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ABSTRACT

Novel contributions in the field of Operational Modal Analysis aimed at system

identification, monitoring, and damage detection in challenging engineering

applications

by

Simone De Carolis

Advisor: Prof. Leonardo Soria, Ph.D.

January 2022

In this dissertation, novel contributions in the field of Operational Modal analysis are

presented in two principal branches. The former focuses on a vibro-acoustical OMA formu-

lations as a simple and effective methodology for microsystems dynamic characterization.

The particular output-only modal analysis methodology, that includes acoustical excitation

via speakers and response measurements through a laser interferometer and microphone, is

illustrated through the in-plane and out-of-plane flexural mode identification by experiment

on high-quality factor quartz tuning fork (QTF). Additionally, a generalized OMA framework

is proposed with the aim to overcome the main drawback of OMA approach consisting in

the NExT assumption of uncorrelated white noises excitations. These hypotheses, in fact,

are violated in all those cases in which the exerted environmental loads exhibit coloration,

harmonic content or some kind of correlation, as in the cases of mechanical engineering
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systems like vehicles or wind turbines. Specifically, the proposed OMA technique requires

some knowledge about the inputs acting on the system and, thus, it is applicable to systems

for which something about the inputs is somehow known. The generalized modal structures

of the output cross-correlation functions and power spectral densities are derived, as models

showing the dependence not only by the modal parameters, but also by the input spectral

characteristics, and employed in a customized identification technique. The second research

offshoot is dedicated to a specific class of transmissibility functions, here called Response-

based Frequency-Response-Functions (R-FRFs), and it comprises a first investigation on the

estimation process of R-FRFs followed by a derivation of the relevant modal model, suitable

for being tackled through frequency-domain estimators from the field of experimental and

operational modal analysis, which let these additional modal parameters to be identified. It is

demonstrated how modes retrieved from R-FRFs are related to the system under investigation,

but, virtually, with a different set of boundary conditions. The particular properties give this

additional modal parameters the advantage of being local, in turn confirming the significance

of response-based frequency response functions in the field of damage detection. Both the

research lines are corroborated by numerical and real-world experimental case studies that

offer a number of application scenarios for results discussion.
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Introduction

Research Context

Operational modal analysis belongs to the field of structural identification techniques

employed to extract dynamic properties of vibrating systems which comprise the so-called

modal models [16, 17, 22, 23]. As an extension of the classical input-output experimental

modal analysis [32, 61, 80, 114], OMA retrieves resonance frequencies, damping ratios, and

modes (i.e. the modal parameters) moving from the only measured output signals of in-

operation structures in turn subjected to ambient excitations like wind, traffic, road roughness

induced forces, and waves [37, 68, 99, 123]. The output-only formulations rely on the Natural

Excitation Technique (NExT) assumptions [81, 83] which states that unknown loads acting on

the system have to fit the form of white noise sequences and, in case of multi-point excitation,

the external inputs are required to be strictly uncorrelated. This hypothesis is regrettably

violated in all those cases in which the operational environment encompasses harmonic forces

generated by rotating parts (machine tools, engines or wind turbines) [98, 149], or assist with

the occurrence of spatial and/or time correlated inputs (road and rail vehicles) [48, 84, 146].

The attractiveness of OMA in aerospace and mechanical engineering still persists due to many

advantages, such as: cheap and fast operating testing, no elaborate excitation equipment

and boundary condition simulation needed, modal parameters’ estimate at much more

representative working points, the model characteristics under real loading are linearized due

to broad band random excitation [163]. For these reasons in the recent years, the development

1
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of methods aiming at overcoming the NExT assumption limitations has become a challenging

topic that can be tackled by the coming of innovative approaches which introduces tools (i.e.

data pre-processing, coordinate transformation, enhanced identification models) able to put

aside the poor force description like uncorrelated white noises [33, 53, 59, 87, 154].

Secondly, structural dynamics of microelectromechanical systems (MEMS) plays a crucial

role in determining their performance and reliability. Classically, experimental modal analysis

is used to characterize the dynamic behavior of large scale structures, as well as to derive, and

validate analytical and numerical models. It would be crucial, thus, to derive and adapt EMA

techniques to the case of microsystems: in this case, this approach would be helpful to model

and validate multi-physics phenomena, such as the interaction between electrostatic forces

or gas damping and structural dynamics, or to evaluate manufacturing processes, assessing

changes in the fabrication features, diagnosing structural faults and defects before and during

the operation, and carrying out in situ performance measurements. When dealing with

MEMS, excitation and measurement methods from EMA field may turn out to be challenging

[112]. In fact, conventional modal testing techniques involve attaching accelerometers which

substantially alter the dynamic characteristics of microstructures, and providing transient

input with an impulse hammer or attaching a shaker to the structure is often unfeasible.

Therefore, both the excitation and measurement must be conducted through non-contact

instruments [40] opening different experimental scenarios where the vibro-acoustical OMA

formulation [124], in which both acoustical and structural responses are taken into account

by a fluid-structure coupled dynamical system description, could play a key role.

Changing into the areas of the damage detection and continuous monitoring of structures,

the importance and the role of a specific class of global transmissibility matrices (global

TFs) [160], here named response-based frequency response functions (R-FRFs), is worth

discussing for their ability to enrich the intrinsic modal database of the system under study

and to allow for analyzing the system in a local sense. In fact, the R-FRFs, as specialized
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frequency response functions, have been recently introduced in the literature [102, 103], and,

as originally proved, they are able to inherently provide local poles, related to the system

under investigation, but, virtually, with a different set of boundary conditions; i.e. as if some of

the original degrees of freedom, arbitrarily chosen by the analyst, were constrained to ground.

The peculiarity of the R-FRFs to incorporate modal data essentially related to subparts of a

system makes these functions deserving of being measured through suitable estimators, whose

definition and performance analysis comprise one of the objective of this dissertation. The

specific formal representation of the R-FRFs generally requires a simultaneous measurement of

groups of these functions arranged in response-based transfer matrices from which additional

local poles and modes are extractable and employable to detect structural modifications, in

turn confirming the significance of response-based frequency response functions in the field of

damage detection [39, 42, 62].

Focus and Outline of the Thesis

The research presented in this doctoral thesis is mainly addressed to the analysis and

resolution of specific challenging aforementioned problems, belonging to the field of structural

identification: (i) the pairing of vibro-acoustical OMA formulation with microsystems dynamic

characterization; (ii) the development of a generalized OMA framework aimed at overcoming

the NExT assumption; (iii) the definition of nonparametric R-FRFs estimators and the

derivation of the relevant modal decomposition embedding local modes as remarkable features

for damage detection. As a consequence, the dissertation is divided into two parts whose

outlines are reported in Figure 1, with regards to Part I, and in Figure 2, as concerns Part II.

Part I: Operational Modal Analysis: classical and novel frameworks

The goal of the research here presented is to provide novel identification approaches in the

field of OMA. Before the definition of innovative frameworks, Chapter 1 offers an overview of
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the discipline starting from fundamental modal formulation of the cross-correlation and power

spectral density (PSD) matrix. A brief description of the standard PolyMAX method is

then carried out by investigating its two main steps: a poly-reference Least Squares Complex

Frequency (pLSCF) algorithm, based on a Right Matrix Fraction Description (RMFD),

addressed to poles and operational reference vectors (ORV) estimation and a Least Squares

Frequency Domain (LSFD) estimator for mode shapes extraction. In addition, practical tools

and procedures for model order selection and modal parameter validation are given being

concepts invoked during the following analyses.

After becoming familiar with in-operation modal analysis context, Chapter 2 develops

on a particular OMA methodology that includes acoustical excitation via speakers and

response measurements through a laser interferometer and microphone. A simple setup

marks this approach: it relies on the analytical modal model of the cross-power spectra

between the structural and acoustical system outputs and, when a fluid-structure coupling is

exploited, modal parameter estimation (MPE) techniques are applied from the OMA field.

The effectiveness of the methodology is illustrated through the in-plane and out-of-plane

flexural mode identification by experiment on high-quality factor quartz tuning fork (QTF).

In Chapter 3, a novel output-only modal formulation, not based on the NExT assumptions,

is described. As made for classical OMA, a modal model of the output cross-correlation

and PSD matrix is derived revealing its dependence not only by modal parameters, but

also by input correlation terms. In the effort to implement a frequency domain estimator,

the generalized PSD modal model is accompanied by an extended Left Matrix Description,

employed in a pLSCF-like solution aimed at retrieving poles and mode shapes, and a LSFD

estimator for extended ORV fitting. Examples of the usage of this approach are illustrated

in the identification process involving a lumped parameter system numerical simulations

and experimental testing on a PTFE beam. Both the numerical and experimental vibrating

systems are studied in the presence of environmental forces which exhibit definite infringements
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of the NExT assumption (i.e. coloration, time correlation, coherence).

Part I

Chapter 1:

Classical OMA

Chapter 2:

Vibro-acoustical OMA

Chapter 3:

Generalized OMA

Figure 1: Outline of the thesis, Part I

Part II: On the role of a particular class of global transmissibility functions: the

RFRFs

The main goal of Part II is to specifically tackle the problem of estimation and identification

by R-FRFs. The latter enter in the global transmissibility matrices scenario and embed

additional modal information which could play an appealing role in the area of structural

health monitoring and damage localization.

In particular, Chapter 4 offers the problem of R-FRFs assessment by investigating

estimators for MIMO linear systems, extending known concepts and introducing new ideas.

Specifically, it is proposed the definition of output-only and input-output estimators, including,

in the latter case, the advantage of using the measured exciting forces, when available.

Therefore, a detailed performance comparison of the proposed estimators is presented by

making usage of data from simulated and experimental case studies. The analysis carried out

leads to conclusions aimed at identifying the best estimators for the measurement of R-FRFs.

Chapter 5 focuses on the modal analysis of this special class of transfer matrices revealing
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the meaning of modes that compose them. In this regard, a parametric model of the R-FRFs

matrix is provided, suitable for being tackled through frequency-domain estimators from

the field of experimental and operational modal analysis, which let these additional modal

parameters to be identified. Such a conceptual extension is carried out by both a theoretical

and a numerical point of view. Data sets from numerical and real-world experimental case

studies are processed and the corresponding results are brought under discussion with the

view to show the R-FRFs potential in the damage detection field.

Part II

Chapter 4:

R-FRFs definition

and estimation

Chapter 5:

Modal analysis

through R-FRFs

Figure 2: Outline of the thesis, Part II

Ultimately, it is worth mentioning that the solution and results of the novel approaches

analysed in this dissertation, presented, specifically, in Parts I and II, have been published,

respectively, in [28, 43, 44] and [45].
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1.1 Introduction

In this chapter, the concepts of operational modal analysis (OMA), and modal structures

employed in output-only identification algorithms are introduced. These methods are an

extension to the framework of classic input-output experimental modal analysis (EMA) which

consists of well established phases: set-up building, data acquisition (e.g. estimation of

frequency response functions), system identification, i.e. determination of modal parameters

from measured input-output data, and results’ validation [61, 80].

Modes, as characteristics collecting natural frequencies, damping ratios, and mode shapes,

are inherent properties of a structure: modes change if geometrical properties, material

properties or the boundary conditions vary. They are independent of the loads acting on and

fully determine the dynamic behavior of structures.

Many fields of industry such as automotive, aerospace, rotational machinery, robotics,

civil engineering need research on experimental techniques aimed at identifying the dynamic

structural behavior. In this respect, modal analysis can be used for troubleshooting, vali-

dation of FE model, structural dynamic modification, load estimation, sensitivity analysis,

substructure coupling, structural heath monitoring (SHM), prediction of dynamic strain,

damage detection, quantification and locating damage, etc. [16, 35, 161]. Numerical methods,

for instance, have drawback in modeling the structures in its real condition particularly

for the complicated ones. The main challenges of FEM (as a capable numerical method in

dynamic analysis of structures) are replicating the exact nonlinear and damping properties,

modeling the real boundary and operational conditions and so on. To overcome the problem,

model updating by results from EMA can be utilized.

Since the middle of the 20th century, EMA methods estimate the modal parameters of

structures based on the application of known artificial input forces (reproduced by shakers or

impact hammers) and the recording of output responses (generally measured by accelerometers
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sensors). As an approach performed in laboratory condition, the experimental equipment

and data signal processing algorithms are crucial in modal parameter estimation (MPE).

Some shortcomings within EMA processes arise especially for huge engineering structures

(such as bridges, buildings, towers, off-shore platforms, etc) for which generating vibration

by shaker or impact hammer results expensive and difficult (if not impossible). Exploiting

ambient loads like wind, traffic, pedestrian remains still challenging since these loads are

immeasurable, that’s why researchers became motivated to identify the structures characteris-

tics by considering just the response of the structure, regardless of input loads. Consequently,

output-only modal analysis or ambient vibration analysis or in-operation modal analysis

or, in a word, OMA took its first steps as an ensemble of algorithms extracting the modal

parameters just based on the output responses [77, 120].

Primary studies about OMA, particularly dedicated to civil engineering structures [5, 19,

119], were established in 1990s and evolved into an autonomous discipline [22, 126] able to

attract great research even in mechanical engineering. OMA makes its debut in mechanics

with successful MPE of wind turbines at different rotation rates [30]. Some later applications

include on-the-road modal analysis of cars and in-flight modal analysis of airplanes, modal

testing of spacecraft during launch, and modal testing of engines during startup and shutdown

[41, 78, 89].

In output-only identification methods, the deterministic knowledge of the input signals is

replaced by the assumption that the forces are realizations of stochastic processes (stationary

Gaussian white noises): this is called natural excitation hypothesis and it names NExT tech-

niques [26, 83] which uses the cross-correlation functions (CFs) of measured responses demon-

strating how CFs, due to their modal structure, can be employed as impulse response functions

[142] in conventional time-domain identification procedures developed in traditional EMA. In

general, MPE algorithms dedicated to EMA and OMA range from Single-Input/Single-Output

(SISO), Single-Input/Multiple-Output (SIMO) to Multiple-Input/Multiple-Output (MIMO)
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techniques in time domain, frequency domain and spatial domain [3, 70]. Time domain

MIMO algorithms are generally classified as:

• NExT-type procedures: they include polyreference complex exponential (MIMO version

of the SIMO Least Squares Complex Exponential, LSCE) [3], eigensystem realization

algorithm (ERA) imported from system realization theory [26, 81, 85, 96], extended

Ibrahim time domain [82]. These methods start from the estimation of time response

functions such as impulse response function, free decay responses, correlation function,

random decrement signature from which they extract modal parameters. For the specific

case of OMA, CF matrix is the basis for identification in its modal decomposition or

stochastic state-space representation;

• ARMA-type procedures: a multi-dimensional auto-regression moving average model

[5, 27, 108, 109], which correspond to multiple natural excitations, is the foundation of

these techniques. In this case, the estimation can be carried out by Prediction-Error

methods as a data-driven approach, or by Instrument Variable methods based on

covariance matrices of the output data (hence the name covariance-driven approach);

• Stochastic Realization-based procedures: stochastic system realization approaches are

based on discrete-time stochastic state-space equation. They introduce, as a key feature,

singular value decomposition (SVD) of covariance matrix and can also be taken as

subspace system identification method [9]. For this reason, these procedures are often

called as Covariance-driven Stochastic Subspace Identification (SSI) methods [94];

• Stochastic Subspace-based procedures: subspace-based state-space system identifica-

tion (SSI) differs from stochastic realization-based approach, since the state vector is

substituted by its prediction, and the two input/noise processes are converted into one

[20, 36]. SSI, also called data-driven SSI, makes direct use of stochastic response data

to identify modal parameters employing innovation state-space equation model.
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Frequency domain approaches rely on input/output power spectrum density (PSD) relation-

ship for stochastic processes [29, 67]. By assuming natural excitation hypothesis, modal

decomposition of the output PSD matrix is derived and employed by the following methods:

• FDD-type procedures: the Peak-picking method (PP) is a basic approach to find the

eigenfrequencies as the peaks of non-parametric spectrum estimates but it works well as

long as modes are well separated and frequency resolution is high. Frequency Domain

Decomposition (FDD) technique exploits SVD at discrete frequencies but can only

estimate modal frequencies and mode shapes [23]. A second generation of FDD, which

is called as Enhanced FDD or EFDD, has been followed for estimation of not only

modal frequencies and mode shapes, but damping ratios [76, 104, 125].

• LSCF-type procedures: in EMA this approach is based on parametric transfer function

model represented by rational fraction polynomial (RFP) [54, 126] involved in least

squares solution problems or in maximum likelihood estimators [59, 60, 79]. The least-

squares complex frequency-domain (LSCF) estimation method is based on common-

denominator model or scalar matrix-fraction description and has shortcomings in mode

shapes and modal participation factors extraction, especially with closely spaced poles.

Its polyreference version (pLSCF) [73], based on right matrix-fraction model (RMFD),

overcomes these limitations. In the case of OMA, these methods adopt the so-called

positive spectra (i.e. FFT of the correlation functions with positive time lags) due to

the similarity between their modal decomposition and that of the FRF matrix [152].

The rest of the chapter is organized as follows. In Section 1.2, the key modal structures of

OMA are presented such as modal decomposition of correlation and PSD matrix commonly

employed in several identification techniques. In Section 1.3, a particular two stage procedure,

commercially known as PolyMAX method [121, 122], is introduced in its relevant steps such

as a pLSCF estimator based on the RMFD, the corresponding state-space realization and a

least squares frequency domain algorithm for mode shapes estimation. Data pre-processing,
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the model order selection (i.e. the usage of stabilisation diagrams), and tools for modal

parameter validation are dealt with in Section 1.4.

1.2 Development of the Natural Excitation Technique

The well-known set of second order motion equations equations for a linear, time-invariant,

damped, vibrating system having N degrees of freedom (dofs), is formulated in a matrix

notation as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t), (1.1)

where t is the time variable, M, C, and K ∈ RN×N are the mass, damping, stiffness matrices,

q(t) ∈ RN×1 denotes the vector of Lagrangian coordinates and f(t) ∈ RN×1 that of external

loads. One can recast the system dynamics equations in Eq. (1.1) into an equivalent set of

2N first-order differential equations

 Mq̇(t)−Mq̇(t) = 0N×1

Mq̈(t) + Cq̇(t) + Kq(t) = f(t)
, (1.2)

and by introducing the state vector x(t) ∈ R2N×1

x(t) =

 q(t)

q̇(t)

 , (1.3)

the equations of motion are represented in state-space form [142]

Pẋ(t) + Qx(t) = u(t), (1.4)
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where P ∈ R2N×2N , Q ∈ R2N×2N , and vector u(t) are defined as

P =

 C M

M 0N×N

 Q =

 K 0N×N

0N×N −M

 u(t) =

 f(t)

0N×1

 . (1.5)

Specifically, the so-called state matrix A = −P−1Q, is introduced along with its eigenvalue

decomposition

A = VΛV−1, (1.6)

where Λ is a diagonal matrix, containing the 2N complex conjugate system poles λn, while

V ∈ C2N×2N is the modal matrix structured as

V =

 ψ1 · · · ψN ψ∗1 · · · ψ∗N

λ1ψ1 · · · λNψN λ∗1ψ
∗
1 · · · λ∗Nψ

∗
N

 =

 Ψ

ΨΛ

 , (1.7)

in which (.)∗ stands for the conjugate operation and ψn =

[
ψ1,n · · · ψN,n

]T

∈ CN×1 are

the mode shape vectors referred to the n-th pole and collected in Ψ ∈ CN×2N . The motion

equations in Eq. (1.4) can be decoupled through the coordinates transformation given by the

matrix V in Eq. (1.7) obtaining

x(t) = Vp(t) =
2N∑
n=1

 ψn

λnψn

 pn(t), (1.8)

where p(t) =

[
p1(t) · · · p2N(t)

]T

∈ R2N×1 is the modal state vector. Pre-multiplying

both sides of Eq. (1.4) by VT and substituting x(t) and ẋ(t) with expression in Eq. (1.8), it

is derived

Maṗ(t) + Mbp(t) = VTu(t), (1.9)
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indicating by Ma = VTPV and Mb = VTQV the so-called modal A and modal B diagonal

matrices. The generic system motion scalar equation of set Eq. (1.9) is

ṗn(t)− λnpn(t) =
1

man

ψn
Tf(t), (1.10)

with λn = −mbn/man. The solution of Eq. (1.10) is retrieved from Duhamel integral assuming

zero initial conditions

pn (t) =
ψT
n

man

∫ t

−∞
f (θ) eλn(t−θ)dθ. (1.11)

Combining the solutions from Eq. (1.11) as stated in Eq (1.8), the system responses are

obtained in terms of the physical Lagrangian coordinates

q (t) =
2N∑
n=1

ψnpn (t) =
2N∑
n=1

1

man

ψnψ
T
n

∫ t

−∞
f (θ)eλn(t−θ)dθ, (1.12)

which can be interpreted as a convolution integral encompassing the impulse response matrix

of the system and the generic system of external forces. The generic output qi(t) from the

vector in Eq. (1.12) is considered as

qi (t) =
L∑
g=1

2N∑
n=1

1

man

ψinψgn

∫ t

−∞
fg (θ) eλn(t−θ)dθ =

L∑
g=1

q̃ig (t), (1.13)

where L (L ≤ N) is the number of non-null forces included in the external load vector f(t)

and q̃ig (t) indicates the response contribution related to the single force fg(t).

1.2.1 Output cross-correlation modal decomposition

Considering two different outputs evaluated at the separated time instants t+ T and t,

respectively,

q̃ig (t+ T ) =
2N∑
n=1

1

man

ψinψgn

∫ t+T

−∞
fg (θ1) eλn(t+T−θ1)dθ1, (1.14)
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and

q̃jl (t) =
2N∑
m=1

1

mam

ψjmψlm

∫ t

−∞
fl (θ2) eλm(t−θ2)dθ2, (1.15)

the resulting output cross-correlation function is derived as [110]

Rq̃
ig,jl (T ) = E [q̃ig (t+ T ) q̃jl (t)] =

=
2N∑
n=1

2N∑
m=1

ψinψjmψgnψlm
manmam

∫ t+T

−∞

∫ t

−∞
dθ1dθ2eλn(t+T−θ1)eλm(t−θ2)E [fg (θ1) fl (θ2)], (1.16)

where E[·] stands for the expectation computed over the ensemble and

E [fg (θ1) fl (θ2)] = Rf
gl (θ2 − θ1), (1.17)

is the correlation function between two generic forces. At this stage, the NExT techniques

assume inputs as white uncorrelated noises in order to solve the integral in Eq. (1.16) [83]

Rf (θ2 − θ1) =


α1δ(θ2 − θ1) · · · 0

...
. . .

...

0 · · · αLδ(θ2 − θ1)

 , (1.18)

where Rf(θ2 − θ1) ∈ RL×L is the input correlation matrix and αi is a real-valued constant.

Substituting the particular expression of the input correlation term Rf
gg(θ2− θ1) of Eq. (1.18)

in Eq. (1.16), you obtain

Rq̃
ig,jg (T ) =

2N∑
n=1

2N∑
m=1

ψinψjmψgnψgm
manmam

(
αge

λnT

− (λm + λn)
h (T ) +

αge
−λmT

− (λm + λn)
h (−T )

)
, (1.19)

where h(·) indicates the proper Heaviside step function. For the multi-input, multi-output,

and multi-mode case, the cross-correlation between two outputs qi(t) and qj(t) is reached by
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summing the different contributions as

Rq
ij (T ) =

2N∑
n=1

ψin

(
L∑
g=1

αg
ψgn
man

2N∑
m=1

ψgm
mam(−λn − λm)

ψjm

)
eλnTh(T )+

+
2N∑
m=1

(
L∑
g=1

αg
ψgm
mam

2N∑
n=1

ψgn
man(−λn − λm)

ψin

)
ψjme−λmTh(−T ), (1.20)

that corresponds to the whole output correlation matrix Rq(T ) ∈ RN×N expressed by

Rq (T ) =
2N∑
n=1

ψnρ
T
neλnTh (T ) + ρnψ

T
ne−λnTh (−T ), (1.21)

embedding the following definition of operational reference vector referred to the n-th pole

ρn =
L∑
g=1

αg
ψgn
man

2N∑
m=1

ψgm
mam(−λn − λm)

ψm. (1.22)

In Eq. (1.21) the strong similarity between cross-correlation function and impulse response

function arises [18]. In fact, a sum of complex exponential functions characterizes their modal

models giving the go-ahead for the application of conventional time-domain identification

procedures, developed in traditional EMA, to the output-only modal analysis [142, 153].

1.2.2 Output PSD modal decomposition

Changing into the frequency domain models, the transfer function matrix for the system

in Eq. (1.1) is defined as the inverse of the dynamic stiffness B(s)

H(s) = (s2M + sC + K)−1 = B(s)−1, (1.23)
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with s the Laplace variable. From the modal analysis theory [80], the modal decomposition

of the frequency response function matrix, FRF, is

H(iω) =
N∑
n=1

ψnL
T
n

iω − λn
+
ψ∗nL

H
n

iω − λ∗n
=

2N∑
n=1

ψnL
T
n

iω − λn
, (1.24)

where a translate into the Fourier domain is done by imposing s = iω, and with Ln =

Qn

[
ψ1,n · · · ψL,n

]
∈ CL×1 indicating the modal participation vector related to the n-th

pole containing the L components of the n-th mode shape where the L external forces act

(Qn = 1/man is referred as scale factor). The power spectral density (PSD) matrix Sq(iω)

referred to the system ouputs, i.e. the Fourier transform of matrix Rq(T ), can be evaluated

by using the following implicit analytical expression, the well-known input-output formula,

holding in the frequency domain [110]

Sq(iω) = H(iω)Sf (iω)H(iω)H, (1.25)

where Sf(iω) ∈ CL×L is the Fourier transform of the input correlation matrix Rf(T ).

Substituting in Eq. (1.25) the modal decomposition of Eq. (1.24), one obtains

Sq (iω) =

(
2N∑
n=1

ψnL
T
n

iω − λn

)
Sf (ω)

(
2N∑
m=1

Lmψ
T
m

−iω − λm

)
. (1.26)

So, from that perspective, the assumption of inputs as white uncorrelated noises, described

in the time lag domain as in Eq. (1.18), here becomes

Sf (iω) =


α1 · · · 0

...
. . .

...

0 · · · αL

 , (1.27)
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implying the following partial fraction decomposition the matrix in Eq. (1.26)

Sq (iω) =
2N∑
n=1

R+
n

iω − λn
+

R−n
−iω − λn

, (1.28)

where the resulting residue matrix is

R+
n (iω) = ψnρ

T
n , (1.29)

and the definition of operational reference vector coming up again as

ρn(iω)T = LT
nSf (iω)

(
2N∑
m=1

Lmψ
T
m

−λn − λm

)
=

L∑
g=1

αgg
gg
n

T, (1.30)

with

gggn =
ψgn
man

2N∑
m=1

ψgm
mam (−λn − λm)

ψm, (1.31)

Therefore, by assuming the operational forces to be white noise uncorrelated sequences, the

output PSD matrix Sq(iω) ∈ CN×N can be modally decomposed as follows [142]:

Sq (iω) =
2N∑
n=1

ψnρ
T
n

iω − λn
+

ρnψ
T
n

−iω − λn
, (1.32)

where the operational participation vectors, Eq. (1.30), result being a combination of the

system modal parameters and the unknown (i.e. forces are not measured) input correlation

terms. For this reason, the modal participation factors and by consequence the modal scale

factors cannot be determined from a single OMA test but they need appropriate methods for

scaling [15, 64, 88, 141].

Usually, the so-called positive power spectra are employed in the output-only identification

techniques for their algebraic similarity to FRFs [131]. Indeed, positive power spectra matrix

is defined as the Fourier transform of the causal part of the correlation matrix in Eq. (1.21)
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resulting

Sq+ (iω) =
2N∑
n=1

ψnρ
T
n

iω − λn
, (1.33)

or in a compact form

Sq+ (iω) = Ψ(iωI−Λ)−1GT, (1.34)

with the 2N ORV collected in G ∈ CN×2N , representing a modal decomposition similar to

that of Eq. (1.24) except for the definition of operational reference vectors ρn.

1.3 Frequency domain procedure for MPE

In the OMA field, identification algorithms are generally divided into two categories

depending on the domain, time or frequency, where they operate. Regarding frequency-

domain output-only estimators [22, 126], they are generally PSD-based identification methods

that first estimate power spectral densities between O responses and certain r reference

responses in order to fit them by means of a parametric model. In the following, some details

of a particular two step procedure, commonly called PolyMAX technique, are provided in

terms of polynomial description, least squares solution for coefficient matrices calculation

and realization into an equivalent state-space model for determining modal parameters.

1.3.1 Classical Right Matrix Fraction Description

Right Matrix Fraction Description (RMFD) parametrizes the o-th row of Sq+(iω) ∈ CO×r

in Eq. (1.33) at each radian frequency ωk as a right division of two polynomial matrices [73]:

Sq+o (ωk) ' No(k)D(k)−1, (1.35)
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where

D(k) =

p∑
r=0

z−rk αr (1.36)

No(k) =

p∑
r=0

z−rk βo,r (1.37)

are the denominator D(k) ∈ Cr×r and the numerator No(k) ∈ C1×r p-order matrix polynomial

containing the unknown matrix real valued coefficients αr and βo,r, grouped in the vectors

α =

(
α0 · · · αp

)T

∈ Rr(p+1)×r and βo =

(
βo,0 · · · βo,p

)T

∈ R(p+1)×r. The transform

variable zk, named as complex polynomial basis function, is formulated in the z-domain being

equal to eiωk∆t where ∆t is the sampling period.

1.3.2 Polyreference Least Squares Complex Frequency

To find the unknown coefficient matrices α and βo by solving a least squares problem,

the following scalar cost function has to be minimized

l (βo,α) =
O∑
o=1

Nf∑
k=1

tr
[
ηH
o (ωk,βo,α)ηo (ωk,βo,α)

]
, (1.38)

where tr [.] is the trace of matrix operator, and a linear-in-variables error is defined for each

o-th row in Sq+(iω) and for each k-th frequency (Nf is the number of frequency lines) as:

ηo(ωk,βo,α) = No(k,βo)−D(k,α)Sq+o (ωk). (1.39)

Extending for all the Nf frequency lines, and reformulating in matrix notation as

ηo (βo,α) =


ηo (ω1,βo,α)

...

ηo
(
ωNf

,βo,α
)
 =

[
X υo

]βo
α

 , (1.40)
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where the two matrices, X and υo, are given by

X =



[
z0

1 · · · z−p1

]
...[

z0
Nf
· · · z−pNf

]
 ∈ CNf×(p+1), (1.41)

υo =


−
[
z0

1 · · · z−p1

]
⊗ Sq+o (ω1)

...

−
[
z0
Nf
· · · z−pNf

]
⊗ Sq+o

(
ωNf

)

 ∈ CNf×(p+1)r, (1.42)

with ⊗ denoting the Kronecker product. In such a matrix formulation, the linear least-squares

cost function of Eq. (1.38) can be rewritten as

l (βo,α) =
O∑
o=1

tr


[ βT

o αT

] R Υo

ΥT
o To


 βo
α



, (1.43)

where the following matrices need to be built

R = Re
[
XHX

]
∈ R(p+1)×(p+1), (1.44)

Υo = Re
[
XHυo

]
∈ R(p+1)×(p+1)r, (1.45)

To = Re
[
υH
o υo

]
∈ R(p+1)r×(p+1)r, (1.46)

with Re[·] denoting the real part because of the real valued coefficients assumption. In

the minimum of the cost function the derivatives of with respect to the unknown matrix
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coefficients βo and α have to be zero

∂l (βo,α)

∂βo
= 2 (Rβo + Υoα) = 0(p+1)×r, ∀o = 1, · · · , O (1.47)

∂l (βo,α)

∂α
= 2

(
ΥT
o βo + Toα

)
= 0(p+1)×r, (1.48)

which leads to the so-called reduced normal equations. In fact, the denominator matrix

coefficients α can be retrieved by replacing βo with in the second equation as

O∑
o=1

(
−ΥT

o R−1Υo + To

)
α = Mα = 0, (1.49)

where the contribution of each o-th row of Sq+(iω) has been taken into account. The typical

constraint, αp = Ir [34], is imposed in order to remove parameter redundancy of the RMFD

[126], and also to avoid trivial solution α = 0.

1.3.3 Conversion into a state-space description

Once the denominator matrix coefficients have been determined, the roots of the denom-

inator polynomial D(k,α) can be calculated as the eigenvalues of the companion matrix

[58]:

Ac =



0 I · · · 0

...
...

. . .
...

0 0 · · · I

−α0 −α1 · · · −αp−1


∈ Rpr×pr. (1.50)

This eigenvalues, defined in the z-domain, can be converted into the system poles, which are

strictly related to the system modal parameters by

λi, λ
∗
i = −ζiωu,i ± iωu,i

√
1− ζ2

i , (1.51)
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where ωu,i = 2πfu,i and ζi are respectively natural frequency and damping ratio referred to

the i-th mode. The eigenvectors of the companion matrix assume the role of the ORV as can

be demonstrated deriving the state-space conversion of the system, here described by a matrix

polynomial division, adopting the so-called Controllable Canonical state-space Realization [96].

In fact, the RMFD model in Eq. (1.35) corresponds to the following state-space description



ẋ(t) =



0 I · · · 0

...
...

. . .
...

0 0 · · · I

−α0 −α1 · · · −αp−1


x(t) +


0

...

Ir

u(t)

y(t) =

[
β0 −α0βp · · · βp−1 −αp−1βp

]
x(t) + βpu (t)

, (1.52)

with the numerator coefficients arranged in βr =

(
βT

1,r · · · βT
O,r

)T

∈ RO×r, the input

vector u(t) ∈ Rr×1, the output vector y(t) ∈ RO×1, and the state variable vector x(t) ∈ Rpr×1

collecting the i-th time derivatives of the displacement vector q(t)

x(t) =


q(t)

...

q(p−1)(t)

. (1.53)

In Eq. (1.52), the four discrete-time system matrices Ā ∈ Rpr×pr, B̄ ∈ Rpr×r, C̄ ∈ RO×pr,

and D̄ ∈ RO×r need to be converted into the continuous-time domain, in order to define the

relevant transfer function G(ω) ∈ CO×r as

Ḡ(ω) = C̄(iωI− Ā)−1B̄ + D̄. (1.54)

By performing the eigenvalue decomposition of the companion matrix Ā = VµV−1, the

system poles, Λ = ln (µ)/∆t, and the operational reference vectors are extracted, G = V−1B̄.
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The next step concerns the selection of a certain number of physical modes, among that

associated to the polynomial model, by using a stabilization diagram (it will be briefly

described in what follows).

1.3.3.1 Stabilization diagram: model order selection

In modal analysis field, the stabilisation analysis assists the analyst in distinguishing the

physical system poles from the mathematical or spurious poles and in finding the correct

polynomial model order [151] (which remain an unknown value as the number of modes to be

identified in the frequency band of interest). The presence of spurious poles can be attributed

to many different causes, such as measurement noise, modelling errors, computational issues,

etc. A characteristic of the physical system poles is their trend in stabilising when the

estimation is performed at different model orders (referring to the polynomial order in

Eq. (1.35)). By employing this fundamental idea, the so-called stabilization criteria are

defined: modes for which the distance in modal parameters between two consecutive model

orders are higher than certain threshold values, are not plotted in the diagram. Accordingly, a

graphical tool, the so called stabilisation diagram, allows for visualizing the estimated modal

parameters at increasing polynomial orders. As you can see in Figure 1.1, on the x-axis (the

frequency axis), the natural frequencies are represented, while the increasing polynomial

model orders are given on the left ordinate axis. The analyst sets the thresholds that define

the stabilisation in natural frequency, damping factor and Modal Assurance Criterion (MAC)

value (MAC definition will be given in Section 1.5). Several situations are labelled with

different symbols: the ‘o’ denotes no stabilisation in natural frequency, the ‘f’ represents

stabilisation in natural frequency, the ‘d’ and the ‘v’ stand for extra stabilisation in damping

ratio and in MAC value, the ‘s’ refers to fully stabilised solutions. The spurious numerical

poles will not stabilize during this process and they can be easily sorted out of the modal

parameter data set.
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Figure 1.1: Example of stabilisation diagram employed for model order selection: stabilisation
diagram along with the magnitude of the PSDs sum function, blue line. The model order is
indicated on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’
extra stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

1.3.4 Least Squares Frequency Domain

After the analyst have selected the physical system poles on the stabilisation diagram,

the last step concerns mode shape vectors’ computation by a linear least squares fitting

procedure. This step is also referred to as LSFD based on the partial fraction decomposition

representation of Eq. (1.33) which leads to the minimization of the following scatter [126]

Γ(Ψ,LR,UR) =

Nf∑
k=1

(
Sq+ (iωk)−

(
ΨA(iωk) +

LR

iωk
+ iωkUR

))2

, (1.55)

where A(iωk) = (iωkI−Λ)−1GT embeds the modal parameters selected from the pLSCF step,

LR and UR are respectively the unknown lower and upper residuals aiming at introducing

into the model the influence of the out-of-band modes.
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1.4 Data pre-processing

The two step procedure above proposed doesn’t directly use the raw output measurements

but rely on reduced data such as power spectral densities or cross-correlation functions

between signals measured at different locations during several runs (as a number of the

output-only MPE methods). The nonparametric estimation of PSDs from time series is quite

extensively treated in the literature [10]. Two statistics for the estimation of PSDs, the

correlogram and periodogram approaches, are the most popular: the former will be discussed

in the following and an efficient numerical implementation of the latter was proposed by

Welch in [157].

Regarding the weighted correlogram method, one firstly estimates the CFs matrix R(τ) ∈

Ro×r, with o the number of outputs and r the number of references. The generic CF between

the output qi and the reference qj, evaluated at the time lag k∆t is expressed as:

Rq
ij(k∆t) =

1

Ns

Ns−1∑
t=0

qi,tqj,t+k, (1.56)

where Ns is the total number of samples, ∆t is the sampling period and k is the correlation

sample index. It comes up with the output PSD estimate by computing the Discrete Fourier

Transform (DFT) of the weighted output correlation function in Eq. (1.56)

Sqij(ω) =
K∑

k=−K

wkR
q
ij(k∆t)e−iωk∆t, (1.57)

where K is the maximum number of time lags, chosen so that K < Ns, and wk indicates

the exponential window used for reducing leakage (same strategy as for the nonparametric

estimation of impulse responses), which introduces a known additional damping to the poles.

As the correlation samples at negative time lags contain redundant information, several OMA

techniques consider only the positive time lags, dealing with the positive power spectrum
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computed as

Sq+ij (ω) =
w0R

q
ij(0)

2
+

K∑
k=1

wkR
q
ij(k∆t)e−iωk∆t. (1.58)

1.5 Modal parameters validation

Once the modal parameters are determined, several procedures exist allowing for the

modal data (model) validation. All of these methods depend upon the evaluation of an

assumption concerning the modal model. Unfortunately, the success of the validation method

only defines the validity of the assumption; the failure of the modal validation does not

generally define what the cause of the problem is.

1.5.1 Synthesis and MAC

A first validation procedure consists of comparing the data synthesized from the modal

model, e.g. Eq. (1.33), with the nonparametric estimates. A quantitative assessment of

the agreement between synthesized and measured values of each Sq+(iω) matrix entry is

obtained by computing the synthesis correlation coefficient CSq
ij

and the normalised error

ESq
ij

, respectively defined as

CSq
ij

=

∣∣∣∣∣Nf∑
k=1

Sqij (ωk) Ŝ
q∗
ij (ωk)

∣∣∣∣∣
2

Nf∑
k=1

Sqij (ωk)S
q∗
ij (ωk)

Nf∑
k=1

Ŝqoi (ωk) Ŝ
q∗
ij (ωk)

, (1.59)

ESq
ij

=

Nf∑
k=1

∣∣∣Sqij (ωk)− Ŝqij (ωk)
∣∣∣2

Nf∑
k=1

∣∣Sqij (ωk)
∣∣2 , (1.60)
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where Sqij(ωk) denotes the measured PSD values, Ŝqij(ωk) the estimated ones. The two

coefficients, defined by Eqs. (1.59) and (1.60), provide a global evaluation, over the whole

frequency range, of the linear relationship between the theoretical and estimated PSDs.

Focusing on the individual modal parameters, natural frequencies and damping ratios

could be compared with reference values, e.g. from FE analysis or different experimental

campaign, by means of relative percentage errors; on the other hand mode shape vectors

are usually validated by calculating the relevant MAC, Modal Assurance Criterion, between

reference, ψ̃i, and estimated, ψj, modal vector sets [115]. The modal assurance criterion is

defined as a scalar constant relating the portion of the auto moment of the modal vector that

is linearly related to the reference modal vector as follows [2, 150]:

MACij =

∣∣∣ψ̃H

i ψj

∣∣∣2
ψ̃

H

i ψ̃iψ
H
j ψj

, (1.61)

where MACij is a scalar constant relating the causal relationship between two modal vectors.

The constant takes on values from zero, representing no consistent correspondence, to

one, representing a consistent correspondence. In this manner, if the modal vectors under

consideration truly exhibit a consistent relationship, the modal assurance criterion should

approach unity. Moreover, the MAC is commonly used for measuring the distance between

eigenvectors in a stabilization diagram, for comparing identified and forwardly computed

modes, and for validating the identified set of modal parameters. However, several other

indicators, helpful for validation of the set of modal parameters, exist but they are here

omitted for the sake of brevity [80].
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In a nutshell

1. Classical Operational Modal Analysis models: modal decomposition of the ouput CFs and PSDs
matrices under the NExT assumption. The right matrix fraction description of positive spectra
matrix and its conversion into a state space equivalent model.

2. A particular two step procedure for modal parameter estimation: details about the pLSCF
solution for poles and operational reference vectors estimation, and the LSFD estimator for
mode shapes extraction.

3. The role of the stabilisation diagram in physical poles selection and some tools for modal
parameters validation: synthesis correlation coefficients, normalized errors and the Modal
Assurance Criterion.
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2.1 Introduction

The need for tools to understand, test, model, and predict microsystems performances

inspires the wide framework of multidisciplinary research on MEMS sensor technologies. Com-

pared to regular mechanical structures, these structures possess very high natural frequencies

(in the order of kilohertz or megahertz), as made up of components from micrometers to

31
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millimetres in size, and small elastic displacement. Characterization of dynamic properties

and testing capabilities is required to guarantee that the microsystems reliably perform their

own task and to validate predictive models that enable optimization at the design stage

[24, 40, 65, 112, 139].

To this extent, an overview of modal testing techniques for microsystems together with a

particular EMA methodology that includes base excitation via a piezoelectric shaker and

measurement through a laser interferometer can be found in Ref. [112]. Experimental modal

analysis (EMA) techniques are traditionally applied to dynamic characterization of large

scale structures (i.e. made up of components sized over a centimeter): this is due to the

systems classically employed to produce the structure excitation, measure the input and

the associated output [61, 80]. The most of modal testing techniques includes the usage

of impact hammers or shakers for exciting the structure via a function of known frequency

characteristics (impulse, random, periodic), and measuring the associated response using force

or motion sensors (i.e. accelerometers, load cells). When performing EMA on microsystems,

such excitation and measurement methods result challenging, due to the system small size:

this issue is particularly significant with conventional modal testing techniques. Indeed,

attaching accelerometers substantially alters the dynamic characteristics of microstructures:

thus, providing transient input with an impulse hammer or attaching a shaker to the structure

is unfeasible. Therefore, both the excitation and measurement must be conducted through

non-contact instruments [40]. Other issues are related to MEMS characteristic natural

frequencies, which are in the order of kilohertz or megahertz, and thus require a specific

excitation method: traditional mechanical, electromagnetic, and hydraulic shakers have a

limited frequency range. For these reasons, numerous different excitation techniques are

employed for modal testing of microsystems [112]. Electrostatic excitation can be applied

either by employing the structure itself, or by using a built-in actuator [49, 86]. The excitation

can also be established by embedded smart material elements integrated into the structure
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[162]. This solution adds complexities to the fabrication methods and, the inclusion of extra

materials can significantly alter MEMS dynamic characteristics. Generally, the characteristics

of embedded smart materials and electrostatic forces are nonlinear functions of structural

motion [112]. Alternatively, magnetic and thermal excitation techniques may adversely

impact the structures requiring to add coating material, thus altering the structure dynamics

and making difficult to control the input [14]. An alternative, which does not alter the

structural characteristics, is the base excitation approach using external elements [31]. Here,

a transducer, e.g., a piezoelectric shaker, is used as the source of excitation at high frequencies.

Usually, the input is not directly measured since a sensor, such as a load cell, cannot be

included. The common issue with all these methods arises from the fact that none of them is

truly external and not suitable for measuring inputs [112].

To deal with the measurement problem, techniques from optics, such as video imaging, and

interferometry, have been adapted by employing non-contact devices [25, 165]. Among these,

it is interesting to recall: (i) stroboscopy, with light emitters able to increase the maximum

detectable frequency [75]; (ii) video-imaging techniques, generally costly and complex, which

employ ultra-high-speed cameras [129]; (iii) interferometry that requires specular surfaces, i.e.

mirror-like reflective, and offer the motion of the whole surface, rather than a single point [164];

(iv) other optical techniques (including holographic interferometry, electronic speckle pattern

interferometry (ESPI), blur envelope), most of which measure changes in capacitance arising

from structural vibrations (existence of large parasitic capacitance, however, usually results

in very poor signal-to-noise ratios and limits the accuracy) [86, 112]. Another attractive

non-contact measurement is the laser Doppler vibrometry (LDV) [92, 111]. LDVs measure

the out-of-plane velocities of a moving surface with adequate reflectivity. Single-point LDVs

require multiple measurements for establishing the mode shapes that need the usage of a

common, repeatable reference for correct phase information. Alternatively, scanning LDVs

allow automatic measurement of many points in a single test.
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In this context, a vibro-acoustical methodology based on OMA is proposed, consisting in

acoustical excitation and output-only measurement throughout a single-point LDV and a

microphone to access both the acoustical and structural responses. OMA techniques enable to

get information on the modal parameters replacing the deterministic knowledge of the input

signal with the NExT assumption. In fact, the assessment of the operational input forces

turns out to be challenging especially in the case of micro-systems. Furthermore, classical

OMA algorithms may be employed for vibro-acoustical systems, where the fluid–structure

interaction yields both the acoustical and structural responses, as presented in Ref. [124]. In

the following, the vibro-acoustical OMA formulation will be recalled: the specific approach is

based on the modal decomposition of cross-power spectra, defined CPs, between structural

and acoustical responses assuming to have acoustical excitation obeying NExT assumption.

Once this modal decomposition formulation is determined, experimental testing on a specific

quartz tuning fork, QTF, vibrating in air is performed. This acousto-electric transducer is

employed in trace gas sensing techniques, specifically called quartz-enhanced photoacoustic

spectroscopy (QEPAS) [90, 91, 116, 117, 118].

Recently a theoretical-experimental framework for the analysis of QTF dynamic response

has been proposed [28]. Specific attention has been paid to the fluid-structure coupling in

terms of forces exerted by the fluid on the structure (fluid inertia and viscosity as well as

an additional diffusivity term) whose influence is crucial for the correct evaluation of the

system response. In this chapter, an alternative approach, based on the vibro-acoustical

OMA, is presented as a valid technique to identify the relevant QTF modal parameters, i.e.,

flexural eigenfrequencies, quality factors, and unscaled mode shapes. An acoustic stationary

random field generated by two speakers has been used to acoustically excite the QTF. The

resulting structural velocities have been measured and recorded by using a single-point LDV,

while an electronic microphone has been employed to measure the acoustic pressure at a

specific fixed point close to the QTF. This latter signal represents the acoustical output
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reference. Two set-up configurations are proposed in order to access the QTF fundamental

in-plane skew-symmetric mode and the two first out-of-plane flexural modes. A comparison of

results, obtained by means of the identification performed on the CPs computed by using only

structural responses (classical OMA approach) and those got by including both structural

and acoustical outputs, referred to as vibro-acoustical OMA, is developed.

2.2 Modal models for vibro-acoustical systems

A linear, time-invariant, damped, vibrating system coupled with a fluid medium is

considered, as usually done in a Finite Element (FE) formulation [74]. To assess the equations

describing the vibro-acoustical behavior of coupled systems, it is combined the discretized

motion equation for the structural vibrational behavior under external structural loading

and coupled acoustical loading, with the acoustical problem of the pressure response in the

cavity caused by acoustical excitation, as well as by structural vibration on the boundaries.

Indeed, the nonsymmetrical set of second order equations of motion for the vibro-acoustical

coupled system is expressed in matrix notation as [159]

Ms 0

Mc Mf


ẍ (t)

p̈ (t)

+

Cs 0

0 Cf


ẋ (t)

ṗ (t)

+

Ks −Kc

0 Kf


x (t)

p (t)

 =

 f (t)

ρq̇ (t)

 , (2.1)

where Ms, Cs, and Ks are the structural mass, damping, and stiffness matrices, Mf , Cf , and

Kf , resulting from an indirect formulation of the acoustical problem, describe the pressure-

volume acceleration relation in case of a rigid wall structure; the variables x(t), p(t), f(t),

and q̇(t) are the displacement, pressure, structural force, and volume acceleration vectors as

functions of time, ρ is the fluid density. The coupling matrices Kc and Mc derive respectively

from the acoustical pressure loading on the structure over the boundary surface Sb and the

loading due to vibration at the same flexible boundary. According to Ref. [74], the entries of
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the coupling matrices can be expressed as follows

Kc
ij =

∫
Sb

ni · nNjdS (2.2)

M c
ji =

∫
Sb

ρNinj · ndS, (2.3)

where n is the surface normal vector and ni is the interpolation function vector in the finite

element formulation. These matrices are so interrelated by using the equation Mc = ρ(Kc)T.

By Laplace-transforming Eq. (2.1), with s being the Laplace variable, the more compact

matrix relationship is obtained:

 As −Kc

−ω2(Kc)T Af
/
ρ


 x (s)

p (s)

 = B (s)

 x (s)

p (s)

 =

 f (s)

q̇ (s)

 , (2.4)

with

As = Ks + sCs + s2Ms (2.5)

Af = Kf + sCf + s2Mf . (2.6)

For the special nonsymmetry of B(s), it can be proven that the left eigenvectors, φn, and

the right ones, ψn, are related by

 φsn

φfn

 =


ψs
n

1

λ2
n

ψf
n

 , (2.7)

where the superscript s is for the structural response locations, f for the acoustical response

ones, while the subscript n refers to the system pole λn. Conforming to general modal analysis

theory [61], we write the coupled system transfer matrix H(s) = B(s)−1 in the following
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partitioned form:  x (s)

p (s)

 =

 Hxf (s) Hxq̇ (s)

Hpf (s) Hpq̇ (s)


 f (s)

q̇ (s)

 , (2.8)

where the transfer matrix partitions between the responses and acoustical volume acceleration

excitation q̇(t) can be derived as a function of the right eigenvectors and eigenvalues of the

system matrix as

Hxq̇ (s) =
2N∑
n=1

ψs
n

(
Pnψ

f
n

)T

λ2
n (s− λn)

=
2N∑
n=1

ψs
n

(
µfn
)T

s− λn
(2.9)

Hpq̇ (s) =
2N∑
n=1

ψf
n

(
Pnψ

f
n

)T

λ2
n (s− λn)

=
2N∑
n=1

ψf
n

(
µfn
)T

s− λn
, (2.10)

where N is the number of complex-conjugates mode pairs in the range of interest, Pn is a

modal scaling factor, the right eigenvectors ψs,f
n represent the vibro-acoustical mode shapes,

and the participation factors µfn are related to the left eigenvectors with

µfn =
Pnψ

f
n

λ2
n

= Pnφ
f
n. (2.11)

Starting from Eqs. (2.9) and (2.10), the modal decomposition of the output PSD for the

vibro-acoustical system of Eq. (2.1) is derived in Ref. [124]. In fact, by focusing on the case

where there are no structural forces (f(t) = 0) and K refers to the white noise uncorrelated

acoustical inputs, such that the corresponding CFs matrix Rq̇(τ) ∈ RK×K is

Rq̇(τ) =


α1δ(τ) 0

. . .

0 αKδ(τ)

 , (2.12)
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one can employ Duhamel’s integrals to calculate

x (t) =

t∫
−∞

hxq̇ (t− τ) q̇ (τ) dτ (2.13)

p (t) =

t∫
−∞

hpq̇ (t− σ) q̇ (σ) dσ, (2.14)

where hxq̇(t) and hxq̇(t) represent the inverse Laplace transforms of transfer matrices in

Eqs. (2.9) and (2.10), and allow to model the CFs matrix Rxp(τ) between the acoustical p

and structural x responses as

Rxp (τ) = E
[
x (t+ τ) p(t)T

]
=

2N∑
n=1

ψs
n(Qxp

n )Teλnτh (τ) + Qxp
n

(
ψf
n

)T
e−λn|τ |h (−τ), (2.15)

where h(·) is the well-known Heaviside step function, and the particular output-only reference

vector Qxp
n is defined as:

Qxp
n = −

K∑
k=1

αkPnψ
f
n,k

λ2
n

2N∑
j=1

[
Pjψ

f
j,kψ

f
j

λ2
j (λn + λj)

]
. (2.16)

Analogously, the same procedure is followed in Ref. [124] to express the CFs matrix Rxx(τ)

between structural x responses:

Rxx (τ) = E
[
x (t+ τ) x(t)T

]
=

2N∑
n=1

ψs
n(Qxx

n )Teλnτh (τ) + Qxx
n

(
ψf
n

)T
e−λn|τ |h (−τ), (2.17)

in which the corresponding output-only reference vector Qxx
n is

Qxx
n = −

K∑
k=1

αkPnψ
f
n,k

λ2
n

2N∑
j=1

[
Pjψ

f
j,kψ

s
j

λ2
j (λn + λj)

]
. (2.18)

Given the modal models of cross-power spectra, CPs, that are the matrices representing
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the Laplace transforms of Eq. (2.15) and (2.17), a translation into the Fourier domain is done

by imposing s = iω:

Gxp (iω) =
2N∑
n=1

ψs
n(Qxp

n )T

iω − λn
+

Qxp
n

(
ψf
n

)T

−iω − λn
(2.19)

Gxx (iω) =
2N∑
n=1

ψs
n(Qxx

n )T

iω − λn
+

Qxx
n

(
ψf
n

)T

−iω − λn
. (2.20)

One can, thus, determine the so-called positive power spectrum, PCPs, as the Fourier

transform of the CFs at positive time lags, related to the stable poles λn, and here recalled:

G+
xp (iω) =

2N∑
n=1

ψs
n(Qxp

n )T

iω − λn
(2.21)

G+
xx (iω) =

2N∑
n=1

ψs
n(Qxx

n )T

iω − λn
. (2.22)

By looking at Eqs. (2.21) and (2.22), it is pointed out that the modal decompositions of

G+
xp(iω) and G+

xx(iω) depend on the same vibro-acoustical mode shapes and system poles

but differ for the definition of the operational reference vectors expressed in Eqs. (2.16)

and (2.18). Furthermore, the similarity with the classic OMA modal models [126] allows

to apply techniques developed for output-only system identification. The choice falls on a

frequency-domain parametric modal method based on the Least Squares Frequency Domain

(LSFD) estimator, relied on the modal model in Eqs. (2.21) and (2.22), along with the

poly-reference Least Squares Complex Frequency (pLSCF) method [73]. The LSFD method

is employed to obtain a global estimate of the mode shapes whilst the pLSCF provides poles

and operational reference vectors using a fraction polynomial model, the so-called Right

Matrix Fraction Description, equivalent to the modal model in Eqs. (2.21) and (2.22).

In the following, the identification process based on the PCPs matrix G+
xx(iω) will be

referred to with the abbreviation OMA, while the one based on G+
xp(iω) will be called VA-

OMA. From the experimental perspective, the choice of considering acoustical references for
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micro-scale vibro-acoustical structure, like MEMS, may prove to be advantageous for reasons

related to simplicity to take a microphone near the acoustical excitation overcoming the need

to have multiple sensors located on the structure, often not feasible for these systems.

2.3 Experimental case study

In order to assess the performance of the presented approach, two case studies are offered,

employing the data achieved by processing the time records collected through real-world

experiments on a QTF. The dimensions of the device under test are listed in Table 2.1 and

the main purpose of the test is to validate the theoretical model, proposed in [28], which

enhances the intelligibility of the physical parameters governing the dynamics of the QTF by

describing the interaction with the surrounding fluid via a specific hydrodynamic function

(dominated by a diffusive term that proves to be crucial for damping prediction).

QTF Dimensions, mm Geometry

Prong Length lp = 9.4
lplb

wp

wb d

h
Base Length lb = 3.6

Prong Width wp = 2

Base Width wb = 6

Prong Spacing d = 1.5

QTF Thickness h = 0.25

Table 2.1: Dimensions of the device under test, the nomenclature refers to sketch.

Results of structural and vibro-acoustical OMA approach are compared by exploiting

experiment on structures at millimeter scale. In this respect, differences emerge from the study

case in [124], where vibro-acoustical OMA turns out to be useful for high scale structures,

i.e. an helicopter cabin, for reasons related to the usage of moving sensors together with

additional acoustical fixed reference ones. In this experimental application, vibro-acoustical
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OMA reveals itself attractive also for MEMS testing where the non-contact measurement

devices are commonly roving and the usage of fixed acoustical sensors near the structure

represents a valid reference signal. The two experimental setup, adopted to completely

achieve the in-plane and out-of-plane QTF sensor flexural modes, are sketched in Figure 2.1.

Preliminary in-vacuum 3D finite element (FE) analyses [28] are exploited in order to determine

a first estimate of the relevant natural frequencies so as to choose the excitation source and

measurement parameters. Furthermore, the theoretical model in [28] confirms that the two

tin weldings, see picture in Table 2.1, can be treated as a bracket joint positioned on the

base cross-section.

(LD vibrometer)

(Speaker)

(Speaker)

(MIC)

(QTF)
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Figure 2.1: (a) Schematic representation of the two adopted experimental setups: in-plane
(top panel), real setup in (c), and out-of-plane configuration (bottom panel). (b) Set-up
geometry with the 14 measurement locations: 7 on the left prong and 7 on the right one. The
tip point location, point14, is depicted in green. It has been used as structural reference.
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The QTF is excited in laboratory air by a stochastic, white acoustic field, generated

by two speakers. QTF responses are measured, in terms of displacement and velocity, by

a single-point LDV pointing at different locations comprising the test layout sketched in

Figure 2.1b. In addition to structural responses, a microphone is used to measure acoustical

pressure in proximity of the sensor in order to include an acoustical output usable as reference

in the PCPs assessment involved in the vibro-acoustical OMA framework.

The setup is composed by: (i) a Polytec OFV-5000 modular LD vibrometer to measure

the output response in several points of the QTF, (ii) two speakers to produce a white

acoustic random field for exciting the tuning fork structure, (iii) a Microtech Gefell 1/4′′

elecret-measurement microphone M370, (iv) a LMS SCADAS Recorder 09 mobile PC based

multichannel analyzer platform, running the LMS Test.Lab 14A software suite for generating

the input electric signal to drive the speakers, and to acquire and record the time histories of

the output responses measured by the vibrometer and the microphone.

In summary, the differences between the two configurations are mainly made by: (i)

the frequency band of white noise input, driving the speakers and the sampling frequency,

both related to the predicted natural frequencies of the in-plane and out-of-plane flexural

modes; (ii) the measurements points and the sensor orientation with respect to speakers and

vibrometers position unchanging in the test campaigns as depicted in Figure 2.1.

In the OMA approach, one of the structural velocities, measured by means of LDV, is

considered as reference qj(t) leading to PCPs matrix whose modal decomposition is derived

in Eq. (2.22). On the other hand, the acoustical response, coming from the microphone near

the QTF, is chosen in order to reach the PCPs matrix with the modal model expressed

in Eq. (2.21). It is stressed the fact that the two modal models in Eqs. (2.22) and (2.21)

differ only in the meaning of the second modal vector, indicated by Qxp
n and Qxx

n defined

in Eqs. (2.16) and (2.18) for the generic n mode, which depends on the choice of reference,

structural or acoustical. However, PCPs can be parameterized in exactly the same way and
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then the same MPE procedure are used for both OMA and VA-OMA.

2.3.1 MPE strategy

In order to estimate the modal parameters of Eqs. (2.22) and (2.21), a two step procedure

derived from OMA field is proposed. The first step involves the pLSCF estimator which

is based on a Right Matrix Fraction Description (RMFD) of the PCPs matrix and allows

to obtain the system poles, λn, and operational reference vectors, Qxx
n or Qxp

n , by means

of a stabilization chart. The latter gives a strong indication of the number of present

physical modes and allows to estimate the corresponding physical poles (i.e. eigenfrequencies

and damping ratios) and the respective operational reference vectors. As a second step, a

frequency domain parametric modal method based on the LSFD estimator is used, relied on

the equivalent modal models in Eqs. (2.22) and (2.21). The LSFD method is employed to

obtain a global estimate of the mode shapes.

A quantitative assessment of the agreement between the estimated modal model and

the measurement of each G+
xp(iω) matrix entry is obtained by computing the synthesis

correlation coefficient CSoi
and the normalised error ESoi

, respectively defined in Eqs. (1.59)

and (1.60). In the next subsections, results of the identification process, previously described,

are proposed for both the case of QFT fundamental in-plane skew-symmetric mode and the

two first out-of-plane flexural modes.

2.3.2 In-plane flexural mode identification

The signals are acquired in the time domain with a sampling frequency of 51200 Hz and

a time period of 64 s. Seven measurement runs are performed, each characterized by the

acquisition of two outputs: the velocity at one of the seven locations depicted in Figure 2.1b

and the acoustic pressure in a fixed point close to the sensor. The input electric signal, driving

the speakers, is generated as a white noise source in the frequency band from 12 to 18 kHz
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with an excitation level of 0.03 V. So, seven structural velocities are independently collected

in correspondence of different locations on the right prong as indicated in Figure 2.1b. QTF

prong tip, middle, and root velocities are plotted in Figure 2.2 together with the acoustical

pressure coming from the microphone. The particular application includes a root mean

square, RMS, value of the prong tip velocity of approximately 36µm/s and of 0.4 nm for the

relative displacement.

Figure 2.2: Channel throughputs: velocities of the right prong root, middle, and tip locations
(top panel), acoustical pressure response coming from the microphone near the loudspeaker
(bottom panel).

With regards to the pressure output, Figure 2.3 shows the relevant autoPSD in the

whole acquired band, inset at the top right, with a zoom in the excitation region in order to

compare the differences between two independent measurement runs. It is underlined the

good agreement between the two curves as a sign of consistent repeatability of the microphone

acquisition that represents our reference in the vibro-acoustical OMA approach.
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Figure 2.3: In-plane testing: magnitude of pressure PSD in the case of two measurement
runs: run 1, blue solid line, and run 2, red solid line, in the bandwidth from 12 to 18 kHz.
The inset figure at the top right shows the same spectra in all the acquired frequency band.

In order to apply averaging techniques in PCPs matrix non-parametric estimation, time

signals are divided in M = 32 blocks, which implies a frequency resolution of the PCPs equal

to 0.5 Hz, and a 0.01% exponential window is used to reduce noise contamination, yielding

smooth positive-spectra. The weighted correlogram leads to the PCPs matrix estimation,

here reported in Figure 2.4, where point14 velocity is considered as output, qi(t), and two

different reference signals, qj(t), are employed: the structural, point14 velocity-reference

PCP in the left panel, and the acoustical one, pressure-reference PCP in the right panel. It

is noticed the presence of three peaks in both two curves including the fundamental in-plane

skew-symmetric flexural eigenfrequency of QTF, which is the mode excited by means of

sound waves in the QEPAS application [117], approximately located at 15.8 kHz. The other

two peaks, respectively located at 14.590 kHz and 16.170 kHz, are related to the first in-plane

symmetric flexural mode and to a torsional mode, having even out-of-plane displacement

components, respectively, as demonstrated by performing an in-vacuum 3D finite element

(FE) analysis of the tested QTF by the software COMSOL in [28].
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(a) OMA (b) VA-OMA

Figure 2.4: In-plane testing: magnitude and phase angle of the estimated PCP of the velocity
measured at the tip of one QTF prong with respect to the structural reference (a) and to the
acoustical reference (b).

From the pLSCF, the two stabilization diagrams are reached in Figure 2.5 assuming

subsequently an increasing values for the polynomial model order and focusing on the

frequency range from 15750 to 15900 Hz, i.e. around the peak of the fundamental in-plane

skew-symmetric flexural mode of the QTF. In particular, the PCP-sum, i.e. the complex sum

of the PCPs of all the measured structural points together with the system poles estimated

by the pLSCF is represented. The stabilization diagram give the indication of one stable

pole for both OMA, left panel, and VA-OMA, right panel, processing.

In Table 2.2 the pairs of natural frequencies and damping ratios, computed from the

selected stable pole, are reported together with the quality factor calculated as Qn = 1/(2ζn).

Natural Frequency (Hz) Damping Ratio (%) Quality Factor (-)
OMA VA-OMA OMA VA-OMA OMA VA-OMA

Mode 1 15808, 5 15808, 7 0.00295 0.00363 16975.6 13769.6

Table 2.2: In-plane flexural modes identification: comparison between modal parameters
from OMA and VA-OMA.
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Figure 2.5: In-plane flexural modes identification: stabilization diagrams along with the
magnitude of the PCP sum function, blue line, referred to the structural reference (a) and the
acoustical one (b). The stable poles are indicated with ‘s’ and the model order is indicated
on the left ordinate axis.

It is underline the improved accuracy in the estimate of the quality factor from the

vibro-acoustical data, due to the reliability of the acoustic pressure reference. This value is

in agreement with the estimate in Ref. [28] where a combined theoretical and experimental

approach is employed. On the other hand, damping ratio coming from the OMA data reveals

to be underestimated for reasons related to noise due to the usage of a reference signal,

point14 velocity, not simultaneously acquired. Indeed, the relative percentage error with

respect to quality factor in Ref. [28] is approximately 5% for the VA-OMA and 30% for that

one from OMA.

Achieved poles and operational reference factors from the first step, the MPE is ended up

deploying the LSFD estimator in order to compute the unscaled mode shapes. In Figure 2.6,

it is shown the mode shape associated to the selected pole suggesting a comparison between

that coming from OMA, left panel, and the one from vibro-acoustical OMA, right panel.
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(a) OMA (b) VA-OMA

Figure 2.6: In-plane flexural mode identification: comparison of the mode shape from OMA
(a) and VA-OMA (b).

In the OMA case, a distorted mode shape is reached because of the inconsistency of the

structural reference in the multi-run measurement process which leads to incorrect phase

information. On the other hand, the usage of the acoustic pressure reference reveals to be

robust and gives us an accurate estimate of this modal vector in correspondence of the seven

structural measurement locations.

Once the modal parameters are computed, the PCPs synthesized from the modal model

of Eq. (2.21) are compared with the measured PCPs, as shown in Figure 2.7, referring only

to the vibro-acoustical OMA case. The visual match, together with an high correlation

coefficient for all the PCPs, proves the goodness of the MPE process results as depicted in

Figure 2.8. When looking at the error, it is noticed that the error values remain lower than or

equal to approximately 5%. Furthermore, the values of the correlation coefficient, higher than

95%, confirm this assessment, whereby higher values of this quantity corresponds to lower

error values and vice-versa. It is pointed out that these improved results are particularly

related to the accuracy of the estimation achieved around the resonance peak, see Figure 2.7.
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Figure 2.7: In-plane flexural modes identification: comparison between the estimated PCP of
the tip velocity referred to the acoustical reference, blue dotted line, and synthesis by modal
model, red solid line.

The good correlations and the correctness of the mode chosen corroborate the experimen-

tally verification of the MPE effectiveness obtained considering an acoustical reference in the

OMA analysis, as theoretically predicted through the comparison between the formulation

derived in Ref. [124], also in the experimental outcomes obtained by means of a vibro-acoustic

setup on a millimeter-scale sensor.

Figure 2.8: In-plane flexural modes identification: correlation coefficients Eq. (1.59) and
normalized errors Eq. (1.60) related to the seven PCPs used for the identification with the
VA-OMA approach.
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2.3.3 Out-of-plane flexural modes identification

In the second case study, the signals are acquired in the time domain with a sampling

frequency of 8192 Hz and a time period of 100 s. Fourteen measurement runs are collected,

each characterized by the solely acquisition of velocity at one of the fourteen locations,

depicted in Figure 2.1b, and the acoustic pressure in a fixed location. In this case, the input

electric signal driving the speakers is a white noise source in the frequency band from 1

to 2 kHz with an excitation level of 0.03 V. The RMS value of the prong tips velocity is

approximately 10µm/s and 1 nm regarding the displacement.

In Figure 2.9, the pressure signal autoPSD is shown in the whole acquired band, inset at

the left right, with a zoom in the excitation region in order to highlight the good repeatability

of the microphone acquisition which plays the role of reference in the PCPs processing.

Figure 2.9: Out-of-plane testing: magnitude of pressure PSD in the case of two measurement
runs: run 1, blue solid line, and run 2, red solid line, in the bandwidth from 1 to 2 kHz.

Time signals are divided in M = 40 blocks, providing a frequency resolution of the PCPs

equal to 0.4 Hz, and a 0.01% exponential window is used to reduce noise contamination.

In Figure 2.10, it is reported the estimated PCPs between the output, qi(t), i.e. point14

velocity, and two different reference signals, qj(t), i.e. point14 velocity, in the left panel, and

acoustical pressure, in the right panel. Specifically, it is noticed the presence of two peaks in
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both two curves including the first out-of-plane symmetric and skew-symmetric modes of the

tuning fork, as predicted by the aforementioned 3D FE analysis [28].

(a) OMA (b) VA-OMA

Figure 2.10: Out-of-plane testing: magnitude and phase angle of the estimated PCPs of the
velocity measured at the tip of one QTF prong with respect to the structural reference (a)
and to the acoustical reference (b).

From the first identification step, the two stabilization diagrams are obtained in Figure 2.11

focusing on the frequency range from 1300 to 1800 Hz. In the two cases, the stabilization

diagram suggests the selection of two stable poles whose corresponding natural frequencies,

damping ratios, and quality factors are collected in Table 2.3.

Natural Frequency (Hz) Damping Ratio (%) Quality Factor (-)
OMA VA-OMA OMA VA-OMA OMA VA-OMA

Mode 1 1405.32 1403.58 0.1557 0.1442 321.1 346.64
Mode 2 1728.53 1728.92 0.0671 0.0561 744.9 891.5

Table 2.3: Out-of-plane flexural modes identification: comparison between modal parameters
from OMA and VA-OMA.
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Figure 2.11: Out-of-plane flexural modes identification: stabilization diagrams along with
the magnitude of the PCPs sum function, blue line, referred to the structural reference (a)
and the acoustical one (b). The stable poles are indicated with ‘s’ and the model order is
indicated on the left ordinate axis.

Achieved poles and operational reference factors, one proceed to the MPE deploying

the LSFD estimator in order to compute the unscaled mode shapes. In Figure 2.12, it is

shown the mode shapes associated to the selected poles suggesting a comparison between

that coming from OMA, (a, b) panels, and the ones from VA-OMA, (c, d) panels.

(a) OMA (b) OMA (c) VA-OMA (d) VA-OMA

Figure 2.12: Out-of-plane flexural modes identification: comparison of the mode shapes from
OMA (a, b) and VA-OMA (c, d).

As previously mentioned, the OMA identification produces distorted mode shapes because
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of the incorrect phase information introduced by the structural reference. For this reason,

the acoustic pressure output represents a robust reference returning an accurate estimate

of the mode shapes in correspondence of the fourteen structural measurement locations.

Regarding the out-of-plane symmetric flexural mode shape coming from VA-OMA, an

amplified deformation of points located on the right prong is observed. This discrepancy

could be attributed to mass balance of the two weldings, that can be observed in the right

panel of Table 2.1, which introduces a differential base compliance: this effect becomes

prominent when prongs deflect in-phase. The corresponding autoMAC values are reported in

Figure 2.13 for the VA-OMA set of modes showing their orthogonality.

Finally, correlation coefficient and normalized error between the synthesized PCPs and

the measured ones are depicted in Figure 2.13, referring only to the VA-OMA case.
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Figure 2.13: Out-of-plane flexural modes identification: (a) autoMAC from the estimated
modal vectors’ set and (b) correlation coefficients Eq. (1.59) and normalized errors Eq. (1.60)
related to the 14 PCPs used for the identification with the VA-OMA approach.

The high correlation coefficients for all the PCPs, shown in Figure 2.13, prove the goodness

of the MPE process results. Error values remain lower than or equal to approximately 15%,

and the correlation coefficients are higher than 85%.
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In a nutshell

1. Vibro-acoustical Operational Modal Analysis (VA-OMA) approach: a methodology to perform
dynamical identification on micro-devices.

2. Cross-power spectra modal decomposition formulation for vibro-acoustical systems: the possibility
to adopt acoustical references in the OMA context.

3. Vibro-acoustic setup for the experimental evaluation of a quartz tuning fork (QTF) dynam-
ics: acoustical excitation and output-only measurement throughout a single-point LDV and a
microphone to access both the acoustical and structural responses.

4. Modal parameter estimation based on both the acoustical and structural response measurements:
identification of in-plane and out-of-plane QTF flexural modes.
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3.1 Introduction

The NExT assumption is often valid in case of civil engineering structures like buildings,

bridges, and towers because they are mainly excited by seismic micro-tremors, wind or traffic,

which are faithful to the statistical description of stationary Gaussian uncorrelated white

noises. By dealing with mechanical engineering structures, the operational environment

could offer ambient forces which infringe classical OMA hypothesis due to the presence

of harmonic components (from moving/rotating parts of the machine like gears, shafts,

couplings, reciprocating piston in pumps and engines, etc.), non-white excitation [97] (e.g.

forces induced on vehicles by road surface roughness [6, 11, 12, 13, 55], wind speed fluctuation,

i.e. turbulence, in wind turbines [30]), the existence of temporal and/or spatial correlation

between loads (as the wheelbase filtering effect in vehicle dynamics [48, 56, 145]), and time

periodic effects in rotating systems [4].

These aspects can give rise to OMA methods’ failures: for instance, harmonic components

may be identified as spurious resonance modes (also called operational modes) or they

can affect the estimation of modal parameters, especially resulting in poor damping ratio

estimations. Many approaches have been proposed over the years to address this lack of

description in OMA [161]: (i) statistics-driven identification of harmonics where statistical

measurement known as probability density function and kurtosis are used to determine

whether a peak in a spectrum is an operational or natural mode [21]; (ii) removal of harmonic

components from the signal in pre-processing stage [69, 127, 128]; (iii) explicit incorporation of

the harmonic component in existing OMA methods for the identification of modal parameters,

assuming a prior knowledge of the harmonic frequencies [105, 106]; (iv) input spectrum

independent techniques, such as the transmissibility-based OMA (TOMA) and polyreference

TOMA (p-TOMA) [51, 155], which handle the problem when ambient excitation is not white.

In addition, a hybrid approach using elements of both EMA and OMA was proposed by [71]
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called OMAX (i.e. Operational Modal Analysis in presence of eXogenous inputs): it is based

on a system model that takes both the measured and the ambient excitation into account

directly to the measured signals [130, 132].

In the recent years, the development of methods aiming at overcoming the NExT as-

sumption limitations has become a challenging topic [7, 8, 147]. Looking for a method

suitable mechanical application such as vehicle systems running on a straight road with a

constant speed and rotating wind turbines [149], authors started to modify the classical OMA

methods to achieve specialized techniques or they introduced specific transformations as a

data pre-processing aimed at extending operational modal analysis to linear, periodically

time-varying systems.

Time periodic effects in wind turbines might arise due to interaction between the flow

around the blade and tower or variation in the wind speed with altitude. Forward Coleman

transformation (also called multi-blade coordinate transformation, MBC) or harmonic transfer

function concept [144] is, for instance, applied to the data measured on the wind turbine

blades, then combined with tower responses, in order to apply Operational Modal Analysis

to the transformed data. Furthermore, an analytical expression for the output spectrum in

terms of the modal parameters was developed and used to interpret the spectra [4]. Further

to time periodic effects, the second violated assumption, dealing with wind turbine systems,

concerns the nature of excitation spectrum of aerodynamic forces which is characterized

by peaks at the frequency of rotor rotation and its harmonics. Besides this, the forces

acting at different points of the blades are highly correlated at fundamental frequency and

its harmonics [57, 166]. MBC transformation removes periodicity from the system matrix

but does not help in removing periodicity from the excitation forces. Application of tone

removing methods cannot be considered as a proper solution, and operational modal analysis

based on transmissibility functions appears a very attractive approach due to its insensitivity

to colored excitation spectra.
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Analogously, the idea to perform OMA on vehicles during road tests is prevented by

some other infringements of the NExT assumption. In fact, a certain correlation among the

road forces acting on the wheels arises: different kinds of correlation exist which describe

relation between loads on the front and the rear axle, or inputs on wheels belonging to the

left and the right side [48]. This aspect, combined with typical high damped rigid body

modes, make challenging the application of standard OMA algorithms. In [133], the smooth

orthogonal decomposition, SOD, method is extended to the MPE of lightly damped systems,

in which the inputs are time shifted functions (i.e. temporal correlated) of white noise signals.

This approach has been proposed to identify the modal parameters of a vehicle during road

testing, but, although the assumption of time correlated inputs is well addressed, relatively

inaccurate results have been obtained owing to the drawbacks of time-domain techniques

when treating highly damped systems. On the other hand, in [57] vertical accelerations of

unsprung masses are used as inputs for subspace identification, giving comparably accurate

results with the subspace identification method using tyre forces as inputs. Recently, a

specialised modal model, referred to as the Track-Vehicle Interaction Modal Model (TVIMM),

able to incorporate the character of road/rail inputs acting on vehicles during operation, is

developed together with a method for determining the modal parameters of road and rail

vehicles [46, 47].

The idea, behind the hereby called generalized OMA (G-OMA), consists in overcoming a

number of NExT assumption infringements by including a priori known input correlation

features in the OMA modal structures. In this sense, an analytical description of these effects

(such as coloration, time correlation, spatial coherence, etc.) is needed and explicated in the

models employed by the identification techniques. This way, it is possible to perform “ad

hoc” procedures, even in case of completely violation of the classical assumption and still not

measuring forces.

The rest of the chapter is organized as follows. In Section 3.2.1, the theoretical background
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of G-OMA is presented regarding the modal model of the cross-correlation function. In

Section 3.2.2, the discussion focuses on the modal decomposition of the output PSD matrix.

In Section 3.3.1, the extended matrix fraction description, employed in a modified pLSCF

solution, is established. Section 3.3 supplies the MPE strategy in the two identification

steps. In Section 3.4 numerical and experimental case studies are exploited evaluating the

performance of the G-OMA procedure with respect to the classical OMA approach.

3.2 Development of a no-NExT technique

3.2.1 Generalized output cross-correlation modal model

By resuming the discussion in Section 1.2 to the point in Eq. (1.16), one can consider the

input correlation matrix entries generally expressed as

Rf (θ2 − θ1) =


Rf

11 (θ2 − θ1) · · · Rf
1L (θ2 − θ1)

...
. . .

...

Rf
1L (−θ2 + θ1) · · · Rf

LL (θ2 − θ1)

 , (3.1)

leaving the possibility to include external loads departing from white noise definition and that

could be affected by any kind of correlation. In this way, the matrix in Eq. (1.18) becomes a

special case of Eq. (3.1). The double integral in Eq. (1.16) is, therefore, expressed as

Jglnm (T ) =

∫ t+T

−∞

∫ t

−∞
dθ1dθ2eλn(t+T−θ1)eλm(t−θ2)Rf

gl (θ2 − θ1), (3.2)

whose upper limits can be changed using proper Heaviside step functions as follows

Jglnm(T ) =

∫ +∞

−∞

∫ +∞

−∞
dθ1dθ2eλn(t+T−θ1)eλm(t−θ2)h (t+ T − θ1)h (t− θ2)Rf

gl (θ2 − θ1). (3.3)
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By supposing the change of variable z = θ2 − θ1, it is derived

Jglnm (T ) =

∫ +∞

−∞
dθ1

∫ +∞

−∞
dzeλn(t+T−θ1)eλm(t−θ1−z)h (t+ T − θ1)h (t− θ1 − z)Rf

gl (z), (3.4)

and, by looking at the integral with respect to z, one can write

∫ +∞

−∞
dzηκ (t− θ1 − z)Rf

gl (z) =
(
ηκ ∗Rf

gl

)
, (3.5)

where η = eλn(t+T−θ1)h (t+ T − θ1) is a scalar with respect to z variable, and the convolution,

indicated by ∗, of κ (z) = eλmzh (z) and Rf
gl(z) arises. So, the integration property of the

convolution product is used in order to express Eq. (3.4) as

Jglnm(T ) =

∫ +∞

−∞
dθ1 (ηκ ∗Rgl) =

(∫ +∞

−∞
dθ1ηκ ∗Rgl

)
(T ), (3.6)

where the term ηκ, in the convolution product of Eq. (3.5), can be rearranged exploiting step

functions properties as

ηκ =eλn(t+T−θ1)eλm(t−θ1)h (t+ T − θ1)h (t− θ1) =

=eλn(t+T−θ1)eλm(t−θ1)h (t− θ1)h (T ) + eλn(t+T−θ1)eλm(t−θ1)h (t+ T − θ1)h (−T ) , (3.7)

and, by integrating with respect to θ1 variable, it is accessed

∫ +∞

−∞
dθ1ηκ =eλnTh (T ) e(λm+λn)t

∫ t

−∞
dθ1e−(λm+λn)θ1+

+eλnTh (−T ) e(λm+λn)t

∫ t+T

−∞
dθ1e−(λm+λn)θ1 =

=eλnTh (T ) e(λm+λn)t

[
e−(λm+λn)θ1

−λm − λn

]t
−∞

+ eλnTh (−T ) e(λm+λn)t

[
e−(λm+λn)θ1

−λm − λn

]t+T
−∞

.

(3.8)
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Since you deal with a stable system, i.e. Re(λn,m) < 0, the integral function evaluated at

t = −∞ tends to zero, and using some simple mathematics Eq. (3.8) becomes

∫ +∞

−∞
dθ1ηκ =

eλnT

− (λm + λn)
h (T ) +

e−λmT

− (λm + λn)
h (−T ) , (3.9)

which only depends on the separation time T and leads to the following solution of Jglnm(T )

integral from Eq. (3.6)

Jglnm (T ) =

(
gn ∗Rf

gl

)
(T )

−λm − λn
+

(
gm ∗Rf

lg

)
(−T )

−λm − λn
, (3.10)

where gn = eλnTh (T ) and the relation between cross-correlation functions, Rf
gl(T ) = Rf

lg(−T ),

has been used in order to write the second term depending upon −T .

For the multi-input, multi-output, and multi-mode case the cross-correlation between two

outputs qi(t) and qj(t) is reached by summing the different contributions

Rq
ij (T ) =

L∑
g=1

L∑
l=1

Rq̃
ig,jl (T ) =

2N∑
n=1

2N∑
m=1

ψinψjm
manmam

L∑
g=1

L∑
l=1

Jglnm (T ) =

=
2N∑
n=1

2N∑
m=1

ψinψjm
manmam

L∑
g=1

L∑
l=1

(
gm ∗Rf

gl

)
(T )

−λn − λm
+

2N∑
n=1

2N∑
m=1

ψinψjm
manmam

L∑
g=1

L∑
l=1

(
gn ∗Rf

lg

)
(−T )

−λn − λm
,

(3.11)

that can be rearranged as

Rq
ij (T ) =

2N∑
n=1

ψineλnTh(T ) ∗

(
L∑
g=1

L∑
l=1

Rf
gl (T )

ψgn
man

2N∑
m=1

ψlm
mam(−λn − λm)

ψjm

)
+

+
2N∑
m=1

(
L∑
g=1

L∑
l=1

Rf
lg (−T )

ψlm
mam

2N∑
n=1

ψgn
man(−λn − λm)

ψin

)
∗ e−λmTh(−T )ψjm. (3.12)
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Finally, the whole output correlation matrix Rq(T ) ∈ RN×N is written as

Rq (T ) =
2N∑
n=1

ψneλnTh (T ) ∗

(
L∑
g=1

L∑
l=1

Rf
gl (T ) ggln

T

)
+

+
2N∑
n=1

(
L∑
g=1

L∑
l=1

Rf
lg (−T ) glgn

)
∗ e−λnTh (−T )ψT

n , (3.13)

where

ggln =
ψgn
man

2N∑
m=1

ψlm
mam (−λn − λm)

ψm, (3.14)

is the extended operational reference vector referred to the generic input correlation matrix

entry Rf
gl(T ). One can also embed vectors in Eq. (3.14) defining the time-lag dependent

operational vectors (τ -ORV), which can be considered a generalized version of the classical

ORV, here written as

ρn (T ) =
L∑
g=1

L∑
l=1

Rf
gl (T ) ggln . (3.15)

So, the output correlation matrix in Eq. (3.13) is generally indicated as

Rq (T ) =
2N∑
n=1

ψneλnTh (T ) ∗ ρn (T )T + ρn (−T ) ∗ e−λnTh (−T )ψT
n , (3.16)

and it is called generalized modal model because of the general definition of the input

correlation matrix in Eq. (3.1) which allows the modal model to take into account effects such

as coloured noises and temporal or spatial correlation between forces. This becomes possible

because of the particularized concept of time-lag dependent operational vectors, Eq. (3.15),

which collects information about Rf (T ) matrix together with some modal characteristic of

the system.

As previously mentioned, the NExT techniques consider the special case of matrix in

Eq. (3.1) shown in Eq. (1.18). Substituting this expression in Eq. (3.15) and Eq. (3.16), you
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can write

Rq (T ) =
2N∑
n=1

ψnρ
T
neλnTh (T ) + ρnψ

T
ne−λnTh (−T ), (3.17)

where the Dirac-delta function is the identity for convolution and time-lag dependent opera-

tional reference vector collapses in its classical time-independent expression

ρn =
L∑
l=1

αlg
ll
n, (3.18)

which contains unknown input information, αi, combined with system scaling factors leaving

mode shapes unscaled. Eq. (3.17) is the classical modal model of the output correlation

matrix [142] which is a special case of Eq. (3.16). This last is called generalized modal

model exploiting the concept of τ -ORV where input correlation matrix entries have a general

expression. Forces remain unmeasured but one has the possibility to take into account an

a-priori known model of the correlation between external loads.

3.2.2 Generalized output PSD modal model

Analogously to the case of cross-correlation functions and without making any assumption

on the particular structure of Sf (iω), the output PSD matrix of Eq. (1.26) can be written in

partial fraction by means of the following decomposition [119]

Sq (iω) =
2N∑
n=1

R+
n (iω)

iω − λn
+

R−n (iω)

−iω − λn
, (3.19)

where the residue referred to the n-th pole is expressed by

R+
n (iω) = ψnρn(iω)T, (3.20)
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in which the vector ρn(iω)T, as well as the Fourier transform of the τ -ORF, is defined as

ρn(iω)T = LT
nSf (iω)

(
2N∑
s=1

Lsψ
T
s

−λn − λs

)
=

=
2N∑
s=1

LT
nSf (iω)

Lsψ
T
s

−λn − λs
=

2N∑
s=1

L∑
g=1

Lg,n
L∑
l=1

Sfgl (iω)Ll,s

−λn − λs
ψT
s =

L∑
g=1

L∑
l=1

Sfgl (iω) ggln
T
,

(3.21)

where the extended operational reference vector ggln , related to the input correlation matrix

entry Sfgl(iω), occurs again as

ggln = Lg,n

2N∑
s=1

Ll,s
−λn − λs

ψs, (3.22)

that is the same vector defined in Eq. (3.14) where the modal participation vector components

are expounded. Analogously, you notice that

R−n (iω) =

(
2N∑
s=1

ψsL
T
s

−λn − λs

)
Sf (iω)Lnψ

T
n =

=


2N∑
s=1

ψs

L∑
g=1

Lg,s
L∑
l=1

Sfgl (iω)Ll,n

−λn − λs

ψT
n =

=

(
L∑
g=1

L∑
l=1

Sflg (−iω)Ll,n

2N∑
s=1

Lg,s
−λn − λs

ψs

)
ψT
n =

=

(
L∑
l=1

L∑
g=1

Sflg (−iω) glgn

)
ψT
n = ρn (−iω)ψT

n , (3.23)

and thus Eq. (3.19) can be written as

Sq (iω) =
2N∑
n=1

ψnρn(iω)T

iω − λn
+
ρn (−iω)ψT

n

−iω − λn
, (3.24)
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which is related to the modal model in Eq. (3.16) by the Fourier transform integral. In the

following, ggln is referred to as the extended operational reference vectors (eORV) related to

the r-th pole and the gl-th entry of matrix Sf (iω), while ρn(iω) is called frequency dependent

ORV (ω-ORV). Similar to the classical operational reference factors, these quantities do not

represent a scale factor for the modal shape. The modal decomposition in Eq. (3.24) can be

called the generalized PSD modal model. Differently from the classical PSD modal model,

the dependency on the input PSD functions is clarified and no assumptions about the inputs

are used to achieve the formulation.

As shown before for the output correlation matrix Rq(T ), the classical PSD modal model

is derived imposing input matrix correlation Sf (iω) to be

Sf (iω) =


S1 · · · 0

...
. . .

...

0 · · · SL

 , (3.25)

where Sl is a real-valued constant. Substituting this expression in Eq. (3.24), one collapses

to the definition of the well-known operational reference factors

ρn =
L∑
l=1

Slg
ll
n, (3.26)

and so the modal decomposition is derived

Sq (iω) =
2N∑
n=1

ψnρ
T
n

iω − λn
+

ρnψ
T
n

−iω − λn
, (3.27)

as a special case of the generalized PSD modal model where the ORF are a combination of

input and modal parameters.
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3.3 Modal parameter estimation: a two step approach

3.3.1 Extended Left Matrix Fraction Description

In the previous section, the modal decomposition of the output PSD matrix is derived

referring to a linear, time-invariant, damped, vibrating system having N dofs and subjected

to L external forces. If you generalize to the the multi-input, multi-output, and multi-mode

case, Eq. (3.24) can be written into matrix notation as

Sq (iω) = Ψ(iωI−Λ)−1P(iω)T + P(−iω)(−iωI−Λ)−1ΨT, (3.28)

where Sq(ω) ∈ Co×r relates o outputs and r references, Λ ∈ C2Np×2Np is a diagonal matrix,

containing the 2Np complex conjugate system poles λn in the frequency band of interest,

while Ψ ∈ Co×2Np collects the mode shape vectors and P(iω) ∈ Cr×2Np gathers together the

ω-ORV being

P(iω) =
L∑
g=1

L∑
l=1

Sfgl (iω) Ggl, (3.29)

with the 2Np eORV collected in Ggl ∈ Cr×2Np . The output PSD matrix is considered as

Sq(iω) = S̃q(iω) + S̃q(iω)H, where S̃q(iω) indicates the part of the PSDs related to stable

poles

S̃q (iω) = Ψ(iωI−Λ)−1

L∑
g=1

L∑
l=1

Sfgl (iω) Ggl
T. (3.30)

In order to introduce a matrix fraction description of Sq(ω), the well-known input-output

relationship is considered in the Fourier domain ω

Q(ω) = B(ω)−1F(ω) = H(ω)F(ω), (3.31)

in which B(ω) and H(ω) ∈ Co×L are respectively the dynamic stiffness and the FRF matrices
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relating the displacement Q (ω) ∈ Co×1 and force F(ω) ∈ CL×1 vectors. Hence, the generic

i-component of the displacement vector is

Qi(ω) =
L∑
g=1

Hig(ω)Fg(ω) =
L∑
g=1

B̄ig(ω)

det B(ω)
Fg(ω) =

L∑
g=1

Nig(ω)Fg(ω)

D(ω)
, (3.32)

where B̄(ω) = adj(B(ω)) indicates the classical adjoint of the dynamic stiffness matrix whose

il-entry is generally expressed as a polynomial Nil(ω), det B(ω) is the determinant operator

which defines the characteristic polynomial D(ω) of the system. Eq.(3.32) represents the so-

called common denominator model which uses rational functions to relate an N -dimensional

displacement vector to an L-dimensional force vector. As an alternative general representation

of Eq.(3.32), in [109] the authors propose the autoregressive with exogenous excitation, ARX,

model represented by

A(d)q(t) = B(d)f(t), (3.33)

where the presence of unmeasured disturbances is neglected, and where the autoregressive

AR, A(d), and exogenous X, B(d), matrices are respectively

A(d) = Io + A1d+ · · ·+ Anad
na ∈ Ro×o, (3.34)

B(d) = B0 + B1d+ · · ·+ Bnbd
nb ∈ Ro×L, (3.35)

with d indicating the backshift operator, Io indicates the identity matrix of order o, na and

nb are the orders of polynomial elements of AR, and X matrices. A diagonal structure,

A(d) = diag(A11(d) · · ·Aii(d) · · ·Aoo(d)), is imposed on the AR matrix [109, 113]. The

equivalent matrix polynomial model in the frequency domain is derived by taking the

z-transform of Eq. (3.33) as

A(k)Q(ωk) = B(k)F(ωk), (3.36)
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where A(k) =
na∑
r=0

z−rk ar, B(k) =
nb∑
r=0

z−rk br, with ar ∈ Ro×o and br ∈ Ro×L real-valued

coefficient matrices, and the z-domain orthogonal polynomials zk defined as zk = ei2πk/Ns ,

Ns is the number of samples. The i-th multiple-input single-output (MISO) ARX model

extracted from Eq. (3.36) is

Aii(k)Qi(ωk) =
L∑
g=1

Big(k)Fg(ωk), (3.37)

and by defining the PSD function between two generic outputs according to Sqij(ωk) =

E
[
Qi(ωk)Q

∗
j(ωk)

]
[10], its relevant ARX model is achieved using Eq. (3.37)

Aii(k)A∗jj(k)E
[
Qi(ωk)Q

∗
j(ωk)

]
=

L∑
g=1

L∑
l=1

Big(k)B∗jl(k)E [Fg(ωk)F
∗
l (ωk)], (3.38)

where polynomial functions can be carried out of the expected value operator, due to their

deterministic nature. In Eq. (3.38) the PSD definition is exploited and the polynomial

product is performed in order to write

Dij(k)Sqij(ωk) =
L∑
g=1

L∑
l=1

N gl
ij (k)Sfgl(ωk) = N

(e)
ij (k), (3.39)

where [136]

Dij(k) = Aii(k)A∗jj(k) =
2na∑
r=0

z−rk

(
r∑

m=0

(−1)maii,majj,r−m

)
=

p∑
r=0

z−rk αij,r (3.40)

N gl
ij (k) = Big(k)B∗jl(k) =

2nb∑
r=0

z−rk

(
r∑

m=0

(−1)mbij,mbjl,r−m

)
=

p∑
r=0

z−rk βglij,r, (3.41)

with p = 2na = 2nb as polynomial order, that results in an extended left matrix fraction
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description (eLMFD) when referred to the whole output PSD matrix Sq(k)

Sq(ωk) = D(k)−1N(e)(k), (3.42)

with N(e)(k) =
L∑
g=1

L∑
l=1

Sfgl(ωk)N
gl(k) ∈ Co×r here called extended fitting polynomial numerator

matrix and D(k) ∈ Co×o the denominator matrix, whose coefficient matrices αp and βglp

represent the parameters to be estimated. Specifically, N(e)(k) definition incorporates several

a-priori known features resulting from loads which explicitly violate the NExT assumption,

such as coloured noises, time and spatial correlation among multiple inputs, presence of

deterministic loads such as harmonics. One can easily demonstrate how the description in

Eq. (3.42) collapses in the classical LMFD description [131] by imposing the associated to

the NExT hypothesis. In this latter case, the numerator matrix can be written as

N(e)(k) =
L∑
g=1

Sfgg

p∑
r=0

z−rk β
gg
r =

p∑
r=0

z−rk

L∑
g=0

Sfggβ
gg
r =

p∑
r=0

z−rk β̄r, (3.43)

which corresponds to the single polynomial matrix of Eq. (1.35).

3.3.2 Polyreference Least Squares Complex Frequency

The polynomial coefficient estimation problem of Eq. (3.42) can be solved, in a Least-

Square sense, with the poly-reference version of the LSCF estimator that differs from the

classical one [73] because of the particular matrix description which includes the definition of

an extended fitting polynomial numerator matrix N(e)(ωk). The left MFD is chosen because

it considers all r references simultaneously [32], hence, it allows to estimate both system

poles and mode shape vectors directly by solving the eigenproblem of the companion matrix

associated to the denominator polynomial (as it will be shown in the following). The nonlinear

least-squares problem, emerging from Eq. (3.42), can be approximated by a sub-optimal
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linear one based on the equation error

η(β(e),α, ωk) = N(e)(β(e), k)−D(α, k)Sq(ωk) =

=
L∑
g=1

L∑
l=1

(
p∑
r=0

z−rk β
gl
r

)
Sfgl(ωk)−

(
p∑
r=0

z−rk αr

)
Sq(ωk), (3.44)

with the unknowns β(e) =

(
β11

0 · · · β11
p β12

0 · · · β12
p · · · βLL0 · · · βLLp

)T

∈ R(p+1)L2r×o

and α =

(
α0 . . . αp

)T

∈ R(p+1)o×o, where some input features, regarding the input PSD

matrix Sf(ω), are included as a priori known in the error matrix definition. The error

η(β(e),α, ωk), defined in Eq. (3.44), is extended for all the Nf frequency lines, reformulating

in matrix notation as

η
(
β(e),α

)
=


η
(
ω1,β

(e),α
)

...

η
(
ωNf

,β(e),α
)
 =

[
X(e) υ

]β(e)

α

 , (3.45)

where the two matrices, X(e) and υ, are given by

X(e) =



([
z0

1 · · · z−p1

]
⊗ Ir

)
⊗
[
Sf11 (ω1) · · · SfLL (ω1)

]
...([

z0
Nf
· · · z−pNf

]
⊗ Ir

)
⊗
[
Sf11

(
ωNf

)
· · · SfLL

(
ωNf

)]
 ∈ CNf r×(p+1)L2r, (3.46)

υ =


−
[
z0

1 · · · z−p1

]
⊗ SqT (ω1)

...

−
[
z0
Nf
· · · z−pNf

]
⊗ SqT

(
ωNf

)

 ∈ CNf r×(p+1)o, (3.47)
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with ⊗ denoting the Kronecker product. The following cost function can be formulated based

on the linearised error matrix in Eq. (3.45) as

l
(
β(e),α

)
= tr

[
ηH
(
β(e),α

)
η
(
β(e),α

)]
= tr


β(e)

α


T

Re
(
JHJ

)β(e)

α


 , (3.48)

whose minimization with respect to the unknown matrix coefficients, β(e) and α, consists of

the solution of the following so-called normal equations [122]

Re
[
JHJ

] β(e)

α

 =

 Rβ(e) + Υα = 0

ΥTβ(e) + Tα = 0
, (3.49)

with J the Jacobian matrix, R,Υ and T defined as

R = Re
[(

X(e)
)H

X(e)
]
∈ R(p+1)L2r×(p+1)L2r, (3.50)

Υ = Re
[(

X(e)
)H
υ
]
∈ R(p+1)L2r×(p+1)o, (3.51)

T = Re
[
υHυ

]
∈ R(p+1)o×(p+1)o. (3.52)

The computational effort of the solution of equation Eq. (3.49) is further reduced considering

the reduced normal equations, obtained by replacing β(e) with −R−1Υα in the second

equation as (
−ΥTR−1Υ + T

)
α = Mα = 0, (3.53)

where the size of M is (p+ 1)o resulting much smaller than the size of Re
[
JHJ

]
. The typical

constraint, αp = Io [34], is imposed in order to remove parameter redundancy of the extended

LMFD [126], and also to avoid trivial solution α = 0.

From the knowledge of the denominator matrix coefficients one can compute the poles

and corresponding mode shape vectors by performing the eigenvalue decomposition of the
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so-called companion matrix which finds its definition in the following section about state

space realization of the system described by the transfer function matrix Sq(ω).

3.3.3 Conversion into a state-space description

In order to perform modal parameter estimation, you need to develop a state-space

realization [54] of the transfer matrix Sq(ω), modeled by the eLMFD in Eq. (3.42) whose

coefficients can be calculated with the pLSCF algorithm previously described. In fact, by

recalling the matrix polynomial description of the output PSD matrix as

Sq (ω) =

(
p∑
r=0

z−rk αr

)−1( L∑
g=1

L∑
l=1

Sfgl (ω)

p∑
r=0

z−rk β
gl
r

)
, (3.54)

the state-space equation system, represented by the transfer matrix Sq(ω) which relates the

system output y(t) ∈ Ro×1 with the input u(t) ∈ Rr×1, is needed. Firstly, the state variable

vector x(t) ∈ Rpo×1 is defined

x(t) =


q(t)

...

q(p−1)(t)

, (3.55)

where q(i)(t) ∈ Ro×1 is the i-th time derivative of the displacement vector q(t). At this stage,

the Observable Canonical Realization (OCR) of Sq(ω), described by to the generic p-th order

polynomial MFD of Eq. (3.54), is performed into the following state equations



ẋ(t) =



0 0 · · · 0 −α0

I 0 · · · 0 −α1

...
...

...
...

0 0 · · · I −αp−1


x(t) +

L∑
g=1

L∑
l=1

Rf
gl (t) ∗


βgl0 −α0β

gl
p

...

βglp−1 −αp−1β
gl
p

u(t)

y(t) =

[
0 · · · Io

]
x(t) +

L∑
g=1

L∑
l=1

Rf
gl (t) ∗ β

gl
p u (t)

,

(3.56)
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that could be compactly written in the frequency domain as


zkX(k) = ĀX(k) +

L∑
g=1

L∑
l=1

Sfgl (ωk) B̄glU(k)

Y(k) = C̄X(k) +
L∑
g=1

L∑
l=1

Sfgl (ωk) D̄glU (k)

, (3.57)

where the four discrete-time system matrices Ā ∈ Rpo×po, B̄gl ∈ Rpo×r, C̄ ∈ Ro×po, and

D̄gl ∈ Ro×r need to be converted into the continuous-time domain, in order to define the

relevant transfer function G(ω) ∈ Co×r as

Ḡ(ω) = C̄(iωI− Ā)−1

L∑
g=1

L∑
l=1

Sfgl (ω) B̄gl +
L∑
g=1

L∑
l=1

Sfgl (ω) D̄gl. (3.58)

By performing the eigenvalue decomposition of the companion matrix Ā, also called similarity

transform [131], as a way to find the roots of the denominator polynomial D(α, k) of

Eq. (3.42),

Ā = VµV−1, (3.59)

you achieve the diagonal matrix µ ∈ Cpo×po collecting the eigenvalues in the discrete-time

domain, convertible into the system poles by λi = ln (µi)/∆t (∆t indicates the sampling time).

While the eigenvalues of Ā are the system poles, the eigenvectors associated to the poles

correspond to the mode shape of the system [32, 96, 151]. In fact, the matrix V ∈ Cpo×po

results structured as

V =



µp−1
1 ψ1 · · · µp−1

po ψpo

... · · · ...

µ1ψ1 · · · µpoψpo

ψ1 · · · ψpo


, (3.60)

from which the system mode shapes are extracted by Ψ = C̄V. So, the transfer function

matrix in Eq. (3.58) takes into account the solely part of Sq(ω) associated to stable poles
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and expressed in Eq. (3.30) because of the particular choice of the polynomial basis function

zk = ei2πk/Ns . In the state space time domain of Eq. (3.56), the replacement of zk with z−1
k

translates into the time axis reversing where the unstable poles, include in Sq(ω)H, act.

Once the denominator coefficients are calculated, the numerator coefficients β(e) can be

obtained by the first equation in Eq. (3.49), and they can be theoretically employed for the

identification of the extended operational reference vectors Ggl = V−1B̄gl. In practice, a

two-step approach is performed because the MFD doesn’t force rank-one residue matrices;

the poles and mode shapes, selected by means of a stabilisation diagram, are passed to the

LSFD estimator, described in the next section, in order to obtain the eORV by a second least

squares problem.

3.3.4 Least Squares Frequency Domain

Once one determines poles and mode shapes, the remaining unknowns can be estimated

with a Least-Squares Frequency-Domain estimator (LSFD) minimizing the scatter between

the estimated PSD matrix S̃q (iω) and the modeled one:

Γ(Ggl,Θf ) =

Nf∑
k=1

(
S̃q (iωk)−

(
A+(iωk)P(iωk)

T + P(−iωk)A
−(iωk) +

LR

(iωk)4
+ UR

))2

,

(3.61)

where Nf is the number of spectral lines, and we indicate with A+(iωk) = Ψ(iωkI − Λ)−1

and A−(iωk) = (−iωkI−Λ)−1ΨT the matrices collecting estimated poles and mode shapes.

Furthermore, P(iωk) contains the L2 unknown Ggl ∈ Cr×2Np matrices together with unknown

parameters, generally indicated by Θlg
f , related to the input PSD matrix. Regarding this

aspect, the proposed method needs a minimum knowledge about external forces but still

without measuring them. Specifically, it incorporates several a-priori known features resulting

from loads which explicitly violate the NExT assumption, Eq. (3.25), such as coloured

noises, time and spatial correlation among multiple inputs, presence of deterministic loads
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(e.g. harmonics). The input PSD matrix model could contain these known characteristic,

embedded in P(iωk) definition, together with unknown parameters, generally indicated by Θlg
f .

LR and UR ∈ Ro×r are the unknown lower and upper residuals for the case of displacement

full-spectra [122]. The error in Eq. (3.61) is generally non-linear in the parameters Glg and

Θlg
f but in some cases it can be linearized as it will be shown in the following application.

3.4 Application and results

In order to validate the two steps MPE procedure previously described, different situations

are exploited each characterized by a particular the correlation input matrix Sf (iω). Consid-

ering the case of two external loads, f(t) ∈ R2×1, one can generally represent Sf (iω) ∈ C2×2

as

Sf (iω) =

 S1 (ω) Γ (ω)
√
S1 (ω)S2 (ω)eiωτ

Γ (ω)
√
S1 (ω)S2 (ω)e−iωτ S2 (ω)

 , (3.62)

where Si(ω) is the auto-PSD function referred to i-th force, τ indicates the generic time-lag

between two sources, and Γ(ω) stands for the coherence function classically defined as

Γ (ω) =
|S12 (ω)|√
S1 (ω)S2 (ω)

. (3.63)

Two case studies are offered: the former employing the data achieved by numerically simulating

a 4-DOF discrete system model, displayed in Figure 3.1, and the latter processing the time

records collected through real-world experiments of MIMO environmental testing, performed

on a slender beam of known geometry and material properties, shown in Figure 3.16. In

both cases, different infringements of the NExT assumption are investigated by varying the

quantities Si(ω), τ , Γ(ω) of the PSD matrix in Eq. (3.62), and so studying the effect of colored

noise excitation, temporal correlation and coherence between forces on the OMA procedures.

Each of these statistical features is emblematic of the loading environment in which typical
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mechanical structures (such as vehicles and wind turbines) operate, justifying the need to be

gradually tackled by employing an entry-level example, i.e. a discrete system model, and

then by approaching an experimental subject. In each application, the first and second step

of the identification procedure are carried out by classical and generalized operational modal

analysis approach. In Table 3.1, a comparison is set up between the classical OMA procedure

(described in Chapter 1), as a basis for comparison, and the generalized one.

OMA G-OMA

1st Step pLSCF based on RMFD pLSCF based on eLMFD
MFD Sq(ωk) = N(k)D(k)−1 Sq(ωk) = D(k)−1N(e)(k)

Results Λ, G Λ, Ψ

2nd Step
LSFD based on

classical PSD modal model
LSFD based on

generalized PSD modal model

Modal model
Sq (iω) = Ψ(iωI−Λ)−1GT+

+G(−iωI−Λ)−1ΨT

Sq (iω) = Ψ(iωI−Λ)−1P(iω)T+
+P(−iω)(−iωI−Λ)−1ΨT

Results Ψ P(ω)

Table 3.1: Comparison between the two step identification procedures employed in the OMA
and G-OMA approach. In the results line, we indicate the modal parameters coming out
from each step.

As one can notice, main differences, regarding the first step, are related to the matrix

fraction description used to describe Sq(ω), which leads to distinct state-space realization

resulting in distinct modal role of the companion matrix eigenvectors (as appreciable in

the line of 1st step results). The modal vectors, extracted from the pLSCF algorithm, also

depend upon the choice of polynomial basis functions, zk or z−1
k , which in turn captures the

part of Sq(ω) bound up with stable poles, S̃q(ω), or unstable poles, S̃q(ω)H. In our cases,

the option zk is adopted for both OMA and G-OMA approach. For the experimental case

study, positive power spectra are processed, as defined in Eq. (1.58), with the classical OMA

which still employs the RMFD in Table 3.1 at the first identification step but needs a model

model like Sq (iω) = Ψ(iωI − Λ)−1GT for the LSFD estimator. In the results discussion,

natural frequencies and damping ratios are compared to reference values, the mode shapes are

validated by calculating the relevant MAC with respect to a reference modal vector set, and
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synthesized modal models are compared with measured spectra through synthesis correlation

coefficients and normalised errors.

3.4.1 Numerical example: a lumped-parameter system

Figure 3.1 offers the discrete 4-DOF mechanical system used to simulate the data.

The dynamics is reproduced using the Matlab Control System Toolbox to obtain virtual

displacements measurements at each dof. Measurement noise is simulated as Gaussian

incoherent noise added to all the dofs’ displacements, adjusting the variance values to achieve

a 40 dB signal-to-noise-ratio (SNR) for all signals. The system parameters are given as

mi = 2 kg, ki = 104 N m−1 and ci = 10 N s m−1 and the exact modal parameters are collected

in Table 3.2 in terms of natural frequencies and damping ratios. Two random inputs are

hypothesized acting on the 1st mass, f1(t), and on the 2nd mass, f2(t).

x1(t)

f1(t)

x2(t) x3(t)

mi

ki

ci

x4(t)

f2(t)

Figure 3.1: 4-DOF system: the pertinent nomenclature for the i-th lumped system is included.

Natural Frequency (Hz) Damping Ratio (%)

Mode 1 6.9553 2.1851
Mode 2 13.2298 4.1563
Mode 3 18.2093 5.7206
Mode 4 21.4063 6.7250

Table 3.2: 4-DOF system: theoretical natural frequencies and damping ratios.

Four cases are investigated by varying the nature and correlation of these two noises

simulated as a series of cosine functions with weighted amplitudes and random phase angles
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[95, 143, 148]. The first case corresponds to the following input PSD matrix

Sf (ω) =

 S1 0

0
S2

ω2

 , (3.64)

where f1(t) is realization of a white noise process and f2(t) that of a red one, the two inputs

remain uncorrelated as stated by the NExT assumptions. So, in this case the effect of input

coloration is explored and the frequency-dependent operational vector, referred to the n-th

pole, can be written as

ρn (iω) = S1g
11
n +

S2

ω2
g22
n = ḡ11

n +
1

ω2
ḡ22
n , (3.65)

where the distribution of Sf2 (ω) in the frequency domain is assumed a priori known, resulting

in the two unknowns ḡ11
n and ḡ22

n that represent the operational vectors to be estimated by

the modified LSFD. As a second case, two white noises characterized by temporal correlation

are considered. In this case, the input correlation matrix is expressed by

Sf (ω) = S1

 1 e−iωτ

eiωτ 1

 , (3.66)

where τ is the temporal delay between the loads assumed as a known feature of the inputs.

By similarly proceeding for this case, the n-th ω-ORV is expressed in the form

ρn (iω) = S1

(
g11
n + g22

n

)
+ S1e−iωτg12

n + S1eiωτg21
n = ḡ0

n + e−iωτ ḡ12
n + eiωτ ḡ21

n , (3.67)

with the operational vectors ḡ0
n, ḡ12

n , and ḡ21
n representing the unknowns in the extended

LSFD problem. The third case introduces the effect of coherence, represented by the function

Γ(ω) = e−α|ω| and usually employed in the stochastic modelling of parallel road tracks [13],
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between two white noises correlated in accordance with the matrix

Sf (ω) = S1

 1 e−α|ω|

e−α|ω| 1

 , (3.68)

which leads to the operational reference vectors

ρn (iω) = S1

(
g11
n + g21

n

)
+ S1e−α|ω|

(
g12
n + g21

n

)
= ḡ0

n + e−α|ω|ḡ1
n, (3.69)

where the two unknown vectors ḡ0
n and ḡ1

n are accessed by the modified LSFD once assumed

a model of Γ(ω), as for the case of noise coloration in Eq. (3.65). Finally, all the three effects

(coloration, temporal correlation, and coherence) are combined designing the two inputs

according to the PSD matrix

Sf (ω) =
S1

ω2

 1 e−α|ω|e−iωτ

e−α|ω|eiωτ 1

 , (3.70)

thus the n-th frequency-dependent operational reference vector is rephrased as

ρn (iω) =
S1

ω2

(
g11
n + g22

n

)
+
S1

ω2
e−α|ω|e−iωτg12

n +
S1

ω2
eα|ω|e−iωτg21

n =

=
1

ω2
ḡ0
n +

1

ω2
e−α|ω|e−iωτ ḡ12

n +
1

ω2
e−α|ω|eiωτ ḡ21

n , (3.71)

where three unknowns ḡ0
n, ḡ12

n , and ḡ21
n arise. At this stage, it is underlined how classical

operational modal analysis, based on the modal model in Eq. (3.27), approximates the

different operational reference vectors in Eqs. (3.65), (3.67), (3.69), and (3.71) by a single

constant vector ρn; on the other hand, by employing the estimator, described in Section 3.3.4,

you can embed known characteristic of the input PSD matrix, such as the temporal delay

τ and the frequency dependence of coloration and coherence models, in order to estimate

the extended operational reference factors related to the r-th pole and the entries of matrix
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Sf(iω). Figure 3.2 shows the input characteristics, chosen in order to not obey the NExT

assumptions, recurring in the force design of the four investigated cases.

(a) Coloration (b) Temporal correlation (c) Coherence

Figure 3.2: 4-DOF system: characteristic of the simulated forces employed in the four cases.
(a) Magnitude of autoPSD functions referred to the white, blue line, and red, red line, noise,
(b) phase angle of the cross-PSD term in the case of temporal correlation (τ = 1 s), (c)
coherence model Γ(ω), green line, compared to the measured coherence, dotted purple line,
resulting from the input simulation procedure proposed in [95].

Forces, responses, and additive noises are simulated in the time domain, adopting a

sampling frequency, a time period, and a number of repetitions equal to 300 Hz, 10 s, and

M = 25, respectively. Figure 3.3 offers the first output PSD matrix column, which takes the

1st DOF displacement as reference signal, obtained by processing the system responses by

means of the weighted correlogram recalled in Eq. (1.57). Specifically, no exponential window

is applied to all the response signals, while windowing will be employed for the experimental

case studies.

The coloration effect is evident and it distinguishes the energy distribution in frequency

of the first and fourth loading case with respect to other two ones. Time correlation and

coherence of the excitations produce relevant effects in form of distortions of spectra. The

time delay between the loads, acting on the 1st and 2nd mass, introduces the most significant

of these distortions, see the blue and green lines in Figure 3.3. In particular, humps appear

in the magnitude of the cross-PSDs and the phase plots, referred to the cross-PSDs, reveal
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the typical saw-tooth trend caused by time-delayed signals. It should be expected that the

presence in the output spectra of these distortion effects could hamper the correct operation

of curve fitting methodologies based on the classical OMA modal model, that specifically

relies on the NExT hypotheses.

Figure 3.3: 4-DOF system: comparison of the output PSD matrix entries in the four different
loading cases. Each case is defined by the input PSD matrix definition. The pertinent legend
refers to the case description.

In the following sections, the identification procedure is carried out by classical and

generalized operational modal analysis LSFD estimators operating in the frequency band

0− 25 Hz that contains the four modes in Table 3.2.

3.4.1.1 Effect of input coloration

3.4.1.1.1 First identification step: pLSCF

As already mentioned, the G-OMA approach requires a minimum knowledge of the input

PSD matrix Sf(ω). The known characteristics can be embedded into a dedicated eLMFD

model properly designing the extended polynomial numerator matrix N(e)(k) of Eq. (3.42).

In the following loading case, it is suppose to know in advance the frequency dependence of
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the colored noise so as to define

N(e) (k) =

p∑
r=0

S1z
−r
k β

11
r +

p∑
r=0

S2

ω2
k

z−rk β
22
r =

p∑
r=0

z−rk β̄
11
r +

1

ω2
k

p∑
r=0

z−rk β̄
22
r , (3.72)

where β̄
11
r and β̄

22
r are the two numerator coefficient matrix unknowns derived by the

combination of L2 = 4 (L number of physical system input) matrices in the extended

numerator definition. Algebraic manipulation is needed in order to reduce the number of

unknowns, as already done with the ω-ORV of Eq. (3.71) to be included into the modal

model, and it determines the relevant assembling of matrix X(e), defined in Eq. (3.46), in

the least square solution making. From the pLSCF, two stabilisation diagrams in Figure 3.4

are built up, assuming subsequently an increasing value for the polynomial model order

and focusing on the frequency range from 0 to 25 Hz. In particular, the PSD-sum, i.e. the

complex sum of the PSDs of all the DOF displacements, together with the poles estimated

by the pLSCF are represented. The stabilisation diagram gives the indication of four stable

pole for both OMA, left panel, and G-OMA, right panel, processing.

(a) OMA (b) G-OMA

Figure 3.4: Identification of the lumped parameter system: stabilisation diagram along
with the magnitude of the PSDs sum function, blue line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.
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The main difference between the two algorithms is related to the minimum model order

corresponding to the full stabilisation of the four expected poles. In the G-OMA case, it

corresponds to the theoretical one (p = 8), despite the added noise, while the classical pLSCF

reaches an higher order because of the offsetting caused by the presence of a red noise among

inputs.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 6.9546 0.0105 2.1848 0.0141
Mode 2 13.2247 0.0386 4.1090 1.1366
Mode 3 18.2272 0.0986 5.6881 0.5688
Mode 4 21.4141 0.0365 6.8490 1.8439

G-OMA

Mode 1 6.9553 0.0001 2.2062 0.9646
Mode 2 13.2410 0.0845 4.1338 0.5397
Mode 3 18.2114 0.0115 5.6507 1.2228
Mode 4 21.3902 0.0752 6.6298 1.4149

Table 3.3: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vth − vest)/vth, with respect to exact value is reported below each estimate.

Estimated natural frequencies and damping ratios exhibit negligible errors with respect to

the theoretical values for both the approaches, see Table 3.3. In Figure 3.5, the MAC values

show good consistency for the first four modes solely in the G-OMA case, in turn confirming

the suitability of extended LMFD. Concerning the classical OMA results, it is highlighted

how the wrong description of the ORV in the RMFD is reversed into the estimate of mode

shape vectors made by the second step of the classical OMA. By looking at Figure 3.5, the

estimated mode shapes’ consistency gets worse especially for the most damped modes.
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Figure 3.5: MAC between exact and estimated modal vectors’ sets estimated by following (a)
the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.1.1.2 Second identification step: LSFD

At this stage, the PSDs synthesized by the Least-Squares estimator, which minimizes

the scatter in Eq. (3.61), and the classical LSFD, inspired to the model in Eq. (3.27),

are compared. Figure 3.6 displays the four output PSD functions, in terms of magnitude

and phase, comparing the non-parametric PSDs with the fitted ones resulting from OMA

and G-OMA procedure. Legend reports the calculation of the correlation, Eq. (1.59), and

normalized error coefficients, Eq. (1.60), for each curve in order to provide an evaluation of

the consistency between data and fitted models. The visual match, together with a 100%

correlation coefficient for all the PSDs, proves the goodness of the G-OMA process results as

confirmed by error coefficients, which remain almost 0%. Furthermore it is pointed out that

these improved results are mainly related to possibility to incorporate in the LSFD estimator

the particular ORV expression, obtained in Eq. (3.65), where the red noise model can be

taken into account. On the other hand, the classical OMA, relying on the NExT hypothesis

here violated by coloration, is not able to capture the effect due to the presence of red noise

resulting in high errors. These errors don’t appear significant for some entries, such as Sq31(ω)

and Sq41(ω), but the reason is purely justified by the accuracy around resonance peaks which

have a major weight in the coefficients definition.
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Figure 3.6: 4-DOF system: comparison between the measured output PSDs, blue dotted
line, and syntheses by the classical OMA modal model, red solid line, and the G-OMA
modal model, green solid line. The legend indicates, respectively, the correlation coefficients
Eq. (1.59) and normalized errors Eq. (1.60) for both the LSFD approaches.

3.4.1.2 Effect of input temporal correlation

3.4.1.2.1 First identification step: pLSCF

In the case of time correlated white excitations, the knowledge of the temporal delay τ

between the inputs, which is a parameter that is generally easily accessible by looking at

the phase of the cross-correlation between the outputs [110], is included into the dedicated

eLMFD model. By doing so, N(e)(k) is designed as

N(e) (k) =

p∑
r=0

S1z
−r
k

(
β11
r + β22

r

)
+ e−iωkτ

p∑
r=0

z−rk β
12
r + eiωkτ

p∑
r=0

z−rk β
21
r =

=

p∑
r=0

z−rk β̄
0
r + e−iωkτ

p∑
r=0

z−rk β
12
r + eiωkτ

p∑
r=0

z−rk β
21
r , (3.73)

where β̄
0
r, β̄

12
r , and β̄

21
r are the three numerator coefficient matrix unknowns. The classical

pLSCF procedure produces a poor diagram, see Figure 3.7a, because of the time correlation

terms. Pole selection is limited to the first two pole frequency lines which in turn reveal
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a poor stabilisation in damping ratio. On the other hand, the usage of the proposed new

method, based on the representation of the generalized output PSD model, leads to the

computation of a stabilisation diagram where four stable columns are easily distinguishable

even from the lowest model order, Figure 3.7b.

(a) OMA (b) G-OMA

Figure 3.7: Identification of the lumped parameter system: stabilisation diagram along
with the magnitude of the PSDs sum function, blue line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 6.9632 0.1137 0.9400 56.9816
Mode 2 13.0962 1.0100 0.4960 88.0666
Mode 3 - - - -
Mode 4 - - - -

G-OMA

Mode 1 6.9553 0.0000 2.1851 0.0001
Mode 2 13.2298 0.0000 4.1562 0.0012
Mode 3 18.2092 0.0002 5.7208 0.0029
Mode 4 21.4063 0.0001 6.7259 0.0131

Table 3.4: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vth − vest)/vth, with respect to exact value is reported below each estimate.

By employing the pLSCF based eLMFD algorithm, natural frequencies and damping ratios

extracted exhibit negligible errors with respect to the theoretical values, as listed in Table 3.4.
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Secondly, the OMA approach identifies two poles whose damping ratios tremendously differ

from the expected ones.

Figure 3.8, shows the good consistency of the four mode shapes extracted by the G-OMA,

while the classical OMA return the solely first two modes as well as the two ones less damped.
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Figure 3.8: MAC between exact and estimated modal vectors’ sets estimated by following (a)
the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.1.2.2 Second identification step: LSFD

In violating the NExT assumption by temporal correlation between inputs, you still notice

the good correlations of the G-OMA syntheses which turns out to be able to reproduce

the typical humps in the magnitude of the cross-PSDs together with the saw-tooth trend

in phases. This result is mainly due to the relevant definition of the frequency-dependent

operational reference vector in Eq. (3.67) which takes into account the temporal delay τ as

additional information to provide the modified LSFD. In addition, the classical LSFD offers

a good fitting merely in the region around the first two resonance peaks, which are related

to less damped modes with respect to the following two ones not identified by the classical

pLSCF.
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Figure 3.9: 4-DOF system: comparison between the measured output PSDs, blue dotted
line, and syntheses by the classical OMA modal model, red solid line, and the G-OMA
modal model, green solid line. The legend indicates, respectively, the correlation coefficients
Eq. (1.59) and normalized errors Eq. (1.60) for both the LSFD approaches.

3.4.1.3 Effect of input coherence

3.4.1.3.1 First identification step: pLSCF

In the case of coherent white noises, the coherence model is incorporated in designing

N(e)(k) as

N(e) (k) =

p∑
r=0

z−rk β̄
0
r + e−α|ωk|

p∑
r=0

z−rk β̄
1
r, (3.74)

with the unknowns β̄
0
r and β̄

1
r which contribute to the specific eLMFD in producing the

stabilisation diagram reported in Figure 3.10b. As in the loading case of colored noise, the

modified pLSCF shows full stabilisation of the four poles since the minimum polynomial

model order, while the classical OMA reaches an higher order for achieving the all-poles

stabilisation, as depicted in Figure 3.10a.
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(a) OMA (b) G-OMA

Figure 3.10: Identification of the lumped parameter system: stabilisation diagram along
with the magnitude of the PSDs sum function, blue line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

As suggested by Table 3.5, the two identification procedures produce similar results

implying that the chosen coherence model doesn’t significantly affect the modal parameters

estimation except for the damping ratios that generally exhibit higher errors than the ones

extracted by G-OMA approach. In Figure 3.11, the consistency of the estimated mode shapes

is good for both the mode shape sets but more accurate in the case G-OMA for the third

and fourth mode, i.e. the most damped.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 6.9545 0.0121 2.1904 0.2417
Mode 2 13.2272 0.0197 4.0226 3.2167
Mode 3 18.2641 0.3012 4.1063 28.2199
Mode 4 21.5769 0.7972 4.2888 36.2258

G-OMA

Mode 1 6.9572 0.0264 2.2736 4.0511
Mode 2 13.2553 0.1923 4.2419 2.0614
Mode 3 18.2784 0.3798 5.3638 6.2367
Mode 4 21.4801 0.3449 5.8158 13.5189

Table 3.5: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vth − vest)/vth, with respect to exact value is reported below each estimate.
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Figure 3.11: MAC between exact and estimated modal vectors’ sets estimated by following
(a) the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.1.3.2 Second identification step: LSFD

The loading case, defined by the particular coherence model Γ(ω) = e−α|ω|, produces

similar identification results for both the OMA and G-OMA syntheses. We notice how

correlation and error coefficients remain almost the same in the two approaches.

Figure 3.12: 4-DOF system: comparison between the measured output PSDs, blue dotted
line, and syntheses by the classical OMA modal model, red solid line, and the G-OMA
modal model, green solid line. The legend indicates, respectively, the correlation coefficients
Eq. (1.59) and normalized errors Eq. (1.60) for both the LSFD approaches.
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3.4.1.4 Effect of time-correlated, coherent, coloured inputs

3.4.1.4.1 First identification step: pLSCF

By combining coherence, temporal correlation and coloration effect, the fourth loading

case is reproduced. It corresponds to a dedicated eLMFD whose extended numerator is

N(e) (k) =
1

ω2
k

p∑
r=0

z−rk β̄
0
r +

1

ω2
k

e−α|ωk|e−iωkτ

p∑
r=0

z−rk β̄
12
r +

1

ω2
k

e−α|ωk|eiωkτ

p∑
r=0

z−rk β̄
21
r , (3.75)

where the temporal delay τ and the frequency dependence of coloration and coherence models

are embedded into the extended numerator definition. The two stabilisation diagrams in

Figure 3.13 are built up, which in turn reveal the robustness of the modified pLSCF in

distinguish the four expected poles. Secondly, the classical algorithm offers three stable lines

but lacking in strong damping ratio stabilisation.

(a) OMA (b) G-OMA

Figure 3.13: Identification of the lumped parameter system: stabilisation diagram along
with the magnitude of the PSDs sum function, blue line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

Table 3.6 and Figure 3.14 summarize the MPE results showing negligible errors for the

natural frequency estimates and better performance of the eLMFD base pLSCF in terms
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of damping ratio identification. The last mode is not captured by the classical procedure

which is significantly affected by the infringements of the NExT assumption especially in the

estimation of mode shape vectors, as confirmed by poor MAC values.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 6.9597 0.0629 1.3704 37.2817
Mode 2 13.1870 0.3233 2.4909 40.0692
Mode 3 18.2665 0.3143 1.5497 72.9096
Mode 4 - - - -

G-OMA

Mode 1 6.9529 0.0351 2.3641 8.1939
Mode 2 13.2299 0.0008 4.3201 3.9414
Mode 3 18.1758 0.1841 5.3951 5.6898
Mode 4 21.6134 0.9675 5.7914 13.8818

Table 3.6: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vth − vest)/vth, with respect to exact value is reported below each estimate.
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Figure 3.14: MAC between exact and estimated modal vectors’ sets estimated by following
(a) the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.1.4.2 Second identification step: LSFD

Regarding the second identification step, Figure 3.15 reveals the robustness of the G-OMA

method which continues giving good fitting as turned out by the visual match and the

correlation coefficients, almost 100%. As before, this result is mainly due to the proper

expression of the frequency-dependent operational reference vector in Eq. (3.71) which allows
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to capture the different effect violating the NExT assumption. In addition, the classical

LSFD offers a poor fitting as confirmed by huge error coefficients.

Figure 3.15: 4-DOF system: comparison between the measured output PSDs, blue dotted
line, and syntheses by the classical OMA modal model, red solid line, and the G-OMA
modal model, green solid line. The legend indicates, respectively, the correlation coefficients
Eq. (1.59) and normalized errors Eq. (1.60) for both the LSFD approaches.

3.4.2 Experimental example: a PTFE beam

In Figure 3.16, the slender beam used to perform the MIMO environmental testing

experiments, is represented. Specifically, the specimen is a PTFE beam of length, width, and

thickness equal to 610 mm, 100 mm, and 10 mm, respectively. The set-up consists in free-free

boundary conditions achieved by suspending the beam through extremely flexible elastic

cords. The beam is forced by exerting random loads through two modal exciters, acting along

the x-direction, attached to the structure through steel stingers and mechanical impedance

sensors screw mounted. The output responses are even measured by eight accelerometers,

attached to the beam’s center-line, as shown in Figure 3.16, and by two impedance heads

at the driving point locations. These latter sensors also provide the force measurements

employed as control signals for the source driving.
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Figure 3.16: Experimental case study: PTFE beam in free-free boundary conditions. Forces
are simulated by two modal shakers attached by stinger.

The experimental setup is, therefore, composed of (i) eight B&K 4535-B-001 triaxial

accelerometers, (ii) two PCB 288D01 mechanical impedance sensors, (iii) Dongling ESD-045

and GW-V2/PA30E modal shakers, (iv) a LMS SCADAS III SC310-UTP mobile, equipped

with DAC shutdown control box, PC based multichannel analyzer platform, running the LMS

Test.Lab 14A software suite for acquiring and recording the time histories of output and input

signals, measured by the accelerometers and the impedance head transducers. It is exploited

the software module designed for environmental testing specifically for multi-axis random

control. By doing so, you are allowed to drive two exciters targeting reference profiles of force

PSDs, Sf1 (ω) and Sf2 (ω), including also a reference coherence Γ(ω) and a cross-PSD phase

angle ∠Sf12(ω) which determine the cross-correlation term Sf12(ω), as described in Eq. (3.62).

Three loading cases are explored represented in Figure 3.17 which aim at introducing different

infringements of NExT assumption.
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(a) Temporal correlation: Sf1 (ω) = Sf2 (ω) = S0, ∠Sf12(ω) = ωτ , and Γ(ω) = 0.98

(b) Temporal correlation and coloration: Sf1 (ω) = Sf2 (ω) =
S0

ω2 + ω2
0

, ∠Sf12(ω) = ωτ , and Γ(ω) = 0.98

(c) Temporal correlation, coloration, and coherence: Sf1 (ω) = Sf2 (ω) =
S0

ω2 + ω2
0

, ∠Sf12(ω) = ωτ , and

Γ(ω) = e−α|ω|

Figure 3.17: Experimental case study: three loading cases under no-NExT hypothesis. The
dotted coloured lines display quantities derived from impedance head force measurements.
On the other hand, black lines show the chosen target profiles whose analytical expression is
reported in captions.

Signals are acquired in the time domain, adopting a sampling frequency, a time period,

and a number of repetitions equal to 800 Hz, 4 s, and M = 50, respectively. Figure 3.18

offers the magnitude of cross-PSD between the 10th and 5th acceletometer signals, obtained

by processing the system responses by means of the weighted correlogram when a 0.001%

exponential window is applied.
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Figure 3.18: Experimental case study: magnitude of output crossPSD relating the 10th and
5th acceleration signals. The classical NExT loading case, black line, is compared with the
three different loading cases, described in Figure 3.17, where temporal correlation, coloration,
and coherence between forces is introduced, colored lines.

The time delay between the loads, acting at the 3rd and 9th location, introduces humps

in the magnitude of the cross-PSDs, see the relevant distortion comparing the black line,

referred to uncorrelated white noises case, and the blue one, where temporal correlation is

reproduced. The coloration effect arises looking at the energy distribution in frequency of the

blue and purple line, corresponding to the colored case. Coherence between the excitations,

simulated according to an exponential law, produces the expected attenuation of humps with

increasing frequency.

Natural Frequency (Hz) Damping Ratio (%)

Mode 1 22.1102 1.9463
Mode 2 58.5501 2.0002

Mode 1T 109.655 1.4797
Mode 3 117.967 1.4875

Table 3.7: PTFE beam system: natural frequencies and damping ratios extracted by classical
modal analysis techniques [152].
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Figure 3.19: PTFE beam system: mode shapes extracted by classical modal analysis
techniques. Blue dots: underformed nodes; red squares: deformed nodes.

In the following sections, the identification procedure is performed operating in the

frequency band 10 − 160 Hz that contains the first three flexural modes (along with a

torsional one, around 110 Hz, which further emerges in some loading conditions despite sensor

and force locations) extracted by classical modal analysis techniques [152] and collected in

Table 3.7 and Figure 3.19. Three loading cases are investigated each focused on verifying the

coloration, temporal correlation, and coherence impact on the two OMA procedures put into

real-world experimental scenarios.

3.4.2.1 Effect of temporal correlation

3.4.2.1.1 First identification step: pLSCF

Starting from the loading case of temporal correlated white noises, one can write the

eLMFD embedding in the numerator matrix the knowledge of τ , as done in Eq. (3.73) for

the equivalent numerical case study.

In violating the NExT assumption by temporal correlation, it is observe an extremely

confusing stabilisation diagram, see Figure 3.20a, which doesn’t allow the analyst to easily

select stable poles. For this reason poles’ selection is forced in correspondence of the expected

natural frequencies, in order to follow up on the identification procedure with estimated

modal parameter comparison. On the other hand, the pLSCF solution based on the eLMFD

leads to a stabilisation diagram extremely clean, allowing an easily selection of the stable

poles, as evident is Figure 3.20b. Furthermore, it is noticed how the stabilisation of the first
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pole requires an high model order because of the low signal level (the first mode results less

excited in the particular loading case), that’s another story for the two subsequent modes

who show full stabilisation since the lowest model order.

(a) OMA (b) G-OMA

Figure 3.20: Identification of the experimental system: stabilisation diagram along with
the magnitude of the PSDs sum function, blue dotted line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

Once pole selection is performed, results are collected in Table 3.8. Estimated natural

frequencies show low error values (less than 2%) with respect to the theoretical ones for

both the approaches. Errors related to damping ratios are significantly improved by the

G-OMA procedure exhibiting deviation below 10% from the estimates found by classical

modal analysis techniques.
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Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA
Mode 1 22.5207 1.8565 6.0627 211.4992
Mode 2 59.3786 1.4150 2.8176 40.8662
Mode 3 118.4341 0.3960 1.2571 15.4929

G-OMA
Mode 1 22.3420 1.0484 2.1091 8.3643
Mode 2 58.7194 0.2892 2.1525 7.6143
Mode 3 118.5647 0.5066 1.4129 5.0145

Table 3.8: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vref − vest)/vref , with respect to reference value is reported nearby each estimate.

Figure 3.21 displays the pertinent MAC between reference and estimated modal vector

sets: good values arise for both modal vectors’ sets. However, it is relevant to highlight

that the OMA results are strictly related to a forced selection on the stabilisaton chart in

Figure 3.20a, that becomes cumbersome in practice.
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Figure 3.21: MAC between reference and estimated modal vectors’ sets estimated by following
(a) the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.2.1.2 Second identification step: LSFD

In this loading case, the frequency-dependent operational vector, referred to the n-th pole,

can be written as

ρn (iω) = ḡ0
n + eiωτ ḡ12

n + e−iωτ ḡ21
n , (3.76)

where τ , temporal delay between the loads, is assumed to be a known feature. As in the

numerical scenario, the G-OMA method achieves good fitting as turned out by the visual

match, see Figure 3.22b, and by the high correlation coefficients and low normalized errors
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shown in Figure 3.23b. The suitable definition of the operational reference vector in Eq. (3.76)

guarantees positive results of the generalized LSFD. Instead, the classical LSFD leads to

smaller correlation coefficients and higher errors than the proposed approach, Figure 3.23a,

owing to a lack of description of the time delay terms in the modal decomposition, as can be

seen in Figure 3.22a.

(a) OMA (b) G-OMA

Figure 3.22: Experimental beam under temporal-correlated white noises: (a) comparison
between one measured positive power spectrum, blue dotted line, and the relevant synthesis
obtained by the OMA modal model, red solid line; (b) G-OMA modal model synthesis, green
solid line, of one measured output PSD, blue dotted line. The chosen matrix entry relates
the 10th and 5th accelerations in the both plots.
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(a) OMA

(b) G-OMA

Figure 3.23: Experimental beam under temporal-correlated white noises: correlation coeffi-
cients Eq. (1.59), blue circles, and normalized errors Eq. (1.60), red squares, related to one
hundred spectra employed in the identification tackled by the (a) OMA and (b) G-OMA
approach.

3.4.2.2 Effect of temporal correlation and coloration

3.4.2.2.1 First identification step: pLSCF

As a second loading case, it is explored that of temporal correlated colored noises that

corresponds to the following definition of extended numerator matrix N(e)(ω)

N(e) (k) =
1

ω2
k + ω2

0

p∑
r=0

z−rk β̄
0
r +

1

ω2
k + ω2

0

eiωkτ

p∑
r=0

z−rk β̄
12
r +

1

ω2
k + ω2

0

e−iωkτ

p∑
r=0

z−rk β̄
21
r , (3.77)

where the three unknowns β̄
0
r, β̄

12
r and β̄

21
r appear. As previously experienced, pole selection

is quite challenging when applied on the stabilisation diagram obtained by the classical OMA

procedure, see Figure 3.24a. But instead, the eLMFD reaches higher quality chart with three

emerging stable pole lines. The stabilisation of the first pole starts from a lower model order,

with respect to Figure 3.20b, because of the different energy distribution induced by the

colored forces.
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(a) OMA (b) G-OMA

Figure 3.24: Identification of the experimental system: stabilisation diagram along with
the magnitude of the PSDs sum function, blue dotted line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

By analyzing results in Table 3.9, you notice similar performances of the two approaches

in the natural frequency estimation but the G-OMA procedure enhances damping ratios

achievement. Figure 3.25 reports the relevant MAC values revealing comparable mode shapes

estimate. In practical case, the poles selection with classical OMA still remains challenging.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA
Mode 1 22.4333 1.4611 5.7523 195.5505
Mode 2 58.8215 0.4635 2.4538 22.6786
Mode 3 118.2021 0.1993 1.4239 4.2745

G-OMA
Mode 1 22.4464 1.5208 1.9669 1.0593
Mode 2 58.7111 0.2749 2.1759 8.7851
Mode 3 118.3506 0.3252 1.3659 8.1741

Table 3.9: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vref − vest)/vref , with respect to reference value is reported nearby each estimate.
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(b) G-OMA

Figure 3.25: MAC between reference and estimated modal vectors’ sets estimated by following
(a) the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.2.2.2 Second identification step: LSFD

In this second loading case, the following definition of extended frequency-dependent

operational vector is revealed

ρn (iω) =
1

ω2 + ω2
0

ḡ0
n +

1

ω2 + ω2
0

eiωτ ḡ12
n +

1

ω2 + ω2
0

e−iωτ ḡ21
n , (3.78)

where again the three unknown vectors ḡ0
n, ḡ12

n , and ḡ21
n are accessed by the modified

LSFD. In Figure 3.26b, the good agreement between the measured and synthesized PSDs is

confirmed by the correlation coefficients and errors in Figure 3.27b. On the other hand, the

classical OMA second identification step achieves slightly poorer results in terms of errors

and correlation coefficients as reflected in Figure 3.27a. This deficiency finds reason in the

usual approximation introduced by the definition of constant operational reference vectors

which doesn’t fit the typical distorsion caused by the temporal correlation in both phase and

magnitude of the postive spectra, as shown Figure 3.26a.
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(a) OMA (b) G-OMA

Figure 3.26: Experimental beam under temporal-correlated colored noises: (a) comparison
between one measured positive power spectrum, blue dotted line, and the relevant synthesis
obtained by the OMA modal model, red solid line; (b) G-OMA modal model synthesis, green
solid line, of one measured output PSD, blue dotted line. The chosen matrix entry relates
the 10th and 5th accelerations in the both plots.

(a) OMA

(b) G-OMA

Figure 3.27: Experimental beam under temporal-correlated colored noises: correlation
coefficients Eq. (1.59), blue circles, and normalized errors Eq. (1.60), red squares, related to
one hundred spectra employed in the identification tackled by the (a) OMA and (b) G-OMA
approach.
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3.4.2.3 Effect of temporal correlation, coloration, and coherence

3.4.2.3.1 First identification step: pLSCF

Finally, the three no-NExT effects here investigated ae combined. So, in this loading

condition the designed N(e)(ω) is expressed as

N(e) (k) =
1

ω2
k + ω2

0

p∑
r=0

z−rk β̄
0
r+

1

ω2
k + ω2

0

e−α|ωk|eiωkτ

p∑
r=0

z−rk β̄
12
r +

1

ω2
k + ω2

0

e−α|ωk|e−iωkτ

p∑
r=0

z−rk β̄
21
r ,

(3.79)

where one can include the knowledge of the temporal delay τ together with the frequency

dependence of coloration and coherence models.

(a) OMA (b) G-OMA

Figure 3.28: Identification of the experimental system: stabilisation diagram along with
the magnitude of the PSDs sum function, blue dotted line. The model order is indicated
on the left ordinate axis. ‘o’: new pole; ‘f’ stabilisation in natural frequency; ‘f’ extra
stabilisation in damping ratio; ‘v’ extra stabilisation in MAC value; ‘s’ full stabilisation.
Stabilisation thresholds for natural frequency, damping ratio, and MAC value are 1%, 5%,
and 2%, respectively.

The two stabilisation diagrams in Figure 3.28 reveal different clarity highlighting the more

accuracy of the G-OMA approach. The effect of coherence is reversed into the presence of a
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fourth peak, see Figure 3.28b, related to the first torsional mode of the PTFE beam, that

result more excited when the two loads loose correlation (as it happens at high frequency due

to the effect of the coherence term e−α|ω|). By looking at Figure 3.28a, pole selection is still

quite challenging due to the stabilisation lines related to spurious mathematical poles deriving

from the violation of the NExT assumption. By forcing selection in correspondence of the

expected natural frequencies for the OMA stabilisation diagram, a comparison of the MPE

results is established in Table 3.10 and Figure 3.29. The proposed identification procedure

generally offers a better estimation for both frequencies and damping ratios as confirmed

by the error values. Worse results are reached for the less excited modes, first flexural and

torsional ones, because of the measurement noise effect. The MAC values reveal similar

performances in terms of mode shapes estimate and they confirm the poor observability of

the torsional mode related to force and sensor locations.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 22.4837 1.6893 5.1303 163.5944
Mode 2 59.0800 0.9050 2.9887 49.4195

Mode 1T 109.5787 0.0696 1.6697 12.8399
Mode 3 117.6550 0.2645 2.0689 39.0821

G-OMA

Mode 1 22.5279 1.8890 0.9353 51.9459
Mode 2 58.8164 0.4548 2.2579 12.8852

Mode 1T 110.0922 0.3987 1.0549 28.7080
Mode 3 117.9556 0.0097 1.3484 9.3519

Table 3.10: Comparison between exact and estimated natural frequencies. Estimates computed
by using classical and generalized OMA formulations are compared. Percentage relative error,
∆ = 100× (vref − vest)/vref , with respect to reference value is reported nearby each estimate.
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Figure 3.29: MAC between reference and estimated modal vectors’ sets estimated by following
(a) the classical OMA procedure and (b) the generalized approach proposed in the paper.

3.4.2.3.2 Second identification step: LSFD

This last loading case is characterized by the frequency-dependent operational reference

vector as

ρn (iω) =
1

ω2 + ω2
0

ḡ0
n +

1

ω2 + ω2
0

e−α|ω|eiωτ ḡ12
n +

1

ω2 + ω2
0

e−α|ω|e−iωτ ḡ21
n , (3.80)

which embeds some a priori known features regarding input correlation and coloration, such

as the temporal delay τ and the frequency dependence of coloration and coherence models.

In doing so, the generalized LSFD is exploited in order to estimate the three extended

operational reference vectors ḡ0
n, ḡ12

n , and ḡ21
n for each n-th pole.

It is highlighted the suitability of the G-OMA method emphasised by low errors, below

5%, and high correlation coefficients, greater than 95%, in Figure 3.31b. Furthermore, the

classical LSFD shortcomings relapse into slightly greater errors, Figures 3.30a and 3.31a,

whereas the poles’ selection is enforced having poor stabilization charts.
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(a) OMA (b) G-OMA

Figure 3.30: Experimental beam under temporal-correlated colored coherent noises: (a)
comparison between one measured positive power spectrum, blue dotted line, and the relevant
synthesis obtained by the OMA modal model, red solid line; (b) G-OMA modal model
synthesis, green solid line, of one measured output PSD, blue dotted line. The chosen matrix
entry relates the 10th and 5th accelerations in the both plots.

(a) OMA

(b) G-OMA

Figure 3.31: Experimental beam under temporal-correlated colored coherent noises: cor-
relation coefficients Eq. (1.59), blue circles, and normalized errors Eq. (1.60), red squares,
related to one hundred spectra employed in the identification tackled by the (a) OMA and
(b) G-OMA approach.
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In a nutshell

1. Development of an OMA framework which overcomes the NExT assumption: generalized modal
formulation of both the output cross-correlation and power spectral density functions.

2. The role of the frequency-dependent operational reference vectors as a generalization of the
classical ORV embedding some a priori known input correlation features.

3. Identification technique in the frequency domain: the introduction of an extended left matrix
fraction description, realization into the state-space and pLSCF solution for coefficient matrices
calculation. The LSFD step for extended operational reference vectors achievement.

4. Modal parameter estimation in numerical and experimental case studies: investigating the effects
of different infringements of the NExT assumption, such as coloration, temporal correlation,
and coherence.
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4.1 Introduction

Many different modal analysis besed protocols have been developed over the last four

decades in the area of system dynamics with unconnected aims, from model updating to

diagnostics. With regards to only the last-mentioned, also commonly named structural

health monitoring (SHM) or damage detection, an extraordinarily important number of

111
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research efforts has been made available. A reasonable citation base could be found, for

example, in refs. [61, 62, 63, 107, 137], where devices, physical quantities, methods and

perspectives involved in the numerous numerical and / or experimental protocols proposed

in the scientific literature are illustrated and discussed. The devices comprise all possible

transducers (typically, but not exhaustively, accelerometers and load cells) and the relevant

conditioning systems followed by A/D digital boards. Transfer functions appear to be the

most representative and commonly adoptred physical quantities, computed by measurements’

processing, and, specifically, frequency response functions (FRFs), generally in the form of the

ratio of forces and output accelerations (accelerances or apparent masses). However, FRFs

could be seen, from a wider perspective, as functions relating different outputs of a linear time

invariant system. In such a latter perspective, during the last two decades, researchers have

started investigating transmissibility functions (see e.g. [38, 39, 100, 101, 134, 135, 138, 160]).

In particular, Ribeiro [134] started generalizing a transmissibility concept from one degree of

freedom systems to structures with multiple degrees of freedom. Specifically, he obtained a

relationship between vectors of unknown responses and measurable responses, along with

a pseudo-inversion when certain conditions between the number of interesting responses

(known/measured and unknown) are not fulfilled. By his theoretical analyses, Ribeiro

introduced a new concept that seemed to be promising not only as a monitoring tool,

but even for its predictive capability. The results of this effort were also extended to a

wider audience two years later (see Ribeiro et al. [135]). Sampaio et al. [138], used the

transmissibility concept in the area of damage detection. They noticed that more research

efforts would have been needed to better understand and explore all the possible improvements

in the usage of the technique. With regards to this topic, other interesting contributions

[38, 39, 100, 138] have been produced in the following years. Maia et al. [101] presented

a general overview on the transmissibility concept and on pros and cons, and on possible

applications; they also recognized that no simple relationships (if any) could be stablished
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between peaks and anti-peaks of transmissibility functions and FRFs. The recent paper

from Yan et al. [160] certainly testifies the great interest on transmissibility-based system

identification in the area of structural health monitoring, by discussing existing studies dealing

with the concept and the usage of transmissibility functions; they, specifically conclude that

proving the capabilities of employing transmissibilities in an unsupervised manner, in the

field of damage localization, can be tough.

In addition, Messina [102] followed a different formal approach for defining a new class of

transmissibility functions (the R-FRFs), specifically designed to enrich the intrinsic modal

database of the system under study and to allow for analyzing the system in a local sense.

Based on the definitions given by Yan et al. [160], the R-FRFs, similarly to TFs, are global

transmissibility functions. However, R-FRFs offer important and indisputable advantages

if compared to the TFs. Firstly, while R-FRFs relate sets of responses in a rectangular

way, but no pseudo-inversion is requested to recover R(ω) (e.g. see experimental procedure

suggested in [102]). Secondly, R(ω), as discussed in reference [102] and experimentally proved

in reference [103], is clearly correlated with the system under investigation with an easily

understandable property: each transmissibility function in R(ω) provides poles of the original

structure when some of its degrees of freedom are, virtually, considered constrained to ground;

thus, such a local sense is achieved when one virtually hampers the vibration of a specific

part of the structure, but letting the remaining (and local) part to freely vibrate.

Of course, the evaluation of the output-only matrix R(ω) does not require, in principle, the

measurement of the exciting forces, even though we could take advantage of this information,

if available, in an input-output manner. However, further insights, specifically aimed at

improving R-FRFs estimation, are provided. To this aim, it is useful to recall the problem

of classical FRF estimation, well established in the relevant literature [1, 10, 61]. Several

estimators have been developed for MIMO linear systems and each estimator turns out to

be optimal depending upon the balance of noise existing between inputs and outputs of the



Chapter 4. R-FRFs: definition and estimation 114

system. In [70, 72], further nonparametric FRF estimators based on nonlinear averaging

techniques are proposed. Some of them are the so-called HEV and Hlog estimators, which show

better performance in reducing the bias caused by noisy data with respect to the classical H1

and H2. Global transmissibility functions, including the case of the RFRFs, are generally

estimated from output-only measurements, by using H1 like approaches; the possibility of

using H2 and Hs has been also investigated in [93].

The rest of the chapter is organized as follows. In Section 4.2, the theoretical background

is presented regarding the response-based frequency response functions of the linear time

invariant systems herein we deal with; such a theoretical background is formulated and

illustrated with the view to the estimation of R-FRFs. In Section 4.3, RFRFs’ estimators are

introduced by redefining classical MIMO systems’ estimators for FRFs and the possibility of

exploiting input-output estimators, where exciting force are measured, is shown. In Section 4.4,

numerical and experimental case studies are implemented, to evaluate the performance of

estimators presented in Section 4.3.

4.2 R-FRFs definition

A linear, time-invariant, damped, vibrating system having N degrees of freedom (dofs) is

considered. The set of second order motion equations for this system, is formulated in matrix

notation as

Mẍ (t) + Cẋ (t) + Kx (t) = f (t) , (4.1)

where M, C, and K are the mass, damping, and stiffness matrices, respectively, and f (t)

and x (t) are the force and displacement vectors as functions of the time t. Assuming that

the forces exerted on the system are applied only to a given subset of n forced or driving dofs

and that the remaining m = N − n measured dofs are not forced, and Laplace-transforming

Eq. (4.1), with s the Laplace variable, we obtain the well-known input-output relationship:
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B (s) X (s) = F (s), in which the dynamic stiffness matrix B (s), and the displacement X (s)

and force F (s) vectors can be partitioned as

 B11 (s)n×n B12 (s)n×m

B21 (s)m×n B22 (s)m×m


 Z (s)n×1

Y (s)m×1

 =

 Q (s)n×1

0m×1

 . (4.2)

Specifically, the displacement vector Z (s) includes the n output response dofs in which

the input forces described by the vector Q (s) are applied (we define such dofs as forced or

driving), whilst the Y (s) vector contains the output displacements of the m unforced dofs

(we define such dofs as guided or free). In this regard, Figure 4.1 clarifies the arrangement

that we assume on the specific system under investigation, by stressing the fact that no

hypothesis is made neither on the place of both the classes of dofs (driving and guided), nor

on their respective number n and m, which can be arbitrarily different.

Response A Response B
Input forces

(a)

Response A Response B

X  (⍵)= R(⍵)X  (⍵)B A

(b)

Input forces

X  (⍵)=   (⍵)X  (⍵)B A

Response Z  
(forced n dofs)

Input forces Q (n dofs) or 
virtually constrained dofs

Response Y (guided m dofs)

Q1 Q2 Q3

Z1 Z2 Z3 Y2 Y3 Y4 Y5Y1

Figure 4.1: Sets of responses for a structure.

Therefore, the choice of which dofs are considered driving or free is absolutely arbitrary;

moreover, the force applied to a certain driving dof can even be equal to zero, and, nonetheless,

included in vector Q (s). By rephrasing the subset of motion equations related to the m free

dofs, the following linear relationship, involving the sole output responses Y (s) and Z (s), is

obtained

Y(s) = R(s)Z(s), (4.3)
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where

R(s) = −B−1
22 (s)B21(s) (4.4)

with (.)−1 denoting an inverse matrix. R(s) is a m× n response-based transfer matrix

containing the R-FRFs, connecting driving and free dofs. Since the analyst does not usually

know in advance R(s) in situ, the objective of the study is to achieve its best estimation,

through measurable entities, as the responses (Y,Z) appearing in Eq. (4.3). Moreover,

different estimation procedures, both by accounting for the measurements of forces or not,

will be exploited. To this end, Eq. (4.3) is reformulated in terms of classical transfer functions

(i.e., FRFs). Thus, by rephrasing Eq. (4.2) as X (s) = H (s) F (s), where H (s) = B(s)−1

is the system transfer function matrix, and specifying, as before, the matrix and vector

partitions related to driving and free dofs, it is found

 Z (s)n×1

Y (s)m×1

 =

 H11 (s)n×n H12 (s)n×m

H21 (s)m×n H22 (s)m×m


 Q (s)n×1

0m×1

 , (4.5)

from which, by considering the subset of motion equations related to the n driving dofs, it is

first derived

Q(s) = H−1
11 (s)Z(s). (4.6)

By substituting this expression of force vector Q (s) in the subset of motion equations related

to the m free dofs, Eq. (4.3) is re-obtained in the form

Y(s) = HY Q(s)H−1
ZQ(s)Z(s) = R(s)Z(s), (4.7)

where H11(s) and H21(s) are, respectively, indicated as HZQ(s) and HY Q(s), to better

highlight the existing connections between each partition matrix and the corresponding

related subsets of output responses. As elucidated later, Eq. (4.7) provides the possibility

of estimating, within the framework of MIMO systems’ procedures, the R(s) matrix even
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by taking into account the exciting forces. Eq. (4.3) can be easily derived from Eq. (4.7)

recalling the relation between the system transfer function matrix, H(s), and the dynamic

stiffness matrix, B(s), written in the following partitioned form

 B11(s) B12(s)

B21(s) B22(s)


 H11(s) H12(s)

H21(s) H22(s)

 =

 I 0

0 I

 , (4.8)

from which we obtain the partition HY Q(s) = H21(s) as

H21 = −B−1
22 B21H11. (4.9)

By substituting the expression of HY Q(s) in Eq. (4.7), the definition of R(s) matrix is readily

recovered in terms of dynamic stiffness matrix partitions, reported in Eq. (4.3).

Equation (4.3), translated in the Fourier domain by imposing s = iω, can be even written

in terms of cross-power spectral densities (cPSDs), as

SY Z(iω) = R(iω)SZZ(iω), (4.10)

SY Y (iω) = R(iω)SZY (iω), (4.11)

with ω which refers to the radian frequency and the matrices SY Z(iω), SZZ(iω), SY Y (iω),

SZY (iω) are the partitions of the cross-power spectral density matrix of system displacements,

which reads

SXX(iω) =

 SZZ(iω)n×n SZY (iω)n×m

SY Z(iω)n×n SY Y (iω)n×m

 , (4.12)

while the entries of R(iω) are transmissibility functions, here referred to as R-FRFs, as

introduced in [102, 103].
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4.3 Non-parametric estimation process

To perform the estimation of the R(iω) matrix by directly using Eqs. (4.10) or (4.11),

generally does not represent a workable option, owing to the required inversion of SZZ(iω)

and SZY (iω) matrices, that rarely are of full rank or well conditioned [93]. A viable solution

consists in gathering information from several different forcing conditions. Specifically, by

considering a number of independent force vectors equal to that of the exciting dofs, and,

thus, n independent experiments, relying on the linear relationship Eq. (4.3), which holds in

each loading condition, the R(iω) matrix is obtained as

R(iω) = Ȳ(iω)Z̄(iω)−1, (4.13)

whereby Ȳ(iω) indicates the m × n matrix of collected displacements of the not loaded,

free dofs, that is Ȳ(iω) =

[
Y1(iω) . . . Yn(iω)

]
, and Z̄(iω) =

[
Z1(iω) . . . Zn(iω)

]
is the n× n matrix containing the output of the exciting dofs. By looking at Eq. (4.6), the

invertibility of Z̄(iω) matrix is ensured by the fact that both the matrix partition HZQ(iω)

and the matrix collecting the n independent force vectors Qi(iω) are invertible [93, 102].

Thus, being the R(iω) matrix a special case of FRF matrix, it can be assessed by applying the

classical FRF estimators for MIMO linear systems. Transmissibility matrices are generally

estimated by using an H1 like approach and the possibility of using H2 and Hs based

procedures have also been investigated [93]. Here, the definitions of H1 and H2 estimators are

reformulated and extended to the case of interest the Hlog, HEV, and Hv measuring methods,

derived from the literature of nonparametric FRF estimators [1, 72, 140].
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4.3.1 Input-output estimation of the R matrix

The attractiveness of the R(iω) matrix, expressed by its definition is related to the

possibility of retrieving it from system responses only. It is, in fact, natively an output-only

quantity. If the force signals are measured, an input-output estimator becomes available that

we indicate Rdef , suggested by Eq. (4.7)

Rdef(iω) = H̃Y Q(iω)H̃−1
ZQ(iω), (4.14)

where (̃.) denotes estimated quantities and the matrix H̃(iω) is the classically estimated FRF

matrix of the system. In what follows, the estimator defined by Eq. (4.14) is used as a basis

for the assessment of the presented output-only nonparametric estimators.

4.3.2 Classical FRF estimators applied to the R matrix

In a noisy environment, Eq. (4.13) allows for computing the empirical Rm estimate of the

R(iω) matrix, that differs from the exact one owing to the noises perturbing the responses at

the exciting and free dofs. In fact, by assuming that the perturbation noises are additive, the

linear relationship expressed by Eq. (4.13) can be rephrased as

Ȳ(iω) + nY (iω) = Rm(iω)
(
Z̄(iω) + nZ(iω)

)
, (4.15)

where nY and nZ stand for the contribution of noises spectra at the free and exciting outputs,

respectively.

The effect can be decreased by using generally nonlinear averaging techniques [72],

which allow for introducing different estimators, obtained by performing the nonlinear mean

associated with M independent observations of the matrices Ȳ(iω) and Z̄(iω). A simple

illustrative example is obtained by performing the arithmetic average of the M measured
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Rm,i, which leads to the following definition of the Rar estimator

Rar(iω) =
1

M

M∑
i=1

Rm,i(iω). (4.16)

Similarly, the Rlog estimator is computed by evaluating the logarithmic average of the M

measured Rm,i:

Rlog(iω) = exp

(
1

M

M∑
i=1

log (Rm,i(iω))

)
, (4.17)

which allows for implementing the principle of the geometric mean. Moreover, it is introduced

the unbiased errors-in-variables (EV) estimator, indicated as REV, computed by preliminarily

averaging out the matrices Ȳi and Z̄i, as

REV(iω) =

(
1

M

M∑
i=1

Yi(iω)

)(
1

M

M∑
i=1

Zi(iω)

)−1

, (4.18)

where the convergence of the sums is ensured by the deterministic character of the excitation

[70]. The three estimators Eqs. (4.16), (4.17) and (4.18) come from a re-conceptualization of

the nonparametric FRF estimators proposed in [72].

The classical H1, H2, and Hv like approaches applied to Eq. (4.13) allow for introducing

further output-only nonparametric estimators for the R(iω) matrix. Specifically, by following

an H1 like route, applied to the matrix relationship Eq. (4.15), you obtain:

n∑
i=1

(
SYiZi

(iω) + SnYi
Zi

(iω) + SYinZi
(iω) + SnYi

nZi
(iω)

)
=

R1(iω)
n∑
i=1

(
SZiZi

(iω) + SnZi
Zi

(iω) + SZinZi
(iω) + SnZi

nZi
(iω)

)
, (4.19)

where the present summands are cPSD matrices, evaluated considering noises and theoretical

responses, and the sums are performed over the n different loading cases. Hypothesizing

that the terms describing the correlation between the noises and the exact signals can be
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considered negligible, it gets

R1(iω) =
n∑
i=1

SYiZi

(
n∑
i=1

SZiZi

)−1
In +

n∑
i=1

SnZi
nZi

(
n∑
i=1

SZiZi

)−1
−1

, (4.20)

where In is the n× n identity matrix, while the first term is equal to the exact R(iω) written

in terms of PSDs, for which the dependence on the radian frequency ω is omitted for brevity.

Therefore, the R1 estimator is defined as

R1(iω) = R(iω)

In +
n∑
i=1

SnZi
nZi

(
n∑
i=1

SZiZi

)−1
−1

. (4.21)

As in the case of the H1 approach for the estimation of classical FRFs, R1(iω) produces a

biased estimation due to noises perturbing the responses at the exciting dofs, which act as

the inputs in the linear relation Eq. (4.13).

In a analogous manner, following an H2 like path, the R2 estimator is introduced in the

form

R2(iω) =

In +
n∑
i=1

SnYi
nYi

(
n∑
i=1

SYiYi

)−1
R(iω), (4.22)

with similar meaning of adopted symbols; it even produces a biased estimation, owing to

the noises on output responses at the not loaded, free dofs, which play the role of outputs in

Eq. (4.13).

The above presented estimators are interpreted as the result of the solution of a linear

regression problem, in which R1(iω) and R2(iω) minimise the overall vertical and horizontal

squared error, respectively. In this context, the Rv estimator, that is interpreted as the Total

Least Squares (TLS) solution, is obtained from the eigen-decomposition of the following
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spectral correlation matrix [1, 158]:

R̂ZZY,p(iω) =


n∑
i=1

SZiZi

〈
n∑
i=1

SYiZi

〉
prow{

n∑
i=1

SZiYi

}
pcol

(
n∑
i=1

SYiYi

)
pp


(n+1)×(n+1)

= VΛVH, (4.23)

where (.)H indicates Hermitian transposition, Λ is the diagonal matrix of the eigenvalues

and V is the matrix whose columns are the eigenvectors. The p−th row of the R(iω) matrix

is estimated, at each radian frequency ω, as the eigenvector associated with the smallest

normalized eigenvalue, that we write as

{V}λmin
=



Rp1

Rp2

...

Rpn

−1


. (4.24)

As for the previously presented estimators, the definition of R1, R2 and Rv estimators

Eqs. (4.21), (4.22) and (4.24) is derived by means of a reformulation of the classical FRF

estimators, when specifically applied to the case of the R(iω) matrix.

4.4 Performance analysis of the R matrix estimators

In order to assess the performance of the presented estimators, two case studies are offered,

the former employing the data achieved by numerically simulating a lumped-parameter

system model, the latter processing the time records collected through real-world experiments

of impact testing, performed on a slender beam of known geometry and material properties.

The considered discrete model, displayed in Figure 4.2, along with the pertinent nomen-

clature, consists in a 6-degrees-of-freedom system, comprising masses able to move only
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along the horizontal direction, connected by springs and dashpots. The stiffness of all the

springs is set to 104 N m−1, all the masses to 0.1 kg, and the system is subjected to a stiffness-

proportional damping described by a damping matrix C = 5.0× 10−5 K. Thus, dashpots are

not represented in the system sketch of Figure 4.2.

x1(t)

m3
k1

x2(t) x3(t) x4(t)

k2

k3 k4 k5

k8

k9

k7

x5(t)x6(t)

k6

m2

m1

m6

m5

m4

Figure 4.2: Schematic of the 6 degrees-of-freedom lumped-parameter system.

In Figure 4.3, the slender beam used to perform the impact testing experiments, is

represented. Specifically, the specimen is a polymethyl methacrylate (Plexiglas, PMMA)

beam of length, width, and thickness equal to 1000 mm, 60 mm, and 35 mm, respectively;

material properties and resonance frequencies of the completely free PMMA beam are

characterized and determined in [103]. In the adopted set-up, free-free boundary conditions

are achieved by suspending the beam through extremely flexible elastic cords. The beam

is forced by exerting impulsive loads through an instrumented impact hammer, hitting the

beam along the x-direction, in ten equally spaced positions, where the output responses

are even measured by ten accelerometers, attached to the beam’s center-line, as shown in

Figure 4.3.
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Figure 4.3: Schematic of the experimental setup for the free-free beam structure. Geometry
and position of the artificial damage introduced by locally reducing the cross-section thickness,
are sketched in the highlighted area.

The experimental setup is composed of (i) ten B&K 4535-B-001 triaxial accelerometers,

(ii) a PCB T086C03 instrumented impact hammer, (iii) a LMS SCADAS 310 mobile PC

based multichannel analyzer platform, running the LMS Test.Lab 14A software suite for

acquiring and recording the time histories of output and input signals, measured by the

accelerometers and the hammer force transducer.

It is provided a comparison of the lumped-parameter system virtually generated output

responses, when processed to compute the different introduced R(iω) matrix estimators, in

presence of additive noise, as a preliminary assessment of their performance. Then, in the

beam system case, real-world performance of the same estimators are investigated in the

noisy experimental environment.

A further scope is related to the power of using R-FRFs for local damage diagnoses by

means of the assessment of additional modal parameters, made available by the R(iω) matrix

[103], that show an enhanced sensitivity to damage detection with respect to classical FRFs’

global modal parameters. To this purpose, in the next chapter, the beam has been analyzed

in two different states: undamaged, as described above, and in a damaged state, for which we

have designed an artificially introduced damage, located between the 8th and the 9th sensor

location, as sketched in Figure 4.3. The damage is, specifically, obtained by reducing the

beam’s thickness of 3.5 mm per side, from 35 mm to 28 mm.
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4.4.1 Case study on a lumped-parameter system

In the case of the lumped-parameter system, four different loading conditions are consid-

ered, each obtained by exerting an impulsive force on the i-th exciting dof. In this respect,

the output displacements are divided into the following two subsets: the exciting Zi(iω) dofs

including the displacements of 1st, 2nd, 5th, and 6th mass and the free Yi(iω) dofs comprising

the displacements of 3rd and 4th mass. Therefore, the output-only linear relationship Eq. (4.7)

is particularized as

 Y3(iω)

Y4(iω)


i

=

 R31(iω) R32(iω) R35(iω) R36(iω)

R41(iω) R42(iω) R45(iω) R46(iω)




Z1(iω)

Z2(iω)

Z5(iω)

Z6(iω)


i

, (4.25)

where the notation (.)i, with i ranging from 1 to 4, indicates the i-th loading case, featuring

the i-th mass as subjected to the impulse force. You, thus, have four independent vectors,

each corresponding to one of the exciting dofs, by which the matrix problem of Eq. (4.13) is

rephrased as [
Y1 Y2 Y5 Y6

]
= R (iω)

[
Z1 Z2 Z5 Z6

]
, (4.26)

where the dependence of exciting and free displacement vectors from the radian frequency ω

is omitted for brevity. The obtained R(iω) is a 2× 4 matrix, whose first and last columns’

entries are all null, as proved in [102], owing to the absence of connecting elements both

between the 3rd and the 4th mass, and between the 1st and 6th mass.

By preliminary computing the analytical impulse response functions of the system, the

corresponding numerical Eq. (4.26) is built up, as follows. Measurement noise is simulated as

Gaussian incoherent noise and added to all the exciting and free output dofs, as well as to the

input force, adjusting the variance values to achieve a 50 dB signal-to-noise-ratio (SNR) for
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all signals. Forces, responses and additive noise are simulated in the time domain, adopting

a sampling frequency, a time period, and a number of repetitions equal to 512 Hz, 10 s, and

M = 10, respectively. Figure 4.4 offers an example of the impacting force together with a

generic exciting dof, when compared with the added noise. Specifically, a 1% exponential

window is applied to all the response signals, while a combined 10% force and 1% exponential

window is used in the case of the input signal [66].

Figure 4.4: Example of an impacting force and of a generic exciting response dof, blue solid
line, compared with the added noise, red solid line.

Once the noise-corrupted displacements are computed, they are collected to build up

Eq. (4.26) and the previously defined estimators are used to correspondingly calculate the

R(iω) matrix. The aim of the study is to compare the estimates obtained by the five

output-only nonparametric estimator Rar, REV, Rlog, R1, and Rv described in Eqs. (4.16),

(4.18), (4.17), (4.21) and (4.22), respectively, with that from the input-output estimator Rdef

introduced in Eq. (4.14), relying on the usage of the measured input forces and, in turn,

on that of the classical FRFs estimated by the Hv method. In Figures 4.5 and 4.6, the

comparison of the estimated four not null R-FRFs, is synoptically presented in terms of

magnitude and phase angle.

A quantitative assessment of the agreement between estimated and theoretical values of

each R(iω) matrix entry is obtained by computing the FRF correlation coefficient CRoi
and
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the normalised error ERoi
defined in Eqs. (1.59) and (1.60).

Figure 4.5: Magnitude of R-FRFs in the case of the lumped-parameter system: theoretical,
black solid lines, and computed by using the different estimators, colored dotted lines.
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Figure 4.6: Phase of R-FRFs in the case of the lumped-parameter system: theoretical, black
solid lines, and computed by the different estimators, colored dotted lines.

The two coefficients defined by Eqs. (1.59) and (1.60) provide a global evaluation, over

the whole frequency range, of the linear relationship between the theoretical and estimated

R-FRFs, so that a performance comparison of the different estimators is collected in Figure

4.7, where both quantities are represented.
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Figure 4.7: Performance analysis of the different estimators by using the correlation coefficient
Eq. (1.59) and the normalised error Eq. (1.60), in the case of the lumped-parameter system.
Points belonging to each dashed line represent the assessment of the R-FRF components
indicated on the x-axis.

From error point of view, it is noticed that, excluding the case of R1, for which very

high global error values, up to 60 %, are achieved, in the cases of Rdef , REV, and Rv, the

error values remain lower than or equal to about 5%, while in those of Rar and Rlog, values

of about 10% maximum are reached. The values of the correlation coefficient confirm this

assessment. Specifically, in the cases of Rdef , REV, and Rv, the correlation coefficient exhibits

values greater than 95%, that decrease up to about 10% in the case of the R1 estimator. The

highlighted better results are particularly related to the estimation accuracy achieved around

the resonance peaks, see Figure 4.5. Since an equal amount of noise is added to all outputs,

exciting and free ones, the unsatisfactory behaviour of R1 estimator has to be explained by

considering that this formulation explicitly suffers for measurement errors present on the

exciting dofs.

4.4.2 Case study on a PMMA experimental beam

In the case of the PMMA beam, the examined loading conditions are obtained by impacting

the structure in correspondence of five different sensor locations, along the x-direction, as
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anticipated. The acceleration signals, measured along the same direction, are divided into

two subsets, classifying as exciting dofs, which contribute to the Z̈i(iω) vector, the signals

acquired from the 1st to the 5th sensor, and as free dofs, contributing to the Ÿi(iω), the

measured outputs from the 6th to the 10th sensor. The following matrix linear relationship is

thus built up

[
Ÿ6 Ÿ7 Ÿ8 Ÿ9 Ÿ10

]
= R (iω)

[
Z̈1 Z̈2 Z̈3 Z̈4 Z̈5

]
, (4.27)

where the matrix R(iω) is, in this case a squared 5× 5 matrix, and the double dots’ notation

is utilised to highlight the fact that acceleration Fourier transforms are involved instead

of displacement ones, although Eq. (4.3) remains unchanged if the considered outputs are

displacements, velocities or accelerations

The signals are acquired in the time domain with a sampling frequency of 2048 Hz and

a time period of 16 s. In order to apply averaging techniques, M = 10 repetitions are

carried out in each loading condition. A 0.001% exponential window is used to reduce noise

contamination, yielding smooth R-FRFs.

The estimation is performed by employing the different six estimators, as in the simulated

discrete case. The whole matrix R(iω), obtained by Rar and Rdef is reported in terms of

magnitude and phase angle in Figures 4.8 and 4.9. Some differences are visible in the frequency

range below 100 Hz, where the input-output estimators allows for a better identification of the

first resonance peak, see Figure 4.8. The generally lower estimation quality of the first three

columns’ entries, already singled out in [103], is here confirmed, as related to lower intensity

signals. This behaviour has been interpreted in [103], in view of the physical meaning of

R-FRFs and, specifically, by accounting for the fact that the structure, in correspondence

of the exciting dofs, is virtually constrained, as those dofs were grounded. Owing to these

considerations, the last column of R(iω) is used for the following performance assessment.
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Figure 4.8: Magnitude of R-FRFs in the case of the PMMA beam: estimated by Rar, blue
solid line, estimated by Rdef , red solid line.

Even in the beam’s case, the performance of the considered estimators are compared in

terms of correlation coefficient and normalized error, as defined in Eqs. (1.59) and (1.60),

by using the estimated input-output Rdef matrix as the reference quantity to assess the

performance of all the other output-only estimators. The comparison analysis, thus, limited

to the sole entries of the 5th column of R(iω) is offered in Figure 4.10.
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Figure 4.9: Phase of R-FRFs in the case of the PMMA beam: estimated by Rar, blue solid
line, estimated by Rdef , red solid line.
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Figure 4.10: Performance analysis of the different estimators by using the correlation coefficient
(1.59) and the normalised error (1.60), in the case of the PMMA beam. Points belonging to
each dashed line represent the assessment of the R-FRF components indicated on the x-axis.

The higher global error values and the corresponding lower correlation coefficients affecting

the R(9, 5) and R(10, 5) entries are due to the increasing distance of the related free and

exciting dofs. The first peak estimation accuracy results especially affected. With regards to

the other entries, Rar, Rv, and Rlog allow for achieving a satisfactory agreement with the

reference estimator Rdef , which is computed by accounting for the input force measurement.

Being Rar, in particular, the most promising in this specific case of interest, it is used to

report on the comparison presented in Figures 4.8 and 4.9. In general, the unsatisfactory

behaviour of R1 is confirmed, since, as already seen in the simulated discrete system case,

the usage of this estimator leads to higher errors owing to its biased nature with respect to

noises affecting the exciting dofs.
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In a nutshell

1. Definition of Response based Frequency Response Functions, R-FRFs: a transfer matrix between
the so-called forced and guided dofs. The possibility for analyzing the system in a local sense (i.e.,
the original structure when some of its degrees of freedom are, virtually, considered constrained
to ground).

2. Redefinition of the classical MIMO system estimators for the assessment of R-FRFs: Rdef

as an input-ouput estimator, and Rar, REV, R1, Rv, and Rlog representing five output-only
nonparametric estimators.

3. Estimators performance comparison exploiting data from a 6-dof discrete system and impact
testing carried out on a slender PMMA beam.
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5.1 Introduction

In the present chapter, a parametric model of R-FRFs, as a specific class of global TFs,

is provided showing how these functions comprise additional local modal parameters. Such

an objective is worth to be pursued, since structural modifications or damage, occurring in

specific locations of the system under test, often need processing of both modal parameter

kinds, that is poles and modes.

135
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The possibility of adding those new modes comes from the fact that they are inherently

related to the original system, even though it is partially, virtually, constrained. In this

context, “virtually” means that no physical locks are actually needed to be added, whilst

new boundary conditions are obtained simply by measuring the R-FRFs, through performing

a feasible and attractive experimental procedure, aimed at investigating local structural

modifications, potentially occurring on the system. Such a dual nature (of being local and

additional) of the modal parameteres identifiable from R-FRFs, will be theoretically and

experimentally proved in the following.

Basically, it is extended the application of curve fitting methods, classically used in the

cases of EMA and OMA, to that of R-FRFs, whose parametric model is derived in terms of

perturbated original system’s modal parameters, combined with matrices whose entries are

transmission elements in the form of combinations of physical lumped parameters relating

defined groups of degrees of freedom. Usually, transmissibility-driven stochastic identification

techniques [52] elaborate scalar transmissibility measurements, retrieved over different loading

conditions, in order to obtain rational functions with poles equal to those of the original system.

Specifically, in [156] poly-reference transmissibility-based OMA, uninfluenced by the content

of the input spectrum, is introduced proposing a parametric model of the transmissibility

functions exploited by an identification approach which only catches the eigenstructure of

the system of interest. Similarly, in [50] multivariable transmissibilities, also known as global

TFs, are related to scalar transmissibilities to obtain pseudo scalar trasmissibility functions,

which system poles can be extracted from.

The rest of the chapter is organized as follows. In Section 5.2, the modal partial fraction

decomposition of R-FRFs is derived for a linear time invariant system, containing the

additional / local poles and mode shapes. Moreover, it is proposed an alternative theoretical

approach to obtain the modal partial fraction decomposition of R-FRFs. In Section 5.3, a

specialised algorithm to identify such additional / local poles and modes is developed. In
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Section 5.4, numerical and experimental case studies are exploited; the former are used to

evaluate the performance of the obtained algorithm on differently estimated R-FRFs, by

comparing the computed modal parameters; the latter allow for performing a full damage

detection analysis of a slender beam, to elucidate and highlight the additional / local nature

of modal parameters estracted by R-FRFs’ estimates.

5.2 Derivation of R-FRFs modal model

The linear output-output relationship, defined extracting the last m equations referred to

the free dofs’ motion in Eq. (4.2) [160], is here reintroduced:

Y(s) = −B−1
22 (s)B21Z(s) = R(s)Z(s), (5.1)

where matrix R(s) is expressed in terms of dynamic stiffness partitions and represents a

m× n response-based transfer matrix containing the R-FRFs, connecting driving and free

dofs. The entries Rij(s) in R(s) have poles corresponding to those of the system under

investigation with its forced dofs grounded as it will be easily demonstrated. In fact, the

first partition B−1
22 (s) in Eq. (5.1) stands for the specific transfer function matrix Hg(s). The

system represented by the Hg(s) is here named virtually grounded system: it arises from the

partitioning of the original dynamic stiffness B(s) and assumes the physical meaning of the

original system, characterized by the H(s) = B−1(s) transfer matrix of Eq. (4.2), subjected

to virtual constraints on the m driving dofs Z(s) [102].

Indeed, Eq. (5.1) could be rephrased in the following form

Y(s) = B−1
22 (s)Feq(s) = Hg(s)Feq(s), (5.2)

where Feq(s) = −B21(s)Z(s) is a m× 1 vector containing the forces, induced by the motion
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of the n driving dofs, which cause the free dofs’ displacements Y(s) and are related to the

restoring forces of elements connecting the two group of dofs as indicated by the partition

B21(s). Forces in Feq(s) can be interpreted as the equivalent forces one should apply to

the n free dofs location of the original system subjected to the virtual boundary constraint

Z(s) = 0 which is represented by the the transfer matrix Hg(s).

From the modal analysis theory [80], Hg(s) can be modally decomposed as

Hg(s) =

Np∑
r=1

(
ψrL

T
r

s− λr
+
ψ∗rL

H
r

s− λ∗r

)
=

2Np∑
r=1

(
ψrL

T
r

s− λr

)
, (5.3)

and

λr = −ζrωur + iωur
√

1− ζ2
r , (5.4)

where Np is the number of modes, λr are the roots of the system characteristic equation

|B22(s)| = 0 with ωur the undamped natural frequency and ζr the damping ratio, ψr is the

modal vector and Lr is the so-called modal participation factor vector. These additional

poles and modes, referred to the virtually grounded system, are involved in the matrix R(s)

giving it the character of a response-based frequency response functions. Indeed, R(s) is

achieved multiplying the transfer matrix in Eq. (5.3) by the partition B21(s) which could be

expressed in terms of M, C and K sub-matrices as

B21(s) = s2M21 + sC21 + K21, (5.5)

where M21, C21 and K21 describe the mass, damping and stiffness relation between the two

subsets of responses Y and Z. Rewriting the m× n matrix R(s) in terms of the virtually

grounded system modal parameters of Eq. (5.3) together with the transmission elements of
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Eq. (5.5), you obtain

R(s) =

2Np∑
r=1

(
−ψrL

T
r s

2M21

s− λr
− ψrL

T
r sC21

s− λr
− ψrL

T
r K21

s− λr

)
. (5.6)

Looking at the fractional terms of Eq. (5.6), the following Laplace transform of derivatives

arise

s2

s− λr
− s− λr = L

(
d2eλrτ

dτ 2

)
= L

(
λ2
re
λrτ
)

=
λ2
r

s− λr
, (5.7)

and, similarly,

s

s− λr
− 1 = L

(
deλrτ

dτ

)
= L

(
λre

λrτ
)

=
λr

s− λr
, (5.8)

where L(.) indicates the Laplace transform,
d(.)

dτ
and

d2(.)

dτ 2
are respectively the first and the

second derivative with respect to the time variable τ , and e(.) is the exponential function.

Starting from Eqs. (5.7) and (5.8), we rewrite Eq. (5.6) as

R(s) =

2Np∑
r=1

(
ψrL

T
r (−λ2

rM21 − λrC21 −K21)

s− λr

)
+

− s

(
2Np∑
r=1

ψrL
T
r

)
M21 −

(
2Np∑
r=1

λrψrL
T
r

)
M21 −

(
2Np∑
r=1

ψrL
T
r

)
C21, (5.9)

where certain additional terms find the meaning in post-initial condition produced by an

impulsive force. In fact, we write the inverse Laplace transform of Eq. (5.3) as

hg (τ) =

2Np∑
r=1

ψrL
T
r eλrτ , (5.10)

obtaining the so-called impulse response function (IRF) matrix whose derivative is

ḣg (τ) =
2m∑
r=1

ψrL
T
r λre

λrτ (5.11)
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where the generic entries hg,ij(τ) and ḣg,ij(τ) represent respectively the i-th dof displacement

and velocity, valid for τ > 0, to an impulsive force acting in the j-th dof at τ = 0. Since the

unit impulse produces the following set of post-initial conditions

hg
(
0+
)

= 0 =

2Np∑
r=1

ψrL
T
r , (5.12)

and

ḣg
(
0+
)

= M−1
22 =

2Np∑
r=1

λrψrL
T
r , (5.13)

Eq. (5.9) can be rewritten as in Eq. (5.14)

R(s) =

2Np∑
r=1

(
ψrL

T
r (−λ2

rM21 − λrC21 −K21)

s− λr

)
+ M−1

22 M21. (5.14)

Thus, a novel modal transmission vector is defined

T r =
(
−λ2

rM21 − λrC21 −K21

)T
Lr, (5.15)

in order to express the modal decomposition of R(s) along the frequency axis s = iω as

R(iω) =

2Np∑
r=1

(
ψrT

T
r

iω − λr

)
+ M−1

22 M21, (5.16)

where the vector T r derives from the combination of the mass, stiffness, damping transmission

elements in between the exciting and guided dofs and the modal participation factors Lr

of the virtually grounded system. In addition to these modal vectors, a constant residue is

found resulting related to the mass matrix of the virtually grounded system and the inertial

coupling between guided and driving dofs.

This is how Eq. (5.16) proves that matrix R(iω) collects several modal features: poles and

modes shapes of the virtually grounded system in addition to the novel modal transmission
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vector T r. To corroborate the existence of additional local mode shapes in R-FRFs matrix,

an algebraic identification is expounded in the following subsection, leading to a polynomial

model of R(iω) closely related to the modal model in Eq. (5.16). It is remarked how these

additional modal parameters are suitable for carrying out local diagnoses. Indeed, they

show an higher sensitive to local damages with respect to modal parameters accessed by the

estimation of the classical FRFs which have a global meaning [103]. It is also emphasized how

the choice of exciting and free dofs, depending on the loading condition, leads to different

definitions of R(iω) and represents the virtually constraining of certain movements. This

aspect have the makings of being a powerful tool also in the model updating field as an

alternative to the use of the anti-resonant frequencies to update numerical models [160].

5.2.1 Algebraic identification of additional local mode shapes

The alternative theoretical approach to obtain the modal partial fraction decomposition

of R-FRFs, Eq. (5.16), starts by expressing matrix R(s) as

R (s) = −adj (B22 (s))

|B22 (s)|
B21 (s) . (5.17)

where poles λr of R(s) matrix are related to characteristic polynomial of B22(s), indicated

by |B22(s)| that is a real coefficient polynomial of degree 2m. These poles represent the

virtually grounded system poles, obtained starting from the original system of Eq. (4.2) when

subjected to Z(s) = 0 condition. In order to find the mode shape vector for the generic λr of

the virtual grounded system, the following equations are used

B22 (λr) Yr = 0, (5.18)

where Yr = ψr ∈ Cm×1 is the r-th eigenvector of the system represented by the transfer

matrix Hg(s) = B−1
22 (s). The main idea is to retrieve these additional modal parameters,
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referred to the virtual system Hg(s), from matrix R(s) which is strongly related to B22 as

expressed in Eq. (5.1). Looking at R(s) matrix entries from a polynomial point of view, it is

stated

Rij (s) =

2(m−1)∑
q=0

β22
ij,qs

q

2m∑
p=0

αpsp

2∑
r=0

β21
ij,rs

r, (5.19)

where β22
ij,q ∈ R are the real-valued polynomial coefficients of matrix adj (B22(s)) entries,

αp ∈ R that of the characteristic equation, and β21
ij,r ∈ R refer to B21(s) entries which can be

easily expressed as

−B21
ij (s) =

2∑
v=0

β21
ij,vs

v = −m21
ij s

2 − c21
ij s− k21

ij . (5.20)

where m21
ij , c

21
ij , k

21
ij respectively indicate the ij entry of matrices M21, C21, K21. By multi-

plying the two numerator polynomials in Eq. (5.19), one can generally express

Rij (s) =

2m∑
k=0

βij,ks
k

2m∑
p=0

αpsp
, (5.21)

where βij,k ∈ R are a combination of β22
ij,q and β21

ij,r. By using the partial fractions method

in the case of numerator degree equal to that of denominator, Rij(s) is expanded in partial

fractions as

Rij (s) = a
(0)
ij +

2m∑
k=1

a
(k)
ij

s− λk
, (5.22)

with akij are complex-valued coefficients and a0
ij is a constant term related to certain mass

matrix entries which represent the coefficients of highest degree terms and embody the
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remainder of the polynomial long division. By using matrix notation

R (s) =


a

(0)
11 · · · a

(0)
n1

...
. . .

...

a
(0)
m1 · · · a

(0)
mn

+
2m∑
k=1


a

(r)
11

s− λk
· · · a

(k)
1n

s− λk
...

. . .
...

a
(k)
m1

s− λk
· · · a

(k)
mn

s− λk

 = A(0) +
2m∑
k=1

A(k)

s− λk
, (5.23)

where A(k) ∈ Cm×n are the so-called residual matrices and A(0) is a constant residue. Pre-

multiplying both terms in Eq. (5.23) by (s− λr)B22(s), referring to a generic r-th pole, we

obtain

(s− λr) B22 (s) R (s) = (s− λr) B22 (s) A(0) +
2m∑

k=1, k 6=r

(s− λr) B22 (s) A(k)

s− λk
+ B22(s)A(r),

(5.24)

and by making the limit of both terms as s approaches λr

lim
s→λr

(s− λr) B22 (s) R (s) = 0 = B22 (λr) A(r), (5.25)

it is noticed that, similarly to the definition in Eq. (5.18), each column of A(r) is proportional

to the r-th eigenvector of the system Hg(s).

Until now, the existence of mode shapes, relative to virtually grounded system, is

demonstrated in the algebraic structure of the R-FRFs matrix. In fact, as derived in

Section 5.2, we can express the generic r-th residue matrix from the modal model in Eq. (5.16),

equivalent to the polynomial representation in Eq. (5.23) as

ψrT
T
r =


φ1,rT1,r · · · φ1,rTn,r

...
. . .

...

φm,rT1,r · · · φm,rTn,r

 = A(r), (5.26)
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where, specifically, entries of the modal transmission vector could be expounded as

T r =
(
−λ2

rM21 − λrC21 −K21

)T
Lr =

=



m∑
k=1

(−λ2
rm

21
k1 − λrc21

k1 − k21
k1)

φk,r
mar

...
m∑
k=1

(−λ2
rm

21
kn − λrc21

kn − k21
kn)

φk,r
mar


=


T1,r

...

Tn,r

 , (5.27)

and the division remainder

A(0) = M−1
22 M21, (5.28)

assume the meaning of a constant residue related to virtually grounded system mass matrix

and to the inertial coupling between driving and guided dofs.

5.3 R-FRFs identification technique

The similarity between the modal decompositions in Eqs. (5.3), (1.24) and (1.33) allows the

application of the classical modal parameters estimation schemes to extract modal parameters

from the PSDs matrix with the only difference represented by the operational participation

vectors. By comparing Eqs. (5.16) and (1.33), the analogy between the half-spectrum modal

model and the R-FRFs decomposition emerges. Indeed, the modal transmission vectors

T r, similarly to the operational participation vectors Kr, are a combination of the modal

participation vectors and some physical parameters related to the transmission elements in

between the guided and driving dofs, that are generally unknown. In order to estimate the

modal parameters of the R-FRFs, one can apply identification techniques developed for OMA.

Here, it is made the choice to use a frequency domain parametric modal method based on the

Least Squares Frequency Domain (LSFD) estimator, relied on the modal model in Eq. (5.16),

in combination with the poly-reference Least Squares Complex Frequency (pLSCF) method

[114]. The LSFD method is employed to obtain a global estimate of the mode shapes in
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combination with the pLSCF providing poles and modal transmission vectors.

Once the poles and the modal transmission factors have been computed by means of a

stabilization diagram, the virtually grounded system mode shapes can be found, at last, by

solving in a linear least square sense Eq. (5.16) through the well-known LSFD estimator.

The virtually grounded system mode shapes consistency has been validated using the Modal

Assurance Criterion (MAC).

5.4 MPE from R-FRFs

Modal parameter estimation, MPE, is performed following the procedure described in

Section 5.3 for two case studies. Firstly, the 6-DOF lumped parameter system of Figure 5.1 is

analyzed in the case-based R-FRFs matrix of Eq. (4.26). Retrieved matrix R(iω) by means

of six different estimators proposed in Section 4.3, MPE is performed exploiting each of

the measured R(iω). This example gives the possibility to compare the modal parameters

referred to R(iω) modal decomposition with respect to the theoretical ones of the system

virtually grounded on exciting masses shown in Figure 5.1.

m3
k1

x3(t) x4(t)

k2

k3 k4 k5

k8

k9

k7

k6

m2

m1

m6

m5

m4

Figure 5.1: Schematic of the 6 DOF lumped parameter system virtually grounded on the
exciting dofs.

Secondly, an experimental slender PMMA beam is examined in healthy and damaged

state: the case-based R-FRFs matrix is that of Eq. (4.27) which ensures to virtually support

the left undamaged part of the beam at a1−5 locations, where the impacts occur, how sketched
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in Figure 5.2. This choice allows to compare the modal parameters, extracted from the several

R(iω) measurements in the two beam states, showing the local meaning of the R-FRFs

in addition to the good sensitivity of the R-FRFs modal parameters with respect to the

damage occurrence. This point is corroborated by performing a further analysis based on nine

different R(iω) definitions, focusing on several local portion of the beam, aimed at localizing

the damage.

y
x

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Defect
zone

Exciting dofs Guided dofs

Figure 5.2: Schematic of the experimental beam with the classification of guided and exciting
dofs. The red virtual supports correspond to the impact locations.

5.4.1 Identification of a lumped-parameter model

The identification procedure is shown in the case of the Rv measurement of the R-FRFs

matrix. From the pLSCF, the stabilization diagram is built up in Figure 5.3 assuming

subsequently an increasing number of the model order p of Eq. (1.35). The stabilisation

diagram gives a strong indication of the two physical modes allowing the selection of the

corresponding stable poles, indicated with ‘s’.

s s
s s
s s
s s
s s
s s
s s

s
s s
s s
s s
s s

v

o o

Figure 5.3: Identification of the lumped parameter system by using Rv estimated R-FRFs:
stabilization diagram along with the magnitude of the R-FRFs sum function, blue line. The
stable poles are indicated with ‘s’ and the model order is indicated on the left ordinate axis.

The pair of natural frequencies and damping ratios, computed from the two selected
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stable poles, are reported in Table 5.1 in addition to the exact modal parameter of the system

grounded in the exciting dofs. The relative percentage error ∆ = 100× (vth− vest)/vth is also

provided for both natural frequencies and damping ratios.

Natural Frequency (Hz) Damping Ratio (%)
Exact Estimated |∆|(%) Exact Estimated |∆|(%)

Mode 1 59.17 59.19 0.0408 0.929 0.8797 5.340
Mode 2 95.73 95.78 0.0530 1.504 1.365 9.223

Table 5.1: Identification of the lumped parameter system by using by using Rv estimated
R-FRFs: comparison between exact and estimated modal parameters.

Achieved poles and modal transmission vectors from the first step, the MPE ends by

deploying the LSFD estimator in order to compute the unscaled mode shapes.

Once the modal parameters are computed, the data synthesized from the modal model of

Eq. (5.16) are compared with the measured data as shown in Figure 5.4. The visual match,

together with an high correlation coefficient for all the R-FRFs, proves the goodness of the

MPE process results.

Figure 5.4: R-FRFs in the case of the lumped parameter system: comparison between Rv

estimated R-FRFs, dotted lines, and syntheses by modal model, solid lines.
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The identification process is repeated starting from each of the six different R(iω) estimates.

In Table 5.2, the computed natural frequencies and damping ratios are collected together with

the relative percentage error obtained referring to the exact values of Table 5.1. Figure 5.5

shows the estimated modal parameter errors of Table 5.2 in a graphical fashion.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

Rar
Mode 1 59.15 0.0243 0.7636 17.84
Mode 2 95.77 0.0355 1.342 10.78

REV
Mode 1 59.19 0.0367 0.8726 6.110
Mode 2 95.78 0.0524 1.366 9.174

Rlog
Mode 1 59.11 0.0966 0.9924 6.782
Mode 2 95.89 0.1737 1.192 20.71

R1
Mode 1 59.21 0.0735 1.263 35.89
Mode 2 95.79 0.0620 1.460 2.916

Rv
Mode 1 59.19 0.0408 0.8797 5.340
Mode 2 95.78 0.0530 1.365 9.223

Rdef
Mode 1 59.19 0.0331 0.8727 6.095
Mode 2 95.78 0.0532 1.365 9.249

Table 5.2: Identification of the lumped parameter system: comparison between exact and
estimated modal parameters computed by using the different R-FRFs estimators.

The identification results show a very good agreement between the theoretical poles of

the virtually grounded system of Figure 5.1 and the ones extracted from the R(iω) matrix

by means of the pLSCF estimator. Negligible errors are observed for the identified natural

frequencies, higher errors characterize the estimated damping ratios. The MPE performed

on REV, Rv, and Rdef measurements leads to better results in terms of damping ratios

showing errors less the 10% for both the system modes. Figure 5.5 points out the total

agreement between the modal parameter accuracy and the performance of the different

R-FRFs estimators. The proposed comparison is a further check of the R-FRFs modal model

formulation, derived in Section 5.3, and its strong analogy with the modal expression of the

half spectrum matrix.
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Figure 5.5: Representation of estimated modal parameters’ deviations from corresponding
theoretical values, in the case of the lumped parameter system, as collected in Table 5.2.

5.4.2 Identification of a PMMA experimental beam and damage

detection

In the experimental case study, the identification process is performed considering a

slender PMMA beam in two state: an healthy reference state and a damaged one realised

introducing a thickness reduction as depicted in Figure 5.2. The particular R(iω) matrix

involved in Eq. (4.27) is processed: it relates the guided x-accelerations from sensor a6 to

a10 with the exciting ones from a1 to a5. Figures 5.6 and 5.7 show the Rdef estimate of this

particular R-FRFs in terms of magnitude and phase angle. Sliding effects on the R-FRFs exist

due to the damage occurrence on the beam side that includes the free dofs. This frequency

shifting is more evident for the second and third peak owing to the measurement accuracy

in the low frequency range. The virtually constrained system defined by the particular

R(iω) matrix is schematized in Figure 5.2 where virtual supports are introduced on the left

undamaged part of the beam in correspondence of the impact loads y-coordinates.
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Figure 5.6: Magnitude of R-FRFs, computed by using Rdef estimator, in the case of the
PMMA beam: healthy state, blue line, and damaged state, red line.
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Figure 5.7: Phase of R-FRFs, computed by using Rdef estimator, in the case of the PMMA
beam: healthy state, blue line, and damaged state, red line.

The MPE procedure is performed starting from the Rdef measurements of the beam in

the healthy and damaged states. In this respect, the last column of the R(iω) matrix is

processed ensuring the estimation of the only 5th component of the modal transmission vector

T r for each rth mode, see Eq. (5.16). From the pLSCF estimator, the stabilization diagrams

are built up in Figure 5.8. The stabilisation diagrams give a strong indication of the three

physical modes allowing the selection of the corresponding stable poles. The stability of the
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first potential mode is affected by the poor R-FRFs first peak quality as visible especially

in the damaged beam state. Natural frequencies and damping ratios computed from the

selected poles are shown in Table 5.3.
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(a) Healthy: stabilization diagram
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(b) Damaged: stabilization diagram

Figure 5.8: (a) Identification of the healthy (a) and damaged (b) PMMA beam by using
Rdef estimated R-FRFs: stabilization diagram along with the magnitude of the R-FRFs sum
function, blue line.

(a) Healthy: mode shapes
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(b) Healthy: MAC

(c) Damaged: mode shapes
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(d) Damaged: MAC

Figure 5.9: Identification of the healthy (a)-(b) and damaged (c)-(d) PMMA beam by
using Rdef estimated R-FRFs: (a)-(c) estimated modal vectors, (b)-(d) autoMAC from the
estimated modal vectors’ set.

From the second identification step, a modes shape vectors estimate is accessed by means

of the LSFD estimator. In Figure 5.9 the three unscaled mode shapes, real part, are reported



Chapter 5. Modal analysis through R-FRFs 153

for the two beam states. The mode vector ψr is defined in its m components corresponding

to the guided dofs locations represented by the five accelerometers from a6 to a10. The

corresponding autoMAC values are reported for each set of modes showing their orthogonality.

As demonstrated in Section 5.3 and reported in [102] for the case of a finite-element beam

model, the mode shapes extracted from matrix R(iω) consist in the physical ones of the

original system virtually constrained at the exciting dofs locations. The particular constraint

condition depends on the signal considered: in the present case the y-accelerations from

sensors a1 to a5 play the role of the grounded dofs.

As for the previous case study, the identification process is repeated involving each of

the six different R(iω) estimates regarding the two beam states. The relative percentage

variation, ∆ = 100× (vh − vd)/vh, between the healthy and damaged state is also reported

for both frequencies and damping ratios.

Natural Frequency (Hz) Damping Ratio (%)
Healthy Damaged ∆(%) Healthy Damaged ∆(%)

Rar

Mode 1 28.98 33.65 16.132 14.69 8.195 −44.23
Mode 2 218 196.9 −9.649 3.776 3.739 −0.976
Mode 3 608 563.2 −7.378 2.995 3.217 7.401

REV

Mode 1 33.90 3.789
Mode 2 217.3 195.2 −10.159 4.674 3.725 −20.30
Mode 3 606.9 564.1 −7.055 2.802 2.942 5.013

Rlog

Mode 1
Mode 2 218.3 196.4 −9.996 3.179 3.166 −0.399
Mode 3 607.9 563.6 −7.296 2.981 3.354 12.486

R1

Mode 1
Mode 2 216.9 194.7 −10.24 4.532 4.800 5.903
Mode 3 607.3 562.2 −7.422 3.160 3.3127 4.826

Rv

Mode 1
Mode 2 218.4 197.5 −9.555 3.139 3.087 −1.664
Mode 3 607.5 562.6 −7.391 3.017 3.291 9.113

Rdef

Mode 1 28.11 36.55 30.02 4.265 12.10 183.8
Mode 2 217.6 194.9 −10.40 3.172 3.168 −0.141
Mode 3 607.4 562.6 −7.373 3.003 3.207 6.795

Table 5.3: Identification of the PMMA beam: comparison between the estimated modal
parameters, in the cases of the healthy and the damaged state, computed by using the
different R-FRFs estimators.
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The MPE procedure leads to the identification of all three modes only in the case of Rar

and Rdef processing, the other estimators show less accuracy in the low frequency range baldy

affecting the stability of the first pole. The 2nd and 3rd mode natural frequencies undergo a

significant negative shift, around 10%, which, as reported in [103], is almost double than the

frequency changes of the original system poles. The 1st mode, when available, presents an

opposite frequency shift. Looking at the damping ratios in Table 5.3, it seems more difficult

to inspect significant symptoms owing to the higher uncertainty of the estimates. Generally

the 2nd mode damping ratio decreases, except for results from R1 processing, and the 3st

one increases. The relevant aspect is the local meaning of the additional poles and modes

that compose R(iω) matrix, suitably changing the exciting dofs, together with the loading

conditions, it becomes possible to make different analyses based on several R(iω) matrices

each containing modal parameters of a particular virtual subsystem. These additional modal

parameters exhibit different sensitivity with respect to the damage location allowing SHM

with a local approach. In the beam case, ten different loading conditions are collected, each

defined by the presence of the impulsive load on the i-th accelerometer position along the

x-direction. This allows to easily change the two responses subsets definition, exciting dofs

and free ones, making possible the statement of several version of the matrix relationship in

Eq. (5.1). We classify two accelerometers as guided dofs, and the remaining eight as exciting,

in order to inspect different free beam portion. Changing the pair of sensors classified as free,

nine analyses are performed following the identification procedure described in Section 5.3.

The first natural frequency of each of the nine virtually grounded system is accessed both in

the healthy and damaged state. The percentage relative variation ∆(%) is used to compare

this modal parameter in the two beam state. In Table 5.4 and Figure 5.10, the results derived

by the MPE process on the nine R(iω) measurements are collected.
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Natural Frequency (Hz)
Guided dofs Exciting dofs Healthy Damaged |∆|(%)

1, 2 3, 4, 5, 6, 7, 8, 9, 10 145.0 141.1 −2.666
2, 3 1, 4, 5, 6, 7, 8, 9, 10 458.2 451.2 −1.526
3, 4 1, 2, 5, 6, 7, 8, 9, 10 594.9 588.6 −1.067
4, 5 1, 2, 3, 6, 7, 8, 9, 10 604.6 605.3 0.1266
5, 6 1, 2, 3, 4, 7, 8, 9, 10 613.3 604.3 −1.463
6, 7 1, 2, 3, 4, 5, 8, 9, 10 606.8 582.4 −4.016
7, 8 1, 2, 3, 4, 5, 6, 9, 10 604.5 593.0 −1.894
8, 9 1, 2, 3, 4, 5, 6, 7, 10 465.9 432.5 −7.163
9, 10 1, 2, 3, 4, 5, 6, 7, 8 147.8 120.6 −18.42

Table 5.4: Local diagnoses of the PMMA beam: comparison between the estimated first
natural frequency, in the cases of the healthy and the damaged state, extracted from the
several R-FRFs obtained by changing the definition of guided and exciting dofs.

Figure 5.10: Local diagnoses of the PMMA beam: comparison between the estimated first
natural frequency, in the cases of the healthy, blue square, and the damaged state, red cross.
The green stems indicate the relative percentage frequency variation. The frequency value is
indicated on the right ordinate axis and the percentage relative shift on the left one.

The damage occurrence, located in between the accelerometers 8th and 9th, becomes

affecting more significantly the first natural frequency of the virtual system as its unconstrained

dofs get closer to the artificially introduced damage. Indeed, the 8th and 9th cases, that

focuses on a beam portion that includes the reduced beam sections, exhibit a frequency shift

∆(%) remarkably greater than the one of the other cases. In this sense, the local meaning

of the additional modes, which compose the R-FRFs, provides the possibility to develop

indicators and strategies designated for local structural diagnoses.
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In a nutshell

1. R-FRFs modal structure in terms of perturbed original system’s modal parameters: a modal
partial fraction decomposition containing additional poles and mode shapes of the original
system, when considered virtually constrained to ground at the exciting dofs locations.

2. The role of modal transmission vectors deriving from the combination of some transmission
elements, existing between the exciting and free dofs, and the modal participation factors of the
virtually constrained (or perturbed) system.

3. Modal parameter estimation, based on frequency-domain estimators from the field of experimental
and operational modal analysis, applied to the R-FRFs, measured by several estimators, from
numerical and experimental case studies.

4. Local diagnosis on an experimental PMMA beam, aimed at inspecting the sensitivity of the
additional poles, estimated from R-FRFs, with respect to the damage location.



Concluding Remarks

In the thesis, here presented, novel contributions in the field of Operational Modal Analysis

are proposed with a view at system identification, monitoring, and damage detection in

challenging engineering applications. The main research efforts tackle specific challenging

problems, belonging to the field of structural identification, such as microsystems dynamic

characterization, innovative OMA framework formulations that fit operational scenarios

violating the NExT assumption, definition of nonparametric estimators and derivation of the

relevant modal structure of global transmissibility matrices, R-FRFs, pointing out the role of

their modal content in damage detection.

In the first part, Chapter 1 develops the modal formulations of two of stochastic iden-

tification techniques major functions, such as output cross-correlations and power spectral

densities, when the inputs are assumed to be realizations of white uncorrelated noise processes.

A particular two step procedure, operating in the frequency domain, is invoked and briefly

described. The classical RMFD polynomial model is presented together with its relevant

least squares problem (called pLSCF) for coefficient matrices calculation. A conversion of

the matrix fraction description into a state-space one is determined or, put another way, a

contrallable canonical state-space realization of the RMFD model is adopted and the concept

of stabilisation analysis, associated to the companion matrix eigenvalue decomposition at

increasing polynomial model orders, is clarified as a tool for physical modes selection. So in

closing the classical OMA method outline, the LSFD estimator, employed for mode shapes

extraction, is recalled and common procedures for data pre-processing, i.e. the correlogram
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approach, and modal parameters validation, such as synthesis and MAC, are provided. Once

the fundamental aspects of output-only identification field are pointed out, the discussion is

carried forward to some novel elements.

In Chapter 2, the vibro-acoustical Operational Modal Analysis (OMA) approach is

presented as a valid methodology to perform dynamical identification on micro-devices. To

this end, particular attention is paid to a particular case study, that is a quartz tuning

fork (QTF) vibrating in a fluid environment. Specifically, two fundamental conditions are

investigated: QFT fundamental in-plane skew-symmetric mode and the two first out-of-plane

flexural modes. Furthermore, in order to reproduce excitation and measurement techniques

suitable for modal testing on such a microelectromechanical system, an acoustic stationary

random field, generated by two speakers, is exploited to acoustically excite the QTF and the

resulting structural velocities are measured and recorded by using a single-point LDV, while

an electronic microphone is employed to measure the acoustic pressure at a specific fixed

point close to the sensor. The latter represents an acoustical output reference to be included

in the mathematical formulation for the output-only modal decomposition of vibro-acoustical

systems derived in [124]. We conduct a comparison between the results obtained by means

of the identification performed on the positive cross-power spectra, PCPs, computed by

using only structural responses (classical OMA approach) and those with PCPs, which

include both structural and acoustical outputs (this is referred as vibro-acoustical OMA).

Including the acoustic pressure reference is proved to be crucial to an accurate estimate of

modal parameters. We underline that the convenience of vibro-acoustical OMA for MEMS

is related to its simple setup that exploit non-contact measurement sensors, such as LDVs

and microphones, together with an acoustical excitation overcoming the conventional modal

testing limits when dedicated to microsystems. Furthermore, this approach remains firmly

based on an OMA formulation for vibrating system coupled with a fluid medium. As a

possible further development of the proposed analysis, one can include in the coupled system



Chapter 5. Modal analysis through R-FRFs 159

dynamics the analytical model of the fluid-structure interaction proposed in [28], which

accounts for the inertial, the purely viscous and the diffusive terms, to further extend the

OMA formulation in the aim of include the fluid coefficients into the identification procedure.

Chapter 3 outlines the development of a generalized OMA framework, meaning an

alternative approach aiming at overcoming the NExT assumption limitations, which occur

when output-only modal analysis is performed on mechanical system, such as vehicles during

road test or operating wind turbines. The G-OMA approach is designed to fix no-NExT

effects (i.e. coloration, time correlation, coherence, harmonics, etc.) by including a priori

known input correlation features in OMA modal structures. In fact, a generalized modal

decomposition of CFs and PSDs matrix is clarified by making no assumptions about the

forces correlation. In doing so, the concept of frequency (or time lag) dependent operational

reference vectors arises as a class of modal vectors which in turn collects a combination of

several contributions related to the forces acting on the system. Moving from the theoretical

generalized PSD partial fraction decomposition, a specific two step identification procedure,

operating in the frequency domain, is developed. The first step, resulting in poles and mode

shapes estimation, is based upon an extended left matrix fraction description and its relevant

state-space observable canonical realization. The second step is an LSFD-based estimator

operating on the extended operational reference vectors calculation. The investigated no-

NExT effects are the coloured nature of stochastic loads, the presence of temporal correlation

and coherence between inputs. The proposed formulation is compared with the classical one,

described in Chapter 1, by performing modal parameter estimation of a numerical 4-DOF

lumped-parameter system and an experimental PTFE beam under different operating loading

conditions, comprising a number of NExT assumption infringements. The suitability of the

G-OMA method is confirmed by improved results in terms of stabilisation diagram and modal

parameters accuracy. The usage of identification techniques, based on the modal structures

here proposed, could inspire simple and cost-effective “ad hoc” tools able to compute the
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modal parameters of mechanical systems under operating conditions that violate to a certain

extent the hypothesis of the classical OMA techniques.

The second part of the thesis intends investigating the problem of estimation and identifi-

cation by R-FRFs, as a specific class of global transmissibility functions that have proved to be

of utmost importance in the fields of modal identification and health continuous monitoring of

structures. In Chapter 4, the possibility of redefining the classical MIMO systems’ estimators

for the assessment of R-FRFs is, specifically, investigated. First, an input-output estimator

Rdef is introduced, whose definition is based on a combination of specific partitions of the

classical FRF matrix of the system under test. Thus, the knowledge of the input forces is

needed to this estimator computation and classical H1, H2, and Hv FRFs’ estimators can be

used for achieving, in a preliminary phase, the estimates of the needed classical FRFs. Second,

five output-only nonparametric estimators, namely Rar, REV, Rlog, R1, and Rv, are redefined;

their performance, together with that of Rdef , are compared, exploiting (i) the numerical

case of a 6-dof discrete system, whose input and output responses are simulated together

with the presence of measurement noise, and (ii) the data collected during impact testing

experiments, carried out on a slender PMMA beam. The global quantitative comparison of

the performance of the proposed R-FRFs’ estimators is conducted by using a normalised

error and a correlation coefficient, through which the best strategies are elucidated in each

considered case. With regards to the simulated case, the performance analysis of the different

estimators show error values of about 5% maximum achieved for Rdef , REV, Rv and 10%

maximum for Rar and Rlog. Poor accuracy around the resonance peaks is reached with the

R1 estimator which suffers for measurement errors present on the exciting dofs, generally

comparable with that of the free ones. In the case of the real-world experimental data, Rar,

Rv, and Rlog allows for achieving a good agreement with the reference estimator Rdef , which

takes into account the input force measurements. These three output-only estimators prove

to be the most promising. In particular, Rv, which treats errors on exciting and free dofs
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in similar manner, is expected to be the estimator most commonly used in the applications.

As a possible further development of the proposed analysis, one could adapt additional

nonparametric FRF estimators, which exploit errors-in-variables stochastic noise models or

involve an iterative improvement strategy, to the case of the RFRFs.

In order to extend the usage of the MPE methods, employed in EMA and OMA, to global

transmissibilities, Chapter 5 offers an innovative modal partial fraction decomposition of the

R-FRFs, containing additional poles and mode shapes of the original system, when considered

virtually constrained to ground at the exciting dofs locations. Specifically, those new, virtual

boundary conditions depend on the signals classified as exciting dofs and, moreover, the

virtually constrained to ground system responses are observed in correspondence of the free

dofs. In addition to poles and modes of the virtual subsystem, the proposed modal model of

the R-FRFs involves novel modal transmission vectors, which derive from the combination of

some physical lumped parameters, related to the transmission elements existing between the

exciting and the free dofs, and the modal participation factors of the virtually constrained

system. The strong similarity between the R-FRFs modal model and that of the positive

power spectrum matrix is highlighted: this aspect allows for performing MPE from R-FRFs,

by making usage of the pLSCF algorithm combined with the LSFD method, both typically

employed, in tandem, in the OMA field. By presenting different numerical and experimental

case studies, the fundamental aspect of the local meaning of the estimated modal parameters

is underlined. Actually, by suitably changing the exciting dofs’ locations, it becomes possible

to make different analyses based on independent R-FRFs, each containing modal features of

a particular virtual subsystem. This key point is elucidated and corroborated by performing

local diagnoses on an experimental PMMA beam, aimed at inspecting the sensitivity of the

additional poles estimated from R-FRFs with respect to damage location. Furthermore,

the corresponding additional modes are effectively usable in SHM, relying on their higher

sensitivity to local changes with respect to that of classical modes. This magnification of a
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structural change results from processing the R-FRFs related to different virtually constrained

sub-structures, all including the damage to be detected. Further developments of this work

will focus on relaxing the definition and the number of usable exciting dofs’ locations and

on including the usage of the modal transmission vectors, with the aim of scaling the mode

shapes.
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[12] K. Bogsjö, K. Podgórski, and I. Rychlik. Models for road surface roughness. Vehicle

System Dynamics, 50(5):725–747, 2012.
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[49] G. De Pasquale and A. Somà. Dynamic identification of electrostatically actuated mems



Bibliography 169

in the frequency domain. Mechanical Systems and Signal Processing, 24(6):1621–1633,

2010.

[50] C. Devriendt, G. De Sitter, and P. Guillaume. An operational modal analysis approach

based on parametrically identified multivariable transmissibilities. Mechanical Systems

and Signal Processing, 24(5):1250–1259, 2010.

[51] C. Devriendt, G. De Sitter, S. Vanlanduit, and P. Guillaume. Operational modal analysis

in the presence of harmonic excitations by the use of transmissibility measurements.

Mechanical Systems and Signal Processing, 23(3):621–635, 2009.

[52] C. Devriendt and P. Guillaume. The use of transmissibility measurements in output-only

modal analysis. Mechanical Systems and Signal Processing, 21(7):2689–2696, 2007.

[53] C. Devriendt and P. Guillaume. Identification of modal parameters from transmissibility

measurements. Journal of Sound and Vibration, 314(1):343–356, 2008.

[54] B. Dickinson, T. Kailath, and M. Morf. Canonical matrix fraction and state-space

descriptions for deterministic and stochastic linear systems. Automatic Control, IEEE

Transactions on, 19(6):656–667, Dec 1974.

[55] C. J. Dodds and J. D. Robson. The description of road surface roughness. Journal of

Sound and Vibration, 31(2):175–183, 1973.

[56] C. J. Dodds and J. D. Robson. Partial coherence in multivariate random processes.

Journal of Sound and Vibration, 42:243–249, 1975.

[57] X. Dong, J. Lian, M. Yang, and H. Wang. Operational modal identification of offshore

wind turbine structure based on modified stochastic subspace identification method

considering harmonic interference. Journal of Renewable and Sustainable Energy, 6(3),

2014.



Bibliography 170

[58] A. Edelman and H. Murakami. Polynomial roots from companion matrix eigenvalues.

Mathematics of Computation, 64(210):763–776, 1995.

[59] M. El-Kafafy, P. Guillaume, and B. Peeters. Modal parameter estimation by combining

stochastic and deterministic frequency-domain approaches. Mechanical Systems and

Signal Processing, 35(1-2):52–68, 2013.

[60] M. El-Kafafy, B. Peeters, T. Geluk, and P. Guillaume. The MLMM modal parameter

estimation method: A new feature to maximize modal model robustness. Mechanical

Systems and Signal Processing, 120:465–485, 2019.

[61] D. Ewins. Modal Testing: Theory, Practice and Application. Engineering dynamics

series. Wiley, 2000.

[62] W. Fan and P. Qiao. Vibration-based damage identification methods: A review and

comparative study. Structural Health Monitoring, 10(1):83–111, 2011.

[63] C. Farrar, S. Doebling, and D. Nix. Vibration-based structural damage identifica-

tion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 359(1778):131–149, 2001.
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