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Abstract
We provide a geometric construction of [n, 9, n − 9]q near-MDS codes arising from elliptic
curves with n Fq -rational points. Furthermore, we show that in some cases these codes cannot
be extended to longer near-MDS codes.
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1 Introduction

Maximumdistance separable (for shortMDS) codes are the best linear [n, k, d]q codes as they
meet theSingleton bound, that is,n = d+k−1.The non-negative integer s(C) := n−k+1−d
is said to be the Singleton defect of the code C. Thus, the Singleton defect of an MDS code
is zero.

A linear codeC is defined to be a near-MDS (for short NMDS) code if s(C) = s(C⊥) = 1
where C⊥ is the dual code of C. Hence, a NMDS [n, k] code has minimum distance n − k.

NMDS codeswere introduced byDodunekov and Landjev [4] with the aim of constructing
good linear codes by slightly weakening the restrictions in the definition of an MDS code.
NMDS codes have similar properties to MDS codes. Some non-binary linear codes such as
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the ternaryGolay codes, the quaternary quadratic residue [11, 6, 5]4-code, and the quaternary
extended quadratic residue [12, 6, 6]4-code are notable examples of NMDS codes; see [11].

The geometrical counterpart of an NMDS code is an n-track in a Galois space which is
a set of n points in an N -dimensional Galois space such that every N of them are linearly
independent but some N + 1 of them, see [3]. If every N + 2 points of the n-track generate
the whole space then the n × (N + 1) matrix whose columns are homogeneous coordinates
of the n-track points is a generator matrix of an NMDS code. The n-track is complete, i.e.
maximal with respect to set theoretical inclusion, if and only if the code is not extendable.

Let Nq denote the maximum number of Fq -rational points on an elliptic curve defined
over Fq ; it is well-known that, by Hasse theorem, |Nq − (q + 1)| ≤ 2

√
q.

NMDS codes of length up to Nq may be constructed from elliptic curves. An interesting
question is whether there exist NMDS codes of length greater than Nq . Constructions of
NMDS codes from elliptic curves are found in [1,2,7] where results both from combinatorics
and algebraic geometry are used.

Here we provide a geometric construction of 9 dimensional NMDS codes using an
algebraic curve of order 9 in PG(9, q) which arises from a non-singular cubic curve
E : f (X , Y , Z) = 0 of PG(2, q) via the (modified) Veronese embedding:

ν23 : (X :Y :Z) �→
(
f (X , Y , Z) : X2Y : X2Z : XY 2 : XY Z : X Z2 :Y 3 : Y 2Z : Y Z2 : Z3). (1)

We also show that certain codes from elliptic curves are not extendible to longer NMDS
codes. The proof depends on some results on the number of Fq -rational lines through a given
point P that meet a plane elliptic curve in exactly three Fq -rational points and on some
computations carried out with the aid of GAP [13].

2 Preliminaries

The following definitions of an NMDS code of length n and dimension k over a finite field
Fq are equivalent to that given in the Introduction; see [5].

Definition 1 A linear [n, k] code over Fq is NMDS if any of its generator matrices, say G,
satisfies the following conditions:

(i) any k − 1 columns of G are linearly independent;
(ii) G contains k linearly dependent columns;
(iii) any k + 1 columns of G have full rank.

Definition 2 A linear [n, k] code over Fq is NMDS if any of its parity check matrices, say
H , satisfies the following conditions:

(i) any n − k − 1 columns of H are linearly independent;
(ii) H contains n − k linearly dependent columns;
(iii) any n − k + 1 columns of H have full rank.

From a geometric point of view, a NMDS [n, k] code C over Fq can be regarded as a
projective system (i.e. a distinguished point set) C in a projective space PG(k − 1, q); see
[14] for more details.

Definition 3 A subsetC ⊆ PG(k−1, q) is an (n; k, k−2)-set in PG(k−1,Fq) if it satisfies
the following conditions:

123



Near-MDS codes from elliptic curves 967

(i) every k − 1 points in C span a hyperplane of PG(k − 1, q);
(ii) there exists a hyperplane of PG(k − 1, q) containing exactly k points of C;
(iii) every k + 1 points of C generate the whole PG(k − 1, q).

Definition 4 An (n; k, k − 2)-set in PG(k − 1,Fq) is complete if it is maximal with respect
to set-theoretical inclusion.

Thus, in this setting, an NMDS [n, k] code over Fq is an (n; k, k−2)-set in PG(k−1,Fq).
Given an integer ν ≥ 1 and a prime power q = ph , consider the set Cν of all the curves

of degree ν contained in the projective plane PG(2, q) over a finite field Fq . Since any curve
C ∈ Cν is uniquely determined by m + 1 = (

ν+2
2

)
parameters in Fq , that is, the coefficients

of its equation

a0Z
ν + (a1X + a2Y )Zν−1 + (a3X

2 + a4XY + a5Y
2)Zν−2 + · · ·

+ (am−νX
ν + am−ν+1X

ν−1Y + · · · + am−1XY
ν−1 + amY

ν) = 0,

and the curve is unchanged if these parameters aremultiplied by a common factor, thenCν can
be regarded as a projective space PG(m, q) with homogeneous coordinates (a0:a1: · · · :am).
We may also denote a curve C by using its defining polynomial.

The following result—which is an implicit formulation of the famous Cayley-Bacharach
theorem—will be useful later; see [6].

Theorem 2.1 Let E and C be two distinct cubic curves meeting in a set S consisting of 9
points (counted with multiplicities). If D ⊂ PG(2, q) is any cubic curve containing all but
one point of S , then C ∩ D = S .

3 Lifting point sets

The space C3 consisting of all the cubics in PG(2, q) has projective dimension 9, hence 10
independent cubic curves are required to generate it. Let E be a non-singular cubic curve of
equation f (X , Y , Z) = 0 over Fq . A suitable basis B for C3, containing E , can be written
by using the following polynomials:

B = { f (X , Y , Z), X2Y , X2Z , XY 2, XY Z , X Z2, Y 3, Y 2Z , Y Z2, Z3},
where f (X , Y , Z) is required to contain the term X3. In fact, the defining polynomial of
any cubic curve would be suitable as first element of the basis B, as long as it contains the
monomial X3; nevertheless, the choice of an elliptic curve is motivated by the fact that, unlike
the case of genus 0, the number of Fq -rational points of a carefully chosen elliptic curve is
not necessarily limited to q + 1.

We consider the following embedding of the points of PG(2, q) onto PG(9, q) with pro-
jective coordinates (X0:X1:X2:X3:X4:X5:X6:X7:X8:X9) by means of the mapping ν23 :
PG(2, q) → PG(9, q) (1) which is a Veronese embedding of degree 3. Let V3 be the image
of ν23 ; clearly V3 is (projective equivalent to) the cubic Veronese surface.

More in detail, the points of the curve E are mapped onto a curve � of PG(9, q) with the
same number n of Fq -rational points as E . Also, � is the complete intersection of V3 with the
hyperplane � ∼= PG(8, q) of equation X0 = 0. Since for every cubic curve C of equation
g(X , Y , Z) = 0 in PG(2, q), the defining polynomial is a linear combination of the elements
of B, that is,
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g(X , Y , Z) = λ0 f (X , Y , Z) + λ1Y
3 + λ2X Z2 + λ3Y Z2 + λ4X

2Z

+ λ5Y
2Z + λ6XY Z + λ7X

2Y + λ8XY
2 + λ9Z

3,

it turns out that ν23 (C ) is the complete intersection of V3 with the hyperplane � ⊂ PG(9, q)

of equation

9∑

i=0

λi Xi = 0, (2)

which is distinct from �. Thus, every cubic curve C : g(X , Y , Z) = 0 of PG(2, q) corre-
sponds to a hyperplane of Eq. (2). Back to PG(2, q), the set (ν23 )

−1(� ∩ V3) corresponds to
a unique cubic curve C distinct from E , and, clearly, (ν23 )

−1(� ∩ �) corresponds to C ∩ E .

Theorem 3.1 Suppose that E has n ≥ 9 points. Then the point set � is an (n; 9, 7)-set in
� = PG(8, q).

Proof To prove the theorem it suffices to consider the mutual position of cubic curves in
PG(2, q).

(i) Take eight distinct points P1, . . . , P8 ∈ � and consider the corresponding distinct points
Q1, . . . , Q8 ∈ E , with Qi = (ν23 )

−1(Pi ). Suppose that there is a t-dimensional net with
t ≥ 2, sayF , consisting of cubics through Q1, . . . , Q8. Then, from Theorem 2.1 there
is a ninth point Q9 ∈ E such that the points Q1, . . . , Q9 are in the support of F . This
implies that every further point Q10 ∈ E \ {Q1, . . . , Q9} yields a (t − 1)-dimensional
net consisting of cubics through Q1, . . . , Q9 which are distinct from E and have ten
points in common with it, contradicting Bézout’s theorem. Hence,F must be a pencil
of cubic curves in PG(2, q) including E and passing through Q1, . . . , Q8. Back to
PG(9, q), we observe thatF corresponds to a pencil of hyperplanes of PG(9, q)which
meet in a unique 7-dimensional subspace � such that {P1, . . . , P8} ⊂ (� ∩ �), that is,
P1, …, P8, generate the hyperplane � of �.

(ii) From Theorem 2.1, there is a further point Q9 ∈ PG(2, q) which belongs to the inter-
section of E and all the other cubics of the above pencilF . This proves that the previous
subspace � meets � in P1,…,P8, P9 = ν23 (Q9).

(iii) Let � be a hyperplane of PG(9, q) different from �. Put C = (ν23 )
−1(�). From

Bézout’s theorem we know that |E ∩C | ≤ 9, therefore any hyperplane of PG(9, q) has
at most 9 points in common with �. Hence, � is a curve of order 9, therefore 10 points
of � generate the whole �.

The claim follows. 
�
Remark The code associated to � can also be interpreted as an AG-code, see [14]. Indeed,
Theorem 3.1 is a consequence of [14, Theorem 4.4.19]. However, our proof does not use the
Riemmman-Roch Theorem.

4 Some complete NMDS codes

In this section we provide some examples of complete NMDS codes in the set of codes
constructed above by lifting the elliptic curve E in the case when the base field is large
enough.
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By Definition 4, the algebraic curve � = ν23 (E ) provides a complete NMDS code, that is
a complete (n; 9, 7)-set of PG(8, q), if and only if for any Q ∈ � there exists at least one
hyperplane � of � with Q ∈ � meeting � in 9 points.

Definition 5 We call a point Q ∈ � special for � if for all hyperplanes � of � through Q
we have |� ∩ �| < 9.

For a point Q to be special means that there is a system of cubic curves satisfying one
linear constraint such that each element C of this system has intersection multiplicity with
E at least 2 in at least one point or meets E in some non-Fq -rational point.

We expect that for large q special points, if they exist at all, are very few. So we propose
the following conjecture.

Conjecture 1 Suppose q ≥ 121 to be such that 2, 3 � |q . Then there are no special points for
�.

In order to verify Conjecture 1, we performed some computer searches for some values
of q . For q ∈ {7, 11, 13} we executed a (non-trivial) exhaustive search. For q ≥ 121 we
provide an argument showing that there cannot be too many special points, if they exist at
all. We leave the solution of the problem and its generalization to a future work.

4.1 Search for small q

Recall that any 8 distinct points of V3 are linearly independent; see [9].
For small values of q it is possible to perform an exhaustive search, adopting the following

procedure:

1. Let � = ν23 (E ) be the embedding of E ;
2. for any set of 9 points of �, consider the matrix containing their components; let G be

the list of such matrices having rank 8. In particular, each element of G corresponds to a
hyperplane meeting � in 9 points. We call such hyperplanes good.

3. For each matrix H ∈ G, let H ′ be a column vector spanning the kernel of H . In particular,
we have that a row vector v belongs to the span of the rows of H if and only if vH ′ = 0.

4. Consider the linear code C with parameters [|G|, 9] whose generator matrix G consists
of all columns of the form H ′ as H varies in G. A point P represented by a vector v can
be added to � if, and only if, P does not belong to any of the hyperplanes represented
by the columns of G; in other words P can be added to � if and only if the word PG
corresponding to P does not contain any 0-component.

Using the above argument, we can state the following.

Theorem 4.1 The (n;9,7)-set � is complete if and only if the code C with generator matrix
G constructed above does not contain any word of maximum weight n.

Clearly, it is not restrictive to replace the code C with a code C ′ equivalent to C . In
particular, if we transform its generator matrix G to row-reduced echelon form, we see that
no point with at least a 0 component can give a word ofC ′ of weight n; this allows to exclude
from the search all points whose transforms (under the operations yielding the reduction of
C) lie on the coordinate hyperplanes.

We now limit ourselves to the odd order case with q not divisible by 3. Then any elliptic
curve E of PG(2, q) admits an equation in canonical Weierstrass form

Y 2 = X3 + aX + b,
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with a, b ∈ Fq such that −16(4a3 + 27b2) �= 0; see [12].

Remark Good hyperplanes correspond to linear systems of cubic curves cutting E in 9 points;
by [10, Theorem 43], we see that the number of such hyperplanes is approximately 1

9!q
7.

We leave to a future work to determine exactly what sets of 9 distinct points of a given
elliptic curve E might arise as intersection divisor with another curve, in other terms to
determine what the good hyperplanes are.

Our Conjecture 1 can be restated by saying that the union of all good hyperplanes for E
is PG(8, q) for q sufficiently large.

We can now apply the aforementioned strategy for all possible values of a, b yielding
elliptic curves. This leads to the following.

Theorem 4.2 Suppose q ∈ {7, 11, 13}. Then, the lifted (n; 9, 7)-set� in PG(8, q) is complete
if and only if n = |E | ≥ 15. In particular, for q = 7 the lifted set � is never complete.

4.2 Properties for large q

We now provide an argument to prove that there might not be too many special points. This
makes it possible to verify for several values of q that the (n; 9, 7)-set � in � = PG(8, q) is
complete and gives evidence supporting Conjecture 1.

As in the previous section, the projective plane PG(2, q) is assumed to be of order q odd
and not divisible by 3. Furthermore we suppose q ≥ 121. Let j(E ) be the j-invariant of E ,
that is the six cross-ratios of the four tangents from a point of E to other points of E . We
limit ourselves to the case j(E ) �= 0, see [8, Theorem 11.15].

We will use the following result which is a direct consequence of [7, Lemma 3.2].

Lemma 4.3 Let q ≥ 121 and consider an elliptic cubic E (Fq) with j(E ) �= 0. Then there
are at least 7 trisecant Fq -rational lines through any given Fq -rational point.

Up to a change of projective reference, we can assume without loss of generality that the
curve E in PG(2, q) is met by the reducible cubic XY Z = 0 in 9 distinct Fq -rational points.

Lemma 4.4 Under the assumption q ≥ 121 any special point Q ∈ � has to be a point
Q = (0, q1, q2, . . . , q9) ∈ � \ � such that [q1, q3, q4], [q4, q7, q8] ∈ E and one of the
following conditions holds

• q1, q7 = 0; q3, q4, q8 �= 0;
• q1, q8 = 0; q3, q4, q7 �= 0;
• q3, q7 = 0; q1, q4, q8 �= 0;
• q3, q8 = 0; q1, q4, q7 �= 0.

Proof Let Q = (0, q1, q2, . . . , q9) ∈ �. If Q ∈ �, then Q is not special; indeed, if Q ∈ �,
then Q = ν23 (P) with P ∈ E . Consider a reducible cubic curve C in PG(2, q), union of 3
lines �,m, r with P ∈ � \ {m ∪ r} and such that |(� ∪ m ∪ r) ∩ E | = 9. Such a curve if
|E | > 9 is guaranteed to exist by Lemma 4.3 and it corresponds to a hyperplane of PG(9, q)

through Q meeting � in 9 distinct points. So Q is not special.
Now consider a cubic curve C in PG(2, q) with equation of the form

Y Z(αX + βY + γ Z) = 0, (3)
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and a cubic curve C ′ with equation of type

XY (aX + bY + cZ) = 0. (4)

Via the Veronese embedding ν23 , C corresponds to the hyperplane of equation αX4 +βX7 +
γ X8 = 0, whereas C ′ corresponds to the hyperplane aX1 + bX3 + cX4 = 0.

For any Q ∈ � \ � write PQ := [q4, q7, q8] and P ′
Q := [q1, q3, q4] ∈ PG(2, q).

If PQ /∈ E , by Lemma 4.3 there are at least 7 lines through PQ meeting E in 3 distinct
points; in particular there is at least one line of equation αX + βY + γ Z = 0 through
PQ meeting E \ ([Y = 0] ∪ [Z = 0]) in 3 distinct points. Consequently the cubic C :
Y Z(αX + βY + γ Z) = 0 corresponds to a hyperplane � of PG(9, q) through Q, meeting
� in 9 distinct points and we are done.

If PQ ∈ E but P ′
Q /∈ E , repeating the same argument starting from a cubicC ′ with Eq. (4),

we see that Q is not special.
Thus, we suppose PQ, P ′

Q ∈ E and distinguish several cases:

1. If q4 = 0, then the cubic C of equation XY Z = 0 corresponds to the hyperplane X4 = 0
passing through Q with 9 intersections with �.

2. If q4 �= 0 and q7 = q8 = 0, then PQ = [1, 0, 0] /∈ E , which is excluded.
3. If q4 �= 0 and q1 = q3 = 0, then P ′

Q = [0, 0, 1] /∈ E , which is excluded.
4. Let q4 �= 0 with q7 �= 0 and q8 �= 0, then PQ is not on [Y = 0] ∪ [Z = 0] in PG(2, q).

Then, from Lemma 4.3 there are at least 7 lines in PG(2, q) through PQ which are 3-
secants to E . Since E has 6 points on the union of the lines [Y = 0] and [Z = 0], there is
at least one line through PQ with equation: α1X + β1Y + γ1Z = 0 meeting E in 3 points
none of which is on [Y = 0] and [Z = 0]. So, the hyperplane of PG(9, q) through Q,
corresponding to the cubic C : Y Z(α1X + β1Y + γ1Z) = 0 meets � in 9 points.

5. Let q4 �= 0 , q7 �= 0 and q8 = 0 (or, equivalently, q4 �= 0, q7 = 0 and q8 �= 0).
Using an argument similar to that of point 4. but starting from a cubic C ′ through P ′

Q
with equation of the form (4), it turns out that if q1 �= 0 and q3 �= 0 then the points
Q(0, q1, q2, . . . , q7, 0, q9) (or Q(0, q1, . . . , q6, 0, q8, q9)) are not special.

Thus, our lemma follows. 
�
Remark Let Q = (0, q1, . . . , q9) ∈ � such that Q is not ruled out as special point in
Lemma 4.4. For instance, suppose q8 = 0 and either q1 = 0 or q3 = 0 with [q1, q3, q4] ∈ E .
So, take P(a, 0, 1) ∈ PG(2, q) \ E and consider a cubic C with equation: Y (Y − m1X +
am1Z)(Y −m2X + am2Z) = 0 passing through P meeting E in 9 distinct points. Then, C
corresponds to the hyperplane π : m1m2X1 − (m1 +m2)X3 − 2am1m2X4 + X6 + a(m1 +
m2)X7 + a2m1m2X8 = 0 which passes through Q if and only if

m1m2q1 − (m1 + m2)q3 − 2am1m2q4 + q6 + a(m1 + m2)q7 = 0. (5)

In particular, if we can determine m1,m2 and a such that (5) is satisfied, then the point Q is
not special.

A similar argument applies when q7 = 0.

Let now q ≡ 1 mod 3 and ω be a root of T 2 + T + 1 = 0. Consider a non-singular
plane cubic curve E over Fq with canonical equation:

X3 + Y 3 + Z3 − 3cXY Z = 0,

where c �= ∞, 1, ω, ω2.
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If c = 1 + √
3, then the elliptic curve E is harmonic, that is, j(E ) �= 0, see [8, Lemma

11.47]. Using Remark 4.2 and the symmetry Y ↔ Z of the curve E it is possible to test for
the completeness of ν23 (E ). With the aid of GAP [13], we see that for q = 121 we obtain
a curve with n = 144 rational points, for q = 157, 169 we obtain curves with n = 180
rational points whereas for q = 179 we get a curve with n = 180 points and in each case the
n rational points define a complete NMDS code.
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