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Abstract

Recommender systems are ubiquitous. Our digital lives are influenced by their use
when, for instance, we select the news to read, the product to buy, the friend to connect,
and the movie to watch. While enormous academic research efforts have been mainly
focused on getting high-quality recommendations to reach the maximum customers’
satisfaction, little effort has been devoted to studying the integrity and security of
these systems. Is there an underlying relationship between the characteristics of the
historical user-item interactions and the efficacy of injection of false users/feedback
strategies against collaborative models? Can public semantic data be used to perform
attacks more potent in raising the recommendability of victim items? Can a malicious
user (i.e., the adversary) poison or evade the image data of visual recommenders
with adversarial perturbed product images? What is a possible defensive solution to
reduce the effectiveness of test-time adversarial attacks? Is the family of model-based
recommenders more vulnerable to multi-step gradient-based adversarial perturbations?
Furthermore, is the adversarial training robustification still effective in the last scenario?
Is this training defense influencing the beyond-accuracy and bias performance?

This dissertation intends to pave the way towards more robust recommender
systems, beginning with understanding how a model can be made more robust, the
cost of robustness in terms of recommendation quality, and the adversarial risks of
modern recommenders. This thesis, getting inspiration from the literature on the
security of collaborative models against the insertion of hand-engineered fake profiles
and the recent advances of adversarial machine learning methods in other research
areas like computer vision, contributes to several directions: (i) the proposal of a
practical framework to interpret the impact of data characteristics on the robustness of
collaborative recommenders, (ii) the design of powerful attack strategies using publicly
available semantic data, (iii) the identification of severe adversarial vulnerabilities of
visual-based recommender models where adversaries can break the recommendation
integrity by pushing products to the highest recommendation positions with a simple
and human-imperceptible perturbation of products’ images, (iv) the design of a novel
defense method to protect visual recommenders against test-time adversarial attacks,



iv

(v) the proposal of robust adversarial perturbation methods capable of completely
breaking the accuracy of matrix factorization recommenders, and (vi) a formal study
that examines the effects of adversarial training in reducing the recommendation quality
of state-of-the-art model-based recommenders.
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Chapter 1

Introduction

Recommendation systems (RSs) have become a necessary component of our everyday
digital lives, freeing our minds from the superabundance of products and services
attainable on online platforms. Amazon [150], Google [68], Spotify [108], and Netflix [40]
are de facto standard examples of how much gig companies take advantage of RSs to
make as much personalized as possible customers’ experiences.

The keystone of good recommendations lies in the use of machine learning (ML)
techniques to extrapolate behavioral patterns from historical users’ interactions, e.g.,
purchased products, watched movies, and visited restaurants, and assist users’ decision-
making processes by curating a list of items that the user would be interested in.
Additionally, highly qualitative personalization has also been reached by exploiting
the taste similarities between the users in the platform. This approach, known as
collaborative filtering (CF), dominates the scene from the origins of the research on
recommender systems [191].

When learning to recommend, the first assumption is that all the platform entities,
e.g., customers, sellers, and content editors, are honest and have trustful behaviors.
This is far from the truth. There are many facets of the security of the recommendation
process which are pretty under-investigated. Thus, considering the terrific benefits of
RSs on increasing sales and supporting users, there is a largely untapped territory for
investigating the safety of RSs against adversaries having an incentive to compromise
the functionalities of ML-based RSs, which this dissertation endeavors to shed light on.

Adversarial machine learning (AML) is the research field investigating the vulnerabilities
inherent to ML systems’ design and the means to defend against them. A noticeable
hype on the security of ML models hiked up after the presentation of worrying real-
world examples on the fact that traffic-sign ML-based classifiers, used in autonomous
vehicles, would be easily fooled by human-imperceptible (adversarial) perturbations of



2 Introduction

traffic signals [101, 160]. From 2017 adversarial techniques have gained attention in
recommendation scenarios. We provide the literature review about the application of
AML in RSs in Chapter 2.

RSs face two comprehensive examples of risks: integrity and availability. Breaking
the integrity means the adversary induces a model output (i.e., the recommendations)
different from the original one. For example, adversarial attacks attempt to push/target
(victim) items into high/low positions in the recommendation lists. Chapters 3 to 6
present our research contributions to this issue. Then, compromising the availability
involves scenarios that the malicious user attempts to reduce the recommendation
quality (e.g., the accuracy of top-K recommendations). For instance, based on the
level of knowledge of the victim recommender, the attacker can try to destroy the
accuracy of the model, making the recommendation lists completely unuseful with
a consequent reduction of the users’ trust towards the platform. In Chapter 7, we
present novel algorithms for crafting adversarial examples to destroy the availability of
standard recommendation techniques, and in Chapter 8, we put on a formal analysis
on the influence on the RS availability of state-of-the-art adversarial protection of
recommender systems.

1.1 Thesis Statement

This work characterizes and undertakes adversarial risks in the recommender system
research domain to assess and improve our understanding of deployed ML-based RSs
security. As mentioned earlier, our research interest has focused on the integrity and
the availability of recommendation models in adversarial settings.

Starting from the foundations of the recommender system and adversarial machine
learning, we provide an in-depth literature review on the existing works and the
preliminaries proper to place our research contributions summarized later in Section 1.2.
We organize the adversarial techniques to reach the malicious goals with the following
strategies: injection of hand-engineered and machine-learned fake profile (known as
Shilling Profiles), noise added to the recommender’s machine-learned parameters, and
human-imperceptible perturbation of content data used in content-based and hybrid
recommenders.

Paying attention to the first strategy, we investigate whether the recorded set
of user-to-item recorded interaction characteristics can influence the efficacy of the
injected fake profiles. The intuition is to propose an easy-interpretable model that
supports system designers in robustifying the model from a dataset perspective. This
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Fig. 1.1 Thesis organization.

part of our research has also been pursued by proposing a novel attack approach
exploiting publicly available semantic information (e.g., knowledge graphs) to empower
adversarial with limited or absent knowledge.

The second core of the investigation is related to the security of multimedia
recommender models. Here, we investigate a new research problem related to studying
the effects of adversarial examples crafted on item images on the reliability of a visual-
based recommender model. A vast set of standard and novel adversarial attack and
defense strategies in training and testing time settings have been analyzed and proposed
to break and/or protect a large set of state-of-the-art visual recommenders.

Regarding the study of adversarial noise added to the model parameters, our
research efforts have been focused on two main arguments. The former proposes a novel
noising technique stronger than the existing ones affecting the model’s availability (i.e.,
the recommender starts to behave randomly). The latter opens the investigations of
the effects of state-of-the-art defense strategies on performance quality over accuracy.

In what follows, we detail the research contributions.

1.2 Research Contributions

The thesis discusses the research questions regarding how recommendation systems
can be victims of adversaries and could be protected through the perspectives of
novel adversarial machine learning techniques. Figure 1.1 presents an overview of our
research arguments with the link to the chapters of this dissertation. Each part views
the adversarial learning applications on different attack types (and defense) against a
recommender model. The following sections provide additional details on this thesis’s
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research goals and contributions based on this structure. Note that, Merra Felice
Antonio is the corresponding author of the scientific publications related to the
research contributions presented in this dissertation 1.

1.2.1 Ch. 2: Survey, tutorials, and a book chapter on AML
in RSs.

Unlike the following subsections, here, we do not present overall research questions
related to the particular research contribution since the current section describes the
surveying contribution of the application of AML in recommendation settings.
Contributions. While there exist several survey articles on general RS topics, for
example Ekstrand et al. [90], Shi et al. [200], Quadrana et al. [183], we found a lack of
literature reviews focusing on the application of AML techniques in the recommendation
task. Motivated by this absence, we provide a comprehensive literature review by
identifying, first, that the applications of AML have to be specifically referred to security
aspects and not a novel recommendation algorithm based on generative adversarial
network (GAN). Then, we propose an attack/defense-driven classification of the state-
of-the-art adversarial applications whose has been at the core of our investigation and
have motivated the research contributions described below.
Publications. The content of the foundations and review presented in Chapter 2
has been presented in the journal paper "A Survey on Adversarial Recommender
Systems: From Attack/Defense Strategies to Generative Adversarial Networks" [82]
published by ACM Computing Surveys (CSUR) and the book chapter "Adversarial
Recommender Systems: Attack, Defense, and Advances" [20] accepted for publication in
the 3rd Edition of Recommender Systems Handbook. Additionally, we have presented
the content of these publications in three conference tutorials at WSDM2020 [81],
RecSys2020 [19], and ECIR2021 [122], and during the summer internship held in
Amazon.com.
Role of Ph.D. Candidate. Corresponding author of previous contributions, i.e.,
survey [82], tutorials [81, 19, 122], and book chapter [20].

1The authors of the publications are alphabetically ordered. The corresponding authors of
publications are reported in the articles.
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1.2.2 Ch. 3: Interpretation of the Impact of Data Characteristics
on Robustness.

Is there an underlying relationship between the dataset characteristics computed on the
matrix of recorded user-item interactions and the effectiveness of shilling attack

against collaborative recommender models?

Contributions. In Chapter 3 of this dissertation, we present a systematic, in-depth
exploratory research and analysis of the impact of dataset characteristics on the
robustness performance of popular CF models subjected to famous shilling attack
strategies. Mainly, we propose a regression-based explanatory framework to investigate
the correlation between a suite of structural and value-based data characteristics
extracted from the user-item feedback matrix (UIFM) and the robustness of CF models.
Results of extensive experiments provide sufficient statistical evidence to accept the
hypothesis that, first, the identified data characteristics can account for a considerable
portion of variations in attack performance (global perspective) and, second, that there
remain considerable differences in the significance (and directionality) of this impact
among the characteristics.
Publications. The preliminary contributions to the effects of dataset characteristics
on attacks efficacy appeared as the publication "Assessing the Impact of a User-
Item Collaborative Attack on Class of Users" in the Workshop on the Impact of
Recommender Systems held in conjunction with the 13th ACM Recommender Systems
Conference (RecSys) 2019 [80]. Starting from the research contributions and open
challenges of this article, we presented the regression framework in the publication
"How Dataset Characteristics Affect the Robustness of Collaborative Recommendation
Models" presented as a long paper at the 43rd ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR) 2020 [76]. A condensed version of
the work has been presented at the 11th edition of the Italian Information Retrieval
Workshop (IIR) 2021 in the published discussion paper titled "A Regression Framework
to Interpret the Robustness of Recommender Systems Against Shilling Attacks" [77].
Role of Ph.D. Candidate. Corresponding author of all the published articles
[80, 76, 77].

1.2.3 Ch. 4: Semantics-aware Shilling Attacks.

Can public available semantic information be exploited to develop more effective
shilling attacks against CF models, where the effectiveness is measured in terms of a

raise of the recommendability of the target items in the recommendation lists?
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Contributions. In Chapter 4, we present a set of methods leveraging semantic-
encoded information extracted from publicly available information resources obtained
from KGs to generate more influential fake profiles that can undermine the performance
of CF models. In this line of research, we focus on empowering adversaries’ capabilities
in breaking the integrity of a CF-RS without providing any additional information
about the system. We propose a new technique, semantics-aware shilling attack SAShA,
completely integrable with existing shilling attack strategies. Experiments in real-world
datasets show that integrating SAShA with standard shilling attack strategies confirms
that it is a powerful tool to implement effective attacks also when attackers do not
have any knowledge of the victim RS. Additionally, we investigate the method efficacy
changing the type of semantic information, the extraction depth on public knowledge
graphs, and the algorithms used to evaluate the semantic similarities of target victims
with the other items in the catalog.
Publications. The research contributions presented in this chapter are based on
the conference articles "SAShA: Semantics-Aware Shilling Attacks on Recommender
Systems Exploiting Knowledge Graphs" [16] and "Knowledge-enhanced Shilling Attacks
for Recommendation" [21] presented at The Semantic Web - 17th International
Conference (ESWC) 2020 and the 28th Italian Symposium on Advanced Database
Systems (SEBD) 2020, respectively. Additionally, we have been invited to extend the
method to the Semantic Web Journal. The article named "Semantics-Aware Shilling
Attacks against collaborative recommender systems via Knowledge Graphs" is currently
under review and publicly accessible on the journal platform 2.
Role of Ph.D. Candidate. Corresponding author of all the presented publications
[16, 21].

1.2.4 Ch. 5: Poisoning of Multimedia Recommender Systems
with Adversarial Images: Attacks and Defenses.

Can an adversary poison the data of multimedia recommender systems with
adversarial samples? Do adversarial perturbations of product images confuse

multimedia recommenders? Can we protect the model integrity?

Contributions. Most recommendation systems use multimedia content associated with
products, e.g., images, videos, and descriptions, to empower the recommendation quality
of collaborative recommender systems [83]. Among them, visual-based recommender
systems (VRSs) have merged as powerful techniques thanks to the representational

2http://www.semantic-web-journal.net/system/files/swj2735.pdf

http://www.semantic-web-journal.net/system/files/swj2735.pdf
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power of deep neural networks (DNNs) in capturing characteristics and semantics of
the images to be integrated within the training of the recommendation model. As
mentioned earlier, suppliers of the items on a recommendation platform can have
malicious objectives and, in this line of research, we investigate adversarial settings
where sellers can upload adversarial perturbed images of their items to damage the
integrity of the model and push (or nuke) their frequency of recommendation in high
positions. For instance, a malicious seller might upload images of socks products
maliciously perturbed to be treated by an ML model as t-shirts (a popular bought
product) in product recommendation. This action might push up the socks’ product
in high recommendation positions. Motivated by this case, we propose a set of attack
strategies that have been demonstrated to break the model’s efficacy through extensive
experiments on real-world product recommendation datasets and several VRSs. Then,
we investigate and experiment with defense solutions, showing a partial efficacy and the
need for further exploration of this completely new adversarial scenario. Starting from
these results, we have started to investigate the possibility of introducing a denoiser
module that, independently of the visual recommender, can remove the adversarial
noise from the input samples.
Publications. The first articles that put the foundation of the research direction
taken in Chapter 5 are "TAaMR: Targeted Adversarial Attack against Multimedia
Recommender Systems" [85] published at Dependable and Secure Machine Learning
Workshop Co-located with the 50th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) 2020 and "Assessing Perceptual and Recommendation
Mutation of Adversarially-Poisoned Visual Recommenders" [27] presented at the 1st
Workshop on Dataset Curation and Security co-located with the 34th Conference on
Neural Information Processing Systems (NeurIPS) 2020. Starting from the preliminary
results obtained din the previous two articles, the framework and experimental results
presented in the chapter appeared as a long paper in the proceedings of the 44th ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
2021 [17].
Role of Ph.D. Candidate. Corresponding author of all the above-mentioned articles
[85, 27, 17].



8 Introduction

1.2.5 Ch. 6: Evading Multimedia Recommender Systems
with Adversarial Images: Attacks and Defenses.

Can Adversarial Image Denoiser (AiD) reduce the effectiveness of adversaries that use
test-time adversarially-perturbed product images? How much AiD application is

affecting the overall accuracy and beyond-accuracy performance?

Contributions. Test-time (evasive) adversarial attack strategies have recently unveiled
severe security issues against visually-aware recommender models. Indeed, adversaries
can harm the integrity of recommenders by uploading item images with human-
imperceptible adversarial perturbations capable of pushing a target item into higher
recommendation positions. Under this class of attacks, we have focused our research
interest on two main contributions: identifying the popularity influence on the attack
efficacy and proposing the first test-time defensive method. As for the first research
contribution, given the importance of items’ popularity on the recommendation
performance, in our research interest, we evaluate whether items’ popularity influences
the attacks’ effectiveness. To this end, we have performed three state-of-the-art
adversarial attacks against VBPR (a standard VRS) by varying the adversary knowledge
(white- vs. black- box) and capability (the magnitude of the perturbation). The results
obtained evaluating attacks on two real-world datasets have shed light on the remarkable
efficacy of the attacks against the least popular items’ opening novel open challenges
on the importance of considering the popularity also in defensive settings. Regarding
the second main contribution, to which we dedicate more attention in Chapter 6, we
propose "Adversarial Image Denoiser" (AiD), a novel defense method to protect VRSs
against adversarial attacks. In AiD, we exploit the idea of cleaning up the product
images by the perturbations added by the adversaries. In particular, we propose a
U-Net-based denoising autoencoder trained to minimize the visual differences between
clean and adversarial images while preserving the recommender systems’ behavior
in clean settings. To verify the efficacy of the proposed defense solution, we have
investigated the defense performance on three real-world datasets and two popular
visual recommender models, one of which implements the state-of-the-art defensive
solution (i.e., adversarial training) under three attack strategies (i.e., one black-box
and two white-box). The experiments confirm that AiD is an effective solution for
protecting visual recommender models against the set of tested attacks, reducing their
effectiveness in varying the predicted preference scores and the target items’ positions
in the recommendation lists.



1.2 Research Contributions 9

Publications. Being the effectiveness of test-time (evasion) attacks have already
been analyzed in the original attack proposal articles [85, 67, 154], our initial research
attention has been devoted to investigating whether items’ popularity bias would have
affected the efficacy of adversarial attacks on visual-based recommenders. Preliminary
results on this novel line of research have been presented in the article "Adversarial
Attacks against Visual Recommendation: an Investigation on the Influence of Items’
Popularity" published at the 2nd Workshop on Online Misinformation- and Harm-Aware
Recommender Systems in conjunction with the 15th ACM Conference on Recommender
Systems [23]. The research article related to the proposal of a novel defense strategy to
protect a visual-based recommender against adversarial perturbed images is currently
under review as a long paper with the title "Adversarial Image Denoiser to Defend
Visual-based Recommender Systems against Attacks". This last article is at the core
of Chapter 6.
Role of Ph.D. Candidate. Corresponding author of the article referenced at [23]
and the research contribution presented in a paper under review whose content is
presented in Chapter 6.

1.2.6 Ch. 7: Iterative Methods to Perturb the Parameters of
an RS.

Considering the parameters’ instability to adversarial perturbation on model-based RSs,
how vulnerable are the parameters to iterative gradient-based adversarial methods? Is
the adversarial training approach working in robustifying the model against this attack?

Contributions. Inspired by recent studies showing that model-based recommender
systems are not robust to adversarial perturbation of model parameters [115], which
consists of the addition of minimal noise to the RS embeddings to crack the model
availability, we propose gradient-based iterative methods. The research goal is to
understand if the performance worsening caused by state-of-the-art perturbations can
even be empowered with multi-step optimization techniques. Experiments show that
the proposed strategies are the most powerful ones under a fixed perturbation budget
(the maximum variation of model parameters caused by the addition of noise). Then,
we verify that the proposal degrades accuracy and beyond-accuracy recommendation
quality so much to make the victim model worse than a random (not-personalized)
model, staying still effective also against adversarially trained models.
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Publications. Chapter 6 is extracted from the article "MSAP: Multi-Step Adversarial
Perturbations on Recommender Systems Embeddings" [12] published in the proceedings
of the 34th International FLAIRS Conference Proceedings (FLAIRS) 2021.
Role of Ph.D. Candidate. Corresponding author of the published contribution [12].

1.2.7 Ch. 8: A Formal Analysis of Recommendation Quality
of Adversarially Trained Recommenders

Since adversarial training has been demonstrated to disturb the model accuracy in the
image classification task, how does it influence the recommendation performance on

accuracy and beyond-accuracy perspectives?

Contributions.Adversarial personalized ranking (APR) is an adversarial training
procedure proposed in [115] to robustify Bayesian personalized ranking [188], the most
popular learning-to-rank optimization framework, against the injection of adversarial
noise (the core attack in Chapter 7). Considering the performance alteration of
adversarially trained classifiers for the image classification task [184], we focus on
investigating the learning differences between APR and BPR to understand if APR
could affect the recommendation quality. The proposed formal analysis shows that APR
could be affected by amplifying popularity bias and reducing beyond-accuracy measures.
The experimental results on five recommendation datasets on matrix factorization
(MF) recommenders confirm this worsening of recommendation quality, motivating the
design of novel robust learning procedures that can strike a more meaningful balance
between accuracy, beyond accuracy, and low amplification of popularity bias.
Publications. This complete version of this work is currently under review. An
initial contribution has been presented at the 3rd Workshop on Adversarial Learning
Methods for Machine Learning and Data Mining in conjunction with the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2021 in the
article "Understanding the Effects of Adversarial Personalized Ranking Optimization
Method on Recommendation Quality" where has been awarded by the "MIT-IBM
Watson AI Lab Best Paper Award." Then, the indexed articles are "The Idiosyncratic
Effects of Adversarial Training on Bias in Personalized Recommendation Learning"
published at RecSys 2021 [29] and "A Formal Analysis of Recommendation Quality of
Adversarially-trained Recommenders" published at CIKM 2021 [28]. The last article
has been nominated as "Runner-Up Best Short Paper".
Role of Ph.D. Candidate. Corresponding author of the accepted contributions
[29, 28].
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1.3 Bibliographical Notes

This section describes the research articles published during the Ph.D. but not
profoundly discussed in the dissertation. Indeed, the following works have been
conducted as simultaneous topics whose research questions have been raised while
studying the literature.

For the theme of multimedia recommender systems, motivated by the effects of
adversarial attack and defense performed against the DNN used in the system, we
explored the effects of varying the DNN used to extract the visual features. The
article "A Study on the Relative Importance of Convolutional Neural Networks in
Visually-Aware Recommender Systems" [78] appeared in the 4th CVPR Workshop
on Computer Vision for Fashion, Art, and Design, proved that a deeper feature
extraction model, i.e., ResNet50 [112], ensures high accuracy and beyond-accuracy
recommendation performance. An additional work published on visual recommender
systems is "Leveraging Content-Style Item Representation for Visual Recommendation"
accepted at the 44th European Conference on Information Retrieval [79], in which a
novel visual attention mechanism has been proposed to enhance the performance in
the visual-based recommendation task.

Regarding the research topic of adversarial machine learning, we investigated
gradient-based perturbations on model parameters in MF-based link prediction methods.
The research paper titled "AMFLP: Adversarial Matrix Factorization-based Link
Predictor in Social Graphs" [73] published in the proceedings of the 29th Italian
Symposium on Advanced Database Systems (SEBD) 2021, proposes a perturbation
technique able to reduce the link prediction performance drastically and an adversarial
training solution reducing this deterioration.

Additionally, we have co-authored the reproducibility framework presented in the
resource paper "Elliot: a Comprehensive and Rigorous Framework for Reproducible
Recommender Systems Evaluation" [13] published at SIGIR 2021. The framework
makes more than 50 recommendation models available, including adversarial and
GAN-based implementations, together with a large set of evaluation metrics, hyper-
parameters strategies, and data-pre-processing operations to support easy-to-run
and reproducible experiments for both researchers and industrial practitioners. The
system is publicly available in a GitHub repository 3. A demonstration paper fully
dedicated to the integration of visual-based recommenders has been presented at
RecSys 2021 in the indexed article named "V-Elliot: Design, Evaluate and Tune Visual

3https://github.com/sisinflab/elliot/

https://github.com/sisinflab/elliot/
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Recommender Systems" [15], while an extended abstracted, named "How to perform
reproducible experiments in the ELLIOT recommendation framework: data processing,
model selection, and performance evaluation", has been presented at the 11th edition
of the Italian Information Retrieval Workshop (IIR) 2021 [14].

Lastly, I have co-authored with Jacek Golebiowski and Felix Biessmann the work
titled "Search Filter Recommendation using Language-Aware Label Embeddings" an
applied research paper under review that presents the research contributions reached
during my Ph.D. internship at Amazon.com. The contributions of this work are related
to the proposal of a novel deep learning model to recommend the most relevant set of
product categories for each typed query.

Next, we present the background, preliminaries, and literature review of AML
applications in RSs. Then, moving from Chapter 3 to Chapter 8, we detail the research
contributions shown in Figure 1.1. Finally, we review the findings in this dissertation
and propose several open problems and potential future work.



Chapter 2

Foundations and Background

We present a brief overview of the background concepts used throughout this thesis.
In particular, we start from the foundations of recommender systems and adversarial
machine learning presenting before citing and classifying the different kinds of adversarial
learning applications in recommendation scenarios. Note that We will go in-depth in
the related chapters for each field where We focused our research contributions.

The current chapter presents the terminology used throughout the remainder of
this thesis. In general, this dissertation follows the convention: capital calligraphic
(e.g., A) to denote a set, bold uppercase (e.g., X) to indicate a matrix, lowercase bold
(e.g., x) to express a vector, and simple lowercase (e.g., x) to denote a scalar.

2.1 Foundations of RS

Recommender systems have terrifically taken over online shopping by providing users
with personalized recommendations to disentangle the chaotic flood of products on
e-commerce platforms. They model consumers’ preferences by learning from past
behavioral data like rated, bought, or reviewed products. Collaborative filtering
recommendation models play a pivotal role in online services in increasing traffic and
promoting sales. They are widely adopted by various e-commerce and consumer-
oriented services to recommend a whole range of items, including products, music,
movies, news articles, friends, restaurants, and various others. Their basic assumption
is that users who shared similar preferences in the past will likely agree in the future
as well. Then, from an algorithmic point of view, these models keep track of users’
interactions to find similarities in users’ behavioral patterns. This dissertation will be
focused only on collaborative recommender models.



14 Foundations and Background

I indicate with as U the set of users in the system, where |U| is the number of users.
We denote with I the items set whose size is defined as |U|. The preference score of a
user u ∈ U on an item i ∈ I is a scalar denoted as sui ∈ S, where S ∈ R|U|×|I| is the
sparse matrix of all possible user-item preference scores. The user-item preference score
can be an explicit feedback (e.g., sui ∈ {1,2,3,4,5} depending from the number of stars
left by u on the bought product i), or an implicit feedback (e.g., sui = 1 is u bought
i). We denote with R the set of (u,i) pairs for which sui is known and therefore |R|
represents the total number of feedback recorded on a platform (i.e., the size of the
recommendation dataset).

The recommendation problem can be defined as finding a utility function to
automatically predict how much a user will like an item that is unknown to her (an
unknown user-item preference score).

Definition 1 (Recommendation Problem). Given a utility function, ŝ : U ×I → R,
the Recommendation Problem is defined as

∀u ∈ U , i′ = argmax
i∈I

ŝ(i | u) (2.1)

with i′ ∈ I/I+
u is not in the list of (positive) items already seen by the user u (i.e., I+

u ).

The solution to a recommendation problem heavily depends on the selected utility
function ŝ —usually, but not necessarily, a machine learning model— and on the
information encoded within the dataset represented by R.

Additionally, a common approach to address the Recommendation Problem is to
present a personalized list of relevant items to each user in the platform. This problem
can be modeled as a Ranking Task, and it is defined below.

Definition 2 (Ranking Task). Given a user u ∈ U , the rank of a not-interacted
item i ∈ I is defined via the bijective function in I as ŝ(i|u). Let r̂(·) be the ranking
function based on the predicted value of the preference score function ŝ(·|Θ), where Θ
represents the ML recommender’s model parameters. The Ranking Task builds a
top-K recommendation list associated with the user u as follows,

r̂(i | u) :=
{
|{j : ŝ(j | u)≥ ŝ(i | u)}|, i, j ∈ I\I+

u

}
(2.2)

where I+
u is the list of (positive) items already seen by the user u.

The open nature of the collection of feedback makes the recommendation problem
vulnerable to the injection of malicious users [105]. This dissertation explores in
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Chapters 3 and 4 two adversarial settings related to the addition of fake profiles,
named shilling attacks. Section 2.3.2 presents the background knowledge of the before-
mentioned attack strategy.

2.1.1 Recommendation Methods

The research interest in generating personalized lists of relevant items is the core
challenge in the recommendation domain [139]. Recommendation techniques are
generally classified into collaborative filtering (CF) [72, 188], content-based filtering
(CBF) [181], and hybrid [190, 4].

CF leverages users’ collective behavior data such as interactions and stated preferences
to compute recommendations. CBF models recommend items similar to those preferred
in the past based on the item’s characteristics (e.g., item content). Finally, hybrid
models combine CF and CBF techniques under a unique framework. In this thesis,
we focus on collaborative filtering principles, which exploit the wisdom of crowds to
empower modern recommenders, and hybrid recommenders, which exploit users’ or
items’ additional data to get profits to form both collaborative and content-based
signals. To set the background of recommendation techniques to investigate in the
following chapters, we present the main approaches of CF models.

Collaborative Filtering (CF)

CF-RSs can be further categorized in two classes of models: neighborhood-based [98,
118] and model-based [188, 218]. Neighborhood-based recommenders, also known
as memory-based recommenders, rely on computing similarities from user behavioral
data (i.e., user-user or item-item similarities) to predict unknown user preferences.
Model-based recommenders transform items and users into a shared latent factor
space whose interactions explain the observed interactions. Depending on the type
of interaction, model-based CF can be for example classified according to linear
approaches, e.g., matrix factorization (MF) [188], and non-linear models, e.g., neural
matrix factorization (NeuMF) [116]. Considering the popularity of MF-based solutions
to implement recommendation systems, we have investigated ML-based solutions in
any research contribution that will be detailed in Chapters 3 to 8. Below, we formally
present the simplest MF model.

Matrix Factorization (MF). MF is a latent factor model that learns the linearity
of the unknown preferences. It represents both items and users by vectors of latent
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factors. These factors are learned from linear patterns of the user-item feedback matrix.
The learned user and item embeddings are two low-rank matrices, one for the users, i.e.,
P ∈ R|U|×h, and another for the items, i.e., Q ∈ R|I|×h, where h≪ |I|, |U | and h ∈ R
is the dimension of the embeddings. In MF, the model parameters Θ are {P,Q}. The
preference prediction function is ŝ(i|u) := µ+bu +bi +qT

i pu, where µ,bu, and bi are the
overall average score, the observed bias of user u and item i, respectively, and qT

i pu is
the dot-product between the user, i.e., pu ∈P, and the item, i.e., qi ∈Q, embeddings.

2.1.2 Evaluation

As shown in Definition 2, the recommendation problem is solved presenting to each
user u a recommendation list by sorting all the unrated items (i.e., I−

u := {i′ ∈ I/I+
u )

by decreasing values of inferred preference score ŝ(·). We evaluate this list checking
whether a part of ground truth interactions sui placed in the test set built on R
have been covered in the first K positions, where K ∈ N is the threshold at which we
evaluate the ranked list of products. From now on, we use top-K to indicate the first
K recommended items. In what follows, we report the evaluation metrics capturing
the performance of an RS that we will use in chapters of this dissertation. If a novel
metric has been proposed in a publication, it will be presented in the related chapter.

Accuracy Metrics

Below, we define the main accuracy metrics used to evaluate the performance of a
recommender model. Note that the following measures are all defined in the [0,1]-range,
where is the best possible metric value.

Definition 3 (Precision (Pr@K)). Let Relu bet the set of items relevant to user u ∈ U ,
and Recu is the top-K list of items recommended to u.

Pr@K = 1
|U|

U∑
u=1

|Relu∩Recu|
|Recu|

(2.3)

Pr@K is the fraction of previously interacted items correctly inserted in the topK

recommendation list.

Definition 4 (Recall (Re@K)).

Re@K = 1
|U|

U∑
u=1

|Relu∩Recu|
|Relu|

(2.4)
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Re@K is the fraction of the relevant items that are successfully retrieved.

Definition 5 (Hit Ratio (HR@K)). Let hit(u,K) a binary function that is one if at
list one recommended item has been interacted by u, 0 otherwise, then the Hit Ratio at
K is defines as follows,

HR@K = 1
|U|

U∑
u=1

hit(u,K) (2.5)

HR@K compares the top-K recommendations for each user u to the recorded ones (e.g.,
the interaction stored in the test set). If they match, then increase the hit rate by 1.

Definition 6 (normalized Discounted Cumulative Gain (nDCG@K)). Let relu,ik
the

gain that u would get when the item i is recommended in the position k ∈K of the
recommendation list. Let 2relu,ik be equals to 1 if the item hits, otherwise 0. Then,
following [104], the nDCG@K is defined as follows,

DCGu@K =
K∑

k=1

2relu,ik −1
log2 (k +1)

IDCGu@K =
K∑

k=1

1
log2 (k +1)

nDCGu@K = DCGu@K

IDCGu@K

nDCG@K = 1
|U|

U∑
u=1

nDCGu@K

(2.6)

where IDCGu@K is the ideal DCGu@K which represent the ideal order that the
recommended items should follow.

Beyond-Accuracy Metrics

Due to the large impact of RSs in the society [35, 36], a huge research effort has
been dedicated to beyond-accuracy objectives [44]. For instance, studying whether the
suggested items are novel and cover the complete catalog, and proposing methods to
mitigate several types of biases [60], e.g., selection bias[193], exposure bias [164], and
popularity bias [1, 3]. To measure the beyond-accuracy performance, we most used
metric in this dissertation if the item coverage (Cov%@k). Beyond-accuracy metrics
used in the experimental section and not described in this chapter will be presented
there.
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Definition 7 (Item Coverage (Cov%@K)). We measure the percentage fraction of the
number of different items in the top-K recommendation lists as follows

Cov%@K = 1
|I|

I∑
u=1

hit(i,K)×100 (2.7)

where hit(i,K) is if the item u has been recommended at least in one recommendation
lists generated by the recommender, 0 otherwise. Cov%@K = 100% means that the
entire item catalog is covered by the recommender.

2.2 Foundations of AML

Adversarial attack strategies have been firstly introduced in computer vision domain,

Fig. 2.1 Standard examples of the injection of adversarial perturbation to build an
adversarial sample that lead a classifier to a wrong class prediction.

with a particular focus on image classification tasks. In a classical supervised learning
setting, D = {(xi, yi)}ni=1 denotes the dataset where xi ∈ X ⊆ Rd is a feature vector
in the input space X and yi ∈ Y is the corresponding label in the output space Y.
For instance, in binary classification Y = {−1,+1}. Each pair in D is assumed to be
independent and identically distributed (i.i.d) from an unknown distribution Φ, i.e.,
(x, y)∼Φ. We also assume that we are given a suitable loss function L(., .), for instance
the cross-entropy loss for a neural network. The goal is to find a good candidate
function f(x;Θ) that minimizes the following empirical risk

min
Θ

E(x,y)∼Φ L(f(x;Θ),y) (2.8)

where E(x,y)∼Φ is commonly termed expected risk of the classifier, Θ are the model
parameters and y is the class label for the input sample x. As Φ it is often unknown, we
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use D in order to learn the suitable candidate function f(x,Θ). The training objective
function can be formulated as the following optimization problem,

min
Θ

∑
(xi,yi)∈D

L(f(xi;Θ),yi) (2.9)

where f(xi;Θ) and yi are the predicted and class label for the sample i.
However, while ERM is a powerful solution to train classifiers, it cannot learn

models robust against adversarial images. In 2013 Szegedy et al. [208] found that, given
an image, it is possible to add a meticulously crafted human-imperceptible perturbation
such that a pre-trained deep neural network (DNN) will misclassify the adversarial
samples. For example, as shown in Figure 2.1, an adversary may perturb pixels of a
"pandas" image so that humans will not be able to observe changes, but the classifier
produces "gibbon" as the classification result. Szegedy et al. [208] named the perturbed
images as adversarial examples and presented the first adversarial strategy, known as
L-BFGS, to learn the adversarial noise.

Before we dive into the applications of AML in RSs, we present its preliminaries
and foundations in the computer vision domain, the pivotal field of AML studies.

2.2.1 Adversarial Attacks

Starting from the work by Szegedy et al. [208], an adversarial attack that aims to
force a trained model to make a wrong prediction under a minimal perturbation budget
can be defined as in Definition 8.

Definition 8 (Adversarial Perturbation). Given a learned classifier f(x;Θ) and
an instance from the dataset (x,y) ∈ D, the attacker takes the sample x and adds
an adversarial perturbation δ to build the adversarial sample xadv = x + δ such that
f(xadv;Θ) ̸= f(x;Θ). δ is defined as follows

max
δ
L(f(x + δ;Θ),y), s.t., ∥δ∥p ≤ ϵ, (2.10)

where ϵ is the perturbation budget, typically chosen as small as possible such that
the p-norm of the perturbation (||δ||p ) is below that limit.

Equation (2.10) formally illustrates a fundamental aspect of adversarial attacks
that generalizes over other domains, e.g., recommendation, that the perturbations are
evaluated via a maximization (or minimization) problem with the characteristic to
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be the smallest possible in order to find learning characteristics that destabilize the
behavior of the model.

One of the first and most used adversarial methods to build adversarial samples
in the fast gradient sign method (FGSM) proposed by Goodfellow et al. [101]. The
FGSM attack model [101] was originally designed to exploit the linearity of DNNs in
the higher dimensional space. The authors’ goal is to solve Equation (2.10) (untargeted
attack) by adding arbitrary perturbation to the original clean input with the ℓ∞-bound
constraint (i.e., ||δ||∞ ≤ ϵ) such that the training loss of the target model increases thus
reducing classification confidence and improving the likelihood of inter-class confusion.
While there is no guarantee increasing the training loss by a certain amount will yield
misclassification, this is nevertheless a sensible direction to exercise since the prediction
error of a wrongly classified sample is by definition larger than the correctly classified
one. The key idea in untargeted FGSM is to use a first-order approximation of the loss
function and utilize the sign of the gradient function to construct adversarial samples
for the adversary’s target classifier f , obtaining.

Definition 9. (Untargeted Fast Gradient Sign Method (FGSM)). The Untargeted Fast
Gradient Sign Method is defined as follows

xadv = x + ϵ · sign(▽xL(f(x;θ), y)) (2.11)

where ϵ (perturbation level) represents the attack strength and ▽x is the gradient of
the loss function w.r.t. input sample x, y is the correct label and sign(·) is the sign
operator.

Definition 10 (Targeted Fast Gradient Sign Method (FGSM)). The corresponding
approach for targeted FSGM [142] is defined as follows

xadv = x− ϵ · sign(▽xL(f(x;θ), yT )) (2.12)

where yT is the target misclassification class label for sample x.

Carlini and Wagner is another state-of-the-art attack model for finding adversarial
perturbation under three distance measures (ℓ0, ℓ2, ℓ∞). Its key insight is similar to
L-BFGS [208] as it transforms the constrained optimization problem into an empirically
chosen loss function to form an unconstrained optimization problem as
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Definition 11 (Carlini and Wagner (C&W)). Let h(·) be a candidate loss function
(e.g., f(·)), the C&W attack is formulated as

min
δ

(
∥δ∥pp + c ·h(x + δ,yT )

)
(2.13)

Then, since the C&W attack has been used with several norm-type constraints on
perturbation (i.e., L0, L2, L∞), the CW-ℓ2 problem formulation for a targeted attack
aiming is given by

min
δ

(
∥xadv−x∥22− c ·h(xadv,yT )

)
(2.14)

h(xadv) = max
(

max
i̸=t

Z{xadvi
}−Z{xadvt},−K

)
xadv = tanh(arctanh(x)+ δ)+1))

where Z(x) denotes the logit corresponding to i−th class. By increasing the classification
confidence K, the adversarial sample will be misclassified with a higher confidence.

Before we dive into the presentation of background knowledge on defenses, it is
worth mentioning the suggestion presented by Carlini et al. [56] in the context of
research on security problems. In this work, the authors claim the necessity to define
the adversary threat model to clearly outline what adversary’s type a possible defense
will intend to defend against, guiding the evaluation of the attack and the defense.
The adversary threat model is based on assumptions about the goals, knowledge,
capabilities, and time.

• The adversarial’s goal consists of the malicious outcome that the adversary
would like to obtain while building adversarial examples. For instance, the
adversary’s goal in the CV domain may be to cause misclassification. Then, any
adversarial samples being misclassified is a successful attack.

• The adversarial’s capabilities are defined to impose reasonable constraints
to the attacker to allow defenses implementation that unconstrained adversaries
do not trivially bypass. For example, adversarial defense defined to protect a
specific class of attacks cannot be evaluated against another.

• The adversarial’s knowledge clearly describes what knowledge the adversary
is assumed to have concerning the model, the input data, and the output data.
Typically, works assume either white-box, full knowledge of the attacked model,
parameters, and data; black-box, no knowledge, and gray-box, a partial knowledge
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of the model or the data. When designing a defense method, the guiding principle
is to assume that the adversary has white-box knowledge such that the defense
will be reasonably effective in black-box settings.

• The adversarial’s time depends on the moment when the adversary performs
the attack to change the behavior of the ML system. Adversarial timing can be at
training or testing time. Training time attacks, also known as poisoning attacks,
happen before the ML model is trained. The attacker can add false data points
into the model training data, causing the trained model to produce an erroneous
prediction [43]. Testing time attacks, also named as evasion attacks, aim to evade
the decisions made by the learned model by maliciously manipulating the test
samples [101].

2.2.2 Adversarial Defenses

From an all-inclusive view, defending an ML model against adversarial attack strategies
can be done by (i) increasing the robustness of the learning or (ii) detecting the
adversarial examples before the inference through the network.

Increasing the robustness of the learning algorithm consists of training strategies
allowing the correct classification of adversarial and clean samples. The idea is to
learn model parameters (Θ) less sensitive to minor data variations that might move
samples into the wrong decision boundary. A standard strategy in the CV domain is
to regularize models to mitigate the attack surface, learning to correctly classify the
malicious samples. This problem can be formulated as a robust optimization problem
that seeks to correctly classify the adversarial samples of a determined adversarial
threat model.

Definition 12 (Robust Optimization). Let L be the loss function, f be the learning
model characterized by the model parameters Θ, (xi,yi) ∈ D be the training sample,
∥δ∥p ≤ ϵ the specification of the threat model, then the robust optimization is defined as
follows

min
Θ

∑
(xi,yi)∈D

max
δ
L(f(xi + δ;Θ), yi) (2.15)
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Definition 13 (Adversarial Training). Based on the above minimax learning strategy, Goodfellow
et al. [101] defined Adversarial Training as follows

min
Θ

[
L(f(x;Θ),y)+λ max

δ:∥δ∥≤ϵ
L(f(x + δ;Θ),y)︸ ︷︷ ︸

Adversarial Regularizer︸ ︷︷ ︸
Adversarial Regularized Loss

]
(2.16)

where AdversarialRegularizedLoss is composed of two parts, the standard classification
loss component (L(f(x;Θ),y)) plus AdversarialRegularizer, that is the loss evaluated
on the adversarial samples (continually) created to violate the current model Θ. Finally,
λ ∈ R is the adversarial regularization coefficient used to control the trade-off between
accuracy (on clean data) and robustness (on perturbed data).

The following section presents how adversarial attacks and respective countermeasures
have been adopted in the recommendation domain. When needed, further details of
adversarial attacks and defenses will be specified in the related work of each chapter.

2.3 AML in Recommendation Task

Recommender models have been demonstrated to be steadily under security risks.
Unlike a standard adversarial attack setting in CV where the adversaries perturb
images such that a classifier makes wrong predictions, the setting in RS must be
rethought according to input, model, and performance differences between classifiers
and recommenders. In the next section, we identify and clarify the main differences
before presenting a literature review of AML applications in RSs.

2.3.1 Differences Between RS and CV Settings.

As shown before in Section 2.2, a standard framework to assess the goal of an adversarial
attack against a classifier is to build imperceptible perturbations that adversarially
optimize to change the correct behavior of the model.

Input

The first fundamental difference lies in the type of model input. In a test time attack
setting, the pixel-valued nature of image data makes feasible the injection of minimal
noise (the adversarial perturbation) that slightly changes pixel values defeating the
classifier accuracy (the model misclassifies the adversarial sample) while persisting
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completely imperceptible for humans. Oppositely, the input data of a CF-RS is a
pair of user and item identifiers (discrete values) whose variations completely change
the semantic of the sample. For instance, suppose the adversary goal is to increase
ŝ(i | u), perturbing i would mean to change its ID from i to i′, where i′ ̸= i. It follows
that ŝ(i′ | u) is the score predicted on a different item, and the attack has no sense.
Indeed, test time attacks are not feasible in pure collaborative models if not in case of
adversarial perturbation on model parameters (Θ) that will be discussed in Section 2.3.2.
While human-imperceptible test time attacks are not feasible on user-item preference
data, it is feasible to create adversarial samples in the case of hybrid and content-based
recommenders that make use of content data as described in Section 2.3.2.

Differently from the infeasibility in testing scenarios, training time attacks, even
though with a partially different formalism, are executable in RSs. These can be
performed as both creating fake profiles (or inserting/removing user-item feedbacks)
and injecting adversarial perturbed content data— only in the case of hybrid and CBF
RSs. Section 2.3.2 reviews the main research direction in the RS literature.

Model

Another aspect differentiating AML applications between the more popular classifiers
in the CV domain and recommenders is the model type. In CV, standard image
classifiers can be seen as a cascade of layers whose input, the image, is multiplied by
the set of parameters related to the first layers, whose output will be the input of
the second layers, and the process continues in this cascade until reaching the last
year (the classification layer), that is the output. It follows that slight variations of
the input will be propagated across the model f(Θ|xi) ̸= f(Θ|xi + δ). In the case of
CF-RSs, being two numerical identifiers inputs of the model, it will use them only
to select the corresponding user and item rows in P and Q. It means that it is not
possible to model a test time attack against CF recommenders. It is the reason why
the only testing time attacks investigated in the literature are related to adversarial
perturbations of model parameters in-depth presented in Section 2.3.2.

Differently from CF, CBF and Hybrid recommenders are more suitable for testing
time adversarial threat models. In this setting, assuming that the recommender
model extracts the content feature at the moment of score prediction, it is possible
to adversarially perturb the content to produce an altered output. For instance, the
adversary can be a music creator that replaces the track of a song with an adversarial
example in order to make the latent representation of the song closer to the most popular
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Fig. 2.2 A notional view of the possible injection of adversarial perturbations on (a)
user profiles, (b) content data, and (c) model parameters.

ones and increase the frequency of recommendability in small top-K recommendation
lists. Section 2.3.2 presents the state-of-the-art approaches in this setting.

Performance

Finally, evaluating the quality of a list of recommended items differs from evaluating the
accuracy of a predicted class. Indeed, the adversary’s goals in classification tasks are to
lead the model to misclassify an adversarial sample with a chosen class (targeted attack)
or any other one (untargeted attack) that is different from the original. In contrast, the
goals in the recommendation task are different from the one in classification, such as to
increase/decrease the predicted preference score, push/nuke the position in ranked lists,
and make unreliable and not-personalized recommendations for a user or a group of
users. This variety makes necessary the definition of complex adversary threat models.

2.3.2 Adversary Threat Models against RSs

In the current section, we classify the research areas on adversarial strategies in RSs
and discuss the attack and defensive strategies according to the component, either the
input of the model parameters, under the adversarial attack. The general schema for
which parts of an RS can be under adversarial perturbations is shown in Figure 2.2.
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Table 2.1 Different categories of AML applications in RSs (and example research in
each case). We underline the fields where we produce a research contribution.

AML Applications References

Perturbation of User-Item Interaction (Poisoning of R)
• Hand-engineered Poisoning
∗ Attack by leveraging interaction data [143, 174]
∗ Attack by exploiting semantic data [16]
∗ Studying the impact of data characteristics [76]
∗ Defenses [42, 54, 244, 8, 50]
• Machine-learned Poisoning
∗ Factorization-based models [146, 65, 59, 93]
∗ Reinforcement Learning models [239, 205, 55]
∗ Other recommendation models [230, 62]
∗ Defenses [153]

Perturbation of Content Data (Multimedia Recommenders)
• Poisoning (Training Time)
∗ Targeted Adversarial Attacks [85, 27, 78]
∗ Defenses [78]
• Evasion (Testing Time)
∗ Attacks on Scores and Rankings [67, 154, 23]
∗ Defenses [154]

Perturbation of Model Parameters (Poisoning of Θ)
• Embeddings of RSs
∗ Gradient-based attack: single-step, multi-step [115, 209, 12]
∗ Gradient-based defenses [115, 229]
∗ Performance trade-off with adversarial trained RSs [Under Review]

According to the adversarially perturbed element component of an RS shown
in Figure 2.2, we can perform adversarial perturbations on the set of recorded preferences
R (e.g., injection of fake interactions), the content data used as a side-information
(e.g., the item images uploaded on an e-commerce fashion platform), and the model
parameters (e.g., ideal attacks used to study the stability against a worst-case scenario).
Before we dive into the analysis of these strategies, to provide an overview, Table 2.1
introduces the adversarial attacks, which have been used over the last few years in RS
research. It highlights the reviewed research articles according to three dimensions:
perturbation of user-item recorded interaction (poisoning of R), perturbation of content
data, and perturbation of model parameters (poisoning of Θ). In the following section,
we describe each category.
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Perturbation of User-Item Recorded Interaction (Shilling Attacks)

The rationale behind CF-RSs is to ease the customer navigation across the catalog
based on the so-called "word-of-mouth," i.e., a user might like what other people like and
dislike. However, the openness of these systems is a potential point of failure. Indeed,
malicious users, the adversaries, can meticulously craft fake profiles to poison the data
and alter the recommendation behavior toward malicious goals [173, 6, 42]. Adversaries
may execute a shilling attack to achieve a whole different set of adversaries’ goals.
To name a few, they may want to demote competitor products [143], misuse the
underlying recommendation system [105], or increase the recommendability of specific
products [161, 85].

The adversary threat model to perform a shilling attack considers the adversary’s
knowledge to mount the attack, the adversary’s goal, and the adversary’s capability
(i.e., the number of added profiles) [48, 202]. According to the adversary’s knowledge, a
shilling attack can be a low-knowledge or an informed attack. The former class indicates
a limited amount of available data information accessible by the adversary [143, 163].
The latter class assumes a higher knowledge of dataset information, such as the
rating distribution. In this case, the adversary might be able to craft more effective
profiles [143, 173]. Additionally, the knowledge of the recommender model can be
helpful to perform even stronger attacks [146]. Regarding the adversary’s goal, the
adversary might alter the recommender to push or nuke the recommendability of a
product, or a class of products, named target items. Push attacks aim to increase the
targeted item’s appeal, while nuke attacks aim to lower their recommendation frequency.
Also, the adversary’s capability can depend on the number of fake profiles added to the
system, a constraint on the number of modifications or a modification penalty, and what
kinds of modifications are admissible (e.g., insertion only or arbitrary modification). A
common approach to measuring the granularity of attack is to measure the percentage
of added profiles over the total number of regular users in the systems [163, 80].

Additionally, we have identified two main techniques to perform the poisoning of
recorded interactions: hand-engineered and machine-learned strategies. The following
two paragraphs survey and present the principal works of each field.

Hand-engineered Attacks. In the beginning, the main focus of the research
community on the security of RSs has been on hand-engineered shilling attacks against
CF models where the intuition is to add fake user profiles whose general form is defined
below.
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Table 2.2 State-of-the-Art Hand-engineered Attack Strategies and Their Profiles
Composition (push goal).

Attack Type IS IF Iϕ IT

Items Pref. Score Items Pref. Score

Random [143] ∅
∑

u∈U
|Iu|

|U | −1 rnd(N(µ,σ2)) I− IF max

Love-Hate [163] ∅
∑

u∈U
|Iu|

|U | −1 min I− IF max

Bandwagon [174] (
∑

u∈U
|Iu|

|U | )/2−1 max (
∑

u∈U
|Iu|

|U | )/2 rnd(N(µ,σ2)) I− IS− IF max

Popular [175]
∑

u∈U
|Iu|

|U | −1 min if µf < µ else min+1 ∅ I− IS max

Average [143] ∅
∑

u∈U
|Iu|

|U | −1 rnd(N(µf ,σ2
f )) I− IF max

P. Knowledge [173]
∑

u∈U
|Iu|

|U | −1 max ∅ I− IS max

where (µ, σ) are the dataset average preference score and its variance, (µf , σf ) are the filler item if rating average and
variance, and min and max are the minimum and maximum preference score value. rnd function generates one integer (i.e.,
rating) from a discrete uniform distribution.

Definition 14 (Hand-engineered Shilling Profile (SP)). Let IS denote the selected
item set, IF the filler set, Iϕ the unrated-item set, IT the target item set, and given a
Recommendation Problem, a Shilling Profile (SP) is defined as follows

SP = IS +IF +Iϕ +IT (2.17)

where IS contains items identified by the attacker to exploit the owned knowledge to
maximize the effectiveness of the attack, IF holds randomly selected items for which
rating scores are assigned to make the attack imperceptible. Iϕ includes items without
ratings in the fake user profile, and IT is the item is to push or nuke. The SP
composition varies based on attack strategies.

Note that IS and IF are chosen depending on the attack strategy, and the attack
size is the number of injected fake user profiles. Throughout the dissertation, we use
ϕ = |IF | to represent the filler size, α = |IS | the selected item set size and χ = |I∅| to
show the size of unrated items. Table 2.2 summarizes the main parameters involved in
the implementation of the most prominent shilling attacks against CF models.

In general, the literature explores two main challenges: proposing and investigating
attack strategies with their effects on the recommendation performance [143, 174, 80, 76]
and exploring defensive mechanisms [42, 54, 245, 244, 8, 50]. We refer to the recent
survey by Si and Li [202] for major details on defense strategies.

Machine-learned Attacks. Starting from 2016, machine learning approaches have
been emerged as techniques to build optimized shilling profiles [146]. In the literature,
several methods have been proposed to perform machine-learned injection attacks,
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characterized by the proposal of an optimization procedure to maximize the adversary’s
goal. Based on the observation that optimization methods are strictly related to the
recommender model under attack, we classify the poisoning optimization methods
based on targeted models: (i) factorization-based recommenders, (ii) reinforcement
learning models, and (ii) other recommendation families.

In this first category, the first work to compute near-optimal data attacks for
factorization-based recommendation models has been proposed by Li et al. [146] in
2016. The authors approximately compute gradients of the solution of an optimization
problem based on first-order Karush-Kuhn-Tucker conditions to perform both integrity
and availability attacks. Another research direction is given by the adoption of
Wilcoxon-Mann-Whitney loss [34] to approximate the hit probability of finding the
target item in the recommendation list (e.g., [94, 124, 93]). A research effort has been
recently devoted to defensive strategies against this class of adversarial models. For
instance, Hidano and Kiyomoto [120] propose a trim matrix factorization algorithm, a
robust method integrating the trim learning, an approach that exploits the statistical
difference between normal users and fake users as well as the differences between normal
and fake items to learn a model while excluding the malicious information.

The reinforcement learning methods are characterized by the adversary’s knowledge
and capability, the state space, the action space, and the reward utility function. Unlike
the previous methods, reinforcement-based attacks need only leverage the feedback
from the RS instead of knowing and accessing the whole set of parameters (Θ) to
learn the agent’s policy. One of the first works, named LOKI [239], circumvent the
time-consuming operation of retraining the victim recommender to get the feedback
and update the attack strategy. The authors build a local recommender simulator to
mimic the target model and make the reinforcement framework get reward feedback
from the simulator under the assumption that adversarial samples generated for one of
the recommenders could be used to attack the other. Another recent strategy, named
PoisonRec [205], models the sequential attack behavior trajectory as a Markov Decision
Process.

Although the factorization-based and the reinforcement learning-based data poisoning
methods have driven the research interest in the last years, even other recommendation
families deserve to be in the spotlight. For example, graph-based recommender
systems are becoming increasingly popular in the last decade Yang et al. [230], Fang
et al. [94]. While, Chen et al. [62] present the first attempt to learn an optimal set of
fake users for making worse k-Nearest Neighborhood models.
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Perturbations of Content Data in Multimedia Settings

As discussed in Chapter 1, RSs can rely on additional side-information, such as images,
audio, and track files, and a part of the contributions presented in the dissertation
relies on image data in the Chapter 4. Indeed, in scenarios such as fashion, food,
or point-of-interest recommendation, images associated with products have positively
impacted the outcomes of consumption decisions, as images attract attention, stimulate
emotion, and shape users’ first impressions about products and brands. To extend
the expressive power of RSs, visual-based recommender systems (VRSs) have recently
merged that attempt to incorporate products’ visual appearance of items [83]. Given
the representational power of deep neural networks (DNNs) in capturing images’
characteristics, state-of-the-art VRSs often integrate visual features extracted via a
DNN — pre-trained, e.g., VBPR [114] and ACF [61], or learned end-to-end, e.g.,
DVBPR [134].

Even though this research field is relatively new in the recommender systems
community, we have identified that the adversary’s goals are mainly relative to minimally
perturb the product images such that the single item (or a group of items) can increase
the frequency of recommendation in the shortest top-K recommendation lists (e.g.,
K = 10). Additionally, similar to the CV domain, the adversary’s capability is relative
to perturbations limited inside the budget perturbation ϵ (e.g., ϵ≤ 32). Interestingly,
this AML application is the only one that allows preserving both adversary’s timing
classification in training and testing time attacks.

Poisoning (Training Time). Poisoning the training dataset with adversarial
samples is a novel research topic with real-world applications in content-based or
hybrid recommendation models. Imagine the following motivational example: a
competitor is enthusiastic about increasing the recommendability of a category of
products on an e-commerce platform, e.g., sandals, for economic profit. She can achieve
this goal by just uploading adversarially perturbed product images of sandals that are
misclassified by the DNN used in the VRS as a popular class of products, e.g., running
shoes, allowing sandals to be pushed into the recommendation list of more users. This
realistic attack scenario is deeply explored in Chapter 5 for the case of VRSs, where we
present our research contributions [85, 27, 17]. However, it is still an open challenge to
verify whether adversarial samples used to poison datasets used in other domains (e.g.,
music and video) can still be effective and, if it is the case, it needs further research for
possible defenses.
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Evasion (Testing Time). Recently, evading the model with adversarially perturbed
content data, e.g., product images, has attracted attention with the proposal of novel
adversarial strategies. Cohen et al. [67] propose three attack strategies to push a target
item to higher positions. Inspired by the fast gradient sign method by Goodfellow et al.
[101], the first one is an iterative white-box strategy defined as below.

Definition 15 (White-box Sign-based Attack (WB-Sign)). Let xi be the image
associated to the item i ∈ I, let t ∈ {0,1, ...,T −1} where T ∈ N defines the number of
attack iterations, then the adversarial sample is computed as

xt+1
i = xt

i + ϵ · sign
(

∂s

∂xt
i

)
(2.18)

where sign is +1 when the gradient is positive, otherwise −1, and si is the preference
score function applied an all the users in the system.

Additionally, the authors proposed two black-box strategies, named Black-Box
Attack on Scores (BB-Score) and Black-Box Attack on Rankings (BB-Rank), proposing
an approach for numerical computation of the partial derivatives of unknown recommender
model function s·.

Additionally, Liu and Larson [154] propose three attacks with different levels of
adversary’s knowledge. Similar to Definition 15, the white-box attack assumes that the
adversary knows the model parameters and can build the perturbation by maximizing
the score produced in that product image. The middle-knowledge attack assumes that
the adversary knows the used DNN to extract the image features and which are the
most popular products in the catalog (named hook items). She uses this knowledge
to build perturbation such that the feature extracted from the target image is as
close to the one of a very most popular product. Finally, in the limited-knowledge
setting, the adversary slightly modifies the image, adding a visual component of popular
products (e.g., add a pair of popular pairs of shoes in the image of a jeans’ product).
Novel test time attack methods have been also proposed by Cohen et al. [67]. Further
formalization details will be presented in Chapter 6 that is completely focused on this
class of malicious strategies.

Perturbations of Model Parameters

The third class of adversarial methods proposed in recommendation scenarios is
related to applying adversarial perturbations on model parameters (Θ) to verify their
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stability in a worst-case adversarial context (i.e., the adversary knows the model
parameters and the learning procedure and can access them).

Since model parameters are vectors with continuous values, a part of the theory
and methodologies common to build perturbations for breaking image classifiers
(see Section 2.2) have been re-adapted in the case of model-based RSs. For instance,
using the matrix factorization (MF) model trained with BPR (known as BPR-MF)

— the state-of-the-art ranking-based criterion for item recommendation — He et al.
[115] have investigated the robustness of embedding parameters when FGSM-based
perturbations are added to user embeddings (i.e., P+ δ) and item embeddings (i.e.,
Q+ δ).

Attack Methods. He et al. [115] have studied the robustness of BPR-MF [188]
proposing adapting the FGSM approach by linearizing the recommender loss function
L around an initial zero-matrix perturbation δ0 and applying the max-norm constraint.

Definition 16 (FGSM-based Perturbation on Model Parameters Θ). The adversarial
perturbation δadv is defined as:

δadv = ϵ
Π
∥Π∥ where Π = ∂L(Θ+ δ0)

∂δ0
(2.19)

where || · || is the L2−norm.

After the calculation of δadv, He et al. [115] have added this perturbation to the
current model parameters Θadv = Θ+δadv and generated the recommendation lists with
this perturbed model parameter to demonstrate that the noise with ϵ = 0.5 would have
impaired the recommendation accuracy by an amount equal to −26.3%. Inspired by the
effectiveness of this attack, several works have performed a similar perturbation against
different recommender approaches such as collaborative auto-encoders [235, 234], visual-
based recommender [209], tensor-factorization [58], sequential recommendations [156],
and attentive song recommenders Tran et al. [211].

Another adversarial strategy inspired by the CV domain is the Carlini & Wagner
(C&W) attack [57]. Indeed, Du et al. [89] have shown how it may contaminate the
model performance in the testing phase adapt the C&W approach to a recommender
model (i.e., neural collaborative filtering [116]). The C&W optimization problem is
formulated as follows:
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Definition 17 (C&W-based Perturbation on Model Parameters Θ). Let p(·) be the
prediction function to mark an item relevant to a user

min
δadv

||δadv||

s. t. p(Θ+ δadv) > 0.5

The authors demonstrated that the attacks got a success rate close to 100% in inverting
the predicted importance (p(·)) of each user-item pairs.

Defense Strategies. The above-presented perturbation strategies against model-
based recommenders make evident their vulnerability to little noise on model parameters.
An adversary may access the model and completely misuse a recommender’s utility by
slightly perturbing their learned parameters. Furthermore, while these settings may be
complicated to be present in a real scenario, previous attacks have also demonstrated
another important aspect of model-based recommenders: the instability of the training.
Authors [115] have claimed that the weakness of these perturbations needs particular
study and attention by researchers and practitioners. The loss of a considerable part
of accuracy within such small perturbations might be generated in a real scenario with
few real (benevolent) users that, with their actions, are causing a model update that
will get a tremendous negative change in performance.

The identification of such instability have raised the need of proposing defense
strategies. Inspired by the robust optimization mechanism (see Section 2.2), He et al.
[115] proposed the first method that modifies the BPR-based loss function of an MF
model implementing RS-oriented adversarial training procedure, named adversarial
personalized ranking (APR), and defined as follows

Definition 18 (Adversarial Personalized Ranking (APR)). APR learns Θ within the
minimax optimization game

argmin
Θ

max
δadv,∥δadv∥≤ϵ

LBP R(Θ)+αLBP R(Θ+ δadv)︸ ︷︷ ︸
:=LAP R(Θ)

(2.20)

where LAP R(Θ), the APR objective function, is composed by the standard BPR loss, i.e.,
LBP R, and a regularization term, i.e., LBP R(Θ+ δadv), whose strength is controlled by
α, named adversarial regularization coefficient.

This additional regularization term, named adversarial regularizer, is the loss
obtained when an adversarial perturbation δadv is added to Θ to maximize the
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model objective. It follows that, being δadv fixed, APR minimizes both the standard
BPR loss LBP R with, and without, δadv. APR aims to learn a model that can correctly
distinguish the positive and negative items in the case of adversarial perturbations. Note
that major details of the BPR optimization framework will be presented in Chapter 8.

APR inspired a series of robustness studies on other recommendation tasks. For
instance, Tang et al. [209] applied the vulnerability study and proposed the APR defense
to a visual-based RS for fashion recommendation. Yuan et al. [235, 234] investigated
the robustification benefits of APR on a class of deep learning recommenders, the
collaborative auto-encoder. Chen and Li [58] adopted the same approach to tensor-
factorization models. Tran et al. [211] used APR for automatic playlist continuation.
Manotumruksa and Yilmaz [156] implemented APR on a self-attention sequential
recommender.

Additionally, [89] proposed by a form of defensive distillation [178] to make a
deep recommender model (i.e., NeuMF) more robust to the C&W attacks presented
in Definition 17. They distill the knowledge learned from a teacher model into a
student (architecturally smaller) model. For instance, the items and users’ latent
vectors can be distilled into two lower-dimensional latent vectors. Furthermore, the
authors have integrated the student model with a noisy layer for increasing the
robustness of parameters against the perturbations. In the end, this procedure has
been demonstrated to reduce the success rate of the C&W attacks compared to the
baseline version of the recommender.

It is essential to mention that several defense strategies, as well as hundreds of
adversarial attack strategies, have been designed and implemented in various domains
(e.g., computer vision, speech recognition, and test processing) [227], and only a few
of them have been already adapted in recommendation tasks. In Chapter 7, we will
present a novel method contribution regarding this set of AML applications in RSs.

2.3.3 Evaluation Protocol

This last section is devoted to the analysis of the methodologies to evaluate AML
application in RSs. After having identified the adversary threat model as specified
in Section 2.2.1, to evaluate the efficacy of attack techniques, it is essential to define
what is the clean setting from which we expect the adversary is trying to modify the
standard behavior towards a malicious one. Then, the evaluation of defense strategies
has to be led considering the (clean, under-attack, defended) triplet of adversarial
settings.
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Evaluation of Model Availability

In general, the evaluation protocol depends on the adversary’s goal. In settings where
adversaries try to break the model’s availability (e.g., reduce the model accuracy),
the standard evaluation approach measures the percentage change in recommendation
metrics. For instance, He et al. [115] have measured the percentage reduction
of nDCG@K) and HR@K), two popular ranking-based accuracy metrics presented
in Section 2.1.

Evaluation of Model Integrity

The second type of evaluation has a much specific focus. It considers the performance
variation when the adversary targets to push or nuke an item or a set of items. In the
case of poisoning attacks on the user-item interaction data with the adversary’s goal
to push/nuke and item or segment of items, the evaluation metric can be classified
according to the prediction accuracy and the stability. Recommendation accuracy
measures if the actual rating predicated by the recommendation model was altered
due to the attack. Recommendation stability measures if the recommendation model
recommends different products due to the attack irrespective of their actual preference
score value [173].

Definition 19 (Hit Ratio on Target Items (HR@K(IT ,UT ))). Let IT ⊆ I be the set
of target items under attack, let UT ⊆ U be the set of users under evaluation, then the
Hit Ratio on Target Items HR@K(IT ,UT ) is defined as follows

HR@K(IT ,UT ) =
∑

i∈IT
hit(i,UT )
|IT |

(2.21)

where hit(it,UT ) is the fraction of users in UT for which item i ∈ IT is ranked in the
top-K recommendation lists [7].

Definition 20 (Prediction Shift on Target Items (PS(IT ,UT ))). Let IT ⊆ I be the set
of target items under attack, let UT ⊆ U be the set of users under evaluation, then the
Prediction Shift on Target Items PS(IT ,UT ) is defined as follows

PS(IT ,UT ) =
∑

i⊂IT ,u⊂UT
(ŝui− sui)

|IT |× |UT |
(2.22)
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This metric, originally proposed for shilling attacks, can be adopted in other
adversarial settings. In Chapter 5, we will present an extension of HR@K(IT ,UT ) in
the case of perturbation on content data, and an extension for the case of nDCG@K.

This concludes the presentation of the background knowledge and related works
required to comprehend the research contributions presented in the following chapters
of the dissertation. When needed, each chapter will also include its own review of
chapter-specific related works as needed.

2.4 Table of Abbreviations and Symbols

Table 2.3 Table of abbreviations used in this dissertation.

Abbreviation. Name

ML Machine Learning
AML Adversarial Machine Learning
RS Recommender System
CF Collaborative Filtering
CBF Content-based Filtering
MRS Multimedia Recommender System
VRS Visual-based Recommender System
KG Knowledge Graph
UIFM User-Item Feedback Matrix
DNN Deep Neural Network
IFE Image Feature Extractor
GAN Generative Adversarial Network
MF Matrix Factorization
LFM Latent Factor Model
NeuMF Neural Matrix Factorization
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
C&W Carlini and Wagner
AT Adversarial Training
FAT Free Adversarial Training
BPR Bayesian Personalized Ranking
APR Adversarial Personalized Ranking
EF Explanatory Framework
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s
Table 2.4 Table of Symbols used in this dissertation.

Symbol Description

U Set of Users
I Set of Items
R Set of (u,i) Pairs
sui Preference Score of User u on Item i
ŝ(·) Predicted Preference Score Function of
top-K First K items sorted by ŝ(·)
P ∈ R|U|×h Users’ Embedding Matrix
Q ∈ R|I|×h Items’ Embedding Matrix
p ∈P User’ Embedding Vector
q ∈Q User’ Embedding Vector
bu Observed User u Bias
bi Observed Item i Bias
x Input Vector of a Neural Network
y Output Class/Label
Θ Model Parameters
SP Shilling Profile
sign(·) Sign Operator
f(·) Inference Function of a Neural Network
L(·) Loss Function
δ Adversarial Perturbation/Noise
ϵ Perturbation Budget
α Adversarial Regularization Coefficient





Chapter 3

Impact of Data Characteristics on
the Recommendation Robustness

Is there an underlying relationship between the dataset characteristics computed on the
matrix of recorded user-item interactions and the effectiveness of shilling attack

against collaborative recommender models?

Shilling attacks against collaborative filtering models consist of fake user profiles
injected into the system by an adversary with the goal to harvest recommendation
outcomes toward an evil desire. The source of CF’s vulnerability is in the learning
reliance on the user-item interaction data— like user-item ratings — to train their
models and their inherent inability to distinguish genuine profiles from non-genuine
ones. The majority of works conducted to analyze shilling attacks primarily focused
on properties such as confronted recommendation models, recommendation outputs,
and even users under attack. However, the under-researched element has been the
impact of data characteristics on the effectiveness of shilling attacks against CF-RSs.
Toward this goal, this chapter presents a systematic and in-depth study by using an
analytical modeling approach built on a regression model to test the hypothesis of
whether dataset properties can impact the robustness of CF recommenders under
attack. Extensive experiments involving 97200 simulations on three different domains
show that dataset properties affect the robustness of CF models. The results can help
the system designer understand the cause of variations in RS performance due to a
shilling attack.
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3.1 Introduction

CF plays a pivotal role in online services in increasing traffic and promoting sales. This
technique is widely adopted by various e-commerce and consumer-oriented services
to recommend a whole range of items (e.g., products, music, and movies) with many
real-world successful applications [99, 204]. As shown in Section 2.3.2, notwithstanding
their great achievement, CF models are vulnerable to shilling attacks due to their
open nature and inability to distinguish genuine user profiles from fake ones. For
instance, Jannach et al. [131], Alonso et al. [9] have shown that a surprisingly modest
number of fake profile attacks (around 3%) mounted on CF models are sufficient to
manipulate a prediction shift up to 30%, signifying the impact that such handcrafted
attack profiles can have on faulting recommendation results. As CF models assist users
in many decision-making and mission-critical tasks, such non-robust measures could
have far-reaching consequences, impacting peoples’ lives and leaving the usability of
RS questionable.

While existing works have focused on the design of attack and defense strategies,
a common characteristic of them is that the experimental evaluation orientates to
“win-lose” predicting scenarios, trying to find an answer to questions such as Which
attack models impact more the performance of specific recommendation models? “Which
amount of knowledge on a specific recommendation model is required for specific attack
A to influence recommendation algorithm B?”. Little effort has been made to provide an
explanatory study on which dataset characteristics impact the effectiveness of attacks.
For instance, it is known that RS performance can be affected based on the sparsity of
the dataset, meaning that a highly dense dataset can impact the quality of CF models
in ways that are different from a highly sparse dataset. However, whether this data
characteristic can have a similar impact on the effectiveness of the profile injection
attack remains far more under-researched.

In this chapter, we put our attention outside the subject of proposing another
attack strategy against the recommendation model. Instead, we focus on the central
question “Given popular shilling attack types and CF models already recognized by
the community, which dataset characteristics can explain an observed change in
the performance of recommendation?” This question is inspired by the work done
by Adomavicius and Zhang [5] which studies the influence of rating data characteristics
on the recommendation performance of popular collaborative RS. However, their work
differs from ours because we utilize the explanatory model to explain the variation
in the robustness of CF models (or effectiveness of attack strategies) concerning data
characteristics.
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We present a systematic and in-depth study of the impact of dataset characteristics
on the robustness of CF by utilizing a regression-based model. Through a large-scale
experiment on three domains, we evaluate how six data characteristics may influence
the robustness of CF algorithms measured in terms of stability metrics. The proposed
approach and the empirical evaluation carefully consider key contributions:

1. Modeling: we present a systematic, in-depth exploratory research and analysis
of the impact of dataset characteristics on the robustness performance of popular
CF models subjected to famous shilling attack strategies. To investigate the
relationship between data characteristics and the robustness of CF models, we
use regression-based explanatory modeling.

2. Data characteristics: unlike prior works on shilling attacks [163, 9], we validate
the correlation between data characteristics and attack effectiveness on a suite
of data characteristics extracted from the user-rating matrix (R), going beyond
well-recognized properties such as data sparsity.

Through extensive experiments, we analyze the regression model on six popular
attack strategies against three well-known CF models across three real-world datasets.
97,200 attack simulations are conducted to solve the coefficient related to different
explanatory regression problems (see Section 3.3). We rely on a statistical significance
test with informed p-value to validate the hypothesis if the demonstrated set of data
characteristics have an impact on the final model output.

3.2 Method

In this section, we describe the explanatory framework proposed to investigate the
impact of data characteristics on attacks’ effectiveness.

3.2.1 Independent Variables (IV)

This chapter focuses only on rating-based CF models as recommendation models
exposed to shilling attacks. CF uses only the R to compute recommendations. For
this reason, all the IVs representing dataset characteristics presented in this chapter
are related to R characteristics and are inspired from [5]. We categorize these features
according to (i) structure of R, (ii) rating frequency of R and, (iii) rating values of R.
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IVs based on the R structure

The IVs that describe the structure of R are SpaceSizelog, Shapelog, and Densitylog.
Computing these IVs requires knowledge about the number of real users |U|, the
number of real items |I|, and the number of recorded ratings |R|.

Definition 21 (SpaceSizelog). Given a Recommendation Problem, we define SpaceSizelog

as in the following.
x1 = log10 ( |U| · |I|)

sc
) (3.1)

The scaling factor (sc) is a parameter that can be set to limit the range of |U| · |I| into
a small range. The log10 operation normalizes the distribution of this variable.

SpaceSizelog is a variant of the original SpaceSizelog, and it is introduced in [5].
It is noteworthy that it may affect the performance of the underlying CF model and
the mounted shilling profiles. For instance, under comparable density values, higher R
SpaceSizelog might imply a bigger chance of finding similar neighbor users or items.
Therefore, as both attack and recommendation models rely on the identification of
like-minded users (neighbor users) or similarly rated items (neighbor items), we deem R
SpaceSizelog to be an impactful dataset characteristic on evaluating the performance
of shilling attacks applied on CF models. For instance, for the small dataset generated
in this chapter during the simulations, typical values were in the range of thousands
to millions with a wide variety. All of this can impact the accuracy of the regression
model’s coefficients calculated. Similar to [5], we set sc = 1000 in this work.

Definition 22 (Shapelog). Given a Recommendation Problem, we define Shapelog as
follows

x2 = log10( |U|
|I|

) (3.2)

Shapelog can impact the effectiveness of shilling profile injection attacks. For
example, in domains where the Shape(R) << 1 (i.e., |U| << |I|) there are more
candidate neighbor users than candidate neighbor items for memory-based CF models.
This situation might work to the advantage of user-based CF than item-based CF.
Moreover, under a similar number of ratings, changing the shape implies changing the
average number of ratings per item |R|/|I|. We conjecture that this circumstance may
impact the performance of CF under attacks, since the construction of the shilling
profile is mainly based on altering the popularity of targeted items. The logarithm
transformation in Shapelog is applied to normalize the |U|/|I| distribution. For example,
the minimum and maximum values of shape in the MovieLens dataset are 0.366 and
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30.039 before the log transformation, while -0.437 and 1.478 after the application of
this operation.

Definition 23 (Densitylog). Given a Recommendation Problem, we define Densitylog

as in the following.
x3 = log10( |R|

|U|× |I|
) (3.3)

Data sparsity, which relates to data density, according to density = 1− sparsity is
a well-recognized issue in the community of RS 1. Data sparsity refers to situations
where the fraction of unrated items significantly exceeds the fraction of rated ones, and
not sufficient information is available for CF models to be trained and make predictions.
Data sparsity can harm the performance of CF in different ways. For instance, it
can reduce the chance of discovering neighbors in memory-based CF because the
possibility of having co-rated items is lower in sparse R. Model-based CF can suffer
significantly from the sparsity problem to train [70]. A large amount of research focuses
on investigating and alleviating the sparsity problem in CF recommender systems by
proposing various solutions [126, 49, 117]. In [80], the authors identify a potential
impact of dataset density on the effectiveness of shilling attacks.

IVs based on the R rating frequency

Another analyzed characteristic of R is the rating frequency distribution. The idea is
that in many real applications, a few items receive numerous ratings (short heads or
popular items), while a large number receive low or few feedbacks (long tails), causing
the rating distribution to be skewed. It turns out that the commercial profit from
recommending long-tail items is more significant than short-head items [158]. However,
these long-tail items have less chance to be recommended since they have less historical
feedbacks [168]. We examine this R characteristic because in a very skewed situation
(e.g., few items with many ratings), the possibility to alter recommendations could be
very low because popular items will be recommended by themselves.

Definition 24 (Giniitem, Giniuser). Given a Recommendation Problem, let |Ri| be to
the number of ratings received by the item i, let |Ru| be to the number of ratings given
by the user u, we define Giniitem and Giniuser respectively as in the following:

x4 = 1−2
|I|∑
i=1

( |I|+1− i

|I|+1 )× ( |Ri|
|R|

) (3.4)

1We describe data sparsity since it is a more common term in the literature of RS, but everything
mentioned on the sparsity relates to density in a reverse manner.
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x5 = 1−2
|U|∑

u=1
( |U|+1−u

|U|+1 )× ( |Ru|
|R|

) (3.5)

We use the Gini coefficient that measures the concentration of items, or users’,
ratings to capture the rating frequency distribution. The equal popularity (e.g., all
users give the same number of ratings) is represented with the value of the Gini
coefficients to 0, while the total inequality (e.g., only one user has given all ratings) is
represented with the value to 1.

IVs based on rating values of the R

While the previous dataset characteristics relate to the structure of the R and the
distribution of ratings assigned to items, they disregard the actual values of the ratings
themselves. The most common statistics representing rating values are rating mean
and rating variance. Similar to [5], we disregard the overall rating means because most
CF models involve a pre-processing step that centralizes the rating around the mean
rating value, effectively removing its effect. Therefore, we study the effect of rating
variance by investigating the following measure.

Definition 25 (Stdrating). Given a Recommendation Problem, let s̄ bet the global
mean value of the scores (i.e., ratings) in the R, we define Stdrating as in the following.

x6 =

√√√√∑|R|
i=1(si− s̄)2

|R|−1 (3.6)

We investigate the possible influence of Stdrating on the robustness analysis motivated
by the connection between high rating variance and recommendation performance
claimed by Herlocker et al. [119] and the linear and negative impact on the accuracy
performance reported in [5].

3.2.2 Dependent Variables (DV)

The dependent variable (DV) measures the effectiveness of the attack on RS. To this
purpose we define the Incremental Overall Hit Ratio at K as follows

Definition 26 (Incremental Overall Hit Ratio at K (∆HR(UT, IT)@K)). Let HR@K(IT ,UT )
be the metric value before the attack, ĤR@K(IT ,UT ) the value after an attack, the
Incremental Overall Hit Ratio is defined as

∆HR@K(IT ,UT ) = ĤR@K(IT ,UT )−HR@K(IT ,UT ) (3.7)



3.2 Method 45

where higher values mean more powerful attack in push cases, worse attack in nuke
ones.

Evaluation metric for shilling attack effectiveness can be classified according
to: prediction accuracy and stability. Recommendation accuracy measures if the
actual rating predicated by the recommendation model was altered due to the attack.
Recommendation stability measures if the recommendation model recommends different
products due to the attack irrespective of their actual rating value [173]. The
Incremental Overall Hit Ratio is a stability metric introduced for the explanatory
modeling analysis.

3.2.3 Explanatory Framework (EF)

Statistical models can be used for two purposes: (i) explanatory modeling (EM) and
(ii) predictive modeling. EM seeks to test the causal hypothesis into a theoretical
construct, which means if a set of underlying effects measured by X are the cause for an
underlying effect measured by y. The goal of predictive modeling, on the other hand, is
to predict new or future observations given their input values (X) [201]. Furthermore,
(i), the model is carefully constructed to support the interpretability of the relationship
between X and y, while in (ii) the model is “constructed from data”. Prior works
on shilling attacks have been largely focused on predictive approaches to improve
the performance of attacks [105, 8, 173]. Instead, in this work, we choose a different
approach and adopt an EM approach to test the causal hypothesis between underlying
factors representing data characteristics (X) and the underlying effect represented
by attack performance (y). Grounded on [5], we use a formal method based on the
regression model as a classical interpretable EM function.

Given a dataset d, a shilling attack strategy, a CF recommendation model g (e.g.,
item-based CF, user-based, and MF), then the goal is to test the hypothesis whether
the factors related to dataset characteristics measured by X (IVs) can explain the effect
on the RS performance measured by y (DV). In our settings, the dependent variable is
represented by a metric able to measure the effects of a shilling attack. A regression
model is used to model the causal relationship in the presented framework

yi = ϵi + θ0 +
D−1∑
d=1

θdxd,i +
C∑

c=1
θcxc,i (3.8)

in which C is the number of data characteristic factors, θc is the regression coefficient
of the c-th IV and xc,i ∈R represents the value of the c-th independent variable for the



46 Impact of Data Characteristics on the Recommendation Robustness

i-th training example, and yi ∈ R is the measurement corresponding to i-th training
example (the measured dependent variable). ∑D−1

d=1 θdxd,i is a dummy term introduced
only for the between-datasets analysis (cf. Section 3.3.2), whose role is to capture
information about dataset variation, where D is the number of the datasets in the
across datasets study, xd,i is a binary (0,1) dummy variable representing whether
sample i belongs to the dataset d or not, and θd is the regression coefficient associated
with the dataset d.

In a more compact way, we have

y = ϵ+ θ0 +θdXd +θcXc (3.9)

where under mean-centered data, θ0 represents the expected value of y (the performance
metric under analysis), θd = [θ1, θ2, ..., θD−1] is the vector containing coefficients of the
dummy variable Xd related to the dataset of each training example, θc = [θ1, θ2, ..., θC ]
is the vector of the regression coefficient associated with the IVs, and Xc is the matrix
containing the independent variables values (data characteristic values computed based
on R).

We apply the regression framework to address two explanatory analyses: (i) within-
dataset and (ii) between-dataset analyses presented in the following paragraphs.

Within-dataset analysis. The within-dataset analysis addresses the task of analyzing
the impact of R characteristics for each combination of datasets, type of attacks, and
recommendation models. The regression coefficients in the linear explanatory model
are computed under the ordinary least squares (OLS) optimization model. The OLS
minimization problem is defined as follows:

(θ∗
0,θ∗

c ) = min
θ0,θc

1
2∥y− θ0−θcXc∥22 (3.10)

Section 3.3.2 analyzes the regression model results for the within-dataset analysis.

Between-dataset analysis. We extend the within-dataset analysis explanatory
model to a between-dataset analysis with the goal to examine a domain-independent
perspective about the impact of data characteristics on the model output. The
minimization problem is defined as follows:

(θ∗
0,θ∗

d,θ∗
c ) = min

θ0,θd,θc

1
2∥y− θ0−θdXd−θcXc∥22 (3.11)
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Table 3.1 The dataset statistics related to the dataset used in this work.

Dataset |U| |I| |R| density

ML-20M 138,493 26,744 20,000,263 0.0054
Yelp 25,677 25,778 705,994 0.0010
LFM-1b 120,175 521,232 25,285,767 0.0004

where the constant term θ0 represents the reference dataset (in our experimental
evaluation we consider ML-20M) and the dummy term θdXd provides a binding to
the other D−1 datasets (i.e., Yelp and LFM-1b in our experiments) [5]. Section 3.3.2
presents the regression model results for the between-dataset analysis.

3.3 Experiments

In this section, we present experimental settings and a discussion of the results.

3.3.1 Settings

Datasets

We conducted shilling attacks against CF models on three real-world datasets, ML-
20M [109], Yelp [115], and LFM-1b [195]. The datasets have properties that are
considerably different from each other — for instance, considering the domains and
structural properties of the dataset (see Table 3.1)—, effectively allowing us to analyze
and validate the experimental results under a diverse set of data characteristics.

• ML-20M [109] is a 20 million-sized version of MovieLens (ML) dataset. Each
item (movie) is rated on 0-5 Likert scales. ML is among the most commonly
adopted datasets for the offline evaluation of RS, and ML-20M is the largest
stable version among different dataset variations.

• Yelp [115] contains users’ ratings, reviews, and check-in on businesses (e.g.,
restaurants) collected from Yelp.com. We used a pre-processed version of the
dataset provided by [115] that contains only integer rating values in the range
(1,5) assigned by users to businesses.

• LFM-1b [195] is a music domain dataset containing more than one billion
listening events (e.g., playing a track of an artist) fetched from January 2013 to
August 2014 from the Last.fm online music system. LFM-1b provides implicit
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feedback, user-artist play counts, converted to explicit feedback into the range
(1, 5), following the procedure proposed in [144].

Recommender Models

We studied the impact of data properties on the effectiveness of the attacks against
the following CF recommendation models:

• MF [139] uses the matrix factorization (MF) model as the core predictor that
factorizes the user-item preference matrix to learn users’ preferences by fitting
the previously observed interactions. We set the number of hidden factors (h) to
100, the default value in [127].

• User-kNN [137] computes the unknown preference score ŝui for user u and item
i as an aggregate of the ratings of the users who have rated item i and are most
similar to user u.

ŝui = bui +
∑

v∈Uk
i (u) dist(u,v) · (svi− bvi)∑

v∈Uk
i (u) dist(u,v) (3.12)

where bui = µ + bu + bi, and µ,bu, bi respectively are the overall average rating,
the observed bias of user u and item i, and Uk

i (u) is the set of the k closest users
to u that have interacted with the same item i.

• Item-kNN [137] calculates ŝui as an aggregate of the ratings of the items, which
are most similar to item i.

ŝui = bui +
∑

j∈Ik
u(i) dist(i, j) · (suj− buj)∑

j∈Ik
u(i) dist(i, j) (3.13)

where and Ik
u(i) denotes the items rated by user u most similar to item i.

For both kNN approaches, we used the formulations that adjust user and item effects
— systematic inclinations for some users to provide higher ratings than others, and for
some items to collect ratings higher than others items — subtracting biases (i.e., bvi,
buj) from each rating [138]. We set the number of neighbors k equal to 40, and we
used the Pearson correlation as the metric to implement the dist(·) function.

Shilling Attack Strategies

We explore the six popular shilling attack strategies to study the impact of data
characteristics on the performance of each attack independently: Random attack, Love-
hate attack, Bandwagon attack, Popular attack, Average attack, Perfect-knowledge
attack. We provide the technical description of each attack in Table 2.2.
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Algorithm 1 Sample generation procedure
1: Input: R
2: Results: N sub-datasets (Rn)
3: n← 1
4: while n≤N do
5: Random shuffle the row of the R
6: numusers← rnd([100,2500])
7: numitems← rnd([100,2500])
8: Rn← Selection of numusers, numitems from R
9: if density(urmn) ∈ [0.0005,0.01] then

10: n← n+1

Procedure for the Generation of Data Samples

Based on the regression-based explanatory model formalized in Equations (3.10)
and (3.11), the goal is to solve regression model coefficients using characteristics
generated from various datasets with different structures and content values. The
scale and diversity of datasets can significantly impact the accuracy of coefficients
computed and, more importantly, on the generalizability of final findings. Toward this
aim, motivated by the approach presented in [5], we adopt a sample (i.e., dataset)
generation strategy where for a given original dataset, the goal is to generate N different
samples(i.e., smaller dataset Rn) with different characteristics. The sampling procedure
is specified in Algorithm 1.

For a given recommendation model in User-kNN, Item-kNN, and MF), an attack
strategy between the six in Table 2.2, an attack size in {1%,2.5%,5%}, and a dataset
in ML-20M, Yelp, and LFM-1b; we generate N = 600 sub-samples resulting in a total
number of 162 study cases (i.e., 54 for each attack size) obtained by performing 97,200
attack simulation experiments. We force the densities of the generated Rn to be
in a predefined range of [0.0005,0.01]) to obtain realistic density values. Table 3.2
summarizes the statistics related to each IV (data characteristics) for the 600 generated
data-samples.

Reproducibility Details

Before building the regression model, the dataset characteristics are mean-centered. We
set the length of the recommendation list to 10 (i.e., K = 10) for all experiments. We
execute experiments considering three quantities of added fake users equal to 1%,2.5%,
and 5%, of the number of the users in each data sample. However, since a larger
attack size is impactful in every condition, it is less meaningful to analyze the impact
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Table 3.2 Statistics of Independent Variables averaged across the number of dataset
sub-samples (N = 600).

Data IVs Min Max Mean σ

ML-20M

SpaceSizelog 2K 2M 594K 537K
Shapelog 0.366 30.039 2.985 2.773
Densitylog 0.010 0.070 0.019 0.007
Giniuser 0.266 0.631 0.547 0.059
Giniitem 0.528 0.831 0.737 0.052
Stdrating 0.902 1.183 1.050 0.030

Yelp

SpaceSizelog 240 3M 618K 695K
Shapelog 0.331 3.509 1.225 0.510
Densitylog 0.002 0.071 0.007 0.007
Giniuser 0.052 0.563 0.390 0.089
Giniitem 0.068 0.634 0.432 0.090
Stdrating 0.988 1.299 1.151 0.035

LFM-1b

SpaceSizelog 168 589K 98K 120K
Shapelog 0.800 9.685 2.444 1.026
Densitylog 0.004 0.085 0.016 0.014
Giniuser -0.000 0.422 0.255 0.088
Giniitem 0.121 0.819 0.590 0.124
Stdrating 0.577 1.204 0.950 0.077

K = thousand, M = milion

of data characteristics when attacks are consistently effective in all experimental cases.
Therefore, we focus our attention only on the smaller size of injected profiles (1%).
Finally, we select the number of attacked items as the 0.05% of the number of items in
each data sample. To ensure a general analysis of the framework, inspired by [9], we
randomly select the same number of target items from all items’ popularity quartiles.

Evaluation of EM

While prior research in shilling attacks on RS largely focuses on predictive modeling
tasks, in this chapter, we build an explanatory statistical model with the goal to validate
the hypothesis if there exists an underlying relationship between data characteristics
and the explanatory model output ∆HR@K(IT ,UT ). After validating this hypothesis,
our secondary goal is to compute the significance and directionality of this relationship.
Thus, the evaluation metrics presented here aim toward assessing the outcome of the
explanatory model:
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• Coefficient of determination (R2) is a common metric in statistics to measure
how well the data fit a (linear) regression model [185]. R2 represents the
proportion of variation in the DV that the IVs can explain. R2 values range from
0 to 1, 1 means that the DV is completely explained by IVs, while 0 indicates
that the model explains none of the variability in the output. For instance, an
R2 of 0.58 means that IVs explains the 58% of variations in the DV.2

• Significance of measured regression coefficients is measured through the
p-value for each regression coefficient tests the null hypothesis that the coefficient
is equal to 0 (i.e., the IV does not influence the DV). A small p-value (p < 0.05)
indicates that there is enough evidence to reject the null hypothesis (i.e., an effect),
and we can assert that the findings are “statistically significant”. To help the
reader, in Tables 3.3 and 3.4, we use the signs * (p < 0.05), ** (p < 0.01) and ***
(p < 0.001) to report which of the coefficient computed are statistically significant.
We rely only on statistically significant results in presenting a discussion about
the results and drawing the final conclusions.

• Directionality of the measured regression coefficients is the sign of
the regression coefficient indicates whether there is a positive relation between
variation on an IV and DV or a negative relationship. A system designer might
use this information to understand and anticipate potential variations in the
robustness performance against shilling attacks of the maintained RS.

3.3.2 Results and Discussion

To better understand the merits of the proposed explanatory framework, we aim to
answer the following research questions through the course of experiments:

RQ1 Is there an underlying relationship between the presented set of dataset characteristics
(IVs) computed on R and the effectiveness of shilling attack on CF models (DV)
measured in terms of ∆HR@K(IT ,UT )?

RQ2 How significant is the impact of each IV on the effectiveness of shilling attacks,
measured in terms of ∆HR@K(IT ,UT )? What is the directionality of this impact
(positive or negative)?

2In explaining the results presented in Tables 3.3 and 3.4, we rely on (adj.R2) a modified version
of R2, which unlike the latter is not affected by new features added rather if the new feature truly
contributes to the overall performance.
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RQ3 Do the demonstrated IVs present a consistent behavior when data samples are
combined from datasets of all domains (i.e., a domain-independent behavior)?

Within-Dataset Analysis (RQ1-2)

In this section, first, we answer RQ1 to identify if there is an underlying relationship
between the described set of IVs computed from R and the DV, then, we answer RQ2
to study how much the data characteristics can impact variations of ∆HR@K(IT ,UT )
in terms of the significance and directionality. Table 3.3 reports the results to lead this
study.

Analysis of Regression Results (RQ1). Given a dataset, a recommendation
model, and an attack strategy, we build an explanatory-regression model to explain the
relationship between the six IVs and the DV. Regression results for the within-dataset
analysis across different dimensions are summarized in Table 3.3. The results obtained
for the adjusted coefficient of determination (adj.R2) in Table 3.3 reveal that the six
dataset characteristics can explain more than 60% of the variation in ∆HR@K(IT ,UT )
irrespective of the attack type, CF model, and domain (dataset). For instance, by
focusing at one randomly selected attack (e.g., the Popular attack), against User-kNN,
Item-kNN, and MF models on samples extracted from ML-20M, one can note that
the six IVs can respectively explain 85.9%, 91.2%, and 77.2% of the variations in
∆HR@K(IT ,UT ). The corresponding adj.R2 values for three models on Yelp are 78.4%,
75.9%, and 86.4%, and for LFM-1b 66.5%, 65.5% and 78.1%. The adj.R2 coefficient
reaches maximum values for the MF model on samples extracted from Yelp (adj.R2

> 85%), while minimum on User-kNN for LFM-1b (66% < adj.R2 < 67%). These
results provide (strong) empirical evidence to support the hypothesis that the six
identified IVs can explain a substantial portion of the variations in the attack impact
measured by ∆HR@K(IT ,UT ) independently of <attack, dataset, model> combination.
The explanatory power is highest for MF (when comparing the global behavior of each
CF model). However, not a similar observation could be made in favor of a singular
attack strategy.

Analysis of Constant Term (RQ2). The constant term represents the expected
attack impact measured in terms of ∆HR@K(IT ,UT ) for a given <attack, CF-model,
dataset> triplet. For example, considering the random attacks on User-kNN, for
a random sample (sub-dataset) with average dataset characteristics extracted from
ML-20M, Yelp, and LFM-1b, the expected ∆HR@K(IT ,UT ) are 0.179, 0.609 and 0.717,
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Table 3.3 Table reporting the regression results for the within dataset analysis (RQ1,
RQ2). For a matter of space, we report only the values for the attack size set to 1% of
the number of profiles in each sub-sample. We use the following convention to report
the statistical significance of the coefficients, i.e., ***p≤ .001, **p≤ .01, *p≤ .05.
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respectively. The knowledge about expected performance can give the system designer
predictive knowledge about attacks’ impacts under average conditions. However, it
remains outside the main focus of this work, as we aim for explanatory performance
(rather predictive) of the system; we nevertheless report these results for the sake of
completeness.

Analysis of Impact of data characteristics (RQ2). The first observation is that
unlike the findings in [5], which show a consistent significant behavior for all the IVs
mentioned above in the explanation of the general performance of RS (not for shilling
attacks), the significance of the computed regression coefficients for the IVs tends to
vary for each IV or group of IVs. The results show that the regression coefficients
computed for the structural R characteristics (i.e., SpaceSizelog, Shapelog, Densitylog)
are statistically significant. This suggests that there is enough statistical evidence to
support the hypothesis that structural R characteristics can explain the variations in
the DV (p < {0.05,0.01,0.001}), which is equal to state that there is an underlying
relationship between these three IVs and the DV. However, results for the other IVs
vary depending on <attack, CF-model, dataset> triplet, or insignificant as in the case
of Stdrating. For instance, the coefficients for Gini indices (i.e., Giniuser and Giniitem)
are most significant for shilling attacks against MF, particularly for samples drawn
from the Yelp and LFM-1b datasets. The coefficients for Stdrating are insignificant
(p-value > 0.05) in all experimented cases, except for two cases <Random/Average
attack, MF, Yelp>, implying that this dataset characteristic, which deals directly with
rating values of the R, plays an insignificant role on the impact of shilling attacks
against CF models.

In summary, the results of the within-dataset analysis provide strong statistical
evidence that structural R characteristics (i.e., Shapelog, SpaceSizelog, Densitylog)
play a pivotal role in the impact of attacks targeted on CF models for all cases in the
<attack, CF, dataset> triplet; rating frequency features play a significant role mostly
for attacks targeted on model-based MF recommendation. Finally, the role of Stdrating

features that deal directly with rating values cannot be confirmed, since they have shown
no evidence of having a significant impact.

Given the statistical significance of the regression coefficients for many IVs, the next
step is to explore the directionality of this impact. Results summarized in Table 3.3
show that the effect of Densitylog is negative on ∆HR@K(IT ,UT ) across majority of
the cases in <attacks, CF-model, dataset> triplet (except the ones on <MF, Yelp>.
This result is interesting and is consistent with findings in RS literature that increasing
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the density (or decreasing sparsity) of the R not only improves the general performance
of CF models (as recognized in the prior research [69, 5]), but also reduces the
likelihood of attacks’ effectiveness. One plausible explanation can be as follows: if we
fix 3 the number of users and items and increase the number of genuine ratings (e.g.,
asking to rate more), the accuracy of similarities computed is improved due to using
more genuine ratings. As these similarities are generally vulnerable to the insertion of
fake profiles, adding more genuine feedbacks can help to decrease the impact of attacks.

Additionally, we can note that SpaceSizelog has a negative impact on ∆HR@K(IT ,UT )
in neighborhood models, which means that increasing the space size of R makes
neighborhood models less vulnerable against attacks. Furthermore, higher SpaceSizelog

(under fixed sparsity) means more users, items, and ratings. This provides neighborhood
models with more non-malicious candidate users (and items) to compute similarities,
and can reduce the effect of attacks. Finally, and on the contrary, Shapelog presents a
consistently positive influence on the efficacy of the attacks. This is a novel insight. We
can explain it by considering the following example: increasing Shapelog leads to an
increased number of users with respect to items (i.e., decreasing items). In this way, it
could be easier to push the target item to higher positions inside the recommendation
list (i.e., fewer items contribute to the recommendation).

Between-Dataset Analysis (RQ3)

The goal of the within-dataset analysis presented in the previous section was to
investigate the impact of data characteristics on shilling attacks for each <attack,
CF-model, dataset> triplet. In this section, we aim to provide a domain-independent
analysis of the same study (impact of data characteristics on attacks’ effectiveness)
by combing rating scores of all three datasets. The regression model and the OLS
follow Eq. 3.9 and 3.11, and we replicate the exact procedure described in [5]. Note
that the DV here contains rating samples from all three datasets. Results of the
between-dataset analysis are summarized in Table 3.4. Here, the adj.R2 values are
consistent with those in within-dataset analysis in most experimental cases. For
instance, adj.R2 tells us that the selected IVs explain more than 80% of the variation in
∆HR@K(IT ,UT ) independently form <attack, CF-model> pair. Furthermore, results
still support that structural R properties have a statistically significant impact on
each CF model. The p-values of SpaceSizelog, Shapelog, and Densitylog regression
coefficients are less than 0.001 in each pair of experiments. Moreover, the directionality
analysis of structural IVs in Table 3.4 is consistent with the insights drawn from previous

3Note that in providing these examples, we fix other IVs and focus on the impact of an IV.
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Table 3.4 Table reporting the regression results for the between dataset analysis (RQ3).
For a matter of space, we report only the values for the attack size set to 1% of the
number of profiles in each sub-sample. We use the following convention to report the
statistical significance of the coefficients, i.e., ***p≤ .001, **p≤ .01, *p≤ .05.

∆HR@10 User-kNN Item-kNN SVD

Random

R2(adj.R2) 0.832(0.831) 0.814(0.813) 0.843(0.843)
ML-20M (Constant) .179*** .262*** .482***
Yelp .429*** .347*** .041***
LFM-1b .537*** .452*** .204***
SpaceSizelog -0.197*** -0.096*** .047***
Shapelog .153*** .108*** .204***
Densitylog -0.729*** -0.550*** -0.253***
Giniuser .552*** -0.008 .101
Giniitem .728*** .439*** -0.032
Stdrating -0.057 .058 -0.029

Love-Hate

R2(adj.R2) 0.817(0.816) 0.774(0.773) 0.833(0.832)
ML-20M (Constant) .267*** .419*** .655***
Yelp .390*** .243*** -0.077***
LFM-1b .449*** .295*** .031***
SpaceSizelog -0.142*** .040*** .113***
Shapelog .174*** .090*** .083***
Densitylog -0.620*** -0.289*** -0.137***
Giniuser .679*** -0.218 -0.285**
Giniitem .429*** .021 .122
Stdrating -0.073 .055 -0.032

Bandwagon

R2(adj.R2) 0.831(0.831) 0.818(0.817) 0.848(0.848)
ML-20M (Constant) .179*** .244*** .435***
Yelp .427*** .364*** .087***
LFM-1b .537*** .470*** .253***
SpaceSizelog -0.199*** -0.118*** .008
Shapelog .161*** .115*** .235***
Densitylog -0.730*** -0.591*** -0.331***
Giniuser .589*** .082 .267*
Giniitem .720*** .497*** -0.019
Stdrating -0.059 .058 -0.018

Popular

R2(adj.R2) 0.744(0.742) 0.741(0.740) 0.800(0.799)
ML-20M (Constant) .589*** .537*** .725***
Yelp .222*** .252*** .051***
LFM-1b .133*** .166*** -0.032***
SpaceSizelog -0.059*** .051*** .040**
Shapelog .191*** .169*** .111***
Densitylog -0.445*** -0.252*** -0.283***
Giniuser .544*** -0.050 -0.140
Giniitem .229* -0.258* .288**
Stdrating -0.124 -0.011 -0.017

Average

R2(adj.R2) 0.828(0.827) 0.810(0.809) 0.844(0.843)
ML-20M (Constant) .187*** .275*** .502***
Yelp .421*** .332*** .020***
LFM-1b .529*** .438*** .186***
SpaceSizelog -0.193*** -0.082*** .065***
Shapelog .152*** .107*** .192***
Densitylog -0.718*** -0.522*** -0.219***
Giniuser .559*** -0.039 .011
Giniitem .717*** .407*** -0.062
Stdrating -0.054 .059 -0.013

Perfect
Knowledge

R2(adj.R2) 0.812(0.811) 0.813(0.812) 0.847(0.846)
ML-20M (Constant) .266*** .274*** .479***
Yelp .341*** .328*** .039***
LFM-1b .449*** .434*** .207***
SpaceSizelog -0.141*** -0.088*** .049***
Shapelog .167*** .109*** .206***
Densitylog -0.613*** -0.540*** -0.250***
Giniuser .479*** -0.035 .087
Giniitem .546*** .387*** -0.048
Stdrating -0.061 .048 -0.031
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study. In summary, for all CF models, Shapelog has a positive impact, Densitylog

has a negative influence, while the impact of SpaceSizelog is (for most cases) negative
on neighborhood recommenders and positive on model-based models. Additionally,
these results show that rating frequency values of IVs have not shared a statistically
significant impact on the DV.

In summary, the results of the between-dataset analysis support those presented in the
within-dataset analysis. Given the heterogeneity of domains and variety of attack and
CF models tested, this can be interpreted by the fact that effects of data characteristics
studied in this chapter are NOT domain-specific and the insights/conclusions
obtained from this study can be applied to a broad range of domains for most popular
attack and CF models.

3.4 Related Work

Hand-engineered poisoning of against recommendation models can be categorized
based on various dimensions: the intent behind the attack (push or nuke) [163, 143],
and the attacker’s knowledge, i.e., informed [162, 105] and semantic-enhanced [21, 16]
attacks. Numerous research articles has been produced in the context of shilling attacks,
which can be broadly categorized into three research directions: (i) attack types [143,
161, 105], (ii) detection strategies [63, 163, 8] and (iii) robustness evaluation [173]. A
common characteristic of the prior literature is that they mostly focus on algorithmic
and procedural exploration and analysis of attack and defense strategies. The user-
rating matrix (R) (and properties extracted from it) is the key information source
of CF and attack models. A substantial amount of works explored the effects of
different data characteristics measured from R on recommendation accuracy. For
instance, the sparsity of the dataset has been widely studied since it largely influences
recommendation accuracy [69, 5], and so the skewness of data (i.e., the distribution of
feedback across items) has been demonstrated to influence the problem of predicting
customer behavior and suggesting matching products [32, 123]. However, we have
conducted this research believing that there exists a lack of systematic and large-scale
analysis of the impact of dataset characteristics (e.g., sparsity, size, rating skewness)
on the robustness of collaborative models against shilling attacks. The goal of this
chapter has been to fill this gap by investigating the effects of R data characteristics
on an attack performance metric with explanatory-based regression models.
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3.5 Summary

In this chapter, we have proposed a model to study the impact of data characteristics
on the effectiveness of the most famous shilling attacks against popular CF methods.
We have considered a suite of data characteristics, which can be classified according
to (i) the structure of the R, (ii) the rating frequency distribution, and (iii) the
rating values. We have used a regression-based explanatory model and have relied
on statistical significance with informed p-value in order to verify the impact of data
characteristics. Results of extensive experiments have provided sufficient statistical
evidence to accept the hypothesis that, first, the identified data characteristics can
account for a considerable portion of variations in attack performance (global perspective)
and, second, that there remain considerable differences in the significance (and
directionality) of this impact among features. For instance, while R structural
properties (size, shape, density) consistently indicate having an impact on the model
output, the rating property (standard deviation of ratings) does not show an effect.
On the other hand, distribution properties (Gini user and item) show a higher impact
on memory-based models. As the proposed explanatory framework can support a
system designer in evaluating the robustness performance by looking at the dataset
characteristics, we plan to extend the studied characteristics (e.g., user-item relations),
CF models (e.g., deep learning approaches), adversarial machine-learned attacks.



Chapter 4

Semantics-Aware Shilling Attacks

Can public available semantic information be exploited to develop more effective
shilling attacks against CF models, where the effectiveness is measured in terms of a

raise of the recommendability of the target items in the recommendation lists?

Several fields have benefited from the adoption of knowledge graphs (KGs). In
RSs, they have resulted in accurate, personalized recommendations of items in CF
models. While the research community has extensively studied KGs to solve various
recommendation problems, sufficient attention was not paid to the possibility of
exploiting them to compromise the quality of recommendations. KGs provide a rich
source of information for item representation and recommendation that can dramatically
increase the attackers’ knowledge about the victim recommendation platform. To this
end, this chapter introduces a new attack strategy, named semantics-aware shilling
attack (SAShA), that leverages semantic features extracted from a KG. SAShA provides
the semantics-aware variant of three state-of-the-art attack strategies: Random, Average,
and Bandwagon. These improved attacks can exploit graph relatedness measures,
i.e., Katz and Exclusivity-based, computed considering 1-hop and 2-hops of graph
exploration. We perform an extensive experimental evaluation with four state-of-the-art
recommendation systems and two well-known recommendation datasets to investigate
the effectiveness of SAShA. Since the semantics of relations has a crucial role in KGs,
we also analyze the impact of relations’ semantics by grouping them in various classes.
Our results indicate the benefit of embracing KGs in favor of the attackers’ capability
in attacking recommendation systems.
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4.1 Introduction

The advent of Knowledge Graphs (KGs) has definitely changed the way structured
information is stored. Developed to make the Semantic Web a concrete idea, it has
become much more than that. The core idea of building a semantic network in which
information is represented as directed labeled graphs (RDF graphs) is disarmingly
simple. Nevertheless, thanks to the possibilities it paves, it has been welcomed with
several promises and expectancies. Complete interoperability, the ability to link
knowledge across domains, and the possibility of exploiting Logical inference and proofs
are just a few of them. In numerous domains, the exploitation of the Knowledge
Graph information has become the norm. Thanks to the appearance of wide-ranging
Linked Datasets like DBpedia and Wikidata, we have witnessed the flourishing of novel
techniques in several research fields, like Machine Learning, Information Retrieval, and
Recommender Systems.

Interestingly, despite the astonishing spread of KGs, little attention has been paid
to knowledge-aware strategies to mine RS’s security. In a Web always composed
of unstructured information, KGs are the pillars of the Semantic Web. They have
become increasingly important to represent data employing a flexible and interoperable
semantic graph data structure. Several well-known tools have been built on KGs, like
IBM Watson [41], public decision-making systems [196], and advanced machine learning
techniques [66, 22]. Additionally, the Linked Open Data (LOD) initiative1 has given
birth to a broad ecosystem of linked data datasets known as LOD-cloud2. These KGs
provide comprehensive information on numerous knowledge domains. Consequently, if
a malicious agent decides to attack one of these domains, items’ semantic descriptions
would be inestimable.

In the chapter, we investigate the possibility of improving an attack’s efficacy by
leveraging semantic knowledge. One significant contribution of the chapter is exploiting
publicly available information obtained from KG to generate more influential fake
profiles to threaten CF models’ performance. The resulting attack strategy is named
semantics-aware shilling attack SAShA. Beyond the definition of SAShA strategy, our
contribution is to extend state-of-the-art shilling attack approaches such as Random,
Bandwagon, and Average profiting from semantic knowledge shown in Table 4.1.
Remarkably, the attacks’ semantics-enhanced variants only rely on publicly available
information without supposing any additional knowledge about the system.

1https://data.europa.eu/euodp/en/linked-data
2https://lod-cloud.net/
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The core idea is to reformulate the attacks with the rationale of considering the
semantic similarity between the target item with the other items in the catalog. The
intuition of the approach is that semantic similarity (or, more broadly, semantic
relatedness) can safely suffice the lack of the system’s knowledge to craft natural and
coherent fake profiles. These profiles are indistinguishable from the real ones, and they
effortlessly enter the neighborhood of users and items.

We investigate SAShA using the famous (but semantics-unaware) cosine similarity,
the Katz centrality, and Exclusivity-based relatedness between the semantic description
of items. Then, we explore KGs until the second hop, providing a much more in-depth
investigation of semantic descriptions’ role for this task. Finally, to provide a more fine-
grained analysis, we have grouped the semantic relations into three classes: ontological,
categorical, and factual relations.

In detail, this chapter proposes novel methods for the integration of semantics in
the shilling attacks addressing the following research directions:

• three novel graph topological and semantic approaches to build the set of products
from which the adversary can craft the fake profiles;

• an extensive study of the efficacy of the attack considering a two-hops graph
exploration, and involving a state-of-the-art deep neural recommendation model;

• novel semantic shilling attack strategies based on Random, Average, and Bandwagon
standard strategies;

• a deeper discussion of the experimental results involving several dimensions:
number of explored hops, type of considered relation, recommendation model,
amount of injected fake profiles, and dataset;

• the publication of the full experimental framework and the pre-processed datasets
that can be used, out-of-the-box, for further investigations.

Experiments described in this chapter evaluate the impact of proposed attacks
against the recommendation models. To this end, we have exploited two real-world
recommender systems datasets (LibraryThing and Yahoo!Movies). Experimental
results sharply indicate that KG information is a valuable source of knowledge
that improves attacks’ effectiveness. Moreover, the adoption of semantic relatedness
measures can unleash the full potential of the semantics-aware attacks.

The remainder of the chapter proceeds as follows. Section 4.2 describes the proposed
approach (SAShA), introduces the semantic relatedness measures, and formalizes the
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semantic attack strategies. Section 4.3 focuses on the experimental validation of the
proposed attack scenarios. We also provide an in-depth discussion of the experimental
results, analyzing the several dimensions of the study. Then, in Section 4.4, we provide
an overview of the state-of-the-art of application of KGs in RS. Finally, in Section 4.5,
we draw some conclusions and introduce the open challenges.

4.2 Method

This section introduces the reader to the notations and formalism that may help
understand the design of shilling attacks against targeted items integrating information
obtained from a knowledge graph (KG). First, we focus on categorizing the predicates in
a KG and formalizing the semantic features’ extraction considering a single- and double-
hop exploration of the KG (Section 4.2.1). Then, the adopted relatedness measures are
summarized (Section 4.2.2). Finally, semantics-aware extensions to various widespread
shilling attacks, namely: Random, Average, and Bandwagon attacks in Section 4.2.3.

4.2.1 Knowledge Graph Content Extraction

A KG is a structured repository of knowledge, designed in the form of a graph, that
encodes various kinds of information:

• Factual. General statements as Rika Dialing was born in Crete or Heraklion
is Crete’s capital that describe an entity by using a controlled vocabulary of
predicates that connect the entity to other entities (or literal values);

• Categorical. These statements connect the entity to a particular category (i.e.,
the categories associated with a Wikipedia page). Often, categories are in turn
organized as a hierarchy;

• Ontological. These are formal statements that describe the entity’s nature and
its ontological membership to a specific class. Classes are often organized in a
hierarchical structure. In contrast to categories, sub-classes and super-classes are
connected through IS-A relations.

In a knowledge graph, we can express statements through triplets σ
ρ−→ ω, with a subject

(σ), a predicate (or relation) (ρ), and an object (ω). There are several ways to transform
the knowledge coming from a knowledge graph into a feature. We have chosen to
represent each distinct path as an explicit feature [24]. In the next section, it will be
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clear why it is convenient. Given a set of items I = {I1,I2, . . . ,IN} in a collection and
the corresponding triples ⟨i,ρ,ω⟩ in a knowledge graph, the set of 1-hop features is
defined as 1-HOP -F = {⟨ρ,ω⟩ | ⟨i,ρ,ω⟩ ∈ KG with i ∈ I}.

In an analogous way, we can identify 2nd-hop features. By continuing the exploration
of KG we retrieve the triples ω

ρ′
−→ ω′, where ω is the object of a 1st-hop triple

and the subject of the next triple. The double-hop predicate is denoted by ρ′ and
the object is referred to as (ω′). Therefore, the overall feature set is defined as
2-HOP -F = {⟨ρ,ω,ρ′,ω′⟩ | ⟨i,ρ,ω,ρ′,ω′⟩ ∈KG with i∈ I}. Given the current definition,
2nd-hop features also contain heterogeneous predicates (see the previous classification
of different kinds of statements). To make it possible to analyze the impact of the
kind of semantic information, we consider a 2nd-hop feature as Factual if and only if
both relations (ρ, and ρ′) are Factual. The same holds for the other types of encoded
information.

4.2.2 Entity Similarity/Relatedness in KGs

The keystone of the KG representation is the semantics enclosed in the resource
description and the predicates that connect the different resources. Nevertheless, if
the metric to compute similarities between the resources is not carefully chosen, this
piece of information is lost irretrievably. Motivated by this awareness, we decided to
consider a broad spectrum of diverse similarity/relatedness metrics: Cosine Vector
Similarity [86], Katz’s centrality [135], and Exclusivity-based [128] semantic
relatedness. The three metrics cover three different aspects of the similarity between
the resources: a signal of the overlap of the descriptions, the average length of the
paths that connect the resources, and a semantics-aware signal that highlights the
relations between the resources.

Cosine Vector Similarity

is a well-known similarity that is very popular in recommendation systems. The idea
is to measure how similar the two different representations are. Suppose a numerical
vector can represent the resource description, with the number of the predicate-object
chains observed in KG being the vector’s cardinality. Mathematically, it measures the
cosine of the angle between two vectors that represent two different resources. The
smaller the angle, the higher is the cosine, and thus the similarity. Suppose i and j are
two items in the KG, and F (·) is a function that returns the features associated with
an entity in the KG. Hence, in(i,f) is a function that returns 1 if entity i is associated
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with feature f , else 0. The Cosine Vector Similarity has been already formulated for
KG as follows [86]:

Katz’s centrality

[135] is a famous graph-centrality measure that inspired several semantics-aware
metrics [171, 128]. Katz suggests that the probability of the path between two nodes
can indicate the effectiveness of the link. Given a constant probability for a single-hop
path, called α, the whole path’s overall probability is αy, where y is the number of
the nodes involved. Hulpus [128] exploits the rationale to build a relatedness measure.
Therefore, he defined the Katz relatedness between two items i and j as the accumulated
score over the top-t-shortest paths between them.

rel
(t)
Katz(i, j) =

∑
p∈SP

(t)
ij

αlength(p)

t
(4.1)

where SP
(t)
ij is the set of the top-t-shortest paths between items i and j.

sim(i, j) =
∑

f∈F (i)∪F (j) in(i,f)·in(j,f)√∑
f∈F (i) in(i,f)2·

√∑
f∈F (j) in(j,f)2

(4.2)

Exclusivity-based semantic relatedness

[128] is a semantic relatedness measure that takes into account the type of relations
that connect two nodes. The idea is that two concepts are strongly connected if the
type of relations between them is different from the type of relations they have with
other concepts. This property of relations, named Exclusivity, is defined as follows.

Suppose a predicate ρ of type τ between two items i and j, directed from i to j.
The Exclusivity of predicate ρ is the probability to select, with a uniform random
distribution, a predicate ρ′ of type τ among the predicates of type τ that exit resource
i and enter node j, such that predicate ρ′ is exactly the predicate ρ:

exclusivity(i τ−→ j) = 1
|i τ−→ ∗|+ |∗ τ−→ j|−1

(4.3)

where |i τ−→ ∗| denotes the cardinality of relations of type τ ∈ T that exit resource i,
and |∗ τ−→ j| denotes the number of relations of type τ ∈ T that enter resource j. Since
the relation i

τ−→ j is in |i τ−→ ∗| and in |∗ τ−→ j|, 1 is subtracted from the denominator.
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Table 4.1 Overview of SAShA shilling attack strategies and their profile composition for
adversaries’ goal of pushing a target item (IT ).

Selected Items (IS) Filler Items (IF ) Iϕ ITAttack Type Number Items Rating Selection Number Items Rating
SAShA Random ∅ Semantics-aware

∑
u∈U |Iu|

|U| −1 rnd(N(µ,σ2)) I −IF max

SAShA Love-Hate ∅ Semantics-aware
∑

u∈U |Iu|
|U| −1 min I −IF max

SAShA Average ∅ Semantics-aware
∑

u∈U |Iu|
|U| −1 rnd(N(µf ,σ2

f )) I −IF max

SAShA Bandwagon (
∑

u∈U |Iu|
|U| )/2−1 max Semantics-aware (

∑
u∈U |Iu|

|U| )/2 rnd(N(µ,σ2)) I −IS−IF max

where (µ, σ) are the dataset average rating and rating variance, (µf , σf ) are the filler item IF rating average and variance, and
min and max are the minimum and maximum rating value. rnd function generates one integer (i.e., rating) from a discrete
uniform distribution.

The exclusivity score for a predicate falls inside the (0,1] interval. The value 1 denotes
the extreme case in which the predicate is the only relation of its type for both i and j.

Given a path through KG, P = n1
τ−→ n2

τ2−→, . . . ,nk with τi ∈ T ∓, the weight of the
path is defined as:

weight(P) = 1∑
i

1
exclusivity(ni

τi−→ni+1)

(4.4)

Finally, the relatedness between two resources can be computed as the sum of the path
weights of the top-t paths between the resources with the highest weights. To penalize
longer paths, a constant length decay factor, α ∈ (0,1], can be introduced. The overall
exclusivity-based relatedness measure is therefore defined as follows:

rel
(t)
Excl(i, j) =

∑
Pn∈P t

ij

αlenght(Pn)weight(Pn) (4.5)

4.2.3 SAShA Strategies

Previous works on shilling attacks against RS models have predominately focused on
CF models, and the way the user interaction data (ratings) can be exploited to craft
more effective shilling profiles (see Table 2.2). In our view, a rich source of knowledge,
namely KGs, has been neglected in the design of such attacks. To fill this gap, in
this chapter, we strengthen state-of-the-art attack strategies by exploiting semantic
similarities between items. The main idea behind our proposed semantics-aware shilling
attack (SAShA) strategies is that we can compute the similarity/relatedness between
the target IT with other items in the catalog by exploiting the features extracted from
a KG. This semantic information is used to construct the filler set IF , by semantically
selecting the items. The key insight in the proposed approach is that the exploitation of
semantic similarities/relatedness leads to the generation of more natural and coherent
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fake profiles, given that the representative description of items is encoded in computing
pairwise item similarities. Table 4.1 present the semantic extension of the classical
hand-engineered shilling attacks presented in Chapter 2. Further details are presented
below.

• Semantics-aware Random Attack is an extension of the baseline Random
Attack [143]. The baseline version is naive attack, which uses randomly chosen
items (α = 0,ϕ = profile-size) to create a fake user profile. The ratings attributed
to Iϕ are sampled from a uniform distribution (see Table 4.1). We modify
this attack by selecting the items to complete IF with the proposal semantics-
aware technique. For this purpose, we compute semantic similarities/relatedness
between the items in the catalog e the target item using KG-based features (cf.
Section 4.2.1). Afterward, we identify the most similar items (IT ) by considering
the first quartile of most similar items, and we extract ϕ items from this set by
adopting a uniform distribution.

• Semantics-aware Average Attack is an informed attack strategy that extends
the AverageBots attack [163]. The baseline attack leverages the mean and variance
of the ratings, which is then used to sample each filer item’s rating from a normal
distribution built using these values. Similar to the previous semantics-aware
attack extension, we extract the filler items by exploiting semantic similarities
derived from a KG. Finally, as before, we consider the items in the first quartile
of the most semantically similar/related to IT as the candidate filler items (IF ).

• Semantics-aware Bandwagon Attack is a low-knowledge attack that extends
the standard Bandwagon attack [174]. We leave unchanged the injection of the
selected items (IS), which are the most popular ones and on which we associate
the maximum possible rating (see Table 4.1). However, similarly to the previous
two semantic attack extensions, we complete IF by taking into account the
semantic similarity/relatedness between the target item IT and the rest of the
catalog.

• Semantics-aware Love-Hate Attack is a low-knowledge attack that extends
the standard Love-Hate attack [163]. This attack randomly extracts filler items
IF from the catalog. All these items are associated with the minimum possible
rating value. The Love-Hate attack aims to reduce the average rating of all the
platform items but the target item. Indeed, even though the target item is not
present in the fake profiles, its relative rank increases. We have re-interpreted
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Table 4.2 Datasets statistics.

Dataset #Users #Items #Ratings Sparsity #F-1Hop #F-2Hops
LibraryThing 4,816 2,256 76,421 99.30% 56,019 4,259,728
Yahoo!Movies 4,000 2,526 64,079 99.37% 105,733 6,697,986

the rationale behind the Love-Hate attack by taking into account the semantic
description of the target item and its similarity with other items within the catalog.
In this case, we extract items to fill IF from the 2nd, 3rd, and 4th quartiles.
As in the original variant, the rationale is to select the most dissimilar items.
Note that in this chapter, we do not investigate the semantics-aware extension
of the Love-Hate attacks since the integration of the semantic information has
been demonstrated to not improve the adversary efficacy as discussed in related
studies [16, 21].

4.3 Experiments

Here, we present experimental settings and the discussion of the empirical results.

4.3.1 Settings

In this section, we describe the the experimental evaluation and provide details necessary
to reproduce the experiments. First, we introduce the two real-world datasets used in
recommendation scenarios (Section 4.3.1), as well the process carried out to extract,
select and filter the semantic information obtained from the KG (Section 4.3.1 to 4.3.1).
Afterward, we present the four collaborative filtering (CF) recommendation models
tested against the proposed attacks (Section 4.3.1). Finally, we detail the evaluation
metrics and the experimental setting used for the experimental evaluation (Section 4.3.1
and 4.3.1).

Dataset

We test the proposed shilling attack approach on two recommendation datasets:
LibraryThing and Yahoo!Movies.

• LibraryThing [87] is a popular dataset whose interactions originate from the
LibraryThing website 3, a social cataloging web application. The dataset contains

3https://www.librarything.com/

https://www.librarything.com/
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user-item rating scores ranging from a minimum of 1 to a maximum of 10. As
presented by Anelli et al. [16], we use a reduced version by randomly extracting
the 25% of products in the catalog. Furthermore, we apply a 5-core filtering by
removing all the users with less than five interactions to focus the study on active
users. These users are of adversaries’ interest since they could more likely buy
the pushed products.

• Yahoo!Movies is a recommendation dataset released by research.yahoo.com
with ratings collected up to November 2003. The dataset also provides mappings
to the MovieLens and EachMovie catalogs. The recorded interactions consist of
ratings ranging from 1 to 5.

Another motivation for choosing these datasets is the existence of a mapping between
the products in the catalogs and DBpedia knowledge-base entities. In particular, we use
a mapping publicly available 4. Table 4.2 reports the statistics of both datasets’ user-
item interaction data, together with the total number of semantic features extracted
from both the first and the second hop of the knowledge graph associated with each
item. In the following, we describe steps taken for pre-processing and data sanity of
the features extracted from a KG.

Feature Extraction. Once the items are semantically reconciled with DBpedia
entities, we remove the noisy features whose triples contain one of the following
predicates:

• owl:sameAs

• dbo:thumbnail

• foaf:depiction

• prov:wasDerivedFrom

• foaf:isPrimaryTopicOf

The feature’s denoising procedure follows the methodology proposed by Anelli et al.
[24].

4https://github.com/sisinflab/LinkedDatasets

https://github.com/sisinflab/LinkedDatasets
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Table 4.3 Selected features in the different settings, either for single and double hops.
Single hop features Double hop features

Categorical Ontological Factual Categorical Ontological Factual

Dataset Total Selected Total Selected Total Selected Total Selected Total Selected Total Selected
LibraryThing 3,890 373 2,090 311 50,039 1,972 9,641 857 3,723 527 4,246,365 252,848
Yahoo!Movies 5,555 1,192 3,036 722 97,142 7,690 8,960 1,956 3,105 431 6,685,921 517,211

Feature Selection. To perform the analysis of the class (or type) of semantic
features, we implement our proposed semantics-aware attacks by considering three
different types of features, i.e., categorical (CS), ontological (OS), and factual (FS), a
feature taxonomy commonly adopted in the Semantic Web community [24]. For the
semantics-aware attack strategies exploiting single-hop (1H) features, we apply the
following policies:

• Categorical-1H, we use the features with the property dcterms:subject;

• Ontological-1H, we select the features containing the property rdf:type;

• Factual-1H, we consider all the features except ontological and categorical
features.

In the attacks employing double-hop (2H) features, the strategies evolve as described
below:

• Categorical-2H, we pick up the features with either dcterms:subject or
skos:broader properties;

• Ontological-2H, we select the features containing either rdf-schema:subClassOf
or owl:equivalentClass properties;

• Factual-2H, we use the features not selected in the previous two classes.

Note that we did not place any domain-specific categorical/ontological feature in the
respective lists. To provide a domain-agnostic evaluation, we have treated them as
factual features.

Feature Filtering. In this chapter, we aim to study the attack performance
differences up to the first and second hop. Addressing this goal, we obtain millions of
features for both LibraryThing and Yahoo!Movies as reported in the last two columns
of Table 4.2. Measuring semantic similarities across the item catalog would quickly
become unfeasible. However, some features only occur once and provide no useful
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informative or collaborative information. Therefore, we decided to drop off irrelevant
features following the filtering technique proposed in Di Noia et al. [87], Paulheim
and Fürnkranz [180]. In detail, we removed all the features with more than 99.74% of
missing values and distinct values. Table 4.3 shows the remaining features’ statistics
after applying all the extraction, selection, and filtering process.

Recommender Models

In this chapter, we test our attack proposal against four baseline collaborative recommendation
systems: User-kNN, Item-kNN, Matrix Factorization, and Neural Matrix Factorization.
The first two approaches belong to memory-based CF, while the next two are model-
based CF, thus providing us an overall picture of different recommendation models’
performance when confronted with shilling attacks.

• User-kNN is presented in Section 3.3.1. We use the Pearson Correlation as
the distance metric dist(·) as suggested by Candillier et al. [52]. The size of the
neighborhood, k, is set to 40.

• Item-kNN is presented in Section 3.3.1. Similar to User-kNN, we use the
Pearson Correlation to implement the distance function dist(·) and set k the
dimension of the considered neighborhood 40.

The third and fourth recommendation systems are representative of model-
based collaborative recommenders. In particular, matrix factorization is the baseline
recommender representing the class of linear latent factor models, while neural matrix
factorization represents the class of non-linear models.

• Matrix Factorization (MF) is defined in Section 2.1.1. Following the learning
settings defined in [127], we set the size of latent vectors h to 100.

• Neural Matrix Factorization (NeuMF) [116] is one of the most representative
recommendation model that exploits deep neural networks to estimate unknown
user-item preference scores [242]. NeuMF makes use of both the linearity of
MF and the non-linearity of neural layers to improve the learning capability
of the model. Unlike MF, the estimated score for a user− item pair of the
neural network, ŝui, is the output of a deep neural network whose input is the
combination of the MF layer and the neural network layer. The latter concatenates
the user (pu )and the item (qi) embeddings. Let Φ(·) be the transformation
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function of the deep neural network defined as Φ(x) := Rdim(x))→Rout_dim, then
the score is predicted as follows:

ϕGMF = pu⊙qi

ϕMLP = Φ([pu,qi])

ŝui = σ(HT

ϕGMF

ϕMLP

)
(4.6)

where ⊙ denotes the element-wise product of vectors, whereas σ and H denote the
activation function and edge weights of the output layer, respectively. In Equation (4.6),
qi ∈ Rh1 and pu ∈ Rh2 are the latent representations of user u and item i that are
concatenated via the function [·], i.e., the input of the deep neural network. We set
h1 = h2 = 16 as suggested by He et al. [116]. The vector resulting from the concatenation
of pu and qi is fed into a deep neural network composed by 4 fully connected dense
layers with {64, 32, 16, 8} hidden units, respectively. During the training, we insert a
dropout pre-layer for each of the four layers with a dropout rate equal to 0.1.

Evaluation Metrics

To perform the evaluation of the proposed attack we use the HR@K(IT ,UT ) and
PS(IT ,UT ) defined in Section 2.3.3 (see Definitions 19 and 20).

Evaluation Protocol

To investigate the impact of the proposed attack strategies, we perform 360 experiments
for each pair of a dataset and the number of extracted hops, totaling 1,440 experiments.
Following the evaluation procedure used in Mobasher et al. [161], Lam and Riedl
[143], we generate the list of recommendations for each recommendation model before
executing the attack. After having measured the position and predicted score for
each target item-user pair, we simulated the attack. First, we craft and add shilling
profiles to the data following the baseline attack strategies. The HR@K(IT ,UT ) and
PS(IT ,UT ) results extracted from the model’s training on the poisoned data constitute
the baselines to compare with semantic attack strategies. Then, we evaluate the same
metrics on the recommendation results generated on the data poisoned by the fake
profiles crafted with the proposed strategy (details in Section 4.2). Note that we
evaluate the semantic strategies considering a scenario where the adversary’s goal is to
push a target item/product. In particular, we perform each one of the 360 experiments



72 Semantics-Aware Shilling Attacks

on 50 randomly selected items in the dataset. Furthermore, we perform each attack
using three different amounts of injected shilling profiles: 1%,2.5%, and 5% of the total
number of users, as adopted in [16, 80, 163]. Regarding the relatedness measures, we
set the α = 0.25 and the t-path length to 10 for both metrics. To grant the results’
reproducibility, the experimented datasets and the code are publicly available.5

4.3.2 Results and Discussion

Since the study analyzed several aspects, the investigations can be summarized to
address the following research questions to provide a general overview:

RQ1 Can relatedness-based measures along with public available semantic information
be employed to develop more effective shilling attack strategies against recommendation
models?

RQ2 Can we assess which is the most impactful type of semantic information?

RQ3 Is multiple hops exploration of a knowledge graph more effective than single-hop
exploration to create coherent fake profiles?

RQ4 What are the recommendation algorithms that suffer more for semantics-aware
attacks?

All the results are computed for top-10 recommendation, i.e., K = 10. To avoid
redundancy, we will refer to HR@10(IT ,UT ) with HR in the rest of the chapter.

Tables 4.4 and 4.5 report the HR values measured for each of the 360 attack
combinations experimented on the Yahoo!Movies and the LibraryThing datasets,
respectively. Across the next sections, we identify an attack combination using
the format <dataset, hops, recommendation model, attack strategy, feature type,
similarity measures, attack granularity>. For example, <Yahoo!Movies, 1H, User-
kNN, Average, Categorical, Katz, 1%> indicates an experiment on the Yahoo!Movies
dataset when the adversary uses the average semantics-aware strategy against a User-
kNN recommendation model. Here, the semantic features are the categorical ones
extracted from the first hop and exploited by the adversary by measuring the Katz-
relatedness between each item in the catalog. Finally, 1% shows the percentage fraction
of fake profiles added into the training data.

By comparing the results across the two datasets, the first observation is that
the results obtained on the Yahoo!Movies dataset (Table 4.5) are more indicative of

5https://github.com/sisinflab/SAShA-against-CFRS

https://github.com/sisinflab/SAShA-against-CFRS
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Table 4.4 Hit Ratio (HR) result values evaluated on top-10 recommendation lists for
the LibraryThing dataset. We use the following notations: R (Random), A (Average),
and B (Bandwagon).

User-kNN Item-kNN MF NeuMF
Attack Feature Sim. 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5

R Baseline .0736 .1570 .2301 .2885 .4588 .5590 .7660 .8987 .9419 .0612 .1130 .2216
Cat. Cosine .0745 .1576 .2311 .2804 .4575 .5687 .7837 .9014 .9439 .0802 .1324 .1653

Katz .0808 .1698 .2441 .2862 .4610 .5691 .7885 .9021 .9418 .0808 .1105 .1812
Excl. .0816 .1703 .2456 .2915 .4635 .5707 .7897 .8993 .9427 .0886 .1479 .2417

Ont. Cosine .0709 .1503 .2252 .2748 .4483 .5634 .7720 .8979 .9423 .0561 .1493 .1926
Katz .0774 .1622 .2355 .2837 .4592 .5670 .7845 .9021 .9416 .0751 .1392 .1857
Excl. .0766 .1619 .2349 .2848 .4602 .5686 .7846 .9010 .9433 .1091 .0999 .2240

Fact. Cosine .0740 .1558 .2280 .2786 .4528 .5642 .7835 .9023 .9419 .0676 .1009 .1285
Katz .0760 .1591 .2319 .2823 .4570 .5662 .7839 .9015 .9417 .0685 .1366 .1823
Excl. .0793 .1672 .2425 .2890 .4646 .5722 .7888 .9029 .9434 .0921 .1034 .2143

A Baseline .0857 .1994 .2863 .3170 .5085 .6070 .8043 .9140 .9500 .0416 .0670 .1362
Cat. Cosine .0864 .1967 .2823 .3060 .5115 .6202 .8128 .9127 .9502 .0634 .0950 .1316

Katz .0940 .2094 .2922 .3136 .5133 .6136 .8149 .9132 .9486 .0630 .1031 .1119
Excl. .0941 .2074 .2888 .3185 .5142 .6142 .8165 .9128 .9502 .0482 .0586 .1548

Ont. Cosine .0849 .1954 .2805 .3073 .5126 .6207 .8114 .9163 .9509 .0906 .1248 .1569
Katz .0898 .2021 .2845 .3096 .5107 .6143 .8168 .9135 .9491 .0816 .1171 .1108
Excl. .0890 .2020 .2842 .3119 .5119 .6165 .8121 .9145 .9489 .0285 .0599 .0947

Fact. Cosine .0868 .1989 .2806 .3073 .5112 .6185 .8163 .9166 .9471 .0362 .0851 .1222
Katz .0892 .2016 .2844 .3098 .5110 .6158 .8189 .9139 .9473 .0588 .0849 .1040
Excl. .0912 .2049 .2872 .3152 .5131 .6131 .8166 .9138 .9482 .0502 .0746 .0882

B Baseline .0817 .1319 .1881 .2640 .3834 .4694 .6000 .7656 .8435 .0100 .0105 .0061
Cat. Cosine .0763 .1234 .1752 .2641 .3801 .4632 .5918 .7661 .8429 .0107 .0077 .0074

Katz .0794 .1266 .1800 .2647 .3821 .4648 .5896 .7596 .8422 .0103 .0080 .0094
Excl. .0758 .1227 .1745 .2640 .3818 .4646 .5835 .7590 .8435 .0067 .0054 .0068

Ont. Cosine .0758 .1227 .1745 .2626 .3798 .4637 .5904 .7619 .8433 .0064 .0056 .0049
Katz .0792 .1257 .1779 .2636 .3802 .4637 .5820 .7642 .8447 .0051 .0027 .0077
Excl. .0776 .1249 .1770 .2633 .3815 .4643 .5979 .7611 .8413 .0057 .0047 .0052

Fact. Cosine .0738 .1190 .1714 .2632 .3784 .4623 .6001 .7634 .8408 .0057 .0044 .0063
Katz .0776 .1239 .1771 .2641 .3801 .4630 .5833 .7602 .8415 .0026 .0083 .0036
Excl. .0792 .1272 .1796 .2638 .3813 .4642 .5948 .7590 .8405 .0051 .0054 .0227

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

attacks’ effectiveness independently of the attack strategy, the number of injected
profiles, and recommender models, confirming the findings in our previous work, Anelli
et al. [16]. One plausible explanation for this behavior is the differences in dataset
characteristics, e.g., the data sparsity, that has been showing impacting shilling attacks’
performance as verified by Deldjoo et al. [76].

Furthermore, Table 4.4 also confirmed the semantics-aware strategy’s efficacy over
the baseline, either for the average and random attacks. For instance, the semantic
strategies outperformed all the <LibraryThing, 1H, Random> and <LibraryThing,
1H, Average> baseline attacks independently of the recommender model and the
size of attacks. However, it is worth mentioning that, differently from the results on
Yahoo!Movies, on <LibraryThing, 1H, Bandwagon>, the baseline attack’s effectiveness
did not improve. This behavior might be linked with semantic information extracted
from the KG and the attack strategy itself. Since a bandwagon attack builds profiles by
filling the 50% of the profile with the most popular items, it might make the semantic
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Table 4.5 Hit Ratio (HR) result values evaluated on top-10 recommendation lists for
the Yahoo!Movies dataset. We use the following notations: R (Random), A (Average),
and B (Bandwagon).

User-kNN Item-kNN MF NeuMF
Attack Feature Sim. 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5

R Baseline .1927 .3624 .4461 .3260 .5099 .6011 .4108 .5857 .7043 .0247 .0221 .0700
Cat. Cosine .1869 .3512 .4277 .3163 .4980 .5886 .4084 .5720 .6648 .0018 .0127 .0464

Katz .1912 .3725 .4559 .3429 .5270 .6098 .4244 .6029 .7049 .0223 .0317 .0891
Excl. .1968 .3712 .4533 .3394 .5233 .6072 .4272 .6011 .7023 .0171 .0516 .0544

Ont. Cosine .1730 .3353 .4163 .2994 .4793 .5726 .3916 .5513 .6407 .0030 .0051 .0118
Katz .1766 .3547 .4337 .3224 .5046 .5904 .4029 .5698 .6638 .0106 .0191 .0386
Excl. .2101 .3898 .4706 .3532 .5442 .6243 .4450 .6328 .7376 .0242 .0567 .0515

Fact. Cosine .1881 .3501 .4289 .3149 .4933 .5840 .4087 .5665 .6590 .0188 .0115 .0365
Katz .2094 .3869 .4703 .3545 .5398 .6213 .4442 .6272 .7371 .0368 .0507 .0269
Excl. .2055 .3799 .4632 .3479 .5317 .6178 .4361 .6142 .7187 .0176 .0402 .0430

A Baseline .2293 .4117 .4918 .3758 .5759 .6564 .4900 .6824 .7849 .0033 .0044 .0236
Cat. Cosine .2581 .4296 .4972 .3955 .5953 .6689 .5326 .7255 .8076 .0017 .0383 .0029

Katz .2319 .4142 .4917 .3882 .5773 .6542 .4889 .6777 .7716 .0015 .0064 .0272
Excl. .2277 .4026 .4845 .3752 .5698 .6493 .4813 .6658 .7624 .0064 .0014 .0087

Ont. Cosine .2584 .4264 .4953 .4019 .5952 .6704 .5457 .7315 .8128 .0043 .0018 .0111
Katz .2406 .4209 .4964 .3940 .5877 .6615 .5131 .7093 .7950 .0040 .0022 .0098
Excl. .2196 .3965 .4771 .3623 .5531 .6337 .4552 .6401 .7347 .0099 .0348 .0205

Fact. Cosine .2573 .4290 .4960 .3882 .5884 .6634 .5353 .7256 .8009 .0026 .0055 .0054
Katz .2293 .4101 .4910 .3736 .5608 .6414 .4746 .6559 .7511 .0073 .0047 .0231
Excl. .2311 .4075 .4894 .3706 .5661 .6467 .4809 .6661 .7602 .0042 .0070 .0194

B Baseline .0996 .2418 .3556 .2427 .3764 .4691 .2357 .3606 .4320 .0010 .0026 .0025
Cat. Cosine .1020 .2544 .3634 .2453 .3831 .4748 .2536 .3909 .4662 .0010 .0208 .0010

Katz .0981 .2412 .3495 .2383 .3676 .4546 .2300 .3540 .4248 .0017 .0022 .0077
Excl. .0926 .2357 .3476 .2378 .3670 .4562 .2248 .3472 .4150 .0009 .0094 .0026

Ont. Cosine .1039 .2632 .3606 .2460 .3853 .4786 .2726 .4080 .4798 .0045 .0060 .0009
Katz .0958 .2476 .3528 .2412 .3754 .4652 .2253 .3602 .4376 .0009 .0023 .0012
Excl. .0941 .2227 .3346 .2289 .3528 .4402 .2092 .3191 .3885 .0030 .0022 .0054

Fact. Cosine .1050 .2562 .3614 .2476 .3814 .4734 .2506 .3890 .4625 .0133 .0043 .0004
Katz .0930 .2302 .3460 .2295 .3569 .4461 .2178 .3399 .4064 .0255 .0028 .0115
Excl. .0926 .2360 .3515 .2345 .3616 .4504 .2309 .3446 .4137 .0023 .0012 .0014

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

strategy that identifies the informative filler items ineffective. These new insights
show the nuances captured by our proposed semantics-aware strategies for enriching
state-of-the-art shilling attack methods against CF models.

Below, we provide a more in-depth discussion about the impact of several factors
involved in the design space of the proposed semantics-aware shilling attacks against
CF models. They include the effect of the feature type extracted from the KG, i.e.,
CS, OS, or FS, the semantic similarity/relatedness between the target item and the
items in the catalog, and the hop depth described in detail in Section 4.3.1. Our goal
is to answer the research questions provided in Section 4.1 along with these directions.

Impact of Relatedness-based Measures and Semantic Data (RQ1)

The first research question is intrinsically the most important one. Given the extent
of experiments carried out in the experimental section, it could be hard to decipher
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this information at first glance. Thus, in this section, we try to decode the insights
obtained from the experimental results along the experimental directions outlined
above. Let us consider the experiments on LibraryThing. We can observe that the
adoption of graph-based relatedness generally leads to an attack efficacy improvement
over the baseline, which adopts the cosine similarity metric. For instance, the random
attack (where the attacker does not have system knowledge) primarily benefits from
the topological information. The general observation here is that in most experimental
cases, the adoption of relatedness-based semantic information leads to improvement of
the attacks’ effectiveness. We may observe the same behavior for the Yahoo!Movies
dataset in Table 4.5, in which the HR for <1H, User-kNN, Random, Categorical, Katz>
is 10% better than the baseline, i.e., 0.3725 vs. 0.3512.

Beyond random attacks, we can observe some general trends also for informed
attacks. In detail, Table 4.4 (LibraryThing), we note that categorical information
improves both User-kNN and Item-kNN. It is worth noticing that the same consideration
does not hold for latent factor-based models. MF and NeuMF suit better cosine vector
similarity. This phenomenon is probably due to the significant difference in how the
two recommendation families exploit the additional information. Finally, we can focus
on the Bandwagon attack. In that case, the attack already exploits the most influential
knowledge source for collaborative filtering algorithms: popularity. It follows that the
integration with other knowledge sources, e.g., KGs, does not provide any significant
improvement. However, the influence of popularity is so high in this attack that the final
recommendation lists are subject to a strong popularity bias [1]. Indeed, adding fake
profiles with the maximum ratings, e.g., 5 in Yahoo!Movies and 10 in LibraryThing,
placed on the most popular/rated items that will form the IS (see Tables 2.2 and 4.1)
will amplify, even more, the probability that these items will be recommended in the
highest positions of top-K recommendation lists making ineffective the adversaries’
pushing goal toward the target items.

As a consequence, it even prevents the attacked recommendation system from
suggesting the target item. All the experimental datasets and all the recommendation
models clearly show this effect.

Another aspect that we want to underline is that increasing the number of fake
profiles injected into the systems unleashes the potential of different semantic knowledge
types. For instance, in the <LibraryThing, Average, MF> setting with 1% injected
fake profiles, we observe the best results with Factual knowledge and Katz centrality,
while, with 2%, the best results are with Factual knowledge and cosine similarity. Finally,
with 5%, the best results come with Ontological knowledge and cosine similarity. This
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behavior suggests that the graph-based similarities have a significant impact even in a
very sparse scenario. In contrast, with the increase of fake profiles, the cosine similarity
starts leveraging interesting correlations. On the other dimension, factual information
is massive by nature, and it is crucial in sparse scenarios. However, when the number
of fake profiles increases, the knowledge at a higher level of abstraction (Categorical
and Ontological) finds its way to improve the attack efficacy further.

Impact of Factual, Ontological, and Categorical Data (RQ2)

The following essential aspect to investigate is the combined impact of semantic
knowledge type and relatedness measure. In detail, we believe this is a straightforward
natural evolution of RQ2. We start focusing on Categorical knowledge. The experiments
on LibraryThing show that Exclusivity is probably the relatedness that best suits
this information type. However, the results are not that clear for the Yahoo!Movies
dataset. This behavior suggests that semantic information type and relatedness are not
the only members of the equation. Indeed, the extension and the quality of the item
descriptions seem to have a role. Afterward, we can focus on Ontological information.
Here, we can draw a general consideration since, for both datasets, it is the cosine
similarity metric that leads to the best results. Lastly, Factual information respects all
the general remarks we have drawn before, showing that the relatedness is a better
source of adversaries’ knowledge to perform more effective attacks.

In detail, we found that with low-knowledge attacks, the best relatedness is
Exclusivity for LibraryThing and Katz for Yahoo!Movies. With informed attacks, the
best relatedness metric is the cosine similarity. However, for the sake of electing a
similarity that better suits Factual information, we can note that Exclusivity generally
leads to better results with LibraryThing.

Analysis of KG’s Hops (RQ3)

The subsequent analysis focuses on the impact of the 1-hop and 2-hops of the KG
exploration. To support this analysis, we have prepared the summary table. Table 4.6
firstly, shows the average variation of attack efficacy passing from the adoption of
single-hop extracted features to the double-hop extraction for LibraryThing and
Yahoo!Movies. Regarding Yahoo!Movies, the first and foremost consideration we
can draw is that graph-based relatedness measures seem to have no positive impact
when exploiting a double-hop exploration. However, it can be observed that those
relatedness metrics already achieved impressive results with the first-hop exploration.
Hence, further improving the performance is somehow challenging. Indeed, in most
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Table 4.6 Variation of Hit Ratio (HR) when using the features extracted from the
second hop with respect to the first hop for LibraryThing and Yahoo!Movies.

LibraryThing Yahoo!Movies
Attack Feature Sim. U-kNN I-kNN MF NeuMF U-kNN I-kNN MF NeuMF

Random Cat. Cos. -1.28 -1.63 -0.70 -20.07 -0.03 -0.01 -0.01 1.57
Katz -0.77 2.05 -0.20 -6.05 -0.11 -0.10 -0.06 -0.47
Exc. -2.12 0.14 -0.26 -21.09 -0.05 -0.04 -0.02 0.08

Ont. Cos. 1.97 0.64 0.35 13.45 0.16 0.12 0.10 1.31
Katz -3.00 -0.24 0.10 -38.28 -0.07 -0.07 -0.04 -0.29
Exc. -4.57 -1.92 -0.47 -46.85 -0.13 -0.09 -0.07 -0.66

Fact. Cos. -0.64 -0.62 -0.11 46.94 -0.01 0.02 0.01 -0.62
Katz 0.93 2.60 0.07 56.47 -0.12 -0.09 -0.07 -0.73
Exc. -0.33 0.25 -0.39 -29.80 -0.16 -0.11 -0.08 -0.21

Average Cat. Cos. -0.87 -0.86 -0.21 -17.66 -0.03 0.00 -0.01 0.67
Katz 0.07 2.13 0.02 36.36 0.03 -0.03 0.05 3.81
Exc. -1.82 -0.09 -0.22 52.37 0.02 -0.02 0.03 -0.69

Ont. Cos. 0.47 -0.05 0.22 -8.44 -0.14 -0.12 -0.17 -0.19
Katz -3.92 -0.82 -0.52 -70.51 0.07 0.00 0.06 2.94
Exc. -4.49 -2.26 0.32 152.52 0.07 0.02 0.06 -0.77

Fact. Cos. -0.19 0.29 0.06 123.56 -0.04 0.00 -0.04 0.22
Katz 0.64 1.73 -0.28 13.12 0.01 -0.02 0.04 -0.75
Exc. 0.53 0.87 -0.33 -2.11 0.06 0.03 0.09 -0.17

BandWagon Cat. Cos. -0.02 -0.55 -0.42 -51.24 -0.03 0.00 0.02 -0.01
Katz -1.93 -1.01 -0.04 -68.96 -0.06 0.02 0.00 8.87
Exc. 3.25 -0.32 0.07 36.58 0.02 -0.02 0.05 0.07

Ont. Cos. -1.37 -0.10 0.16 49.05 -0.14 -0.08 -0.20 -0.62
Katz -5.69 -0.18 2.05 -9.28 0.01 -0.01 0.10 0.78
Exc. -2.37 -0.45 -0.55 -35.24 -0.02 0.02 0.10 0.61

Fact. Cos. 1.80 -0.14 -0.32 5.18 -0.07 -0.02 -0.02 -0.91
Katz 1.57 -0.45 1.00 190.44 0.02 0.05 0.07 -0.90
Exc. -1.57 -0.61 -1.52 140.00 0.07 0.03 0.08 -0.17

cases, we can observe a minimal variation for the double-hop performance. However,
in some cases, the attacks witness a more significant decrease, probably due to the
injection of some noisy and loosely-related second-hop features. In general, given
the high performance achieved with a single-hop exploration, it seems that it is not
worth exploring the second-hop, and thus increasing the computational complexity
and introducing the new challenge of loosely-related second-hop features. Beyond
graph-based relatedness, we observe that cosine vector similarity almost always shows
an improvement when considering second-hop features (particularly with Ontological
and Factual information). Finally, we have to observe that, even here, the NeuMF
model does not benefit from this new information.

Table 4.6 also shows the average attack efficacy variation for LibraryThing. Here,
some previously described behaviors are even more evident. In detail, we note that the
cosine similarity takes advantage of the second-hop information. In this case, we can
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also observe Katz ’s improvement, suggesting that this metric did not have unleashed
its full potential with only the first-hop features. Finally, in some cases, the second-hop
information also improves informed attacks (reaching a peak of 53% improvement
for <Average, Factual, Exclusivity>), confirming a less evident trend we found with
Yahoo!Movies.

Analysis of RS Vulnerability (RQ4)

The last discussion analyzes the efficacy of the semantic attacks on the different
recommendation families. Since the neighborhood-based models directly exploit a
similarity to compute the recommendation lists, they are the privileged victim models
to alter the recommendation performance effectively. Indeed, both user-based and
item-based schemes heavily suffer from semantics-aware shilling attacks. The publicly
available semantic information can help the attacker crafting impactful fake profiles
even in the case of a complete lack of information about the system, e.g., SAShA-
Random results. Even though latent factor models seem to be more robust to the
attacks, semantic attacks improved the attacker’s performance. Finally, the most
robust model seems to be NeuMF. This result is probably due to the non-linearity of
NeuMF that helps the model avoid learning from the pretended profiles. In detail, the
neural network may learn more sophisticated correlations that the other models do
not capture. We believe that this ability deserves specific further investigation since it
may lead to developing a new line of research on Deep Learning-based semantics-aware
attacks that might exploit non-linear item-item similarities to build more impactful
attack methods.

4.4 Related Work

All of us have witnessed the astonishing performance of recommendation systems.
However, few know that, often, the recommendation algorithms struggle to optimize
the model. Despite the number of transactions being massive, the number of per-user
interactions is usually very scarce. Over the years, the recommendation system designers
relied on additional sources of information to overcome this limitation. Nowadays,
modern RSs exploit various side information such as metadata (e.g., tags, reviews) [169],
social connections [34], image and audio signal features [75], and users-items contextual
data [10] to build more in-domain [107] (i.e., domain-dependent), cross-domain [96], or
context-aware [129] recommendation models. Among the diverse information sources,
what is, likely, the most relevant source is Knowledge Graphs (KGs). A KG is a



4.4 Related Work 79

heterogeneous network that encodes multiple relationships, edges, nodes, and links
items at high-level relationships, making them a strong item representation technique.
Thanks to the heterogeneous domains that KGs cover, the design of knowledge-based
recommendation systems has arisen as a specific research field of its own in the
community of RSs, usually referred to by Knowledge-aware Recommender Systems
(KaRS [22]). This research community combines the most advanced machine learning
techniques with state-of-the-art knowledge representation paradigms. This blending
of skills and ideas has generated several advancements in the recommendation [24],
knowledge completion [111], preference elicitation [30], user modeling [219] research,
and thus produced a vast literature.

A comprehensive review of the field would require a separate and specific paper;
however, we can still provide an overview of the most advanced (or particularly
representative) contributions. To help the reader orient herself in the literature, we
follow three distinct lines: impacted research fields, recommendation techniques, and
data sources. In recent years, the Knowledge-aware Recommender Systems have been
particularly impactful for several research domains:

• KG-embeddings [176, 147, 166], where the latent representation of semantic
knowledge enables novel and diverse applications;

• Hybrid Collaborative/Content-based recommendation [147, 24], exploiting
the KG information to suffice the lack of collaborative information and to improve
the performance;

• Knowledge-completion, link-prediction, and knowledge-discovery [111, 47],
where the topology of the knowledge graph and the graph embeddings helped to
improve the overall quality of the knowledge base;

• Knowledge-transfer, cross-domain recommendation [240, 96], where the KGs
allow to find semantic similarities between different domains;

• Interpretable/Explainable-recommendation [11, 25, 231], with KG being a
backbone for understanding the recommendation model and providing human-like
explanations

• User Modeling [219, 172, 132], since the resource descriptions can drive the
construction of the user profile;



80 Semantics-Aware Shilling Attacks

• Graph-based recommendation [194, 224, 198, 220], where the topology-based
techniques have met the semantics of the edges/relations, and the ontological
classification of nodes (classes);

• The cold-start problem [165, 96], since the KGs can overcome the lack of
collaborative information;

• The content-based recommendation [26] that solely relies on KG and still
produces high-quality recommendations.

All the former advances have been shown to enhance the recommendation quality
or the overall user experience. Although the algorithms differ on many levels, we can
still classify recommendation techniques into two broad approaches:

• Path-based methods [194, 224, 198, 87], which employ paths and meta-paths to
estimate the user-item similarities or the nearest items;

• KG embedding-based techniques [194, 166, 24], which leverage KG embeddings
(usually obtained through matrix factorization or neural network encoding) for
items’ representation.

Finally, we focus on the Knowledge Graphs data sources. The availability of a
myriad of KGs is a definite advantage of Knowledge-aware Recommender Systems.
Thanks to the Linked Data initiative, today, we can benefit from 1,483 KGs connected
in the so-called Linked Open Data Cloud6. KGs can be general-purpose, or domain-
specific like Academia/Industry DynAmics (AIDA) [31]. However, most contributions
concentrate on a short-list of KGs with a peculiar characteristic: being an encyclopedic
KG. Those KGs share the same ontology and the same schema across multiple
domains, giving access to huge knowledge at the exact development cost required
for a single domain. The most appreciated KGs of this special class undoubtedly
are DBpedia [145], Wikidata [217], Yago [207] (the 4th release [210] also supports
RDF* [110]), FreeBase [45], Satori78 [151], Google’s Knowledge Graph9, Knowledge
Vault [88], Bio2RDF [38].

Despite the extensive use of KGs in recommendation tasks, we have not identified any
malicious use of these vast sources of additional data. Indeed, a typical characteristic
of the previous literature on shilling attack strategies is that they usually target the

6https://lod-cloud.net/datasets
7https://searchengineland.com/library/bing/bing-satori
8https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
9https://blog.google/products/search/introducing-knowledge-graph-things-not/

https://lod-cloud.net/datasets
https://searchengineland.com/library/bing/bing-satori
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blog.google/products/search/introducing-knowledge-graph-things-not/
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relations between users, and items, based on similarities scores estimated on their past
feedback (e.g., ratings). However, these strategies do not consider the possibility of
exploiting publicly available semantic information to gain more information on the
semantic similarities between the items available in the RS catalog. Indeed, considering
that product or service providers’ catalogs are freely accessible to everyone, this chapter
has presented a novel attack strategy that exploits a freely accessible knowledge graph
(DBpedia) to assess if attacks based on semantic similarities between items are more
effective than baseline versions that rely only on users’ preference scores.

4.5 Summary

This chapter shows how the adoption of structured and freely accessible knowledge (i.e.,
Linked Open Data repositories) further improves malicious agents’ ability to attack a
recommendation platform. Knowledge Graphs have already extensively shown that
they help build more accurate recommendation systems. However, this technical study
is one of the first attempts to exploit the external knowledge to alleviate the attacker’s
lack of system knowledge. Starting from the state-of-the-art shilling attacks (where the
attacker injects fake profiles into the platform to alter the final recommendations), the
chapter proposed a broad spectrum of semantics-aware shilling attacks (SAShA). To
study and test these attacks’ efficacy, we have investigated the impact of graph-based
metrics (Katz centrality and Exclusivity-based relatedness), semantic information type,
and Knowledge Graph exploration depth. We have analyzed the attack efficacy along
each dimension considering three recommendation families: neighborhood-based, latent
factor models, and Neural Network-based recommendations systems, totaling 1,440
experiments. The extensive experimental evaluation has taught us several important
lessons.

• The adoption of structured knowledge generally improves by a large margin the
attacker’s performance.

• The graph-based metrics can efficiently deal with very sparse scenarios, capturing
similarities that are otherwise imperceptible.

• The type of semantic information to feed the attacking system has a significant
function in enhancing the adversaries’ effectiveness. With a few items/entities, the
massive factual information has an important role, but as the number of involved
entities grows, more structured information (i.e., categorical and ontological
information) leads to better results.
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• The single-hop exploration is already sufficient to outperform the semantics-
unaware techniques, and the second-hop information does not introduce significant
further improvements.

• RSs relying on similarity-based algorithms and classical factorization methods
heavily suffer from semantic attacks, which perfectly suffice the lack of user
interaction knowledge. At the same time, Neural Network-based ones are the sole
techniques shown to be more robust, probably thanks to the model’s non-linearity.

The robustness of neural models suggests that there is still room for improvements for
the semantics-aware attacks to be investigated in future deep learning-based semantic
attack proposals. Then, this research direction could be an initial investigation to
design a new class of semantics-aware recommendation systems that will be robust to
all these advanced attacks.



Chapter 5

Training Time Adversarial Attacks
and Defenses on Multimedia RSs

Can an adversary poison the data of multimedia recommender systems with
adversarial samples? Do adversarial perturbations of product images confuse

multimedia recommenders? Can we protect the model integrity?

Deep learning classifiers are hugely vulnerable to adversarial examples, and their
existence raised cybersecurity concerns in many tasks, emphasizing malware detection,
computer vision, and speech recognition. While there is a considerable effort to
investigate attacks and defense strategies in these tasks, only limited work explores the
influence of attacks on input data (e.g., images, textual descriptions, audio) used in
multimedia recommender systems (MRSs). For instance, visual-based recommenders
enhance recommendation performance by integrating users’ feedback with the visual
features of items’ images.

In this chapter, we present several contributions. Firstly, we examine the consequences
of applying targeted adversarial attacks against the product images of VRSs with
additional empirical verification of their imperceptibility on final users through state-
of-the-art offline-visual metrics. After having asses that human-imperceptible image
perturbations, defined adversarial samples, are capable of altering the VRSs performance,
for example, by pushing (promoting) or nuking (demoting) specific categories of
products, we introduce a set of possible defenses. Mainly, we investigate one of
the most effective adversarial defense methods, the adversarial training (AT). This
technique has been demonstrated to enhance the robustness of ML classifiers against
adversarial samples by incorporating them into the training process and minimizing an
adversarial risk. While AT effectiveness has been tested in supervised learning tasks
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(e.g., image classification), we study whether AT can also protect VRSs against images’
adversarial perturbation.

The extensive experiments conducted within an experimental framework, named
Visual Adversarial Recommender (VAR), indicate alarming risks in protecting a VRS
through the DNN robustification.

5.1 Introduction

RSs have terrifically taken over online shopping by providing users with personalized
recommendations to disentangle the chaotic flood of products on e-commerce platforms.
They model the complex preference that consumers exhibit toward items by leveraging a
sufficient amount of past behavioral data. Accordingly, in scenarios such as fashion, food,
or point-of-interest recommendation, images associated with products can impact the
outcomes of purchasing/consumption decisions, as images attract attention, stimulate
emotion, and shape users’ first impression about products and brands. To extend
the expressive power of RSs, visual-based recommender systems (VRSs) have recently
merged that attempt to incorporate products’ visual appearance of items into the design
space of RS models [83]. Given the representational power of deep neural networks
(DNNs) in capturing characteristics and semantics of the images, state-of-the-art VRSs
often incorporate visual features extracted via a DNN — pre-trained, e.g., VBPR [114]
and ACF [61], or learned end-to-end, e.g., DVBPR [134] — and integrate it with a
recommendation model (e.g., MF) to better judge the users’ interests.

It follows that DNN serves as a core component of many real-world RSs for
performing visually aware recommendation tasks. However, as introduced in Chapter 2,
recent studies have demonstrated that adversaries can modify the classification behavior
of a trained neural classifier by attaching human-imperceptible adversarial noise on
inputs at prediction time [208]. The famous example in the CV domain on the
misclassification of a slightly mutated STOP traffic signal into another one installed on
a self-driving car [100] has motivated the need to investigate if and how much VRSs
might be beatable by adversaries. Indeed, while there is now a sizable body of work
proposing different attack and defense strategies in an adversarial setting, namely
FGSM [101], PGD [155], and Carlini & Wagner [57] (for the attacks), and Adversarial
Training [101], Free Adversarial Training [197], and Defensive Distillation [178] (on the
defensive side), we have identified a lack of research on adversarial attacks in the case
of multimedia recommenders even though they heavily depend on the benevolence of
the product representations extracted from DNNs. The only exception is the work
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by Tang et al. [209], that verifies the efficacy of AT in protecting a standard VRS (i.e.,
VBPR [114]) against adversarial noise applied directly on the image features extracted
via ResNet50 [112].

This chapter presents our contribution in the novel proposed motivational situation:
a competitor is willing to increase the recommendability of a category of products
on an e-commerce platform, e.g., sandals, for economic gain. She can achieve this
goal by simply uploading adversarially perturbed product images of sandals that are
misclassified by the DNN used in the VRS, named image feature extractor (IFE), as
a much more popular class, e.g., running shoes, allowing sandals to be pushed into
recommendation list of more users. This novel adversarial strategy, named Targeted
Adversarial Attack against Multimedia Recommender Systems (BB-TAaMR), explores
attack situations where the adversary’s goal is to perturb images of a low recommended
category of products (e.g., the 20th most recommended) to be misclassified by the
deep classifier towards a target more recommended category (e.g., the 1st/2nd).

The chapter at hand focuses on discovering the unknown vulnerability of VRSs
against the poisoning of training data with adversarially perturbed product images
constructed to be misclassified by the IFE. In this respect, we propose an empirical
framework, named Visual Adversarial Recommendation (VAR), to study the efficacy of
BB-TAaMR, whether and to what extent adversarial training strategies can strengthen
IFE’s classification performance, thus mitigating the adverse effects of such attacks
on the recommendation task and whether the class of VRSs that internally trains the
IFE, e.g., DVBPR [134], could be still affected by adversarial samples crafted on a
pretrained DNN, e.g., ResNet50, and transferred to this end-to-end class of VRSs.

The main contributions of this chapter are summarized as follows:

• an extensive study of adversarial attack methods to implements BB-TAaMR in
order to break the standard behavior of a VRS to accomplish adversary’s desires
by guaranteeing the human-imperceptibility of the noise;

• an extensive study of adversarial training (defensive) methods to robustify
the visually-aware recommendation performance through the analysis of 156
combinations of three types of IFEs, three attacks, and five VRSs, and three
recommendation datasets;

• the proposal of two novel rank-based evaluation metrics, named category hit ratio
and category normalized Discounted Cumulative Gain;
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Fig. 5.1 Overview of our VAR framework. (1) an Adversary might perturb product images.
(2) an Image Feature Extractor (IFE) extracts the item visual features. The IFE is
implemented either with an external, pre-trained DNN or with a custom DNN within
the Visual Recommender Systems (VRS). (3) the Preference Predictor (PP) from the VRS
takes the user-item preference matrix (R) and the visual features to compute the top-K lists.
Adversarial training strategies can protect both the external IFE and/or the PP.

• analysis of the variation of global and beyond-accuracy recommendation performance
with (and without) defenses to understand to what extent the adversaries in our
VAR setting are altering the overall performance of the recommender.

The rest of the chapter is organized as follows. In Section 5.2, we introduce and
formalize the proposed framework. In Section 5.3 we describe our experimental settings
for study the adversary’s capacity in breaking the visual recommender under different
constraints. Then, in Section 5.3, we present and discuss empirically evaluate our
method. Finally, we review related work in Section 5.4 and summarize the main
contributions and future challenges in Section 5.5.

5.2 The Proposed Framework

Here, we describe the VAR components shown in Figure 5.1: adversary, image feature
extractor, and visual-based recommender system.
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5.2.1 Components

Adversary

To align with the AML literature, we follow the attack —and defense— adversary
threat model outlined in [56]. Given all the top-K recommendation lists generated
by the VRS, the adversaries’ goal is to push the items at the bottom of the lists to
higher positions. We assume that adversaries are aware of recommendation lists and
choose the low-ranked category of items to be pushed (source). Then, they select the
category of a more recommended item (target). Two additional assumptions arise here.
The first is that the adversaries have perfect knowledge of the image feature extractor
(IFE) used in the VRS, and perturb source images to be misclassified as target ones.
The second is that they cannot access the IFE, since it is end-to-end trained along
with the VRS, and craft the adversarial samples on another DNN to be transferred to
the victim’s recommender, i.e., black-box attack setting. In our motivating scenario,
the adversaries can poison the dataset by uploading the adversarially corrupted item
images on the VRS-based platform.

Image Feature Extractor (IFE)

The image feature extractor is a deep neural network. Given a set of data samples
(xi,yi), where xi is the i-th image and yi is the one-hot encoded representation of xi’s
image category, we define F as a DNN classifier function trained on all (xi,yi). Then,
we set F (xi) = ŷi as the predicted probability vector of xi belonging to each of all the
admissible output classes, and we calculate its predicted class as the index of ŷi with
maximum probability value, and represent it as Fc(xi). Moreover, assuming an DNN
classifier with L-layers, we indicate with F (l)(xi), 0≤ l ≤ L−1, the output of the l-th
layer of F given the input xi.

The sample xi is the image associated with the item i ∈ I, which may appear in
the top-K recommendation list shown to a user. Hence, the IFE is a DNN to extract
high-level visual features from xi. The model can be either pretrained on a classification
task, i.e., He et al. [112], or a custom network trained end-to-end along with the VRS,
i.e., Kang et al. [134]. The actual extraction takes place at one of the last layers
of the network, i.e., F (e)(xi), where e refers to the extraction layer. In general, we
define this layer output as a three-dimensional vector that will be the input to the
VRS. No defense is applied on the custom IFE (see Figure 5.1) used in the end-to-end
model (e.g., DVBPR) since defensive approaches only refer to networks trained for the
classification task. Note that the IFE is a key component in VAR since it represents the
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connection between the adversary —responsible for the attack— and the preference
predictor (PP) used in a VRS.

Visual-based Recommender System (VRS)

In VAR, the VRS is the component aimed at addressing the recommendation task. The
model takes two inputs: (i) the historical user-item recorded preferences (R), and
(ii) the set of item visual features extracted from the pretrained IFE or custom IFE,
i.e., DVBPR [134]. Thus, it produces recommendation lists sorted by the preference
prediction score evaluated for each user-item pair. Indeed, the VRS preference predictor
takes advantage of the pure collaborative filtering source of data, i.e., R, and the
high-level multimedia features to unveil user’s preferences [114]. In the VAR motivating
example, the VRS is the final victim of the adversary. For this reason, this chapter
focuses on the performance variation of the VRS in attack and defense scenarios.

5.2.2 Evaluation

We perform three levels of investigation, namely: (i) the effectiveness of adversarial
attacks in misusing the classification performance of the DNN used as the IFE, (ii)
the variation of the accuracy— and beyond-accuracy— recommendation performance,
and (iii) the evaluation of consequences for attack and defense mechanisms on the
recommendability of the category of items to be pushed.

In AML, several publications focused on quantifying adversarial attacks’ success in
corrupting the classification performance of a target classifier, i.e., the attack Success
Rate (SR) [57]. Similarly, there is vast literature about the accuracy and beyond the
accuracy of RSs [191] recommendation metrics. On the other hand, we have observed
a lack of literature evaluating adversarial attacks on RSs content data. As a matter of
fact, Tang et al. [209] evaluate the effects of untargeted attacks on classical system
accuracy metrics, i.e., Hit Ratio (HR) and normalized Discounted Cumulative Gain
(nDCG), while we propose a modified version of HR, named category hit ratio, to
evaluate the fraction of adversarially perturbed items in the top-K recommendations,
and the normalized Category Discounted Cumulative Gain (nCDCG@K), an updated
version of the classical nDCG@K).

Definition 27 (Category Hit Ratio (CHR@K)). Let C be the set of the classes extracted
from the IFE, and Ic = {i ∈ I, c ∈ C|Fc(xi) = c} be the set of items whose images are
classified by the IFE in the c-class, e.g., the category of low recommended items. Then,
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we define categorical hit (chit) as:

chit(u,k) =

1, if k-th item in the top-K ∈ Ic

0, if k-th item in the top-K ̸∈ Ic

(5.1)

where categorical hit (chit(u,k)) is a 0/1-valued function that is 1 when the item in the
k-th position of the top-K recommendation list of the user u is in the set of attacked
items not-interacted by u. Consequently, we define the CHR@K as follows:

CHRu@K = 1
K

K∑
k=1

chit(u,k) (5.2)

Since CHR@K does not pay attention to the ranking of the adversarially attacked
recommended items, we propose a novel rank-wise positional metric, named Category
normalized Discounted Cumulative Gain, that assigns a gain to each considered ranking
position. By considering a relevance threshold τ , we assume that each item i ∈ Ic has
an ideal relevance value of:

idealrel(i) = 2(smax−τ+1)−1 (5.3)

where smax is the maximum possible score for items. By considering a recommendation
list provided to the user u, we define the relevance (rel(·)) of a suggested item i as:

rel(k) =

2(sui−τ+1)−1, if k-th item ∈ Ic

0, if k-th item ̸∈ Ic

(5.4)

where k is the position of the item i in the recommendation list. In Information
Retrieval, the Discounted Cumulative Gain (DCG) is a metric of ranking quality that
measures the usefulness of a document based on its relevance and position in the result
list. Analogously, we define Category Discounted Cumulative Gain (CDCG) as:

CDCGu@K =
K∑

k=1

rel(k)
log2(1+k) (5.5)

Since recommendation results may vary in length depending on the user, it is not
possible to compare performance among different users, so the cumulative gain at
each position should be normalized across users. In this respect, we define the Ideal
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Category Discounted Cumulative Gain (ICDCG@K) as follows:

ICDCG@K =
min(K,|Ic|)∑

k=1

rel(k)
log2(1+k) (5.6)

In practical terms, ICDCG@K indicates the score obtained by an ideal recommendation
list that contains only relevant items.

Definition 28 (normalized Category Discounted Cumulative Gain). Let C be the
set of the classes extracted from the IFE, Ic = {i ∈ I, c ∈ C|Fc(xi) = c} be the set
of items whose images are classified by the IFE in the c-class, i.e., the category of
low recommended items. Let rel(k) be a function computing the relevance of the
k-th item of the top-K recommendation list, and ICDCG@K be the CDCG for an
ideal recommendation list only composed of relevant items. We define the normalized
Category Discounted Cumulative Gain (nCDCG), as:

nCDCGu@K = 1
ICDCG@K

K∑
k=1

rel(k)
log2(1+k) (5.7)

The nCDCG@K is ranged in an [0,1] interval, where values close to 1 mean that the
attacked items are recommended in higher positions, e.g., the attack is effective. In
Information Retrieval, a logarithm with a base 2 is commonly adopted to ensure that
all the recommendation list positions are discounted.

5.3 Experiments

Here, we present experimental settings and the discussion of the empirical results.

5.3.1 Settings

In this section, we first introduce the three real-world datasets, the adversarial attack
strategies, the defense methods to make the IFE more robust, and the VRSs. Then,
we present the complete set of evaluation measures and a detailed presentation of the
experimental choices to make the results reproducible.

Datasets

We experiment our models on the following datasets:
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Table 5.1 Dataset statistics.

Data |U| |I| |R| density
Amazon Men 24,379 7,371 89,020 0.000495
Amazon Women 16,668 2,981 54,473 0.001096
Tradesy 6,253 1,670 21,533 0.002062

• Amazon Men and Amazon Women [159, 113, 114] are two datasets about men’s
and women’s clothing from the Amazon category "Clothing, Shoes and Jewelry".
Once having downloaded the images with a valid URL, we applied k-core filtering
first on users and then on items to reduce the impact of cold users and items, as
suggested by Rendle et al. [189]. While for Amazon Men we run 5-core filtering as
suggested in [113, 114], for Amazon Women we adopted 10-core filtering to reduce
its higher number of user/item interactions, and so reducing the VRS training
time and the expensive hardware computation time in crafting adversarially
perturbed product images [237]. This pre-processing step produced the following
statistics: Amazon Women counts 54,473 interactions recorded between 16,668
users and 2,981 items, while Amazon Men count 89,020 interactions recorded
24,379 users and 7,371 items.

• Tradesy [114] dataset contains implicit feedback, i.e., purchase histories and
desired products, from the homonym second-hand selling platform. We applied
the same pre-processing pipeline described above. As for Amazon Women, we run
10 -core filtering. The final dataset counts 21,533 feedback recorded on 6,253
users and 1,670 products.

We report additional dataset statistics in Table 5.1.

Attacks

We test three state-of-the-art adversarial attacks against DNNs image classifiers.

• Fast Gradient Sign Method (FGSM) [101] is an L∞-norm optimized attack
that produces an adversarial version of a given image in just one evaluation step.
A perturbation budget ϵ is set to modify the strength —and consequently, the
visual imperceptibility— of the attack, i.e., higher ϵ values mean stronger attacks
but also more evident visual artifacts.

• Projected Gradient Descent (PGD) [155] is a L∞-norm optimized attack that
takes a uniform random noise as the initial perturbation, and iteratively applies
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an FGSM attack with a continuously updated small perturbation α —clipped
within the ϵ-ball— until either it effectively reaches the network misclassification,
i.e., Fc(xi + αi) = t, or it completes the number of possible iterations, i.e., 10
iterations in our evaluation setting.

• Carlini and Wagner attacks (C&W) [57] are three attack strategies based
on L0, L2 and L∞ norms that re-formulate the traditional adversarial attack
problem by replacing the distance metric with a well-chosen objective function.
C&W integrates the parameters κ, i.e., the confidence of the attacked image
being classified as t, and a, i.e., the trade-off between optimizing the objective
function and the classifier loss function.

Defenses

We investigate two defense strategies.

• Adversarial Training (AT) [101] consists of injecting adversarial samples into
the training set to make the trained model robust to them. The major limitations
of this idea are that it increases the computational time to complete the training
phase, and it is deeply dependent on the type of attack strategy used to craft
adversarial samples. For instance, Madry et al. [155] generates adversarial images
with the PGD-method to make the trained model robust against both one-step
and multi-step attack strategies.

• Free Adversarial Training (FAT) [197] proposes a training procedure 3−
30 times faster than the classical Adversarial Training [101, 155]. Unlike the
previous one, this method updates both the model parameters and the adversarial
perturbations doing a unique backward pass in which gradients are computed on
the network loss. Moreover, to simulate a multi-step attack —which would make
the trained network more robust— it keeps retraining on the same mini-batch
for m times in a row.

Visual-based Recommenders

To evaluate VAR approach, we considered five VRSs. Table 5.2 presents an overview
of the IFE components of the tested VRSs.

• Factorization Machine (FM) [186] is a recommender model proposed by Rendle
[186] to estimate the user-item preference score with a factorization technique.
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Table 5.2 Technical details of the state-of-the-art visual recommenders tested in the
experimental section of this chapter. We indicate with FC, Fully-Connected, and with
FM, Feature Maps.

VRS Image Feature Extractor

Extraction Layer Training
Model Reference FC FM Pretrained End-to-End

FM Rendle [186] ✓ ✓

VBPR He and McAuley [114] ✓ ✓

AMR Tang et al. [209] ✓ ✓

ACF Chen et al. [61] ✓ ✓

DVBPR Kang et al. [134] ✓ ✓

For a fair comparison with VBPR and AMR, we used BPR [188] loss function to
optimize the personalized ranking. In this respect, we adopted LightFM [141]
implementation integrating R with the extracted continuous features. It is worth
noticing that, differently from the recommenders we will present later, this model
is not specifically designed for visually aware recommendation tasks.

• Visual Bayesian Personalized Ranking (VBPR) [114] improves the MF
preference predictor by adding a visual contribution to the traditional collaborative
one. Given a user u and a non-interacted item i, the predicted preference score is
ŝui = pT

u qi + θT
u θi + bui, where θu ∈Θ|U|×h and θi ∈Θ|I|×h are the visual latent

vectors of user u and item i respectively (h << |U|, |I|). The visual latent vector
of item i is obtained as θi = Eφi, where φi is the visual feature of image item i

extracted from a pretrained AlexNet [140] and E is a matrix to project the visual
feature into the same space as of θu. Furthermore, bui includes the sum of the
overall offset, and the user, item and global visual bias.

• Attentive Collaborative Filtering (ACF) [61] tries to unveil the implicitness
of multimedia user/item interactions by means of two attention networks. That
is, one network learns to weight each user’s interacted, i.e., positive items —
because they are not equally important to the user— while another network
learns to weight each component of the feature map extracted from the product
image within the interacted items, e.g., regions of an image or frames of a
video. Given a user u and a non-interacted item i, the predicted preference
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score is ŝui =
(
pu +vu

)T
qi, where vu ∈V|U|×h is an additional user latent vector

weighted by the two attention-levels, i.e., item and component, described above.

• Visually-Aware Deep BPR (DVBPR) [134] enhances the preference predictor
proposed by He and McAuley [114] by replacing the pretrained visual feature
extractor with a custom Convolutional Neural Network (CNN), which is trained
end-to-end together with the preference predictor on the main recommendation
task. Given a user u and a non-interacted item i, the predicted preference score
is ŝui = θT

u F (e)(xi), where θu is the user visual profile seen for VBPR and F is
the custom CNN.

• Adversarial Multimedia Recommendation (AMR) [209] is an extension
of VBPR that integrates the adversarial training procedure proposed by He et
al. [115] named adversarial regularization to build a model that is increasingly
robust to FGSM-based perturbations against image features. Apart from the
different training procedures, the score prediction function is the same as VBPR.

Evaluation Metrics

In addition to CHR@K and nCDCG@K, we also study both the effects of adversarial
images on the IFE and the variation caused on the global recommendation performance.

IFE Performance. IFE performance is evaluated through the attack Success Rate
(SR), the percentage of adversarial samples that have affected the classifier behavior,
and the Feature Loss (FL), i.e., the mean squared error between the extracted image
features before and after the attack, and the Learned Perceptual Image Patch Similarity
(LPIPS) [241]. The idea behind LPIPS is to produce a perceptual distance value
between two similar images by leveraging (1) knowledge extracted from convolutional
layers inside state-of-the-art CNNs and (2) collected human visual judgments about
those pairs of similar images. We computed this metric fine-tuning a VGG [203] network
since Zhang et al. [241] proposed this configuration as the best one at imitating a real
human evaluation in the circumstances comparable to visual attacks.

VRS Performance. Global recommendation performance is evaluated with Re@K,
shown in Definition 4, and the expected free discovery (EFD@K), a beyond-accuracy
metric that provides a measure of the ability of an RS to recommend relevant long-tail
items [213]. Since we are interested in measuring whether the application of targeted
adversarial attacks might alter the overall performance of the RS, Table 5.7 reports
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the percentage variation of the performance between the attacked recommender and
the base one. The reported metric is evaluated as follows:

∆Rec =
1

|Attacks|

(∑
a∈Attacks Reca

)
−RecBase

RecBase
×100 (5.8)

where Attacks indicates the set of tested attacks, e.g., FGSM, PGD, and C&W,
and Base indicates that the metric value has been computed on the not-attacked
recommender. The same formulation has been used to evaluate the ∆EFD. Note that
∆ negative values indicate a reduction of the performance.

Evaluation Protocol

Here, we present the evaluation strategies used in the experimental phase to reproduce
our results.

Adversarial Attacks. We use the Python library CleverHans [177] to implement
the attacks. For both FGSM and PGD, we adopt ϵ = 4 re-scaled by 255. Then, for
PGD’s α parameter, we set the multi-step size as ϵ/6 and the number of iterations to
10. As for the C&W attack, we run a 5-step binary search to calculate a, starting from
an initial value of 10−2 and set κ to 0. Furthermore, we set the maximum number
of iteration to 1000 and adopted Adam optimizer with a learning rate of 5× 10−3

as suggested in C&W [57]. Finally, we save the adversarial images in tiff format,
i.e., a lossless compression, as lossy compression, e.g., JPEG, may affect the attacks’
effectiveness [106].

Image Feature Extraction. Image features extracted using the PyTorch pretrained
implementation of ResNet50 [112]. For FM, VBPR, and AMR, we set AdaptiveAvgPool2d
as extraction layer, whose output is a 2048-dimensional vector. For ACF, we set the
last Bottleneck output, i.e., its final relu activation, as extraction layer, whose output
is a 7×7×2048-dimensional vector. Finally, for DVBPR, we reproduce the exact same
CNN architecture described in the original paper [134], whose extraction layer output
is a 100-dimensional vector. Here, we adopted TensorFlow.

Defenses. In the non-defended scenario, we adopt ResNet50 pre-trained on ImageNet
with traditional training. On the other hand, we adopt ResNet50 pre-trained on
ImageNet with Adversarial Training and Free Adversarial Training when applying
defense techniques. For the former, we use a model trained with ϵ = 4. For the latter,
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Table 5.3 Averaged origin-target CHR on defence-free settings.

Dataset Origin CHR@K Target CHR@K CHRT/CHRO

Amazon Men Sandal 0.4508 Running Shoe 2.0191 4.4787
Amazon Women Jersey, T-shirt 0.6324 Brassiere, Bandeau 1.8531 2.9305
Tradesy Suit 0.3810 Trench Coat 1.5371 4.0345

Algorithm 2 Experimental Scenario of VAR.
1: Train the VRS on clean item images.
2: Measure the Base CHR@K for each category C.
3: Select origin (O) and target (T ) categories s.t. CHRO@K < CHRT@K.
4: Perform an Adv. Attack against IFE to misclassify O-Images as T .
5: Poison the dataset with the adversarial perturbed item images.
6: Measure the HRO@K of the O-Products after the Adv. Attack.

we employ a model trained with ϵ = 4 and m = 4 (that explains why we only run
attacks with ϵ = 4). Both models are available in the published repository.

Recommenders. We realize FM using the LightFM library [141] training the model
for 100 epochs and left all the parameters with the library default values. All the other
models are implemented in TensorFlow. As for VBPR and AMR, we train the models
following the training settings adopted by Tang et al. [209] while for DVBPR, we
adopted the same parameters found in the official implementation 1. On the contrary,
we chose ACF hyper-parameters through grid search (batch size: [32,64,128], learning
rate: [0.01,0.1], regularizer: [0, 0.01, 0.001]). Learning rate and regularizer are set to
0.1 and 0 respectively, while the batch size is set to 32 for Tradesy and 64 for Amazon
Women and Amazon Men. The rationale behind the fact that we apply a grid-search
to test ACF is that the other VRSs are originally presented and trained in a highly
comparable scenario to ours, i.e., the same datasets, while ACF has been tested by Chen
et al. [61] on diverse datasets. For each dataset, we use the leave-one-out training-test
protocol, putting in the test set the last time-aware user’s interaction.

5.3.2 Results and Discussion

The research questions that will be addressed in this section are defined as follows:

RQ1 Which are the effects of targeted adversarial attacks on the IFE used in the VRSs
in both defense-free and defense-activated settings?

1https://github.com/kang205/DVBPR

https://github.com/kang205/DVBPR
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RQ2 Starting from the performance of the CNN used for the IFE, which are the effects
of adversarial attacks and defenses on the VRS?

RQ3 How much the performance mentioned above is stable when we increase the
length K of recommendation lists?

RQ4 Are the global recommendation performance worsened in the studied adversarial
settings?

We present and discuss the VAR results evaluated on top-20 recommendation lists (we
indicate CHR@20 as CHR). In this section, we adopt the notation <dataset, VRS,
attack, defense> to indicate a specific VAR experimental setting. The reported results
have been computed following Algorithm 2. Table 5.3 shows the statistics of the
categories used in VAR experiments.

Attacks and Defenses Performance of IFE (RQ1)

This paragraph analyses the success rate (SR) and the feature loss (FL) of the
adversarial attacks against the IFE components reported in Table 5.4. Since we
did not apply any defensive strategy to the custom DNN adopted for DVBPR, the
corresponding table cells have been left blank.

Attack Success Rate. Table 5.4 confirms PGD and C&W as the strongest attacks
when applied to reduce the classification accuracy of a defense-free CNN classifier. For
instance, PGD reaches a near-100% SR on Amazon Men and 100% SR on Tradesy,
C&W’s SR is always more than 89%, while FGSM never gets the same results, showing
the lowest performance, i.e., 18%, on Amazon Women. As expected, this behavior varies
with defense strategies. Under this setting, C&W emerges as the best offensive solution
against defense strategies, as already demonstrated in [57]. For example, we observe
an average SR reduction in the SR results of 77% for FGSM, 82% for PGD, and 62%
for C&W .

Hence, we compare the SR results to the variation of visual-aware recommendations
for the items belonging to the perturbed category of images. Our assumption here is to
empirically find a conformity between classification and recommendation metrics on the
definition of successful attack. Surprisingly, Table 5.6 shows a different trend from the
one observed earlier for the defense-free setting. As far as the CHR is concerned, FGSM
and C&W attacks are almost aligned on average, i.e., 0.6222 and 0.6212 respectively,
but PGD is the best performing attack, i.e., 0.7932 averagely. We also see discrepancies



98 Training Time Adversarial Attacks and Defenses on Multimedia RSs

Table 5.4 Average values of Success Rate (SR) and Feature Loss (FL) for each
combination. FL values are multiplied by 103.

Data VRS Att.

Image Feature Extractor

Traditional Adv. Train. Free Adv. Train.

SR FL SR FL SR FL

Amazon
Men

FM, VBPR,
AMR

FGSM 65% 14.0948 18% 0.0330 15% 0.0278
PGD 97% 36.8843 18% 0.0334 15% 0.0283
C&W 89% 20.5172 48% 2.8022 42% 1.9080

ACF
FGSM 65% 9.0480 18% 0.0944 15% 0.0951
PGD 97% 9.2606 18% 0.0944 15% 0.0954
C&W 89% 10.4917 48% 0.7582 42% 0.4955

DVBPR
FGSM 65% 16.4055 — — — —
PGD 97% 16.1151 — — — —
C&W 89% 16.3442 — — — —

Amazon
Women

FM, VBPR,
AMR

FGSM 18% 9.6677 0% 0.0113 0% 0.0094
PGD 85% 27.6645 0% 0.0119 0% 0.0102
C&W 89% 21.2380 6% 0.1770 6% 0.3376

ACF
FGSM 18% 9.3257 0% 0.0346 0% 0.0424
PGD 85% 8.3596 0% 0.0352 0% 0.0436
C&W 89% 11.2079 6% 0.0399 6% 0.0594

DVBPR
FGSM 18% 20.6968 — — — —
PGD 85% 17.2065 — — — —
C&W 89% 24.4750 — — — —

Tradesy

FM, VBPR,
AMR

FGSM 83% 21.4011 43% 0.0308 30% 0.0274
PGD 100% 53.4589 43% 0.0311 30% 0.0273
C&W 100% 25.9374 80% 2.1185 63% 1.9739

ACF
FGSM 83% 14.6235 43% 0.0912 30% 0.1069
PGD 100% 10.7754 43% 0.0899 30% 0.1044
C&W 100% 15.6256 80% 1.8834 63% 1.5343

DVBPR
FGSM 83% 24.7173 — — — —
PGD 100% 27.0801 — — — —
C&W 100% 33.6879 — — — —

under defense-activated scenarios, in which all calculated CHR values show negligible
differences, with FGSM and C&W mildly outperforming PGD, i.e., especially on AT.
Observation 1. Attack success rate is not directly related to the effects on the
recommendation performance. In other words, being powerful enough to lead a
classifier in mislabelling an origin product image towards a target class does not justify
the recommendation lists’ effects.

Features Loss. Motivated by the previous observations, we investigate the Feature
Loss (FL) between original and attacked samples (as shown in Table 5.4). The “VRS”
column combines the models according to both the IFE and the extraction layer used
in the recommendation task. Our assumption here is to empirically find that high



5.3 Experiments 99

Table 5.5 Average values of Learned Perceptual Image Patch Similarity (LPIPS) for Amazon
Datasets combination. LPIPS is multiplied by 100. We mark in bold the best results.

Data Attack
Image Feature Extractor

T AT FAT
LPIPS LPIPS LPIPS

Amazon
Women

FGSM (ϵ = 8) 2.8505 1.8298 1.2119
PGD (ϵ = 8) 1.1136 0.7683 0.6369
C & W 0.2678 0.0731 0.0816

Amazon
Men

FGSM (ϵ = 8) 1.7124 2.2903 1.2293
PGD (ϵ = 8) 0.6916 0.7997 0.6468
C & W 0.2279 0.2688 0.1490

distances in the feature space correspond to high values of CHR and nCDCG (we
leave the SR out of the discussion due to the previous finding). Comparing the results
in Tables 5.4 and 5.6, we confirm a correlation between the variation of FL and the
attack efficacy on VRSs. For instance, we see how PGD and C&W higher adversarial
power in poisoning the VRS on Amazon Women—both on traditional and defensive
scenarios— is also evident in the calculated FL on the same dataset. Additionally, we
notice that the FL obtained for DVBPR on Amazon Women and Tradesy is averagely
higher than the one on Amazon Men, i.e., 20.7928 and 28.4951 on Amazon Women and
Tradesy respectively vs. 16.2883 on Amazon Men. We also identify the same trend on
DVBPR from a recommendation point of view, i.e., there could be an attack method
able to increase the base-case CHR.
Observation 2. The modification of VRS is closely linked to the magnitude difference
between original and perturbed image features. In short, perturbations leading to more
significant feature modifications may cause a strong influence on the recommendability
of the altered items.

LPIPS. Table 5.5 reports the LPIPS values measured on the Amazon datasets. We
observe that all attack combinations can keep LPIPS values within low ranges, under
the imperceptible nature of adversarial perturbations on images [208]. Thus, we connect
this obtained measure with the attack efficacy in failing the classifier (i.e., the DNN)
and the VRS. What follows is a detailed evaluation of scenarios involving —or not—
defensive techniques for the DNN. FGSM (ϵ = 8) fails to hide the produced perturbations
in the defense-free scenario, reaching the highest perceptible visual difference on Amazon
Women (2.8505). Coherently, this setting also shows a low SR and a weak alteration
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of visual recommendations (see Tables 5.4 and 5.6). Focusing on the two defenses
becomes fundamental to consider the LPIPS value along with its corresponding SR
and recommendation variations. As a matter of fact, in a defense context, where all
attacks averagely tend to perform worse at failing the DNN classifier, a measured low
average LPIPS value might trivially mean very few images were successfully attacked.
For instance, the described situation occurs in the combination <Amazon Men, PGD
(ϵ = 8), AT>. However, since these attacks have still been effective in pushing low
ranked category products (as evident in Table 5.6), then adversaries could exploit their
imperceptibility to craft even stronger perturbations (e.g., increasing ϵ). An intriguing
situation is when LPIPS on the defended DNN is higher than the non-defended one.
The worst case is <Amazon Men, FGSM (ϵ = 8), AT>, which shows a 34% increase of
LPIPS compared to the Traditional training. We explain this result by considering that
an attack might need to produce more significant perturbations to move the category
of the few correctly attacked images (about 24% in the cited example) towards the
targeted one. Not only is the attack inefficient, but it risks human identification.
Observation 3. The offline analysis of the possible human imperceptibility of adversarial
perturbations with the state-of-the-art metric LPIPS have demonstrated that attacked
images have barely perceptible visual artifacts that still keep breaking recommendation
performance are blind spots that adversaries could explore deeper for their malicious
purposes.

Category-based Performance (RQ2)

After having justified the results in Table 5.6, we discuss the category-based measures
across models and datasets studying the CHR and nCDCG.

The results on FM show that adversarial attacks are always effective in the case of
defense-free settings, with an across-dataset average CHR and nCDCG improvements of
+5.46% and 6.51%, respectively. Furthermore, the application of the two defenses shows
a partial defense. For instance, the <Amazon Men, FM, (AT, FAT)> combinations verify
that the recommendability of the perturbed category could even receive small negative
variations, e.g., an average reduction of CHR of -5.94% in the AT case. However, it can
be seen that attacks are still effective in any <(Amazon Women, Tradesy), AT, FM>
scenarios, e.g., CHRP GD = 0.4854 > CHRBase = 0.4720 in the Amazon Women dataset.

As regards VBPR, PGD is the most impactful strategy in any defense-free setting.
For instance, PGD leads to a three times CHR increase of the attacked category, i.e.,
suit, on the Tradesy dataset. It means that the adversary has been able to push
the class of products in the recommendation lists very effectively, ensuring that a
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Table 5.6 Results of the VAR framework. A CHR@K, or nCDCG@K, higher than the Base
means that the attack is effective. For each <dataset, VRS, defence> combination we put in
bold the most efficient attack.

Data VRS Att.
Image Feature Extractor

Traditional Adv. Train. Free Adv. Train.
CHR nCDCG CHR nCDCG CHR nCDCG

Amazon
Men

FM
Base 0.4960 0.0246 0.4082 0.0204 0.4048 0.0202

FGSM 0.5309 * 0.0266* 0.3886 0.0198* 0.3821* 0.0194*
PGD 0.5293* 0.0266* 0.3795* 0.0193* 0.3811* 0.0193*
C&W 0.5258* 0.0263* 0.3837* 0.0194* 0.3871* 0.0194*

VBPR

Base 0.6531 0.0293 0.3074 0.0141 0.3775 0.0159
FGSM 0.5824* 0.0299 0.6164* 0.0323* 0.5860* 0.0283*
PGD 1.1480 0.0538* 0.6410* 0.0324* 0.5918* 0.0286*
C&W 0.6132* 0.0290 0.6880* 0.0336* 0.6642* 0.0348*

AMR
Base 0.3944 0.0196 0.5037 0.0232 0.1076 0.0038

FGSM 0.3347* 0.0150* 0.4426* 0.0235 0.4178* 0.0187*
PGD 0.8365 0.0418* 0.4519* 0.0242 0.4263* 0.0193*
C&W 0.3678 0.0170* 0.4371* 0.0230 0.4451* 0.0202*

ACF
Base 0.5574 0.0278 0.3560 0.0176 0.3565 0.0176

FGSM 0.5692* 0.0282* 0.3773* 0.0185* 0.3517 0.0172*
PGD 0.5610 0.0280 0.3731* 0.0183* 0.3521 0.0172*
C&W 0.5628 0.0279 0.3690* 0.0181* 0.3471* 0.0169*

DVBPR

Base 0.6945 0.0359 — — — —
FGSM 0.6579* 0.0329* — — — —
PGD 0.5549* 0.0281* — — — —
C&W 0.6414* 0.0306* — — — —

Amazon
Women

FM
Base 0.6956 0.0347 0.4720 0.0236 0.3231 0.0162

FGSM 0.7030 0.0354* 0.4804* 0.0243* 0.3022* 0.0150*
PGD 0.7144 0.0356* 0.4854* 0.0244* 0.3093* 0.0155*
C&W 0.6935 0.0346 0.4761* 0.0240 0.2877* 0.0144*

VBPR

Base 0.4475 0.0210 0.5213 0.0251 0.3476 0.0161
FGSM 0.3933* 0.0182* 0.6199* 0.0310* 0.6204* 0.0318*
PGD 0.9530* 0.0459* 0.6463* 0.0327* 0.6413* 0.0330*
C&W 0.4215* 0.0179* 0.6457* 0.0326* 0.5880* 0.0302*

AMR
Base 0.9907 0.0462 0.8640 0.0454 0.5207 0.0303

FGSM 1.4178* 0.0862* 0.7379* 0.0334* 0.4658* 0.0230*
PGD 1.2720* 0.0713* 0.6664* 0.0307* 0.5003* 0.0250*
C&W 1.3762* 0.0761* 0.7390* 0.0336* 0.5112* 0.0252*

ACF
Base 0.9903 0.0511 0.6890 0.0349 0.4338 0.0219

FGSM 0.9895 0.0509 0.6935 0.0350 0.4737* 0.0242*
PGD 0.9932 0.0512 0.6915 0.0348 0.4759* 0.0243*
C&W 0.9947 0.0514* 0.6943 0.0351 0.4774* 0.0243*

DVBPR

Base 0.7787 0.0370 — — — —
FGSM 0.7959* 0.0388* — — — —
PGD 0.7407 0.0385* — — — —
C&W 0.9002* 0.0436* — — — —

Tradesy

FM
Base 0.3424 0.0167 0.3629 0.0183 0.4774 0.0241

FGSM 0.3696* 0.0183* 0.3800* 0.0189 0.5234* 0.0268*
PGD 0.3664* 0.0180* 0.3661* 0.0181 0.5172* 0.0265*
C&W 0.3800* 0.0190* 0.3968* 0.0196* 0.5236* 0.0269*

VBPR

Base 0.4201 0.0213 0.3011 0.0139 0.3243 0.0146
FGSM 0.5313* 0.0293* 0.5182* 0.0277* 0.5770* 0.0294*
PGD 1.3126* 0.0748* 0.4508* 0.0226* 0.5330* 0.0268*
C&W 0.4603* 0.0251* 0.4884* 0.0252* 0.5612* 0.0274*

AMR
Base 0.3710 0.0174 0.1638 0.0065 0.2215 0.0094

FGSM 0.4855 0.0246* 0.3662* 0.0190* 0.4094 0.0200*
PGD 1.0768* 0.0585* 0.3490* 0.0180* 0.3683* 0.0181*
C&W 0.4372* 0.0214* 0.3648* 0.0196* 0.3672* 0.0172*

ACF
Base 0.3712 0.0192 0.3685 0.0178 0.4476 0.0218

FGSM 0.3774* 0.0195* 0.3864* 0.0189* 0.4606* 0.0223
PGD 0.3728 0.0193 0.3869* 0.0190* 0.4604* 0.0223
C&W 0.3734 0.0193 0.3875* 0.0190* 0.4561* 0.0221

DVBPR

Base 0.5810 0.0298 — — — —
FGSM 0.5956* 0.0365* — — — —
PGD 0.4668* 0.0238* — — — —
C&W 0.5701* 0.0308* — — — —

* denotes statistically significant results (p-value≤ 0.05).
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suit will be recommended at least one time for each top-20 recommendation list, i.e.,
CHR = 1.3126 > 1 in the <Tradesy, VBPR, PGD, T> setting. Additionally, we
observe that there are effective attacks in any defended setting.
Observation 4. The adversarial robustification strategies have not protected VBPR
from the injection of perturbed images, although they got high performance in protecting
the classification.

The third tested VRS is AMR. We chose this model since it is the first VRS
to integrate adversarial protection by design, so we expected to get a limited
variation in traditional performance under attack settings. Surprisingly, results show
that AMR is prone to the effects of attacks as much as VBPR. For example, the PGD
method represents the biggest security threat on the VRS in defense-free settings, with
an average CHR improvements of +48.84% across the three datasets. Moreover, we
observe that <AMR, (AT, FAT)> models do not protect the proposed adversarial
threat model, notwithstanding the two defense techniques applied on both the IFE
and the VRS, respectively. For instance, CHR = 0.4451 > 0.1076 when comparing
C&W and Base in <Amazon Men, AMR, FAT> experiments. We justify AMR’s
low-quality protection against the tested attacks by the fact that it applies the
adversarial regularization directly on the extracted visual features [209], whereas
in our experimental framework, the perturbation is produced at the pixel level.
Observation 5. Combining state-of-the-art adversarial robustification of the IFE, e.g.,
AT and FAT, and the adversarial robustification of the VRS, e.g., the adversarial
regularization of an RS [115]) does not guarantee the protection of the performance.

The fourth model is ACF. This model is the most robust in the case of defense-free
settings when compared with the other models that use the visual features extracted
from an external pre-trained IFE, i.e., FM, VBPR, and AMR. Indeed, both CHR and
nCDCG show average variations of +0.79% and 0.61%, respectively, that are much
smaller than the one observed in the other models, e.g., the variation is 44.71% in VBPR
experiments. The same limited adversary efficacy in altering the recommendation lists
can also be seen in the defended settings.
Observation 6. The tendency of ACF to be naturally robust to the tested attacks
can be associated with the fact that it integrates a more semantic-oriented latent
representation of the images, e.g., the feature map, and its recommendation task
depends not only on the features extracted from the attacked item but also from the
set of the items previously voted by each user.

Finally, we study whether the attacks against a pre-trained CNN used for image
classification are transferable to DVBPR, a VRS that learns the deep visual features
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(a) <Amazon Men, DVBPR, Trad.> (b) <Amazon Women, DVBPR, Trad.>

(c) <Amazon Women, AMR, Trad.> (d) <Amazon Women, AMR, Adv. Train.>

Fig. 5.2 Plots of CHR@K by varying K from 1 to 100 on DVBPR and AMR trained
on Amazon Men and Amazon Women.

within the downstream recommendation task. It can be seen that the adversary’s
efficacy depends on the attacked dataset. Indeed, results in Table 5.6 show that
DVBPR is not affected by an increase of CHR in the Amazon Men dataset. However,
we can see that C&W effectively varies CHR by more than the +10% in the Amazon
Women dataset, and FGSM changes the CHR by +2.52% in Tradesy.
Observation 7. The learning of personalized deep visual representation of product
images by DVBPR could be fooled by adversarial attacks transferred from another-
trained DNN, raising the need for further investigation to robustify these models.
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Attack results when increasing the length of top-K lists (RQ3)

Before we move to the study of overall recommendation performance, we investigate the
effects of adversarial attacks and defenses by varying the length of recommendation lists
(K). Figure 5.2 reports two plots related to possible interesting cases shown in Table 5.6:
(1) the case where DVBPR was robust, or not, against the tested attacks, and (2) the
case where, by changing the IFE from a traditional to an adversarial trained one, AMR
showed more robust CHR@20 results in the Amazon Women dataset. The first scenario
in Figure 5.2a shows that the robust behavior of DVBPR observed in the Amazon
Men dataset is also confirmed on top-100 recommendation lists, while Figure 5.2b
verifies that C&W sill is a powerful strategy to push the perturbed category of product
with the difference with the CHR@K-baseline that increases with K. Regarding the
second set of plots, Figure 5.2c confirms that FGSM and C&W make the adversarial
regularization of the VRS ineffective since the CHR@K is always larger than Base

as k increases, while Figure 5.2d returns a new unknown phenomenon related to the
fact that the robustification of <AMR, AT>, observed on short recommendation lists,
e.g., K=20 in Table 5.6, could be not confirmed on longer recommendation lists, e.g.,
K=100 (CHR@100C&W ≃ 1.22×CHR@100Base).
Observation 8. Adversarial attacks’ efficacy might be even more evident when
analyzing longer top-K lists, raising the need for more powerful defensive strategies in
cases where the model is robust on short-length recommendation lists.

Overall Recommendation Variations (RQ4)

Table 5.7 reports the variations of Re and EFD measured on attacked recommenders.
The aim is to understand whether the application of defenses adopted to alleviate
attacks’ influence could generate a drastic variation of the overall recommendation
performance. For instance, ∆EF D on AMR has positive values independently of the
application of defense mechanisms in the case of Amazon Men, i.e., ∆EF D = +14.74%
in the case of FAT defense. In contrast, VBPR gets more negative variations across
both metrics in the cases tested on the Amazon Men dataset. This behavioral pattern is
different in the case of Amazon Women. Indeed, VBPR measures get positive variation
for FAT experimental cases, e.g., ∆Rec = +5.53% on the Traditional model, while
negative for the AT one, e.g., ∆Rec =−10.51%.
Observation 9. The application of powerful attacks has not tragically worsened the
accuracy and beyond accuracy performance. On the contrary, some measures have
significantly improved as a consequence of the attack.
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Table 5.7 Results of the overall variations of two recommendation metrics: recall (Rec)
and expected free discovery (EFD) to understand whether the tested attacks can be
identifiable by looking at the overall RS performance.

Data VRS

Image Feature Extractor

Traditional Adv. Train. Free Adv. Train.

∆Rec ∆EF D ∆Rec ∆EF D ∆Rec ∆EF D

Amazon
Men

FM +8.00 +38.45 -30.08 -18.04 -4.52 -4.17
VBPR +2.37 -1.33 -45.49 -41.58 -31.42 -33.76
AMR +0.75 +1.37 +5.92 +14.74 +2.50 +9.97
ACF -1.54 -4.02 -0.69 +0.35 +6.19 0.00
DVBPR +6.17 +4.72 — — — —

Amazon
Women

FM +8.42 +0.81 +23.69 +20.82 +9.02 +9.59
VBPR -1.74 -0.95 -10.51 -13.47 +1.29 +3.39
AMR -0.26 -1.39 +6.04 +5.71 +5.34 +3.90
ACF -1.96 -1.74 +1.72 -4.32 +5.50 +10.95
DVBPR -0.24 +2.94 — — — —

Tradesy

FM +5.23 -0.23 +8.51 +11.01 +36.59 +27.7
VBPR +2.95 -0.51 +4.50 -4.71 -1.17 -9.85
AMR +17.92 +20.88 +24.82 +28.98 +3.48 -2.38
ACF -2.38 -2.20 -6.17 -15.55 -4.95 -11.00
DVBPR -11.11 -15.47 — — — —

Analyzing the overall variations across the VRS, we observe that ACF and DVBPR
are the models less likely to get substantial overall performance variations when under
attacks. For instance, ACF shows a total average variation of -1.22%, while DVBPR
by -2.17%. On the contrary, FM, VBPR, and AMR are the models with less stable
overall recommendations. For example, VBPR gets overall variations on both metrics
higher than −11%, while AMR shows variations close to +9%.
Observation 10. Both the ACF attentive mechanisms and the DVBPR personalized
image features extracted make the recommendation task less subjected to performance
variations when the images of a single category of products are perturbed towards a
target (popular) one.

5.4 Related Work

The integration of image features in user’s preference predictor leads to enhancing both
recommendation [113, 114, 170, 238, 64] and search [228, 136, 238] tasks. The intuition
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is that the visual appearance of product images influences customer’s decisions, e.g., a
customer who loves red will likely buy red clothes [102]. For instance, He and McAuley
[114] extended BPR-MF [188] by integrating high-level features extracted from a
pre-trained CNN, while Kang et al. [134] trained the same model in an end-to-end
manner by stacking a custom CNN at the top, whose purpose is feature representation
learning and not simply classification. Yu et al. [233] added aesthetic information
in the recommendation framework to enhance CNNs’ extracted features, which carry
only semantic content. Yin et al. [232] proposed to incorporate visual features to learn
item-to-item compatibility relations for outfit recommendation. Furthermore, Niu et al.
[170] injected the visual features into a personalized neural model, and Chen et al. [61]
integrated component-level image features, e.g., regions in an image, to learn users’
preferences from more informative image representations. In this chapter, we have
focused on VRSs that integrate both features extracted from both CNNs pre-trained for
a classification task, e.g., [113, 61, 170, 209], and CNNs learned within the VRS [134]
to tackle an adversary threat model whose goal is to push a category of products thanks
to the capability of perturbing item images to be inserted in the dataset at training
time. The adversarial works closest to the research topic explored in this chapter are
the attack model proposed by Tang et al. [209] that applied adversarial perturbations
on the image features instead of images, and the works by Cohen et al. [67], Liu and
Larson [154] that have studied testing time pixel-level adversarial attacks. In contrast,
our threat model explores training time.

5.5 Summary

We have presented an evaluation framework, i.e., Visual Adversarial Recommendation
(VAR), to explore the application of targeted adversarial attacks (BB-TAaMR) on input
images for multimedia recommenders and investigate the effectiveness of robustification
mechanisms on the DNNs, i.e., Adversarial Training/Free Adversarial Training, used
to robustify the image feature extractor of a visual recommender. We have tested
three state-of-the-art white-box attacks, i.e., FGSM, PGD, and C&W, to perturb
the images of low-recommended products with the adversaries’ goal to make these
pictures misclassified the DNN toward the class of top-rated products (and push
their recommendability). Experimental results have shown that low recommended
product categories could become up to three times more recommended by perturbing
product images in a human-imperceptible way, and the defense mechanisms do not
guarantee the protections of VRSs against attacks. Interestingly, we have found that
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the effectiveness of attacks in altering the recommenders is more related to high feature
losses than high success rates. Additionally, we have also observed that DVBPR, a
VRS that learns deep image representations without external DNNs, is not robust to
adversarial samples transferred by attacking other networks. Finally, we have verified
that overall recommendation performance has not worsened under the experimented
threat model and defended IFEs may even improve in non-attack settings. These
findings raise the need to develop novel defense approaches to protect visually aware
recommender models. Investigating the reasons behind the models’ weakness could
benefit the studied recommenders and verify whether other multimedia recommenders,
e.g., music recommenders, could be affected by the same treats, e.g., push an artist.





Chapter 6

Adversarial Image Denoiser to
Defend Multimedia RSs against
Test-Time Attacks

Can Adversarial Image Denoiser (AiD) reduce the effectiveness of adversaries that use
test-time adversarially-perturbed product images? How much AiD application is

affecting the overall accuracy and beyond-accuracy performance?

Visual-based recommender systems (VRSs), have been demonstrated to be vulnerable
to test-time adversarial examples— noised item images that are almost human-
indistinguishable from clean ones— that, when integrated by a trained VRS, alter its
reliability by recommending improper products. While stronger and stronger adversarial
attacks have recently emerged to raise awareness of the risks, effective defense methods
are still an urgent open challenge. Indeed, the state-of-the-art defensive strategy,
named adversarial training for RSs, has been revealed to drastically fails under these
malicious strategies. In this chapter, we propose "Adversarial Image Denoiser" (AiD),
a novel defense method to protect VRSs against adversarial attacks. In AiD, we
exploit the idea of cleaning up the product images by the perturbations added by the
adversaries. In particular, we propose a U-Net-based denoising autoencoder trained to
minimize the visual differences between clean and adversarial images while preserving
the recommender systems’ behavior in clean settings.

Compared with the adversarial trained VRS, AiD has three main advantages.
First, it is easily integrable in existing visual recommendation methods (even with the
adversarially trained ones) because it operates on the products’ images before their use
in the recommendation process. Second, the victim recommender protected by AiD
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is more robust to either white- and black-box adversarial attacks by reducing their
efficacy in changing the original model behavior on score prediction and top-K ranking
tasks. Third, it preserves most of the overall recommendation performance measured in
clean settings under accuracy and beyond-accuracy evaluation perspectives. Extensive
experiments evaluate the efficacy of the proposed defense using three state-of-the-
art adversarial attacks when mounted against standard visually-aware recommender
algorithms on three real-world datasets.

6.1 Introduction

The economic gain associated with the use of RSs, together with the performance
enhancement proved for their visually-aware variant, have made VRSs the target of
adversaries [82]. For instance, an adversary can be an e-commerce competitor willing
to boost her sales by uploading adversarially perturbed product images [209, 85, 67,
154, 18]. Tang et al. [209] are the first authors to propose adversarial attack procedures
for reducing the accuracy of VRSs by altering the extracted image features with the
perturbation method proposed by He et al. [115]. However, this chapter has assumed
that the adversary should have edit access to the recommendation model parameters
by making it impractical in a real-world scenario.

Subsequent works have focused on adversaries that perform their malicious goals
(i.e., pushing an item or a set of items in high positions of the recommendation lists)
by directly uploading adversarially perturbed product images. For instance, Di Noia
et al. [85], Anelli et al. [18] proposed an adversarial attack strategy, named BB-TAaMR,
that implements attack strategies designed against image classifiers (i.e., FGSM [101],
PGD [155], and Carlini & Wagner [57]) to mislead the CNN used to extract the visual
features in classifying the target items towards as port of a popular category of products.
Note that BB-TAaMR is a black-box strategy since the adversaries access only items’
popularity information publicly available on the platform. Further, Liu and Larson
[154] and Cohen et al. [67] have proposed adversarial attacks that perturb product
images to push an item by building perturbations by maximizing the preference scores
predicted by the recommender. While they have proposed both white-box (WB) and
black box (BB) strategies— by assuming different levels of adversaries’ knowledge— we
focus on the strongest (WB) ones. In particular, Liu and Larson [154] have built the
Insider Attack (WB-INSA) perturbations by directly employing the gradients measured
when maximizing the predicted preference score, and Cohen et al. [67], have used the
Sign of the Gradient (WB-SIGN) to speed up the perturbation process.
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Fig. 6.1 Overview of a Visual-based Recommender Systems protected by the Adversarial
Image Denoiser (AiD) in the presence of an Adversarial Image (x∗).

While the literature on proposing novel adversarial attack strategies is rich, only a
few works exist on finding solutions to defend visual recommenders against the existing
solutions. To the best of our knowledge, Adversarial Multimedia Recommendation
(AMR) [209] is the state-of-the-art defensive solution proposed in recommendation
settings. In this model, Tang et al. [209] integrate VBPR with the adversarial
personalized training procedure proposed by He et al. [115]. However, while AMR
has been proved to be effective against the adversarial perturbations of the visual
features [209], recent attacks by Di Noia et al. [85], Anelli et al. [18], Liu and Larson
[154] have tested its limits against adversarial perturbation of product images with the
goal to push their positions in the recommendation lists.

Motivated by the lack of adequate defense mechanisms, in this chapter, we proposed
a novel defense mechanism named Adversarial Image Denoiser (AiD) to be integrated
before the feature extraction process. The main idea of this defense is to learn how to
remove the noise from the adversarial images constructed to alter the visually-aware
recommendation task. Technically, we accomplish this by training a U-Net-based
denoiser auto-encoder [149] with a high-level and recommendation-level guided loss
function. The architectural schema of a VRS protected by AID is shown in Figure 6.1.
To summarize, our main contributions are:

• the proposal of a novel defense solution, named Adversarial Image Denoiser
(AiD), to protect VRSs against adversaries that can upload adversarial images
on the recommendation platform to push the recommendability of target items;

• the study of the AiD robustness in comparison with AMR— the state-of-the-art
adversarially trained recommender— by evaluating the variations of the predicted
scores and the ranking-positions of the victim items with under three adversarial
attack methods (i.e., BB-TAaMR, WB-SIGN, and WB-INSA) by also varying the
number of pixels modifiable by the adversary (perturbation budget) and the
number of iterations that the adversary can perform to build the malicious noise;
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• the verification that the integration of AiD into a VRS does not drastically impact
the overall accuracy and beyond-accuracy recommendation performance when
used in genuine scenarios (without adversarial images);

We conduct experiments on three real-world datasets to validate the effectiveness of
the proposed defensive solution.

6.2 Background and Related Work

In this section, we first describe some useful notations and present the used formalization.
Due to the complexity of the scenario, in this chapter, we use a slight different
formalization that is fully presented in this section. Let U , I, and S be the set of
users, items, and score-based preference feedback, where |U|, |I|, and |S| indicate
the size of each set, respectively. Then, sui ∈ S is valued when the user u ∈ U has
previously interacted with the item i ∈ I. For instance, in the case of implicit feedback,
sui = 1 when u has purchased or clicked i (e.g., the product of an e-commerce catalog).
We define the item recommendation task as the problem of producing a user’s
personalized list of un-interacted items with the goal to maximize her utility function.
To build the recommendation list, a recommender system sorts by descending order
the unseen items based on ŝΘ(·), the preference score predicted by the recommender,
where Θ are the learned model parameters.

6.2.1 Visual-based Recommender Systems

VRSs enhance the performance of the item recommendation task by exploiting item
images. The intuition is that the visual appearance of product images influences
customers’ decisions, e.g., a client who prefers white shoes will likely purchase white
dresses [102]. A standard approach is to integrate high-level representations of product
images, also named visual features [125, 91, 223], extracted from a convolutional neural
network (CNN). Let xi denote the original image associated with the item i ∈ I, and
yi the category. Let fΦ : x→ y be a L-depth CNN to predict p(yi|xi), let Φ its model
parameters, and f l(xi), 0 ≤ l ≤ L− 1 be the output of the l-th layer of f given the
input xi, then φi = f l(xi) is a visual feature that can be used in a VRS. Then, a
visual-based recommender model predicts the preference score for each (u,i)-pair by
redefining the prediction function as follows:

ŝui := ŝΘ(f l(xi),u, i) = ŝΘ(φi,u, i) (6.1)
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Commonly, l is the first fully connected layer after the last convolutional block [114, 170,
134]. This formalization is at the core of many visual recommenders. For instance, He
and McAuley [114] propose the pivotal visual recommender, named VBPR, integrating
into BPR-MF [188] the visual features extracted from the AlexNet [140] network
trained on ImageNet [84]. Similarly, Yu et al. [233] also add aesthetic information
to enhance the quality of the image representations. Furthermore, Yin et al. [232]
incorporate visual features for outfit recommendation. Niu et al. [170] use a neural
model to learn non-linear relations between visual features and users’ preferences.

6.2.2 Existing methods for adversarial attacks

The first attack by Szegedy et al. [208] aim to force a machine learning (ML) model
to have an incorrect behavior on perturbed images.

Definition 29 (Adversarial Attack). Given a classifier f(·), the adversarial perturbation
δ of the adversarial sample x∗ = x+ δ1 x such that f(x∗) ̸= f(x) is defined as follows:

max
δ
Lf (x+ δ, y), s.t., ∥δ∥∞ ≤ ϵ, (6.2)

where L is the network loss function and ϵ is the perturbation budget, typically
chosen as small as possible such that the ∞-norm of the perturbation is below that limit
to make it human-imperceptible.

While numerous attacks have emerged in the computer vision domain (e.g., [101,
155, 57])), recently, adversarial issues have also emerged in the recommendation task.
Three types of adversarial perturbations have raised the interest of the research
community depending on the altered input [82]: the set of recorded feedback [143, 93],
the model parameters [115, 209], and the content data [182, 67, 154]. The work
presented in this chapter is placed in the last category whose standard adversarial goal
is to crush the reliability of a trained VRS by pushing (or nuking) an item, or a set of
items, towards a higher recommendation position or bigger predicted preference score.
An intuitive example is a seller uploading maliciously perturbed images of her products
to increase their probability of being frequently recommended by an e-commerce.
Assuming no- or complete-knowledge of the recommender model, both black-box (BB)
and white-box (WB) strategies have been designed to quantify the adversarial risks.
Below, we describe the most representative techniques: BB-TAaMR [85], WB-SIGN [67],
and WB-INSA [154].

1Note that we use x instead of xi to indicate an image associated with an item i.
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Targeted Adversarial Attack.

Di Noia et al. [85] propose to perturb item images such that the product class predicted
by the CNN used to extract the features will misclassify them towards the category of
more famous articles. The authors’ intuition is to make the visual features extracted
from the adversarial images of the victim items (e.g., white bag) closer to a "target"
class of popular products (e.g., shoes). Between the set of the strategies in [85], we
test PGD [142], the most influential one, defined below.

Definition 30 (BB-TAaMR). Given the clean image x, the popular class p, the number
of steps T , and the budget ϵ, let α = 2.5 · ϵ/T be the perturbation size applied at each
step, then PGD is defined as follows:

x∗,0←− x // Genuine product image. (6.3)

x∗,t←− Clipx,ϵ

[
x∗,t−1−α · sign(∇x∗,t−1Lf (x∗,t−1,p)

]
(6.4)

where t ∈ {1,2, ...,T}, ∇x∗,tLf (·) is the Jacobian of f(·), sign(·) is the sign function,
and Clipx,ϵ

[
·
]

is an element-wise clipping function to limit the L∞-norm of the final
perturbation in the ϵ-bound.

Sign-based Attack.

Cohen et al. [67] suggest to build a white-box attack by computing the sign of the
gradient of the recommendation score function ŝ(·) with respect to all the pixels px in
the product image x. In particular, the authors apply the chain rule to perform the
gradient as follows: ∂ŝ(x)

∂px
= ∂ŝ(x)

∂φ ·
∂φ
∂px

.

Definition 31 (WB-SIGN). Given x, p, T , ϵ, and α as in Definition 30, the WB-SIGN
adversarial attack method is defined as follows:

x∗,t←− Clipx,ϵ

[
x∗,t−1 +α · sign(∂ŝ(x)

∂px
)
]

(6.5)

where, to be fair in comparing with the other attacks, we have extended the initial
formulation in [67] with an iterative implementation.

The authors also propose two BB strategies not explored in this chapter since, as
expected, they have been demonstrated to be much less effective than WB-SIGN.
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Insider Attack.

Liu and Larson [154] propose a WB-attack model, named insider attack (WB-INSA), by
adding an adversarial perturbation on the item images through an iterative methodology
to maximize the predicted scores over the users in the platform.

Definition 32 (WB-INSA). Given x, p, T , and ϵ as in Definitions 30 and 31, the
WB-INSA adversarial sample is generated by

x∗,t←− Clipx,ϵ

[
x∗,t−1 + ∂ŝ(x)

∂px

]
(6.6)

where, to be comparable with the other strategies we preserve the maximum clipping of
the perturbation in the ϵ bounded space.

WB-INSA, differently from WB-SIGN, directly uses the gradient back-propagated
through the VRS and the CNN to alter the images.

6.2.3 Existing methods for defenses

Adversarial Training (AT) by Goodfellow et al. [101] is a popular defense strategy to
robustify ML models by training them with adversarial samples. While its origins
date back to the robustification of image classifiers, He et al. [115] have adapted the
approach for the recommendation task by robustifying the recommender with respect
to adversarial perturbations applied on model parameters.

Definition 33 (Adversarial Training for Recommenders). Let Θ and LRS be the
parameters and the loss of an RS, then the Adversarial Training for RSs is defined
as follows:

argmin
Θ

max
δadv,∥δ∥≤ϵ

LRS(Θ)+λLRS(Θ+ δ)︸ ︷︷ ︸
adversarial
regularizer

(6.7)

with δ = ϵ · Γ
∥Γ∥ and Γ = ∂LRS(Θ+ δ)

∂δ
(6.8)

where λ is the adversarial regularization coefficient that controls the adversarial regularizer
– the model loss obtained when an adversarial noise perturbs the model parameters.

Motivated by the AT efficacy in robustifying pure CF models [115, 235, 179, 71],
Tang et al. [209] adapt this technique for designing robust multimedia recommendations.
The proposed state-of-the-art defended VRS, named Adversarial Multimedia Recommender
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(AMR), robustifies VBPR [114] by implementing the technique in Definition 33.
However, AMR is trained to be robust against the visual features’ perturbation
(φ) and not the product images ones against whom it has been demonstrated to be
fragile Anelli et al. [18], Liu and Larson [154]. For this reason, we propose AiD inspired
by the intuition of removing the noise instead of making the recommender robust
against it as effectively tested in other tasks such as image classification [103, 149].

6.3 The Proposed Defense

Since adversarial perturbations build with the attack strategies presented in Section 6.2
are constrained to be small at the pixel level, we propose the integration of an image
denoiser to remove the adversarial noise and reduce the harmful effects of the attacks.
Here, we describe the AiD architecture shown in Figure 6.2, followed by the presentation
of its loss function and training algorithm.

6.3.1 Architecture

We implement AiD as a convolutional version of the denoising auto-encoder (DAE) [215]
upgraded with a U-net [192], where dΩ : x∗ −→ x̃ is the denoising function where Ω are
the model parameters. The used architecture, named DUNET, has been designed
by Liao et al. [149] to learn how to reconstruct the adversarial noise (dx) to be removed
from the input adversarial sample such that:

x̃ = x∗−dx̃. (6.9)

where the denoised image x̃ should be equal or similar to the clean one x and dx̃, the
AiD’s learned adversarial noise, should be equal to δ (i.e., the adversarial perturbation
added to x to make x∗). As shown in Figure 6.2, AiD is composed of a feedforward
(encoder) and a feedback (decoder) path connected with lateral links (Fuse operation)
going from the encoder layers to their corresponding decoder’s one. Note that the
input and output shapes are both 224x224x3 which are the input dimensions of the
CNN used in our experiments (i.e., ResNet50 [112]).

6.3.2 Loss Function

A standard pixel-level guided denoiser (PixGD) loss is defined as LP ixGD = ||x− x̃||,
where || · || is the L1-norm. Liao et al. [149] have demonstrated that even if PixGD
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suppresses the pixel-level noise, then the imperceptible adversarial perturbation can be
progressively amplified by the network with the distortion of its high-level responses,
which are the visual features (i.e., φ) used in a VRS (see Section 6.2.1). For this reason,
we use a high-level guided denoiser (HGD) loss function.

Definition 34 (High-level Guided Loss). Let φ the item visual features of a clean
image x, let φ̃ the features extracted from its denoised version x∗, then the high-level
guided denoiser (HGD) loss function is defined as follows:

LHGD = ||φ− φ̃|| (6.10)

where the denoiser is explicitly trained to reconstruct the original visual feature (φ)
lately used in the VRS.

Each product’s visual feature produced by the denoised image (i.e., φ̃) is then
integrated in the recommender to infer the preference scores (ŝΘ(φ̃i,u, i)). To make
the training of the denoiser aware of preserving the preference scores predicted by the
recommender in authentic settings, we propose a recommendation-level guided denoiser
(RGD) reconstruction loss.

Definition 35 (Recommendation-level Guided Loss). Let i be the attacked item with
(x,x∗)-pair of clean and perturbed images, let x̃ the image denoised by AiD, then the
RGD loss is defined as follows:

LRGD = 1
|U|

∑
u∈U

(
ŝui(φ)− ŝui(φ̃,u, i)

)2
(6.11)

At this point, we can define the final AiD loss function.

Definition 36 (AiD Loss). Let LHGD the high-level guided loss function and LRGD

the recommendation-level guided loss, we defined the AiD loss function as follows:

LAiD = LHGD +ηLRGD (6.12)

where η is a coefficient to control the impact of LRGD.

Note that AiD is an unsupervised model, since the ground truth labels of product
images are not needed in its training process.
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Fig. 6.2 The detail of AiD Architecture.
The Conv operational block is reported in the right part of the figure.

6.3.3 Training Procedure

After having introduced the denoiser architecture and its loss function, the AiD
optimization problem is defined as follows:

argmin
Ω
LAiD = argmin

Ω

(
LHGD +ηLRGD

)
(6.13)

A general overview of the training algorithm and back-propagation of the errors is
shown in Figure 6.3. The pseudocode of the algorithm used to train AiD is presented
in Algorithm 3, where µ is the learning rate used to train the denoiser, and D∗ is
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Fig. 6.3 Graphical Overview of AiD Training Algorithm.

the dataset containing the all adversarial images used to train, validate, and test the
denoiser.

6.4 Experiments

Here, we present experimental settings and the discussion of the results.

6.4.1 Settings

In this section, we first introduce the real-world datasets and the procedure to create
the adversarial images used to train and evaluate AiD. Then, we present the visual
recommenders and the evaluation metrics. Finally, we report experimental details.

Datasets

Recommendation Datasets. We test our defensive method on the following
datasets commonly utilized to evaluate VRSs.

• Amazon Boys & Girls [114, 159]) is an Amazon.com fashion dataset containing
implicit feedback towards clothing articles. as suggested by He and McAuley
[113, 114], we filter with the 5-core technique by removing the users, as well as,
the items with less than five feedbacks.
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Algorithm 3 Training of AiD
1: Input: CF data S, Dataset of Adv. Images D∗

T , D∗
V .

2: Initial Parameters: Θ and Φ (fixed), Ω (trainable)
3: Output: Ω for AiD (trainable)
4: for epoch = 1, ...,Nep do
5: V alidLoss←−−∞, ΩBEST ←− Ω
6: for x∗ ∈ D∗

T do
7: // Compute AiD Loss
8: x←− x∗ corresponding clean image
9: x̃←− d(x∗)

10: φ̃,φ←− f(x̃),f(x)

11: LAiD←− ||φ− φ̃||+η 1
|U|
∑

u∈U

(
ŝui(φ)− ŝui(φ̃,u, i)

)2

12: // Compute Ω Gradients and Perform SGD-updates
13: gΩ←− ∂LAiD(Ω)/∂Ω
14: Ω←− Ω+µgΩ
15: // Compute Validation Loss on D∗

V
16: EpV alidLoss←− 0
17: for x∗ ∈ D∗

T do
18: EpV alidLoss←− EpV alidLoss+LAiD(x∗)
19: EpV alidLoss←− EpV alidLoss/|D∗

V |
20: if LAiD(D∗

V )≤ ValidLoss then
21: ValidLoss ←− EpV alidLoss
22: ΩBEST ←− Ω
23: Ω←− ΩBEST

• Amazon Men [159, 113, 114] is another popular dataset containing men’s clothing
from the Amazon.com category "Clothing, Shoes and Jewelry". As in [113, 114],
we use the 5-core filtering.

• Pinterest [97, 116] collects images and interaction data from the homonym
social platform. After having downloaded the item images still available on the
platform, we apply 5-core on users.

For each image related to an item in the dataset, we have extracted high-level visual
features with a pre-trained ResNet50 [112]. We split the dataset into training, validation,
and test sets by adopting the leave-one-out protocol using the temporal split for Amazon
Boys & Girls and Amazon Men, while random split from Pinterest. Table 6.1 shows
the statistics of our preprocessed datasets.
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Table 6.1 Statistics of the three datasets used to test AiD.

Dataset U I S

Amazon Boys&Girls 1425 4507 9213
Amazon Men 16278 31750 113106
Pinterest 30375 19976 395418

Table 6.2 Adversarial images generated by different adversarial attack methods (T :
iteration, ϵ: perturbation budget).

Data Attack T ϵ

Train
D∗

T

WB-SIGN 1, 4, 8 rnd([1,16])
WB-INSA 1, 4, 8 rnd([1,16])

Valid
D∗

V

WB-SIGN 1, 2, 4 rnd([1,16])
WB-INSA 1, 2, 4 rnd([1,16])

Test
D∗

τ

BB-TAaMR 1, 4, 8 4, 8, 16
WB-SIGN 1, 4, 8 4, 8, 16
WB-INSA 1, 4, 8 4, 8, 16

rnd(·) uniform sample of one integert.

Adversarial Image Datasets For each dataset, we prepared the set of adversarial
images (D) running several combinations of adversarial methods on 200 randomly
extracted items (80:10:10 are the percentage of target items put into the train, validation,
and test set). Inspired by the procedure used by Liao et al. [149], Table 6.2 reports
all the combinations of adversarial attacks used to build the training (D∗

T ), validation
(D∗

V ), and test (D∗
τ ) sets. Note that, to prepare the test set (whose attack effects

on recommendations are discussed in Section 6.4.2), we use also BB-TAaMR with the
following most popular "target" categories (p): "Running Shoe" for the Amazon datasets,
and "website, website, internet site, site" for Pinterest.

Recommenders

We test two standard visual-based recommenders:

• VBPR (Visual Bayesian Personalized Ranking from Implicit Feedback) [114]
a MF-based model integrating the product visual features in the predicted
preference score function as follows:

ŝui = pT
u qi + θT

u (Eφi)+βui (6.14)
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where pu and qi ∈ Q|I|×h, are the user and item embedding vectors extracted
from the low-rank matrices P and Q with the number of factors h set to be
<< |U|, |I| , θu ∈Θ|U|×υ is a visual-oriented latent vector of user u, E is a matrix
to project φi into the h-space, and βui stands for the sum of the user, item, and
global visual biases.

• AMR (Adversarial Multimedia Recommendation) [209] is an extension of VBPR
that integrates the adversarial training procedure proposed by He et al. [115]
presented in Section 6.2.3. Apart from the different training procedures, the
score prediction function is the same as VBPR (see Equation (6.14)).

Evaluation

To analyze whether the denoiser is adequate, we evaluate the variations in the predicted
preference scores and the top-K recommendation lists. Additionally, since the AiD-
defended VRS must be valid without adversaries, we measure overall recommendation
metrics.

Attack Evaluation To evaluate the adversarial attacks according to the capacity
of increasing the predicted preference score, we firstly define the average prediction
shift.

Definition 37 (Prediction Shift (PS)). The Prediction Shift (PS) measures the mean
variation of the preference scores across all the attacked items as follows:

PS = 1
|D∗

τ |
∑

j∈D∗
τ

(
ŝuj(x∗)− ŝuj(x)

)
(6.15)

where ŝuj(x) is the score predicted on the authentic image associated with the item j

against which the adversary has performed an attack — whose altered predicted score
is ŝuj(x∗).

To evaluate the attack effects of recommendation ranking, we start by defining the
Attack Hit Ratio (aHR@K) as in [67].

Definition 38 (Attack Hit Ratio (aHR@K)). Let attackhit@K(j,u) be a hit function
that is 1 when the target item is in the top-K list of the user u, 0 otherwise, then
aHR@K is defined as:

aHR@K = 1
|D∗

τ |
∑

j∈D∗
τ

1
|U|

∑
u∈|U|

attackhit@K(j,u) (6.16)
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where j ∈ D∗
τ indicates that attackhit@K is measured on a target item whose image has

been adversarially perturbed.

Then, we introduce a novel measure, named Ranking Robustness.

Definition 39 (Ranking Robustness at K (RR@K)). Let aHR@Kbef and aHR@Kaft

be the attack hit ratios measured before and after the attack, respectively, and let

∆aHR@K = aHR@Kaft−aHR@Kbef

aHR@Kbef
(6.17)

be the difference ratio, then RR@K is defined as follows:

RR@K =
∣∣∣∣ ∆aHR@Kw

∆aHR@Kwo

∣∣∣∣ (6.18)

where ∆aHR@Kw and ∆aHR@Kwo are measured when the VRS is protected with and
without AiD.

RR@K≃ 0 means that AiD has reached optimal performance, RR@K≃ 1 is the
scenario where AiD does not impact the attacks’ efficacy, and RR@K >> 1 is the awful
situation where the AiD could have considerably impacted the presence of target items
in the top-K lists.

Recommendation Evaluation We study accuracy and beyond-accuracy metrics
on top-K recommendation performance. For accuracy, we measure the recall (Rec@K),
that accounts for a fraction of test items that are correctly suggested in the top-K lists,
and the normalized discounted cumulative gain (nDCG@K), that analyzes the ranking
position of correctly recommended items by assigning higher relevance scores with hits
in top positions. To evaluate the novelty and diversity, we measure the fraction of
items covered in the catalog (iCov@k) and the expected free discovery (EFD@K). In
particular, EFD@K estimates the capacity to recommend diverse items [213]. Finally,
for what regards the study on the effects of popularity bias, we adopt the metrics used
by [2]: the average recommendation popularity (ARP) that calculates the popularity of
the recommended items in each list, the average percentage of long-tail items (ACLT),
and the average coverage of long-tail items (APLT), that estimates the exposure of
long-tail items in the entire recommendations. As suggested by Abdollahpouri et al. [2],
we use the 80:20-split in which the short-head are the top 20% of items by popularity,
and the long-tail ones are the last 80%. As in Definition 39, we use the apices w and
wo to indicate the metric values measured with and without a VRS protected by AiD.
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Implementation Details.

In the first stage, we train each visual recommender with model parameters initialized
by a Gaussian distribution with a mean of 0 and standard deviation of 0.01 as
in [61]. We search the best-performing recommender with respect to Rec@50 by
exploring their learning rate in {0.0001,0.001,0.01} and the regularization coefficients
in {0.00001,0.001}, and fixing the number of training epochs to 100, the batch size
to 256, and the number of latent factor (h) to 128. The adversarial epochs used for
training AMR are 50 (performed after the initial 50 epochs with standard VBPR
training) with λ = 1 and ϵ = 1 (see Definition 33 for further details). AiD is trained
for 100 epochs. We set η = 0 for the first 50 epochs to allow the denoiser to focus on
the high-level guided reconstruction. Then, we train the denoiser for 50 epochs, fixing
η = 1, for learning how to preserve the recommendation-level quality. We set the batch
size to 16, and, following the suggestion by Liao et al. [149], we train the denoiser with
the Adam optimizer with µ = 0.001. We perform our experiments using the ELLIOT
reproducibility framework [18] by releasing our configuration files.

6.4.2 Results and Discussion

In this section, we perform, analyze and discuss the experimental results with the aim
to answer the following research questions:

RQ1 Can Adversarial Image Denoiser (AiD) reduce the effectiveness of adversarial
attacks? How is it performing with respect to the state-of-the-art adversarially
trained model (i.e., AMR) and, if possible, improving its robustness?

RQ2 Is the defensive strategy robust when adversaries increase the perturbation budget
(ϵ) and the number of steps (T )?

RQ3 How much AiD is able to reduce the impact of adversarial attacks on top-K
recommendation lists?

RQ4 How much AiD application is affecting the overall accuracy and beyond-accuracy
performance?

Analysis of PS (RQ1)

Here, we compare prediction shifts with the most human-imperceptible budget (ϵ = 4)
and a single iteration (T = 1). The results are listed in Table 6.3. We start by verifying
that black-box attacks are less effective than white-box ones since, as expected, BB
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Table 6.3 Prediction Shift measured on (ϵ = 4,T = 1)-attacks without and with the use
of AiD. We bold values when AiD is effective.

Dataset Model Attack PSwo PSw

Amazon
Boys&
Girls

VBPR
BB-TAaMR -0.1437 0.0507
WB-INSA 0.8250 0.1410
WB-SIGN 1.8466 1.2668

AMR
BB-TAaMR 0.4643 0.6648
WB-INSA 1.0432 0.2193
WB-SIGN 1.3349 1.1183

Amazon
Men

VBPR
BB-TAaMR -0.1072 0.1105
WB-INSA 2.2217 0.5560
WB-SIGN 2.2413 1.0005

AMR
BB-TAaMR -0.0803 -0.0423
WB-INSA 2.2418 0.6057
WB-SIGN 2.5066 1.0969

Pinterest

VBPR
BB-TAaMR 0.4784 0.1729
WB-INSA 1.9113 0.4931
WB-SIGN 1.8929 0.6434

AMR
BB-TAaMR 0.7163 0.1470
WB-INSA 1.3108 0.2205
WB-SIGN 1.2817 0.3345

attacks have a complete absence of knowledge on the model and dataset. Indeed,
contrary to BB, WB attacks cause a vast increase in predicted preference scores in every
tested scenario (e.g., PSwo > +1). At this point, we analyze the capacity of AiD in
protecting VBPR. It can be seen that the use of AiD has been effective in reducing
the average prediction shifts for nearly all combinations of black-box and white-box
attacks and VBPR. For instance, PSw is always reduced by more than three times for
each WB-INSA attack independently of the datasets (e.g., 0.1410 < 0.8250; 0.5560 <
2.2217; and 0.4931 < 1.9113 from the top of the table to the bottom). Extending the
analysis to the integration of AiD with the adversarially trained visual recommender
(i.e., AMR), the results in Table 6.3 widely validate the AiD’s quality in reducing the
adversaries’ goal of altering the predicted preference scores. As an example, PS moves
from 0.7163 to 0.1470, and from 1.2817 to 0.3345 on Pinterest subjected to BB-TAaMR
and WB-SIGN. These results endorse that AiD is an effective defensive solution, even
when used together with adversarially trained recommenders.
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Table 6.4 Prediction Shift (PS) of the WB-INSA attack by varying the budget (ϵ ∈
{4,8,16}) and the number of iterations (T ∈ {1,4,8}).

VBPR AMR

Amazon
Boys&
Girls

Amazon
Men

Pinterest

Legend:

Analysis of PS when varying ϵ and T (RQ2)

Table 6.4 presents six plots that show PSwo and PSw when varying the number of
steps T ∈ {1,4,8} and the perturbations budget ϵ ∈ {4,8,16} only for the WB-INSA
attack performed against both recommenders being the WW-attack with the lowest
PSw values. First, analyzing the continuous lines, we get evidence that PSwo gets a
considerable boost in the absence of the denoiser with empowered adversaries (bigger
T or ϵ). The only exception is for the attacks against AMR trained on the Pinterest
dataset, where the decrease of the attack effects can be explained by the fact that the
adversarial training might have influenced the efficacy of more potent attacks. However,
the application of the denoiser (dotted lines) has effectively intercepted the attempts of
stronger adversaries by always showing very low prediction shifts. For instance, it can
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Table 6.5 Analysis of top-50 ranking-aware performance of for the VRSs without and
with the use of AiD.

Dataset Model Attack ∆aHRwo ∆aHRw RR

Amazon
Boys&
Girls

VBPR
BB-TAaMR -0.3011 -0.0899 0.2986
WB-INSA 0.9677 0.1461 0.1509
WB-SIGN 2.7419 1.8792 0.6854

AMR
BB-TAaMR -0.3204 -0.2179 0.6799
WB-INSA -0.4972 -0.2542 0.5112
WB-SIGN -0.8149 -0.5726 0.7027

Amazon
Men

VBPR
BB-TAaMR -0.1552 -0.3777 2.4335
WB-INSA 1.8702 -0.1739 0.0930
WB-SIGN 1.6921 0.1304 0.0771

AMR
BB-TAaMR 55.6936 -0.2752 0.0049
WB-INSA 79.8543 0.2141 0.0027
WB-SIGN 81.6890 0.4327 0.0053

Pinterest

VBPR
BB-TAaMR 0.8272 -0.1413 0.1709
WB-INSA 0.2057 -0.2310 1.1232
WB-SIGN 0.0543 -0.1809 3.3317

AMR
BB-TAaMR 0.1732 -0.0218 0.1260
WB-INSA 0.6665 0.0087 0.0131
WB-SIGN 0.6464 0.1945 0.3009

be noted that while PSwo increase from values close to 1 to higher than 3 for VBPR
trained on Amazon Boys & Girls, PSw always remains less than 1. The same efficient
behavior can also be noted on the other plots, where AiD guarantees consistently low
variations of the predicted scores under stronger and stronger attacks.

Analysis of Ranking-based Measures (RQ3)

Rising the average position of target items into a high recommendation position is
another adversary’s goal strictly pursued with the increase of predicted scores. Table 6.5
reports the results of the ranking-aware metrics presented in Section 6.4.1 measured
on top-50 recommendation lists. We can see that applying the proposed denoising
approach has been adequate in most of the tested scenarios. Indeed, the fact that the
RR values are mostly smaller than 1 in any attack scenario demonstrates that the
presence of the AiD has reduced the adversaries’ capability in pushing the target items
in higher recommendation positions. Additionally, it is interesting to observe that the
only three scenarios in which the RR is higher than 1 are related to cases where the
adversarial attacks were not very powerful also in the not-defended setting. In these
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Table 6.6 Overall recommendation performance measured in no adversarial settings
without and with the use of AiD. R.V.measures the percentage of variation between
the metric values measured on not-defended and defended recommender. We put in
bold the positive R.V. to represent an improvement of the metric value.

Dataset Model Def.
Accuracy Beyond-accuracy

Rec nDCG iCov EFD ACLT APLT ARP
@20 @50 @20 @50 @20 @50 @20 @50 @20 @50 @20 @50 @20 @50

Amazon
Boys&
Girls

VBPR
No 0.0337 0.0653 0.0121 0.0182 0.8005 1.0067 0.0197 0.0162 8.0821 20.8618 0.4041 0.4172 2.4575 2.1493
AiD 0.0295 0.0667 0.0118 0.0190 0.8030 1.0104 0.0195 0.0170 8.1516 21.0793 0.4076 0.4216 2.1840 1.9734
R.V. -12.46 2.14 -2.48 4.40 0.30 0.37 -1.02 4.94 0.86 1.04 0.87 1.05 -11.13 -8.18

AMR
No 0.0316 0.0582 0.0113 0.0165 0.7630 0.9891 0.0191 0.0152 8.1277 21.0281 0.4064 0.4206 1.7296 1.6292
AiD 0.0316 0.0611 0.0111 0.0169 0.7564 0.9896 0.0186 0.0154 8.1144 21.0007 0.4057 0.4200 1.7359 1.6316
R.V. 0.00 4.98 -1.77 2.42 -0.87 0.04 -2.62 1.32 -0.16 -0.13 -0.17 -0.14 0.36 0.15

Amazon
Men

VBPR
No 0.0144 0.0283 0.0056 0.0083 0.5941 0.7975 0.0100 0.0083 7.1428 19.1679 0.3571 0.3834 10.9857 9.0988
AiD 0.0139 0.0270 0.0054 0.0080 0.5857 0.7845 0.0099 0.0080 7.5198 19.9042 0.3760 0.3981 10.5176 8.7409
R.V. -3.47 -4.59 -3.57 -3.61 -1.41 -1.64 -1.00 -3.61 5.28 3.84 5.29 3.83 -4.26 -3.93

AMR
No 0.0081 0.0187 0.0032 0.0053 0.4035 0.6066 0.0057 0.0053 8.6131 22.5334 0.4307 0.4507 8.7773 7.2129
AiD 0.0079 0.0168 0.0031 0.0049 0.5630 0.7654 0.0060 0.0052 10.0850 25.7561 0.5042 0.5151 5.0164 4.4566
R.V. -2.47 -10.16 -3.13 -7.55 39.52 26.16 5.26 -1.89 17.09 14.30 17.07 14.29 -42.85 -38.21

Pinterest

VBPR
No 0.0597 0.1180 0.0236 0.0351 0.7664 0.9166 0.0467 0.0381 4.1532 11.2491 0.2077 0.2250 21.3674 20.4271
AiD 0.0479 0.1000 0.0180 0.0282 0.7173 0.8805 0.0358 0.0307 4.5285 11.9408 0.2264 0.2388 20.2717 19.6827
R.V. -19.77 -15.25 -23.73 -19.66 -6.41 -3.94 -23.34 -19.42 9.04 6.15 9.00 6.13 -5.13 -3.64

AMR
No 0.0301 0.0676 0.0111 0.0184 0.6455 0.8300 0.0224 0.0203 5.6196 14.4269 0.2810 0.2885 17.9860 17.8545
AiD 0.0289 0.0627 0.0106 0.0172 0.6454 0.8230 0.0215 0.0190 5.8936 14.8948 0.2947 0.2979 17.6031 17.5617
R.V. -3.99 -7.25 -4.50 -6.52 -0.02 -0.84 -4.02 -6.40 4.88 3.24 4.88 3.26 -2.13 -1.64

contexts, we note that the ∆aHRwo and ∆aHRw metric values are very close to 0 (i.e.,
-0.1552 and -0.3777 for <Amazon Men, VBPR, BB-TAaMR >, 0.2057 and -0.2310 for
<Pinterest, VBPR, WB-INSA >, 0.0543 and -0.1809 for <Pinterest, VBPR, WB-SIGN
>). We can summarize that AiD effectively reduces the adversaries’ impact in varying
the predicted preference scores and, as shown in this paragraph, preserving the target
items’ position in the not-attacked recommendation lists.

Recommendation Performance (RQ4)

Here, we study the accuracy and beyond-accuracy recommendation performance
measured on each visual recommender when protected (or not) by the proposed
adversarial denoiser. Table 6.6 shows the top-K recommendation performance on the
three datasets, where K ∈ {20,50}. Globally, the results show that the integrating of
AiD allows preserving a consistent part of the accuracy and beyond-accuracy of the
correspondent not-defended recommender (e.g., VBPR with AiD vs. VBPR without
AiD). Indeed, analyzing the accuracy measures, we see that Rec and nDCG can, on
average, suffer from small reductions (i.e., ≃ 2−3%). For instance, the R.V. values on
VBPR trained on Pinterest are the worst ones (e.g., R.V. = -19.77% on Rec@20),
which might be explained by the fact the images of Pinterest are more visually
complicated to be denoised if compared with the clothing items of the Amazon datasets
that are placed on the white background. However, results also present a best-case
scenario where the accuracy can even be improved (e.g., R.V. of +4.98% recorded on
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Rec@50 for AMR trained on Amazon Men). Similarly, Table 6.6 shows that the impact
of AiD on coverage and diversity measures is quite limited. For instance, iCov@20
receives a positive relative variation of 3.3583% when averaged across all the datasets
and models.

Finally, we explore the effects of AiD on the metrics used to study the effects of
popularity bias on the produced recommendation lists (ARP, ACLT, and APLT). The
exposure metrics (i.e., ACLT and ACLT) reveals that the AiD defensive algorithm
is doing a much better job of exposing items across the long-tail part of the catalog.
Indeed, both metrics get an average R.V. higher than 4% in any setting (on both top-20
and 50 recommendation lists). This exposure benefit is also confirmed by a steady
average R.V.of ARP of -9%. We can conclude that AiD effectively robustifies the visual
recommenders against adversarial attacks by preserving the overall recommendation
performance measured in not-attacked settings.

6.5 Summary

This chapter has investigated the vulnerability of visual-based recommender systems
(VRS) to adversarial attacks— human indistinguishable perturbed product images
uploaded on a recommender to maliciously change the rank of target products—
by proposing a novel defensive solution. We have proposed a denoiser network,
named Adversarial Image Denoiser (AiD), to be placed before the convolutional neural
network used to extrapolate visual image features trained to learn how to remove the
adversarial noise on input images guided both by a feature- and recommendation-aware
reconstruction loss. We have investigated the defense performance on three real-
world datasets and two popular visual recommender models, one of which implements
the state-of-the-art defensive solution (i.e., adversarial training) under three attack
strategies (i.e., one black-box and two white-box). The experiments confirm that AiD is
an effective solution for protecting visual recommender models against the set of tested
attacks, reducing their effectiveness in varying the predicted preference scores and the
target items’ positions in the recommendation lists. Additionally, we have verified that
the integration of this defense does not worsen the overall accuracy and beyond-accuracy
recommendation performance, with effects that have been advantageous in some cases.
We plan to extend this defense strategy to identifying possible stronger adversarial
attacks that might break the AiD defensive power in order to design increasingly
resistant defense for the sake of users, sellers, and platforms.





Chapter 7

Iterative Adversarial Perturbations
on Model Parameters

Considering the parameters’ instability to adversarial perturbation on model-based RSs,
how vulnerable are the parameters to iterative gradient-based adversarial methods?

Is Adversarial Personalized Ranking effective in robustifying the model against
iterative methods?

RSs have attained exceptional performance in learning users’ preferences and finding
the most suitable products. Recent advances in adversarial machine learning (AML) in
computer vision have raised recommenders’ security interests. It has been demonstrated
that widely adopted model-based recommenders, e.g., BPR-MF, are not robust to
adversarial perturbations added on the learned parameters, e.g., users’ embeddings,
which can cause a drastic reduction of recommendation accuracy (see Section 2.3.2).
However, the state-of-the-art adversarial method, named the fast gradient sign method
(FGSM), builds the perturbation with a single-step procedure. This chapter extends
the FGSM method, proposing multi-step adversarial perturbation (MSAP) procedures
to study the recommenders’ robustness under powerful methods. Letting fixed the
perturbation magnitude, we illustrate that MSAP is much more harmful than FGSM
in corrupting the recommendation performance of BPR-MF. Then, we assess the
MSAP efficacy on a robustified version of BPR-MF, i.e., AMF. Finally, we analyze the
variations of fairness measurements on each perturbed recommender. Code and data
are available 1.

1https://github.com/sisinflab/MSAP

https://github.com/sisinflab/MSAP
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7.1 Introduction

[115] have proposed the pioneering work of AML for RSs in the AML application of
Adversarial Perturbations of Model Parameters as shown in Section 2.3.2. Starting from
the authors’ clarification that attacks and defenses should be treated differently in the
CV and RS tasks since image data are continuous-valued matrices, while recommender
data are discrete interactions (0/1 feedback); they have investigated adversarial methods
to perturb the model parameters, e.g., the embedding matrices of matrix-factorization
(MF) models. They discovered that the fast gradient sign method (FGSM) [101], a
single-step adversarial perturbation procedure, leads to five times larger deterioration
of recommendation accuracy than the one caused by random variation. This finding
shows the weaknesses of model-based recommenders in learning embeddings that
will cause drastic performance degradation when subjected to small changes. For
instance, this change can be caused when new users, or items, are added to the system.
Furthermore, they successfully applied an adversarial training procedure [101] on
BPR-MF, named AMF, demonstrating more robust RS performance under FGSM
perturbations. These techniques have been tested on multimedia recommendation
systems [209], deep RSs [234, 235], and tensor factorization approaches [58].

In this chapter, inspired by the evidence in the CV domain that iterative attacks
are more effective than single-step ones [142], we present two multi-step adversarial
perturbation (MSAP) techniques, namely primary iterative method (BIM) and projected
gradient descent (PGD), applied on the embeddings of two state-of-the-art MF
models [115, 188]. Our idea is to investigate whether the attack empowerment obtained
in CV settings are valid in RS tasks to confirm the presence of minimal perturbations
that might cause an enormous worsening of the model stability/robustness. Particularly,
we make the following contributions:

• proposes a novel attack method, named Multi-Step Adversarial Perturbation
(MSAP), to study whether its impact in degrading the quality of the system with
respect to accuracy and beyond-accuracy evaluation measures when compared to
single-step ones (i.e., the attack by He et al. [115]);

• test the state-of-the-art robustification procedure of model-based recommenders
(APR presented in Section 2.3.2) against the presented multi-step noise;

• study whether adversarial perturbations and in particular MSAP can significantly
impact the observed fairness of recommender models.
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To this end, we evaluated the impact of the proposed adversarial iterative strategies for
item recommendation task against two standard model-based collaborative recommenders,
i.e., BPR-MF [188] and its adversarial defended version AMF [115], on two well-
recognized recommender datasets, i.e., ML-1M and LastFM. Overall, the considered
attacks highlight the necessity to investigate new defensive measures to limit their
effectiveness in reducing recommendation performance (accuracy, beyond-accuracy,
and fairness).

The rest of the chapter is organized as follows. In Section 7.2, we formalize the
problem of iterative adversarial perturbations, and in Section 7.3 we present the setting
and the results of our empirical evaluation of the proposed method. Then, in Section 7.4
reviews the related work before presenting the contribution summary in Section 7.5.

7.2 Method

In this section, we describe the foundations of a personalized matrix factorization
(MF) recommender model. Then, we recapitulate the baseline single-step adversarial
perturbation before defining the multi-step strategies.

7.2.1 Personalized Recommenders via MF

The recommendation problem is the task of estimating a preference prediction function
s(u,i) that maximizes the utility of the user u∈U in getting the item i∈I recommended
by the RS, where Before we dive into the description of the MF model, we recap the
notations:

• U and I are the set of users and items, respectively;

• P: the matrix of user embeddings, where pu is the embedding vector associated
to the user u;

• Q: the matrix of item embeddings, where qi is the embedding vector associated
to the item i;

• Θ: the set of model parameters (Θ = {P,Q});

• ∆: the set of adversarial perturbation on model parameters (∆ = {δP, δQ});

• L: the loss function of the recommender model.
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The main intuition behind the MF model is to compute the preference score ŝ(i|u)
as the dot product between the user’s embedding (pu) and the item’s embedding (qi).
The model parameters are learned by solving the optimization problem in the following
general form:

argmin
Θ
L(Θ) (7.1)

The state-of-the-art approach to produce personalized rankings is Bayesian personalized
ranking (BPR) [188]. The idea is to reduce the ranking problem to a pairwise learning
one where, for each user, the score of interacted items has to be higher than non-
interacted ones.

7.2.2 Adversarial Perturbation of Model Parameters

The main intuition behind an adversarial perturbation method is to generate minimum
perturbations (∆adv) capable of undermining the learning objective of the learning
model. The adversary’s goal is to maximize Equation (7.1), under a minimal-norm
constraint

∆adv← argmax
∆0,||∆0||≤ϵ

L(Θ+∆0) (7.2)

where ∆0 is the initial adversarial perturbation added to the model parameters Θ and
ϵ is the perturbation budget (the limit of the perturbation size).

Equations (7.1) and (7.2) can be unified in the following minimax problem:

arg min
Θ

max
∆0,||∆0||≤ϵ

L(Θ+∆0) (7.3)

in which two opposite players play an adversarial minimax game, where the adversary
tries to maximize the likelihood of its success while the ML model tries to minimize
the risk. This minimax game is the main characteristic of tasks related to AML
research [212].

Fast Gradient Sign Method (FGSM).

This perturbation strategy is the baseline single-step adversarial perturbation mechanism
proposed by [115] to alter the recommendation task. It builds on advances made
in ML research pioneered in [101] for the classification task. It approximates L by
linearizing it around an initial zero-matrix perturbation ∆0 and applies the max-norm
constraint.
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The adversarial noise ∆adv is

∆adv = ϵ
Π
∥Π∥ where Π = ∂L(Θ+∆0)

∂∆0
(7.4)

where || · || is the L2−norm. After the calculation of ∆adv, the authors added this
perturbation to the current model parameters Θadv = Θ + ∆adv and generated the
recommendation lists with this perturbed model parameter.

Multi-Step Adversarial Perturbation (MSAP).

This adversarial noise generation mechanism is a straightforward extension of the
single-step strategy proposed in the CV domain [142]. In particular, the authors’ idea
was to build an FGSM-based multi-step strategy and create more effective ϵ-clipped
perturbations. The initial model parameters are defined as

Θadv
0 = Θ+∆0 (7.5)

Starting from this initial state of model parameters, let ClipΘ,ϵ be an element-wise
clipping function to limit the perturbation of each original embedding value inside the
[−ϵ,+ϵ] interval, let α be the step size which is the maximum perturbation budget
of each iteration, and let L be the number of iterations, the first iteration (l = 1) is
defined by:

Θadv
1 = ClipΘ,ϵ

{
Θadv

0 +α
Π
∥Π∥

}
where Π = ∂L(Θ+∆0)

∂∆0
(7.6)

and we generalize the l-th iteration of the L-iterations multi-step adversarial perturbation
as:

Θadv
l = ClipΘ,ϵ

{
Θadv

l−1 +α
Π
∥Π∥

}
where Π =

∂L(Θ+∆adv
l−1)

∂∆adv
l−1

(7.7)

where l ∈ [1,2, ...,L], ∆adv
l is the adversarial perturbation at the l-th iteration, and

Θadv
l is the sum of the original model parameters Θ with the perturbation at the

l-th iteration. The MSAP computational cost is l-times the single-step version. We
considered two different MSAP: Basic Iterative Method (BIM) [142] and Projected
Gradient Descent (PGD) [155]. The former approach initializes ∆0 as matrices of zeros,
with the same size as the matrix embeddings of the victim model. The latter initializes
the perturbation by sampling from a uniform distribution. These different initialization
make PGD more powerful than BIM in confusing CV image classifiers [33]. Since this
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has not been – to the best of our knowledge – investigated in the RSs community, we
chose both strategies to investigate whether such a difference between two adversarial
perturbation strategies exists for the recommendation task. Note that we test our
adversarial method against MF recommenders. However, it can be reproduced against
any BPR optimized recommender.

7.3 Experiments

Here, we present experimental settings and the discussion of the empirical results.

7.3.1 Settings

In this section, we introduce the datasets, recommenders, evaluation measures, and
reproducibility information.

Datasets

We perform MSAP experiments on two datasets:

• MovieLens 1M (ML-1M) [109] contains 1,000,209 ratings (|F|) given by 6,040
users (|U|) towards 3,706 movies (|I|). Users’ gender and movies’ genres are used
in the fairness evaluation.

• LastFM-1b (LastFM) [195] contains 935,875 listening events (|F|) given by 2,847
users (|U|) towards 33,164 authors (|I|) stored from the online music provider
Last.fm. Users’ gender and items’ artists are used for the analysis of fairness.

We employ the leave-one-out evaluation protocol [115], putting in the test set either
the last — when that information is available (i.e., ML-1M)– or a random (i.e., LastFM)
interaction, and using the rest of the recorded feedbacks to train the recommenders.

Recommender Models

We execute the experiments on two models:

• BPR-MF [188] is a MF recommender optimized with a pair-wise loss function
(i.e., BPR). The fundamental intuition of BPR-MF is to discard not-interacted
items with respect to interacted ones in order to learn a rank-based preference
predictor. LBP R(Θ) = L(Θ) denotes the BPR-MF loss function. Additional MF
details are presented in Section 2.1.1.
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• AMF [115] is a BPR-MF extension that includes an adversarial training procedure.
The model parameters are learned with the following loss function:

LAMF (Θ) = LBP R(Θ)+λ LBP R(Θadv)︸ ︷︷ ︸
adversarial regularizer

(7.8)

where the model parameters of the adversarial regularizer (Θadv) are perturbed
with the single-step perturbation technique described in Equation (7.4). AMF
reduces up to 88% the degrading effect of single-step perturbations on the model
accuracy [115]. Additional details on the adversarial training procedure are
presented in Section 2.3.

Evaluation Metrics

To verify the efficacy of MSAP, we evaluate the effectiveness of our methods using the
following set of metrics:

• Accuracy The accuracy metrics used are precision (Pr@K), the fraction of
suggested items relevant to the users, recall (Re@K), the average fraction
of relevant recommended items, and normalized discounted cumulative gain
(nDCG@K), the users’ gain of a ranked list discounting the relevant predictions
by their positions. Further details are presented in Section 2.1.2.

• Beyond-Accuracy The beyond-accuracy metrics used are: expected free discovery
(EFD@K) [214], the capacity to suggest relevant long-tail products, Shannon
Entropy (SE@K), the diversity of recommendations, and coverage (ICov@K),
the number of recommended products.

• Fairness metrics are evaluated before and after MSAP. We explored: generalized
cross-entropy (GCE) [74] that considers several possible ideal probability distributions
for each user, or item, clustering. Hence, it computes the divergence of the
recommendation results (by considering a specific metric, i.e., nDCG) from
the ideal distributions. Consequently, GCE’s value close to zero denotes the
recommender’s congruence with that distribution. On the other hand,MAD
focuses on the absolute variation of a given metric from an ideal situation in which
the recommender treats groups equally. The original formulation of MAD [246],
namely MADr, considers the user and item score pairs in the recommendation
results. Additionally, we considered theMAD extension proposed in [74], MADR,
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in which the per-user performance values of an accuracy metric, i.e., nDCG, are
considered.

Evaluation Protocol

We train the BPR-MF for 2,000 epochs. Then, we use BPR-MF’s parameters at
the 1,000-th epoch as the starting point to train AMF — the BPR-MF adversarial
regularized version– as presented in [115]. We fix the perturbation budget (ϵ) to 0.5,
which is the smallest perturbation experimented in [115], and set the step size α of
MSAP to ϵ/4. We employ the following parameters for both models: embedding size (h)
to 64, learning rate to 0.05, λ to 1, and the batch size to 512.

7.3.2 Results and Discussion

Here, we perform experiments to answer the following research questions:

RQ1 Does MSAP outperform single-step attacks in degrading the system’s quality
with respect to accuracy and beyond-accuracy evaluation measures?

RQ2 Is the adversarial regularization of RSs still useful against the presented multi-step
generated noise?

RQ3 Are adversarial perturbations, and in particular the MSAP, able to impact in a
significant direction on the observed fairness of recommender models?

Investigating the MSAP Effects (RQ1-2)

To better understand the merits of the presented adversarial perturbations, we aim to
answer the following questions:

• On the perturbation side (RQ1): how much adversarial perturbations
obtained from the single-step and the MSAP methods can impair the quality of the
original BPR-MF model? Figures 7.1a and 7.1c compare perturbations effects on
BPR-MF trained on LastFM.

• On the defensive side (RQ2): what is the impact on the adversarial regularized
version of BPR-MF, i.e., AMF? The answer can be found in Figures 7.1b and 7.1d.

Since the performance of the MSAP varies based on the number of iterations, firstly, we
discuss and analyze the effectiveness of the presented perturbations across different
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Table 7.1 Accumulated normalized values of the accuracy and beyond-accuracy metrics.
We put in bold the lower value when the perturbation (ϵ = .5) is more effective.

Model Metric LastFM ML-1M

Initial FGSM BIM PGD Initial FGSM BIM PGD

BPR-MF

PR .0310 .0211 .0019 .0018 .0088 .0074 .0035 .0035
RE .3102 .2115 .0194 .0177 .0884 .0740 .0353 .0353
nDCG .2033 .1216 .0111 .0100 .0447 .0368 .0174 .0172
EFD .5144 .3069 .0313 .0284 .0977 .0791 .0355 .0353
SE 11.35 11.14 1.17 1.21 9.63 9.16 7.40 7.45
ICov 6220 5645 4352 4428 2247 2433 1189 1213

AMF

PR .0357 .0316 .0164 .0167 .0092 .0085 .0048 .0048
RE .3565 .3165 .1644 .1667 .0922 .0846 .0482 .0484
nDCG .2421 .2147 .1010 .1030 .0462 .0419 .0228 .0231
EFD .5987 .5184 .2303 .2352 .0971 .0853 .0442 .0447
SE 9.98 8.90 7.19 7.20 8.30 7.41 6.30 6.30
ICov 3847 2708 2315 2321 1486 1169 1066 1077

iterations. We fix the iteration number and study how MSAP impairs the RS varying
the perturbation budget ϵ.

On the perturbation side, by looking at Figure 7.1a, one can note that both MSAP
strategies are more powerful compared with the single-step one, for a fixed perturbation
budget ϵ = 0.5. For instance, the PGD perturbation technique shows 15.1 (0.1216 v.s.
0.0080), 20.4 (0.1216 v.s. 0.0060), and 23.8 (0.1216 v.s. 0.0051) times stronger impact
with respect to FGSM, for iterations 25, 40, and 50 respectively. These results confirm
CV’s findings on the superiority of MSAP— in terms of model damage — compared
to single-step methods in RSs. To better reveal MSAP effects, analyzing Figure 7.1a,
we observe that after 25 iterations, the perturbed BPR-MF starts to perform similar
to the random recommender. In other words, BPR-MF has lost all the learned users’
personalized information.

Moreover, Table 7.1 confirms that MSAP strategies outperform FGSM for all <dataset,
recommender> combinations. For instance, the <ML-1M, BPR-MF> combination shows
the PGD perturbations reduced the accuracy by more than 2 times compared to FGSM,
e.g., (0.0074 v.s. 0.0035), (0.0740 v.s. 0.0353), and (0.0368 v.s. 0.0172) for PR, RE,
and nDCG, respectively. Here, we should point out that both Figure 7.1 and table 7.1
do not show a clear difference in PGD perturbation compared to BIM perturbation.
This finding is different from the one previously reported in [33] for CV. We motivate
it because tested model-based recommenders are less sensitive to the embedding
initialization than the weight initialization of neural networks in the CV domain, since
BPR computes gradients based on the differences between pairs.
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(b) nDCG on AMF
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(c) ICov on BPR-MF
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(d) ICov on AMF

Random BPR-MF AMF FGSM ( = 0.5) BIM ( = 0.5) PGD ( = 0.5)

Fig. 7.1 nDCG and ICov results for LastFM. Results of the (baseline) random
recommender are in violet dotted line.

For what concerns beyond accuracy analysis, we found an interesting behavior
for the BPR-MF. During the first 25 iterations of BIM, ICov increments nearly by
76% (from 6,220 to 10,928) compared to the coverage value of the non-perturbed
recommender (see Figure 7.1c). After that, it steadily diminishes with a minimum
ICov value of 1,948 (for BIM). This result, strengthened by looking into Table 7.1,
may be justified because when MSAP computes several iterations (L≥ 70), it steadily
destructs the accuracy metrics and brings the model to recommend a set of few items
that all the users will not appreciate. Thus, we can conclude that MSAP deteriorates
the personalized recommender to perform as bad as a random recommender (see
Figure 7.1a) on both accuracy and beyond-accuracy measures.
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(b) AMF (varying ϵ)

Fig. 7.2 MSAP results varying ϵ ∈ [0.001,10.0] on LastFM (L = 25). Figures 7.2a and 7.2b show
that with a small perturbation, e.g., ϵ≃ 0.1, MSAP is more effective than FGSM with ϵ = 0.5.

On the defensive side, Figure 7.1b shows an evident performance drop in accuracy
for AMF which is, on average, more than 58% for MSAP and 11.31% for FGSM (see
Table 7.1). For instance, the PGD perturbation shows 1.48 (0.2147 v.s. 0.1448), 1.86
(0.2147 v.s. 0.1154), and 1.94 (0.2147 v.s. 0.1106) times stronger impact with respect
to FGSM, for iterations 20, 30, and 50, respectively. However, the accuracy reduction
does not reach random performance as for the BPR-MF recommender. We may
explain this slight robustness by mentioning the partial effectiveness of the adversarial
regularization procedure, i.e., specifically designed to protect against FGSM [115].

Impact of MSAP varying ϵ.

In this study, we relax the investigation of the impact of iteration increase on
iterative attacks’ performances. Instead, by fixing the number of iterations (i.e.,
L = 25, the value previously shown to be the critical point (the elbow of the curve
in Figure 7.1a) in performance deterioration) and varying ϵ from 0.001 to 10, we
investigate at what ϵ-level, iterative attacks can get a similar performance comparable
with FGSM. Analyzing Figures 7.2a and 7.2b, we found that iterative adversarial
strategies reach the FGSM (ϵ = 0.5) performance at iteration-level ϵ≃ 0.1. In other
words, by using 0.5/0.1 =5 times less perturbation budget, the new iterative strategies
reach a similar performance as that of the state-of-the-art FGSM attack strategy,
independently of the recommender, i.e., the defense-free BPR-MF or the adversarial
defended AMF.

In summary, the results of the two above studies provide strong evidence that:
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• Contribution 1 iterative attacks for the item recommendation task are more
potent than the single-step FGSM strategy widely adopted in the prior literature
of the RS community. For example, with only 25 iterations, the new attack
strategies reduce the BPR-MF performance by an amount of 15 times (along
nDCG) for a fixed perturbation budget ϵ = 0.5, i.e., they are as effective as FGSM
by using only 20% of the perturbation budget (ϵ≃ 0.1);

• Contribution 2 the state-of-the-art defensive strategy explored in the RS
community (i.e., APR) can diminish the impact of iterative attacks. However,
these attacks still have a high capability to impact and impair the quality of
the defended AMF recommender. These results suggest the need to identify
mediating factors that can reduce the impact of iterative attacks against RS but
are left for future investigation.

Investigating the MSAP Effects on the RS Fairness (RQ3)

This section analyses the impact of attacking a recommender system, i.e., BPR-MF,
under a fairness perspective. Fairness analysis is becoming increasingly important in
the last years in several machine learning-related fields. Recommendation algorithms
are prone to generate algorithmic biases, reproduce biases in data, or acquire prejudices
in training data [39, 246, 74]. In this scenario, analyzing fairness is more important
than ever since a substantial variation of recommendation performance for the different
groups of users, or categories of items, may unveil the attacker.

To this purpose, we have measured the accuracy performance considering the
different groups/categories and three fairness metrics, namely GCE,MADR, andMADR,
exploring both the initial and attacked models to capture the correct behavior and
contrast it against the observed one after the attacks. In these experiments, we have
evaluated BIM and PGD with 150 iterations, since at this point, the attack is very
effective (low accuracy and beyond accuracy metrics). In detail, GCE considers several
possible ideal probability distributions for each user, or item, clustering. Hence, it
computes the divergence of the recommendation results (by considering a specific
metric, i.e., nDCG) from the ideal distributions. Consequently, GCE with a value
closer to zero denotes the recommender’s congruence with that specific probability
distribution. On the other hand,MAD focuses on the absolute variation of a given
metric from an ideal situation in which groups/categories are treated equally. The
original formulation ofMAD, namelyMADR, considers the <user, item>’s scores pairs
in the recommendation results. Additionally, we have also considered a later extension
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Table 7.2 Performance (measured in terms of nDCG) of the different approaches on
each subset of users/items, where C1 and C4 denote the least and most popular items
and users with less and more interactions, respectively; for user gender C1 is associated
to males and C2 to females. Results for ML-1M are presented on the left, LastFM on
the right. We highlight in bold the best results for each model.

Item pop User gender User interactions
Model C1 C2 C3 C4 C1 C2 C1 C2 C3 C4

BPR-MF

initial 0.054 0.035 0.045 0.300 0.046 0.043 0.079 0.044 0.032 0.023
FGSM 0.027 0.017 0.043 0.284 0.044 0.041 0.073 0.044 0.032 0.022

BIM 0.005 0.000 0.000 0.167 0.019 0.016 0.018 0.020 0.018 0.016
PGD 0.000 0.000 0.000 0.178 0.017 0.016 0.022 0.018 0.015 0.012

AMF

initial 0.172 0.096 0.096 0.334 0.047 0.043 0.078 0.047 0.034 0.026
FGSM 0.163 0.114 0.110 0.326 0.043 0.039 0.070 0.041 0.033 0.022

BIM 0.000 0.000 0.000 0.198 0.022 0.018 0.024 0.018 0.025 0.018
PGD 0.002 0.055 0.000 0.202 0.023 0.017 0.024 0.018 0.025 0.018

Item pop User gender User interactions
Model C1 C2 C3 C4 C1 C2 C1 C2 C3 C4

BPR-MF

initial 0.000 0.000 0.006 0.092 0.218 0.143 0.158 0.209 0.194 0.253
FGSM 0.000 0.001 0.004 0.062 0.131 0.085 0.102 0.118 0.123 0.143

BIM 0.000 0.000 0.000 0.004 0.007 0.009 0.011 0.007 0.009 0.002
PGD 0.000 0.001 0.000 0.002 0.004 0.006 0.007 0.005 0.004 0.004

AMF

initial 0.000 0.006 0.014 0.106 0.260 0.188 0.174 0.237 0.229 0.329
FGSM 0.000 0.000 0.010 0.095 0.230 0.168 0.153 0.211 0.198 0.297

BIM 0.002 0.001 0.005 0.046 0.098 0.066 0.052 0.081 0.086 0.143
PGD 0.000 0.002 0.003 0.046 0.097 0.061 0.054 0.082 0.090 0.142

ofMAD proposed in [74],MADR, in which the per-user performance values of an
accuracy metric (i.e., nDCG) are considered.

Before focusing on fairness, let us analyze the behavior of recommenders for the
different groups/categories to uncover the potential biases produced or removed by
the attack strategies. Table 7.2 depicts the nDCG performance of the recommenders
(BPR-MF, AMF, and their attacked variants) regarding the clusters for three attributes:
item popularity, user gender, and user interactions. The clustering for item popularity
and user interactions was computed by considering the quartiles for the attributes,
while user gender is naturally clustered in the original datasets. This table shows, as
already noted in the literature, BPR-MF achieves higher values of nDCG for popular
items for both ML-1M and LastFM; in this respect, note the performance of BPR-MF in
C4 regarding the item pop attribute. Notably, the efficacy of the attacks is particularly
evident here since, for BPR-MF, the C4 for the item pop attribute column shows a
degradation of the performance when the recommender is under attack.
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Table 7.3 Fairness measured according to GCE where f0 represents a uniform
distribution, fk denotes a distribution where the group Ck accumulates more probability
than the rest, as in f1 = [0.75,0.25] for user gender, MADr, and MADR. Rest of notation
as in Table 7.2.

Item pop User gender User interactions
Data Model f0 f1 f4 MADr MADR f0 f1 f2 MADr MADR f0 f1 f4 MADr MADR

ML-1M

BPR-MF

initial −0.483 −1.574 −0.005 0.040 0.159 −0.001 −0.109 −0.143 0.050 0.003 −0.116 −0.138 −1.480 0.618 0.030
FGSM −0.929 −3.056 −0.042 0.029 0.140 0.000 −0.111 −0.140 0.067 0.002 −0.110 −0.158 −1.514 0.614 0.028

BIM −2,039.764 −334.326 −326.189 0.066 0.079 −0.003 −0.088 −0.170 0.373 0.003 −0.004 −0.542 −0.679 1.781 0.002
PGD −3,167.250 −8,615.699 −506.580 0.062 0.083 0.000 −0.111 −0.140 0.234 0.001 −0.024 −0.323 −0.910 1.564 0.005

AMF

initial −0.147 −0.576 −0.105 0.225 0.424 −0.001 −0.104 −0.149 0.084 0.004 −0.092 −0.162 −1.329 1.995 0.028
FGSM −0.104 −0.646 −0.121 0.171 0.302 −0.001 −0.105 −0.147 0.038 0.004 −0.093 −0.166 −1.403 1.674 0.025

BIM −3,533.378 −9,611.568 −565.161 0.095 0.155 −0.007 −0.074 −0.193 0.302 0.005 −0.014 −0.435 −0.719 4.175 0.005
PGD −1,543.481 −287.878 −246.845 0.263 0.330 −0.011 −0.064 −0.213 0.328 0.006 −0.010 −0.426 −0.702 4.177 0.004

f0 f1 f4 MADr MADR f0 f1 f2 MADr MADR f0 f1 f4 MADr MADR

LastFM

BPR-MF

initial −1,161.806 −4,646.677 −185.725 0.120 0.032 −0.016 −0.188 −0.499 0.147 0.051 −0.015 −0.822 −0.353 0.557 0.051
FGSM −397.483 −3,094.772 −63.435 0.123 0.033 −0.016 −0.180 −0.489 0.141 0.031 −0.008 −0.730 −0.395 0.686 0.022

BIM −46.740 −186.212 −7.314 0.031 0.003 −0.002 −0.372 −0.258 0.312 0.001 −0.206 −0.243 −2.591 3.153 0.005
PGD −20.224 −156.603 −3.149 0.021 0.002 −0.011 −0.480 −0.243 0.290 0.001 −0.025 −0.282 −0.694 3.062 0.002

AMF

initial −747.062 −5,853.077 −119.395 0.468 0.055 −0.010 −0.190 −0.416 0.224 0.048 −0.026 −0.921 −0.291 2.057 0.079
FGSM −1,242.414 −4,969.776 −198.632 0.583 0.066 −0.009 −0.193 −0.413 0.108 0.042 −0.028 −0.930 −0.279 1.060 0.074

BIM −2.238 −8.706 −0.217 0.672 0.035 −0.014 −0.178 −0.459 0.941 0.021 −0.067 −1.257 −0.200 6.127 0.046
PGD −309.333 −2,419.092 −49.342 0.742 0.039 −0.022 −0.200 −0.562 0.978 0.025 −0.063 −1.237 −0.210 7.015 0.046

On the other hand, when the recommender is defended, i.e., AMF, the performance
deterioration is less evident, even though the trend in the approaches remains the same.
Considering the user gender, we observe that the recommendation performance for
males (C1) is higher than for women in both datasets. Even though the trends are
similar to those observed for item popularity, it is worth noticing that the degradation
and the defense effects are more evident in LastFM. Finally, the table shows two
opposite behaviors for user interactions: in ML-1M, BPR-MF seems to favor the less
active users, whereas LastFM favors the most active ones. The reason for this behavior
is probably twofold. First, in ML-1M, there are no proper cold-users: the minimum
number of interactions is 19, and there are 1,522 users in C1 with several interactions
that range from 19 to 43. In LastFM, on the other hand, there are only 716 users
in C1, involving users with interactions from 2 to 123. Second, the datasets show a
dramatically different number of items in the catalogs, thus making the number of
interactions sufficient to produce meaningful recommendations for ML-1M.

Regarding the change in performance when using any of the attack methods, we
observe that in ML-1M the trend and absolute values remain almost the same with
respect to the initial recommender; however, in LastFM the situation is not identical:
while the degradation follows the same trend, defended methods (AMF) show higher
accuracy values for all the clusters. Once we have analyzed the performance found on
an attribute basis (for some sensitive attributes), we show in Table 7.3 the result of
the fairness-aware evaluation metrics described before. We first analyze which initial
methods better approximate ideal distributions, and whether this situation changes
when we use a defended model.
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With this goal in mind, we analyze the GCE fairness values corresponding to the
initial methods, without and with defense. We observe a consistent behavior in both
datasets: the order derived from the GCE values is the same for BPR-MF and AMF.
However, for some cases, the actual values are different, meaning that the defendant
variant diverges differently (either more or less) from that distribution than the original
method; for instance, for item popularity in ML-1M, the uniform (f0) and least popular
items (f1) obtain a lower absolute GCE value for the defended model, whereas the
behavior is the other way around for user interactions in LastFM. An interesting case
is one of the user genders, wherein ML-1M the divergence for males (f1) is decreased,
whereas in the LastFM experiments, is the opposite; this evidences a non-predictable
effect of the defended models with respect to some attributes.

Let us now study whether the defense and attack methods modify the fairness
performance. For this, we observe that some attack methods like BIM help to increase
the fairness on some distributions (or attribute values) at the expense of others, such
as f1 for user gender and f4 for user interactions in ML-1M, at the expense of f2 and f1

respectively. Finally, we explore whether any attribute is more sensitive under a fairness
perspective, since this may be a strong signal that a recommender is under attack.
Thus, we note that FGSM tends to obtain very similar GCE values andMADRvalues in
almost every scenario, whereasMADr tends to change whenever an attack is performed.
Because of this, we conclude that if we measure fairness based on ranking performance
(i.e., according to GCE orMADR), an FGSM attack might go unnoticed, whereas
MADr is more sensitive to any attack. On the other hand, the rest of the attack
strategies seem to change the distribution of the recommendations, as it becomes
evident in the GCE values of item popularity.

7.4 Related Work

The research contributions of the current chapter have to be placed in the research line of
adversarial machine-learned perturbation of model parameters presented in Section 2.3.2.
We propose to study the application of AML techniques to generate perturbations to
reduce recommenders’ performance and their countermeasures [115, 37]. While the
work [115] reported serious vulnerability of BPR-MF against adversarial perturbation
obtained from the FGSM attack and suggested an adversarial regularization procedure
as a defensive countermeasure. This chapter inspired other recommender models
(and studies) such as AMR [209], FG-ACAE [234, 235], and ATF [58]. However, we
have found that the RS community lacks studies on other categories of adversarial
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perturbations such as iterative attacks (e.g., PGD [155]). Indeed, in the CV domain,
iterative adversarial perturbations have been demonstrated to improve the attack
effectiveness by more than 60% compared to FGSM [142]. However, to the best of
our knowledge, no major attempt has been made in the RS community to study the
RS performance variation when multi-step perturbations alter model embeddings. To
fill this gap, in this chapter we have proposed MSAP, the first iterative perturbation
method proposed to study the robustness/stability in the recommendation task.

7.5 Summary

In this chapter, we proposed iterative adversarial attacks against personalized recommenders
models. We studied the impact of the proposed attacks with extensive experiments
on two datasets (i.e., LastFM and ML-1M) and two state-of-the-art recommenders, i.e.,
BPR-MF and AMF — an extension to the BPR-MF that integrates the adversarial
training as the defense against single-step attacks. Our experiments show that under
a fixed perturbation budget, the presented multi-step attack strategies, namely the
basic iterative method (BIM) and projected gradient descent (PGD), are considerably
more effective than the state-of-the-art single-step FGSM method. We verified the
degradation of recommendation quality along with accuracy, beyond-accuracy, and
fairness metrics. In particular, experiment validations showed two main messages. The
first is that non-defended recommenders perturbed by the multi-step attack strategies
can be impaired/weakened so much that their performance becomes worse than a
random recommender. The second claims that even the adversarially defended model
against FGSM can lose half of its recommendation performance (i.e., after being
confronted with an iterative attack, they preserve only half of the learned personalized
users’ preferences). Equivalently, we verified that iterative attacks could produce the
same performance drop as FGSM attacks with 5-time smaller perturbation levels.
These results evidence the vulnerability of the personalized BPR-learned models, both
in defended and non-defended scenarios.

Additionally, we analyzed how attacks might produce variations on the fairness
of a recommender model. By clustering the items by their popularity and users by
their interactions and gender, we verified that, differently from single-step attacks, the
presented multi-step strategies changed the fairness measurements considerably. We
plan to investigate defense strategies against the analyzed iterative attacks. Moreover,
we intend to extend the fairness evaluation by exploring other attribute-based clusters
and novel methods.



Chapter 8

Theoretical Modeling of Adversarial
Training on Recommendations

Since adversarial training has been demonstrated to disturb the model accuracy in the
image classification task, how does it influence the recommendation performance on

accuracy and beyond-accuracy perspectives?

RSs employ user-item feedback, e.g., ratings, purchases, or reviews, to match
customers to personalized lists of products. Approaches to top-K recommendation
mainly rely on Learning-To-Rank algorithms and, among them, the most widely adopted
is Bayesian Personalized Ranking (BPR), which bases on a pairwise optimization
approach. Recently, BPR has been found vulnerable against adversarial perturbations
of its model parameters. Adversarial Personalized Ranking (APR) mitigates this issue
by robustifying BPR via an adversarial training procedure. The empirical improvements
of APR’s accuracy performance on BPR have led to its wide use in several recommender
models. However, a key overlooked aspect has been the beyond-accuracy performance
of APR, i.e., novelty, coverage, and amplification of popularity bias, considering
that recent results suggest that BPR, the building block of APR, is sensitive to the
intensification of biases and reduction of recommendation novelty.

In this chapter, we model the learning characteristics of the BPR and APR
optimization frameworks to give mathematical evidence that, when the feedback data
have a tailed distribution, APR amplifies the popularity bias more than BPR due to an
unbalanced number of received positive updates from short-head items. We empirically
validate the theoretical results using matrix factorization (MF) by performing an
extensive experimental study on five public datasets to compare BPR-MF and APR-
MF performance on accuracy and beyond-accuracy metrics. The experimental results
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consistently show the degradation of novelty and coverage measures and a worrying
amplification of popularity bias.

8.1 Introduction

Machine-learned models such as latent factor models (LFMs) have significantly advanced
the capability of recommender systems (RSs) to be faster and more accurate. Learning
from historical users’ preferences, i.e., ratings, purchases, or clicks, is essential to
personalization and facilitating a better user experience. To address this task, modern
RS often employ Bayesian Personalized Ranking (BPR) [188], a pairwise ranking
optimization framework that uses item pairs as training data and optimizes it for
correctly ranking item pairs. BPR is currently the state-of-the-art optimization
framework for computing personalized ranking in RS and has been widely adopted in
many research works [121, 61, 225].

Notwithstanding their great success, lately, it has been shown that ML applications
can be adversarial in nature [216]. Recent works have shown the fragility of BPR-
based trained recommender when confronted with adversarial perturbations, i.e., small
but non-random perturbations added to the recommender model parameters, to
cause recommendation performance [115]. Several works have shown the vulnerability
of LFMs trained with BPR under adversarial attacks, for instance, He et al. [115]
empirically verify that adversarial perturbation of BPR-MF, i.e., a matrix factorization
(MF) model trained with BPR, decreases the nDCG metric value by -26.3%. Yuan
et al. [235] show the same degradation trend with perturbations applied against the
parameters of collaborative auto-encoder (CAE) models. Chen and Li [58] verify the
weakness of the tensor factorization (TF) approach, and Tang et al. [209] validate the
non-robustness of personalized visual-based recommenders (VBPR) under adversarial
attacks.

To address this issue, as a defensive remedy, He et al. [115] propose Adversarial
Personalized Ranking (APR), a novel optimization strategy to robustify BPR against
adversarial perturbations. Based on the adversarial training procedure proposed
by Goodfellow et al. [101], APR extends BPR by integrating the BPR-objective
function with an additional regularization term, named adversarial regularizer, that
quantifies the loss value when the model parameters are adversarially perturbed. The
robustified version of BPR showed a nDCG reduction of only -2.9% on MF [115], a
protection effect confirmed also on other models such as CAE [235], TF [58], and
VBPR [209]. The key insight is that APR not only improves the defensive capability
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Table 8.1 List of articles proposing novel recommendation algorithms employing APR
as the optimization strategy.

Article Conference Year

He et al. [115] SIGIR 2018
Yuan et al. [234] IJCNN 2019
Yuan et al. [235] SIGIR 2019
Tran et al. [211] SIGIR 2019
Chen and Li [58] RecSys 2019
Park and Chang [179] WWW 2019
Dai et al. [71] WWW 2019
Feng et al. [95] TKDE 2019
Wang et al. [221] IET 2019
Liu et al. [152] IEEE ITAIC 2019
Manotumruksa et al. [156] SIGIR 2020
Li et al. [148] WSDM 2020
Yuan et al. [236] WSDM 2020
Wang and Han [222] IEEE Access 2020
Tang et al. [209] IEEE TKDE 2020
Weibo et al. [226] Applied Intelligence 2021

of RS (robustness under adversarial attacks) but also their generalization performance
in normal item recommendation tasks. For instance, He et al. [115] show that for
optimizing MF, if APR is used instead of BPR, a relative improvement of +11% on
accuracy performance is achieved when compared to the results obtained with BPR.

Given the gained performances obtained in both robustness and accuracy dimensions,
we have recently witnessed the application of APR in a growing number of research
works. Table 8.1 presents a list of more than 15 articles where a novel recommendation
algorithm has been proposed incorporating the APR as the core optimization framework.
These examples underline the popularity of the adversarial ranking-based procedure,
i.e., APR, for various item recommendation tasks. However, given the sensitivity of
BPR against popularity bias reported in recent works [130, 1, 247, 46], the question
remains as to how much APR is vulnerable against popularity bias and its amplification
considering that BPR is the APR building block.

Motivated by this observation, the chapter at hand focuses its attention on the
learning differences between APR and BPR to understand how much beyond-accuracy
measures, including novelty, coverage, and influence of tailed data distributions, could
be affected by APR. We formally study the learning characteristics of both optimization
strategies to quantify the consequences of the adversarial regularization procedure. The
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proposed analysis is supported by an extensive empirical evaluation of the performance
variations produced when using APR in recommendation datasets with data-tailed
distributions.

The main contributions presented here include:

• the presentation of a formal analysis to identify whether APR is affected by
popularity amplification bias, and highlighting how difference such bias is in
comparison with BPR —the core building block used in APR;

• the empirical verification of the existence of a trade-off between accuracy and
beyond-accuracy measures and popularity bias in APR;

• the study on the accuracy and beyond-accuracy performances when varying
two APR hyper-parameters: the adversarial perturbation budget (ϵ) and the
adversarial regularization coefficient (α).

An experimental evaluation has been carried out on five recommendation datasets
using MF as the base ML model. The results motivate the design of novel pairwise
robust learning procedures that can strike a more meaningful balance between accuracy,
beyond accuracy, and low amplification of popularity bias.

8.2 Formal Analysis

In this section, we formally define the recommendation task as a learning-to-rank
problem. Then, we introduce BPR and APR optimization techniques before moving to
the definition and comparison of both approaches’ gradient magnitudes. In the end, we
formally identify that a possible phenomenon of amplification of the item-popularity
bias could affect APR-based model performance.

8.2.1 Recommender System Formalization

The item recommendation task builds a user’s personalized list of K items ranked by
predicted relevance scores. Given a user u ∈ U , the rank of a not-interacted item i ∈ I
is defined via the bijective function in I as r̂(i|u). The ranking function r̂(·) is based
on the predicted value of the preference score function ŝ(·|Θ). Θ represents the ML
recommender’s model parameters, e.g., matrix factorization (MF) [139]. To build the
top-K recommendation list associated with the user u, the user’s not-interacted items
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are sorted in decreasing order by the predicted preference score. Formally, the rank of
each item is defined as

r̂(i | u) :=
{
|{j : ŝ(j | u)≥ ŝ(i | u)}|, i, j ∈ I\I+

u

}
(8.1)

where I+
u is the list of (positive) items already seen by the user u.

8.2.2 Bayesian Personalized Ranking

The model parameters Θ can be learned with optimization procedures. The three
most implemented approaches are point-wise [139], pair-wise [188], and list-wise [199].
Among them, the pair-wise learning with BPR is a standard strategy in several state-of-
the-art recommender models, e.g., recurrent neural models [121], attentive collaborative
recommenders [61], or neural graph learning [225].

BPR assumes that given a user u, the score ŝ(i|u) predicted on an already interacted
item i∈ I+

u should be higher than the one estimated for a not-interacted item j ∈ I\I+
u .

Commonly, the first item is called positive, while the seconds negative. A user u, a
positive item i, and a negative item j form (u,i, j) a training triplet. It follows that,
the full set of pair-wise preferences DR ⊆ U ×I ×I is composed by all the triplets
(u,i, j) such that:

(u,i, j) ∈ DR :⇐⇒
(

i ∈ I+
u ∧ j ∈ I\I+

u

)
(8.2)

To build DR, it is necessary to define the sampling strategy of negative items. BPR
associates a negative item j to each (u,i)-pair by uniformly sampling j from the set
of u not-interacted ones (I\I+

u ). Since BPR associates a single negative item to each
recorded pair of interactions, it follows that the size of DR is equal to the number of
recorded preferences. Consequently, the dimension of DR is smaller than the number
of all possible interactions, i.e., R.

To learn Θ via BPR, Rendle et al. [188] define the optimization problem

argmax
Θ

∏
(u,i,j)∈DR

σ(ŝ(i|u)− ŝ(j|u)) (8.3)

where σ(·) is the sigmoid function, i.e., σ(z) = 1/(1+e−z). The maximization problem
defined in Equation (8.3) can be equivalently solved by minimizing the negative
log-likelihood

argmin
Θ
−

∑
(u,i,j)∈DR

lnσ(ŝ(i|u)− ŝ(j|u))
︸ ︷︷ ︸

:=LBP R

(8.4)
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where, the LBP R indicates the BPR objective function.
The standard technique to learn Θ is the stochastic gradient descent (SGD). Given

a triplet (u,i, j) ∈ DR, the model parameters are updated as defined below.

Θ←Θ−η
∂LBP R(Θ)

∂θ
(8.5)

Θ←Θ+η(1−σ(ŝuij(Θ)))∂ŝuij(Θ)
∂Θ (8.6)

where η is the learning rate. In the following, we will use ŝuij(Θ) to indicate the
ŝ(i|u)− ŝ(j|u) for lightening the formalism.

8.2.3 Adversarial Personalized Ranking

As we already said before, the BPR learned parameters are not robust to adversarial
perturbations, as verified on several recommender models, e.g., matrix factorization [115],
collaborative auto-encoders [235, 234], visual-based recommender [209], tensor-factorization [58],
collaborative neural models [148], sequential recommendations [156], and attentive
song recommenders Tran et al. [211]. Adversarial personalize ranking (APR) is the
state-of-the-art defensive technique proposed by He et al. [115] to stabilize the BPR
learning of model parameters and make it robust to adversarial perturbations.

Adversarial Perturbation

Before reporting APR, it is necessary to describe how to compute an adversarial
perturbation. The adversarial perturbation ∆adv is

∆adv := argmax
∆,||∆||≤ϵ

LBP R(Θ̂+∆) (8.7)

where ϵ is the perturbation budget to limit the maximum amount of noise added to
the Θ, || · || is the L2-norm, and Θ̂ denotes the fixed model parameters on which the
perturbation is evaluated. The intuition is that building a perturbation that increases
the model’s loss reduces the recommendation performance. Inspired by the fast
gradient sign method by Goodfellow et al. [101], He et al. [115] solved Equation (8.7)
by linearizing the objective function LBP R as

∆adv = ϵ · Γ
∥Γ∥ where Γ = ∂LBP R(Θ̂+∆)

∂∆ (8.8)
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Adversarial Training

To robustify, and stabilize, the BPR-learned model against the performance drop
caused by the adversarial perturbation, He et al. [115] proposed to use an adversarial
training procedure. The procedure, named adversarial personalized ranking (APR),
learns Θ within a minimax optimization game

argmin
Θ

max
∆adv,∥∆adv∥≤ϵ

LBP R(Θ)+αLBP R(Θ+∆adv)︸ ︷︷ ︸
:=LAP R(Θ)

(8.9)

where LAP R(Θ), the APR objective function, is composed by the standard BPR loss,
i.e., LBP R, and a regularization term, i.e., LBP R(Θ+∆adv), whose strength is controlled
by α, named adversarial regularization coefficient. This additional regularization term,
named adversarial regularizer, is the loss obtained when an adversarial perturbation
∆adv is added to Θ to maximize the model objective (see Equation (8.7)). It follows
that, being ∆adv fixed, APR minimizes both the standard BPR loss LBP R with, and
without, ∆adv. The aim of APR is to learn a model that is able to correctly distinguish
the positive and negative items also in the case of adversarial perturbations.

As suggested in [115], the updates of Θ with APR are computed with SGD as
follows:

Θ←Θ+η
[
(1−σ(ŝuij(Θ)))∂ŝuij(Θ)

∂Θ +α(1−σ(ŝuij(Θ+∆adv)))∂ŝuij(Θ+∆adv)
∂Θ

]
(8.10)

8.2.4 Gradient Magnitudes

Learning Θ with either BPR and APR is performed by looping over Equations (8.6)
and (8.10), respectively. We present an approach to studying the learning of a
recommender model, evaluating and comparing the updates’ magnitudes of both
pairwise optimizations.

The Bayesian Gradient Magnitude

Θ updates in Equation (8.6) depend on the learning rate η, the partial derivative of
the difference of predicted scores ŝuij(Θ), and a multiplicative scalar (1−σ(ŝuij(Θ))).
Following Rendle and Freudenthaler [187], we define the Bayesian gradient magnitude
(ω) with respect to the (u,i, j) triplet as

ωuij := (1−σ(ŝuij(Θ))) (8.11)
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This multiplicative scalar indicates how much the current model represented by Θ is
performing in recognizing that the user u prefers the positive item i more than the
negative item j.

The update of SGD significantly changes Θ when

ωuij ≃ 1 =⇒
(
σ(ŝuij(Θ))≃ 0 ⇐⇒ ŝui(Θ)≪ ŝuj(Θ)

)
(8.12)

In this circumstance, the preference score ŝuj predicted for the negative item j is bigger
than the one predicted on the positive ŝui. It follows that Θ requires a vast update
within the current gradient step to learn how to correctly rank the items’ in the (u,i, j)
triplet. Conversely,

ωuij ≃ 0 =⇒
(
σ(ŝuij(Θ))≃ 1 ⇐⇒ ŝui(Θ)≫ ŝuj(Θ)

)
(8.13)

is the scenario where the model does not need to update the parameters on the
(u,i, j)-triplet since it has already learned how to recognize that u prefers i more than
j.

The Adversarial Gradient Magnitude

Equation (8.10) extends Equation (8.6) with the addition of the adversarial regularization
component. As stated in [115], APR is activated when BPR training is converging
to robustify and stabilize the learning of Θ. Analyzing Equation (8.10), each APR
gradient step has two multiplicative scalars: the already presented Bayesian gradient
magnitude (ω), and another novel scalar, that we name adversarial gradient magnitude
(ωadv). Formally, ωadv on (u,i, j) is defined as:

ωadv
uij := (1−σ(ŝuij(Θ+∆adv))) (8.14)

This quantity depends on how much the preference scores inferred from the perturbed
model (Θ + ∆adv) would be able to detect that u favors i more than j. It follows
that, the ωadv

uij value depends on the adversarial noise ∆adv capability to revert the
order preferences estimated by Θ. The adversarial case in which Θ necessitates a huge
update to robustify the recommender model is

ωadv
uij ≃ 1 =⇒

(
σ(ŝuij(Θ+∆adv))≃ 0 ⇐⇒ ŝui(Θ+∆adv)≪ ŝuj(Θ+∆adv)

)
(8.15)
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The previous case denotes the worst-case scenario when the model is not robust to the
adversarial perturbation. Consequently, in the following best-case scenario,

ωadv
uij ≃ 0 =⇒

(
σ(ŝuij(Θ+∆adv))≃ 1 ⇐⇒ ŝui(Θ+∆adv)≫ ŝuj(Θ+∆adv)

)
(8.16)

the model does not require vast updates since the original user’s preferences order is
preserved in spite of the perturbations. Note that both ωuij and ωadv

uij depend on the
model parameters (Θ) and thus they change for each gradient step.

8.2.5 Empirical Analysis of Gradient Magnitudes

As presented before, BPR and APR use SGD to update Θ. Figure 8.1 shows
the probability of the Bayesian gradient magnitude (ω) and the adversarial gradient
magnitude (ωadv) measured during the training performed on two of the examined
datasets, i.e., Amazon [159] and ML100K [109]. Figures 8.1a and 8.1b represent p(ω)
measured for the BPR training with a number of training epochs t ∈ [1,2, ...,TBP R]
where TBP R = 100, and both p(ω) and p(ωadv) when t ∈ (TBP R,TBP R + 1, ...,TAP R]
with TAP R = 200. The vertical red line in Figure 8.1 divides the probability measured
with the initial BPR training with the ones measured when APR is activated after the
TBP R-epoch. 1.

Aligned with Rendle and Freudenthaler [187] empirical findings, Figures 8.1a
and 8.1b show that after few training epochs ω is smaller than 0.01 for more than 85%
of the training triplets of the Amazon dataset, and 65% for the ML100K ones. Next,
we observe that the magnitudes measured on all the triplets is smaller than 0.5, i.e.,
p(ωuij < 0.5)≃ 1.0,∀(u,i, j) ∈DR, after the first 50 epochs for both the datasets. The
reduction of the Bayesian gradient magnitudes to values close to 0 after the first few
training epochs is an already identified BPR gradient vanishing issue that leads to a
slow model convergence [187].

Analyzing the behavior of the adversarial gradient magnitudes in Figures 8.1a
and 8.1b, it can be observed that APR is not affected by the BPR gradient vanishing
issues. For the ML100K dataset, it can be observed that all the APR lines (dotted curves)
are lower than the BPR ones (continue curves), meaning that APR magnitudes are
consistently higher than the BPR ones. This phenomenon is evident in the experiments
on the Amazon dataset. Indeed, Figure 8.1a shows that the probability of getting small
magnitudes, i.e., p(ωadv < 0.1), is smaller than 10% also when 100 APR-training epochs

1All the empirical results presented in Chapter 8 refer to the matrix factorization (MF) model. Note
that the analysis is reproducible with other models. We present additional MF details in Section 2.1.1
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(a) Amazon (b) ML100K

Fig. 8.1 Plots on the probability that a (u,i, j) triplet in DR has gradient magnitudes
≤ {0.01,0.1,0.5}.

have been performed on the model. The reason is that the APR objective function
also considers the adversarial regularizer. This regularizer forces further Θ updates to
limit the performance drop due to an adversarial perturbation.

These results confirm that APR is a solution to both robustify and stabilize the BPR
model training, as also claimed in [115]. Indeed, several works [115, 235, 209, 58] verified
both a reduction of the adversarial perturbation efficacy in altering the recommendation
performance and an increase of the accuracy measures when APR is employed to train
the ML recommender model.

Before we move into an extensive empirical of the beyond-accuracy performance
and popularity bias influences of APR, we study the impact of the imbalanced data
distribution on APR learning in the next section.

8.2.6 Amplification of Popularity Bias

RS performance depends on structural and distributional characteristics of the
user-item historical data [5]. Tailed data distribution is a property that received strong
attention in the literature of RSs. Indeed, it is common in RSs that few items, named
short-head items (ISH), receive much more feedbacks than many other ones, named
long-tail (ILT ) [1, 46]. In this work, we use the short-head and long-tail definition
used by Abdollahpouri et al. [1], where the short-head set, composed of the top 20% of
items by popularity, has much more feedback than the long-tail one, which contains
the remaining 80% of items. Analyzing the datasets’ statistics reported in Table 8.2,
we can observe that the probability that positive feedback is a short-head item, i.e.,
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p(i|ISH), is always more conspicuous than the probability of being in the long-tail set,
i.e., p(i|ILT ).

The primary motivation behind the study of tailed distributions’ impact is the
amplification of popularity bias. This means that a recommender model trained on
non-uniformly distributed data could suggest popular (short-head) items more than
niche (long-tail) ones, even when the latter would be of user’s interest [206, 1, 2]. This
phenomenon is also confirmed in BPR [130, 247, 46]. We conjecture that it could
be important to understand whether APR could be affected, or even intensify, the
amplification bias considering that APR hugely influences the BPR pre-trained model,
as empirically verified in Section 8.2.5.

Effects of Imbalanced Data

Since the users’ feedback data distribution is affected by popularity bias, the sampling
of positive items follows the next relation

p(i ∈ ISH |u)≥ p(i ∈ ILT |u) (8.17)

It means that the probability that a positive item of one triplet in DR is in the set of
short-head items is higher than the probability of being in the long-tail (see Table 8.2).
It follows that the uniform sampling of negative items used in both BPR and APR
training strategies results in the relation

p(j ∈ ISH |u) = p(j ∈ ILT |u) = 1
|I|

(8.18)

It means that the probability that the negative item in the (u,i, j)-training triple does
not depend on the feedback distributions since they are randomly extracted from the
complete set of items, i.e., I. From Equations (8.17) and (8.18) we deduce that the
difference between the sampling distribution of positive and negative items to build
DR could influence both the number and the sign of the model parameter updates
made by BPR and APR optimization frameworks.

Theoretical Analysis

To formally study whether APR is affected by the amplification of popularity bias, we
define two quantities: the global positive and global negative updates.

Definition 40 (Global Positive Update (Ω+)). Let t∈{1,2, .,TBP R,TBP R +1, ..,TAP R}
be a training epoch and DR(t) be the set of training triplets built for the t-th epoch,
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then the global positive update on short-head items is

Ω+(ISH |DR(t)) :=
∑

(u,i,j)∈DR(t)∧i∈ISH

ωuij(t)+ωadv
uij (t) (8.19)

while the global positive update for long-tail items is

Ω+(ILT |DR(t)) =
∑

(u,i,j)∈DR(t)∧i∈ILT

ωuij(t)+ωadv
uij (t) (8.20)

Definition 41 (Global Negative Update (Ω−)). The global negative update for
short-head items at t-th training epoch is defined as follows

Ω−(ISH |DR(t)) :=−
∑

(u,i,j)∈DR(t)∧j∈ISH

ωuij(t)+ωadv
uij (t) (8.21)

while the global negative update for long-tail ones is

Ω−(ILT |DR(t)) :=−
∑

(u,i,j)∈DR(t)∧j∈ILT

ωuij(t)+ωadv
uij (t) (8.22)

While Ω+ focuses on positive items (i), Ω− focuses on negative ones (j). It follows
that, using the inequality relations defined in Equations (8.17) and (8.18), we can
derive that

Ω+(ISH |DR(t))+Ω−(ISH |DR(t))≥ Ω+(ILT |DR(t))+Ω−(ILT |DR(t)) (8.23)

It implies that the global number of positive updates on short-head items is higher than
the one on long-tail ones when a uniform distribution is used to sample the negative
items and the users’ feedback distribution is affected by popularity bias. It means that
APR could be algorithmically affected by the amplification of the popularity bias
as already checked on BPR. It is now necessary to verify whether APR amplifies, even
more, the BPR issue.

Empirical Validation: the Wine-Glass Phenomenon

Figures 8.2a and 8.2b show the Ω+(ISH |DR(t))+Ω−(ISH |DR(t)) and Ω+(ILT |DR(t))
+Ω−(ILT |DR(t)) averaged by number of items in ISH and ILT , respectively 2. The
first observation is that the sum of the first quantity is always positive for short-head

2The model configuration used in Figure 8.2 correspond to the best one shown in Table 8.3.
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(a) Amazon

(b) ML100K

Fig. 8.2 Plots of the global gradient updates averaged by the number of items in ISH

and ILT . The red line indicates the start of APR.

items, while the second is negative for long-tail ones. Then, we identify a wine-
glass phenomenon on the graphical representations of Figures 8.2a and 8.2b. In fact,
each plot can be divided into three parts: the base, the stem, and the bowl. The
base represents the BPR training epochs in which the updates on ISH and ILT have
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Table 8.2 The statistics of the datasets.

Dataset |U| |I| |R| Density p(i|ISH) p(i|ILT )
ML100K 943 1,682 99,999 0.0630 0.6452 0.3548
Last.fm 1,892 17,632 92,834 0.0028 0.7893 0.2107
Amazon 3,915 2,549 77,328 0.0077 0.5747 0.4253
ML1M 6,040 3,706 1,000,209 0.0447 0.6512 0.3488
Yelp 25,677 25,815 731,671 0.0011 0.6544 0.3456

an absolute magnitude different from 0. Already in this training phase, it can be
seen that the average gradient magnitudes associated with ISH are bigger than the
one on ILT . This behavior is consistent with the well-known BPR amplification of
popularity bias [130, 247, 157, 46]. The stem is the second component of the wine-glass.
Observing Figures 8.2a and 8.2b, the last epochs of BPR (TBP R/2 < t≤ TBP R) show
the gradient vanishing problem as examined in Section 8.2.5. In this phase, there is
no amplification of bias since the model performs very tiny gradient updates. The
last part of the glass, the bowl, exposes the average magnitudes in the case of APR
training (t > TBP R). It can be noted that the average sum of Bayesian and adversarial
gradient magnitudes on each item in ISH is much more notable than the one for ILT .
These results empirically confirm Equation (8.23) and show that APR could increase
even more than BPR the item popularity bias. We extensively examine the APR
performance on beyond-accuracy and popularity bias metrics in the remainder of this
work.

8.3 Experiments

Here, we present experimental settings and the discussion of the empirical results.

8.3.1 Settings

In this section, we introduce the datasets, evaluation measures, and evaluation protocol.

Datasets

We perform our experiments on five public datasets.
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• MovieLens 100K (ML100K) [109] is a popular dataset with about 100,000 movie
ratings popularly used for initial recommender model prototyping. We treat each
rating as single positive feedback, indicating that a user likes the interacted film
more than a not-interacted one.

• Last.fm [53] includes social networking, tagging, and music artist listening data
from a set of 1,892 users of the Last.fm online music platform. We use the
dataset version containing the list of all the artists listened to by each user. We
model the artists as the items and the recorded listening as the feedback that a
user prefers an artist.

• Amazon [159] holds product reviews given by the customers to the products on
the e-commerce platform. As positive feedback, we utilize the user’s purchases
on the ’Grocery’ vs. ’Tool’ category. In particular, we use the dataset version
released by Zhu et al. [247].

• MovieLens 1M (ML1M) [109] is an extended version of the ML100K movie dataset
with a 10 times higher number of ratings (about 1 million).

• Yelp is a business review dataset released for the Yelp Challenge. We examine
each user’s review as a signal of interest toward business activity in the portal.
We test the dataset version released by He et al. [115].

For each dataset, we employ the leave-one-out protocol [188, 115], putting in the test
set either the last historical interaction when it is available, i.e., ML100K, Amazon, ML1M,
and Yelp, or a random one, i.e., Last.fm.

Evaluation Metrics

We perform our analysis with the following set of measures.

• Accuracy. To study the accuracy performance, we report the precision (Prec@K ),
recall (Rec@K ), and normalized discounted cumulative gain (nDCG@K ) evaluated
on the top-K recommendations [168].

• Beyond-accuracy. To measure the beyond-accuracy performance, we use
the item coverage (Cov%@K) and the novelty (Nov). Cov%@K measures the
percentage fraction of the number of different items in the top-K recommendation
lists on the size of the catalog (I). Values close to 100% indicates that the
recommender model can generate recommendation lists covering almost the
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entire catalog. Nov@K is defined as the capacity of the RS to generate novel
and unexpected recommendations. We use the Nov@K metric proposed by Zhou
et al. [243]. Following [243], given an item i, let |Ui| be the number of users who
have previously interacted with i, let |Ui|/|U | be the probability that a randomly
selected user u has interacted with i, then the self-information associated to
i is defined as SIi = log2 (u/|Ui|). Let MSIu@K be the mean self-information
measured as the average SI associated to each item in the top-K recommendation
list of u, then the novelty is Nov@K :=∑

u∈U MSI@K/|U|. Higher Nov@K means
a better RS ability to suggest unexpected items.

• Popularity Bias. To assess whether the recommendation lists are affected by the
popularity bias, we adopt two sets of measures: (i) the long-tail diversity [2], and
(ii) the ranking-based statistical metrics [247]. The first set includes the following
metrics: the average recommendation popularity (ARP@K), the percentage
of long-tail items (APLT@K), and the average coverage of long-tail items
(ACLT@K). ARP@K evaluates the average popularity of the recommended
items, APLT@K calculates the average fraction of long-tail items in each users’
recommendation list, and ACLT@K measures the portion of recommended long-
tail items. The second set includes the ranking-based statistical parity (RSP@K)
and the ranking-based equal opportunity (REO@K). RSP@K measures the ratio
between the recommendation probabilities for short-head (PSH@K) and long-tail
(PLT @K) items. REO@K quantifies the previous recommendation probabilities
considering the influence of the user’s set of previously interacted items, i.e.,
P̂SH@K and P̂LT @K. We refer to the original work by Zhu et al. [247] for further
details.

Evaluation Protocol

We implemented the experimental framework using Tensorflow2. We fixed the size of
the latent factor f to 64 as suggested in [115]. We trained the BPR-MF model for TBP R

epochs by varying the learning rate η ∈ {0.005,0.01,0.05}. After selecting the η hyper-
parameters with the most accurate top-50 recommendations — accuracy measured as
the recall (Re@50)— on the test set, we started the APR-MF training on the pre-trained
BPR-MF model. We grid-searched the following set of APR-MF hyper-parameters:
the perturbation budget ϵ ∈ {0.001,0.01,0.1,1.0} and α ∈ {0.001,0.01,0.1,1.0,10.0}.
The APR-MF training is performed from the TBP R + 1 epoch, and it is completed
until the TAP R-th epoch. We set TBP R = 100 and TAP R = 200 for the smaller datasets,
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i.e., Amazon, Last.fm, and ML100K; and TBP R = 1000 and TAP R = 1500 for the last
two bigger datasets. Note that we have also trained the BPR-MF model until the
TAP R-th epoch to be fair in comparing the results of the BPR, and APR, MF models
reported in the section 8.3.2. Further reproducibility details, the code, and the data
are available on the public GitHub repository.

8.3.2 Results

This section presents the results and discusses the APR impact on accuracy, beyond-
accuracy, and popularity objectives. Here, we aim to answer the following research
questions:

RQ1 When APR improves the model accuracy, what are the effects on the beyond
accuracy measures?

RQ2 Are the recommendation lists more affected by the popularity bias than those
produced by BPR?

RQ3 How do the α and ϵ hyper-parameters affect the accuracy and beyond-accuracy
of APR performance?

We report all the metric values on top-50 recommendation lists. For instance, we
indicate Nov@50 as Nov, Re@50 as Re, nDCG@50 as nDCG. Additionally, we
indicate with R.V. the percentage relative variation between BPR-MF and APR-MF
metric values. Table 8.3 shows the accuracy and beyond-accuracy metrics presented
in Section 8.3.1, while Table 8.4 shows the popularity bias ones. For each dataset, we
report the model’s recommendation performance with the best Re values in the set of
hyper-parameters combinations presented in Section 8.3.1.

Analysis of Accuracy and Beyond-Accuracy (RQ1)

Analyzing Table 8.3, we identify that APR tends to reduce the novelty and coverage
values compared to the one measured on BPR. For the ML100K dataset, APR-MF
improves Re, Prec, and nDCG by more than 2%, with a slight reduction of Nov, i.e.,
R.V.(Nov) = −0.27%. For Last.fm, we measured an R.V.(Rec) = +7.14%, while
a R.V.(Cov%) =−9.5%. Similarly, the ML1M results improve the Re of 3.62% while
decreasing 6% the recommendation novelty. The same behavior is even more noticeable
for the Yelp results, where Cov% got a reduction greater than the 42%. Hence, we
argue that the APR could negatively influence the beyond-accuracy recommendation
performance.
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Table 8.3 Accuracy and beyond-accuracy metrics evaluated on top-50 recommendation
lists. The ↑ means that a bigger metric value can be related to an amplification of
popularity bias, ↓ means a reduction.

Dataset Model Accuracy Beyond-Accuracy
Rec Prec nDCG Nov Cov%

ML100K
BPR-MF 0.3871 0.0077 0.1222 2.7653 71.22
APR-MF 0.3966 0.0079 0.1260* 2.7577* 71.22*

R.V. +2.47% +2.47% +3.15% -0.27% 0.00%

Last.fm
BPR-MF 0.0148 0.0003 0.0040 4.8170 20.02
APR-MF 0.0159 0.0003 0.0042 4.7605 18.10

R.V. +7.14% +7.14% 3.92% -1.17% -9.59%

Amazon
BPR-MF 0.2077 0.0042 0.0656 6.0431 99.37
APR-MF 0.2130 0.0043 0.0687* 5.6805* 90.58*

R.V. +2.58% +2.58% +4.63% -6.00% -8.85%

ML1M
BPR-MF 0.2747 0.0055 0.0830 2.8576 76.19
APR-MF 0.2846* 0.0057* 0.0868* 2.6794* 70.76*

R.V. +3.62% +3.62% +4.68% -6.24% -7.13%

Yelp
BPR-MF 0.0990 0.0020 0.0290 7.7969 77.71
APR-MF 0.1065* 0.0021* 0.0311* 7.2165* 44.43*

R.V. +7.55% +7.55% +7.49% -7.44% -42.83%
* indicates statistically significant results (p-value≤ 0.05) using the paired-t-test.

Analysis of Popularity Bias (RQ2)

Long-tail diversity. As expected by the analysis in Section 8.2.6, the three long-
tail diversity scores get negative R.V. when comparing APR-MF with BPR-MF, its
building block. Examining the ARP values, we identify that APR-MF results increase
the recurrence of most popular items in the recommendation lists. For instance, the
R.V.(ARP) = +23.18% on Amazon, +10.13% on ML1M, and +32.57% on Yelp. As
stated by Abdollahpouri et al. [2], since the ARP is not a good measure of long-tail
diversity when used only on its own, we also report APLT and ACLT. For both
metrics, the R.V. values are negatives, a behavior consistent with the growth of ARP.
This empirical evaluation further supports our argument that APR could amplify the
popularity bias more than BPR.

Ranking-based statistical item under-recommendation. Table 8.4 also reports
the RSP and REO. While Zhu et al. [247] used these metrics to study the bias on a
different group of items based on categorical information, e.g., genres, we studied the
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Table 8.4 Popularity bias metrics evaluated on top-50 recommendation lists. The ↑
means that a bigger metric value is related to an amplification of popularity bias, ↓
means a reduction.

Dataset Model
Popularity Bias

Long-tail diversity Ranking-based statistical item under-recommendation
ARP ↑ APLT ↓ ACLT ↓ PSH ↑ PLT ↓ RSP ↑ P̂SH ↑ P̂LT ↓ REO ↑

ML100K
BPR-MF 176.64 0.2890 14.4486 0.0953 0.0102 0.8058 0.5279 0.2167 0.4180
APR-MF 177.33* 0.2841* 14.2068* 0.0959* 0.0101* 0.8099* 0.5549* 0.2048 0.4609

R.V. +0.39% -1.67% -1.67% +0.68% -1.67% +0.51% +5.11% -5.49% +10.26%

Last.fm
BPR-MF 110.77 0.0094 0.4704 0.0141 0.0000 0.9948 0.0985 0.0046 0.9116
APR-MF 114.06* 0.0069* 0.3451* 0.0141* 0.0000* 0.9962* 0.1061 0.0046 0.9176

R.V. +2.96% -26.63% -26.63% +0.25% -26.63% +0.14% 7.69% 0.00% +0.66%

Amazon
BPR-MF 106.59 0.3541 17.7055 0.0625 0.0086 0.7572 0.3469 0.1045 0.5371
APR-MF 131.30* 0.2829* 14.1471* 0.0694* 0.0069* 0.8191* 0.3595 0.1045 0.5496

R.V. +23.18% -20.10% -20.10% +11.02% -20.10% +8.17% +3.63% 0.00% +2.34%

ML1M
BPR-MF 1,072.48 0.1819 9.0952 0.0512 0.0030 0.8907 0.3850 0.1108 0.5531
APR-MF 1,181.12* 0.1405* 7.0262* 0.0538* 0.0023* 0.9184* 0.4089* 0.1001* 0.6067*

R.V. +10.13% -22.75% -22.75% +5.06% -22.75% +3.12% +6.19% -9.67% +9.69%

Yelp
BPR-MF 204.64 0.1428 7.1398 0.0083 0.0003 0.9198 0.1552 0.0215 0.7566
APR-MF 271.30* 0.0585* 2.9264* 0.0091* 0.0001* 0.9693* 0.1752* 0.0115* 0.8773

R.V. +32.57% -59.01% -59.01% +9.83% -59.01% +5.38% +12.93% -46.72% +15.95%
* indicates statistically significant results (p-value≤ 0.05) using the paired-t-test.

items divided into the short-head and long-tail groups (see Section 8.2.6 for further
details). Consistent with the previous findings, RSP and REO values grew up when
employing APR. For instance, R.V.(RSP ) = +3.12% and R.V.(REO) = +9.69%
measured on the ML1M datasets, show that the recommendations are biased towards the
short-head items. Variation even bigger on the experiments on the Yelp dataset, e.g.,
R.V.(REO) = +15.95%. Finally, the comparison between (PSH , P̂SH) and (PLT , P̂LT )
pairs of measures reveal that APR worsened the already discriminatory behavior of
BPR on the popular items. For example, the PSH value is 17 times higher than PLT in
BPR-MF, while it is 23 times higher in APR-MF for the results on the ML1M dataset.
Similarly, the same ratio increases by more than three times in the Yelp dataset.

Before we explore the effects of APR hyper-parameters in Section 8.3.2, we try
to connect the results observed in Tables 8.3 and 8.4 together with the dataset
characteristics reported in Table 8.2. An interesting finding that we could observe
is that Yelp, the dataset with the lowest density (0.0011), is the one on which
APR had the highest impact of bias amplification and beyond-accuracy performance
reduction. Simultaneously, ML1M and ML100K -the two denser datasets- show less evident
performance worsening. Indeed, suppose we order the datasets from the smallest to the
highest density, we have the following relation Y elp < Last.fm < Amazon < ML1M <

ML100K. The same order is also present for the Cov% values and the APLT R.V. -
except for a position swap between ML1M and Amazon.
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Study of α and ϵ (RQ3)

To further study the effect of APR, in this section, we investigate the variation of
the adversarial perturbation budget (ϵ) and regularization coefficient (α). Figure 8.3
reports the Re and Nov values evaluated on the (α,ϵ)-model pairs that got the best Re.
Additionally, we show the metric value of the most accurate BPR-MF model (straight
black line).

The ranking accuracy achieved for the APR-MF models with ϵ = 1.0 (straight
red line) shows a behavior not comparable to the results obtained with ϵ < 1.0. This
behavior confirmed on the Nov plots reveals that the application of adversarial training
with big magnitudes of the adversarial perturbation, e.g., ϵ ≥ 1 can considerably
change the recommendation performance. The negative impact of ϵ≥ 1.0 has also been
observed by the original work that proposed the adversarial training strategy [115].
Extending the analysis to ϵ ∈ {0.001,0.01,0.1}, we observe that the Re values follow
the same pattern when we fix the dataset and vary α. For instance, APR-MF trained
on Amazon leads to Re values higher than the BPR-MF in the combination α = 0.01
and each ϵ < 1.0. The APR accuracy improvements on BPR are verified for each
(α,ϵ)-combination on the ML100K dataset (see Figure 8.3a). Then, we observe the value
of APR in the case of the Yelp dataset in Figure 8.3e. In this case, we can see that
APR with ϵ = 1.0 could produce a model more accurate than the one learned by BPR.
Since there is not a clear common pattern across the models trained on the five tested
datasets, we conjecture that the performance of APR could depend on the structural
and distributional characteristics of the dataset.

Similar to the findings on Re, the beyond-accuracy values measured with α =
0.01 and ϵ < 1.0 have patterns that vary with the dataset. From the novelty plots
in Figure 8.3, we extract two findings. First, the (α,ϵ)-combinations where the APR
accuracy performance is higher than the BPR have no correspondence on the cases
where APR can lead to Nov% improvements on BPR. Second, the APR models’
novelty values are mostly lower than those measured on the BPR-MF model. These
two observations are in line with the reduction of beyond-accuracy metrics shown in
Table 8.3, and the strict connection between their reduction in the case of amplification
of the popularity bias as argued by [46].
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(a) Rec - ML100K (b) Rec - Amazon (c) Rec - Last.fm

(d) Rec - ML1M (e) Rec - Yelp (f) Nov - ML100K

(g) Nov - Amazon (h) Nov - Last.fm (i) Nov - ML1M

(j) Nov - Yelp

Fig. 8.3 Plots of the Rec (on the top) and Rec metrics on y-axis by varying α on x-axis.

8.4 Related Work

We now report on the literature related to applying adversarial learning techniques
in the recommendation domain and the critical recommendation model features of
beyond-accuracy performance and amplification of biases.
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8.4.1 Models and Evaluation of AML in RSs

Adversarial Machine Learning (AML) is the field of study of the security of ML
models. While the research on the injection of hand-engineered fake profiles has
characterized the last twenty years of security investigation of RSs [48], the recent years
view an increase of interest toward AML techniques [146, 115, 82]. The literature has
been focused on three main classes of AML applications: (i) injection of adversarial
perturbations on model parameters [115, 58, 209], (ii) adversarial attacks on the side
information, e.g., items’ images [85, 67, 154], and (iii) AML-optimized data poisoning
attacks [146, 65] and defenses [92, 153]. The contribution of this chapter falls in the
first class. Here, He et al. [115] proposed the pioneering application of AML for
the item recommendation task. They reported the serious vulnerability of BPR-MF
when the model parameters were adversarially perturbed. Additionally, the authors
extended BPR with an adversarial training procedure, named adversarial personalized
ranking (APR), as an effective defensive countermeasure. This work inspired a series of
robustness studies on other core ML models and recommendation tasks. For instance,
Tang et al. [209] applied the vulnerability study and proposed the APR defense to
a visual-based RS for fashion recommendation. Yuan et al. [235, 234] investigated
the robustification benefits of APR on a class of deep learning recommenders, the
collaborative auto-encoder. Chen and Li [58] adopted the same approach to tensor-
factorization models. Tran et al. [211] used APR for automatic playlist continuation.
Manotumruksa and Yilmaz [156] implemented APR on a self-attention sequential
recommender. In the literature of AML-RS for this class of attacks and defenses, the
robustification analysis has been performed for the recommendation accuracy, leaving
the beyond-accuracy evaluations as a completely low-investigated research field studied
in this chapter.

8.4.2 Beyond-Accuracy and Popularity Bias in RSs

Due to the large impact of RSs in the society [35, 36], a huge research effort has
been dedicated to beyond-accuracy objectives [44]. For instance, studying whether the
suggested items are novel and cover the complete catalog, and proposing methods to
mitigate several types of biases [60], e.g., selection bias[193], exposure bias [164], and
popularity bias [1, 3]. Indeed, biases could lower the recommendation quality [51, 46].
In particular, the popularity bias is responsible for the “rich-get-richer” Matthew effect
on RSs. In fact, a popularity-biased RS tends to recommend the most popular items,
named short-head items, more than the less interacted ones, called long-tail [167].
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Controlling and mitigating popularity biases has attracted massive interest in
recent years. For instance, Abdollahpouri et al. [1] proposed both a regularization
framework [1] and a re-ranking algorithm [2] to increase the coverage of long-tail items
in the recommendation lists and reduce the bias amplification. Jannach et al. [130]
proposed to reduce the popularity bias by sampling the training triplets of pairwise
models including a user, an interacted (positive) item, and a not-interacted (negative)
item, where the negative one is less popular than the unobserved item. Boratto et al.
[46] integrated a balanced negative sampling technique with a novel objective function
that reduces the biased correlation between the popularity of products and the user-item
relevance score. In addition, BPR, the building block of the APR approach under our
investigation, has been proved to amplify the recommendation lists’ popularity-biased.
For instance, Mansoury et al. [157] empirically identified that BPR is affected by a
potent bias propagation phenomenon, Zhu et al. [247] measured the vulnerability of
BPR to item under-recommendation bias, Boratto et al. [46] studied and connected
the BPR item popularity bias to the low beyond-accuracy measures, e.g., novelty
and coverage. The importance of beyond-accuracy evaluations [133], and the related
amplification of popularity bias, motivated our extensive investigation on the APR
optimization framework.

8.5 Summary

The current chapter has formally investigated the user of adversarial personalized
ranking (APR) to robustify model-based recommendation algorithms. This technique
is extensively used in many new recommendation models due to possible improvements
in the robustness and accuracy of the models. While there has been much focus in
investigating its efficacy in getting accuracy improvements in several recommendation
tasks and domains, the assessment of APR effects on the beyond-accuracy evaluations
has been under-investigated despite their importance on the recommendation quality
and effectiveness. This chapter has proposed theoretical modeling of the APR learning
characteristics starting from its building-block formulation, the Bayesian personalized
ranking (BPR) optimization framework. We have formally identified that APR could be
affected by a phenomenon of popularity bias amplification within a consistent reduction
of beyond-accuracy performance. Then, we have identified that APR amplifies the
popularity bias following a learning pattern that we named wine-glass phenomenon.
The phenomenon confirmed that APR performs more positive gradient updates on
short-head items than long-tail ones, with a difference in magnitude more conspicuous
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than the one measured on BPR. Additionally, we have experimentally compared APR
and BPR performance on MF recommenders trained on five standard recommendation
datasets. We have also confirmed the theoretical findings of the APR amplification
bias by measuring both beyond-accuracy and popularity bias performance worsening
by varying the (α,ϵ) pairs of hyper-parameters. Considering the importance of APR
as the first and popular technique to robustify the model parameters of model-based
recommendation models, we consider it necessary to investigate novel robustification
strategies and improve the existing one limiting the APR demonstrated tendency in
worsening recommendation quality to present accurate, but also diverse, novel and
more minor popularity-biased recommendations.



Chapter 9

Conclusions

The existence of adversarial examples has limited the areas in which deep learning
can be applied in many tasks like computer vision, natural language processing, and
speech recognition. Recently, adversarial samples have been demonstrated to effectively
destroy the integrity and availability of recommendation models. In this dissertation,
we have investigated three main areas of adversarial studies: (i) hand-engineered
injection of fake profiles, (ii) adversarial perturbation of content data in multimedia
settings, and (iii) minimal-sized perturbation on model parameters which are inside
the three main areas of research of adversarial learning in recommendation task as
shown in our published literature review [82] and book chapter [20].

Regarding the first research area of study, i.e., hand-engineered injection of
fake profiles, we have contributed to the proposal of a regression-based framework to
interpret the dataset characteristics that can influence the robustness of collaborative
recommenders to the hand-engineered poisoning of the user-item recorded interactions.
We have demonstrated in Chapter 3 that this tool can significantly support system
designers to understand how to mitigate adversarial effects by stimulating the activeness
of customers in interacting with the platform. Then, in Chapter 4, we have presented a
set of novel attack strategies that employ public available semantic information
like knowledge graphs to build powerful fake profiles that can have a dramatic impact
on the reliability of the recommender system. The evidence of these limits has opened
novel challenges in proposing novel defenses under these novel malevolent settings.

Then, we have focused our research contribution to investigating integrity and
availability issues on adversarial perturbation of content data in multimedia
settings. Chapter 5 has been devoted to presenting a part of our contribution in
demonstrating that adversaries can easily break a visual recommender by uploading an
adversarial sample of products (poisoning settings). We have verified that state-of-the-
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art adversarial robustification strategies in both recommendation and computer vision
domains are almost unuseful to protect the quality of recommendation lists. We have
produced a set of empirical observations from which further studies can be based. For
instance, we have shown that what makes an adversarial sample more impactful on the
recommendation performance is the variations of the feature values used in the learning
phase (e.g., the higher difference between original and adversarial samples makes the
attack very strong independently of the attack success in misclassifying the classifiers
used as feature extractor). Later, Chapter 6 has been dedicated to the presentation of
our novel defense proposal to protect visual recommenders against test time
adversarial attacks. In particular, we have tested whether a denoiser autoencoder is
trained to preserve the original image characteristics and recommendation performance.

Finally, in the last part of the dissertation, we have investigated two main aspects of
the minimal-sized perturbation on model parameters. First, we have explored
novel adversarial strategies to build adversarial noises that we have demonstrated to
completely break the recommendation quality of model-based recommenders. Chapter 7
have been dedicated to proposing our multi-step adversarial perturbation strategies that
have opened novel perspectives on the robustness evaluation of model recommenders.
That is: the existence of slight variations of model parameters that make completely
unuseful a recommender model in producing personalized recommendations is applicable
in reality? If so, how can we make the model more robust? A first defense solution
that we verified to protect from iterative perturbations partially is the adversarial
training strategy (see APR in Section 2.3.2). Interestingly, in Chapter 8, we have shown
that subsequent articles have started to use APR as another optimization framework to
improve the recommendation accuracy. Here, we have verified, via a formal analysis
of adversarial training for recommender systems, that the motivation of this
accuracy improvement could be related to a phenomenon of amplification of popularity
bias that also motivates a drastic reduction on beyond-accuracy metric values (e.g.,
novelty, coverage, and diversity). This creates an avenue for future work exploring how
to resist strong adversarial perturbations by preserving accuracy and beyond-accuracy
performance.

Taken together, the research contributions presented in this dissertation pave
the way towards more robust recommender systems. Novel (and applicable) attack
strategies will be the basis of recommenders protected against adversaries. The limits
of the existing defenses can motivate further research to guarantee the most reliable
recommendations. The attention towards a complete analysis of the recommendation
quality of defended models should motivate defense proposals that also consider beyond-
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accuracy aspects. We hope that the content of this dissertation will serve as a stepping
stone to build robust recommendation systems against adversaries.
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