investigate
the relation between accuracy, popularity bias and amount of shared
transactions. Afterwards, the study provides a theoretical analysis of
the privacy issues of FPL, the details of computational complexity,
and an investigation on communication costs considering the different
operational modes. Finally, the work analyzes the shift of the original
data bias when the system is fed with partial information. To the best
of our knowledge, it is one of the first attempts to understand how a
federated learning approach impacts the fairness of the overall system.
The proposed model shows performance comparable with several state-
of-the-art baselines and the classic centralized factorization model with
pair-wise learning. Interestingly, indeed, clients can share a small por-
tion of their data with the server and still receive high-performance
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recommendations. We believe that the proposed approach represents
the joining link between federated matrix factorization and the modern
recommendation systems that optimize the item ranking instead of the
prediction error. In the near future, it would be interesting to investigate
the behavior of FPL in new privacy settings, examine the effects of each
user freely choosing which specific data to keep private, and extend the
experimental analysis to other datasets and domains. Finally, we think
that federated learning to rank approach, along with a rigorous analysis
of the dimensions involved in the recommendation process, may open
the doors to a new class of ubiquitous recommendation engines.





5User-Level Knowledge for Improved
Aggregation in Federated Learning

Outline
In the previous chapters, we introduced the federated learning paradigm,
able to deal with fundamental issues related to privacy, ownership and
locality of data [43] in machine learning. One of the pioneer works
about federated learning [146] introduced the Federated Averaging
(FedAvg) algorithm. Despite its potentially disruptive contribution, we
argue that FedAvg has several significant shortcomings, related to the
fact that it ignores a wealth of qualitative measures about local clients
and models that can be impactful for training an effective global model.
In this chapter, we present our approach to push forward the state-of-

the-art of the aggregation in federated learning, which we deem crucial
for building a high-quality global model, with an approach that takes
into account a suite of client-specific criteria.
A preliminary version of this work has been accepted as a long paper

entitled "Towards Effective Device-Aware Federated Learning" at the
18th International Conference of the Italian Association for Artificial
Intelligence. An extension of this work, "Prioritized Multi-Criteria
Federated Learning", has been published in the journal Intelligenza
Artificiale.

5.1 Introduction

Federated learning is an approach proposed by Google [116, 117, 146]
to train a global machine learning model from a massive amount of
data, which is distributed on the client devices such as personal mobile
phones and IoT devices. Raw data is not shared at all with a central
server, thus federated learning respond to concerns about the sensitivity
of user data in terms of data privacy and security. However, in this
scenario, we have to deal with data that is quantitatively unbalanced
and differently distributed over devices, i.e., each device data is not a
representative sample of the overall distribution, as we have seen in
Section 3.3.2. As a matter of fact, with federated learning, we leverage

81
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users’ computing power for training a shared machine learning model
while preserving privacy, by actually decoupling the ability to learn a
machine learning model from the need to store private data centrally.
In [146], authors introduced the FederatedAveraging (FedAvg) algo-

rithm, which combines local stochastic gradient descent on each client
via a central server that performs model aggregation by averaging the
values of local parameters. Despite its potentially disruptive contribu-
tion, we argue that FedAvg has several significant shortcomings. First,
the aggregation operation in FedAvg assigns the contribution of each
agent proportional to each client’s local dataset size. This simplifying
assumption ignores a wealth of other qualitative measures that can
be impactful for training an effective global model. Examples of such
measures include the number of sample classes held by each agent, the
divergence of each computed local model from the global model —
which may be critical for convergence [175] —, estimations about the
agent computing and connection capabilities and finally the amount of
client’s honesty and trustworthiness.
While FedAvg only uses limited knowledge about local data, we ar-

gue that the integration of the aforementioned qualitative measures and
the expert’s domain knowledge is fundamental for increasing the global
model’s quality. As a toy example, let us consider a federated scenario
with just two users Alice and Bob. The photos in users’ mobile phones
are the training samples of a machine learning model for classifying
clothes. Let us suppose that Alice holds tens of very similar photos
with the same outfit, and most of them are blurred. Thus these images
do not carry much information. Instead, Bob holds a smaller number of
well-labeled photos, but high-quality, and with a lot of different clothes.
We argue that in such a situation, the weight of Bob’s contribution to
the ML model should be higher or comparable to Alice’s.
The work at hand considerably extends the FedAvg approach [146]

by answering to the following research questions:
RQ1. Is it possible to improve the quality of the global model by

incorporating a set of criteria measuring some quality properties of
the clients, and based on them assigning the contribution of individual
update in the final model?

RQ2.What is the effect of introducing a score function “summariz-
ing” with a certain priority the introduced criteria?
The proposed system is evaluated through comprehensive experi-

ments. In particular, we compare our approach against FedAvg both on
MNIST dataset (with IID and non-IID distribution), used in [146], and
on CelebA dataset, where a classification task is performed by also in-
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jecting more explicit information about the quality of the local dataset
and local model.

5.2 Related Work

In literature, a growing number of works focus on some modifications
of FedAvg algorithm, e.g., adding a regularization term in the local
objective functions for controlling the convergence of the network with
statistical heterogeneity of data [175], changing the optimization algo-
rithm [163]. Some other works focus on some adaptations for control-
ling the averaging operation on a per-layer basis [203] or for obtaining
more personalization on the localmodels [81]. Finally, thework in [222]
studies a protocol for selecting devices based on their dataset quality
without any information disclosure.
The approach we propose is configured as a formal tool for incor-

porating any of the above-mentioned objectives (for example, facing
the statistical challenges), when these could be obtained by pushing up
or down the contribution of each client, based on some requirements.
Suchmechanism is completely incorporated in the weight of each client
in the global aggregation. To the best of our knowledge, at the time of
publishing our proposal, this is the only work attempting to modify the
value of the weight of clients in the aggregation step.

5.3 Background

Although federated learning principles can be applied to manymachine
learning tasks, for the sake of simplicity in the following we focus on a
classification task, a fundamental problem in machine learning.
Assume a training set D composed of 𝑛 pairs, i.e. D = {(𝑥𝑖, 𝑦𝑖) ∈
X × Y | 𝑖 = 1, . . . , 𝑛}, where the elements 𝑥𝑖 ∈ X are the input
samples, and 𝑦𝑖 ∈ Y the corresponding class labels. It is presumed
that the samples of dataset are independently and identically drawn
from an unknown distribution P. The problem of classification is often
expressed as finding a function 𝑓Θ : X → Y that can approximate the
class labels around the input samples, where Θ ∈ R𝐿 represents the
model parameters and 𝐿 is the dimensionality of the parameters space.
Finding the model parameters Θ is achieved by solving a problem of
the form:

min
Θ

∑︁
(𝑥𝑖 ,𝑦𝑖)∈D

𝐺 ( 𝑓 (𝑥𝑖;Θ), 𝑦𝑖) (5.1)
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where 𝐺 (·) represents a classification loss function, e.g., cross-entropy.
In the classical federated learning setting, at each round of commu-

nication, the server 𝑆 selects a fraction of clients U− ⊆ U from the
federation U and shares with them the current global model Θ. Ev-
ery client 𝑢 ∈ U− uses it own private shard D𝑢 in order to minimize
an empirical local loss 𝐺D𝑢

(Θ). Each client 𝑢 updates the received
global model Θ and calculates a local version Θ𝑢 according to Eq. 5.2.
Then, it communicates the updated local modelΘ𝑢 (instead of the local
gradients) to 𝑆:

Θ𝑢 ← Θ − 𝛼∇𝐺D𝑢
(Θ). (5.2)

Once the end of the communication round has been reached, 𝑆 computes
the updated global model Θ as:

Θ←
∑︁
𝑢∈U−

𝑤𝑢Θ𝑢. (5.3)

The federated learning principles prevent a machine learning system
from collecting sensitive information about users, giving rise to a natu-
ral trade-off between users’ data privacy and performance of the system.
Our assumption is that revealing some non-sensitive client-related in-
formation and integrating this knowledge in the global aggregation step
could lead to learning more effective federated model without harming
users’ privacy. For instance, such non-sensitive data may carry useful
information about specific domain or some marketing objectives that
can be leveraged to build more in-domain strategies or increase the
system profitability.
The proposed solution envisioned in this work is a client-aware

federated learning strategy based on the following elements:

• we introduce the notion of criterion, which measures a specific
property about users and their data, and we propose a formal
classification for them;

• we propose the use of a score function to “summarize” the cri-
terion measurements and compute a score for each client of the
federation to be encoded in the aggregation step of each round
of communication;

• we explore the benefits of a prioritized multi-criteria score func-
tion over the identified set of criteria;
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5.4 Fundamentals of the Proposed Approach

Let us assume C = {𝐶1, ...,𝐶𝑚} denotes a set of 𝑚 measurable proper-
ties (a.k.a. criteria) characterizing a local client 𝑢 or local dataD𝑢. We
use the variable 𝑐𝑖,𝑢 ∈ [0, 1] to denote, for each client 𝑢, the degree of
satisfaction of the criterion 𝐶𝑖 in a specific round of communication.
We assume that the clients compute these values and communicate with
the server the correct model updates and the correct property measure-
ments (honest clients). Hence, at the end of the communication rounds,
the server 𝑆 is in charge of collecting not only the model update Θ𝑢,
but also the 𝑚-tuple c𝑢 = (𝑐1,𝑢, . . . , 𝑐𝑚,𝑢). To ensure the same scale for
each criterion, we assume that the measure 𝑐𝑖,𝑢 of the 𝑖-th criterion on
device 𝑢 is a real value in the interval [0, 1] (with 0 meaning unful-
fillment and 1 meaning total adherence to the criterion). Additionally,
the measurements of 𝐶𝑖 over all devices in U− are supposed to be
normalized, i.e.,

∑
𝑢∈U− 𝑐𝑖,𝑢 = 1.

Themain idea of this work is that we can encode the knowledge about
clients in the weights 𝑤𝑢 used for aggregating client contributions in
Eq. 5.3. Based on that, 𝑆 can compute the weight 𝑤𝑢 for client 𝑢
according to the following equation:

𝑤𝑢 =
𝑓𝑚 (c𝑢)
𝑍

=
𝑓𝑚 (𝑐1,𝑢, ..., 𝑐𝑚,𝑢)

𝑍
, (5.4)

where 𝑓𝑚 : [0, 1]𝑚 → R is a score function over the 𝑚-tuple of
properties (criteria), which evaluates client 𝑢’s contribution based on
the fulfillment of such criteria. Finally, 𝑍 is a normalization factor
introduced to ensure that

∑
𝑢∈U− 𝑤𝑢 = 1 and 𝑤𝑢 ∈ [0, 1]; therefore,

𝑍 =
∑

𝑢∈U− 𝑓𝑚 (c𝑢).
Example 5.1. Let us go back to the toy example we introduced in
Section 5.3, with U− = {Alice,Bob}. Let us consider the set C of
criteria describing the two clients of the federation, i.e., specific qual-
ities related to their local devices, produced local models and local
data; for example we may considerDataset Size, ClothesDiversity, and
Image Sharpness thus having C = {𝐷𝑆,𝐶𝐷, 𝐼𝑆}. Assume that Alice
has received evaluations 𝑐DS,Alice = 0.9, 𝑐CD,Alice = 0.2, 𝑐IS,Alice = 0.4,
while Bob has obtained 𝑐DS,Bob = 0.1, 𝑐CD,Bob = 0.8, 𝑐IS,Bob = 0.5.
Based on Eq. 5.4, the overall contribution of Alice and Bob will
be 𝑓3(0.9, 0.2, 0.4) and 𝑓3(0.1, 0.8, 0.5), respectively, both divided by
𝑍 = 𝑓3(0.9, 0.2, 0.4) + 𝑓3(0.1, 0.8, 0.5) to obtain the weights 𝑤Alice and
𝑤Bob. To get an idea, if we consider the score function 𝑓3 to be a
basic mean operation, the final values for 𝑤Alice and 𝑤Bob would be:
𝑤Alice =

1.5
1.5+1.4 = 0.52, 𝑤Bob =

1.4
1.5+1.4 = 0.48. �
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In the following, we detail the main dimensions of the study related
to the proposed approach, which include:

• identification of the set C of criteria. These criteria can be related
to users (e.g., gender), clients (e.g., number of samples), or local
models (e.g., the local model highly diverges from the centralized
model). Besides, the criteria can express a boolean fulfillment of
the requirement (e.g., Female: True or False), or a quantitative
estimation (e.g., the value of the divergence of the model);

• identification of a score function able to “summarize” the com-
puted measurements in a score value representing each client.

To properly study each of the presented dimensions, in the following
we start discussing about the identification of criteria, then we go along
the study of score functions and, in particular, priority-based score
functions.

5.4.1 Identification of Local Criteria

In the original FedAvg formulation, the server performs aggregation
to compute 𝑤𝑢, without knowing any information about participating
clients, except for a pure quantitative measure about local dataset size.
However, a federated setting has to face some key issues [146] related

to communication, connectivity and statistics. Among them, if we focus
on the statistical aspects about the data, we notice that the training data
— which is typically the result of the real user usage of the device —
is not IID distributed over the clients. Moreover, the amount of data is
also unbalanced across the clients. Such characteristic may affect the
accuracy and the efficiency of the resulting aggregated model [232].
In this scenario, a service provider may be interested in defining some
statistical criteria such that the rounds of communication needed to
reach the desired target accuracy are minimized. This result can be
accomplished by enhancing the contribution of clients fulfilling the
requirements expressed by the defined criteria.
For instance, useful information could be related, in a classification

problem, to the number of classes covered by a local dataset. Moreover,
a domain expert could ask users to measure their adherence to some
other target properties (e.g. their nationality, gender, age, job, behavioral
characteristics, etc.), in order to build a global model emphasizing the
contribution of some classes of users; in this way, the domain expert
may, in principle, build a model favoring some targeted commercial
purposes.
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We identified four classes of local criteria, each of them related to
different aspects of the local dataset D𝑢, the local device or the user 𝑢:

• criteria describing the quality of the local datasetD𝑢 (e.g., dataset
size, diversity of training samples, etc.);

• criteria describing the quality of the produced local model ∇𝐺D𝑢

(e.g., ...);

• criteria describing the trustworthiness of device 𝑢;

• criteria capturing the fulfillment of user 𝑢 with respect to com-
mercial targets (e.g., gender, job, nationality, etc.).

Althoughwe can identify some classes of criteria, the choice for each
particular criterion still remain a strictly task- and domain-dependent
activity. We provide some insights about how to define such criteria:
first, as a rule of thumb, one should start from the objective, e.g., obtain-
ing faster convergence, overshadow unreliable updates, specialize the
model with respect to some categories of users and then choose char-
acteristics which can improve the model towards that initial objective.
Next, the system designer could play with the identified criteria to test
their effectiveness, e.g. with some previous centralized data, or with
some synthetic data, or with some validation rounds of federated train-
ing. Finally, the empirical evaluations performed in this work suggest
that choosing criteria that lead to higher variance in the score obtained
across clients results in a better final model. For instance, the criterion
dataset size is not an appropriate criterion, if all the clients have the
similar number of samples in their private datasets.
For this reason, in this work we do not focus on a particular choice

for them, but rather on presenting a formal approach about dealing with
them. Moreover, we show in the experimental section— for illustrative
purposes only — some examples of how they can be chosen with
respect to the task.

5.4.2 Identification of a Score Function

A crucial aspect of this work is related to the identification of a score
function 𝑓𝑚 able to “summarize” the values 𝑐𝑖,𝑢 for each criterion
𝐶𝑖 ∈ C, 𝑖 ∈ [1, . . . ,𝑚] in order to obtain the value 𝑤𝑢 as described in
Eq. 5.4. The score has to be computed for each client separately, so in
the following we will focus on the computation of such value for one
client 𝑢 ∈ U.
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Over the years, a wide range of aggregation functions have been
proposed in the field of information retrieval (IR) [143]. Just to mention
the most relevant ones, we can refer to the weighted averaging operator,
as well as to the ordered weighted averaging (OWA) models [215,
216] — which extend the binary logic of AND and OR operators,
allowing representation of intermediate quantifiers —, to the Choquet-
based models [61, 89, 90] — which are able to interpret positive and
negative interactions between criteria —, and finally to the priority-
based models [63].
Althoughwe havemany opportunities, we focus on the priority-based

score function proposed in da Costa Pereira et al. [63]. To reformulate
such proposal, we first consider a sequence of functions { 𝑓𝑚}𝑚∈N, with
𝑓𝑛 : [0, 1]𝑛 → R, namely a score function summarizing 𝑚 data. Then,
given a vector x ∈ [0, 1]𝑚 containing the measurement of 𝑚 criteria,
we can reformulate the score function proposed in [63] as:

𝑓𝑛 (x) =
𝑛∑︁
𝑖=1

𝑖∏
𝑗=1

𝑥 𝑗 , (5.5)

This function has the monotonic property

𝑓𝑚 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑚) ≤ 𝑓𝑚 (𝑥1, . . . , 𝑥′𝑖 , . . . , 𝑥𝑚)
∀𝑥𝑖 ≤ 𝑥′𝑖 , 𝑖 = 1, . . . ,𝑚. (5.6)

and, at the same time, we have 𝑓𝑚 (0) = 0 and 𝑓𝑚 (1) = 𝑚, i.e., the final
score is zero when all values are 0, and it is maximum when all values
are 1. One of the most interesting properties of this function is that:

𝑓𝑚 (𝑥1, . . . , 𝑥 𝑗−1, 0, 𝑥 𝑗+1, . . . , 𝑥𝑚)
= 𝑓 𝑗−1(𝑥1, . . . , 𝑥 𝑗−1), ∀ 𝑗 ∈ 1, . . . ,𝑚. (5.7)

This means that the lack of fulfillment of a higher criterion in the list
cannot be compensated with the fulfillment of a lower one [143]. If we
adopt a priority order for the criteria in x from the higher to the lower,
it follows that in case a higher criterion is equal to 0 then it cannot
be compensated by criteria with a lower priority. Interestingly, we also
have that 𝑓𝑚 (0, 𝑥2, . . . , 𝑥𝑚) = 0.
Themain aim of such function, in a multi-criteria scenario, is to use a

priority order over the involved criteria in order to assign to each client 𝑢
a score based on the measurements 𝑐𝑖,𝑢, for each𝐶𝑖 ∈ C, 𝑖 ∈ [1, . . . ,𝑚],
in a priority-aware fashion. With this function, when a criterion is met,
the more it is fulfilled the more the subsequent criteria will be taken
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into account; analogously, the less a criterion is fulfilled the less the
other criteria will be considered and summed up. Moreover, based on
Eq. 5.7, when a criterion is not satisfied at all, all the subsequent criteria
will not be considered.
The properties presented so far make this function our main choice

for our approach. As an example, we may consider the case where the
domain expert may wish to consider extremely important the age of a
user rather than its dataset size, so that even a large local dataset would
be penalized if the user age criteria is not satisfied.
In the following, we assume, for the sake of clarity of notation, that

the set C of criteria can be written in the form C = {𝐶1, . . . ,𝐶𝑚} where
each index represents an identifier for the corresponding criterion, or in
the form C = {𝐶(1) , . . . ,𝐶(𝑚)}, where each index represent the priority
of the criterion, from the highest to the lowest one. Analogously, we
distinguish between 𝑐𝑖,𝑢 and 𝑐(𝑖),𝑢, which represent the measurement on
device 𝑎 of the criterion𝐶𝑖 and the 𝑖-th important criterion, respectively.

Example 5.2. (continued)We carry on with the example about Alice
and Bob, where 𝑐DS,Alice = 0.9, 𝑐CD,Alice = 0.2, 𝑐IS,Alice = 0.4, while
Bob has obtained 𝑐DS,Bob = 0.1, 𝑐CD,Bob = 0.8, 𝑐IS,Bob = 0.5. We have
already shown that with a simple mean function their final scores were
𝑤Alice =

1.5
1.5+1.4 = 0.52, 𝑤Bob = 1.4

1.5+1.4 = 0.48, with Alice obtaining
higher score than Bob. Let us consider now the prioritized score func-
tion and let us see how score changes based on priority. Suppose that
𝐶(1) = 𝐷𝑆, 𝐶(2) = 𝐶𝐷, 𝐶(3) = 𝐼𝑆. Based on Eq. 5.5,

𝑓3(cAlice) = 𝑓3(𝑐(1),Alice, 𝑐(2),Alice, 𝑐(3),Alice)
= 𝑓3(𝑐DS,Alice, 𝑐CD,Alice, 𝑐IS,Alice)
= 𝑓3(0.9, 0.2, 0.4)

= 0.9 + (0.9 · 0.2) + (0.9 · 0.2 · 0.4) = 1.152,
while 𝑓3(cBob) = 0.22. If we change the priority order to be 𝐶(1) =
image sharpness,𝐶(2) = clothes diversity,𝐶(3) = dataset size, we would
then obtain:

𝑓3(cAlice) = 𝑓3(𝑐(1),Alice, 𝑐(2),Alice, 𝑐(3),Alice)
= 𝑓3(𝑐IS,Alice, 𝑐CD,Alice, 𝑐DS,Alice)
= 𝑓3(0.4, 0.2, 0.9)

= 0.4 + (0.4 · 0.2) + (0.4 · 0.2 · 0.9) = 0.552,
while 𝑓3(cBob) = 0.94. We see that with the second configuration, the
score for Alice is lower than the previous one since the most important
criterion here is worse fulfilled, conversely for Bob. �



90 User-Level Knowledge for Improved Aggregation in FL

5.5 Experimental Setup

In this section we describe the experimental setup — datasets, tasks
and identified local criteria — used to validate the performance of the
proposed federated learning system1. In detail, we validate our approach
on the following datasets and tasks:

• MNIST [125]: handwritten digits; we perform a 10-class classi-
fication for recognition of digits;

• CelebA [137]: face images of celebrities comingwith 40 different
attributes under varying poses and backgrounds; we perform a
binary prediction between smiling and non-smiling faces.

For each dataset we consider different data distributions, as well as a
specific model. Moreover, for each of them we define different criteria
based on possible useful information we may extract.

5.5.1 MNIST Experiments

We run a first cluster of experiments on MNIST dataset [125] for the
digit recognition task. This dataset contains 60,000 examples of 10
classes of handwritten digits (plus a test set of 10,000 examples) by
500 writers. The samples are available in the form of 28x28 pixel black
and white images.
We use this dataset in a completely user-agnostic way. Therefore,

we created the federated dataset by following the two partitioning ways
used in [146], in order to simulate both a IID distribution and a non-IID
distribution of data over the different clients.

Model. For the sake of comparability, we built the same classifier
described in [146], i.e., a CNN with two convolution layers with 5x5
filters — the first layer with 32 channels, the second with 64, each
followed with a 2x2 max pooling layer —, a fully connected layer with
512 units and ReLu activation, and a final softmax output layer with 10
neurons, for a total of 1,663,370 total parameters.

Local criteria. For this experimental setting, we aim at both reduc-
ing the number of rounds of communication necessary to reach a target
accuracy and making the global model not diverging towards local

1 A public implementation of our framework is available at https://github.com/
sisinflab/ClientAware-FL.

https://github.com/sisinflab/ClientAware-FL
https://github.com/sisinflab/ClientAware-FL
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specializations and overfittings. To this aim, we extend the pure quan-
titative criterion in FedAvg [146] — dataset size — by leveraging two
new criteria2.
Thefirst criterionwe consider is the one already used byFedAvg [146],

namely the local dataset size (DS), given by 𝑐1,𝑢 = |D𝑢 |/| ∪𝑖∈U− D𝑖 |.
This criterion is a pure quantitative measure about the local data, which
will serve both as a baseline in empirical validation of the results (i.e.,
when used in isolation) and as part of the entire identified set of criteria
in the developed FL system (i.e., when used in a group).
The second considered criterion is the diversity of labels (LD) in

each local dataset, measuring the diversity of each local dataset in
terms of class labels. We assert this criterion to be important since
it can provide a clue on how much each device can be useful for
learning to predict different labels. To quantify this criterion we use
𝑐2,𝑢 = 𝛿(D𝑢)/

∑
𝑖∈U− 𝛿(D𝑖) where 𝛿 measures the number of different

labels (classes) present over the samples of that dataset.
With respect to the third criterion, our aim is to reduce the negative

effects of a non-IID distribution. Indeed, with non-IID distributions —
and this is the case of our dataset — model performance dramatically
gets worse [232]. Moreover, a large number of local training epochs
may lead each device to move further away from the initial global
model, towards the opposite of the global objective [175]. Therefore, a
possible solution inspired by [175] is to limit these negative effects, by
penalizing higher divergences and highlighting localmodels that are not
very far from the received global model. We evaluate the local model
divergence (MW) as 𝑐3,𝑢 = 𝜑𝑢/

∑
𝑖∈U− 𝜑𝑖 where 𝜑𝑖 = 1√

| |Θ−Θ𝑢 | |2+1
.

5.5.2 CelebA Experiments

CelebFaces Attributes Dataset (CelebA) [137] is a large-scale dataset
with 202,599 faceRGB images of 10,177 celebrities. Each image comes
with 40 binary attributes and differs from the other ones for celebrity
pose and background. The task is a binary classification between smil-
ing and non-smiling people, which is an information included within
the 40 attributes. We chose this task since the smiling attribute has
a good balance in the whole dataset between positive and negative
outcomes.

2 Please note that we are not stating that the proposed ones are the only possible criteria.
We present them just to show how the introduction of new information may lead to a
better final model.
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We use this dataset in a completely user-aware way. Indeed, we
suppose that each celebrity holds her own photos in her mobile phone
gallery. This represent a realistic set of local datasets, which could
have been generated from the personal device usage. This distribution
is inherently non-IID, therefore it is a representative scenario for a
federated setting.
We used a subsampled version of the dataset (50% of images). Then,

we removed users with less than 5 photos. For each user, we split her
private dataset with random hold-out method with a ratio of 80/20.
Finally, images have been resized to 64x64 pixels.

Model. For the CelebA experiments, we built a CNN binary classi-
fier with two convolution layers with 3x3 filters — the first layer with
32 channels, the second with 64, each followed with a 2x2 max pooling
layer —, a fully connected layer with 512 units and ReLu activation,
and a final softmax output layer with 1 neuron, for a total of 8,409,025
total parameters.

Local criteria. Also in these experiments, our aim is to reduce the
number of rounds of communication needed to reach a target accuracy.
Three criteria have been used to reach such objective.
Also in this case, we keep the dataset size criterion (DS). Therefore,

𝑐1,𝑢 = |D𝑢 |/| ∪𝑢∈U− D𝑖 |. It will serve both as a baseline in empirical
validation of the results and as part of the entire identified set of criteria
in the developed FL system.
Similarly to what has been done with the MNIST dataset, we want

to consider how distributed are the labels of the local samples. In fact,
since we are dealing with a binary classification task, we have at most
two different classes in each dataset. For this reason, we consider a
measure of class balance (CB), i.e. how they are similar in number. To
this aim, we define a function 𝜁 , which measure the ratio between the
number of samples of the two classes, namely:

𝜁 (D𝑢) = min{# pos., # neg.}max{# pos., # neg.} (5.8)

Then, the second criterion has been defined as 𝑐2,𝑢 = 𝜁 (D𝑢)/
∑

𝑖∈U− 𝜁 (D𝑖).
Asmentioned above, this dataset comeswith a set of binary attributes

describing each image. Among them, we consider the blurriness as a
non-sensitive information, so that the percentage of sharp imageswithin
the private dataset can be shared with the server. Therefore, we define
𝑐3,𝑢 = 𝜉 (D𝑢)/

∑
𝑖∈U− 𝜉 (D𝑖), where 𝜉 measures the fraction of sharp
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images in a specific dataset. This criterion (IS) gives us an idea of the
quality of the images in the dataset.

5.5.3 Reproducibility

We set the hyperparameters for the whole set of our experiments as
follows, also guided by the results obtained in [146]. As for the FedAvg
client fraction parameter, in each round of communication only 10% of
clients are selected to perform the computation, so that |U− | = |U|/10.
For what concerns the parameters of stochastic gradient decent (SGD),
we used full batch approach and we set the number of local epochs
equal to 5, i.e., each client takes 5 epochs of gradient descent during
training. Moreover, we chose the learning rate based on a grid search
by looking for the value which makes it possible to first reach the target
accuracy in 50% of devices with the baseline approach (dataset size as
the only criterion). Finally, we set the maximum number of rounds of
communication per each experiment to 1000 for MNIST and to 100 for
CelebA.

5.5.4 Evaluation

The classification model we built have been evaluated with respect to
classification accuracy, i.e.,

accuracy =
# correct predictions
# total predictions

. (5.9)

This metric has been computed on each device over the private
local test set. Based on LEAF framework [51] — which provides re-
producible reference implementations and datasets for FL, as well as
system and statistical metrics —, we estimate a global accuracy by av-
eraging local accuracy values and weighting them based on local test
set size.
Moreover, we improve the validation of the FL setting by using an

approach which offers an overview of the whole training performances,
instead of metrics describing a single round of communication. More
specifically, we measure the number of round of communication re-
quired to allow a certain percentage of devices, which participate to the
federation process, to reach a target accuracy (e.g., 75% or 80%), since
this measurement is able to fairly show how effective and efficient is
the model across the devices.
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5.6 Results and Discussion

In this section, we show and discuss the results of the experiments by
considering both the evaluation approaches previously mentioned.
Tables 5.1, 5.3, and 5.5 show in the gray cells the number of rounds

of communication required to the baseline (only DS) to allow certain
fractions of devices to reach a specific percentage of the overall ac-
curacy, for MNIST IID distributed, MNIST non-IID distributed, and
CelebA, respectively. In detail, as target accuracies, we have considered
70%, 80%, 90%, and 95% of prediction accuracy for MNIST datasets,
and 70%, 80%, and 85% for CelebA dataset. The remaining rows of the
tables show the gain in terms of rounds of communication of each exper-
imental setting against the baseline. Therefore, we compute each row
as the difference between the results of the dataset size criterion model,
and the results of the corresponding model. The higher the positive
value, the better is the approach compared to the baseline. Moreover,
for each row and target accuracy, we show the average rounds of com-
munication gained by considering all the fractions of devices. For each
target accuracy, we show howmany training rounds are needed to grant
that accuracy for 10% up to 90% of devices. To have a comprehensive
view of the effects of each criterion and their combinations, we consider
the individual criteria and their combinations separately. Specifically,
we first show the results of the experiments realized by exploiting a
single criterion (i.e., in Eq. 5.5). Then, we show the results for the six
priority permutations of the three criteria.
Moreover, we provide for each dataset the confusion matrices (Ta-

bles 5.2, 5.4, and 5.6) which summarize the classification outcomes
(correctly classified vs. misclassified) of each experiment against the
baseline (only DS criterion). They have been obtained by comparing
the best outcome of each experiment in order to highlight the signifi-
cance of results irrespectively of the accuracy alignment presented in
Tables 5.1, 5.3, and 5.5.
Finally, we also show the results in terms of global test accuracy

while considering the rounds of communication. In this respect, we
have measured global accuracy as the average of the local test accuracy
values weighted by the local test size.
In detail, Figures 5.1a, 5.1b, and 5.1c, show these curves for MNIST

IID distributed, MNIST non-IID distributed, and CelebA, respectively.
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5.6.1 Effects of Individual Criteria

In the following, we discuss the experiments by investigating the effects
of the individual criteria.

MNIST with IID distribution. Table 5.1 and Figure 5.1a show
the experimental results for MNIST considering IID distribution. The
adoption of criteria that are different from the dataset size seems to
have no effects, but some insignificant fluctuations. We expected this
behavior since the dataset does not show statistical issues. In detail, the
local datasets have been created by randomly picking samples from the
original dataset. Consequently, we may represent the divergence of the
local models from the original model as a zero-mean Gaussian noise.
The same assumption holds for the label diversity. Furthermore, by the
design of the dataset, DS is equal for every client, and we also expect
that, on average, LD is the same for all clients. As a consequence, MW
can not play a significant role, since all clients train the model with the
same distribution of data, on average.
In detail, by looking at the differences between the two criteria LD

and MW against the baseline DS, we may notice that the gain in terms
of rounds of communication for 70%, 80%, and 90% target accuracy,
considering all the percentages of clients, has an average very close
to 0. Conversely, both LD and MW show slightly worse results than
DS for a target accuracy of 95%, notably when we want to grant such
accuracy to a very high number of devices (i.e., the last three columns
of Table 5.1).
Lastly, the experiment shows that the effectiveness of criteria depends

on the data distribution. The dataset shows how datasets built by ran-
domly picking data from the original distribution do not generally need
further statistical adjustments during the training phase. Therefore, we
do not need to consider, in our approach, any particular statistical-based
criteria. On the other hand, it is worth mentioning that the scenario is
completely unrealistic in a federated scenario. Indeed, since each user
privately generates data, they will not show the same distribution, and
they will be significantly different in terms of statistical properties.

MNIST with Non-IID Distribution. Regarding DS, LD, and MW,
Table 5.3 shows that DS is the best criterion to reach the best overall
system performance in a lower number of rounds. In detail, DS seems
to be in trouble in the first rounds to achieve an acceptable degree of
accuracy. In fact, if we look at 70% and 80% of the accuracy, LD and
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MW reach those goals faster. In this sense, we may notice an average
of 1-2 rounds gained by LD and MW. However, if we need a higher
degree of accuracy (90% and 95%), DS generally reaches that accuracy
from 5 to 12 rounds before, on average. In this respect, we may notice
that, without considering the last three columns of 95%, DS and LD
show approximately the same performance, with an advantage of 0.5
rounds on average for LD. On the other hand, in the same scenario,
MW is 3.6 rounds slower on average. Nonetheless, the remaining three
last columns show an average advantage of DS of 12 and 16 rounds for
LD and MW, respectively.

CelebA. Results in Table 5.5 show that the three criteria behave
in a significantly different way. In this experiment, we note that CB
performs much better than DS. To get an impression, we may notice
CB reaches 85% of the overall accuracy for the 60% of the devices in
less than half of the rounds of DS. Moreover, if we observe the CB row
in Table 5.5, we may note that it reaches the same accuracy goals of
DS much faster. In detail, CB reaches those goals 7.5 rounds before DS.
On the other side, IS is generally slower than DS. Indeed, it generally
needs 7.6 rounds more than DS. Another interesting insight is that the
advantage of CB over DS progressively increases. In detail, CB shows
an advantage of 8.6 rounds for the 70% of accuracy, 11.5 rounds for
80%, and 13 rounds for an accuracy of 85%.

5.6.2 Effects of Combined Criteria

In this section,we focus on the effects of the combination of the different
criteria. Eventually, in Section 5.6.3, we discuss the different findings
of the experiments, and we draw some general remarks.

MNIST with IID distribution. In the lower section, Table 5.1 shows
the effects of the six priority permutations of the criteria. We may
suppose that, since the individual criteria did not give any boost to the
training, also their combination should have no effect. As an example,
in some situations — and this is very clear in LD � MW � DS —
we can observe a boost for lower target value of accuracy (70%, 80%,
and 90%) and a slowdown in reaching the target accuracy of 95%
for a high number of devices. Analogously to the individual criteria,
we observe that the average gain is quite close to 0, for each target
accuracy. The section 95% is an exception, since its last three columns
show a slowdown up to 9 rounds of communication, on average. This
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Figure 5.1: Test accuracy results during training for each round of communi-
cation.
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behavior is probably due to the adverse effects we already observed for
the individual criteria in this dataset.
We can also observe the same behavior in Figure 5.1a, where the

curves of the combinations of criteria — and the ones of the individual
criteria — are virtually indistinguishable.

MNIST with Non-IID distribution. Once we combine different
criteria, we may observe several different behaviors. If we focus on
Table 5.3, we can observe two different trends. First, if we analyze the
data in the table moving from the left to the right, we may observe an
increase of negative gains in the sections related to 90% and 95% of
the accuracy. Even here, if we focus on the last three columns, we may
notice an average delay that can reach up to 12 rounds. However, even
in this case, there are some combinations that achieve an advantage
over DS: LD � DS � MW, MW � DS � LD, and MW � LD � DS.
LD � DS �MW shows an interesting trend since it reaches 70%, 80%,
90%, 95% of accuracy 2, 2, 0, 1 rounds sooner than DS, respectively.
Here, the advantage is higher for the lower accuracy thresholds, while
it is almost 1 for 95% accuracy. Instead, MW �DS � LD shows a better
and incremental trend. Indeed, in this case, the advantage of rounds is
-0.1, 0.2, 2.1, and 1.7, respectively. Finally, MW � LD � DS shows
a bad advantage average for 70%, and 80% (0.2, and -0.6), while for
90%, and 95% it shows an interesting performance boost by reaching
the goals 3.1, and 4.7 rounds before DS.

CelebA. Results in Table 5.5 show results which are coherent with
the effects of the individual criteria. Rows DS � IS � CB, as well as IS
� DS � CB, IS � CB � DS, and CB � IS � DS, denote the negative
influence of the IS criterion. In particular, they show a little boost in very
few cases for a low percentages of devices, but their averages generally
show a slowdown from 2 up to 13 rounds of communication. On the
other side, we may observe the effects of BC, which is beneficial even
when combined with the other criteria. Even then, this effect is more
evident when IS has the last priority (i.e., by minimizing its influence).
In this case, we observe a substantial speed-up against the sole DS
criterion, and also when compared with the CB individual criterion. In
detail, permutation DS � CB � IS shows the best results for all target
values of accuracy and all values of coverage for devices, up to 12
rounds of communications (against the sole DS criterion). Even Figure
5.1c clearly shows these behaviors. Specifically, we may observe the
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cyan line (DS � CB � IS) against the red line (DS only) and the blue
line (CB only).

5.6.3 Discussion

The analysis in the previous section already shows the fundamental role
of the identification of local criteria. By considering the underlying
dataset, the different criteria heavily affect the training phase outcome.
As an example, when we create a federated dataset by randomly

picking samples from an original dataset (i.e., with an IID distribution),
the adoption of statistical criteria is not beneficial, since data, on local
devices, shows the same expectation.
On the other hand, even in MNIST non-IID distributed dataset, it is

quite disappointing that we can not appreciate the benefits of introduc-
ing new criteria like label diversity. However, if we observe the dataset
deeper, it contains local shards of the same size, and each client pro-
cesses, at most, samples of two digits that make the number of classes
in local datasets a piece of useless information.
Instead, the criterion on model divergence gives an initial boost to

training, but it seems to have adverse effects for higher target values of
accuracy. Even here, the behavior is interesting and predictable. Indeed,
the penalization of significant divergences is the right choice because
it helps to build a robust estimator on the average of the samples.
However, at the end of the training, higher precision and fine training
could require those differences.
As expected, when we observe the most realistic dataset, CelebA,

we may appreciate more the effects of the proposed approach. In fact,
it is a realistic non-IID distribution of images where each client holds
samples which are different in number and number of classes. Conse-
quently, the attribute about class balancing gives the best results either
when considered individually and also combined with the dataset size
attribute. This is probably due to the differences both in dataset size
and class balancing among the local datasets. Conversely, Sharpness
is a theoretically useful attribute, but it results in a slowdown of per-
formance during the training phase. We believe that the reason for this
behavior is twofold. First, only a few images are marked as blurry in
the dataset. Second, a right combination of sharp and blurry images
has widely proven to be beneficial for the generalization of a CNN.
Overall, we can positively answer RQ1, since the idea of incorporat-

ing a set of criteria measuring some quality properties of the clients,
and based on them assigning the contribution of individual update in
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the final model has been shown to be promising. In particular, answer-
ing RQ2, we can state that, when dealing with non-IID distributions
of data, where differences among clients are more evident, prioritiz-
ing criteria corresponding to higher differences is more effective. This
leads to a higher skewness of the user contributions, based on how their
local datasets can give interesting information about the highest prior-
ity criteria. Then, the lesson learned is that when users of a federation
have different levels of "knowledge" about an aspect of the ideal data
distribution, giving way to the most "expert" users would be beneficial
for the training of the federated model.

5.7 Conclusions and Future Perspectives

In this work, we have introduced a practical Federated Learning (FL)
protocol that exploits non-sensitive client information to aggregate the
localmodels. In detail, we have formalized the notion of a local criterion
for clients in an FL scenario, and the notion of priority ranked criteria.
By considering the ranking of the criteria, we have defined the score
functions to weigh the contribution of a client. We have tested our ap-
proach on three well known federated learning datasets: IID-distributed
MNIST, non-IID-distributed MNIST, and CelebA.
The experiments show that we can substantially improve the standard

federated learning approach by exploiting a properly defined set of local
criteria. We have observed how some criteria may be useful in some
moments of the training, but they alsomay cause issues in others. In this
respect, we propose a self-adaptive model that re-ranks the priority of
criteria as partially investigated in [14]. Indeed, in those research fields,
local model specialization and privacy are crucial, and this prioritized
federated learning approach may be particularly beneficial.
There is still a broad spectrum of criteria that deserves to be explored,

and the experiments suggest that that a criterion’s efficacy highly de-
pends on the specific dataset/domain. Even though several considera-
tions may lead the researcher, it is not possible to find a unique criterion
that meets the needs of all the possible domains. Nevertheless, the study
of the individual criteria has revealed some information about their im-
pact on the training phase, which we hope may be useful for other
researchers.
The proposed approach is particularly effective when dealing with

non-IID distributions of data. This is remarkable since a real federated
scenario will show a non-IID distribution of data rather than an IID
distribution, where differences among clients are not so perceptible. In
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general, substantial differences among devices about a property make
the corresponding criterion more effective. In practical terms, we have
improved the federated approach by enhancing the individual differ-
ences in terms of "knowledge" and "expertise" about a distribution,
respecting the true federated learning spirit.
We are particularly interested in this research direction and in the

chance of leveraging this federated approach to other machine learn-
ing scenarios, like recommender systems [11, 19]. To this aim, we
considered extending the idea of expertise based on a property to ex-
pertise based on a concept for realizing a knowledge-aware federated
recommender system, presented in the next section.



6Federated Learning for
Personalization in Recommender
Systems

Outline
Collaborative filteringmodels have undoubtedly dominated the scene of
recommender systems in recent years. However, despite their outstand-
ing performance, these methods require a training time proportional
to the size of the embeddings and it further increases when also side
information is considered for the computation of the recommendation
list. In fact, in these cases we have that with a large number of high-
quality features, the resulting models are more complex and difficult
to train. This chapter presents KGFlex, a sparse factorization approach
with an high power of expressiveness. To achieve this result, KGFlex
analyzes the historical data to understand the dimensions the user de-
cisions depend on (e.g., movie direction, musical genre, nationality of
book writer) and models user-item interactions as a an entropy-driven
combination of embeddings of the item attributes relevant to the user.
Following the findings of Chapter 5, we apply a principle of exper-

tise, facilitating the training process by letting users update only those
relevant features on which they base their decisions. Moreover, the
user-item prediction is mediated by a user’s personal view that consid-
ers only relevant features. An extensive experimental evaluation shows
the approach’s effectiveness, considering the recommendation results’
accuracy, diversity, and induced bias.
The preliminary idea of this work has been first presented in the

extended abstract "Sparse Embeddings for Recommender Systemswith
KnowledgeGraphs" at the 11th Italian Information RetrievalWorkshop.
Then, the content of this chapter has been accepted and presented at
the 15th ACM Conference on Recommender Systems with the full
paper "Sparse Feature Factorization for Recommender Systems with
Knowledge Graphs".

105



106 FL for Personalization in RSs

6.1 Introduction

The history of automated recommendation is closely linked to the evo-
lution of collaborative filtering techniques. Their notable accuracy has
unquestionably helped Recommender Systems getting famous. Despite
their leading performance, these methods are based on the simple idea
to recommend certain items since "similar users have experienced those
items", or "other users, who have experienced the same items, have also
experienced those items." In the past, matrix factorization [121] and
nearest-neighbors were themain algorithms to implement collaborative
filtering and, over the last years, Deep Learningmodels [58] have joined
this shortlist. The main limitation of these approaches is the require-
ment of many parameters that further increase at least proportionally
according to the dataset size.
Differently from collaborative approaches, content-based recommen-

dation techniques aim to identify the common characteristics of items
that a user liked in the past [158]. They match the user profile against
the attributes of the items and recommend new items that share the
same features. On the one hand, the use of content features can make
themodel interpretable [229] while, on the other hand, these techniques
suffer from overspecialization since they fail to recommend items that
are different from the items enjoyed in the past. In order to get the ben-
efits of the two approaches and mitigate their drawbacks, researchers
worked to integrate into collaborative filtering the side information
used in content-based approaches such as tags [236], images [17], de-
mographic data [231], structured knowledge [24]. However, even there,
the predominant adoption of large and dense models implies that user-
item interactions are predicted by taking into account hundreds or
thousands of features.
In this work, we introduce KGFlex, a knowledge-aware federated rec-

ommendation system, that tackles this issue by exploiting a sparse em-
bedding model with an even greater degree of expressiveness. KGFlex
extracts facts and knowledge from publicly available knowledge graphs
to describe the catalog items. Then, low-dimensionality embeddings
are adopted to represent the semantic item features. KGFlex models the
user-item interaction by combining the subset of item features relevant
to the user. Moreover, to compute the recommendations, it analyses the
user-specific decision-making process of consuming or not consuming
an item. According to that process, the system weights feature embed-
dings using an entropy-based strategy. Therefore, in KGFlex, each user
computes a set of features her decisions are based on. According to a
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principle of expertise, during training, only the features the specific user
is expert about are updated for a given user-item pair. Hence, the user
profile itself only contains a personal representation of each relevant
feature.
The research questions that guide our work are the following.
RQ1. Is KGFlex able to provide both accurate and diverse recom-

mendation to users?
RQ2. Is KGFlex robust to popularity bias and disinclined to intro-

duce algorithmic bias?
RQ3. What happens if KGFlex is deprived of high-order features?

Which are the effects on accuracy and diversity?
RQ4.DoKGFlex recommendations preserve the semantics included

in the original features?
To answer to the above research questions, we conduct extensive

experiments on three different publicly available datasets. The content-
based features have been extracted from data encoded in the DBpedia1

knowledge graph, thanks to public mappings from the dataset items
to DBpedia URIs2. We evaluate the accuracy and diversity of recom-
mendation results and analyze whether the algorithm produces biased
recommendations. Finally, we study how users’ decision-making pro-
cess differs from KGFlex’s one by graphically showing the semantic
shift produced in the recommendation. The results show that KGFlex
has competitive accuracy performance, and at the same time, generates
highly diversified recommendations with a low induced bias.

6.2 Related Work

6.2.1 Knowledge-Aware Recommender Systems

Nowadays, modern RSs exploit various side information such as meta-
data (e.g., tags, reviews) [154], social connections [31], images [17],
and users-items contextual data [11] to build more in-domain [92]
(i.e., domain-dependent), cross-domain [82], or context-aware [101,
105] recommendation models. Among the diverse information sources,
what is, likely, the most relevant source is Knowledge Graphs (KG𝑠).
Thanks to the heterogeneous domains that KG𝑠 cover, the design of
knowledge-based recommendation systems has arisen as a specific re-
search field of its own in the community of RSs, usually referred to
by Knowledge-aware Recommender Systems (KaRS [10, 18]). The

1 http://dbpedia.org
2 https://github.com/sisinflab/LinkedDatasets

http://dbpedia.org
https://github.com/sisinflab/LinkedDatasets
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adoption of KG𝑠 as a source of side-information has generated sev-
eral advancements in the tasks of recommendation [24], knowledge
completion [98], preference elicitation [21], user modeling [201], and
thus produced a vast literature. In recent years, the Knowledge-aware
Recommender Systems have been particularly impactful for several rec-
ommendation tasks: hybrid collaborative/content-based recommen-
dation [24, 128], exploiting the KG information to suffice the lack of
collaborative information and to improve the performance; knowledge-
transfer, cross-domain recommendation [82, 115, 227], where the
KG𝑠 allow to find semantic similarities between different domains;
interpretable/explainable-recommendation [12, 20, 24, 209, 220],
with KG being a backbone for understanding the recommendation
model and providing human-like explanations; user-modeling [111,
139, 155, 201], since the resource descriptions can drive the construc-
tion of the user profile; graph-based recommendation [73, 179, 181,
200, 202, 207], where the topology-based techniques have met the
semantics of the edges/relations, and the ontological classification of
nodes (classes); the cold-start problem [82, 152, 176, 214], since the
KG𝑠 can overcome the lack of collaborative information; the content-
based recommendation [22, 72] that solely relies on KG and still
produces high-quality recommendations. KGFlex could be considered
a Knowledge-aware hybrid collaborative/content-based recommenda-
tion model. While recent models of the same kind made use of Knowl-
edge graph embeddings or factorization models, KGFlex considerably
differs from them since it introduces the sparse factorization approach
and reweights the user-feature interactions by exploiting the informa-
tion gain signal. To the best of our knowledge, it is one of the first
approaches to adopt this hybrid solution to obtain a personalized view
of the embedding matrix.

6.2.2 Entropy-Driven Recommender Systems

Entropy-based measures have been widely employed in recommenda-
tion systems. A popular strategy to include entropy into the recommen-
dation algorithm is to exploit it in connection with a similarity measure.
In this respect, Wang et al. [208] proposed a new information entropy-
driven user similarity-based model. They suggest measuring the rela-
tive difference between ratings and develop aManhattan distance-based
model. Yalcin et al. [217] proposes two novel aggregation techniques
by hybridizing additive utilitarian and approval voting methods to fea-
ture popular items on which group members provided a consensus.
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They use entropy to analyze rating distributions and detect items on
which group members have reached no or little consensus. Entropy has
also been used to model the purchase probability for a given set of
recommendations for a specific user [106]. The idea is to exploit the
maximum entropy principle by analyzing features in the recommenda-
tions and user interests. Another example of the exploitation of entropy
is Lee [126], where they improve the previous similarity measures by
employing the information entropy of user ratings to reflect the user’s
global rating behavior on items. Karimi et al. [112] proposed an inno-
vative approach for active learning in recommender systems, aiming
to take advantage of additional information. They suggest employing
entropy to drive the active learning process and increase the system
performance for new users. Entropy has also been applied to evaluate
the quality and helpfulness of different product reviews [228]. They
propose an information gain-based model to predict the helpfulness of
online product reviews to suggest the most suitable products and ven-
dors to consumers. Another interesting study [45] integrates entropy
more deeply into the recommendation process. They calculate for every
feature its information gain by considering item instances that provide
the feature and item instances that do not. Despite superficial similari-
ties with Bouza et al. [45], the twoworks are fundamentally different. In
fact, Bouza et al. uses the class of the features with the highest informa-
tion gain as a decision tree node, while KGFlex exploits the information
gain to weigh the single user-feature interactions. Moreover, user and
feature embeddings are combined using a dot-product similarity, show-
ing some similarities with the former works. However, that is where
the similarities end, since all the mentioned works propose completely
different models from KGFlex (e.g., distance-based or active-learning
models, feature selection techniques).

6.3 Background

The Semantic Web was initially conceived to connect documents in
the Web and improve data retrieving and access. Over the years, a full
stack of semantic technologies emerged, leading to the Linking Open
Data initiative [100]. The initiative indicates the remarkable effort of
a community of researchers and practitioners to build publicly avail-
able knowledge bases of semantically linked machine-understandable
data [38]. The resulting knowledge graphs are built on a disarmingly
simple idea, but they definitely changed the way structured information
is stored. Thanks to the Linked Data initiative, today, we can bene-
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fit from 1, 483 different knowledge graphs connected in the so-called
Linked Open Data Cloud3. These knowledge graphs share the same
ontology and the same schema across multiple domains, giving access
to a wide-spread knowledge at the same development cost required for
a single domain.
The most appreciated KG𝑠 of this special class undoubtedly are

DBpedia [29, 127], Wikidata [198, 199], Yago [190] (the 4th re-
lease [192] also supports RDF* [97]), FreeBase [41], Satori45 [136,
195], NELL [55], Google’s Knowledge Graph6, Facebook’s Entities
Graph7, Knowledge Vault [75], Bio2RDF [35]. This availability of
knowledge graphs is a clear advantage for KaRS.
A knowledge graph KG can be represented as a set of triples where

entities are linked to each other by binary relations. Each connection
in KG is then a triple 𝜎 𝜌−→ 𝜔, where 𝜎 is a subject entity, 𝜌 is a
relation (predicate), and 𝜔 is an object entity. Therefore, in KG, the
edge 𝜌 connects the entity 𝜎 and the entity 𝜔 with a directed relation.
Hereinafter, we generalize the previous notion to multi-hop predicates
(i.e., considering chains of predicates that connect two entities at a
higher depth). Let 𝑛-hop predicate be defined as 𝜌 = 〈𝜌1, ..., 𝜌𝑛〉 if
𝜎

𝜌1−−→ 𝜔1
𝜌2−−→ ...

𝜌𝑛−−→ 𝜔𝑛 ∈ KG. For convenience, ℎ(𝜌) = 𝑛 for
𝜌 : 𝜎

𝜌−→ 𝜔𝑛 ∈ KG denotes the depth of the predicate chain. When no
confusion arises, from now on we will use 𝜎

𝜌−→ 𝜔 to denote a generic
chain with ℎ(𝜌) ∈ {1, ..., 𝑛}.

6.4 Approach

In the following, we introduce KGFlex. It exploits the knowledge en-
coded in a knowledge graph as side information to compute feature-
aware user profiles, which are eventually used to provide personalized
recommendation lists.
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Figure 6.1: An excerpt of a knowledge graph, showing items of a catalog
(Rijksmuseum, Vondelpark, Capitoline Museums, Piazza Navona,
and Central Park) connected to other entities by predicates. The
user Pink has expressed positive feedback for the items highlighted
with the colors of their names.

6.4.1 Item and User Features in KGFlex

Given a collection of items I and a knowledge graph KG we assume
each element in 𝑖 ∈ I has a mapping to a corresponding entity in
KG. Under this assumption, a server 𝑆 can explore KG at depth 𝑛

starting from an item 𝑖 to identify the set F (𝑛)𝑖 of the semantic features
describing it:

F (𝑛)𝑖 = {〈𝜌,𝜔〉 | 𝑖 𝜌−→ 𝜔 ∈ KG , ℎ(𝜌) ∈ {1, ..., 𝑛}}. (6.1)

Once the features are extracted, KGFlex handles them equally, regard-
less of their original depth.

Example 6.1. As an example, consider the KG excerpt in Figure 6.1,
where a 1-depth exploration has been performed for each of five items
taken from a point-of-interest catalog. The formal Vondelpark item
description is:

F (1)Vondelpark = {〈type, Location〉,
〈location, Amsterdam〉, 〈type, Urban Park〉}. �

3 https://lod-cloud.net/datasets
4 https://searchengineland.com/library/bing/bing-satori
5 https://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing

6 https://blog.google/products/search/introducing-knowledge-graph-things-not/
7 https://www.facebook.com/notes/facebookengineering/
under-the-hood-the-entitiesgraph/10151490531588920/

https://lod-cloud.net/datasets
https://searchengineland.com/library/bing/bing-satori
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
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We consider a federationU of users, with each user 𝑢 holding a set
F𝑢 of features representing the items I+𝑢 ⊆ I she positively enjoyed.
We define F𝑢 as the set of features describing the items that user 𝑢 has
interacted with:

F (𝑛)𝑢 =
⋃
𝑖∈I+𝑢
F (𝑛)𝑖 . (6.2)

Example 6.2. (continued) In Figure 6.1, we represented the items
enjoyed by the user Pink by marking them with pink circles. To build
the set F (1)Pink, the features of all the items appreciated by Pink have to
be considered:

F (1)Pink = {〈type, Location〉, 〈location, Amsterdam〉,
〈type, Urban Park〉, 〈type, Art Museum〉}. �

Finally, let F (𝑛) denote the overall set of the features in the system:

F (𝑛) =
⋃
𝑖∈I
F (𝑛)𝑖 , (6.3)

with F (𝑛)𝑖 ⊆ F (𝑛) and F (𝑛)𝑢 ⊆ F (𝑛) . Depending on the value of 𝑛 and
on the size of I, the size of F (𝑛) could rapidly increase. Thus, filtering
the item features might be a reasonable choice to control the computa-
tional and memory load and to improve the system performance. Even
though the literature about feature selection is vast, it is worth noticing
that with KGFlex also graph pruning and semantic feature selection
techniques [71] could apply. In the following, for convenience, the (𝑛)
superscript is omitted whenever it is not relevant in the context.

6.4.2 Entropy of User Features

The main assumption behind KGFlex is that users make decisions
(i.e., items to enjoy) based on a subset of item characteristics. The
assumption implies that not all the item features are equally important.
WithKGFlexwemove a step ahead in this direction by exploring how

likely a user considers a feature in her item choice process. Taking a
cue from information theory, KGFlex exploits the notion of information
gain to measure the relevance of a feature for a user in the process of
deciding to consume or not the item. For completeness, information
gain is not the only metric used to select the best variable to partition
data samples with respect to an outcome variable [174]. Nevertheless,
information gain is widely adopted in a myriad of methods since it
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works also with non-binary values of each attribute. Moreover, for
what regards the decision trees, the various informative metrics are
quite consistent with each other and choosing one or another has a
limited impact on the performance [162]. For specific reasons, some
metrics could be preferred (e.g., Gini impurity is well suited for its low
computational cost [162]). However, a discussion about the advantages
of the different metrics remains beyond the scope of this work. In
information theory, entropy is used to measure the uncertainty of a
random variable. The entropy 𝐻 (𝑉) of a random variable 𝑉 with 𝑘

possible values in {𝑣1, ..., 𝑣𝑘 } is defined as:

𝐻 (𝑉) = −
𝑘∑︁
𝑖=1

𝑃(𝑉 = 𝑣𝑖) log2 𝑃(𝑉 = 𝑣𝑖). (6.4)

It is straightforward to check that a coin that always comes up heads has
zero entropy, while a fair coin equally likely to come up heads or tails
when flipped has entropy 1. Notably, if 𝑉 is a binary random variable
that is true with probability 𝑞, we have 𝐻 (𝑉) = 𝐵(𝑞) = −(𝑞 log2 𝑞 +
(1 − 𝑞) log2(1 − 𝑞)). Therefore, given a dataset D of training samples
in the form (x, 𝑦), with x ∈ R𝐹 and 𝑦 ∈ {0, 1}, the entropy of the
dataset is equal to 𝐻 (D) = 𝐵(𝑃(𝑦 = 1)).
In this context, the information gain measures the expected reduction

in information entropy from a prior state to a new state that acquires
some information. With reference to the dataset D, the new informa-
tion comes from the observation of one of the attributes 𝑥𝑑 in x. The
𝑘 distinct values {𝑥𝑑,1, ...𝑥𝑑,𝑘 } that 𝑥𝑑 can assume partition the dataset
D into 𝑘 mutually exclusive subsets, thus inducing a categorical prob-
ability distribution on the values of 𝑥𝑑 . This gives the possibility to
measure the expected entropy of D conditioned on 𝑥𝑑:

𝐻 (D|𝑥𝑑) =
𝑘∑︁
𝑖=1

𝑃(𝑥𝑑 = 𝑥𝑑,𝑖)𝐻 (D|𝑥𝑑 = 𝑥𝑑,𝑖). (6.5)

Then, we define the information gain 𝐼𝐺 (D, 𝑥𝑑) obtained from the
observation of the attribute 𝑥𝑑 as:

𝐼𝐺 (D, 𝑥𝑑) = 𝐻 (D) − 𝐻 (D|𝑥𝑑). (6.6)

The information gain defined in Eq. (6.6) returns a measure of the
importance of a single attribute in distinguishing positive from negative
examples in a dataset. In KGFlex, we use the notion of information gain
to measure how relevant a feature is to a user for deciding to consume
or discard an item. In detail, to associate each feature of the system
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with an information gain, KGFlex uses the workflow described in the
following.
Each user 𝑢 builds a dataset D𝑢 with all the positive items (i.e.,

the items the user has enjoyed) from I+𝑢 and the same amount of
negative items randomly picked up from

⋃
𝑣∈U,𝑣≠𝑢 I𝑣 \ I+𝑢 (i.e., items

not enjoyed by the user 𝑢 but enjoyed by other users). If this information
is not available, due to privacy concerns, also popular items represent
a good option. Then, following Eq. (6.4), 𝐻 (D𝑢) = 1. Each sample is
provided with a set of binary variables corresponding to the features in
F𝑢. Each variable indicates, for each item 𝑖 inD𝑢, the presence ( 𝑓 = 1)
or the absence ( 𝑓 = 0) of the corresponding feature in the set F𝑖.
The information gain for each feature 𝑓 ∈ F𝑢 can be computed using

the dataset D𝑢. Let 𝑝𝑢 𝑓 be the number of positive samples in D𝑢 for
which 𝑓 = 1, 𝑛𝑢 𝑓 the number of negative samples for which the same
feature is present, and 𝑡𝑢 𝑓 the short form of 𝑝𝑢 𝑓 + 𝑛𝑢 𝑓 . Analogously, we
define 𝑝𝑢¬ 𝑓 = |I+𝑢 | − 𝑝𝑢 𝑓 as the number of positive samples with 𝑓 = 0,
𝑛𝑢¬ 𝑓 = |I+𝑢 | − 𝑛𝑢 𝑓 as the number of negative samples with 𝑓 = 0, and
𝑡𝑢¬ 𝑓 as the short form of 𝑝𝑢¬ 𝑓 + 𝑛𝑢¬ 𝑓 . Following Eqs. (6.5) and (6.6):

𝐼𝐺 (D𝑢, 𝑓 ) = 1 − 𝐻 (D𝑢 | 𝑓 = 1) − 𝐻 (D𝑢 | 𝑓 = 0), (6.7)

𝐻 (D𝑢 | 𝑓 = 1) =
𝑡𝑢 𝑓

|D𝑢 |

(
− 𝑝𝑢 𝑓

𝑡𝑢 𝑓
log2

𝑝𝑢 𝑓

𝑡𝑢 𝑓
− 𝑛𝑢 𝑓

𝑡𝑢 𝑓
log2

𝑛𝑢 𝑓

𝑡𝑢 𝑓

)
, (6.8)

𝐻 (D𝑢 | 𝑓 = 0) =
𝑡𝑢¬ 𝑓
|D𝑢 |

(
− 𝑝𝑢¬ 𝑓

𝑡𝑢¬ 𝑓
log2

𝑝𝑢¬ 𝑓
𝑡𝑢¬ 𝑓

− 𝑛𝑢¬ 𝑓
𝑡𝑢¬ 𝑓

log2
𝑛𝑢¬ 𝑓
𝑡𝑢¬ 𝑓

)
, (6.9)

where 𝐼𝐺 (D𝑢, 𝑓 ) can be also merely regarded as a function in the
values of 𝑝𝑢 𝑓 and 𝑛𝑢 𝑓 .
In KGFlex, we associate a weight 𝑘𝑢 𝑓 = 𝐼𝐺 (D𝑢, 𝑓 ) to each pair

of user 𝑢 and feature 𝑓 . It represents the influence of a feature —in
the view of the user— in the prediction of user-item interactions. To
compute the 𝑘𝑢 𝑓 values, the system designer can consider the whole
set of features in F𝑢, or filter them out according to a cutoff value of
IG. This user-feature weight is built on a strongly positive or negative
interest of the user towards the feature, that suggests an aptitude of the
user for declaring something positive or negative about that feature and
describing it. This is the rationale for extending the notion of expertise
discussed in Chapter 5 to the idea of expertise about a concept (i.e.,
the feature), that will help KGFlex, by means of a calibrated rating
prediction, to learn each part of the federated model from the most
interested and expert users (see Section 6.4.3 for further details).
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Example 6.3. (continued) To clarify the use of information gain in
KGFlex and show its effects, we consider the example in Figure 6.1.
We see that Pink has visited the Rijksmuseum and the Vondelpark,
both in Amsterdam. Thus KGFlex supposes she has a preference
for the Dutch city. On the other hand, all the items in the catalog
share the feature 〈type, Location〉, thus KGFlex assumes this latter
not to be influential in the user decision-making process. To build
DPink, KGFlex combines the set of items experienced by Pink with
a set of the same size containing items that Pink did not enjoy, e.g.,
DPink = {Rijksmusem,Vondelpark,Piazza Navona,Central Park}. Let
us observe the feature 〈location, Amsterdam〉. According to the pre-
vious definitions, it has to be influent for Pink. Given DPink, KGFlex
computes:

𝑝Pink,〈location,Amsterdam〉 = 2, 𝑛Pink,〈location,Amsterdam〉 = 0,
𝑝Pink,¬〈location,Amsterdam〉 = 0, 𝑛Pink,¬〈location,Amsterdam〉 = 2.

Consequently, according to Eq. (6.7), 𝑘Pink,〈location,Amsterdam〉 = 1, mean-
ing that Pink strongly takes into account if a place to visit is located
in Amsterdam or not. Therefore, KGFlex considers this feature to have
a high impact on generating the recommendations for Pink. Moreover,
it could be observed that 𝑘Pink,〈type,Art Museum〉 ≈ 0.31. Since it is not
completely clear how influential this feature is in Pink’s decisions,
it will have a smaller influence on the predictions for Pink. Finally,
𝑘Pink,〈type,Location〉 and 𝑘Pink,〈type,Urban Park〉 have zero information gain
and no influence on the predictions. In detail, the former is common
to all the items and does not bring additional information. The latter is
shared by the same number (i.e., one) of positive and negative samples
in DPink. So, it makes this feature useless in distinguishing positive
from negative places for Pink. �

6.4.3 Model Architecture

KGFlex does not contain explicit representations for users and items.
Instead, it represents the features in F as embeddings in a latent space
R𝑚. This representation is hosted on the server 𝑆 and is shared among
all the users of the federation. Moreover, KGFlex promotes the idea of
having user fine-tuned versions of the same model [14–16]. Therefore,
in addition to the global latent representation of each feature in F , it
builds, on the client of each user 𝑢, a personal view of each feature in
F𝑢 ⊆ F . Each user combines the global embeddings with her personal
feature representation to estimate the overall user-item interaction.
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Formally, the recommendation model is structured into two distinct
parts, both containing a dense representation of dimensionality 𝑚 for
each feature 𝑓 ∈ F . On the one hand, KGFlex keeps on the server 𝑆 a
set G of global trainable embeddings and biases shared among all the
users (see Section 6.4.4):

G = {(g 𝑓 ∈ R𝑚, 𝑏 𝑓 ∈ R) | 𝑓 ∈ F }. (6.10)

On the other hand, each user inU holds her personal representation of
the features she interacted with, i.e., the features in F𝑢. These embed-
dings are collected within the set P𝑢, defined as:

P𝑢 = {p𝑢
𝑓 ∈ R𝑚 | 𝑓 ∈ F𝑢}. (6.11)

KGFlex estimates the possible affinity of a feature 𝑓 to the user 𝑢
with the inner product between the personal representation p𝑢

𝑓 and the
global representation g 𝑓 , plus the global bias term 𝑏 𝑓 . To estimate the
overall affinity of user 𝑢 to item 𝑖, KGFlex combines the features shared
by 𝑢 and 𝑖 and then weighs them according to their pre-computed
entropy-based values. In detail, being F𝑢𝑖 = F𝑢 ∩ F𝑖 the set of common
features between user 𝑢 and item 𝑖, the interaction 𝑟𝑢𝑖 can be estimated
as it follows:

𝑟𝑢𝑖 =
∑︁
𝑓 ∈F𝑢𝑖

𝑘𝑢 𝑓 (p𝑢
𝑓 g 𝑓 + 𝑏 𝑓 ). (6.12)

Eq. (6.12) encodes the strategy KGFlex exploits to handle thousands of
model features. In fact, it takes advantage of the user profile to involve
only a small subset of them in the estimate of the user-item affinity.

Example 6.4. (continued) From the previous analysis, it is clear how
Pink’s choices (see Figure 6.1) are influenced by the features 〈location,
Amsterdam〉 and 〈type, Art Museum〉. Consider that the interaction of
Pink with Capitoline Museum is to be estimated by KGFlex. The set
of the common features is FPink,Capitoline Museum = {〈type,Art Museum〉,
〈type,Location〉}. Accordingly toEq. (6.12), the interaction ismodelled
as the summation of contributions of the common features:
𝑟Pink,Capitoline Museum = 𝑘𝑃𝑖𝑛𝑘 ,〈type,Art Museum〉

· (p𝑃𝑖𝑛𝑘
〈type,Art Museum〉g〈type,Art Museum〉 + 𝑏〈type,Art Museum〉)

+ 𝑘𝑃𝑖𝑛𝑘 ,〈type,Location〉
· (p𝑃𝑖𝑛𝑘
〈type,Location〉g〈type,Location〉 + 𝑏〈type,Location〉).

As expected, there is no contribution of the feature 〈type, Location〉
because of the value of its pre-computed entropy-based weight. Thus,
the only contribution to the estimation is given by the embeddings of
〈type, Art Museum〉. �
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In this chapter, we did not center our attention on the federated ar-
chitecture, rather on the idea behind KGFlex. Nevertheless, the recom-
mendation model described so far has been designed to fit a federated
architecture, with a training procedure based on the protocol described
in Section 4.4 that does not require sharing any raw data. However,
the same KGFlex model can be perfectly integrated into a centralized
setting without requiring any significant change.

6.4.4 Learning to Rank

To learn themodel parameters,KGFlex adopts thewell-knownBayesian
Personalized Ranking (BPR) optimization criterion, which is a maxi-
mum posterior estimator for personalized ranking and the most com-
mon pair-wise Learning to Rank strategy. BPR assumes that a user
𝑢 prefers a consumed item 𝑖+ over a non-consumed item 𝑖−, and opti-
mizes the model by maximizing, for each pair of 𝑖+ and 𝑖−, a function of
the difference 𝑟𝑢𝑖+ − 𝑟𝑢𝑖− . To update the model, KGFlex uses stochastic
gradient descent, following Eqs. 4.3 and 4.4, and considering that:

𝜕

𝜕𝜃
𝑟𝑢𝑖+𝑖− =

𝜕

𝜕𝜃
𝑟𝑢𝑖+ − 𝜕

𝜕𝜃
𝑟𝑢𝑖− , (6.13)

and that here the partial derivatives of the generic 𝑟𝑢𝑖 with respect to
the model parameters are:

𝜕

𝜕𝜃
𝑟𝑢𝑖 =



𝑘𝑢 𝑓 g 𝑓 if 𝜃 = p𝑢
𝑓 ,

𝑘𝑢 𝑓 p𝑢
𝑓 if 𝜃 = g 𝑓 ,

𝑘𝑢 𝑓 if 𝜃 = 𝑏 𝑓 ,

0 else.

(6.14)

6.5 Experimental Setup

This section describes how we have designed the experimental set-
ting, the evaluation protocol, and the baselines to answer the research
questions.

6.5.1 Datasets

We have evaluated the performance of KGFlex on three datasets from
different domains, namely Yahoo! Movies, MovieLens, and Facebook
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Books. Each item in these datasets is provided with a DBpedia URI,
which links to the semantic description of the item as an entity of
the DBpedia knowledge graph. Yahoo! Movies contains 69, 846 movie
ratings generated on Yahoo! Movies up to November 2003 on a [1, 5]
scale. The ratings have been collected from 4, 000 users with respect
to 2, 626 items. It provides mappings to MovieLens and EachMovie
datasets. We binarize the explicit data by keeping ratings of 3 or higher
and interpret them as positive implicit feedback. The dataset Movie-
Lens is a collection of users’ ratings in the movie domain: it contains
1, 000, 209 ratings on a [1, 5] scale from 6, 040 users with respect to
3, 706 items. Similar to Yahoo! Movies, we binarize the explicit data
by keeping ratings of 3 or higher. Finally, Facebook Books is a more
sparse dataset with 18, 978 positive implicit feedback from 1, 398 users
about 2, 933 books. To ensure a fair comparison with the baselines,
we applied an iterative 10-core preprocessing on Yahoo! Movies and
MovieLens, and a 5-core preprocessing on Facebook Books.

6.5.2 Feature Extraction

For a fair comparison, we have used the features resulting from the
following workflow for KGFlex and for the baselines that make use of
content information, i.e., VSM and kaHFM.

Exploration of Knowledge Graph. The items of the datasets have
been described with a set of semantic features retrieved through a
knowledge graph exploration at depth 2 in the form of 〈𝜌,𝜔〉 pairs
(see Eq. 6.1). The semantic information has been retrieved from the
DBpedia knowledge graph8, thanks to the item-to-DBpedia-URI map-
ping provided with the datasets. Some features (based on their 1-
hop predicate) have not been considered, since they provide auxil-
iar information not useful for characterizing the content of the item
[71]. In detail, we filtered out the predicates dbo:wikiPageWikiLink,
owl:sameAs, rdf:type, gold:hypernym, rdfs:seeAlso, dbp:wordnet_type,
dbo:wikiPageExternalLink, dbo:thumbnail, prov:wasDerivedFrom, and
dbp:wikiPageUsesTemplate.

Feature Filtering based on Frequency. Irrelevant features have
been removed due to the poor information they bring and to reduce
the computational costs. Thus, we have removed the features that are
common to less than 10 items. The resulting features constitute the

8 https://www.dbpedia.org

https://www.dbpedia.org
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common set of features for all the competing models that make use of
content features, although some of these models—including KGFlex—
may operate some further filtering operations.

Feature Filtering based on Entropy in KGFlex. As mentioned in
Section 6.4.2, features in the user personal representation have been
filtered as well based on their information gain. For instance, in a 2-hop
exploration of the knowledge graph, users with a large number of trans-
actions could reach an impressive number of nodes of the knowledge
graph. Thus, we filtered out features with little information gain keep-
ing, as amaximum limit for each user, the 100most informative features
from the 1-hop exploration and the 100 most informative features from
the 2-hop exploration.

6.5.3 Baselines

To assess the effectiveness of KGFlex, we compare it with various base-
lines. In particular, we are interested in comparing KGFlex with other
latent factor models and other state-of-the-art baselines which helps to
position the model with respect to some of the best recommendation
approaches in the literature.

Non-competing Algorithms. Random and Most Popular are two
non-personalized recommenders used for reference. Among content-
based algorithms, we have chosen the Vector Space Model (VSM) [72]
where user and item profiles have been generated with TF-IDF and co-
sine similarities between them have been computed. As collaborative-
filtering baselines, we have considered Item-kNN [119] (an item-
based implementation of the k-nearest neighbors algorithm) and Mul-
tiVAE [132], a non-linear probabilistic model taking advantage of
Bayesian inference to estimate the parameters.

Competing Algorithms. We compare KGFlex against factorization-
based algorithms, both non-neural and neural. Among them, we con-
sider i) BPR-MF [167], a latent factor model based on the same pair-
wise optimization criterion used in KGFlex, ii) the neural Matrix Fac-
torization in the version of Rendle et al. [169], iii) NeuMF [99], and iv)
kaHFM [24], another factorization-based model making use of knowl-
edge graphs for model building and initialization.
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6.5.4 Reproducibility, Evaluation Protocol and Metrics

We have chosen the all unrated items protocol to compare the different
algorithms. In all unrated items, for each user we consider as recom-
mendable items all the items not yet rated by that user. We have split
the datasets using hold-out 80-20 splitting strategy, retaining for each
user the 80% of her ratings in the training set and the remaining 20%
in the test set [91]. All the models have been tested in 10 different
configurations of hyperparameters, according to the Bayesian hyper-
parameter optimization algorithm. For the sake of reproducibility, we
provide our code and a working configuration file for the framework
Elliot [13], with complete and ready-to-use information about the exper-
iments we have run. We have measured the recommendation accuracy
by exploiting nDCG [124]. It has been also used for validation and
choosing the best hyperparameter configurations. We have also eval-
uated the diversity of recommendation, adopting Item Coverage [6]
and Gini Index [56] (higher is better). The former provides the overall
number of diverse recommended items, and it highlights the degree of
personalization. The latter measures how unequally a system provides
users with different items, with higher values corresponding to more
tailored lists. Finally, three bias metrics have been used to evaluate how
KGFlex and the baselines behave on the underrepresentation of items
from the long-tail. To this aim we have used ACLT (higher is better),
which measures the fraction of the long-tail items the recommender has
covered [3]. Moreover, we have also evaluated PopREO and PopRSP
(smaller is better, in [0, 1]), which are specific applications of RSP and
REO [237]. Notably, PopREO estimates the equal opportunity of items,
encouraging the true positive rate of popular and unpopular items to be
same. PopRSP is a measure of statistical parity, assessing whether the
ranking probability distributions for popular and unpopular items are
the same in recommendation.

6.6 Results and Discussion

In the following, we discuss the main insights coming from the per-
formed experiments, with the aim of answering the research questions
posed at the beginning of this chapter.
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Table 6.1: Comparison of KGFlex with competing baselines (names in bold-
face) and other reference baselines on Yahoo! Movies, Facebook
Books, and MovieLens 1M. Among the competing baselines, the
best result is in boldface, the second-best result is underlined. For
the metrics marked with ↑, higher is better; with ↓, lower is better.

a) Yahoo! Movies
nDCG ↑ IC ↑ Gini Index ↑ ACLT ↑ PopREO ↓ PopRSP ↓
@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.0096 0.0084 1050 811 0.8496 0.5659 5.5203 0.5473 0.0985 0.5336 0.0098 0.0034
Most Pop. 0.1585 0.1367 49 11 0.0126 0.0010 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
VSM 0.0478 0.0453 370 93 0.0525 0.0139 3.1177 0.2270 0.4959 0.5443 0.4575 0.6112
Item-kNN 0.3074 0.3472 745 297 0.1583 0.0985 0.9884 0.0862 0.7059 0.7065 0.8347 0.8562
MultiVAE 0.2370 0.2455 399 152 0.0914 0.0419 0.2347 0.0122 0.8543 0.8293 0.9613 0.9799
BPR-MF 0.1857 0.1710 151 35 0.0219 0.0041 0.0006 0.0000 0.9954 1.0000 0.9999 1.0000
MF 0.2897 0.2999 455 177 0.0902 0.0464 0.0823 0.0026 0.8735 0.9353 0.9865 0.9958
NeuMF 0.0918 0.0855 50 13 0.0113 0.0009 0.0006 0.0000 1.0000 1.0000 0.9999 1.0000
kaHFM 0.3006 0.3238 757 290 0.1659 0.0988 0.4624 0.0334 0.7610 0.7494 0.9234 0.9447
KGFlex 0.2464 0.3122 851 370 0.2802 0.1361 2.1447 0.1145 0.4477 0.6292 0.6336 0.8080

b) Facebook Books
nDCG ↑ IC ↑ Gini Index ↑ ACLT ↑ PopREO ↓ PopRSP ↓
@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.0069 0.0059 782 646 0.8617 0.5878 5.2605 0.5371 0.0980 0.1159 0.0075 0.0088
Most Pop. 0.0939 0.0829 16 4 0.0127 0.0007 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
VSM 0.0362 0.0213 523 203 0.1887 0.0839 3.8056 0.3067 0.2262 0.7618 0.2996 0.4409
Item-kNN 0.1290 0.0924 769 338 0.3752 0.1606 2.2252 0.2106 0.4885 0.4300 0.5986 0.6208
MultiVAE 0.1191 0.0829 620 197 0.1828 0.0634 0.4637 0.0272 0.7770 0.8723 0.9182 0.9522
BPR-MF 0.0947 0.0829 17 4 0.0132 0.0007 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
MF 0.0956 0.0844 87 16 0.0238 0.0012 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
NeuMF 0.0714 0.0756 17 4 0.0125 0.0006 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
kaHFM 0.1267 0.0858 540 174 0.1387 0.0607 0.3294 0.0249 0.8766 0.9368 0.9420 0.9561
KGFlex 0.0853 0.0653 606 288 0.3070 0.1588 3.0264 0.2458 0.1521 0.1315 0.4485 0.5554

c) MovieLens 1M
nDCG ↑ IC ↑ Gini Index ↑ ACLT ↑ PopREO ↓ PopRSP ↓
@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.0096 0.0089 3203 2701 0.8657 0.6036 6.5735 0.6566 0.0715 0.0404 0.0056 0.0020
Most Pop. 0.1984 0.2512 69 19 0.0054 0.0006 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
VSM 0.0476 0.0373 170 34 0.0062 0.0011 1.5333 0.3629 0.8300 0.3413 0.8264 0.5395
Item-kNN 0.3690 0.4803 980 395 0.0584 0.0318 0.0666 0.0041 0.9606 0.9707 0.9930 0.9957
MultiVAE 0.3424 0.4003 1794 856 0.1381 0.0921 0.4455 0.0414 0.7652 0.7605 0.9522 0.9557
BPR-MF 0.3676 0.4679 1141 527 0.0765 0.0449 0.0633 0.0018 0.9551 0.9933 0.9933 0.9981
MF 0.1833 0.2079 100 35 0.0075 0.0029 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
NeuMF 0.1374 0.1496 70 18 0.0046 0.0004 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
kaHFM 0.3222 0.4203 955 337 0.0482 0.0219 0.0450 0.0017 0.9720 0.9888 0.9953 0.9983
KGFlex 0.1982 0.2754 1403 492 0.0844 0.0327 0.8613 0.0480 0.8207 0.9384 0.9057 0.9484
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6.6.1 Accuracy and Diversity: an Analytical and Qualitative Study

The first analysis aims to answer RQ1. In fact, the purpose of this eval-
uation is to assess whether KGFlex is capable to provide accurate and
diverse recommendation. Tables 6.1a, 6.1b and 6.1c show an analysis
of the accuracy and diversity performance comparing KGFlex with
the other baselines in terms of nDCG and Gini Index. The best and
the second-best values are highlighted with boldface and underline,
respectively. Although several baselines are considered (to position the
methods), a thorough comparison is mainly made with respect to the la-
tent factor models, highlighted in boldface in the first column of tables.
The results in Tables 6.1a, 6.1b and 6.1c have been statistically vali-
dated with Student Paired t-test and Wilcoxon test, with a 𝑝-value level
of 0.05. The complete significance hypothesis test tables are available
in the KGFlex repository. The general behavior that can be observed at
first glance from Table 6.1a is that KGFlex exhibits a satisfactory per-
formance regarding the accuracy, being outperformed only by kaHFM
and MF in the top-10 recommendation. Moreover, it behaves even bet-
ter in the top-1 task, where its nDCG value becomes comparable to the
accuracy result of kaHFM, which shows the best accuracy performance.
KGFlex significantly outperforms BPR-MF, although both are learned
with a pair-wise BPR optimization, suggesting the useful role of the
extracted knowledge. When looking at the diversity performance rep-
resented by the item coverage and Gini values, we note the high degree
of personalization provided by KGFlex. We link this result to the per-
sonalized view of the knowledge granted by the framework. Moreover,
in KGFlex the collaborative signal on explicit user interests ensures
to recommend diverse items among the ones sharing characteristics
of interest for the user. The behavior pointed out so far is not entirely
confirmed in Facebook Books (see Table 6.1b). Indeed, here the accu-
racy results remain below the performance of other factorization-based
approaches. However, the diversity results show how BPR-MF, MF
and NeuMF may have been completely flooded by popularity signal,
which led them to perform poorly regarding the item coverage and Gini
metrics. Instead, KGFlex approaches the superior performance of Item-
kNN in terms of diversity, and even here it shows an improvement in
top-1 recommendation, where the gap is reduced. Furthermore, we ana-
lyze Table 6.1c, showing the performance onMovieLens 1M. BPR-MF
performs superbly on this dataset, while the other factorization-based
approaches—but kaHFM— remain significantly below its capabilities.
This downward trend seems to be caused by the strong popularity sig-
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Figure 6.2: Accuracy vs. distributional diversity. The plots show the value
of HR@10 against SE@10: the closer to the top-right corner the
better.

nal, which is prevailing in MF and NeuMF. Instead, KGFlex does not
suffer from this problem and it is the best model in terms of diversity,
while providing still meaningful recommendations.
What we have analytically observed is confirmed in Figure 6.2.

These graphs show the joint behavior of KGFlex on accuracy and
distributional diversity, by analyzing the value of Hit Ratio (HR) on
the top-10 recommendation lists with respect to the Shannon Entropy
(SE) statistics. Among factorization-based approaches (labelled in the
plots), KGFlex approaches the right-top margin to a greater extent. The
kaHFM model usually is the second-best model, but, on MovieLens
1M, BPR-MF shows its best performance. The other approaches seem
to perform very poorly in at least one dimension or do not have a
stable position when varying the dataset. This confirms the previous
findings, and gives KGFlex the merit of providing highly personalized
recommendations, thanks to the joint operation of the global and the
personal (local) views of the same feature.
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6.6.2 Induction and Amplification of the Bias

The behavior of KGFlex led us to analyze the quality of the recom-
mendation in terms of popularity bias, a frequent problem causing
popular items to be more and more recommended and less popular
ones to remain underrepresented [4]. This algorithmic bias may cause
a fairness issue from the item point of view, but also an inappropriate
recommendation for users who do not prefer very popular items. Ta-
bles 6.1a, 6.1b and 6.1c provide the values of three metrics to measure
the bias. KGFlex always outperforms all the other factorization-based
approaches and generally outperforms the other approaches. Regarding
KGFlex, the Average Coverage of Long-Tail items, measured by ACLT
(the higher the better), is comparable with the value obtained by VSM.
This result is supported by the values of PopREO and PopRSP (the
smaller the better), which encourage the ranking probability distribu-
tions and the true positive rates of popular and less popular items to be
the same. Indeed, KGFlex and VSM grant the less biased recommenda-
tions. Interestingly, while both exploit the same optimization criterion,
we notice howKGFlex consistently improves BPR-MF, which is known
to be vulnerable to imbalanced data and to produce biased recommen-
dations [237]. To conclude, we can answer to RQ2 asserting that the
personalized representation of content information gives KGFlex the
push to provide satisfactory and diverse recommendations without be-
ing negatively affected by popularity bias.

6.6.3 Impact of Knowledge Graph Exploration

In the previous experimental setting (see Section 6.5.2), the personal
user knowledge was represented by her 100 most informative 1-hop
features and her 100 most informative 2-hop features. To give an intu-
ition of how beneficial is the exploitation of these features in KGFlex,
we performed an ablation study on MovieLens 1M in which we force
KGFlex not to use features from the first hop exploration, or from the
second hop exploration, or both. Figure 6.3 shows the accuracy and
diversity performance of KGFlex, and its ablated versions KGFlex(1),
using only features from the first hop, KGFlex(2), using only features
from the second hop, and KGFlex(∅), which eliminates both. Moreover,
we also plot how each version performs based on the embedding size,
to understand whether it can affect the model variants. As expected,
KGFlex(∅) performed in an unsatisfactory way on the recommendation
task, since it cannot establish common content between users and items.
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Figure 6.3: Ablation study on MovieLens 1M of KGFlex evaluated with re-
spect of accuracy and diversity, which shows that features from
the second hop significantly improves the model. KGFlex(∅) does
not use features from knowledge graph, KGFlex(1) only uses 1-hop
features, KGFlex(2) only uses 2-hop features. The colors represent
different embedding sizes used for training.

With 100 first-hop features per user (KGFlex(1)), the system provides
accurate recommendation, but its diversity performance remains low.
In this configuration, changing the embedding size is not beneficial
neither for diversity nor for accuracy. When exploiting only features
from the second hop KGFlex(2) the situation changes: these features en-
able KGFlex to catch more information about the content of the items
and their relation, with a beneficial effect for the diversity of the rec-
ommendation. The information carried by the second-hop features has
more probability of embodying the actual reason why a user decides to
enjoy an item (e.g., a user may watch a TV show not strictly for the di-
rector himself but rather for his nationality). Finally, with the addition
of the first-hop features, the complete version of KGFlex overcomes
KGFlex(2) in accuracy, regardless of the embedding size. This latter
slightly penalizes the diversity, very likely due to increased awareness
regarding item popularity. This aspect requires further investigation and
suggests room to increase the KGFlex performance further. The study
definitely answers RQ3. As expected, the lack of a piece of knowledge
negatively impacts the system. However, interestingly, the combination
of first- and second-hop features positively impacts on accuracy and
diversity performance of KGFlex, with second-hop features often help-
ing to discover the hidden attributes that are actually significant in the
users’ decision process.
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6.6.4 Preservation of the Original Semantics

(a) Original dataset

(b) Recommended lists

Figure 6.4: Two word clouds showing the 100 most informative features for
the users in Yahoo! Movies on the original dataset and on the
recommendation lists. The word clouds suggest that KGFlex is
able to preserve the original semantics included in the dataset.

KGFlexmakes extensive use of side information and takes advantage
of it in various training phases. Nevertheless, there are no guarantees
that KGFlex is really able to catch the semantic information encoded
and use it to propose coherent recommendations. To investigate this
aspect, we have analyzed the features characterizing the recommended
items and we have compared those features with the features derived
from the user’s historical interactions. We have conducted a graphical
experiment, showing the information gain of each feature in the sys-
tem before and after the recommendation. Figure 6.4 depicts the word
clouds of the features that could be involved in user decision-making
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Table 6.2: Percentage of preserved top-𝑘 user features after the recommen-
dation. The first (𝑄1), the second (𝑄2), and the third (𝑄3) quartile
(over all the population of users) of per-user percentages are shown.

𝑘 = ∞ 𝑘 = 100 𝑘 = 50 𝑘 = 10 𝑘 = 5

𝑄1 14.5% 11% 12% 20% 20%
𝑄2 21.5% 21% 26% 30% 40%
𝑄3 31.5% 37% 48% 60% 60%

gathered from all the users in Yahoo! Movies. In detail, Figure 6.4a rep-
resents the prominence of each feature, in terms of information gain,
in the original dataset. Instead, in Figure 6.4b, the same analysis is
performed on the recommendation lists provided by KGFlex. For the
sake of readability, both the word clouds visualize the 100 most infor-
mative features. We observe that topics related to science fiction persist
at the top, including the interest for the director Steven Spielberg and
for John Williams (also by means of his spouse Barbara Ruick) and the
interest in fantasy films award-winner movies. More precisely, 79% of
the top 100 informative features from the dataset are associated with
items in the recommendation list. Additionally, for each user, we have
computed the percentage of her 𝑘 most informative features that have
been retained in her recommendation list, with 𝑘 ∈ {5, 10, 50, 100,∞}.
Table 6.2 shows, for each column, the first, the second (median), and
the third quartile of such percentages over all the population of users.
It is remarkable how KGFlex provides a higher coverage of the orig-
inal semantic when considering features more important to the users
(i.e., lower 𝑘). Finally, with the support of Figure 6.4 and Table 6.2,
we answer to RQ4. Overall, it could be easily observed that KGFlex
preserves the main users’ interests involved in decision-making. This
suggests that KGFlex is able to preserve the original semantics, deeply
integrating the content-based information into its recommendations. Fi-
nally, this evidence suggests that we could be a step closer to providing
users with items that they would have chosen autonomously.

6.6.5 Limitations of KGFlex

Section 6.5.1 explicitly refers to datasets linking to a knowledge graph
such as DBpedia. Nonetheless, the approach behind KGFlex works
independently of the type of side information. In fact, a dataset with
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each item linked to a generic set of features or attributes would suf-
fice KGFlex. However, the quality of the side information may have
a profound impact on the final performance of the method. Moreover,
if the side information is structured as a graph, also the depth of the
exploration may impact the performance. In this work, we exploited
knowledge graphs as side information since they are recognized to pro-
vide high-quality information. Nevertheless, their unavailability does
not preclude the use of KGFlex.

6.7 Conclusion and Future Perspectives

This paper has introduced KGFlex for producing knowledge-aware rec-
ommendations from implicit feedback. KGFlex takes the best from
content-based and factorization-based recommendation approaches for
building a sparse model, where features extracted from a knowledge
graph are embedded in a latent space. The interactions between users
and items in KGFlex are combinations of users’ feature representations
and global feature representations, weighted according to the impor-
tance of each feature. KGFlex showed its superior behavior in terms
of item diversity on three datasets while being very accurate and re-
silient to algorithmic bias. We have also shown the role a knowledge
graph may play in feeding KGFlex with side information and how the
extracted features preserve their semantics in the recommendation lists.
This new method seems to be highly flexible and suited to practical ap-
plications. As future work, we plan to extend the approach with a finer
feature selection, new types of feedback, alternatives to information
gain, other types of side information, and other losses. Finally, we will
further investigate feature embeddings to achieve an even more precise
representation of features.



Part III

CONCLUSION

In other words, an admission of where I have actually come
to. Everybody can say you should go faster or go slower.
But you have arrived, with your own legs. Conclusion is
my "Look back and ahead: what you have seen and what
you see?".





7Closing Remarks

This dissertation started with an analysis of the four most mentioned
topics of ourwork: recommendation, data, privacy, and federated learn-
ing. We ended up synthesizing all of them and adding another concept:
personalization. The bunch of problems that motivated this three-year
work have given us a chance not only to study and propose some poten-
tial solutions but also to unveil new opportunities.
In Chapter 4, we have first introduced a pair-wise recommender sys-

tem giving users the possibility to exercise the right of control on their
data. Federated learning turned out to be the right architectural choice
to build such a model, also thanks to its wide range of parameters that
often allow discovering new room for improving the performance. Our
focus has been mainly on the property and control of data according to
the recent regulations.We have left the system designer completely free,
eventually, to choose the most convenient privacy-preserving methods;
that is why these algorithms have been thoroughly presented and dis-
cussed in the context of recommender systems in Chapter 3.
Secondly, in Chapter 5, motivated by a general machine learning

problem,we have studiedways tomake federated trainingmore efficient.
We have found that, with data coming from different distributions,
identifying the criteria that represent the most relevant discriminating
factors when solving the machine learning problem, and enhancing
the contribution users with higher expertise on those criteria, can give
a significant speed-up to the training of the federated model and an
improvement to its performance.
This work, although distant in time, strongly motivated the devel-

opment of KGFlex, presented in Chapter 6. We have guessed that the
importance of an item attribute in deciding to accept or discard that
item represent the strength of the knowledge of a user (i.e., her ex-
pertise) about that feature. Based on that, we have built a federated
recommender system that takes the best from collaborative filtering
and content-based filtering models, projects the item attributes in a
latent space, and realizes a sparse combination of feature embeddings
to efficiently compute a rating prediction that also takes into account
the importance of each involved feature. Here, federated learning has
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given us the opportunity to provide the users with local personalized
embeddings accounting for their personal views on the same concepts,
resulting in a model that, among the other advantages, stands out for
the impressive personalization it grants to the users.
Not just data property and privacy, not just efficiency, not just person-

alization. We are pretty sure that there is still much to unveil and that
we have just scratched the surface. All the future perspectives we have
mentioned at the end of each chapter of Part II are just food for thought,
but recommendation, data, privacy, federated, and personalization can
be combined in plenty of ways between them and with a wider .
This is what we have tried to do, or rather I have tried to do with the

help, the support, the collaboration, and the encouragement of my col-
leagues. I have attempted to contribute little to research, conscious that
it is only a drop in the ocean. I am aware that all my efforts in studying,
developing, experimenting, writing are never free of mistakes. Not for
nothing, I should never have learned something new and improved my
way if it had not been for rejections and failures. Yes, but also if it had
not been for the desire to explore and discover that moves me and us
towards great things that are even greater when our minds are set in a
stunning peer-to-peer connection.
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