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Optimal QoE-fair Resource Allocation in
Multi-Path Video Delivery Networks

Gioacchino Manfredi, Luca De Cicco, Member, IEEE, Saverio Mascolo, Fellow, IEEE

Abstract—A steadily increasing number of users consume
videos over the Internet. In current video platforms, players run
a control algorithm that dynamically chooses the video bitrate to
match the time-varying network bandwidth. Such an algorithm
strives to improve the quality individually perceived by users.
Consequently, this control architecture leads, in the optimal
case, to maximize the average quality perceived collectively by
all users rather than to a quality-fair distribution of resources,
possibly leading to user abandonment for those users receiving
a lower quality. Therefore, we argue that well-designed video
delivery networks should gracefully degrade the perceived quality
equally for all users when resources become scarce. In this
paper, we propose the Multi-Commodity Flow Problem (MCFP)
optimization framework to address the issue of designing a
QoE-fair optimal allocation strategy. We show how to make the
resulting problem tractable for video platforms serving massive
audiences. The performance of the proposed optimal fair resource
allocation strategy is tested through realistic simulations involving
thousands of concurrent users on two real networks by varying
both the total load on the network and the system parameters.

Index Terms—Optimal resource allocation; Massive video
distribution; Multi-Commodity Flow Problem; Adaptive Video
Streaming; Quality of Experience; Fairness

I. INTRODUCTION AND BACKGROUND

A steadily increasing number of users prefer to consume
video contents over the Internet rather than using classical TV
broadcast channels. As a consequence, more than half of the
global Internet traffic is today due to video contents [1]. To
make their services profitable, on-line video content providers
set out to increase the number of engaged users and prevent
service abandonment. Towards this end, such services should
be designed to provide users with the best possible Quality
of Experience (QoE) given the constraints imposed by the
particular user device and the network.

Leading video platforms (Netflix, YouTube, etc) base their
services on control architectures that decouple the problem
into two non-cooperating subproblems: (i) video services
design and size their delivery network to guarantee an optimal
level of Quality of Service (QoS) by ensuring that parameters
such as end-to-end network bandwidth, packet losses, and
network latency meet specific requirements; (ii) concurrent
users watch videos through players that run Adaptive BitRate
(ABR) control algorithms designed to dynamically select the
video bitrate (and video resolution) from a discrete set L to
provide the best possible QoE given the user device features
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Fig. 1: Visual quality function of the video bitrate and the
client screen resolution

and the end-to-end network bandwidth [2]. If, on one hand,
this fully decoupled control approach has the advantage of
being very simple to be implemented, on the other hand, it has
some important limitations. In fact, since no communication
between users is available, ABR algorithms running at the
players are designed to (selfishly) improve the individual
QoE obtained. In addition, the architecture of current delivery
networks is designed to provide concurrent users sharing the
same network resources (i.e., network links) with a fair share
of network bandwidth. However, this QoS-fair distribution of
network resources does not translate in equalizing the quality
perceived by users. In fact, it is well-known that the video
bitrate required to obtain a specific level of QoE by users with
high resolution devices (f.i., Smart TVs) might be considerably
larger compared to the bitrate needed by devices with low
resolution (e.g. smartphones).

To make an example, consider Fig. 1, which shows the
measured visual quality of the same video as a function of
the encoding bitrate obtained by clients with different screen
resolutions. Let us suppose that three concurrent users with
different screen resolutions (namely 720p, 1080p, and 2160p)
request the same video and that the video flows share the
same bottleneck link having a bandwidth equal to 6 Mbps. In
such a case, the network bandwidth share obtained by each
video flow is equal to 2 Mbps. As a result, the visual quality
obtained by the three clients would be respectively equal to
0.9, 0.85, 0.7. We can conclude that low resolution devices
will enjoy a better visual quality compared to high resolution
devices when provided with the same network bandwidth
share. In other words, current video delivery networks cannot
provide a fair level of QoE to users. Consequently, video
distribution networks, which allocate resources without taking
into account the user’s degree of satisfaction, cannot provide a
fair level of QoE to users when the network resources become
scarce. Hence, we argue that video service providers should
implement a QoE-aware network resource allocation strategy
(as opposed to QoS-aware strategies) to assign a differentiated
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Fig. 2: The distribution network model considered in this work

network bandwidth to video flows sharing the same bottleneck
with the objective of equalizing the video quality obtained by
heterogeneous devices. To the purpose, an interaction between
video and network provider is needed. The Software Defined
Network (SDN) is a technology that allows such an interaction
through a centralized control plane, as shown in Fig. 2. This
control plane directly controls the network nodes, which in
our case are the network switches.

This paper addresses the problem of designing a QoE-fair
optimal resource allocation strategy through a constrained op-
timization problem to be implemented on the SDN of a generic
distribution network made of programmable switches. Such a
work will be carried out with the help of traffic engineering
techniques based on network slicing. This technique consists
of slicing the links in a network and then assigning them to
subsets of the video flows, according to their characteristics.
Computing the size of each slice is the objective of the
optimization problem. The main novel aspects of this paper
compared to the current state of the art are two: (i) a generic
distribution network is considered instead of focusing only on
the single bottleneck case as studied by several authors ([3],
[4]); (ii) it is shown that the Multi-Commodity Flow Problem
(MCFP) optimization framework is an effective methodology
to achieve a QoE-fair distribution of network resources. After
casting the QoE-fair resource allocation problem to a Multi-
Commodity Flow Problem (MCFP) (Section III and IV), a
traffic clustering approach is proposed to sensibly reduce the
number of network slices and variables to make the resulting
problem tractable for video distribution platforms serving a
massive audience (Section IV). Such a clustering approach
assigns video sessions based on a proposed similarity metric
that depends on the video visual quality. We implement the
proposed resource allocation strategy in a realistic simulator
to compare the performance obtainable when video content
can be delivered using multiple network paths with those
achievable in the single-path case. Finally, simulations assess
the performance sensitivity for different parameters, such as
the total load on the delivery network and the number of
clusters (Section V).

II. RELATED WORK

In this section, we provide an overview of the state of the art
in resource allocation techniques employed in video streaming.
In particular, we consider some works concerning centralized

provider-side resource allocation strategies and then we turn
to distributed client-side techniques. Several works take into
account the quality perceived by users (QoE) when addressing
resource allocation problems in video streaming. However, it
is not an easy task to find an objective formula that measures a
user’s QoE or to define client classes. A definition of QoE and
client classes is provided in [5], where the user’s perception
of the quality of a video stream includes pre-fetching delay,
probability of rebuffering events, duration of such events,
and so on. Client classes are characterized by flow sizes,
arrival rates, and channel statistics while in our case users
are classified by their device resolution only. Notice that this
represents an advantage because no active measures on the
network are needed to be fed to the optimizer.

In this work, we consider a model of QoE defined by the
visual quality perceived by the user. This is done under the re-
alistic assumption that the ABR algorithm is designed to avoid
rebuffering events. Notice that several works employ more
complete models of QoE including the impact of rebuffering
events. In [6], for instance, the authors employ the SVR-QoE
model and the NARX-QoE model. Both of them take into
account the presence of rebuffering events and change the QoE
function accordingly. Other models of QoE can be found in
[7], [8]. In this paper, we have decided not to include client-
side metrics such as the rebuffering ratio in the utility function
to be maximized since this would have required a continuous
feedback being sent from all the clients to the optimizer thus
making the solution less scalable.

In [9], Ai et al. propose to solve the resource allocation
problem as a 0-1 programming problem keeping into account
the QoE and fairness among users. This approach entails a
cross-layer design, i.e., the resource allocation is based on the
information gathered from different layers of the network. The
authors in [10] present an optimal QoE-aware scheduling for
video segment selection in the framework of HTTP Adaptive
Streaming (HAS). Such a technique also addresses rebuffering
events avoidance and initial delay minimization. In [11], the
authors provide a solution to optimize the QoE of multiple
video streaming sessions. In fact, the bandwidth is not equally
allocated among competing flows but its allocation takes into
account the content complexity of the requested video and
the playout buffer status of the individual clients. However,
in the aforementioned works, both clients and videos are not
aggregated, thus implying an extremely heavy computational
load that may result unmanageable.

The importance of a Software Defined Networking (SDN)
architecture is shown in [12], where a Video Control Plane
(VCP) is introduced to allow cooperation between clients
and the delivery network. In this scenario, the Dynamic
Adaptive Streaming over HTTP (DASH) players are required
to cooperate with the Service Manager to obtain an optimal
bitrate while in our work clients are not involved in the
optimal bandwidth distribution1. Additionally, in [12], each
active player is assigned with an equal bandwidth share with
no regard to the device resolution. In this paper, the network

1Clients are involved only at the beginning of the video session



bandwidth is not the same for each user, as it should be, since
the type of video and device resolution are kept into account.

Samani and Wang [13] propose MaxStream, that is an
SDN-based flow maximization framework based on two inte-
ger multi-commodity flow problem formulations: Most-flows
IMCF, to select the maximum number of streaming sessions
that improve the providers’ revenue, and Maximum-ICMF,
to select the paths maximizing the bitrate for the streaming
sessions considered. In this case, there are some flows that
will be rejected and therefore not all the session demands will
be satisfied. Moreover, the authors consider only a single-path
resource allocation strategy.

Multi-path routing is a long studied research problem. The
reason why we consider multi-path traffic engineering instead
of single-paths lays in routing robustness, low latency and load
balancing for better performance [14]. A well-known property
in multi-path routing optimization states that the maximum
number of actually utilized paths is limited by the number
of session demands (D) plus the number of links (L) [15].
Consequently, when dealing with multi-path routing problems,
the optimal solution is achieved considering at most D + L
paths, where D + L represents an upper bound.

In [3], Georgopoulos et al. propose for the first time a
solution to deliver a fair level of QoE to users by slicing
shared bottlenecks through a Software Defined Networking
switch. Each video session is assigned to one network slice
whose size is obtained by solving a max-min fairness problem.
However, the work is limited to single bottlenecks and cannot
scale to a large number of users.

We now focus on the relevant literature concerning client-
side strategies to allocate resources in video streaming. Ben-
taleb et al. [16] describe the advantage of a client-side solution
for the resource allocation problem in the network using SDN
to obtain a higher scalability and per-client QoE. In [17],
the same authors provide an improvement to communication
overhead and client heterogeneity called SDNHAS, which is
an intelligent streaming architecture helping HAS players to
make efficient adaptation decisions. This work also presents
a clustering of the clients that allows a large-scale network
implementation yet not considering a grouping of videos. SDN
is considered also in [18] along with a mixed integer linear
program for optimal network resource allocation in live video
streaming but without taking into account QoE-fairness.

In [19], a hybrid control system for video bitrate maxi-
mization, playback interruptions avoidance and video bitrate
switches minimization is developed. Such a type of control
affects positively the QoE since it optimizes the video bitrate
and avoids rebuffering events in the case of a single bottle-
neck. The same authors in [4] compare different Adaptive
Bitrate Algorithms (ABR) and analyse two possible allo-
cation strategies: network slicing (or bandwidth reservation)
and bitrate guidance. The first strategy assigns video flows
to network slices whose size is determined by solving an
optimization problem; the second strategy employs DASH
Assisting Network Elements (DANEs) to guide video clients
in the choice of the video level. The paper shows that the
bandwidth reservation strategy provides better results in terms
of achievable video fairness. However, no stress is given to the

concept of client classes and video clustering. Additionally,
QoE-fairness is not considered in the optimization problem.

Recently, machine learning techniques have been employed
to address the problem of QoE-fairness. Altamimi et al. [20]
propose a server-side QoE-fair rate adaptation method that
uses Reinforcement Learning to select the best bitrate for
each client. This approach implies a cooperation between
the clients sharing a bottleneck link and their server, which
modifies the Media Presentation Description (MPD) files to
regulate the available bitrate at one client. In [21], a Q-
learning based bandwidth allocation algorithm called Q-FDBA
is implemented. The authors adopt a centralized approach
based on SDN framework and test it on a single bottleneck
with three players. Instead, our approach is implemented in
the scenario of a realistic network with several thousands
concurrent users.

It is worth to stress that the aforementioned works do not
decouple the resource allocation from the ABR algorithms
running at the clients as done in this work, but also consider
the clients’ buffer occupancy and the video level selection in
the optimization problem.

III. THE MULTI-COMMODITY FLOW PROBLEM

The multi-commodity flow problem (MCFP) is the optimiza-
tion framework that we propose to perform a QoE-fair network
bandwidth allocation. The term commodity refers to a tuple
containing a source node, a destination node and a volume,
which identifies the resources needed to satisfy the commodity.
In the case of the network bandwidth allocation problem
considered here, a commodity identifies a video session where
the source node is the video server, the destination node is the
client, and the volume represents the video bitrate required to
achieve the maximum video quality. In general, the MCFP has
the aim of maximizing a properly defined utility function with
a set of constraints in order to guarantee a network resource
allocation in such a way that all the commodities are optimally
satisfied.

The following description of the MCFP is given using
the link-path formulation and terminology found in [15].
The delivery network is represented by a capacitated graph
G = (N ,E ), where N = {n1, n2, . . . , nN} is the node set
and E = {e1, e2, . . . , eE} is the edge set. Each edge or link
e ∈ E is identified by a node pair and has a capacity ce
expressed in terms of bandwidth. The commodities related to
the delivery network can be represented by the set of demands
D = {1, 2, . . . , D}, where each demand d ∈ D identifies
a source-destination node pair and the corresponding traffic
volume Hd, i.e. the required network bandwidth needed by
that demand. Furthermore, a demand d can be satisfied, i.e.
it receives sufficient bandwidth, through a set of admissible
paths Pd where each path p ∈Pd connects the source node
to the destination node of the demand. All the paths contained
in Pd are computed off-line and represent the shortest paths
connecting the source node to the destination node of demand
d. As a consequence, the demand volume Hd is split in path
flows routed on paths belonging to Pd, where each path flow
is denoted with xdp (p ∈ Pd). The objective of the MCFP



is to optimize the aforementioned path flows–by means of a
proper utility function–while satisfying two constraints. The
first imposes that all the commodities must be brought from
their sources to their destination; the second requires that the
total flow on each edge must not be greater than the maximum
edge capacity.

In this paper, we assume without loss of generality that
the graph is fully connected, i.e. there always exists a path
connecting each possible pair of nodes in N . Such nodes
represent network switches in our problem, whereas edges
identify links connecting a couple of switches2. Each link
is divided in bandwidth slices of an appropriate size, whose
number depends on the demands in the network. The size
of bandwidth slices are computed by solving a multi-path
weighted α-fairness optimization problem employing the fol-
lowing utility function [22]:

U(X) =

{∑
dwd logXd if α = 1∑
dwd

X1−α
d

1−α otherwise
(1)

where Xd =
∑
p xdp is the total bandwidth (or total flow)

allocated to demand d, X = [X1, X2, . . . , XD]T is the
vector of the total bandwidths for each demand and wd is
a weight associated to the demand d. It has been shown
that the maximization of (1) provides a balance between link
utilization (which is related to the solution efficiency) and
fairness, by varying the scalar parameter α in the interval
[0,+∞] [22]. In particular, when α = 0, the link utilization
is maximized with no consideration for the fairness among
flows, whereas if α → +∞, the flow assignment becomes
max-min fair, i.e., the assignment allocates resources such
that the flow obtaining the minimum rate is maximized. By
setting α = 1, the optimization problem results in the so called
Proportional Fairness (PF) [23], which ensures a good trade-
off between fairness and link utilization. Therefore, in this
paper we explore the proportional fair case (α = 1) and leave
to future studies a performance comparison for different values
of α. In the PF case, it results that U(X) =

∑
dwd logXd. Let

us now derive the optimization problem that will be considered
throughout this work. To this end, we will start with the single-
path case, i.e. the easier case in which the demand volume Hd

can be routed only on one possible path connecting the source
node to the destination node; in other words |Pd| = 1 ∀ d ∈ D
and Xd = xd. We will then pass onto the analysis of the multi-
path optimization problem in order to carry out a comparison
of the performance of the two problems in terms of QoE-
fairness.

MCFP single-path weighted proportional fair optimization
problem:

Maximize
∑

d
wd log xd (2)

s.t.
∑
d

δedxd ≤ ce, ∀e ∈ E (3)

xd ≤ Hd (4)

2In the following, we will refer to nodes and SDN switches interchangeably
as well as edges with links.

In (3), δed is the link-path indicator, which is equal to 1 if
the demand d uses the link e, otherwise it is set to 0. The
constraints (3) are imposed to respect the capacity of each link
ce, i.e. the sum of all the path flows xd using link e should
not exceed the capacity of that link. The last constraints (4)
ensure that the total bandwidth xd allocated for demand d is
bounded by the demand traffic estimation given by Hd. This
condition depends on the network traffic load: in the best case
(no network bottlenecks) the total bandwidth xd allocated to
the demand d should be equal to the requested traffic volume
Hd. However, in general, in the presence of bottlenecks, the
total bandwidth xd allocated to a demand is less than Hd.
Notice that without this constraint, it could happen that a
demand d is assigned with a bandwidth xd greater than Hd,
which would imply a waste of bandwidth.

The optimization problem shown above is convex since the
objective function is convex and the constraints are linear.
Thus, the solution is represented by a unique global maximum
that could be achieved either at one single point or at a
convex set of feasible points ([24], [15]). In the Appendix,
we use the theory of [15] to try and derive a closed form
expression of the solution of Problem (2)-(4) and to understand
the relationship between the optimization variables and the
parameters involved. We start from the easier case of a single-
path uncapacitated problem, i.e., when link capacities are to
be sized, and then we consider the case when link capacities
are given (capacitated problem).

Let us now analyse the more general case of a multi-path
weighted proportional fair optimization.

MCFP multi-path weighted proportional fair optimization
problem:

Maximize
∑

d
wd log(

∑
p

xdp) (5)

s.t.
∑
d

∑
p

δedpxdp ≤ ce, ∀e ∈ E (6)

Xd ≤ Hd (7)

where Xd =
∑
p xdp is the total bandwidth allocated for

demand d. Also in this case, the constraints (6) are imposed
to respect the capacity of the link ce, i.e. the sum of all the
path flows xdp insisting on the link e should not exceed the
capacity of that link. Constraints (7) ensure that Xd is bounded
by the demand traffic estimation given by Hd.

It is straightforward to show that also Problem (5)-(7) is
convex, thus implying the existence of a unique global max-
imum. However, in a multi-path scenario, it is not apparently
possible to derive a closed-form solution in any case due to
the complexity of the problem posed.

To clarify how the resource allocation works in multi-path
video delivery networks, consider the basic delivery network
shown in Fig. 3. The switch identifying the source node S has
to satisfy two demands coming from the destination switch D:
both demands have a volume of 50 Gbps. It can be seen that
there are two available paths connecting node S to node D:
p1 = {S, 1, D} and p2 = {S, 2, D}. Thus, the MCFP could
exploit both of them to transmit the video flows composing a
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demand. In this example, the solution of the MCFP for demand
1 consists of two slices: the first belonging to path p1 with an
assigned network bandwidth equal to 10 Gbps and the other to
path p2 with a bandwidth equal to 40 Gbps. The same occurs
for demand 2, which obtains a 30 Gbps slice on path p1and
20 Gbps on path p2. It is worth noticing that the MCFP chooses
the appropriate path based on the bandwidth required by each
flow composing a demand. In fact, the size of a slice associated
to a particular path has to consider the available bandwidth
of each link composing that specific path according to the
constraint (6).

IV. THE RESOURCE ALLOCATION STRATEGY

In the following, we introduce the proposed control strategy
to distribute network resources in such a way that a fair level
of QoE is delivered to concurrent heterogeneous users. To the
purpose, we show how to adapt the MCFP (Problem (5)-(7))
to achieve such a goal. This also translates in designing the
demand weights wd so that the maximization of (5) results
in a QoE-fair resource allocation. In order to compute such
demand weights, we relate them to a utility function mapping
the relationship between the network bandwidth assigned to a
video session and the obtainable visual quality.

A. Definitions

Given a video catalog V = {v1, . . . , vV }, the DASH
standard requires that each video v ∈ V is encoded into
different representations or levels l ∈ Lv that can be identified
by the couple l = (b, r), where b ∈ Bv is the encoding bitrate
and r ∈ Rv is the video resolution. Different videos can
present remarkably different sets of encoding bitrate depending
on the video content. In practice, at the client side, the ABR
algorithm dynamically selects the video level l ∈ Lv that
best matches the current available network bandwidth of the
path connecting the user to the video server. Even though
in this paper we do not focus on a specific ABR algorithm,
we make the reasonable assumption that the control algorithm
selects a video level whose bitrate b matches on average the
average end-to-end path bandwidth. This is a nonrestrictive
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assumption since all well-designed ABR algorithms are in
practice implemented in this way (see for instance [25]).

The first important definition concerns a video request t,
which is a couple (v, c), where v ∈ V and c is the user class
belonging to the set C = {c1, c2, . . . , cC}. The classification
of users should be performed according to parameters having
an impact on the obtainable QoE. Since the screen resolution
is one of the most important parameters affecting the QoE,
we propose to classify users based on their maximum screen
resolution. It is important to point out that two devices with
a different screen size such as a phone and a TV could have
the same maximum screen resolution but their screen size can
affect the QoE, especially when a video is streamed at low
bitrates. In this paper, we make the assumption that each user
in a client class has the same screen size, and leave to future
studies the optimization of the QoE also wrt the screen size
as highlighted in [26], [27], [28]. As a consequence, the terms
“user class”, “user screen resolution” and ”user screen size”
are used interchangeably in this work. Notice that, with this
notation, a video request t denotes which video v a user having
a client resolution c is willing to consume.

The set Lt for each video request t = (v, c) is defined
as Lt = {l ∈ Lv : r ≤ c} ⊆ Lv . In other words, Lt

contains the levels of Lv whose resolution is not higher than
c. We assume that clients having a screen resolution equal to
c do not request video levels whose resolution is higher than
c. Then for a given video request t, the ABR algorithm will
actually choose only the levels contained in the set Lt. Notice
that this is how ABR algorithms work in practice. Although
they can choose among all possible video levels, those having
resolutions higher than the user screen resolution are usually
never selected mainly because it would increase the bandwidth
consumption without producing a perceivable improvement in
terms of visual quality.

It is now immediate to assign to each video request t its
reference level lt = (bt, c) ∈ Lt as the representation with
resolution c having the maximum bitrate bt, which indicates
the minimum bitrate necessary to obtain visual quality equal
to 1. As an example, let us consider a 4K video v (resolution
2160p) being encoded into six video levels l = (b, r) ∈ Lv as
shown in Fig. 4, where Lv = {(0.3,360), (1,720), (2,720),
(4,1080), (7,1440), (10,2160)} (the bitrate is expressed in
Mbps). If we consider a video request t = (v, 720p), i.e.
a user with a 720p screen requesting the video v, then the
level set Lt and the reference level lt would be respectively
Lt = {(0.3, 360), (1, 720), (2, 720)} and (2 Mbps, 720p).



Let us now define a video session as the tuple (src,dst, t),
where src ∈ N is the switch the server delivering the
requested video is connected to; dst ∈ N is the switch the
client is connected to; t = (v, c) is the video request.

Finally, we are ready to define the demand d as the
aggregate of the video sessions represented by the same tuple
(src,dst, t). In other words, a demand d contains all the video
sessions from the same source node src to the same destination
node dst associated to clients with the same video resolution
c and requesting the same video content v. Consequently, if
there are nd video sessions with the same tuple (src,dst, t),
the demand volume Hd is equal to ndb̄t, where b̄t is the
bitrate of the reference level l̄t defined above. Hd can be
interpreted as the minimum amount of network bandwidth that
has to be allocated to the aggregate of the nd video sessions
composing the demand d so that each of these video sessions
is served with a bandwidth share b̄t. It is straightforward to
see that, in this case, if the constraint (7) is strictly verified
(i.e., Xd = Hd), it results that all the video flows belonging to
this demand will enjoy the maximum visual quality possible.
Conversely, in cases when the delivery network is overloaded,
it might occur that the solution of the MCFP leads to Xd < Hd

for some demands. In such cases, video sessions belonging to
those demands will obtain a bandwidth share less than the
bitrate associated to the reference level l̄t. This means that
the ABR algorithm will select a video level with a lower
resolution, thus obtaining a degraded video quality. In the
following, we describe how to measure the visual quality as a
function of the allocated network bandwidth share.

B. Measuring the visual quality

The proposed resource allocation strategy has the main
goal of achieving a fair level of QoE among users. Such
an objective is reached through the allocation of network
resources using a multi-path approach. For this reason, a
mapping between the allocated network bandwidth related to
a video session and the achieved QoE is needed ([29], [30]).
Such a mapping will be the reasonable base to design appro-
priate demand weights wd that allow to solve Problem (5)–
(7) by allocating the network bandwidth based on the users’
obtainable visual quality.

Notice that the procedure described in the following should
be performed off-line each time a video is added to the catalog
V . At the end of this procedure, we will obtain a number
of mappings equal to the number of defined user classes for
each video. The resulting mappings will be associated to the
corresponding video as metadata.

The visual quality of a video v ∈ V is measured in the
following way: for each video v ∈ V , level l ∈ Lv , and
user class c ∈ C , a mapping denoted as Qt : Lv 7→ [0, 1] is
computed, which relates the video level to the corresponding
visual quality when the video is played on a device with
resolution c.3 The procedure is shown in Algorithm 1 and
the output for a sample video is displayed in Fig. 1 in the
case of a level set composed of 7 elements and a client class
set C = {720p, 1080p, 2160p}, which contains some of the

3Recall that t = (v, c) denotes the video request.

Algorithm 1 Visual quality measurement for a video

1: for each client class c ∈ C do
2: t← (v, c)
3: Select reference level l̄t from Lt

4: for each l ∈ Lv do
5: if l ∈ Lt then
6: l̃← Upscale l to c resolution
7: Qt(l)← FRVQ(l̃, l̄t)
8: else
9: Qt(l)← 1

10: end if
11: end for
12: end for

most common device resolutions. After fixing the video v and
the client class c (Line 2), we compute Qt(l) for each l ∈ Lv

as follows (Lines 4–11). First, we select the reference video
level l̄t from the set Lt as described in Section IV-A. Then,
for each video level l ∈ Lv , the video quality is computed
using a Full-Reference Video Quality (FRVQ) assessment tool
such as, f.i., the Structural SIMilarity (SSIM) [31], the Peak
Signal to Noise Ratio (PSNR), or the Video Multi-method
Assessment Fusion (VMAF) [32], normalized in the range
[0, 1]. These tools estimate the visual quality by comparing
each frame of a degraded video with the reference frames of
the non-degraded video. This operation is performed in Lines
6–7. In particular, to obtain the degraded video l̃ (Line 6),
the video level l is up-scaled to the client device resolution.
This reflects the way actual video streaming players typically
work: if the user device has a given screen resolution (say
1080p) the ABR algorithm will select video representations
characterized by a resolution up to the client screen resolution
(i.e., 1080p in the example). The rationale is that rendering
on the screen a video having a resolution higher than the
screen resolution would not lead to an improved video quality.
This is particularly evident in Fig. 1 where the visual quality
(measured as VMAF score) is shown to saturate at 1 when the
video representation has a resolution higher than the one of the
user screen device. Then, the FRVQ assessment tool estimates
the video quality by comparing the degraded video l̃ with the
reference video lt (Line 7). This estimation process captures
exactly what happens during video playback. In fact, the video
player has to upscale the decoded video to the device screen
resolution if the client screen resolution is higher than the
video resolution served by the content provider, leading to a
degradation in terms of perceived video quality and user QoE.
Conversely, when the user is provided with a video resolution
equal to his device resolution, no upscaling is needed and the
user perceives the best visual quality experience. This situation
is taken into account by Line 9. In this case, the video level l
does not belong to Lt, i.e. if the resolution of l is larger than
that of the reference level lt, the video quality is set to 1.

C. Demand weights computation
A proper computation of the demand weights wd used in (5)

is of high importance due to the fact that the solution of Prob-
lem (5)–(7) will result in the optimum QoE-fair (rather than
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a throughput-fair) allocation of resources. From Section III,
we know that the larger the weight wd the larger the assigned
bandwidth slice Xd to the video flows belonging to demand
d. It is then important to compute suitable weights in order
to obtain a higher bandwidth for demands associated to users
with high resolution screens and lower bandwidth for users
with low resolution screens.
Notice that expression (5) is a weighted sum of logarithms,
where the bandwidth slice Xd is the optimization variable
while the weights are constant. This is due to the fact that the
weights only depend on the demand d, which is not variable
in the optimization problem. It is also important to stress that
the weight wd associated to a demand d = (src,dst, t) does
not depend on the source and destination node, but only on
the particular video v and the user class c, i.e., on the video
request t. As a consequence, given two demands d1 and d2
containing the same video request t, the weights associated to
them will coincide, namely wd1 = wd2 = wt.

Let us now define the couples (xi, yi) for i = 1, . . . , Lt
(Lt = |Lt|) where xi = bi ∈ Bv and yi is obtained through
the mapping Qt as described in Algorithm 1, i.e., yi = Qt(li).
It is possible to compute the weight wt as the parameter of a
fitting function. In particular, we propose to consider a least
square problem fitting the data (xi, yi) through the function
y = a · log x, having a as the unique fitting parameter. Then,
we impose wt = 1/aβ , where β is a positive parameter to be
tuned. It is easy to show that this proposed procedure assigns
weights that increase as the user device resolution becomes
higher (Fig. 5), which is exactly what is needed to provide
higher network bandwidth shares to users with high resolution.

D. Video clustering

The previous sections provide the necessary information to
compute all the inputs to the optimization Problem (5)–(7).
Recall that the goal of the optimization problem is to find the
path flows xdp such that the QoE-aware objective function (5)
is maximized, i.e. the resources are distributed to provide a fair
level of visual quality to heterogeneous users. In the multi-path
case, each demand d is split among a pre-computed number
of available paths of the delivery network, i.e. |Pd |. It follows
that, in the multi-path case, the number of variables involved in
the solution of the optimization problem is equal to the number
P of all the possible paths available for each demand, i.e., if
P = {P1 ,P2 , ...,PD}, where D is the cardinality of the
demand set D , then P = |P|. Since a demand is defined as
the triple (src,dst, t) ∈ N ×N ×T , it follows that D = N ·

wt

b̄t

k = 3

k = 2

k = 1

b̄t̃

wt̃

Fig. 6: Proposed clustering procedure

(N−1)·T . Now, recalling that a video request t ∈ T is defined
as the couple (v, c) ∈ V ×C , it turns out that the cardinality of
T is equal to V ·C, i.e. the product of the video catalog size
and the number of user classes. Thus, considering a video
provider serving a catalog size in the order of millions4, it
is easy to understand that the number of the video requests
would make the cardinality D, and consequently P , too high
and would result in an intractable optimization problem.

In order to face such an issue, we propose to act on the
video catalog. The employed procedure is the following: for
each user class c ∈ C , we partition the video catalog V in a
number K of clusters {V c

1 , . . . ,V
c
K} according to a clustering

algorithm, with K = {1, . . . ,K} the set of the video cluster
indexes. Since K is a design parameter, it can be chosen such
that K � V . As a consequence, we can assign each video
request t = (v, c) to a traffic class t̃ = (k, c) where k ∈ K
is the cluster the video v belongs to (i.e., v ∈ V c

k ). In this
way, the video requests t = (v, c), whose video v is mapped
to the same video cluster V c

k , belong to the same traffic class
t̃ = (k, c).

After redefining the demand as the aggregate of video
sessions having the same triple (src,dst,t̃), the cardinality of
the new demand set will be equal to N · (N − 1) ·K ·C, that
can be made manageable by properly setting K � V .

Let us consider all the video requests t having a user class
equal to c ∈ C . Each video request is associated to a couple
(wt, bt) where wt is the weight computed as discussed in
Section IV-C and bt is the associated reference video level
bitrate. Fig. 6 shows an example of how the couples (wt, bt)
are distributed for a specific user class c. Notice that each point
in the figure represents a single video. Next, we employ the k-
medoid clustering algorithm to form K clusters as shown. As
a result, each point in a cluster k represents a video belonging
to the cluster V c

k . Moreover, for each cluster k ∈ K , the
algorithm computes the medoid, which is represented with a
large dot in Fig. 6. Thus, the medoid of cluster k obtained for
the user class c is representative of the traffic class t̃ = (k, c),
i.e., of all the videos in that cluster. Therefore, it is easy to
associate to each t̃ the weight wt̃ and the bandwidth bt̃, which
are the coordinates of the medoid. As an example, consider the
cluster k = 2 in Fig. 6. The traffic class t̃ = (2, c) is associated
with the weight wt̃ and bandwidth bt̃ that are the coordinates
of the medoid of cluster k = 2 (large green dot). It follows that
changing the number of clusters K implies a trade-off between

4In practice, video catalog of the order of millions or billions are possible
for user providers distributing user-generated videos such as YouTube and
Vimeo.



Fig. 7: The proposed Video Control Plane

the number of variables involved in the optimization problem
and the obtainable QoE-fairness, as explained further on. It
is important to point out that also other clustering algorithms
have been considered (i.e., k-means and spectral clustering)
but since they provide worse results, they have been omitted.
Notice that the methodology proposed in this paper is in fact
applicable with any clustering approach.

Fig. 7 gives an overview of the proposed resource allocation
strategy and how it can be implemented in a Video Control
Plane. In particular, after the visual quality evaluation of the
video catalog, the fitting functions described in Section IV-C
are employed to perform the clustering procedure of the
videos in order to obtain the traffic classes. Notice that these
operations can be performed off-line since the video catalog
and the user classes are always available. Then, a video
request classifier associates each received video session to
the corresponding traffic class and then the optimizer, on the
basis of the demands defined as (src,dst, k, c), the traffic
classes, and the delivery network graph, solves the MCFP we
have discussed so far. The solution is implemented through
programmable network elements such as SDN switches.

V. RESULTS

In this section we perform a clusterization of video requests
in order to effectively implement the QoE-Proportional Fair
(PF) multi-path optimization problem described in Section III.
This allows us to carry out a performance evaluation of the
proposed allocation strategy via simulations. In Section V-A
we provide the general setting used for the experimental
evaluations; in Section V-B we show the QoE fairness obtained
with the proposed method and the corresponding average
visual quality; finally, in Section V-C we give an overview
of the time complexity of the algorithm employed.

A. General Setting

The analysis is performed by varying three main parameters:
the delivery network load, which represents the total traffic
volume of concurrent video sessions, the number of paths P ,
i.e., the maximum number of paths that can be used to realize
a specific demand from a source node, and the number of
clusters K.

In order to prove the effectiveness of our proposed allocation
strategy, we consider as the baseline (BL) the QoE-unaware
allocation strategy that associates each video session to the

same traffic class. It is important to notice that the BL case is
the approach currently used by video delivery services, which
are unaware of the heterogeneity of the user devices and video
contents.

We have developed the proposed PF allocation strategy in a
simulator composed of three modules implementing realistic
scenarios of typical video distribution networks. The first
module is the video session generator that, after receiving
the network graph G, the video catalog V , and the set of
user classes C as inputs, randomly generates a configurable
number of video sessions (src,dst, t). The second module
is the solver, that employs the CVXPY Python tool [33] to
implement Problem (5)-(7) by making use of the Splitting
Conic Solver (SCS)5 [34]. Once the optimization problem is
solved, the third module, called QoE evaluator, computes the
obtained QoE for each video session (src,dst, t) composing
the load. The resulting QoE depends on the bandwidth share
assigned by the solver and the corresponding visual quality
given by the Qt mapping. Finally, we use the definition of
fairness F among video sessions proposed by [35]:

F = 1− 2σ

where σ is the standard deviation of the QoEs obtained by
concurrent video sessions. The maximum of the fairness index
is 1, which is obtained only when concurrent video sessions
are served exactly with the same visual quality.

We have chosen to use YouTube videos in order to build
a realistic video catalog. In particular, we have built a video
catalog of ∼200 heterogeneous videos all with a maximum
resolution equal to 4K fetched from YouTube on which we
have performed the visual quality measurement reported in
Algorithm 1. It is worth to remark that we do not re-encode
the videos fetched from YouTube. Thus, the bitrate ladder of
a given video is the one set by YouTube at time of encoding.
In particular, for each video we select the six video repre-
sentations encoded at resolutions 360p, 480p, 720p, 1080p,
1440p, 2160p and made available by YouTube (an example of
bitrate ladder is given in Fig. 4). We have employed the VMAF
metric to compute the video-level/video-quality mapping Qt as
described in Section IV-B. The VMAF metric has been imple-
mented by using the open-source tools released by NetFlix6.
We have assumed that clients can belong to three possible
user classes – which are representative of most common user
devices – belonging to the set C = {720p, 1080p, 2160p}. The
load values considered to generate the video sessions range
in the set {100, 200, 300, 400, 500}Gbps while two networks
have been chosen as delivery network topologies in order to
make a comparison as well as a performance evaluation. The
first network topology is the GARR network7, composed of 61
switches and 73 links with an average capacity of ∼4 Gbps.
We fixed 10 switches as server nodes and the remaining 51 as
clients. The second network topology, the Abilene network,
is smaller sized, being it composed of 11 switches and 14
links. In this case we set 4 switches as server nodes and 7 as

5https://github.com/cvxgrp/scs
6https://github.com/Netflix/vmaf
7http://www.topology-zoo.org/files/Garr201201.gml



switches used by the clients. Finally, the set of clusters is such
that K ∈ {3, 5}, the set of paths is such that P ∈ {1, 2, 5}
and the weight parameter β can be chosen among the values
in the set {1.1, 1.2, 1.3, 1.4, 1.5}.

B. QoE-Fairness vs Average Visual Quality

Let us start our investigation by comparing the obtained re-
sults on both the considered networks. Fig. 8 shows the trade-
off between the average QoE obtained by the video sessions
and the corresponding QoE-fairness when BL is employed or
in the case of the proposed PF resource allocation strategy. It
is worth stressing that the considered fairness is obtained by
computing the fairness metric F for each slice and then taking
the average value of the fairness associated to all the slices.
Each line represents a particular scenario where a different
line style denotes a specific number of paths P involved in
the allocation and each marker on a line is representative of
a specific load in {100, 200, 300, 400, 500}Gbps. In the PF
case, different colors indicate a different number of clusters
K. Moreover, for space constraints, Fig. 8 shows only the
cases of β = 1.1 and β = 1.4. As it is clear from any of
the figures, the average visual quality and the QoE fairness
decrease as the load on the delivery network increases. This
is expected since a higher load results in a lower allocated
average bandwidth share per video session and consequently
to a lower visual quality. Consider Fig. 8a as an example: it
shows that in the BL case, independently of the number of
paths, the average visual quality is close to 0.9 when the load
is 100 Gbps, then it decreases to 0.8 for a 200 Gbps load and
so on. The fairness presents values in the range 0.62-0.84 with
a corresponding average visual quality in the range 0.6-0.88.
However, the proposed PF approach proves remarkably better
in terms of achieved QoE fairness for each considered number
of clusters K and paths P . The visual quality is basically
unchanged compared to the BL case. Although this result
may appear unexpected, we need to keep in mind that we
are referring to the average visual quality and that also in the
BL case the QoE is maximized, but without considering the
fairness. This leads to a situation in which, in the BL case,
some users experience a high level of QoE while others have
a low level of it. The average of all these values results similar
to the average of the values obtained in the PF case, in which
fairness is considered and therefore the QoE of users is more
uniform. In this way, even though the average QoE levels may
be similar, the fairness is not. Furthermore, as expected, the
QoE fairness improves as K increases and, consequently, each
line associated to a particular number of clusters and paths
moves to the right and becomes steeper. Such considerations
also hold for all the other cases in the figures, where K = 5
clusters appears to be the best trade-off between average visual
quality and QoE fairness.

Next, consider Fig. 8a and 8b related to the GARR network.
By varying β from 1.1 to 1.4, the average visual quality
slightly drops while the average fairness remains almost un-
changed. This is due to the fact that the fairness among user
classes is increasing–as will be better shown in the following–,
and this implies a graceful degradation of the visual quality of

all the users in the network. Indeed, the multi-path resource
allocation is preferable with respect to the single-path case
due to the possibility of exploiting more paths to realize a
demand. Therefore, when passing from Abilene to a wider
and more complex network such as GARR, the multi-path
approach outperforms the single-path case.

Let us now analyze in more detail the effect that the choice
of the parameter β has on the QoE fairness in the single-path
case (the multi-path approach gives similar results). Fig. 9
reports the CDF of the visual quality obtained by all video
sessions grouped by user class, i.e. the maximum screen
resolution of users, in the case of a 500 Gbps load (results
for different loads are similar). It is important to point out that
the resolutions reported in the figures are used only to identify
the user classes. In other words, they represent the maximum
screen resolution of users in a class, but the actual resolution of
each user during playback can be lower. The figure shows that,
regardless of the chosen network, when passing from β = 1.1
to β = 1.4 (Fig. 9b and 9c or Fig. 9e and 9f) the MCFP gives a
better performance in terms of fairness. Moreover, the obtained
fairness in the PF case with β = 1.4 is remarkably better than
the BL case. In fact, the median value of the visual quality
for clients with 720p, 1080p and 2160p resolution in Fig. 9a
is respectively 0.45, 0.7, 0.8, while for the PF case in Fig. 9c
the values are 0.48, 0.5, 0.5. As a result, the PF case with
β = 1.4 guarantees a high level of fairness since all the users
belonging to any user class will enjoy a similar visual quality.
However, an increase of fairness will unavoidably imply an
overall decrease in the average visual quality as shown in
Fig. 8. The same considerations could be made for the Abilene
network. It is worth stressing that the simulations for β = 1.5
are not shown because in the case of the GARR network the
results in terms of visual quality fairness deteriorate compared
to the case in which β = 1.4. In particular, for β = 1.5,
clients with 720p and 1080p resolution obtain a worse visual
quality than 2160p clients. However, in the Abilene network,
the fairness improves, i.e., the three curves are more closely
aligned, thus making β = 1.5 preferable to the previous values.
For this reason, β is a parameter that has to be properly tuned
according to the considered network topology.

C. Computation time

In this subsection, we provide some insights into the com-
putation time required to solve the proposed optimization
problem. Notice that, since ABR algorithms are independent
and free to run at the clients, the optimizer can be run every ∆t
seconds, where usually ∆t is significantly larger than a single
video segment (which is in general in the order of 1-10s) and
must be greater than the time spent to solve the optimization
problem. In fact, the optimization loop can be seen as the outer
loop that sets the bandwidth slice for video flows, while the
inner loop is represented by the ABR algorithm that selects the
video representation at a chunk time scale [4]. Regarding this
architecture, named cascaded control system, a well-known
practice used in controlling such systems entails separating
the time scales at which each control loop works. The idea
is to have the outer loop work at a higher sampling time and
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Fig. 8: QoE-Fairness vs Average Visual Quality

the inner loop to run faster at a lower sampling time. This is
motivated by the fact that, with such a control architecture,
having two controllers working at around the same sampling
time might provoke adverse effects on stability. Thus, we
argue that a sampling time that is greater than 4-5 times the
duration of a segment (∼25 seconds) is required to enforce
the aforementioned separation of time scales.
Fig. 10 shows the computation time needed to solve the MCFP
in the case of Abilene and GARR networks. As expected, the
time complexity increases when passing from 3 to 5 clusters
and from 100 to 500 Gbps for both the considered networks.
Moreover, the time required to solve the optimization problem
is higher (∼4x) in the case of the GARR network compared
to Abilene due to the larger number of nodes of the GARR
network. It is worth noting that the computation times are
obtained using only one CPU core of an i7 workstation using
an open-source tool, thus one can expect a significant speed-
up using a commercial optimizer that supports multi-threading.
Nevertheless, it is important to notice that, even in this non-
ideal operating scenario, the obtained worst case for a large
network is ∼50s which is in the order of ∼10 video chunks.

VI. CONCLUSIONS

In this paper, we have proposed a Proportional Fair (PF)
resource allocation strategy to equalize the QoE obtained by
concurrent heterogeneous users for video delivery networks.
To achieve such a goal, we have shown how to properly
formulate a Multi-Commodity Flow Problem. Next, we have
proposed a clusterization of video sessions with the purpose of
making the number of variables involved in the optimization

problem manageable. The performance of the proposed PF
allocation strategy has been compared to the case of a QoE-
unaware allocation strategy, which is representative of the
currently deployed video delivery networks. Simulation results
show that the proposed PF allocation strategy is able to
remarkably improve fairness among heterogeneous clients.

It is important to precise that the clustering process depends
on the video catalog that may change many times and therefore
a continuous update of the clusters should be guaranteed.
To this end, future work will focus on an in-depth analysis
of the video clustering procedure. Another interesting future
development could be implementing a decentralized technique
to solve the optimization problem to improve scalability-
related issues as well as resiliency to computing failures,
which could be caused by malicious users attacking the node
where the optimizer is located. Furthermore, we plan to carry
out this analysis with a more comprehensive QoE function,
which not only depends on the visual quality, but also on
rebuffering events and several other features that are still object
of research. One last aspect worth being investigated is to
see how the QoE changes according to the screen size of the
device, which is independent of its video resolution and could
be the cause of further QoE unfairness.
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APPENDIX

This section makes use of the theory in [15] to clarify
the relationship between the optimization variables and the
parameters involved in Problem (2)-(4). We start from a single-
path uncapacitated problem, i.e., when link capacities are to be
sized, and then we consider our case, i.e., when link capacities
are fixed (capacitated problem).

Proposition (Uncapacitated case): Suppose that the link
capacities ce of the network are not given a priori but
need to be sized and that we want to set the total network
capacity to a value Z, i.e.,

∑
e ce = Z, where Z is a

constant.If constraints (4) are always satisfied, then denoting
with x∗ = [x∗1, x

∗
2, . . . , x

∗
D]T the optimal solution of Problem

(2)-(4) and with F (x) the objective function in (2), i.e.,
F (x) =

∑
d wd log xd, it results that

F (x∗) = (logZ)
∑
d

wd −
∑
d

wd log(
∑
e

δed)

+
∑
d

wd logwd − (log(
∑
d

wd))
∑
d

wd

x∗d =
Z

(
∑
e δed)

wd
(
∑
d wd)

Proof. Let us start by noticing that in the optimal case, the
inequalities related to (3) become equalities, so it follows that∑
e

∑
d δedxd = Z. If we then suppose that the constraints in

(4) are always satisfied, the Lagrangian function associated to
the optimization problem is

L(x, σ) = −
∑
d

wd log xd + σ(
∑
e

∑
d

δedxd − Z)

where σ denotes the Lagrangian multiplier. The function can
be rewritten as follows

L(x, σ) =
∑
d

((σ
∑
e

δed)xd − wd log xd)− σZ

In this way, we can define the dual objective function:

W (σ) = min
x≥0

L(x, σ)

By fixing σ, differentiating w.r.t. xd(σ) and setting the
resulting derivatives equal to zero, we obtain:

wd
xd(σ)

− σ
∑
e

δed = 0

that produces

xd(σ) =
wd

σ
∑
e δed

If we substitute the previous expression in L(x, σ), it results
that

W (σ) =
∑
d

(wd − wd log
wd

σ
∑
e δed

)− σZ

In order to compute the Lagrangian multiplier σ, we differ-
entiate W (σ) and find the stationary point.∑

d

wd
σ
− Z = 0⇒ σ∗ =

∑
d

wd
Z

from which F (x∗) and x∗d follow.
Let us now take into account constraints (4). In this case

we get

xd(σ) =

{
wd

σ
∑
e δed

if 0 < wd
σ
∑
e δed

≤ Hd

Hd if wd
σ
∑
e δed

> Hd

The threshold value for σ is

σ̄d =
wd

Hd

∑
e δed

Therefore, xd(σ) can be rewritten as

xd(σ) =

{
wd

σ
∑
e δed

if σ ≥ σ̄d
Hd if 0 ≤ σ < σ̄d

(8)

Let us now sort all σ̄d’s in a non-decreasing order and if
some of the elements are equal, we keep just one of them until
we get the sequence (s1, s2, . . . , sn) s.t. s1 < s2 < · · · < sn,
where we set s1 = 0 and sn = +∞. Then, we can form n−1



intervals [s1, s2], [s2, s3], . . . , [sn−1, sn) and for each of them
we can define two disjoint sets of demands:

Fj = {d : xd(σ) =
wd
σγd

for σ ∈ [sj , sj+1]}

Uj = {d : xd(σ) = Hd for σ ∈ [sj , sj+1]}

where γd =
∑
e δed and Fj ∪ Uj = {1, 2, . . . , D} for j =

1, 2, . . . , n − 1. For each j identifying the interval [sj , sj+1],
the set Fj contains all the demands whose associated flow xd
is such that xd ≤ Hd when σ ∈ [sj , sj+1]. On the contrary,
Uj is the set of the demands whose flows satisfy xd ≥ Hd

when σ ∈ [sj , sj+1]. This allows us to partition the demands
in each interval according to constraints (4) and as a result, in
each [sj , sj+1], the dual function can be written as follows:

W (σ) =
∑
d∈Fj

(wd − wd log
wd
σγd

)

− σ(Z −
∑
d∈Uj

γdHd)−
∑
d∈Uj

wd logHd

This function is continuous and differentiable. In fact, in the
interval [sj , sj+1], the first derivative is

W ′(σ) = Z −
∑
d∈Uj

γdHd +
∑
d∈Fj

wd
σ

(9)

For any point sj , j = 2, . . . , n−1, and given the expression
in (8), it results that for all demands d changing set from
Uj to Fj and vice versa in sj , the equations Hd = wd

sjγd
hold. Then, when (9) is evaluated in sj , d belongs both to
Uj and Fj and the terms γdHd and wd

sj
cancel each other. The

same happens for W ′(σ) associated to the interval [sj−1, sj ].
Therefore, the left and right derivatives of the dual function
are equal in each point sj , j = 2, . . . , n−1, thus implying the
differentiability. The dual function is not differentiable twice
since the second derivative is in general discontinuous at the
ends of the intervals because it is equal to

W ′′(σ) = −
∑
d∈Fj

wd
σ2

Nevertheless, this implies the concavity of the function,
which is differentiable. As a consequence, the maximum can
be computed as W ′(σ) = 0, σ ∈ [0,+∞) and the resulting
stationary point σ∗ can only belong to one of the intervals.
Only in such an interval, the resulting stationary point of the
dual function associated to that interval actually belongs to the
interval. This property does not hold for the stationary points
computed in the other intervals. In fact, for each other interval
[sj , sj+1], the resulting σ∗ does not belong to the interval.
Therefore, the stationary point is given by:

σ∗ =



∑
d∈Fj

wd
Z−

∑
d∈Uj

γdHd
if Fj 6= ∅

any σ ∈ [0,+∞) if Fj = ∅
andZ =

∑
d∈Uj γdHd

does not exist if Fj = ∅
andZ 6=

∑
d∈Uj γdHd

Once we get σ∗, we can compute the optimal demand flows
through (8).

When the link capacities are fixed, it is no longer guaranteed
that the optimization problem admits an optimal solution s.t.
all the constraints in (3) are equalities. In this case, no closed-
form expression of the solution is available. On the other hand,
if an optimal solution exists s.t. all the constraints in (3) are
equalities, then we can prove the following.

Proposition (Capacitated case): Suppose that the link ca-
pacities ce of the network are given a priori. If the constraints
(4) are always satisfied and there exists an optimal solution
x∗ = [x∗1, x

∗
2, . . . , x

∗
D]T to Problem (2)-(4) s.t. all the con-

straints in (3) are equalities, then it results that

x∗d =
wd∑

e δedσe(c1, . . . , cEp , w1, . . . , wD, δ11, . . . , δEpD)

with

∑
e

δedσe(c1, . . . , cEp , w1, . . . , wD, δ11, . . . , δEpD) > 0

where e ∈ Ep, Ep is the set of all the edges
that serve at least one demand, Ep = |Ep|, and
σi(c1, . . . , cEp , w1, . . . , wD, δ11, . . . , δEpD) means that each
Lagrangian multiplier σi, i = 1, . . . , Ep depends in general
on the link capacities ce, ∀ e ∈ Ep, on the demand weights
wd, ∀ d ∈ D and on δed ∀ e ∈ Ep, d ∈ D . Moreover it is
clear that the higher the weight wd associated to a demand
d, the higher the bandwidth allocated to that demand by the
optimization problem.

Proof. Since now we have Ep constraints given by (3), which
we consider to be equalities by hypothesis, the Lagrangian
function becomes:

L(x, σ) =
∑
d

(∑
e

σeδedxd − wd log xd

)
−
∑
e

σece

where the σe’s denote the Lagrangian multipliers. By fixing all
the σe’s, differentiating w.r.t. xd(σ) and setting the resulting
derivatives equal to zero, we obtain:

xd(σ) =
wd∑
e δedσe

for each demand d ∈ D .
By substituting xd(σ) in L(x, σ) and differentiating w.r.t.

each σe, we obtain a system with Ep equations in Ep un-
knowns. Such a system admits a solution–for the hypothe-
ses made in the Proposition–represented by the σe’s, e =
1, . . . , Ep, that depend on the link-path indicators, on the
demand weights and on the link capacities. Obviously, it must
result that ∑

e

δedσe > 0, ∀ d ∈ D

Notice that if we include constraints (4), there is no possi-
bility of finding a closed-form expression of the solution.


