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Waves in Flexural Beams with Nonlinear
Adhesive Interaction

G. M. Coclite , G. Devillanova , and F. Maddalena

Abstract. The paper studies the initial boundary value problem related to the
dynamic evolution of an elastic beam interacting with a substrate through an
elastic-breakable forcing term. This discontinuous interaction is aimed to model
the phenomenon of attachment-detachment of the beam occurring in adhesion
phenomena. We prove existence of solutions in energy space and exhibit vari-
ous counterexamples to uniqueness. Furthermore we characterize some relevant
features of the solutions, ruling the main effects of the nonlinearity due to the
elastic-breakable term on the dynamical evolution, by proving the linearization
property according to Gérard (J Funct Anal 141(1):60–98, 1996) and an asymp-
totic result pertaining the long time behavior.
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1. Introduction

In a broader sense the term adhesion refers to a physical situation in which two
material bodies, during their mechanical evolution, experience a contact interaction
which fails in (possibly bounded) regions of space-time and restores after a while.
The phenomenon strongly depends on the constitutive properties of the involved
materials and a crucial problem relies in understanding the nature of the interaction.
The manifestation of such phenomenon occurs at every scale, ranging from DNA
molecules to the structural engineering works. Mathematics has looked at these
problems, at least in the stationary case, since the seminal paper [1] and in some
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recent works (see, e.g., [7–11]) one of the authors contributed to the study of the
static problem of adhesion of elastic structures by exploiting different constitutive
assumptions to the aim of characterizing, in a variational framework, the interplay
of the debonding with other constitutive properties.

However the dynamical problem is a different story since at the heart of the
question stays the understanding of the attachement-detachement occurrence and
how this affects the whole evolution problem. This is a subtle problem since the
analytical tools at disposal, such as spatio-temporal estimates in some norms, seem
too rough to catch exhaustive quantitative informations, even in short time.

In [3,4] the simplest mechanical model consisting in elastic string was con-
sidered, whereas a discontinuous forcing term was assumed to model the adhesive
interaction of the string with a rigid substrate. The resulting mathematical problem
is then ruled by an initial boundary value problem for a semilinear second order wave
equation and the results in [3,4] show some tricky peculiarities of the problem. As
it is well known in continuum mechanics, the other basic model for one dimensional
elastic structures is represented by the so called Bernoulli-Navier beam governing
the flexural deformations of a slender material body. In the linear elastic framework
the equation expressing the balance of momentum is ruled by a fourth order spatial
differential operator. Analogously to [3], we assume a discontinuous forcing term
to model the adhesive interaction of the beam with the external environment. One
can visualize as a physical situation an elastic beam connected to a rigid substrate
through a foundation made of continuous distribution of elastic-breakable springs.

We study the well posedness of the mathematical problem proving existence of
global in time solutions in the natural energy space and exploit some features of the
solutions to obtain information about the role played by the attachment-detachment
occurrence on the dynamical evolution. Indeed, in [2] it was proved that the main
effects induced by the nonlinearity at the transition from attached to detached
states consist in a loss of regularity of the solution and in a migration of the total
energy through the scales. Here we deepen the analysis by using the linearization
condition introduced by Gérard in [5] according to which one can conclude that if
the semilinear evolution problem satisfies such condition, then the nonlinear forcing
term does not induce any new oscillation or energy concentrations [5]. Furthermore
we prove an asymptotic result for the long time behavior in the case of bounded
solutions, asserting the occurrence of three mutually exclusive states: the trivial one,
the totally detached state, the totally attached state.

The paper is organized as follows. In Sect. 2 we formulate the initial bound-
ary value problem. In Sect. 3 we state the main results of the paper consisting
in Theorem 3.2 (Existence of solutions), Theorem 3.3 (Characerization of adhesive
states), Theorem 3.4 (Long time behavior), Theorem 3.5 (Linearization property).
The proofs of these theorems are given respectively in Sects. 4, 5, 6, 7. In Sect. 8
we provide some examples showing non-uniqueness and lack of smoothness of the
solutions.
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2. Statement of the Problem

Let us consider an elastic beam under Bernoulli–Navier constitutive assumption,
occupying in the reference configuration the interval [0, L] ⊂ R, the balance of
linear momentum delivers the semilinear initial boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ∂2
ttu = −μ∂4

xxxxu − Φ′ (u) t > 0, 0 < x < L,

∂2
xxu(t, 0) = ∂2

xxu(t, L) = 0 t > 0,

∂3
xxxu(t, 0) = ∂3

xxxu(t, L) = 0 t > 0,

u(0, x) = u0(x) 0 < x < L,

∂tu(0, x) = u1(x) 0 < x < L.

(2.1)

We shall assume that
(H.1) Φ ∈ C(R) ∩ C2(R\{1, −1}), Φ is positive, constant in (−∞, −1] and in [1, ∞),

convex in [−1, 1], decreasing in [−1, 0], increasing in [0, 1], and Φ(u) ≥ κu2 in
[−1, 1] for some constant κ > 0;

(H.2) u0 ∈ H2(0, L), u1 ∈ L2(0, L);
(H.3) ρ > 0 is the constant material density and μ > 0 is the elastic stiffness.

As a consequence of (H.1), Φ′ has a jump discontinuity in u = ±1 and

u ∈ (−∞, −1) ∪ (1, ∞) ⇒ Φ′(u) = 0,

0 < u < 1 ⇒ 0 < Φ′(u) ≤ lim
u→1−

Φ′(u),

−1 < u < 0 ⇒ 0 > Φ′(u) ≥ lim
u→−1+

Φ′(u).

The set {|u| = 1} of these discontinuities separates the attached zone {|u| < 1}
from the detached one {|u| > 1} since the forcing term Φ′(u) is thought to model
the elastic breakable interaction between the beam and the external environment.
Such forcing term confers to the problem a localized nonlinearity which affects the
evolution in a significant way.

To fix ideas, a function satisfying (H.1) is

Φ(u) =

{
u2 if |u| ≤ 1,

1 if |u| > 1.
(2.2)

In particular we have for all u 
= ±1

Φ′(u) =

{
2u if |u| < 1,

0 if |u| > 1.
(2.3)

The natural energy associated to the Problem (2.1) (i.e. to any solution u to
(2.1)), is given at time t by the quantity

E[u](t) =
∫ L

0

(
ρ(∂tu(t, x))2 + μ(∂2

xxu(t, x))2

2
+ Φ(u(t, x))

)

dx. (2.4)

In general, the lack of Lipschitz continuity in the nonlinear term Φ′ suggests we
cannot expect the existence of conservative solutions, i.e. solutions that preserve
energy. Also the physics underlying the problem, foresees a kind of dissipation when
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the material is detaching from the substrate and this is accompanied by hysteresis
cycles (see e.g. [8, Appendix B]).

3. Main Results

We begin by studying the well-posedness of Problem (2.1) and the regularity of its
solutions (see Definition 3.1 below). We prove the existence of Lipshitz continuous
dissipative solutions and give examples of distinct solutions to (2.1) which do not
depend continuously on the initial conditions.

Definition 3.1. We say that a function u : [0, ∞)×[0, L] → R is a dissipative solution
of (2.1) if
(i) u ∈ C([0, ∞) × [0, L]);
(ii) ∂tu, ∂2

xxu ∈ L∞(0, ∞; L2(0, L));
(iii) u is a weak solution to (2.1), i.e. for every test function ϕ ∈ C∞(R2) with

compact support
∫ ∞

0

∫ L

0

(
ρu∂2

ttϕ + μ∂2
xxu∂2

xxϕ + huϕ
)
dtdx

−
∫ L

0

ρu1(x)ϕ(0, x)dx +
∫ L

0

ρu0(x)∂tϕ(0, x)dx = 0, (3.1)

where hu ∈ ∂Φ (u), that is the subdifferential of Φ at u;
(iv) u may dissipate energy, i.e. for almost every t > 0: E[u](t) ≤ E[u](0), namely

(see (2.4))

E[u](t) =
∫ L

0

(
ρ(∂tu(t, x))2 + μ(∂2

xxu(t, x))2

2
+ Φ(u(t, x))

)

dx

≤
∫ L

0

(
ρ(u1(x))2 + μ(∂2

xxu0(x))2

2
+ Φ(u0(x))

)

dx = E[u](0). (3.2)

We remind that
h ∈ ∂Φ (u)

means that h : [0, ∞) × [0, L] → R satisfies

hu(t, x)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= Φ′(u(t, x)), if|u(t, x)| < 1,

= 0, if|u(t, x)| > 1,

∈ [0, Φ′(1−)], ifu(t, x) = 1,

∈ [Φ′(−1+), 0], ifu(t, x) = −1.

Let us state the following theorem asserting the existence of dissipative solu-
tions.

Theorem 3.2. (Existence) If Φ satisfies (H.1) and u0, u1 satisfy (H.2), then problem
(2.1) admits a dissipative solution in the sense of Definition 3.1.

The following result provides a sufficient condition ruling the non-detachment
of dissipative solutions in dependence on the initial data.



Vol. 89 (2021) Waves in Flexural Beams with Nonlinear Adhesive Interaction 333

Theorem 3.3. Let u be a dissipative solution of (2.1). If

‖u0‖L∞(0,L) < 1 and E[u](0) <
4κμ

3 ∨ 2κ
(≤ 2μ), (3.3)

where κ is defined in (H.1), then

‖u‖L∞((0,∞)×(0,L)) < 1. (3.4)

The long time behavior is a very subtle problem for evolutionary partial dif-
ferential equations, so by restricting the focus on bounded dissipative solutions, we
are able to prove the following statement.

Theorem 3.4. (Long time behavior) Let u be a dissipative solution of (2.1) and
{tn}n∈N ⊂ (0, ∞) such that tn → ∞. If

u ∈ L∞((0, ∞) × (0, L)), (3.5)

then there exist a subsequence {tnk
}k∈N and two constants a, b ∈ R such that

u(tnk
, ·) ⇀ u∞ weakly in H2(0, L) as k → ∞,

where

u∞(x) = ax + b. (3.6)

Moreover, only one of the following statements can occur

u∞ ≡ 0, (3.7)

u∞(x) ≥ 1for every x ∈ [0, L], (3.8)

u∞(x) ≤ −1for every x ∈ [0, L]. (3.9)

The question at the basis of the last subsequent result can be formulated as
follows: How the nonlinearity characterizing the forcing term Φ′ affects the evolution
problem? We retain that Gérard’s linearization condition provides a precise mathe-
matical tool to answer to the previous rather vague question. Indeed the absence of
further energy concentrations or oscillations due to the nonlinearity, suspected to
arise in correspondence of the attachment-detachment process, constitutes an inter-
esting property in itself, also considering the nonuniqueness of the solutions {un}n

below.

Theorem 3.5. (Linearization property) Let {u0,n}n ⊂ H2(0, L), {u1,n}n ⊂ L2(0, L),
{un}n be a sequence of dissipative solutions of (2.1) in correspondence of such initial
data, and vn be the dissipative solution of the linearized problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ∂2
ttvn = −μ∂4

xxxxvn t > 0, 0 < x < L,

∂2
xxvn(t, 0) = ∂2

xxvn(t, L) = 0 t > 0,

∂3
xxxvn(t, 0) = ∂3

xxxvn(t, L) = 0 t > 0,

vn(0, x) = u0,n(x) 0 < x < L,

∂tvn(0, x) = u1,n(x) 0 < x < L.

(3.10)
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If

u0,n ⇀ 0 weakly in H2(0, L), (3.11)

u1,n ⇀ 0 weakly in L2(0, L), (3.12)

lim sup
n

∫ L

0

(
ρu2

1,n + μ(∂2
xxu0,n)2

2

)

dx <
4κμ

3 ∨ 2κ
(≤ 2μ), (3.13)

where κ is defined in (H.1), then the following linearization condition holds true

‖∂t(un − vn)‖L∞(0,T ;L2(0,L)) +
∥
∥∂2

xx(un − vn)
∥
∥

L∞(0,T ;L2(0,L))
→ 0 (3.14)

for every T ≥ 0 as n → ∞.

4. Existence of Dissipative Solutions

This section is dedicated to the proof of Theorem 3.2.
Our argument is based on the approximation of the Neumann problem (2.1)

with a sequence of Neumann problems (4.1) characterized by smooth source terms
and smooth initial data. More precisely, let {u0,n}n∈N, {u1,n}n∈N ⊂ C∞([0, L]),
{Φn}n∈N ⊂ C∞(R), for every n ∈ N consider the approximating problems

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ∂2
ttun = −μ∂4

xxxxun − Φ′
n(un) t > 0, 0 < x < L,

∂2
xxun(t, 0) = ∂2

xxun(t, L) = 0 t > 0,

∂3
xxxun(t, 0) = ∂3

xxxun(t, L) = 0 t > 0,

un(0, x) = u0,n(x) 0 < x < L,

∂tun(0, x) = u1,n(x) 0 < x < L,

(4.1)

where {u0,n}n∈N, {u1,n}n∈N, {Φn}n∈N are sequences of smooth approximations of
u0, u1, and Φ respectively, i.e. they satisfy the following requirements

u0,n → u0 in H1(0, L), u1,n → u1 in L2(0, L), Φn → Φ uniformly in R,

Φ′
n → Φ′ pointwise and uniformly in R\ ((−1 − ε, −1 + ε) ∪ (1 − ε, 1 + ε)) for everyε,

|u| ≥ 1 + ε ⇒ Φ′
n(u) = 0, ε > 0, n ∈ N,

‖u0,n‖H1(0,L) ≤ C, ‖u1,n‖L2(0,L) ≤ C, 0 ≤ Φn, Φ′
n ≤ C, n ∈ N,

u′′
0,n(0) = u′′

0,n(L) = u1,n(0) = u1,n(L) = 0, n ∈ N,

(4.2)
where C is a positive constant which does not depend on n.

For any n ∈ N, (4.1) admits a classical solution for short time thanks to the
Cauchy–Kowaleskaya Theorem (see [14]). Furthermore, for such a problem, solutions
are indeed global in time thanks to the following results. Let un be the unique
classical solution to (4.1).

Lemma 4.1 (Energy conservation). Classical solution to (4.1) preserves energy.
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Proof. Set En := E[un] the energy corresponding to un. We have to prove that the
function t �→ En(t) is constant (with constant value En(0)). Indeed, we have that

E′
n(t) =

d

dt

∫ L

0

(
ρ(∂tun)2 + μ(∂2

xxun)2

2
+ Φn(un)

)

dx

=
∫ L

0

(
ρ∂tun∂2

ttun + μ∂2
xxun∂3

txxun + Φ′
n(un)∂tun

)
dx

=
∫ L

0

∂tun

(
ρ∂2

ttun + μ∂4
xxxxun + Φ′

n(un)
)

︸ ︷︷ ︸
=0

dx = 0.

�

As a consequence of energy conservation, since the functions Φn are positive,
we have the following boundedness result.

Corollary 4.2. The sequences {∂tun}n∈N and {∂2
xxun}n∈N are bounded in L∞(0, ∞; L2(0, L)).

Lemma 4.3 ( L2 estimate). The sequence {un}n∈N is bounded in L∞(0, T ; L2(0, L)),
for every T > 0.

Proof. Using the Hölder inequality
∫ L

0

u2
n(t, x)dx =

∫ L

0

(

u0,n(x) +
∫ t

0

∂sun(s, x)ds

)2

dx

≤ 2
∫ L

0

u2
0,n(x)dx + 2

∫ L

0

(∫ t

0

|∂sun(s, x)|ds

)2

dx

≤ 2
∫ L

0

u2
0,n(x)dx + 2t

∫ t

0

∫ L

0

(∂sun(s, x))2dxds

≤ 2
∫ L

0

u2
0,n(x)dx + 2t2 sup

s≥0

∫ L

0

(∂sun(s, x))2dx,

the claim follows from Corollary 4.2. �

The following result follows from Corollary 4.2 by a straightforward application
of Gagliardo-Nirenberg Interpolation Inequality (see for instance [12, Theorem at
page 125]).

Lemma 4.4. (H1 estimate) The sequence {∂xun}n∈N is bounded in L∞(0, T ; L2(0, L)),
for every T > 0.

Lemma 4.5. (L∞ estimate) The sequence {un}n∈N is bounded in L∞((0, T )×(0, L)),
for every T > 0.

Proof. Fix 0 < t < T . Lemmas 4.1 and 4.3 and Corollary 4.2 imply that {un}n∈N is
bounded in L∞(0, T ; H1(0, L)). Since H1(0, L) ⊂ L∞(0, L) we have

|un(t, x)| ≤ ‖un(t, ·)‖L∞(0,L) ≤ c ‖un(t, ·)‖H1(0,L)

≤ c ‖un‖L∞(0,T ;H1(0,L)) , (t, x) ∈ (0, T ) × (0, L),



336 G. M. Coclite, G. Devillanova and F. Maddalena Vol. 89 (2021)

for some constant c > 0 depending only on L. Therefore

‖un‖L∞((0,T )×(0,L)) ≤ c ‖un‖L∞(0,T ;H1(0,L)) ,

that gives the claim. �

Lemma 4.6 (Space Lipschitz estimate). The sequence {∂xun}n∈N is bounded in
L∞((0, T ) × (0, L)), for every T > 0.

Proof. Fix 0 < t < T and 0 < x < L. Lemmas 4.1, 4.3, and 4.4 imply that {un}n∈N

is bounded in L∞(0, T ; H2(0, L)). Since H1(0, L) ⊂ L∞(0, L) we have, for every
(t, x) ∈ (0, T ) × (0, L),

|∂xun(t, x)| ≤ ‖∂xun(t, ·)‖L∞(0,L)

≤ c ‖∂xun(t, ·)‖H1(0,L) ≤ c ‖un(t, ·)‖H2(0,L)

≤ c ‖un‖L∞(0,T ;H2(0,L)) ,

for some constant c > 0 depending only on L. Therefore

‖∂xun‖L∞((0,T )×(0,L)) ≤ c ‖un‖L∞(0,T ;H2(0,L)) ,

that gives the claim. �

Proof of Theorem 3.2. Thanks to Lemmas 4.1, 4.3 and [13, Theorem 5] there exists
a function u satisfying items (i) and (ii) in Definition 3.1 and a function hu ∈
L∞((0, T ) × (0, L)), hu ∈ ∂Φ(u), such that, passing to a subsequence,

un ⇀ u in H1((0, T ) × (0, L)) and in L2(0, T ; H2(0, L)), for each T ≥ 0,

un → u in L∞((0, T ) × (0, L)), for each T ≥ 0,

Φ′
n(un) ⇀ hu in Lp((0, T ) × (0, L)), for each T ≥ 0 and 1 ≤ p < ∞.

(4.3)
We have yet to verify that u is a weak solution of (2.1) i.e. Definition 3.1-item

(iii). Let ϕ ∈ C∞(R2) be a test function with compact support, since un is a solution
to (4.1), we have that for every n

∫ ∞

0

∫ L

0

(
ρun∂2

ttϕ + μ∂2
xxun∂2

xxϕ + Φ′
n(un)ϕ

)
dxdt

−
∫ L

0

ρu1,n(x)ϕ(0, x)dx +
∫ L

0

ρu0,n(x)∂tϕ(0, x)dx = 0.

Then, by taking the limit as n → ∞, (3.1) follows by using (4.2) and (4.3).
Finally, due to (4.2) and (4.3) we have

∂tun ⇀ ∂tu in Lp(0, T ; L2(0, L)), for each T ≥ 0 and 1 ≤ p < ∞,

∂2
xxun ⇀ ∂2

xxu in Lp(0, T ; L2(0, L)), for each T ≥ 0 and 1 ≤ p < ∞,

Φn(un) → Φ(u) in L∞((0, T ) × (0, L)), for each T ≥ 0.

Therefore, Definition 3.1-item (iv) follows by the lower semicontinuity of the L2

norm with respect to the weak convergence by taking into account Lemma 4.1. �
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5. Adhesive States

This section is dedicated to the proof of Theorem 3.3.

Proof of Theorem 3.3. Since u is continuous by (3.3) there exists τ > 0 such that
in the short time interval [0, τ ] we have

|u(t, x)| < 1, (t, x) ∈ [0, τ ] × [0, L].

So we can define τ∗ as follows

τ∗ = sup {τ > 0 | |u(t, x)| < 1 for all (t, x) ∈ [0, τ ] × [0, L]} .

We claim that
τ∗ = ∞. (5.1)

Observe that, due to (H.1),

Φ(u(t, x)) ≥ κu2(t, x), (t, x) ∈ [0, τ∗) × [0, L].

Therefore

E[u](t) ≥
∫ L

0

(
ρ(∂tu(t, x))2 + μ(∂2

xxu(t, x))2

2
+ κ(u(t, x))2

)

dx, t ∈ [0, τ∗),

and, in particular,

E[u](t) ≥
μ

∥
∥∂2

xxu(t, ·)∥∥2

L2(0,L)

2
+ κ ‖u(t, ·)‖2L2(0,L) , t ∈ [0, τ∗).

Since u is dissipative, using the Sobolev embedding H1(0, L) ⊂ L∞(0, L) (see [6,
Theorem 8.5]) and Lemma 4.4, we have from every t ∈ [0, τ∗)

‖u(t, ·)‖2L∞(0,L) ≤ ‖u(t, ·)‖2H1(0,L)

2
=

‖u(t, ·)‖2L2(0,L) + ‖∂xu(t, ·)‖2L2(0,L)

2

≤ 3
4

‖u(t, ·)‖2L2(0,L) +

∥
∥∂2

xxu(t, ·)∥∥2

L2(0,L)

4

≤
(

3
4κ

∨ 1
2

)
⎛

⎝

∥
∥∂2

xxu(t, ·)∥∥2

L2(0,L)

2
+ κ ‖u(t, ·)‖2L2(0,L)

⎞

⎠

≤ 1
μ

(
3
4κ

∨ 1
2

)

E[u](t) ≤ 1
μ

(
3
4κ

∨ 1
2

)

E[u](0) < 1,

(where the last inequality holds thanks to (3.3)) that proves (5.1). �

6. Long Time Behavior

This section is dedicated to the proof of Theorem 3.4.
Let u be a dissipative solution of (2.1) satisfying (3.5).
STEP 1. We begin by deducing the effective asymptotic problem.
Consider the functions

uτ (t, x) = u(τt, x), τ > 0, t ≥ 0, x ∈ [0, L].
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uτ is a dissipative solution of the initial boundary value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂2
ttuτ

τ2
= −μ∂4

xxxxuτ − Φ′ (uτ ) t > 0, 0 < x < L,

∂2
xxuτ (t, 0) = ∂2

xxuτ (t, L) = 0 t > 0,

∂3
xxxuτ (t, 0) = ∂3

xxxuτ (t, L) = 0 t > 0,

uτ (0, x) = u0(x) 0 < x < L,

∂tuτ (0, x) = τu1(x) 0 < x < L,

(6.1)

in the sense of Definition 3.1, namely

(iii) for every test function ϕ ∈ C∞(R2) with compact support
∫ ∞

0

∫ L

0

(

−ρ∂tuτ

τ2
∂tϕ + μ∂2

xxuτ∂2
xxϕ + hτϕ

)

dtdx −
∫ L

0

ρu1(x)
τ

ϕ(0, x)dx = 0,

(6.2)
where hτ ∈ ∂Φ (uτ ), that is the subdifferential of Φ at uτ ;

(iv) uτ may dissipate energy, i.e. for almost every t > 0:
∫ L

0

(
ρ(∂tuτ (t, x))2

2τ2
+

μ(∂2
xxuτ (t, x))2

2
+ Φ(uτ (t, x))

)

dx

≤
∫ L

0

(
ρ(u1(x))2

2
+

μ(∂2
xxu0(x))2

2
+ Φ(u0(x))

)

dx.

(6.3)

Thanks to (H.1), (3.5), and (6.3),

{uτ}τ>0 is bounded in L∞(0, ∞; H2(0, L)),

{hτ}τ>0 is bounded in L∞((0, ∞) × (0, L)),

there exists two functions U ∈ L∞(0, ∞; H2(0, L)), H ∈ L∞((0, ∞) × (0, L)) such
that, passing to a subsequence,

uτ
�
⇀ U weakly − 	 in L∞

loc((0, ∞) × (0, L)) as τ → ∞,

hτ
�
⇀ H weakly − 	 in L∞

loc((0, ∞) × (0, L)) as τ → ∞.

Using (6.3)

{∂tuτ/τ}n∈N is bounded in L∞(0, ∞; L2(0, L)),

therefore as τ → ∞ in (6.2) we get
∫ ∞

0

∫ L

0

(
μ∂2

xxU∂2
xxϕ + Hϕ

)
dtdx = 0, (6.4)

namely U = U(x), H = H(x) and the effective asymptotic problem is
⎧
⎪⎨

⎪⎩

−μ∂4
xxxxU = H, 0 < x < L,

∂2
xxU(0) = ∂2

xxU(L) = 0,

∂3
xxxU(0) = ∂3

xxxU(L) = 0.

(6.5)
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STEP 2. We exploit more subtle characterizations of the limit functions U and
H. To this aim we fix a sequence {tn}n∈N ⊂ (0, ∞) such that tn → ∞ and study
the convergence of the sequence

{u(tn, ·)}n∈N.

Since we have the dissipation inequality (3.2) and the assumption (3.5), we gain

{u(tn, ·)}n∈N is bounded in H2(0, L),

{hu(tn, ·)}n∈N is bounded in L∞(0, L).

Therefore there exist two functions u∞ ∈ H2(0, L), h∞ ∈ L∞(0, L) such that pass-
ing to a subsequence

u(tn, ·) ⇀ u∞ weakly in H2(0, L) as n → ∞,

u(tn, ·) → u∞ a.e. in (0, L) as n → ∞,

hu(tn, ·) �
⇀ h∞ weakly − 	 in L∞(0, L) as n → ∞.

(6.6)

Due to the result in STEP 1, we know that the functions u∞ and h∞ must satisfy
the effective problem

⎧
⎪⎨

⎪⎩

−μ∂4
xxxxu∞ = h∞, 0 < x < L,

∂2
xxu∞(0) = ∂2

xxu∞(L) = 0,

∂3
xxxu∞(0) = ∂3

xxxu∞(L) = 0.

(6.7)

Moreover, by (6.6) we have also that

h∞ ∈ ∂Φ′(u∞). (6.8)

By multiplying (6.7) by u∞, integrating over (0, L), and recalling (6.8), we get
∫ L

0

μ(∂2
xxu∞)2dx = −

∫ L

0

h∞u∞dx ≤ 0,

so
∂2

xxu∞ ≡ 0.

Therefore, we can conclude that (3.6) holds.
Using (3.6) in (6.7) we have also that

h∞ ≡ 0,

hence, due to (6.8), only one within (3.7), (3.8), (3.9) can occur.

7. Linearization Property

Proof of Theorem 3.5. Thanks to (3.11)

u0,n → 0 uniformly in[0, L].

Therefore, using also (3.13), the assumptions of Theorem 3.3 are fulfilled, hence

‖un‖L∞((0,∞)×(0,L)) < 1. (7.1)

In addition, the function
wn = un − vn
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is a dissipative solution of
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ∂2
ttwn = −μ∂4

xxxxwn − Φ′(un) t > 0, 0 < x < L,

∂2
xxwn(t, 0) = ∂2

xxwn(t, L) = 0 t > 0,

∂3
xxxwn(t, 0) = ∂3

xxxwn(t, L) = 0 t > 0,

wn(0, x) = ∂twn(0, x) = 0 0 < x < L.

(7.2)

Multiplying (7.2) by ∂twn we gain

d

dt

∫ L

0

ρ(∂twn)2 + μ(∂2
xxwn)2

2
dx =

∫ L

0

Φ′(un)∂twndx

≤ 1
2ρ

∫ L

0

Φ′(un)2dx +
∫ L

0

ρ(∂twn)2

2
dx

≤ 1
2ρ

∫ L

0

Φ′(un)2dx +
∫ L

0

ρ(∂twn)2 + μ(∂2
xxwn)2

2
dx

and applying the Gronwall Lemma
∫ L

0

ρ(∂twn(t, x))2 + μ(∂2
xxwn(t, x))2

2
dx ≤ 1

2ρ

∫ t

0

∫ L

0

et−sΦ′(un(s, x))2dsdx. (7.3)

Thanks to Theorem 3.2 and [13, Theorem 5], and (7.1) there exists a function
u satisfying items (i) and (ii) in Definition 3.1 such that, passing to a subsequence,

‖u‖L∞((0,∞)×(0,L)) ≤ 1,

un ⇀ u in H1((0, T ) × (0, L)) and in L2(0, T ; H2(0, L)), for each T ≥ 0,

un → u in L∞((0, T ) × (0, L)), for each T ≥ 0,

Φ′(un) ⇀ Φ′(u) in Lp((0, T ) × (0, L)), for each T ≥ 0 and 1 ≤ p < ∞.

(7.4)

Therefore u is a distributional solution of
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ∂2
ttu = −μ∂4

xxxxu − Φ′(u) t > 0, 0 < x < L,

∂2
xxu(t, 0) = ∂2

xxu(t, L) = 0 t > 0,

∂3
xxxu(t, 0) = ∂3

xxxu(t, L) = 0 t > 0,

u(0, x) = ∂tu(0, x) = 0 0 < x < L.

(7.5)

Since u takes values in [−1, 1] and Φ is C2 therein we can differentiate (7.5) and get

ρ∂3
tttu = −μ∂4

txxxxu − Φ′′(u)∂tu.

Multiplying by ∂2
ttu, using (H.1) and (ii) in Definition 3.1 through a regularization

argument we get

d

dt

∫ L

0

ρ(∂2
ttu)2 + μ(∂3

txxu)2

2
dx =

∫ L

0

Φ′′(u)∂tu∂2
ttudx

≤ 1
2ρ

∫ L

0

Φ′′(u)2(∂tu)2dx +
∫ L

0

ρ(∂2
ttu)2

2
dx

≤ c +
∫ L

0

ρ(∂2
ttu)2 + μ(∂3

txxu)2

2
dx.
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Thanks to the Gronwall Lemma
∫ L

0

ρ(∂2
ttu(t, x))2 + μ(∂3

txxu(t, x))2

2
dx ≤ c(et − 1), t ≥ 0.

As a consequence u is an energy preserving solution of (7.5) and then it must be
the trivial one. Eventually, (7.3) concludes the proof. �

8. Non-uniqueness and Lack of Smoothness

This section is devoted to exploit some qualitative properties of (2.1) through ex-
plicit analytical examples evidencing the lack of uniqueness and smoothness of so-
lutions. A key mechanism ruling these phenomena relies in the transition between
the two configurations induced by the discontinuity affecting the forcing term Φ′.
In particular, the first two examples show the lack of uniqueness while the last one
and the numerical experiments enlighten the occurrences of lack of smoothness.

Example 8.1. Let ε > 0 and set ρ = μ = 1. Consider the function

Φε(u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2−ε
2 u2, if |u| ≤ 1,

2−ε
ε

(
(1 + ε)

(
u − 1

2

) − u2

2

)
, if 1 ≤ u ≤ 1 + ε,

ε−2
ε

(
(1 + ε)

(
u + 1

2

)
+ u2

2

)
, if − 1 − ε ≤ u ≤ −1,

(2−ε)(1+ε)
2 , if |u| ≥ 1 + ε.

We have

Φ′
ε(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2 − ε)u, if |u| ≤ 1,
2−ε

ε (1 + ε − u), if 1 ≤ u ≤ 1 + ε,
ε−2

ε (1 + ε + u), if − 1 − ε ≤ u ≤ −1,

0, if|u| ≥ 1 + ε.

The functions

uε(t, x) = (1 − ε) cos
(√

2 − ε t
)
, vε(t, x) = 1 + ε

solve
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2
ttuε = −∂4

xxxxuε − Φ′
ε(uε), t > 0, 0 < x < L,

∂2
xxuε(t, 0) = ∂2

xxuε(t, L) = 0, t > 0,

∂3
xxxuε(t, 0) = ∂3

xxxuε(t, L) = 0, t > 0,

uε(0, x) = 1 − ε, 0 < x < L,

∂tuε(0, x) = 0, 0 < x < L,

(8.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2
ttvε = −∂4

xxxxvε − Φ′
ε(vε), t > 0, 0 < x < L,

∂2
xxvε(t, 0) = ∂2

xxvε(t, L) = 0, t > 0,

∂3
xxxvε(t, 0) = ∂3

xxxvε(t, L) = 0, t > 0,

vε(0, x) = 1 + ε, 0 < x < L,

∂tvε(0, x) = 0, 0 < x < L.

(8.2)
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As ε → 0 we have

uε(t, x) → u(t, x) = cos
(√

2 t
)

, vε(t, x) → v(t, x) = 1,

and u and v provides two different solutions of (2.1) in correspondence of the initial
data

u0(x) = 1, u1(x) = 0.

The energies associated to (8.1) and (8.2) are

Eε[uε](t) =
∫ L

0

(
(∂tuε(t, x))2 + (∂2

xxuε(t, x))2

2
+ Φε(uε(t, x))

)

dx =
(2 − ε)(1 − ε)2

2
L,

Eε[vε](t) =
∫ L

0

(
(∂tvε(t, x))2 + (∂2

xxvε(t, x))2

2
+ Φε(vε(t, x))

)

dx =
(2 − ε)(1 + ε)

2
L,

respectively.

Example 8.2. For every ε > 0, the solutions uε and vε of the two following problems
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2
ttuε = −∂4

xxxxuε − Φ′(uε), t > 0, 0 < x < L,

∂2
xxuε(t, 0) = ∂2

xxuε(t, L) = 0, t > 0,

∂3
xxxuε(t, 0) = ∂3

xxxuε(t, L) = 0, t > 0,

uε(0, x) = 1 + ε, 0 < x < L,

∂tuε(0, x) = ε, 0 < x < L,

(8.3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2
ttvε = −∂4

xxxxvε − Φ′(vε), t > 0, 0 < x < L,

∂2
xxvε(t, 0) = ∂2

xxvε(t, L) = 0, t > 0,

∂3
xxxvε(t, 0) = ∂3

xxxvε(t, L) = 0, t > 0,

vε(0, x) = 1 − ε, 0 < x < L,

∂tvε(0, x) = 0, 0 < x < L,

(8.4)

are
uε(t, x) = εt + 1 + ε, vε(t, x) = (1 − ε) cos(

√
2t).

We have

‖uε(0, ·) − vε(0, ·)‖L2(0,L) + ‖∂tuε(0, ·) − ∂tvε(0, ·)‖L2(0,L) = 3ε
√

L,

lim
t→∞ uε(t, x) = ∞, lim sup

t→∞
vε(t, x) = 1 − ε.

Moreover, as ε → 0,

uε(t, x) → 1, vε(t, x) → cos(
√

2t).

The energies associated to (8.3) and (8.4) are

E[uε](t) =
∫ L

0

(
(∂tuε(t, x))2 + (∂2

xxuε(t, x))2

2
+ Φ(uε(t, x))

)

dx =
ε2 + 2

2
L,

E[vε](t) =
∫ L

0

(
(∂tvε(t, x))2 + (∂2

xxvε(t, x))2

2
+ Φ(vε(t, x))

)

dx = (1 − ε)2L,

respectively.
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Example 8.3. Consider the function

u(t, x) =

{√
2 sin(

√
2t), if 0 ≤ t ≤ π

4
√
2
,√

2t + 1 − π
4 , if t ≥ π

4
√
2
.

(8.5)

Clearly, u solves the problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2
ttu = −∂4

xxxxu − Φ′(u), t > 0, x ∈ (0, L),
∂2

xxu(t, 0) = ∂2
xxu(t, L) = 0, t > 0,

∂3
xxxu(t, 0) = ∂3

xxxu(t, L) = 0, t > 0,

u(0, x) = 0, x ∈ (0, L),
∂tu(0, x) = 2, x ∈ (0, L),

but
u ∈ C1([0, ∞) × [0, L])\C2([0, ∞) × [0, L]).

Indeed

lim
t→ π

4
√

2
−

u (t, x) = 1, lim
t→ π

4
√

2
+

u (t, x) = 1,

lim
t→ π

4
√

2
−

∂tu (t, x) =
√

2, lim
t→ π

4
√

2
+

∂tu (t, x) =
√

2,

lim
t→ π

4
√

2
−

∂2
ttu (t, x) = −2, lim

t→ π
4

√
2
+

∂2
ttu (t, x) = 0.

The energy associated to (8.5) is

E[u](t) =
∫ L

0

(
(∂tu(t, x))2 + (∂xu(t, x))2

2
+ Φ(u(t, x))

)

dx = 2L,

for every t ≥ 0.
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