
07 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Distributed Situational Awareness on a Heterogeneous Multi-Robot System / Palieri, Matteo. - ELETTRONICO. - (2022).
[10.60576/poliba/iris/palieri-matteo_phd2022]

This is a PhD Thesis

Original Citation:

Distributed Situational Awareness on a Heterogeneous Multi-Robot System

Published version
DOI:10.60576/poliba/iris/palieri-matteo_phd2022

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/232679 since: 2021-12-24

Publisher: Politecnico di Bari

Abstract

Multi-robot systems have gained substantial attention in the last decades for their po-

tential in autonomously retrieving and providing situational awareness in environments

that might be too far or dangerous for humans to approach. Examples include industrial

monitoring, search and rescue, and planetary exploration. To accomplish the mission

objective in such scenarios, heterogeneous multi-robot systems are usually employed

due to their complementary exploration capabilities (e.g. terrestrial, aerial).

The overall reliability of the situational awareness retrieved by the robot team strongly

depends on the accuracy of on-board perception systems, such as localization and se-

mantic understanding modules. In heterogeneous multi-robot systems agents might

have different mobility, sensor suites and computational capabilities. For this reason,

accuracy of perception systems is greatly challenged by potentially constrained on-board

computational resources.

In the localization domain, lidar odometry has gathered considerable attention during

the last decade as a robust localization method for extreme terrains, while for semantic

understanding, neural networks based modules represent the current state-of-the-art.

While great progress has been achieved in these fields, their computational cost is still

prohibitive for limited on-board computers of less capable robots, and actions need to

be taken to not compromise the overall precision of the situational awareness retrieved

by the robot team.

This work is motivated by the aim of enabling robust and accurate situational awareness

retrieval on a heterogeneous multi-robot system for extreme operations in GPS-denied

and perceptually-degraded environments under severe computation and communication

constraints.

We present systems that can contribute in pushing the state-of-the-art boundaries in en-

i

hancing the overall accuracy of the situational awareness retrieved by an heterogeneous

multi-robot system.

First, to provide a reliable ego-motion estimation method for robotic exploration of

GPS-denied and perceptually-degraded environments, we present a high-precision lidar

odometry system that achieves robust and real-time operation under challenging per-

ceptual conditions. LOCUS (Lidar Odometry for Consistent operation in Uncertain

Settings), provides an accurate multi-stage scan matching unit equipped with an health-

aware sensor integration module for seamless fusion of additional sensing modalities.

Then, to enhance perception accuracy of computationally constrained platforms in het-

erogeneous multi-robot systems, we introduce Swarm Manager. The presented ap-

proach exploits Distributed Computation and Software Defined Networking paradigms

allowing robots to offload heavy computation (e.g. lidar odometry, object detection)

to other more resourceful peers in the team under decision of a globally-aware central

orchestrator. For each offloading request, Swarm Manager simultaneously identifies the

optimum server where is best to execute the task, and the optimum path through is

best to route the data given the current system state. The presented approach provides

resilience to the failure of the central orchestrator by means of a dynamic leader election

mechanism.

We evaluate the performance of LOCUS against state-of-the-art techniques in percep-

tually challenging environments, and demonstrate top-class localization accuracy along

with substantial improvements in robustness to sensor failures. We then demonstrate

real-time performance of LOCUS on various types of robotic mobility platforms in-

volved in the autonomous exploration of the Satsop power plant in Elma, WA where

the proposed system was a key element of the CoSTAR team’s solution that won first

place in the Urban Circuit of the DARPA Subterranean Challenge.

Finally, we demonstrate enhancements achievable with Swarm Manager in the overall

accuracy of the situational awareness retrieved by the heterogeneous multi-robot system

for a multi-level and communication-constrained exploration of a dismissed power plant

by a team of four autonomous robots. We demonstrate enhanced localization accuracy,

improved semantic detection precision, and increased autonomy time.

ii

Acknowledgements

I deeply thank and express all my gratitude to:

• Dr. Cataldo Guaragnella, Polytechnic University of Bari

• Dr. Ali-akbar Agha-mohammadi, NASA Jet Propulsion Laboratory

• Dr. Benjamin Morrell, NASA Jet Propulsion Laboratory

• Dr. Jeffrey A. Edlund, NASA Jet Propulsion Laboratory

• Dr. Luca Carlone, Massachusetts Institute of Technology

• Dr. Giorgio Parladori, SM-Optics

• Dr. Marco Mussini, SM-Optics

iii

Table of Contents

1 Introduction 1
1.1 Multi-Robot Systems . 1
1.2 Applications . 2
1.3 Challenges . 4
1.4 DARPA Subterranean Challenge (SubT) 7
1.5 Goal of the work . 11
1.6 Organization of the work . 11

2 Background and Related Work 12
2.1 Localization . 13

2.1.1 Simultaneous Localization And Mapping (SLAM) 13
Structure of a SLAM system . 14
Types of SLAM system . 16
Related Work . 18

2.1.2 Lidar Odometry . 19
Related Work . 21

2.2 Object Detection . 23
Related Work . 24

2.3 Distributed Computation . 25
2.3.1 Approaches . 25
2.3.2 Fields . 26
2.3.3 Related Work . 27

2.4 Networking . 30
2.4.1 Mobile Ad Hoc Network . 30
2.4.2 Related Work . 30
2.4.3 Software Defined Networking 32
2.4.4 Related Work . 33

3 Contributions 34
3.1 Gaps . 34

iv

3.2 Contributions . 35

4 LOCUS 37
4.1 System Description . 38

4.1.1 Point Cloud Preprocessor . 38
4.1.2 Scan Matching Unit . 41

Sensor integration module . 42
Scan-to-scan . 43
Scan-to-submap . 45
Notes on multi-threading . 46

4.1.3 Environment Adaptation: Flat Ground Assumption 46
4.1.4 Adaptation for Different Platforms 46

4.2 Field Experiments . 47
4.2.1 Ablation Study . 48
4.2.2 Evaluation Against the State-of-the-Art 50

Accuracy Evaluation . 51
Robustness Evaluation . 57
Efficiency Evaluation . 59

4.2.3 Real-Time Operation Across Different Platforms 59
Hardware and Tuning . 62
Performance . 62

4.2.4 Discussion . 64
4.3 Conclusions . 64
4.4 Ongoing Work . 65

4.4.1 Open Space Detector . 65
4.4.2 Map Sliding Window . 66

4.5 LAMP back-end . 70

5 Swarm Manager 71
5.1 Entities . 73

5.1.1 Nodes . 73
5.1.2 Edges . 75
5.1.3 Messages . 77

5.2 Interactions . 79
5.2.1 Updating Manager’s World Model 79
5.2.2 Computation Offloading Request Generation 81
5.2.3 Computation Offloading Request Handling 81

Optimum Server Computation 82

TABLE OF CONTENTS v

Optimum Route Computation 83
Solution Generation . 85

5.2.4 Computation Offloading . 85
5.2.5 Forwarding Mechanism . 87
5.2.6 Server Side Processing . 89
5.2.7 Sending back the result . 90
5.2.8 Network Delay Simulation . 91
5.2.9 Backup Manager . 91

6 Integrated System Performance 94
6.1 Dataset Description . 94
6.2 LOCUS Offloading Results . 98

6.2.1 Autonomy Time . 107
6.3 YOLO Offloading Results . 108

6.3.1 Autonomy Time . 112

7 Conclusions and Future Work 113
7.1 Conclusions . 113
7.2 Future Work . 114

8 Publications 116

TABLE OF CONTENTS vi

List of Figures

1.1 Tham Luang cave rescue mission . 3
1.2 Example of robotic sub-surface void explorations of lunar caves. Image

adapted from [20] . 4
1.3 Example of hazardous traversability in extreme terrains. On the left, a

wheeled platform involved in autonomous subterranean exploration. On
the right, a tracked vehicle stuck on a obstacle within hazardous traversal
of train rails. 5

1.4 The three subdomains of the DARPA Subterranean Challenge: tunnel
systems, urban underground, and natural cave networks. Image taken
from [22] . 7

1.5 The final event of the DARPA Subterranean Challenge aggregates ele-
ments from all subdomains into a single course to test the performance
and versatility of the developed autonomy solutions. Robotic teams in
the challenge score points by reporting type and location of artifacts
found during the autonomous exploration. Image taken from [23] . . . 8

1.6 NeBula-powered robots. Image taken from [23] 9

2.1 Example of a 3D map constructed by a lidar SLAM system: a robot
running SLAM on-board exploits self-perception to construct a trajectory
and a map that is dynamically updated during the exploration. 13

2.2 Example of a graph-based SLAM system. The front-end computes relat-
ive pose estimates between consecutive sensor acquisitions. The back-end
periodically instantiates key-nodes in a graph after a minimum odomet-
ric displacement is occurred. When loop-closures are detected, a loop
closure constraint is applied between different pose nodes of the pose-
graph. Pose-graph optimization techniques then reshape the pose-graph
and correct for the odometric drift accumulated in the front-end traject-
ory to achieve global localization consistency. 15

2.3 Example of registration of two point clouds with the Iterative Closest
Point (ICP) algorithm. Image taken from [86] 20

vii

2.4 Example of YOLO’s object detection on a sample image: multiple la-
belled bounding-boxes provide semantic understanding of the visual in-
formation. Image taken from [103] . 23

2.5 Example of mesh network extension into a subterranean environment by
means of autonomous communication node dropping behaviours. Image
taken from [23]. 31

2.6 The Software Defined Networking (SDN) paradigm. A central control-
ler, globally-aware of the state of the network, computes optimal routing
decisions for all types of traffic and sends routing rules updates to net-
working devices. 32

4.1 3D map produced by LOCUS on a husky robot during the exploration
of the Beta 2 run of the Urban Circuit of the DARPA Subterranean
Challenge. 38

4.2 Architecture of the proposed lidar odometry system. 39
4.3 Failure-aware multi lidar merger. Top left) an intermediate health mon-

itor layer watches the health of multiple lidar feeds to dynamically up-
date the synchronization policy of the merger to adapt to the number
of currently available lidar feeds. Bottom) Lags in lidar data for three
Velodynes mounted on-board of a wheeled platform. Top right) Beside
for the time interval where no lidar data is available, the point cloud
merger always produce an output point cloud no matter which failures
are experienced by individual feeds. 40

4.4 Visualization of the LOCUS priority queue. a) all external measurements
are available, VIO is picked. b) VIO fails, so KIO is picked, c) Neither
VIO or KIO are available, WIO is picked. d) No external odometry
sources are available, IMU is picked. e) no measurements are available
from on-board sensing modalities, GICP is therefore initialized with the
identity pose. For the sake of brevity, we don’t graphically model all
other possible configurations (e.g. VIO available, KIO unavailable, WIO
unavailable, IMU available, etc.) . 44

4.5 On the left, the husky robot used for the autonomous exploration and
data collection. On the right, pictures of the circuits where the robot
has been deployed within the context of the Tunnel and Urban circuit of
the DARPA Subterranean Challenge. 48

4.6 Visualization of LOCUS estimated trajectories in the Alpha course of
the SubT Challenge for different processing configurations. 49

LIST OF FIGURES viii

4.7 Evolution of the Absolute Position Error (APE) of the proposed method
for different processing configurations in the Alpha course of the SubT
Challenge. The inset gives more detail on the four best configurations.
baseline: all features in Section locus. imu_int: no WIO integration,
only IMU integration, no_int: neither WIO or IMU integration, loam_feat:
using LOAM feature extraction instead of filtering, fga_off: no FGA,
rdf_off: no random downsample filter, vgf_off: no voxel-grid filter,
mdc_off: no MDC. 49

4.8 Absolute Position Error visualization for different algorithms running on
the Alpha one dataset from the Urban Circuit of the DARPA Subter-
ranean Challenge. 53

4.9 Map Error statistics for different algorithms running on the Alpha one
dataset from the Urban Circuit of the DARPA Subterranean Challenge. 53

4.10 Absolute Position Error visualization for different algorithms running on
the Beta two dataset from the Urban Circuit of the DARPA Subter-
ranean Challenge. 54

4.11 Map Error visualization for different algorithms running on the Beta two
dataset from the Urban Circuit of the DARPA Subterranean Challenge. 54

4.12 Absolute Position Error visualization for different algorithms running
on the on the Safety Research dataset from the Tunnel Circuit of the
DARPA Subterranean Challenge. 55

4.13 Map Error visualization for different algorithms running on the Safety
Research dataset from the Tunnel Circuit of the DARPA Subterranean
Challenge. 55

4.14 Boxplot visualization of the Absolute Position Error (APE) computed
for the different methods on the test datasets. For clarity, only the best
six algorithms in each dataset are shown. 56

4.15 Robustness test in Beta course: a) results on WIO/IMU failure, b) results
on WIO failure, c) results on Lidar failure. The failure locations are
circled in all cases. 60

4.16 Comparison of lidar processing time across the different lidar odometry
algorithms. The times are the duration for processing a single scan.
Top - Urban Beta dataset, Bottom - Tunnel Safety Research dataset. A
processing time of 0.1 s indicates realtime performance (10 Hz scans). . 61

4.17 Absolute Position Error (APE) of the trajectories estimated by the differ-
ent methods against ground-truth in Beta course, including the perform-
ance when running live in the SubT Challenge (LOCUS_REALTIME). 63

LIST OF FIGURES ix

4.18 Influence of the environment x-y cross-section (bottom) on the total lidar
processing time in LOCUS (top) for the multi-level exploration of spot1
robot in LA Subway. When entering open spaces, the greater number of
points lead to greater processing times as the system needs to register a
wider amount of information. Closed spaces instead are easier to handle,
and just challenge the system on the observability layer. On the bottom
plot is possible to distinguish four main areas of the exploration: an
open-space, a corridor, a medium-space, a corridor, and finally another
large open-space. 65

4.19 Stationary-triggered map sliding window testing on the Mega Cavern
dataset. When the robot is standing stationary, the map/octree is re-
freshed to keep in memory only a robot-centered submap of the environ-
ment for front-end localization purposes. 67

4.20 Size of map in memory for a large-scale exploration of the Mega Cavern
dataset. In red, the classic mapper keeps the full map in memory result-
ing in 60 GB RAM usage at the end of the run. In blue, the stationary-
triggered map sliding window approach refresh the maps every time the
robot stops, leading to decreased overall memory usage (20 GB). 67

4.21 Multi-threaded map sliding window testing on the Mega Cavern dataset.
Only a robot-centered submap (colored) is kept in RAM memory for
front-end localization purposes. 68

4.22 Multi-threaded map sliding window test in Mega Cavern dataset. From
60 GB when keeping the full map as in the standard published version of
the system, this approach decreases the overall front-end memory usage
to only 1 GB throughout the exploration. 68

4.23 Example of high-definition 3D maps produced by LOCUS during autonom-
ous robotic exploration of heterogeneous environments. a) Outdoor area
at the NASA Jet Propulsion Laboratory. b) A multi-level parking lot at
the NASA Jet Propulsion Laboratory. c) and indoor office at the NASA
Jet Propulsion Laboratory. d) A natural cave network. 69

4.24 Multi-robot LAMP map with robot-specific coverage information. In
clear blue husky1, in brown husky4 and in dark blue spot1. Examples of
artifact positions in the global map are reported for detections of phone
and survivor. 70

LIST OF FIGURES x

5.1 Swarm Manager’s graph formulation: the world is composed of a set
of nodes and edges. Nodes can be mobile agents (red) or static assets
(green) such as the base station or communication nodes. Edges rep-
resent communication links between nodes in the world, and they are
graphically rendered with line thickness proportional to the available
bandwidth on the communication channel. A node in the world can be
initialized to be Manager at mission start (blue). 71

5.2 Overview of the ROS rqt graph evolution of the system. 76
5.3 RVIZ visualization of the world model known by the Manager at time

t, after a successful synchronization of the AgentState messages from all
agents. 80

5.4 Spot1 offloads its lidar stream to the optimum server husky1 for high-
definition ego-motion estimation purposes through the optimum route
chosen by the Manager displayed in green. The lidar data offloaded by
spot1 pass through scom1 placed at the end of the straight corridor, to
then go to scom7, to finally reach the husky1 server identified as optimum
server by the Manager. 86

5.5 Handling of computation offloading request from a single client. In this
case spot1 is exploring the lower floor after autonomous stair descent
operation, and offloading its lidar stream to husky1 for ego-motion es-
timation. The optimum route chosen by the Manager to instantiate robot
to robot communication and high-volume lidar data exchange after the
perception offloading request is displayed in green: it starts from spot1,
then pass through scom11, scom7, to finally reach the husky1 server
identified as optimum server by the Manager. 87

5.6 Examples of multi-client management. For the computation offloading
request generated by spot1 the Manager chooses husky1 as optimum
server and spot1/scom7/husky1 as optimum route (green). For the
computation offloading request generated by spot2 the Manager chooses
husky4 as optimum server and spot2/scom2/husky4 as optimum route
(red). 88

5.7 Demonstration of recovery from central orchestrator’s death. At time t1,
base1 is the Manager of the robot team, but fails afterwards. At time t2,
husky1 is elected as new Manager of the robot team and keeps handling
the decision making at the computation and network allocation level. . 92

6.1 Hardware specifications for husky and spot NeBula robots. 95

LIST OF FIGURES xi

6.2 Silvus radios used in the mission. Mobile agents can carry multiple com-
munication nodes that are autonomously dropped when a mission-level
criteria is met (e.g. low bandwidth and/or signal-to-noise ratio with
respect to the base station) . 96

6.3 Location of communication node dropping for the autonomous explor-
ation of spot1 robot during the Beta 2 round of the Urban Circuit of
the DARPA Subterranean Challenge. Top) spot1 drops a communica-
tion node before stair descent. Bottom) spot1 lands on the lower floor, 7
m underground and drops a communication node to maintain a vertical
communication channel with the above wireless mesh network. Images
taken from DARPA matterport. 97

6.4 On the left, full ground-truth map of the Urban Circuit of the DARPA
Subterranean Challenge. On the right, the ground-truth map of spot1
specific exploration. 99

6.5 Top-view of the maps produced by LOCUS on client (spot1) and server
(husky1) for the exploration of spot1 in Urban Beta 2. The server-side
computed LOCUS on client’s data results in substantially greater accuracy.100

6.6 Side-view of the maps produced by LOCUS on client (spot1) and server
(husky1) for the exploration of spot1 in Urban Beta 2. 100

6.7 Orbit-view of the map produced by LOCUS on husky1 server on the
lidar stream offloaded by spot1 client during the exploration of spot1 in
Urban Beta 2. 101

6.8 Trajectories estimated by LOCUS on client (spot1) and server (husky1)
for the exploration of spot1 in Urban Beta 2. 101

6.9 Profiling of the x,y,z components of the odometries generated by LOCUS
on client and server against the ground-truth information. A lower down-
sampling percentage on the server side and a faster computation capab-
ility makes edge-processing of the ground-server achieve substantially
better estimates with the respect to the performance achievable on the
robot, expecially for the z component. 102

6.10 Profiling of the roll, pitch, yaw components of the odometries generated
by LOCUS on client and server against the ground-truth information.
A lower downsampling percentage on the server side and a faster com-
putation capability makes edge-processing of the ground-server achieve
sensibly better estimates with the respect to the performance achievable
on the robot. 102

LIST OF FIGURES xii

6.11 Absolute Position Error (APE) of the trajectories produced by LOCUS
on the robot client (spot1) and on the server (husky1) for the exploration
of spot1 in Urban Beta 2. This is the key result of the thesis work as we
demonstrate higher perception accuracy of computationally-constrained
platforms with a centrally-managed offloading mechanism. Computing
high definition LOCUS on the server side results in greater accuracy of
the front-end information, which then translates into greater consistency
of the global localization at the back-end level. Deploying the proposed
framework on a real multi-robot systems could potentially enable the
performance of the multi-robot team as discussed. 103

6.12 Absolute Position Error (APE) statistics of the trajectories produced
by LOCUS on client (spot1) and server (husky1) for the exploration of
spot1 in Urban Beta 2. The server side processing achieves lower max
and mean error, along with lower standard deviation. 103

6.13 Absolute Position Error (APE) distribution of the trajectories produced
by LOCUS on client (spot1) and server (husky1) for the exploration of
spot1 in Urban Beta 2. 104

6.14 Box plot visualization of the Absolute Position Error (APE) of the tra-
jectory estimated by LOCUS on client (spot1) and server (husky1) for
the exploration of spot1 in Urban Beta 2. 104

6.15 Evolution of the total processing time (transmission, edge-computation,
retransmission) for LOCUS offloading of spot1 robot during the explor-
ation of the Beta 2 Course of the DARPA Subterranean Challenge on
husky1 server. Operation time is comparable to on-board performance.
Sudden drops in communication bandwidths to other hop of communic-
ation when exploring the lower floor result in the lidar message being
delivered to the server side with some delay. Individual sub-components
of the total offloading time are represented in red (forward delay), green
(processing time), and blue (backward delay). 105

6.16 Average number of lidar scans dropped every 5 seconds. Husky1 acts as
server for Spot1 LOCUS offloading. By using 4 threads for scan registra-
tion, the server is able to process much more information with respect
to the client, despite the lower RDF percentage (80%). If LOCUS is ex-
ecuted on-board of spot, that results in a higher number of not processed
information, and therefore in a lower ego-motion estimation accuracy. . 105

LIST OF FIGURES xiii

6.17 Snapshot of the optimum network route chosen by the Manager for
LOCUS offloading of spot1 to the optimum server husky1. At this mo-
ment, spot1 is exploring the lower floor and continuously offloading its
lidar stream to husky1 through scom11 and scom7 bridge; husky1 is re-
ceiving the data, processing it, and sending the computed high-definition
odometric result back to the client. Spot1 therefore receives a high-
definition estimate of its position in the environment at the front-end
level, from the machine dynamically chosen by the Manager. 106

6.18 Evolution of the bandwidth usage for the offloaded lidar stream of spot1
robot during the exploration of hte Urban Beta 2 Circuit. 106

6.19 Comparison of spot1 battery level from start to end of mission in Urban
Beta 2 with (blue line) and without (red line) LOCUS offloading. Of-
floading LOCUS computation results in decreased battery usage on the
agent and increased autonomy time. Please note that while the full mis-
sion duration is 1 hour, spot1 exploration starts late at 1300s and ends
early at 2800s: for this reason, the profiled battery drain is reported only
for the exploration time of interest. 107

6.20 Snapshot of the optimum network route chosen by the Manager for
YOLO offloading of spot1 to the optimum server husky1. At this mo-
ment, spot1 is entering an open-space area located on the first floor. . . 109

6.21 YOLO detections on spot1 camera stream when running on-board of the
robot with a 50 % downsampling factor. 110

6.22 Evolution of the detection confidence of a backpack in the spot1 cam-
era stream when running YOLO on husky1 server receiving the full-
resolution image offloaded by spot1 through the route chosen by the
Manager. 110

6.23 Barplot representing the total number of YOLO detections performed
on the image stream for robot and server. When processing on-board
of the robot, the image is downsampled of 50 % factor to cope with
the constrained available resources: this results in a total of 19 total
detections in this test. When offloading, the client can provide the server
with the full-resolution image: in this case the server runs full YOLO
on the received image stream, resulting in more detections, a total of
44 in this case. Among all the detections, in this run only a single
TP is encountered (backpack): for this artifact the server-side detection
provides higher detection confidence (96%) against the robot-side (85%) 111

LIST OF FIGURES xiv

6.24 Comparison of YOLO detection precision (TP/(TP+FP)) computed with
a 80% confidence filter when executed on client (red), and on the server
(blue). The server side achieves higher precision than the robot side. As
specified in Section 6.3, the same version of YOLO (YOLOv4) is used in
the benchmarking on both robot and server. 111

6.25 Comparison of spot1 battery level from start to end of mission in Urban
Beta 2 with and without YOLO offloading. Offloading YOLO compu-
tation results in decreased battery usage on the agent and increased
autonomy time. Please note that while the full mission duration is 1
hour, spot1 exploration starts late at 1300s and ends early at 2800s: for
this reason, the profiled battery drain is reported only for the exploration
time of interest. 112

LIST OF FIGURES xv

List of Tables

1.1 Heterogeneous NeBula-powered Mobility Modes. Table taken from [23]. 10
1.2 Heterogeneous NeBula Sensors. Table taken from [23]. 10
1.3 NeBula Processors. Table taken from [23]. 10

4.1 Summary of State-of-the-Art, Open-Source Algorithms 50
4.2 Summary of Accuracy Analysis results on Alpha and Beta Courses from

Urban Circuit . 57
4.3 Summary of Accuracy Analysis results on Safety Research Course from

Tunnel Circuit . 57
4.4 Summary of Robustness Test Results 58
4.5 Summary of LOCUS settings on different robots 62
4.6 Dropped lidar scans from real-time on-robot tests 63

xvi

Chapter 1

Introduction

This dissertation aims at enhancing situational awareness accuracy of an heterogen-

eous multi-robot system involved in the autonomous exploration of GPS-denied and

perceptually-degraded environments under severe computation, communication, and

energy constraints.

We introduce the concept of situational awareness on a multi-robot system in Section

1.1 and outline potential applications in Section 1.2. We discuss open challenges for

robotic operation in extreme environments in Section 1.3, and refer to the DARPA

Subterranean Challenge (SubT) in Section 1.4 as a remarkable opportunity to push

boundaries of autonomous robotic exploration in extreme settings. We describe the

goal of the work in Section 1.5 and outline content of the dissertation in Section 1.6.

1.1 Multi-Robot Systems

Situational Awareness Situational awareness [1] is the perception of environmental

elements and events in relation to time and space, the comprehension of their meaning,

and the projection of their future status. Situational awareness represents a vital, yet

often elusive, foundation for both manned and unmanned systems to enable effective

decision-making in a wide variety of situations.

Multi-Robot System A multi-robot system [2] is a system consisting of multiple

robots that might interact with each other to accomplish a common mission-level ob-

jective. Research on multi-robot systems began in 1980: up to that point in time

1

research was mainly focused on single robot solutions. [3] provide an extensive over-

view of ongoing research efforts and advancements in the field of distributed mobile

robot systems.

Situational Awareness on a Multi-Robot System Multi-robot systems offer en-

hanced efficiency in performing spatially-distributed tasks in time-constrained opera-

tions, and are therefore particularly suited to retrieve distributed situational awareness

by complex data gathering and mapping operations in large-scale environments. For

these reasons, multi-robot systems have gained substantial attention in the last decades

for their potential in autonomously retrieving and providing situational awareness in

environments that might be too far or dangerous for humans to approach.

1.2 Applications

Rapid advancements in robotic research are enabling a wide range of applications in

increasingly complex environments ranging from industrial monitoring [4, 5] to search

and rescue [6, 7] and planetary exploration missions [8, 9, 10, 11].

Industrial Monitoring In industrial monitoring applications, a team of robot can

be deployed to provide situational awareness in hazardous industrial facilities after

a nuclear disaster [12] or to autonomously explore and inspect the industrial site to

provide distributed and real-time situational awareness updates to a remote human

supervisor to ease the task of monitoring and maintenance of the infrastructure of

interest.

Search And Rescue In search and rescue operations after natural disasters (e.g.

post-earthquake scenarios, collapsed mines, etc.), an autonomous team of robots might

provide situational awareness updates with locations of found survivors, and enable

a remote operator to schedule a rescue plan accordingly. An outstanding example is

represented by the Tham Luang cave rescue (Figure 1.1), in which the international

community aimed at rescuing thirteen members of a football team trapped inside a 4

km partially flooded cave. A team of drones equipped with thermal cameras and an

Introduction 2

underwater robot were used to provide information on the condition of the environ-

ment and the depth of the water to a remote base station: however, at that time, no

technology was available to autonomously reach the people, map the cave, and scan for

potential survivors in the deep underground.

Figure 1.1: Tham Luang cave rescue mission. Image adapted from [13]

Planetary Exploration The research community identified more than 200 Lunar

and 2000 Martian cave-related features [14, 15]. Characterized by stable temperature

profiles and sheltered from cosmic radiation, caves and sub-surface voids constitute

both an ideal candidate for development of microbial life, as well as a potential habitat

for future human space missions [16, 17, 8]. The distributed situational awareness

collected by a team of robots could therefore provide scientists with extremely precious

information to understand where to search for life, or where to potentially build future

shelters for humans [18, 19]. Moreover, autonomous multi-robot systems might be

sent on reconnaissance tours to perform rapid search and mapping missions to support

follow-on operations of advance service personnel such as astronauts.

Introduction 3

Figure 1.2: Example of robotic sub-surface void explorations of lunar caves. Image adapted
from [20]

Situational Awareness Accuracy In all these applications, the accuracy of the

situational awareness retrieved by the robot team is of fundamental importance to

provide a reliable understanding model of the environment and enable decision making

at any level. For example, in search and rescue operations, accuracy of localization

reports of found survivors would be a critical key-requirement for a successful rescue

plan as the injured people may have very limited mobility.

1.3 Challenges

Despite the outstanding growth of robotic technologies, many challenges have still to

be addressed to enable reliable operation and situational awareness retrieval in extreme

environments like the ones mentioned in the application scenarios described above. In

Introduction 4

such environments, robotic operation is challenged by a wide range of factors which are

briefly described below.

Hazardous Traversability Environments might be characterized by structured or

unstructured geometries, involve multiple floors, and present traversability-challenging

elements such as constrained passages or sharp turns. Different types of terrain might

be encountered during the exploration with elements including rocks, mud, sand and

water. All these factors represent great challenges for the robot’s mobility capabilities.

Figure 1.3: Example of hazardous traversability in extreme terrains. On the left, a wheeled
platform involved in autonomous subterranean exploration. On the right, a tracked vehicle
stuck on a obstacle within hazardous traversal of train rails.

Degraded Perception and Sensing Environments might often be GPS-denied,

leading to the need of robust and accurate localization systems on-board. In these

settings, perception systems have to operate in perceptually-degraded conditions in-

cluding darkness, sudden changes in illumination, presence of obscurants (e.g. fog,

dust, smoke), lack of prominent perceptual features in texture-less and geometrically

self-similar areas, along with jerky sensory motion induced by navigation over rough

terrains or high-rate motions in agile aerial agents. All these features pose a significant

threat to the accuracy of on-board perception systems and could lead to significant loc-

alization errors over the duration of an extended run. Furthermore, on-board sensors

can fail at any time without notice in such high-risk missions, making therefore ro-

Introduction 5

bustness and resilience to potential failures of sensors a fundamental requirement for

reliable operation.

Constrained Communication Extreme subterranean environments are usually ca-

rachterized by the lack of a previously available communication infrastructure and pose

numerous impediments to reliable networking including limited opportunities for line-of-

sight communications and challenges in radio frequency propagation in varying geology

profiles.

Heterogeneity To enable such applications, heterogeneous multi-robot systems are

usually employed to accomplish the mission objective due to their complementary ex-

ploration capabilities (e.g. terrestrial, aerial). Wheeled ground robots can be deployed

to cover floor-accessible regions, legged platforms might be suitable to traverse rough

terrains or conduct multi-level explorations, while aerial agents could instead access

vertical shafts, or in general areas that are not accessible with ground-robots.

While the heterogeneity of the multi-robot system might be a necessity to accomplish

the mission-objective, this introduces further challenges on the overall reliability of the

situational awareness retrieved by the multi-robot system as agents might have different

mobility, sensor suites, and computational capabilities: while ground robots might be

able to carry large batteries and computational resources, legged and aerial agents are

usually able to carry substantially smaller batteries and computers.

Despite the tremendous advancements in localization and semantic understanding do-

mains, these on-board perception systems working on large-data volumes still require

computational expenses that result prohibitive for computationally-constrained plat-

forms: this can greatly degrade the accuracy of the situational awareness provided by

less capable agents forced to trade-off accuracy to pursue real-time operation, and might

have catastrophic impacts on the overall decision making process at higher levels.

Conclusions Overall, further work is needed to push the state-of-the-art in robotics

to enable systems that can robustly and consistently address the above mentioned

challenges for accurate situational awareness retrieval in extreme settings.

Introduction 6

1.4 DARPA Subterranean Challenge (SubT)

An outstanding example that summarizes all the challenges encountered when deploy-

ing multi-robot systems in extreme settings is the DARPA Subterranean Challenge

(SubT) [21]. The SubT Challenge is an international robotic competition that aims to

foster technological advancements for autonomous robotic operations in extreme and

underground environments which notoriously pose significant complications for manned

and unmanned operations due to limited situational awareness. This competition spans

over a period of three years and encourages research teams from all around the world to

develop innovative solutions to rapidly navigate, map, search, and exploit complex un-

derground environments where is either impossible or too risky to send human personnel

in, including human-made tunnels, urban undergrounds, and natural cave networks.

Figure 1.4: The three subdomains of the DARPA Subterranean Challenge: tunnel systems,
urban underground, and natural cave networks. Image taken from [22]

A successful development of this technology could enable a wide range of high-impact

applications, including the ones outlined in Section 1.2. The SubT Challenge therefore

provides us with the unprecedented opportunity of focusing this dissertation on a real

world problem.

Introduction 7

Structure Teams involved in the challenge deploy their robots to provide rapid situ-

ational awareness through mapping of the unknown GPS-denied environment and local-

ization of specific objects of interest which are referred to as artifacts in this dissertation.

Artifacts of interest include survivors, evidence of survivors (e.g. backpack, rope, cell-

phone), CO2 gas source, electrical boxes and more. Each team dispose of a fixed 1 hour

time window to successfully accomplish the mission: as the robotic team explores the

unknown environment, situational awareness updates need to be rapidly communicated

back to a remote base station, usually placed at the entrance of the course outside the

challenging area. In the competition, there is no prior map of the environment, no

team member is allowed to inspect the course prior or during the competition, and only

a single human supervisor outside the course is allowed to monitor the data commu-

nicated by the robots and interact with them for high-level decision making purposes

when a communication link is established (e.g. initiating an autonomous stair-climbing

operation for a legged-platform that detected the presence of a stair-case).

Figure 1.5: The final event of the DARPA Subterranean Challenge aggregates elements from
all subdomains into a single course to test the performance and versatility of the developed
autonomy solutions. Robotic teams in the challenge score points by reporting type and
location of artifacts found during the autonomous exploration. Image taken from [23]

Introduction 8

Table 1.1: Heterogeneous NeBula-powered Mobility Modes. Table taken from [23].

Robot Type Deployed In Energy capacity Payload capacity Comm Speed Mobility Endurance
Legged robots Urban Mid Mid Mid Mid Mid Mid

Hybrid (ground/aerial) STIX Low Low Low High Mid-High Low-Mid
Wheeled STIX, Mine, Urban High High High Low Low High
Drones STIX, Mine Low Low Low High High Low
Tracked STIX High Mid Mid Low Low-Mid Mid-High

Fast small rovers Mine Mid Mid Low High Low Mid
Aggregated robot team All events Shared/Synergistic Shared/Synergistic Shared/Synergistic Aggregated Aggregated Aggregated

Table 1.2: Heterogeneous NeBula Sensors. Table taken from [23].
Exteroceptive Non-navigational Proprioceptive

Sensors Lidar Vision Radar Thermal Sonar IR Depth CO2/Gas Wi-Fi Sound Contact/Force Encoder IMU
Accuracy High Mid Low Low Low High Low Low Low Low Mid High

Power efficiency Low High High Mid Mid High High High High High High High
Size/weight efficiency Low High High Low Mid High High High Mid Mid Mid High

Range and FOV Mid High Low High Low Low Low High Mid - - -
Dark/fog/smoke/dust Mid Low High High Mid Mid - - - - - -

Table 1.3: NeBula Processors. Table taken from [23].
Processors Micro-controllers Snapdragon Intel NUC Nvidia Xavier AMD
Compute Low Low Mid High High

Power consumption Low Low Mid High High
Size efficiency High High Mid Low Low

NeBula’s heterogeneous robot capabilities are summarized in tables 1.1, 1.2, 1.3 from

mobility, sensory, and computing perspectives. Typically, robots with a larger payload

capacity can accommodate for a larger sensory suite and can carry larger batteries and

more powerful computing resources with respect to robots with constrained payloads.

All robots mount on-board the NeBula payload described in [23] which includes the

NeBula Sensor Package (NSP), the NeBula Power and Computing Core (NPCC), and

the NeBula Comm Deployment System (NCDS). The NSP gathers real-time sensory in-

formation from a subset of the following sensors, depending on what is available on the

robot: lidars, monocular, stereo, and thermal cameras, IMUs, encoders, contact sensors,

ultra high lumen LEDs, radars, gas sensors, UWB and wireless signal detectors. The

NPCC provides power to all sensors and computers mounted on-board and comprises

two high-power computers for sensing and autonomy: to enhance semantic understand-

ing functionalities, on some robots the NPCC is equipped with an on-board GPU. To

construct and expand a backbone network throughout the exploration, ground robots

are equipped with NCDS which allows them to carry and deploy radio communication

nodes and static assets, which are better described in Section 2.4.1.

We refer the reader to [23] for a complete description of NeBula’s system architecture

and concept of operations.

Introduction 10

1.5 Goal of the work

With the objective of enhancing situational awareness accuracy on heterogeneous multi-

robot systems, this dissertation aims at reaching two main research goals: i) developing

a robust and accurate mapping and positioning system for robotic agents operating in

extreme, GPS-denied, and perceptually-degraded environments, ii) realizing a distrib-

uted computation framework capable of enhancing situational awareness accuracy of

computationally-constrained platforms of heterogeneous multi-robot systems operating

under severe computation, communication, and energy constraints.

Being the PhD program conducted within the INTENTO project which aims to invest-

igate Software Defined Networking paradigms to enhance performance of distributed

systems, in the pursuit of the joint optimization of the INTENTO and NeBula project

goals, we adopt the SubT Challenge as a unique test-bed to push forward boundaries of

Software Defined Networking research for complex distributed applications in dynamic

wireless multi-robot mesh-networks.

1.6 Organization of the work

The dissertation is organized as follows. Chapter 2 provides an overview of background

and related work for the different sub-domains of the problem of interest. After a review

of the literature, Chapter 3 outlines the open challenges and identifies current gaps in

the state-of-the-art of robotics at enabling accurate and distributed situational aware-

ness on a heterogeneous multi-robot system to then state contributions of the work.

Chapter 4 describes the system functioning of LOCUS, our first main contribution in

achieving robust and accurate ego-motion estimation in perceptually-degraded settings

for extreme robotic explorations. Chapter 5 describes instead the conceptual opera-

tion and ROS [24] implementation of Swarm Manager, our second main contribution in

pursuing enhancement of situational awareness accuracy in heterogeneous multi-robot

systems under sever computation and communication constraints. Experimental res-

ults of the fully integrated system are presented in Chapter 6. Finally, conclusions and

future research directions are discussed in Chapter 7.

Introduction 11

Chapter 2

Background and Related Work

This chapter introduces background and related work for the sub-domains involved in

the problem under investigation, namely distributed situational awareness on a hetero-

geneous multi-robot system.

First, we discuss the perception layer with particular focus on localization and object

detection aspects, as these represent the core components of the situational awareness

retrieved by the agent. Second, we discuss how distributed computation might enhance

the accuracy of the overall situational awareness retrieved by the robot team, when

the performance of the perception layer is challenged by limited computational cap-

abilities of heterogeneous robots, and how this could be further exploited to extend

autonomy time of power-constrained robots. Finally, we discuss multi-robot network-

ing in communication-degraded environments, and introduce the emerging paradigm of

Software Defined Networking for its potential to orchestrate network traffic in a globally-

aware and centrally-supervised approach to enhance communication performance in a

distributed computation framework.

Given the multidisciplinary nature of the thesis and the vast body of literature available

in each sub-domain, we provide high-level details for the different sub-topics, and refer

the reader to dedicated surveys for an extensive review of the state-of-the-art in each

field.

12

2.1 Localization

In this section, we first introduce the Simultaneous Localization And Mapping (SLAM)

problem, categorize the main types of SLAM solutions, and discuss related work for

SLAM systems in extreme environments. Then, we focus the attention on lidar odo-

metry modules that are commonly employed in lidar-based SLAM to outline current

gaps in accurate and robust ego-motion estimation in perceptually-degraded conditions.

2.1.1 Simultaneous Localization And Mapping (SLAM)

When operating in GPS-denied environments with no availability of a prior-map, robots

need to process on-board sensors readings to solve a self-localization problem commonly

known as Simultaneous Localization And Mapping (SLAM). Through repeated obser-

vations of fixed environmental features, the robot can simultaneously estimate its own

movement, construct a map of the unknown environment, and use this map to keep

track of its position within it. Solving the SLAM problem enables global localization of

the robotic agent rendering an accurate SLAM solution a key requirement for reliable

situational awareness updates of autonomous robots operating in extreme environments.

Figure 2.1: Example of a 3D map constructed by a lidar SLAM system: a robot running
SLAM on-board exploits self-perception to construct a trajectory and a map that is dynam-
ically updated during the exploration.

Background and Related Work 13

SLAM is a well-established research area with numerous applications in robotics and

industry [25]. Cadena et al. [26] provide the definition of the SLAM problem, along

with a comprehensive overview on modern SLAM algorithms.

Originally addressed by Smith and Cheeseman et al. [27], and Leonard and Durrant-

Whyte et al. [28], the SLAM problem finds its current formulation in the work of Lu

and Milios [29] where authors study the problem of consistent registration of multiple

range scans by modeling the spatial relationships between measurements as random

variables and using a maximum likelihood criterion to globally optimize the different

spatial relations and reduce the error introduced by constraints.

Different approaches to the SLAM problem have been proposed over the years including:

Kalman Filters [30, 31, 32], Particle Filters [33, 34, 35, 36], and Graph-based algorithms

[37, 38, 39, 40, 41]. Graph-based algorithms have gained increasing popularity in the

last decade for their efficiency in maintaining and processing large-scale maps: these

approaches often use factor graphs [42] to model interdependence among variables and

formulate SLAM as a maximum a posteriori estimation problem where robot poses and

environment landmarks are the nodes in the graph representing the state variables to

be optimized, and edges in the graph represent the observation constraints existing

between two interconnected variables.

Structure of a SLAM system

The structure of modern graph-based SLAM systems can be divided into two main

logical components: a front-end and a back-end.

Front-End The SLAM front-end process raw sensor data to estimate the robot motion

between consecutive measurements: this is commonly referred to as odometry, and it

represents one of the core components of any SLAM system. By registering observa-

tions to the incrementally computed robot poses, a map of the environment can be

progressively constructed. However, as each relative pose estimate contains some er-

ror, the integrated trajectory can considerably diverge over time from the true path in

large-scale explorations.

Background and Related Work 14

Ground Truth Pose Estimated Pose

X10
X9 X8 X7 X6

X1X0 X2
X3

X4

X5

Ground Truth Displacement Estimated Displacement

Loop Closure ConstraintEnvironmental Landmarks

Figure 2.2: Example of a graph-based SLAM system. The front-end computes relative pose
estimates between consecutive sensor acquisitions. The back-end periodically instantiates key-
nodes in a graph after a minimum odometric displacement is occurred. When loop-closures are
detected, a loop closure constraint is applied between different pose nodes of the pose-graph.
Pose-graph optimization techniques then reshape the pose-graph and correct for the odometric
drift accumulated in the front-end trajectory to achieve global localization consistency.

Back-End The SLAM back-end receives odometry measurements produced by the

front-end and periodically instantiates new key-nodes with associated key-measurements

in a pose-graph structure after a certain odometric displacement has occurred. It then

uses place-recognition techniques to detect loop closures when the robot has returned

to a previously visited location. When a loop closure is detected, a new constraint is

added between two key-nodes in the graph, and the pose graph is optimized accord-

ingly using iterative nonlinear optimization techniques such as Levenberg-Marquardt

[43] to get the updated best estimate of robot poses: this reduces the cumulative error

accumulated by the front-end trajectory over the loop, enabling therefore localization

with global consistency in the world frame over long term explorations. In multi-robot

systems, loop closure detection also enables merging maps obtained by individual ro-

bots into a consistent global map of the environment by finding the correspondences

between the maps.

Background and Related Work 15

Types of SLAM system

[44] provide an extensive survey on different types of SLAM systems. Depending on

the main sensor used to solve the SLAM problem, SLAM systems can be grouped into

three main categories: i) visual, ii) lidar, iii) hybrid.

Visual SLAM With camera sensors becoming cheaper and increasingly lightweight,

the last decade has assisted to the fast rise of visual SLAM [45]. Visual SLAM solutions

might rely on different types of cameras as exteroceptive sensor including monocular,

stereo, RGB-D, thermal, and event-based. Popular visual SLAM solutions include

VINS-Mono [46], Maplab [47], Kimera [48] and ROVIO [30].

For odometry estimation, visual methods [49, 50] might exploit feature detection and

tracking techniques [51, 52, 53] or optical flow based approaches over sequential camera

frames to estimate the robot ego-motion. In monocular systems, the sensor motion can

be recovered only up to a scale ambiguity [54], therefore, to address the problem of

absolute scale recovery, visual information is usually combined with inertial measure-

ments from an Inertial Measurement Unit (IMU) to realize Visual Inertial Odometry

(VIO) approaches [55, 56, 39, 57, 58] which currently represent a popular solution for a

wide range of robotic applications. Combining vision with inertial information not only

recovers the absolute scale of monocular visual odometry systems, but also enhance

the performance of the ego-motion estimation during abrupt motions or image blur

scenarios [59]. Methods using multiple cameras (e.g. stereo) are also capable of scale

recovery when the extrinsic calibration between sensors is known, but suffer from tedi-

ous calibration processes and might need to be often re-calibrated. For place recognition

purposes, visual SLAM systems might usually exploit Bag Of Words approaches [60]

or NETVlad descriptors [61].

General challenges for visual-based systems include: i) problematic feature tracking

in degraded observability conditions (e.g. darkness or sudden changes in illumina-

tion, smoke, fog, dust), ii) potential ego-motion estimation spikes in abrupt motions or

motion blur scenarios, iii) lack or ambiguity of information in texture-less or texture-

repetitive environments. Moreover, while thermal cameras could be useful in some

Background and Related Work 16

conditions [62, 63], they quickly become unsuitable for SLAM purposes in thermally

flat environments.

Lidar SLAM Lidar sensors do not rely on external light sources and emit pulsed light

waves to estimate range of different points in the environment through time-of-flight

based techniques. The active illumination of lidar represents an essential advantage

over visual methods as it reduces the sensitivity to ambient lightning variations and

provides accurate long-range 3D measurements leading odometry systems based on a

single lidar to not suffer from the problem of scale ambiguity. Moreover, lidars usually

provide 360◦ horizontal field of view and high sampling rate. For these reasons, 3D

lidar SLAM has become a popular solution for mapping complex environments, from

early work [64] to more recent systems [65, 66, 67, 68, 69, 70, 71]. In laser-based SLAM

systems, by relying on estimated robot poses and integration of a sequence of 3D scans,

3D maps of the environment can be created.

For odometry estimation, lidar SLAM systems rely on lidar odometry algorithms which

typically estimate the ego-motion of the robot by comparing and registering consecutive

lidar acquisitions, and are discussed in more depth in the next subsection. For place

recognition purposes, lidar SLAM systems can rely on different techniques including

PointNetVLAD [72], SegMatch [73], OverlapNet [74], among others [75].

General challenges encountered in pure lidar-based systems include limited motion ob-

servability in geometrically-featureless environments (e.g. long corridors or pipes) [76],

and spurious loop closure detections in ambiguous and self-similar areas.

Hybrid SLAM Hybrid solutions often combine cameras and lidars due to their com-

plementary nature, along with inertial measurements, to enhance the performance of

the overall system. VLOAM [77] present a general framework for combining visual

odometry and lidar odometry, while VI-SLAM [78] propose a system that combines

an accurate laser odometry estimator, with vision-based place recognition techniques

to achieve loop closure detections. [79] provide an abstract and modular architecture

to deploy SLAM solutions over a different number of sensors, front-end and back-end

solvers.

Background and Related Work 17

Related Work

When deployed in perceptually-degraded environments, many SLAM systems result

in unsatisfactory performance as sensors must operate in off-nominal conditions, and

different factors of the course can stress different sensing modalities in various ways.

Darkness, sudden changes in illumination, presence of obscurants (e.g. dust, smoke,

fog) and potential visual aliasing phenomena in texture-less or texture-repetitive envir-

onments make feature-tracking problematic, decreasing the overall reliability of vision-

based odometry and rendering visual centric SLAM approaches unreliable [80, 81, 82,

83]. Geometrically featureless environments such as long corridors without salient fea-

tures make lidar centric SLAM approaches ambiguous and prone to drift, and the lack of

prominent perceptual features in self-similar areas in environments with repetitive ap-

pearance can result in inaccurate loop closure detections which can greatly damage the

overall mapping result. Moreover, lidar centric SLAM approaches employing a radius-

based search for loop closure detection [66] can fail if the front-end odometry drift is

excessive. All these challenges contrast sharply with the need to build high-fidelity 3D

maps of the environment and support accurate situational awareness updates from the

robot team.

More recently [84] introduce a factor-graph based lidar centric SLAM solution with

adaptable odometry inputs and multi-modal loop closure detection modules which

achieves low drift, multi-robot, multi-sensor SLAM over large scales in perceptually-

degraded conditions. [75] exploit 2D semantic and 3D geometric features extracted from

lidar data to achieve a pose-invariant and drift-resilient loop closure detection method

in perceptually-degraded and self-similar underground environments.

While tremendous progress has been made over the past decades in the field of SLAM,

extending these approaches to heterogeneous multi-robot systems remains an open chal-

lenge, as the accuracy of SLAM algorithms can be greatly challenged in the case where

robotic platforms have to operate under sever computational constraints.

Background and Related Work 18

2.1.2 Lidar Odometry

If the robot trajectory does not contain loops, the overall SLAM performance is highly

reliant on the accuracy of the front-end odometry, making accurate and robust ego-

motion estimation a key-requirement for autonomous robotic operation in extreme en-

vironments. Lidar odometry has gathered considerable attention during the last decade

as a robust localization method for extreme terrains, leveraging the high-fidelity long

range 3D measurements from lidar sensors, and the robustness to illumination vari-

ations.

The goal of the lidar odometry module is to estimate the the 6-DOF motion T ∈ SE(3)

of the robot between consecutive lidar acquisitions by means of scan-registration: by

computing the rigid body transformation that best aligns consecutive 3D observations,

it is possible to retrieve an estimate of the agent’s ego-motion, and use the computed

incremental transform to progressively update the trajectory followed by the robot.

The Iterative Closest Point (ICP) algorithm [85] is a popular method for finding the

transformation between two lidar scans and represents a key building block of most

SLAM algorithms. The ICP algorithm consists of two main stages: i) data association,

ii) transformation computation. Given two sets of points A = {a1, a2, ..., an} (source)

and B = {b1, b2, ..., bm} (target) with ai, bi ∈ R3 the data association stage computes

correspondences between points in the two point clouds by retrieving for each point

in the source point cloud its nearest Euclidean neighbour from the target point cloud:

this produces a set of correspondances C =
{
{ax, bx}1 , . . . , {ay, by}k

}
such that points

in each pair are the same point in the environment when expressed in a common frame.

Once correspondences have been obtained, the second stage of the algorithm tries to

find the rigid body transformation T ∈ SE(3) that better aligns the two point clouds

A and B so that the sum of the squared errors between corresponding points in the two

set is minimized as illustrated in Eq. 2.1 where i indexes each pair of correspondences.

E(T) =
k∑

i=0
∥Tai − bi∥2 (2.1)

Background and Related Work 19

These operations are performed iteratively until a convergence criteria is met, such

as the solution changing less than a threshold. At each iteration, points in A are

transformed with the best estimate of T and correspondences are retrieved by finding

for each point the nearest Euclidean neighbour in B. The optimal transformation is

the one that minimizes the error.

Figure 2.3: Example of registration of two point clouds with the Iterative Closest Point
(ICP) algorithm. Image taken from [86]

The perfect correspondence assumption at the point-wise level of ICP can introduce

systematic error in the ego-motion estimation process, for this reason, many variants

of the original algorithm have been proposed over the years to relax the perfect cor-

respondence assumption and enhance accuracy and efficiency [87]. [88] assumes points

are sampled from a surface and presents a point-to-plane ICP variant that matches

points to local planar patches. The Generalized Iterative Closest Point (GICP) [89]

instead match local planar patches in both scans, and represents one of the currently

most widely adopted solutions in lidar-based SLAM. As all these approaches rely on a

proximity-based data association, they are commonly known to be non-convex optim-

ization problems highly susceptible to local minima if an accurate initial guess of the

transformation between the scans is not provided: while a correct convergence might be

achievable if the starting positions of the two point clouds are close enough, an accur-

ate initial guess quickly becomes critical when the robot experiences high-rate motions,

rapid rotations, and strong platform vibrations when navigating over rough terrains.

Background and Related Work 20

Related Work

Lidar Odometry (LO) algorithms can be categorized by the representation type and

the number of points (or features) used to align lidar-scans, including (i) feature-based

methods, (ii) grid-based methods, and (iii) dense methods.

Feature-based methods Feature-based methods rely on extracting and matching

salient environmental features across consecutive lidar-scans to estimate the ego motion

of the robot. Possible features can include planar and edge features [67, 77, 90, 71],

ellipsoidal surfels [91] and ground features [66]. These features can be matched with

different approaches including proximity [84], type [67], or descriptor [91], depending

on the algorithm and feature type used.

Grid-based methods In probability grid-based methods the key idea is to abstract

lidar observations into a number of Gaussian distributions by mapping lidar-scans into

grids to compute occupancy probability densities. These probability distributions can

then be matched by using the Newton’s method [92] to minimize the distribution-

to-distribution distance and find the optimal transformation that describes the robot

motion across consecutive observations.

Dense methods Dense methods work instead with a large subset of lidar-scan points.

As using the full point cloud can be computationally expensive for real-time operation,

most approaches select a subset of points for scan matching. The Generalized Iterative

Closest Point (GICP) [89] is a common dense point-based scan matching method, where

local surface normal information is used to better address the measurement noise in scan

matching by using both point-to-point and point-to-plane matching, with planes being

evaluated in local neighborhoods.

Scan-to-scan alignment The computation of the optimal alignment between two

scans can be cast as a non-linear optimization problem, addressed by various solvers

including Levenberg-Marquardt (e.g. [67]), iterative gradient descent (e.g. [84, 89, 90]),

optimization tools such as Ceres [93], least-squares solvers (e.g. [94]), or in a sliding-

window, pose-graph structure (e.g. [95, 65]) with GTSAM [96]. Recently, [97] present

Background and Related Work 21

a fast and certifiable algorithm for the registration of 3D point clouds that can achieve

remarkable accuracy also in the presence of large amounts of outlier correspondences.

Scan-to-map alignment To enable global consistency across the history of scans, the

computed pose is refined by aligning the current scan and the existing map. The scan-

to-map alignment step has been proved to considerably enhance the overall accuracy of

the lidar odometry solution [84]. For various map representations, ranging from feature-

based (e.g. [67, 98, 95, 66]), to grid-based maps (e.g. [69]) and point-based maps (e.g.

[84]), one can adopt different scan-to-map alignment methods. This includes point-

based alignment methods (e.g. [84]), Normalized Distributions Transform (e.g. [92,

99]) or smoothing function alignment (e.g. [69]).

Sensor fusion While pure lidar-based methods are powerful, their performance can

significantly degrade when it comes to perceptually-challenging conditions, including

environments with geometrically self-similar patterns, partial observability [76], or agile

robots with high-rate motions. To address these challenges, it is important to fuse lidar

with additional sensing modalities to improve ego-motion estimation accuracy, such as

an inertial measurement unit (IMU) or visual-inertial odometry (VIO). The IMU can

provide rotational estimates that are tightly integrated (e.g. [69, 98, 65, 71]) or loosely

integrated (e.g. [91, 95, 67, 90]) with the scan matching process. When the drift is

translational (referred to as lidar-slip in this dissertation), VIO, wheel-inertial odometry

(WIO) and kinematic-inertial odometry (KIO) can complement IMUs by providing a

full 6-DOF transform estimate. Tight integration (e.g. [77]) and loose integration (e.g.

[95, 69]) of these methods with lidars have shown significant improvements over indi-

vidual use of either one of these modalities. Tightly coupled approaches are typically

threatened by potential failures of fused sensing modalities, whereas loosely coupled

methods could be designed to tolerate a loss. Initial approaches integrating additional

sensor measurements have been demonstrated in caves [100], mines [101] and urban

environments [102, 77, 66]. While multi-sensor fusion represents a vital step in achiev-

ing accurate operation under challenging perceptual conditions, potential failures in

different sensing modalities can degrade, or drastically compromise the odometry per-

formance if not properly handled.

Background and Related Work 22

2.2 Object Detection

When operating in unknown environments, semantic understanding of the surrounding

space is a primary capability required to enable autonomous robots in providing mean-

ingful situational awareness updates to a remote human operator who can rapidly gain

knowledge of salient objects within the area of interest. When paired to an accurate

location estimate, the successful detection of a significant object or phenomena in the

environment constitutes the foundation of the overall situational awareness that the

multi-robot system is tasked to provide.

The problem of object detection consists in: i) determining where objects are located in

a given visual observation (object localization), ii) and determining to which category

or class each object belongs to (object classification). The last decade has seen the

rapid rise of Convolutional Neural Networks (CNNs) based object detection approaches

as they can achieve remarkable performance over a wide range of different settings

including change in scale, pose, and illumination.

Figure 2.4: Example of YOLO’s object detection on a sample image: multiple labelled
bounding-boxes provide semantic understanding of the visual information. Image taken from
[103]

Background and Related Work 23

Related Work

The object detection problem has been widely studied on both 2D [104, 105, 106, 107,

108, 109] and 3D [110, 111, 112, 113, 114] data. The reader is referred to [115] for an

extensive review of the state-of-the-art techniques in object detection.

YOLO [106, 107, 108] provides a single shot architecture for object detection cap-

able of computing bounding boxes and class probabilities directly from full images in a

single evaluation and currently represents the state-of-the-art solution due to its balance

between accuracy and speed. Yet, the approach struggles in low-illumination settings

and its computational cost is not negligible leading computationally-constrained plat-

forms needing to downsample the input image before the detection stage to pursue

real-time operation: a possible shortcoming of this is that a downsampled version of

the image might result in degraded object detection performance as the more the image

is downsampled, the harder it is for YOLO to successfully detect objects of interest.

[116] present a cascaded and modular pipeline for the detection, localization and visu-

alization of objects of interest that is adaptable to heterogeneous robots with arbitrary

sensor configurations. For the detection of visually-observable objects, authors process

visual data coming from on-board cameras and thermal cameras with a state-of-the-art

machine learning framework where a pretrained convolutional neural network is fine-

tuned over a specific set of objects. The detection networks produce 2D bounding boxes

within the image that are combined with depth measurements to compute the position

of the artifact relative to the robot. [23] extend the work presented in [116] and focus

on multi-modal recognition of man-made objects (e.g. fire extinguisher, drill, rope, hel-

met, survivor manikin, backpack, vent, and cell phone) by leveraging visual cameras,

depth measurements, and thermal cameras. To adapt to various processing capabilities,

they rely on different CNN implementations using: a YOLO Tiny [108, 109] on ground

robots leveraging GPU hardware, a MobileDet [117] on drones modified to run on a

Google EdgeTPU. The artifact reports from each robot are then processed with a lar-

ger and more performant detection network (YOLOv4 [109]) on a remote base station

to reduce the number of false positives, and update the detection confidence of each

report.

Background and Related Work 24

2.3 Distributed Computation

To address the problem of degraded situational awareness accuracy on computationally-

constrained platforms, the concept of distributed computation can be used to distribute

heavy perception-related computation (e.g. lidar odometry, object detection) across the

multi-robot system and enhance the overall performance of the robot team.

2.3.1 Approaches

Different approaches for distributed computation have been proposed over the years in

the field of networked robots including cloud, edge, and fog.

Cloud [118] extend the computation and information sharing capabilities of net-

worked robotics by proposing a cloud based architecture where cloud technologies (e.g.

computing, storage) benefit robotics applications by providing supplemental computa-

tion to computationally limited platforms. Rapyuta [119, 120] is a popular open source

cloud robotics platform which enables robots to offload heavy computation by providing

secured customizable computing environments in the cloud. The major disadvantage

of cloud-based solutions is represented by the dependence on persistent connection to

an external network, scenario which is unlikely to be achievable in disaster relief or

planetary exploration missions.

Edge Edge computing introduces the idea of processing the raw data at the local

network level instead of the cloud to decrease application latency and optimize the

network load [121]. While installing powerful edge-devices at the perimeter of a robotic

warehouse might be an attractive solution to provide robots with supplemental compu-

tation capabilities, this quickly becomes impractical if robots have to operate in extreme

environments that are too dangerous for humans to enter. Moreover, while single base-

station solutions can be very helpful, they still constitute a single point of failure for the

entire system as robots might not take advantage of additional computational assets in

case of failure of the single highly-resourceful edge-device.

Background and Related Work 25

Fog The fog paradigm detaches from potential lack of connectivity to cloud or edge

services in extreme operations by moving the computation within the self-contained

robotic cluster connected via a local network and exploiting peers and intermediary

network devices to share resources to execute intensive computations. In these set-

tings, robots might assist their teammates in computationally demanding tasks, and

offer more localized and low-latency services. The solution designed is independent of

connections to an outside network to avoid possible communication bottlenecks and

enables team scalability. [122] introduce the concept of robotic cluster by empowering

heterogeneous robots with the ability of sharing their processing resources when solv-

ing complex collective problems and applies the proposed concept to the problem of

topological map merging in a distributed multi-robot system communicating through

a wireless ad-hoc mesh network.

2.3.2 Fields

This subsection provides a high-level overview of the main different fields of Distributed

Computation.

Multi-Robot Task Allocation Multi-Robot Task Allocation (MRTA) is the process

of assigning a set of robots to a set of task so that the overall system performance is

optimized subject to a set of constraints. The most popular approach to MRTA is the

market-based mechanism where each robot checks its eligibility, computes the cost of

performing a task, and places a bid for the task: the task is then auctioned off to a

robot bidding with the least cost [123].

Multi-Robot Task Scheduling Multi-Robot Task Scheduling (MRTS) [124] is a

subset of MRTA problems when the tasks have time dependencies, namely, some tasks

can be executed only if their predecessors have been executed. In its general form,

the MRTS problem entails assigning tasks to appropriate workers and ordering task

executions on each worker so that task-precedence requirements are satisfied and a

minimum overall completion time is reached.

Background and Related Work 26

Computation Offloading Computation offloading alleviates restrictions of resource-

constrained mobile systems (e.g. limited computation, limited battery life) by sending

heavy computation to more resourceful servers to obtain back the result of the reques-

ted computation without on-board processing. Aspects that need to be taken under

consideration when designing a computation offloading mechanism include: i) why to

offload (e.g. improve application performance, save energy), ii) when to offload (e.g.

static offloading where the tasks to be offloaded are pre-defined and do not depend from

the environment condition, and dynamic offloading approaches that adapt to different

run-time conditions such as fluctuating network bandwidth and latency constraints

[125]), iii) where to offload (e.g. cloud, edge, fog) [126].

2.3.3 Related Work

Within the broad domain of distributed computation, we aim to review related work

addressing offloading of computationally-expensive perception-related tasks over the

local cluster of robots to enhance perception accuracy of computationally-constrained

platforms and increase the overall reliability of the situational awareness retrieved by

the heterogeneous multi robot system. If possible, we investigate whether the routing

problem is also addressed when designing the distributed computation architecture.

[127] investigate the problem of MRTS in a representative heterogeneous multi-robot

system for planetary exploration missions. A common clock synchronizes all agents

acting in a 5 s broadcast, 10 s plan, and 30 s execute cycle. In the broadcast stage,

agents flood their status update to let other agents update their shared view of the

world model. In the planning stage, a solution for the task scheduling problem is com-

puted on-board of every robot with a deterministic solver: while computing a solution,

the status of inter-agent communication links in the execution stage is assumed to be

known a-priori as movements of the agents are already scheduled. In the execution

stage, scheduled tasks are performed on-board of each robot as decided by the mis-

sion scheduler. A first possible shortcoming of this approach is that assumption of

a-priori knowledge of communication links status for 30 s execution windows does not

hold in extreme operations in communication-degraded and extreme subterranean en-

vironments, as robots move freely in non line-of-sight settings and communication links

Background and Related Work 27

can go down at any moment. A second possible problem is that potential failures of

robotic agents during the execution stage are not modeled during the planning stage:

in extreme operations this represents a real possibility and could challenge the overall

mission throughput as a robot would not be able to address a given obligation, introdu-

cing further troubles if scheduled tasks exhibit chained dependencies. Authors conclude

that the main limitation of this work is that the presented approach is not robust to

failures of the broadcasting synchronization mechanism.

[128] provide a middleware for distributed computing in heterogeneous mobile robotic

networks which allows easy integration of the scheduler presented in [127] into existing

autonomy executives. The proposed architecture consists of two processes respons-

ible for orchestrating task sharing across different nodes: a dispatcher and a resource-

obligation matcher, where a controller provides the resource-obligation matcher with a

global and consistent world view. The goal is to enable autonomous agents to share

computational resources for computationally expensive tasks such as localization and

path planning. Authors conclude that the proposed algorithm is not suitable for net-

works with time-varying, non periodic connectivity.

[129] provide an overview of the motivations, techniques, technological enablers, and

architectures for computation offloading for mobile systems. [130] study the trade-off

in computation and communication to maximize perception accuracy of a dynamic

phenomenon observed by multiple agents by trying to balance the on-board data pre-

processing, the network delay, and the post-processing components.

[131] study the problem of finding the best access point for computation offloading to

the cloud in a multi-robot system composed of static agents, without addressing the

data routing aspect. [132] investigate multi-hop cooperative computation offloading to

a remote cloud infrastructure for Quality of Service (QoS) improvements, and treat

the routing aspect with a hierarchical chained strategy. [133] study the problem of

computation offloading in a UAV edge-cloud environment. The main limitation of this

work are the assumption of a non-varying UAV topology and stable communication

link status over time.

[134] develop a strategy to offload SLAM related computation-intensive tasks to cloud

Background and Related Work 28

centers from an indoor environment. [135] demonstrate that offloading computationally

intensive tasks within SLAM algorithms to edge-computing devices can bring signific-

ant enhancements to localization and positioning algorithms with low latency and high

reliability services. [136] focus on visual odometry offloading to edge-computing devices

to study the impact of image compression rate on the overall accuracy and round trip

latency without addressing data routing aspects. [137] explore the use of FPGAs at

the edge for 2D lidar odometry offloading at the local network level: in this approach a

single gateway can perform odometry calculations for multiple robots in real-time, but

authors do not provide insights on how to optimally route the multi-robot data traffic

in the network for edge-processing purposes. [138] present an offloading decision mech-

anism for multi-robot systems to minimize the execution time of a SLAM algorithm in

a scenario where only one robot performs SLAM, while the other robots are merely used

as computational assets: a main limitation of this approach is that distributed com-

putation capabilities would be rendered unavailable on failure of the central decision

maker. [139] exploit the concept of robotic cluster to allocate computational resources

available in the multi-robot system for solving computationally expensive SLAM tasks

and demonstrate gains in localization precision and map accuracy, while assessing the

impact of network bandwidth on the performance. However, in the proposed approach

only one robot executes SLAM in a leader-follower paradigm, and broadcast is used for

data exchange at the inter-robot level. [140] propose a computation offloading frame-

work where the system contains three main components: the robot cluster, the local

coordinator and the remote cloud. In this approach, a local coordinator handles the ex-

ecution of centralized scheduling algorithms and management of computation offloading

requests. Robots can offload their tasks in conditions if they need others assistance, or

execute tasks offloaded by peers on demand. The local coordinator can be a computer

in the local network or a robot chosen from the robot cluster and provides offloading

management, resource management and task scheduling functions. A first limitation

is that the work only optimize the performance for a single offloading request, not ad-

dressing dynamic multi-client settings, nor addressing data routing aspects. A second

main limitation of the work is that the scenario of failure of the central orchestrator is

not addressed.

Background and Related Work 29

2.4 Networking

Reliable networking is a key-prerequisite to enable successful operations of multi-robot

systems as the networking infrastructure can be used to exchange data between robots,

support computation offloading purposes, and provide situational awareness updates to

a remote base station that maintains a coherent understanding of the mission status.

However, extreme environments are usually characterized by the lack of a previously

available communication infrastructure, and might present a wide range of challenges

for inter-robot wireless communication due to complex propagation of radio signals in

unstructured environments and limited line-of-sight opportunities for data transmission.

2.4.1 Mobile Ad Hoc Network

A mobile ad hoc network (MANET) is a peer-to-peer, self-forming and self-healing

wireless network, where the network is ad hoc as it does not rely on a pre-existing

communication infrastructure. In a MANET each node, either static or mobile, parti-

cipates in routing by forwarding data for other nodes, so the determination of which

nodes forward data is dynamically made basing on the network connectivity and the

routing algorithm in use. For these reasons, MANET are usually exploited to provide

a wireless communication backbone for inter-agent communication in multi-robot sys-

tems: while WiFi can work reliably in the short range, radio communication is preferred

for long range communication between robots.

2.4.2 Related Work

[141] provide a concept of operations for supervised autonomy of a robotic team in

communication-degraded settings. The robot team makes use of mesh networking tech-

nology, where the wireless mesh network is formed by the base station node, robot nodes,

and droppable communication nodes which are carried and deployed by carrier robots.

Robots are designed to autonomously drop radio communication nodes on strategic

locations throughout the exploration to dynamically extend and maintain a backbone

network for inter-agent communication purposes, and for situational awareness updates

to a remote base station. Communication nodes can be dropped at junctions, or if the

Background and Related Work 30

signal-to-noise ratio to the base station goes below a threshold due to distance or sharp

turns, or by criteria focusing on the estimated available bandwidth between each radio

[142].

Figure 2.5: Example of mesh network extension into a subterranean environment by means
of autonomous communication node dropping behaviours. Image taken from [23].

[143] present CHORD (Collaborative High-bandwidth Operations with Radio Drop-

pables), a communication system for operation in communication-degraded subter-

ranean environments. CHORD maintains high-bandwidth links to multiple robots for

efficient commanding, autonomous operation, and data gathering in complex, large-

scale subterranean environments. Each agent communicates by means of a wireless

mesh network using commercial off-the-shelf radios. ROS 1 is used for intra-robot

communications, while ROS 2 is used for inter-robot communications.

[144] investigate energy-aware data routing strategies for subsurface exploration of a ro-

bot team with limited lifetime. As flooding techniques commonly employed to increase

chance of data delivery are expensive in terms of battery and network congestion, au-

thors address this problem by proposing an energy aware contact graph routing solution

that finds paths of minimal energy over a time-varying topology.

Background and Related Work 31

2.4.3 Software Defined Networking

The Software Defined Networking (SDN) paradigm abstracts network control functions

(control plane) from network forwarding functions (data plane) disclaiming networking

devices from the responsibility of taking routing decisions and centralizing intelligence

in a separate component. In a SDN based approach the knowledge of the status of

the network is centralized in the SDN controller which maintains a coherent global

view of the network, and is responsible to take dynamic routing decisions to optimally

manage the network traffic and meet QoS requirements at the application level. In

such settings, the control plane decides where to send traffic, while the data plane

of the networking hardware devices just purely forwards data where is needed upon

decision update of the central orchestrator, achieving therefore optimum and globally-

aware traffic management in complex distribuited systems.

Figure 2.6: The Software Defined Networking (SDN) paradigm. A central controller,
globally-aware of the state of the network, computes optimal routing decisions for all types
of traffic and sends routing rules updates to networking devices.

While SDN paradigms have been mainly studied over wired static networks, we invest-

igate their integration in dynamic multi-robot wireless mesh networks for their potential

in enhancing high-volume perception related traffic in computation offloading frame-

Background and Related Work 32

works dealing with multi-client scenarios to support situational awareness accuracy

enhancement purposes over an heterogeneous multi-robot system.

[145] survey the state-of-the-art in SDN technology. A typical SDN infrastructure

consists of a multi-layer architecture composed of: i) Application Layer, ii) Control

Layer, iii) Data Layer. To handle communication between layers two interfaces are

defined: i) North-Bound APIs (NBAPIs), ii) South-Bound APIs (SBAPIs). The SDN

Controller keeps track of QoS and bandwidth requirements from the Application Layer

through NBAPIs to formulate routing decisions. The SDN Controller then makes use

of SBAPIs to force updated routing rules to the Data Layer where pure forwarding

devices are instructed to route traffic where the globally-aware SDN Controller wants.

OpenFlow [146] is a commonly used protocol for SBAPIs of SDN systems that allows

access to the forwarding plane of the network device, and that can be therefore used to

update forwarding rules of the network devices upon decision of the central orchestrator.

The placement of SDN Controllers in a network has been a widely studied field of

research including centralized, distributed, and hybrid approaches. In the centralized

approach, a single controller manages all the devices in the network, and is commonly

seen as a single point of failure or bottleneck for the entire system.

2.4.4 Related Work

[147] investigate the possibility of applying SDN paradigms to a 5G mobile network.

[148] present an hybrid design exploiting advantages of centralized SDN controllers

(global network view, control programmability) and distributed protocols (robustness):

in such approach the network control is split between the SDN controller and the mobile

devices, allowing therefore mobile devices to make their own forwarding decision in

case of failure of the central orchestrator. [149] propose an SDN-enabled UAV-assisted

vehicular computation offloading optimization framework to minimize the system cost

of vehicle computing tasks. The work does not cover network routing aspects, and only

one UAV is deployed. Overall, very few works investigate usage of SDN paradigms in

dynamic wireless multi-robot mesh networks.

Background and Related Work 33

Chapter 3

Contributions

This chapter outlines the gaps identified in the current state of the literature to then

introduce contributions of this work. Investigation domains are two-fold: i) accurate

and robust lidar odometry in perceptually-degraded environments, ii) enhancement of

distributed situational awareness of an heterogeneous multi-robot system by means

of computation offloading of perception tasks (e.g. lidar odometry, object detection)

within the robot cluster aided by SDN paradigms.

3.1 Gaps

Gap 1 As for lidar odometry, while many multi-sensor methods that have been pro-

posed can achieve great accuracy, they do not take into account potential failures of the

fused sensing modalities, scenario which is likely to be observed in real world deploy-

ments, and that can result in catastrophic degradation of the odometry performance,

if not robustly handled.

Gap 2 As for the enhancement of distributed situational awareness of an heterogen-

eous multi-robot system, most works focus on offloading perception-related computation

to cloud or edge targets, destinations that are hardly suitable for robotic operations in

extreme environments. Most works never address the dynamic routing problem, and

either assume a stable network topology, a direct and persistent connection, or a-priori

known inter-agent connectivity profiles. The very few works addressing computation

offloading of perception tasks to other robot peers in the team, either model only one

computation offloading request not targeting multi-client scenarios, or assume the pres-

34

ence of a central orchestrator, without addressing the problem of its potential failure. To

the best of author’s knowledge, no existing work in literature simultaneously address the

aspects of: i) enhancing perception accuracy of computationally-constrained platforms

of heterogeneous multi-robot systems by means of computation offloading to other robot

peers, ii) managing high-dimensional perception-related traffic in distribuited compu-

tation infrastructures by means of SDN paradigms within a globally-aware central su-

pervisor, iii) designing of a comprehensive framework for simultaneous management of

computation and network resource allocation in the heterogeneous multi-robot system

that can survive on failure of the central orchestrator.

3.2 Contributions

Robust ego-motion estimation in extreme settings As first contribution, we

present a high-precision lidar odometry system to achieve robust and real-time opera-

tion under challenging perceptual conditions: LOCUS (Lidar Odometry for Consistent

operation in Uncertain Settings), provides an accurate multi-stage scan matching unit

equipped with an health-aware sensor integration module for seamless fusion of addi-

tional sensing modalities. LOCUS enables accurate, robust and real-time odometry in

perceptually-stressing settings and is fail-safe to drops or loss of one or more sensor

channels by relying on a loosely-coupled switching scheme between sensing modalities.

Furthermore, LOCUS can be adapted to heterogeneous robotic platforms with diverse

sensor inputs and computational capabilities. We present an extensive field demonstra-

tion of LOCUS. In particular, we provide results and insights from deploying LOCUS

as part of the CoSTAR team’s solution that won the Urban Circuit of the DARPA

Subterranean Challenge. We present an ablation study on LOCUS and then compare

the performance with six state-of-the-art methods using the data acquired in the field

tests. We evaluate the performance of the proposed system against state-of-the-art

techniques in perceptually-challenging environments, and demonstrate top-class local-

ization accuracy along with substantial improvements in robustness to sensor failures.

We then demonstrate real-time performance of LOCUS on various types of robotic mo-

bility platforms involved in the autonomous exploration of the Satsop power plant in

Contributions 35

Elma, WA where the proposed system was a key element of the CoSTAR team’s solution

that won first place in the Urban Circuit of the DARPA Subterranean Challenge.

Communication-aware and perception-oriented distribution of computation

As second contribution, to address the problem of degraded situational awareness accur-

acy on computationally-constrained platforms of an heterogeneous multi-robot system

we present Swarm Manager. The proposed framework exploits Distributed Computa-

tion and Software Defined Networking paradigms to enhance perception accuracy of

computationally constrained platforms in heterogeneous multi-robot systems, by al-

lowing robots to offload heavy computation (e.g. lidar odometry, object detection) to

other more resourceful peers in the dynamic multi-robot mesh network under decision

of a globally-aware and dynamically eligible central orchestrator. Without relying on

remote cloud or edge utilities, for each offloading request generated by clients, Swarm

Manager not only identifies where is best to execute the requested computation (op-

timum server) in a task-aware fashion in the robotic cluster, but also computes through

SDN paradigms the best path in the network (optimum route) that maximizes com-

munication performance given the current system state. The proposed approach does

not make assumptions on a-priori knowledge of inter-agent communication link profiles

and can work in dynamic settings while also exploiting on the fly potential failures

of robotic agents in the team (e.g. a ground rover stuck in the mud, a fallen legged

robot) to then use them as computational assets for other robot needs. A main nov-

elty of the proposed approach consists in overcoming the well-known point of failure

of centrally-supervised systems, where the orchestration mechanism provided by the

central supervisor would become unavailable on its failure: to address this problem,

we formulate a dynamic manager election mechanism, that makes the framework self-

healing and resilient to potential failures of the central supervising entity. We realize

the framework in ROS and demonstrate situational awareness accuracy enhancements

for a team of four heterogeneous robots involved in the autonomous exploration of a

multi-level and communication-degraded dismissed power plant in Elma, WA with the

data gathered during the Urban Circuit of the DARPA Subterranean Challenge.

Contributions 36

Chapter 4

LOCUS

A reliable odometry source is a prerequisite to enable complex autonomy behaviour in

next-generation robots operating in extreme environments. In this chapter, we present

a high-precision lidar odometry system to achieve robust and real-time operation under

challenging perceptual conditions. LOCUS (Lidar Odometry for Consistent operation in

Uncertain Settings) [150], provides an accurate multi-stage scan matching unit equipped

with an health-aware sensor integration module for seamless fusion of additional sensing

modalities. We evaluate the performance of the proposed system against state-of-the-art

techniques in perceptually-challenging environments, and demonstrate top-class local-

ization accuracy along with substantial improvements in robustness to sensor failures.

We then demonstrate real-time performance of LOCUS on various types of robotic mo-

bility platforms involved in the autonomous exploration of the Satsop power plant in

Elma, WA where the proposed system was a key element of the CoSTAR team’s solu-

tion that won first place in the Urban Circuit of the DARPA Subterranean Challenge.

In this chapter, we present LOCUS (Lidar Odometry for Consistent operation in Uncer-

tain Settings), a lidar odometry system that (i) enables accurate real-time operation in

extreme and perceptually-challenging scenarios, and (ii) is robust to intermittent and

faulty sensor measurements. LOCUS has been a key element of the CoSTAR team’s

solution [151] that won first place at the Urban Circuit of the DARPA Subterranean

Challenge (SubT Challenge), where robots are tasked to autonomously explore complex

GPS-denied underground environments (e.g. Fig. 4.1).

37

Figure 4.1: 3D map produced by LOCUS on a husky robot during the exploration of the
Beta 2 run of the Urban Circuit of the DARPA Subterranean Challenge.

4.1 System Description

In this section, we describe the system architecture of LOCUS reported in Fig. 4.2 and

provide explanation and details of each submodule.

4.1.1 Point Cloud Preprocessor

The point cloud pre-processor is responsible for the management of multiple input lidar

streams (e.g. syncing, motion-correction, merging, filtering) to produce a unified 3D

data product that can be efficiently processed in the scan matching unit.

Motion Distortion Correction We assume information from one or more 360 de-

gree lidar sensors, such as the Velodyne Puck or Ouster lidars. The raw information

coming from the lidar is fed into a motion distortion correction (MDC) unit which cor-

rects the Cartesian position of each point to account for the motion of the robot while

LOCUS 38

Figure 4.2: Architecture of the proposed lidar odometry system.

a single scan of the lidar is completed1. This correction is particularly important for

points at large range, when high-rate rotations are experienced by the robot, and is a

commonly employed step [98, 95]. The correction is informed by either an IMU, or an

odometry source (e.g VIO, WIO, KIO) where the chosen source depends on what is

reliably available and calibrated on a given robot.

In our setup, MDC is implemented at the driver level, which provides a simple yet ef-

fective solution to combine multiple motion corrected acquisitions from different sensors

into a unified point cloud in the merging stage: other algorithms do not offer this flex-

ibility and make assumption on the structure of the incoming point cloud, for example

by means of ring processing (e.g. LOAM, LIO-Mapping, LIO-SAM) leading therefore

to decreased adaptability of operation when working with multiple lidar sensors.

Point Cloud Merger For robots with multiple lidars, to enlarge the overall robot

field-of-view and compensate for complementary perception blind-spots, the point cloud
1The Velodyne Puck lidar requires 0.1 s to complete one scan

LOCUS 39

merger (Fig. 4.2, top and middle) combines each motion-corrected point cloud into a

single one, using the known rigid body transformation between sensors. This step is

implemented so the rest of the pipeline is consistent for robots with one or multiple lidar

sensors. Combining multiple sensors readings can provide with a denser point-cloud,

which greatly enhances ego-motion estimation and mapping accuracy: this however

at the cost of increased computational load, due to the greater number of points to

process.

Figure 4.3: Failure-aware multi lidar merger. Top left) an intermediate health monitor layer
watches the health of multiple lidar feeds to dynamically update the synchronization policy
of the merger to adapt to the number of currently available lidar feeds. Bottom) Lags in
lidar data for three Velodynes mounted on-board of a wheeled platform. Top right) Beside
for the time interval where no lidar data is available, the point cloud merger always produce
an output point cloud no matter which failures are experienced by individual feeds.

We design the Point Cloud Merger to be failure-safe on lags/failures of individual lidar

streams: an intermediate lidar health monitor layer keeps track the actual availability of

the different lidar sources, to then dynamically update the time synchronization policy

of the Point Cloud Merger to the number of actual available feeds. This is an essential

feature in the development of a failure-aware framework for the exploration of extreme

LOCUS 40

terrains where sensors can break at any moment greatly compromising the performance

of the downstream processing.

If a common clock is available for multiple on-board lidar sensors, instantaneous ac-

quisitions could be merged into a unified information by just using the static extrinsic

transformation between them. In real world practice, a common clock might not be

available. Therefore, to account for the motion of the robot between slightly differ-

ent timestamps of lidar acquisitions, we use an external odometry source to inform

the point cloud merger for relative motion offsets in order to merge multiple unsynced

lidar acquisitions into a unified, spatially and temporal coherent frame of reference (the

merged point cloud is expressed in base link frame, at the timestamp of the main lidar

acquisition).

Point Cloud Filter The resulting point cloud is then processed in the point cloud

filter to remove noise and out-of-range points, manage the volume of data, and reduce

computational load. The point cloud filter is composed by a sequential combination of a:

i) body filter, ii) 3D voxel grid filter, iii) random downsampling filter. Each component

can be individually tuned, activated and deactivated. The body filter is a box-filter that

removes occlusions of the robot body and on-board carried communication nodes. The

voxel grid filter takes the average of the points in each 3D volume (a voxel) to decrease

the data size while still capturing the dominating structure of the environment: we use

a voxel size of 0.1 m in the tests presented in this work. The random downsampling

filter randomly samples points with a uniform probability: in the results present in this

chapter, we use an implementation of [152] with a downsampling percentage of 90%.

For all filters we use the implementation in the Point Cloud Library [153].

4.1.2 Scan Matching Unit

The scan matching unit (light blue box in Fig. 4.2) performs a cascaded GICP-based

scan-to-scan and scan-to-submap matching operation to estimate the 6-DOF motion of

the robot between consecutive lidar acquisitions.

LOCUS 41

Notation We denote with R the coordinate system of the robot and with W the

coordinate system of the world, that coincides with R at the start of the test. We

therefore address the problem of determining the poses of R with respect to W by

means of consecutive lidar acquisitions to incrementally reconstruct a trajectory and a

map of the explored environment. We denote with Lk the lidar scan collected at time

k and with Lk−1 the lidar scan collected at time k− 1. All lidar scans are expressed in

the robot frame. We denote with Xk ∈ SE(3) the robot pose in W at time k and with

Xk−1 the robot pose in W at time k − 1. We denote with Tk−1
k = X−1

k−1Xk the rigid

body transformation between two consecutive robot poses, where Tk−1
k ∈ SE(3) is the

transform between Xk−1 and Xk.

Sensor integration module

In the joint optimization of accuracy and robustness, a key component of the pipeline

is the sensor integration module. In robots with multi-modal sensing, when available,

we use an initial transform estimate from a non-LiDAR source in the scan-to-scan

matching stage to ease the convergence of the GICP , by initializing the optimization

with a near-optimal seed that improves accuracy and reduces computation, enhancing

real-time performance.

Health monitoring Multiple sources of odometry (e.g VIO, KIO, WIO) and raw

IMU measurements available on-board are first transformed into R, and then fed into a

sensor integration module which selects the output from a priority queue of the inputs

that are deemed healthy by a built-in health-monitor, which prioritizes the order based

on the expected accuracy of the methods. (see bottom left of Fig. 4.2). The system is

designed to take in a variety of sources of health metrics to evaluate the health of input

sources. For example, ongoing work is looking to integrate with the Heterogeneous

Robust Odometry (HeRO) system [154] that employs custom health analysis (such as

feature counts and observability analysis) on each odometry source, as well as rate and

covariance checks. For our implementation presented below, we use a simple rate-check:

if input messages are at a sufficient rate (> 1Hz), then the source is healthy.

LOCUS 42

Priority queue The priority queue is intend to always select the highest accuracy

source, based on previous testing for a given robotic system in similar environments 2.

If the robot enters an area where the highest priority source is degraded, it is intended

for this to be reflected in the health metric, that would trigger a transition to the next

highest, healthy input. With this health-metric-driven dynamic switching, the priority

queue is static. The priority queue for our legged robot is: VIO, KIO, IMU, no input,

and for our wheeled robot is: VIO (if present), WIO, IMU, no input.

We define the pose estimate (with respect to W) of the highest priority source that is

found to be healthy as Y. To reduce operations, we buffer only Y and interpolate the

buffered data at lidar timestamps, tk−1, and tk to get Yk−1 and Yk: the pose of highest

priority healthy source at times tk−1 and tk, respectively. We denote with Ek−1
k =

Y−1
k−1Yk the rigid body transformation of the sensor integration module output between

Yk−1 and Yk in the [tk−1, tk] time interval where Ek−1
k ∈ SE(3). Each odometry source

provides a rotation and translation, whereas for the IMU we only use the rotation

measurements.

Scan-to-scan

In the scan-to-scan matching stage, GICP computes the optimal transformation T̂
k−1
k

that minimizes the residual error E between corresponding points in Lk−1 and Lk.

T̂
k−1
k = arg min

Tk−1
k

E(Tk−1
k Lk, Lk−1) (4.1)

If the sensor integration module is successful, we initialize the GICP with Tk−1
k = Ek−1

k .

If all sensors fail, the GICP is initialized with identity rotation and zero translation and

the system reverts to pure lidar odometry.
2Different characteristics of the environment can challenge different sensing modalities: i) texture-

less and texture-repetitive areas along with dust, fog and smoke, are elements that can challenge the
accuracy of VIO, ii) harsh surfaces can challenge the accuracy of KIO, iii) bumpy and unstructured
terrains can challenge the accuracy of WIO. Ongoing work is looking into integrating additional health
metrics on individual sensing modalities beyond the default rate-check to let the system always select
the most reliable source given the current state of the environment. Please refer to [155, 154] for
further details.

LOCUS 43

Figure 4.4: Visualization of the LOCUS priority queue. a) all external measurements
are available, VIO is picked. b) VIO fails, so KIO is picked, c) Neither VIO or KIO are
available, WIO is picked. d) No external odometry sources are available, IMU is picked. e) no
measurements are available from on-board sensing modalities, GICP is therefore initialized
with the identity pose. For the sake of brevity, we don’t graphically model all other possible
configurations (e.g. VIO available, KIO unavailable, WIO unavailable, IMU available, etc.)

LOCUS 44

When using an IMU, a Maximum Correntropy Criterion Kalman Filter (MCCKF) like

then one presented by [156] can be used to enhance accuracy of attitude estimation

in the presence of non-gaussian noise and outliers in raw IMU measurements (e.g.

acceloremeter, gyroscope, magnetometer) which might occur during the navigation of

harsh terrains. This enhances the quality of the motion prior provided to the GICP in

the scan-matching stage of LOCUS resulting in increased accuracy as demonstrated in

[156].

Scan-to-submap

The motion estimated in the scan-to-scan matching stage is further refined by a scan-

to-submap matching step. Here Lk is matched against a local submap Sk which is taken

from the local region of the global map Mk given the current estimate of the robot pose

in W .

T̃k−1
k = arg min

Tk−1
k

E(Tk−1
k Lk, Sk) (4.2)

In this optimization, Tk−1
k is initialized with the T̂

k−1
k result from Eqn. 4.1. The global

map is a point cloud stored in an octree format that is an accumulation of point clouds

after every t meters of translation, or r degrees of rotation: for our results, we use

t = 1, r = 30o. We use an octree with a minimum resolution of 0.001m to store the

map, which usually maintains all points in an easily searchable format.

Output After scan-to-scan and scan-to-submap matching, the final estimated motion

T̃k−1
k between consecutive lidar acquisitions is used to update the robot pose inW : the

generated odometry is therefore the integration of all computed incremental transforms.

Both accuracy and computational speed are improved by the incremental estimation

from input odometry to scan-to-scan and finally scan-to-map (shown, for example,

in [84]). A good initial estimate in both Eqn. (4.1) and Eqn. (4.2) reduces the chances

of converging in a sub-optimal local minima, and reduces the number of iterations

needed to converge, lowering computation time.

LOCUS 45

Notes on multi-threading

The computational speed of the scan-to-scan and scan-to-submap matching is greatly

increased through a multi-threaded GICP approach modified from the PCL implement-

ation [153]. The multi-threading utilizes a user-specified number of cores for the normal

computation stage in GICP, which represents over 70% of the computation time in the

process. For the evaluations performed in this work, we use 4 threads unless otherwise

stated.

4.1.3 Environment Adaptation: Flat Ground Assumption

In human-made environments there are many areas with flat grounds, which if known

prior, could be utilized to aid odometry algorithms. When detected or known, the flat

ground assumption (FGA) can be activated to limit drift in Z and error in roll and pitch

(lower-right blue box in Fig. 4.2). FGA operates on the output of both scan-to-scan and

scan-to-submap alignment, by zeroing any Z movement, roll or pitch, all in a global,

gravity aligned reference frame.

FGA activation modalities The system provides two ways to detect a flat ground

and activate FGA: context-based, and sensor-based. The first approach relies on prior

knowledge of the environment that can be acquired by a human supervisor, for instance

in single floor exploration of urban environments. For stair-climbing robots, the initi-

ation of a stair mission can be used to deactivate FGA, and then reactivate it when

the stair mission is complete through the input of a human operator (see [155] for an

example). In the second approach, an IMU monitor can be used to detect periods when

the robot has near-zero roll and pitch over a sufficient time period to activate FGA,

and then deactivate it when this condition is no longer met.

4.1.4 Adaptation for Different Platforms

The system includes adjustable components to adapt to heterogeneous robotics plat-

forms with different computing power and sensors. These adaptations are primarily in:

the number of lidars, the filtering, and number of threads for GICP and the measure-

LOCUS 46

ments used for the initial transform estimate. Sec. 4.2.3, demonstrates the flexibility of

LOCUS through application to two different robotic platforms.

4.2 Field Experiments

In this section we present the experimental results obtained from tests in the Tunnel

and Urban circuits of the SubT Challenge. We first use three datasets from a Clearpath

Husky ground rover (Fig. 4.1.a-b) to perform an ablation study on LOCUS, and compare

it with state-of-the-art lidar odometry solutions. We then showcase results achieved

during live operations in field tests across heterogeneous robotic platforms. See https:

//youtu.be/5QQkkQ_YrbU for visualization of the results.

Dataset description Each dataset comprises 3D lidar scans coming from 2 on-board

VLP16 lidars (one flat, one pitched forward 30o), along with IMU (Vector Nav 100)

and WIO measurements for a 60-minute run. Each dataset is selected to contain com-

ponents that are challenging for lidar odometry. The Urban datasets (Alpha Course,

Fig. 4.1.f and Beta Course, Fig. 4.1.e) are collected in a dismissed power plant located

in Elma, WA that presents many challenges for robot perception such as long feature-

poor corridors and large open spaces (the test area dimensions are 100x100x20 m).

The Tunnel dataset (Safety Research Course, Fig. 4.1.c) is recorded in the Bruceton

Research Mine in Pittsburgh, PA that is characterized by self-similar and self-repetitive

geometries (the test are dimension are 200x200x10 m). All datasets have substantial

vibrations and large, sudden accelerations as is characteristic of a skid-steer wheeled

robot traversing rough terrain and rubble. See Fig. 4.1 for sample images of the envir-

onments.

Lidar scans are recorded at 10Hz. WIO and IMU are recorded at 50Hz in the Urban

datasets, while a higher-rate IMU recording (100Hz) is available for the Tunnel dataset.

Both motion corrected and raw points are available for the Urban datasets, whereas

the Tunnel dataset only has raw points available. We use LOCUS to do scan matching

on the ground-truth map provided by DARPA to estimate the ground-truth reference

of the robot trajectory.

LOCUS 47

https://youtu.be/5QQkkQ_YrbU
https://youtu.be/5QQkkQ_YrbU

Figure 4.5: On the left, the husky robot used for the autonomous exploration and data
collection. On the right, pictures of the circuits where the robot has been deployed within
the context of the Tunnel and Urban circuit of the DARPA Subterranean Challenge.

4.2.1 Ablation Study

To investigate the impact of each component of LOCUS on the overall pipeline accuracy,

we evaluate the Absolute Position Error (APE) of the robot-trajectory in the Urban

Alpha dataset3. The results are summarized in Fig. 4.7. The study confirms that the use

of motion-corrected points is essential, and highlights the effectiveness of the filtering

approaches that limit the data volume and reduce computational load. Feature-based

filtering (e.g. LOAM-type features of edges and planes) can result in greater accuracy,

yet with a higher CPU load (25% more than the baseline configuration), leading to non-

real-time performance on our system. Environmental knowledge of a flat ground is not

essential, but can help to improve accuracy for exploration of human-made buildings.

The loose sensor integration of WIO or IMU results in minor improvements, however,

we use this approach as baseline to robustly operate in scenarios with high-rate motions

or low lidar observability.
3While these results are for one dataset, we observed similar trends from tests on the Urban Beta

dataset.

LOCUS 48

Figure 4.6: Visualization of LOCUS estimated trajectories in the Alpha course of the SubT
Challenge for different processing configurations.

Figure 4.7: Evolution of the Absolute Position Error (APE) of the proposed method for
different processing configurations in the Alpha course of the SubT Challenge. The inset gives
more detail on the four best configurations. baseline: all features in Section locus. imu_int: no
WIO integration, only IMU integration, no_int: neither WIO or IMU integration, loam_feat:
using LOAM feature extraction instead of filtering, fga_off: no FGA, rdf_off: no random
downsample filter, vgf_off: no voxel-grid filter, mdc_off: no MDC.

LOCUS 49

Table 4.1: Summary of State-of-the-Art, Open-Source Algorithms

Algorithm Align. Opt. IMU Odom. MDC*
LOCUS Dense GICP Loose Loose Yes
BLAM[157]4 Dense GICP None None No
ALOAM[67]5 Features Ceres None None No
FLOAM[67]6 Features Ceres None None No
Cartog.[69]7 Grid Ceres Tight Loose Yes
LIO-Map.[98]8 Features Ceres Tight None Yes
LIO-SAM[65]9 Features GTSAM Tight None Yes
* See section IIIB for more details.

4.2.2 Evaluation Against the State-of-the-Art

We compare the proposed algorithm against a variety of the state-of-the-art open-source

lidar odometry systems, selected to cover the range of aligment methods and sensor in-

tegration methods, as summarized in Table 4.1. While we would like to compare against

systems integrating with visual odometry (e.g. [77], [95]), or more recent multi-sensor

released systems such as [158], these algorithms do not have open source implementa-

tions to readily test. FLOAM and ALOAM are two modern implementations of LOAM

aimed to simplify the code structure and increase computational speed, respectively.

Cartographer is an LIO algorithm distinguished by its use of grid-based matching.

LIO-Mapping is a more recent LIO algorithm that combines the IMU pre-integration

approach from VINS-Mono [46] with LOAM-type feature alignment. LIO-SAM is yet

more recent, and builds from LeGo-LOAM [66], adding in IMU pre-integration in a

smoothing-and-mapping approach.

Comparison criteria We aim to compare the lidar odometry systems holistically,

hence we use three criteria: i) Accuracy, ii) Robustness and iii) Efficiency.

Comparison setup Each algorithm is setup for the best performance, yet with min-

imal parameter tuning, only input adjustment (number of lidars, motion corrected
4github.com/erik-nelson/blam_slam
5github.com/HKUST-Aerial-Robotics/A-LOAM
6github.com/wh200720041/floam
7github.com/cartographer-project/cartographer
8github.com/hyye/lio-mapping
9github.com/TixiaoShan/LIO-SAM

LOCUS 50

github.com/erik-nelson/blam_slam
github.com/HKUST-Aerial-Robotics/A-LOAM
github.com/wh200720041/floam
github.com/cartographer-project/cartographer
github.com/hyye/lio-mapping
github.com/TixiaoShan/LIO-SAM

points). WIO is the odometry input, if used. Loop closures are disabled to focus on the

lidar odometry performance. Variations in the input for each algorithm are summarized

below.

LOCUS, BLAM, and ALOAM each use two lidars in all datasets, with motion-corrected

points in the Urban datasets. FLOAM only succeeded with one lidar in the Urban

Alpha dataset and otherwise uses two lidars, in each case (with motion correction in

Urban datasets). Cartographer can do internal motion correction, but only with the

input of points as individual UDP packets from a single lidar. We elected to instead

feed pre-corrected scans from two lidars to Cartographer. LIO-Mapping and LIO-SAM

are both set up to do internal motion-correction on the point clouds, leveraging the

integrated IMU data, hence uncorrected scans are used as inputs. For LIO-Mapping, 2

lidars were used, except for Urban Alpha, where only a 1 lidar test was successful.

LIO-SAM was only able to run with a single lidar input, as there are internal assump-

tions of a structured point cloud of rings for motion correction and feature extraction.

We were not able to get LIO-SAM working on the Urban datasets, likely due to the

IMU rate, at 50Hz being lower than the recommended 200Hz for LIO-SAM.

Accuracy Evaluation

We evaluate the accuracy with two metrics: position error and map error.

Position error To evaluate the localization accuracy, we use evo [159] to compute

the absolute position error (APE) of the trajectories estimated by the different methods

against the ground-truth reference. We report in Fig. 4.14 a boxplot visualization of

the APE results for the Urban and Tunnel datasets and summarize these results in

Table 4.3.

The results show that LOCUS is equal to or better than the state-of-the-art in all

datasets. FGA does help to improve LOCUS performance, but is not essential for

LOCUS to perform well. LIO-Mapping has similarly low error, as expected with tight

integration of IMU and lidar, yet with a large delay from a mean processing time of 1s

LOCUS 51

per scan. The larger optimization being performed with pre-integration, scan alignment

and extrinsic estimation all together likely leads to the longer computation times.

LIO-SAM performs the best in the Tunnel dataset, and with feasible computational

speeds, yet the strict requirements on appropriate input data limit the range of plat-

forms and datasets it can be applied to. Cartographer and ALOAM perform relatively

well in Urban, showing the effectiveness of edge and plane features as well as grid

methods in human-made environments.

For dense alignment methods, BLAM perfoms adequately in the Urban datasets, but

poorly in the Safety Research dataset, suggesting the WIO integration employed by

LOCUS is an important component in the self-similar and low lidar observability con-

ditions seen in that dataset.

Map error As second quantitative evaluation, we compare the maps obtained with

each algorithm to the DARPA provided ground-truth map to compute the overall cloud-

to-cloud error. To account for potential calibration misalignments, we run Iterative

Closest Point (ICP) between the reconstructed map and ground-truth map before per-

forming error analysis. We report in Table 4.3, a numerical summary of the RMSE

values of the map error (ME) computed for each algorithm on each relevant dataset.

The results show similar trends to the position error, with some negligible differences

in the order of the algorithms.

LOCUS 52

LOCUS
(FGA) LOCUS LIO

MAPPING BLAM ALOAM CARTO
GRAPHER

2

0

1

3

4

5

6

Alpha Course

A
PE

 [m
]

LOCUS
(FGA) LOCUS LIO

MAPPING ALOAM CARTO
GRAPHER BLAM

Beta Course

0

1

2

3

4

LIO
SAM

LIO
MAPPING LOCUS

LIO
SAM

LIO
MAPPING LOCUS ALOAM CARTO

GRAPHER FLOAM

0

20

40

60

80

0

1
2
3

Safety Research Course

A
PE

 [m
]

A
PE

 [m
]

Figure 4.14: Boxplot visualization of the Absolute Position Error (APE) computed for the
different methods on the test datasets. For clarity, only the best six algorithms in each dataset
are shown.

LOCUS 56

Table 4.2: Summary of Accuracy Analysis results on Alpha and Beta Courses from Urban
Circuit

Algorithm Alpha Course Beta Course
APE [m] ME [m] APE [m] ME [m]

max mean std RMSE max mean std RMSE
LOCUS 1.69 0.62 0.57 0.29 1.51 0.88 0.51 0.69
LOCUS_FGA 0.63 0.26 0.18 0.28 1.20 0.58 0.39 0.48
BLAM 3.44 1.01 0.94 0.43 3.89 2.27 0.89 1.27
ALOAM 4.33 1.38 1.19 0.60 2.58 2.11 0.44 0.99
FLOAM 29.49 9.19 8.96 1.73* 40.64 3.94 8.42 3.73*
Cartographer 5.84 2.91 1.60 1.05 2.64 1.37 0.67 0.31
LIO-Mapping 2.12 0.99 0.51 0.45 1.60 1.18 0.22 0.61

Table 4.3: Summary of Accuracy Analysis results on Safety Research Course from Tunnel
Circuit

Algorithm Safety Research Course
APE [m] ME [m]

max mean std RMSE
LOCUS 3.39 1.67 0.76 0.63
BLAM 171.34 35.45 51.91 5.37
ALOAM 18.61 10.01 6.01 6.11
FLOAM 85.31 32.49 25.73 20.16
Cartographer 50.05 14.31 13.45 14.25
LIO-Mapping 3.31 1.99 0.55 0.76
LIO-SAM 2.45 1.26 0.58 0.52

Robustness Evaluation

The previous section highlighted the robustness to low lidar observability, substantial

vibrations, large accelerations and self-similar environments through the accuracy res-

ults on the datasets. In this section we focus on another aspect of robustness: the

ability to handle a sudden failure of an input source. Specifically, we test the following

scenarios: i) failure of WIO/IMU, ii) failure of WIO, iii) failure of lidar. Each of these

failure scenarios have been experienced in real field tests in preparation for the SubT

Challenge. We artificially create these failures in our datasets to have a controlled way

of isolating the source of the failure, and the resulting impact on the algorithms. The

results are summarized in Table 4.4, with example maps resulting from different failure

modes shown in Fig 4.15.

LOCUS 57

Table 4.4: Summary of Robustness Test Results

Robustness Test Result
Algorithm a) WIO/IMU Fail b) WIO Fail c) Lidar Drop
LOCUS OK OK OK
BLAM NA NA Errors
ALOAM NA NA Errors
FLOAM NA NA Errors
Cartographer Stops Stops Errors
LIO-Mapping Stops NA Errors
LIO-SAM Stops NA Errors
OK: negligible degradation in accuracy. NA: Not Applicable - the
algorithm does not use that sensor source. Errors: substantial errors
in accuracy. Stops: no more odometry output after failure.

WIO/IMU failure We simulate sensor failure after 1200s, by shutting down WIO

and IMU streams for the rest of the run. This failure only affects those algorithms

that use IMU, where the algorithms cease to run, either relying on a synced callback

with WIO and IMU (e.g. Cartographer) or relying on pre-integrated IMU to provide

odometry updates between scans as well as initial scan to map alignment estimates

(LIO-Mapping, LIO-SAM). In contrast, LOCUS processes the input data separately,

and hence can automatically switch from lidar odometry with WIO integration, to lidar

odometry with IMU integration, to pure lidar odometry, demonstrating robust handling

of sensor failures in a cascaded fashion. This behavior is highly desirable to accommod-

ate the unforeseen challenges posed by rough terrains in real-world applications where

hardware failures are likely to happen, or sensors sources can become unreliable (e.g.

dark areas with no visual texture for VIO).

WIO failure We simulate a loss of WIO after 1200s. Cartographer and LOCUS are

the only algorithms affected, with the same result as the WIO/IMU case.

Lidar failure We stress the systems by subtracting the most fundamental data

source: lidar. More specifically, we simulate a 10s gap in lidar data while the robot

is in motion. There are three responses to this failure. The first response is that the

algorithm stops running until the lidar returns, resulting in large map errors (BLAM,

ALOAM, FLOAM, and Cartographer due to the synced callback). The second response

is that the algorithm runs purely on IMU integration, leading to an accumulation of

LOCUS 58

drift before the lidar returns (LIO-Mapping, LIO-SAM). The final response is only seen

by LOCUS, where the loose coupling allows WIO to accumulated over the 10s of no

lidar data to produce an accurate initial transform when the lidar returns.

Overall, LOCUS consistently achieves reliable ego-motion estimation and mapping,

demonstrating efficient handling of sensor failures in a cascaded fashion, behaviour that

is desirable to accommodate the unforeseen challenges posed by real-world operations

where hardware failures are likely to happen, or sensor sources can become unreliable.

Efficiency Evaluation

We profile the time needed from the different algorithms to process a single lidar scan

when running the algorithms on an Intel Hades Canyon NUC8i7HVKVA (4x1.9 GHz,

32 GB RAM) running Ubuntu 18.04 LTS. Fig. 4.16 shows the resulting times per scan

with scans at 10Hz (LIO-Mapping is omitted as the processing time, 1s per scan, is

too large). Additionally, Table 4.3 shows the CPU loads for each algorithm. All values

are from the Urban Beta dataset, except for LIO-SAM, which is on the Tunnel Safety

Research dataset.

LOCUS, Cartographer and BLAM can all maintain real-time processing, whereas ALOAM

and LIO-SAM can only stay real-time with a lower rate of lidar scans. LIO-SAM can use

the IMU pre-integration to cope with a lower IMU rate, and by using features, ALOAM

can also handle a lower rate for certain datasets. Both FLOAM and LIO-Mapping do

not appear to be feasible for real-time operation. Cartographer has both the quickest

processing time and the lowest CPU load, yet the accuracy is not as strong as the

other algorithms. LOCUS produces the best accuracy, with real-time performance, yet

requires the largest CPU load.

4.2.3 Real-Time Operation Across Different Platforms

In this section, we demonstrate real-time field operation of LOCUS on different robotic

platforms during the Urban Circuit of the SubT Challenge and provide statistics from

logged online operation. Results come from the four competition runs, two in Alpha

course and two in Beta course.

LOCUS 59

Figure 4.15: Robustness test in Beta course: a) results on WIO/IMU failure, b) results on
WIO failure, c) results on Lidar failure. The failure locations are circled in all cases.

LOCUS 60

Figure 4.16: Comparison of lidar processing time across the different lidar odometry al-
gorithms. The times are the duration for processing a single scan. Top - Urban Beta dataset,
Bottom - Tunnel Safety Research dataset. A processing time of 0.1 s indicates realtime per-
formance (10 Hz scans).

LOCUS 61

Hardware and Tuning

During the competition, we deployed LOCUS on two very different robots: i) the Husky

from the datasets used above (see Fig. 4.1.b), and ii) Spot from Boston Dynamics (see

Fig. 4.1.d).

Husky In addition to the sensors described in Sec. 4.2, Husky carries an AMD RYZEN

9 3900X 12-Core 3.8 GHz for computation.

Spot A legged robot that is equipped with 1 VLP16 and an Intel NUC7i7DN 4-Core

1.9 GHz for computation. Both VIO and KIO are available from the Boston Dynamics

API, and can be used for integration into LOCUS. We choose VIO as it was shown to

be more accurate than KIO in our tests.

Adaptation The paramaters of LOCUS are tuned to achieve accurate and robust

real-time operation on both platforms while accounting for differences in computational

capabilities and hardware configurations. Table 4.5 summarizes the configurations used

during the competition.

Table 4.5: Summary of LOCUS settings on different robots

Parameter Husky Spot
Number of lidars 2 1

Voxel Grid Filter leaf size (m) 0.1 None
GICP iterations in scan-to-submap 20 25

GICP number of cores 4 1
Sensor Integration WIO VIO

Performance

We report in Table 4.6 the average value of the number of lidar scans dropped per second

by each robot in each course of the competition during real-time operation. Point clouds

are subscribed to at 10hz and we do not buffer any lidar scans, to minimize the delay of

the computed odometry. Therefore, the number of dropped scans per second represent

how frequently the lidar processing time exceeded 0.1s. Spot drops 2 scans a second, due

to the less powerful computer onboard. However, Spot has a more accurate additional

LOCUS 62

Figure 4.17: Absolute Position Error (APE) of the trajectories estimated by the different
methods against ground-truth in Beta course, including the performance when running live
in the SubT Challenge (LOCUS_REALTIME).

odometry source than Husky, with VIO. The reliable initial transform from VIO enables

Spot to process fewer scans per second, and still perform acceptably.

Table 4.6: Dropped lidar scans from real-time on-robot tests

Number of dropped scans / s
-2*Robot Alpha 1 Alpha 2 Beta 1 Beta 2 Average
Husky 0 0 0 0 0
Spot 2.082 2.205 1.833 2.016 2.034

Real-time accuracy profiling LOCUS performed accurately for both Husky and

Spot in the competition, as evident in the overall team’s performance, winning first

place10. Fig. 4.17, shows the live performance of LOCUS with FGA on the Husky

in Beta 2, with a slightly larger error than the post-processed results (on a different

computer), yet still highly competitive.

For Spot, LOCUS was run live in a multi-level exploration in the Urban Alpha 2 course.

In this run, the mean APE was 0.586 m, and the maximum APE was 2.599 m, which

was sufficiently small for scoring in the competition.
10The LOCUS output was integrated with a robust odometry aggregator [154], and then fed to a

back-end SLAM algorithm [84]

LOCUS 63

4.2.4 Discussion

Overall, fusion of additional sensing modalities is crucial to enable accurate operation

in extreme robotic explorations: by relying on a loosely-coupled mechanism, LOCUS is

robust to potential failures of sensors, and can achieve improved performance with re-

spect to tightly-coupled approaches in settings where the extrinsic sensors calibration is

not ideal. While being very accurate and robust, a possible avenue for future improve-

ments of LOCUS is represented by decreasing its computational cost, as it currently

represents a challenging bottleneck for its deployment over platforms operating under

severe computation constraints.

4.3 Conclusions

Achieving accurate lidar odometry in perceptually-challenging conditions can be dif-

ficult due to the lack of reliable perceptual features, presence of noisy sensor meas-

urements, and high-rate motions. While integrating additional sensing modalities can

help address these challenges, potential sensor failures can have dramatic impacts on

the mission outcome if not robustly handled. We present a lidar odometry system

to enable accurate and resilient ego-motion estimation in challenging real-world scen-

arios. The proposed system, LOCUS, provides an accurate multi-stage scan matching

unit equipped with an health-aware sensor integration module for seamless loose in-

tegration of additional sensing modalities. The proposed architecture is adaptable to

heterogeneous robotic platforms and is optimized for real-time operation. We compare

LOCUS against state-of-the-art open-source algorithms and demonstrate top-class ac-

curacy in perceptually-challenging real-world datasets, top-class computation time and

superior robustness to sensor failures, yet with greater CPU load. Finally, we demon-

strate field-proven real-time operation of LOCUS on two different robots involved in

fully autonomous exploration of Satsop power plant during the Urban Circuit of the

DARPA Subterranean Challenge, where the proposed system was a key component of

CoSTAR team’s solution that achieved first place.

LOCUS 64

4.4 Ongoing Work

This section provides details of ongoing work not included in [150].

4.4.1 Open Space Detector

With voxel-based filtering the size of the output point cloud changes with the size of

the environment surrounding the robot: for example, when moving from closed space

to open space, the number of post-filtered points will greatly increase. Different cross

sections of the environment can considerably affect the total lidar processing time in

the scan-matching unit as illustrated in Fig. 4.18 and this might impose challenges for

computationally-constrained platforms pursuing real-time operation.

Figure 4.18: Influence of the environment x-y cross-section (bottom) on the total lidar
processing time in LOCUS (top) for the multi-level exploration of spot1 robot in LA Subway.
When entering open spaces, the greater number of points lead to greater processing times
as the system needs to register a wider amount of information. Closed spaces instead are
easier to handle, and just challenge the system on the observability layer. On the bottom
plot is possible to distinguish four main areas of the exploration: an open-space, a corridor,
a medium-space, a corridor, and finally another large open-space.

The Open Space Detector analyzes the size of the environment by looking at the x-

y cross section of the current lidar observation: if this value exceeds a user-defined

threshold and an open space is detected, this information can be used to apply addi-

tional downsampling to reduce the number of points before the first GICP operation,

and cope with limitated computational capabilities on board to achieve real-time opera-

LOCUS 65

tion. Furthermore, detection of open space can also be exploited to dynamically adjust

the keyframe policy addition, by for example adding points to map less frequently in

open space, and more frequently in closed space. The presented capability becomes

then a tuning parameter to trade off between accuracy and real-time requirements.

4.4.2 Map Sliding Window

In lidar based systems, a fairly unexplored question is how to store the map during

long-term operations. If the global map is stored in memory for localization purposes,

its size will monotonically increase over large-scale explorations leading to possible

catastrophic consequences at the mission-level as the on-board RAM will not be able

to store further data. This subsection presents two approach developed to keep un-

der control the map size in memory and enable long-term explorations of large-scale

environments on memory-constrained platforms. More specifically, we will discuss: i)

a stationary-triggered map sliding window approach, ii) a multi-threaded map sliding

window approach.

Stationary Approach The first attempt in enabling large-scale explorations under

memory constraints consists in the development of a stationary-triggered map sliding

window approach. This method monitors the translational and rotational velocity of

the robot and waits to detect stationary conditions. When the stationary-status is

detected, the map is refreshed with a robot-centered box-filter to retain only the robot-

centered sub portion of the map in memory. When the point cloud map has been

refreshed, the octree is reset, and reinitialized with the updated map. This approach

results in a blocking operation for the lidar callback, and the robot needs to stand still

until the refresh operation has finished.

From preliminary tests on the dataset collected in the Louisville Mega Cavern, KY,

the stationary map sliding window approach decreases memory usage by 40 GB with

respect to the classic mapper as shown in Fig. 4.20 with no evident consequences on

accuracy. A possible shortcoming of this approach is that potential issues would be still

faced if the robot never stops during the long-term exploration as the map would never

be refreshed.

LOCUS 66

Figure 4.19: Stationary-triggered map sliding window testing on the Mega Cavern dataset.
When the robot is standing stationary, the map/octree is refreshed to keep in memory only
a robot-centered submap of the environment for front-end localization purposes.

Figure 4.20: Size of map in memory for a large-scale exploration of the Mega Cavern dataset.
In red, the classic mapper keeps the full map in memory resulting in 60 GB RAM usage at
the end of the run. In blue, the stationary-triggered map sliding window approach refresh the
maps every time the robot stops, leading to decreased overall memory usage (20 GB).

LOCUS 67

Multi-Threaded Approach Our second attempt in keeping under control the map

size in memory consists in developing a multi-threaded map sliding window approach

that: i) does not constitute a blocking operation for the lidar callback, ii) can be

exploited while moving, without needing the robot to stop. In this approach, we exploit

multi-threading techniques to always have two parallel working threads (threada and

threadb) working on dedicated data structures for the maps (e.g. mapa, mapb) and for

the octrees (e.g. octreea, octreeb) to dynamically refresh the map size in memory while

accounting for robot motions between parallel worker processes. Fig. 4.22 demonstrates

the effectiveness of the proposed approach in limiting the map size in memory always

under 1 GB throughout the large-scale exploration of the Mega Cavern dataset.

Figure 4.21: Multi-threaded map sliding window testing on the Mega Cavern dataset. Only
a robot-centered submap (colored) is kept in RAM memory for front-end localization purposes.

Figure 4.22: Multi-threaded map sliding window test in Mega Cavern dataset. From 60 GB
when keeping the full map as in the standard published version of the system, this approach
decreases the overall front-end memory usage to only 1 GB throughout the exploration.

LOCUS 68

Figure 4.23: Example of high-definition 3D maps produced by LOCUS during autonom-
ous robotic exploration of heterogeneous environments. a) Outdoor area at the NASA Jet
Propulsion Laboratory. b) A multi-level parking lot at the NASA Jet Propulsion Laboratory.
c) and indoor office at the NASA Jet Propulsion Laboratory. d) A natural cave network.

LOCUS 69

4.5 LAMP back-end

LOCUS is a sub-component of the broader NeBula’s SLAM solution referred to as

LAMP (Large-scale Autonomous Mapping and Positioning) [84]. LAMP is a factor-

graph based SLAM solution, with: a) an adaptable odometry input that can process in-

dividual (e.g. LOCUS, VIO) or fused odometry sources (e.g. HeRO), b) a multi-modal

loop closure module, based on lidar [84], visual [48] or semantic features [75], c) an

outlier-resilient optimization of the factor graph, including multi-sensor inputs. LAMP

achieves low drift, multi-robot, multi-sensor SLAM over large scales in perceptually-

degraded conditions, producing a consistent global representation of an unknown en-

vironment by fusing information retrieved by individual robots into a comprehensive

map with globally-referenced semantic information as showed in Fig 4.24. The resulting

3D semantic map constitute the critical output data product for the overall situational

awareness retrieved by the multi-robot system. We refer the reader to [23] for a detailed

description of LAMP.

Figure 4.24: Multi-robot LAMP map with robot-specific coverage information. In clear
blue husky1, in brown husky4 and in dark blue spot1. Examples of artifact positions in the
global map are reported for detections of phone and survivor.

LOCUS 70

Chapter 5

Swarm Manager

Figure 5.1: Swarm Manager’s graph formulation: the world is composed of a set of nodes
and edges. Nodes can be mobile agents (red) or static assets (green) such as the base station
or communication nodes. Edges represent communication links between nodes in the world,
and they are graphically rendered with line thickness proportional to the available bandwidth
on the communication channel. A node in the world can be initialized to be Manager at
mission start (blue).

To address the problem of degraded situational awareness accuracy on computationally-

constrained platforms in heterogeneous multi-robot systems operating in unknown en-

vironments, we introduce Swarm Manager. The proposed framework exploits a com-

bination of Distributed Computation and Software Defined Networking paradigms to

enhance the performance of robotic teams. Swarm Manager provides a globally-aware

and centrally-supervised management strategy to handle computation offloading re-

quests generated by computationally-constrained robots in the team while optimally

allocating computation and communication resources.

71

The underlying idea is to offload computationally-heavy perception tasks (e.g. lidar

odometry, object detection) from computationally-constrained platforms to more power-

ful peers in the robotic cluster: a more powerful machine will process more information

and in a more accurate way, enhancing therefore the overall reliability of the situational

awareness retrieved by the agent which requested the offloading.

At a fixed rate r (1 Hz in our setup), all agents in the network communicate status

updates to the central entity so the Manager can update its knowledge of the world

model. When receiving a computation offloading request generated by a robot in the

team, Swarm Manager exploits its updated knowledge of the world model to identify,

among all machines in the system, the optimum server available for computation. Once

the optimum server is identified, Swarm Manager exploits Software Defined Network-

ing techniques to choose among all possible paths in the network, the optimum route

to instantiate the client-server communication. This mechanism is operated sequen-

tially for all requests received at time t, achieving therefore optimal computation and

communication allocation in multi-client scenarios.

An essential feature of the proposed framework consists in overcoming the well-known

point of failure of centrally-supervised systems, where the orchestration mechanism

provided by the central supervisor would become unavailable in the event of its failure.

To address this problem, a dynamic Manager election mechanism is provided, which

makes the system resilient to potential failures of the central entity as other dynamically

elected machines can take care of the supervision role on failure of the central supervisor.

While the proposed framework could potentially be exploited for generic computation

offloading, this work focuses on the management of perception-related computation

offloading requests as the goal of the work is to enhance three main aspects of the

performance of computationally-constrained platforms: i) localization accuracy, ii) de-

tection precision, iii) autonomy time.

We assume to have some ground robots equipped with powerful computers and batteries

that are specifically deployed in the mission to serve as computational assets for other

robots needs, however, the proposed framework can work also in the absence of the

above mentioned assumption.

Swarm Manager 72

In the following sections, we describe the fundamental components of the proposed

framework, and pair them with their respective ROS [ros] implementation to provide

a global overview of the system. First, we describe the entities of interest (e.g. nodes,

edges) and present the types of messages that standardize inter-agent interactions.

Then, we provide an overview of the different type of interactions between the entities

in the system that are designed to achieve the overall mission goal.

5.1 Entities

We formulate the problem of multi-robot computation and network management by

means of graph theory. The world is modeled as a graph G composed of a set of N

nodes (agents) and M edges (communication links).

5.1.1 Nodes

A node represents any device capable of doing computation. A node in the world can be

both a static asset (e.g. base-station, dropped communication node) or a mobile agent

(e.g. ground-rover, legged-platform, aerial-robot). Each node might have different

computation capabilities (e.g. high/medium/low), be equipped with CPUs or GPUs of

different nature, and generally be characterized by a set of other generic user-definable

features (e.g. power-efficiency, hardware-specifications etc.). Each node i in the graph

G is characterized by a state St
i at time t given by:

St
i = {P t

i , Bt
i , Ct

i} (5.1)

where: i) P t
i ∈ SE(3) represents the pose (x, y, z, roll, pitch, yaw) of the node i at time

t in the world frame W , ii) Bt
i represents the battery level of the node i at time t, iii)

whereas Ct
i represents the list of communication links and associated communication

bandwidths to other nodes in the network that are available on the node i at time

t. The computational capability of an agent is instead constant and does not vary

over time, with wheeled platforms having high computation, legged platforms having

medium computation, and aerial platforms having small computation.

Swarm Manager 73

By targeting mobile multi-robot systems, the position of nodes in the network associated

to mobile agents dynamically evolves over time, and we do not make any assumption

on a-priori known robots motion. From a communication point of view, all nodes in

the graph act as logical switches and are therefore capable of forwarding data to other

nodes in the MANET.

Roles A node in the graph can have different roles at different times, and at any

given point in time the node acts accordingly to what its role is. The different roles are

briefly described below:

• Default A node in the graph that only does its own processing. This is the initial

role for all agents in the graph at mission start.

• Client A node in the graph that generates a computation offloading request to

be handled by the Manager. Offloading requests might be generated for different

kinds of computation (e.g. lidar odometry, object detection), at different times in

the mission, whenever a mission-level criteria is met (e.g. constrained computation

on-board limiting accuracy of situational awareness reports, critical battery level,

degraded observability)

• Server A node in the graph that does its own processing, and also serves as

computational asset for further processing required by computation offloading

requests generated by a set of clients.

• Manager A node in the graph that does its own processing, and serves as central

orchestrator for the multi-robot system. The Manager owns a centralized know-

ledge of the global world model, namely the status of agents and communication

links at time t. This enables the Manager to handle computation offloading re-

quests by taking decisions that are globally-aware. The Manager might also act as

Server for some computation offloading requests. At mission start, the Manager

could be either: i) elected by a human operator, ii) elected by the autonomous

swarm by broadcasting unit status (e.g. computation capability, battery level,

agent position, connections) to retrieve the most connected and powerful machine

in the graph to be the Swarm Manager.

Swarm Manager 74

Battery Drain The battery drain of mobile agents is modeled with two main com-

ponents: i) background-drain, ii) foreground-drain. The background drain represents

the battery drain component caused by background purposes such as powering up com-

puters and on-board sensors, along with controlling on-board motors for motion: for

the sake of simplicity, we assume this sub-component to be constant over time. The

foreground-drain instead represents the battery drain component caused by foreground

processes running on-board of the robot (e.g. lidar odometry, object detection, tra-

versability analysis, motion planning). Every second, we model the foreground battery

drain caused by a generic process running on-board of the robot to result in X% drain of

the battery level where X is proportional to the CPU usage needed by that process over

a 1 s time window. The battery drain of static assets (e.g. base-station, communication

node) is not modeled as the base-station might usually exploit a wired electricity dis-

tribution system, while communication nodes are equipped with long-lasting batteries

whose power consumption can be neglected.

ROS Implementation Beside their roles, all nodes in the graph are implemented as

instances of the Agent class with each class instance running in a dedicated ROS node.

At mission start, all agents start with Default role, and only a machine is constructed

with Manager role. Computational capabilities are encoded through integer numbers

with 3 representing high, 2 representing medium, and 1 representing small.

5.1.2 Edges

Edges in the graph represent communication channels between nodes in the network.

A communication edge Et
ij exists only if there is a communication link from node i to

node j at time t. The communication edge Et
ij is characterized by bandwidth BW t

ij

which expresses the available bandwidth in Mb/s for data communication from node i

to node j at time t. Same concept applies for communication in the opposite direction.

We do not assume stability of communication links, nor assume a-priori known evolution

of network bandwidths over time. This makes the proposed framework suitable to

be deployed in multi-robot systems where inter-agent communication bandwidths can

rapidly vary when operating in extreme and communication-degraded environments.

Swarm Manager 75

Graphically, we encode the available bandwidth over a communication link with line

thickness information, with high-bandwidth communication edges appearing very thick,

and low-bandwidth communication edges appearing very thin.

ROS Implementation We implement inter-agent communication links through ded-

icated ROS topics. We set up dedicated unidirectional communication edges between all

Agents to ensure that peer-to-peer communication is enabled between all ROS entities

in the system. Following this formulation, husky1 will communicate directly to husky2

through the /husky1_husky2_edge topic, while husky2 will directly communicate to

husky1 through the /husky2_husky1_edge topic. While all communication links exist

at the ROS-network level, only a subset of them are actually used in the simulation

for inter-agent communication, depending on which communication links are actually

available at time t from real communication data.

Figure 5.2: Overview of the ROS rqt graph evolution of the system.

Swarm Manager 76

5.1.3 Messages

We standardize inter-agent interactions by means of custom ROS messages as follows:

• AgentState The AgentState message standardizes the way an Agent (any node in

the graph with non-Manager role) can provide its status update to the Manager

in order to update its world model. This message encloses information on the

agent’s status St
i at time t along with: i) a string subfield to specify the name of

a potentially dropped communication node in P t
i at time t, ii) a request subfield

specifying whether a computation offloading is requested, for which task (e.g.

lidar odometry, object detection), and for which size (e.g. size in Mb of the

current lidar scan, size in Mb of the current camera image). Agents can ask for

computation offloading of multiple tasks while transmitting a single AgentState

message to the Manager.

• ManagerResponse The ManagerResponse message standardizes the way the

Manager responds to agents in the network at each world model update. Once

AgentState messages from all agents have been successfully received by the Man-

ager, the Manager uses this set of synced received messages to update its know-

ledge of the world model which is then exploited to handle computation offloading

requests generated by clients accordingly.

For agents requesting computation offloading, this message provides: i) a com-

putation offloading solution if it was found (in terms of the identified optimum

server and optimum route), ii) a no solution response if the Manager was unable

to successfully produce a solution for the offloading request (e.g. no servers avail-

able, no routes available). If a solution is found for an offloading request, this is

provided to the client in form of a simple string subfield of the ManagerResponse

message, where the string is composed by a set of agent names separated by slash

symbols: the first substring encapsulates the name of the client that generated

the offloading request, the last substring represents the name of the identified

optimum server, and all substrings in the between instead represent names of the

communication hops involved in the optimum route chosen by the Manager for

client-server communication (e.g. /spot1/scom1/husky1). For clients requesting

Swarm Manager 77

offloading of different computational tasks, the Manager provides, if available, a

solution for each offloading request type.

Independently whether an agent expresses a computation offloading request or

not, the ManagerResponse message received by all agents from the Manager also

encapsulates information on: i) the name of the next backup Manager to be used

in case of failure of the current central orchestrator, ii) the list of dropped commu-

nication nodes up to this point in time in the mission, along with their location.

These information can be used by a dynamically elected machine that becomes

Manager on original Manager’s failure to have a comprehensive knowledge of the

world status and take routing decisions accordingly. Such approach therefore

realize a “passing of the baton” mechanism to handle sudden and unpredictable

failures of the central coordinator, and is described in more detail in section 6.2.9.

• DataWithRouteInfo This message probably represents the most important

message type in the framework as it enables a Software Defined Networking rout-

ing mechanisms in absence of OpenFlow enabled communication elements. More

specifically, this message abstracts a given data that has to travel across the net-

work (e.g. a lidar scan, a camera image) and pairs it with a routing information

(the optimum route chosen by the Manager for the flow of that specific data

stream) which is encapsulated as a subfield in the message definition.

In this way, the Swarm Manager’s SDN Controller does not need to send routing

table updates to all networking elements, as the optimum route chosen for a

given computation offloading request is communicated only to the client asking

for it. This ensures that the sensor data offloaded by the client will reach the

optimum server destination chosen by the Manager through the optimum route

chosen by the Manager as all network elements will simply act as logical switches,

directing the data on the route that is specified in the DataWithRouteInfo message

route subfield. More specifically, the DataWithRouteInfo message has two route

fields: route which expresses the remaining route at each node of communication,

full route which expresses the full route chosen from the Manager for client-

server communication, and never gets modified. An in-depth description of the

Swarm Manager 78

forwarding mechanism of DataWithRouteInfo messages on network elements is

provided in section 6.2.5.

The DataWithRouteInfo message can transport data both in the forward direction

(input data from client to server) and in the backward direction (output result of

the computation from server back to client).

5.2 Interactions

In this section we present the different interactions at the inter-agent level that consti-

tute the principle of operation of the proposed framework.

5.2.1 Updating Manager’s World Model

To take advantage of the orchestration capabilities provided by the Manager (e.g. com-

putation and communication allocation for dynamically generated offloading requests),

the robot team needs to provide the Manager with a comprehensive overview of the

world model by transmitting status updates in form of Agent States messages to the

central entity at a fixed rate r. When all updates from all agents have been received

by the Manager, they can be used to construct and/or update the knowledge that the

Manager has of the world model at time t: the status of the nodes represents the status

of the agents (e.g. mobile, static) while the status of the edges represent the status of

the inter-agent communication links (e.g. radio or wifi) at that point in time. At each

world model update, mobile agents might have moved from their position in the previ-

ous update, and communication links might have abruptly changed their status. The

result is that the graph G is dynamically updated at rate r, which, given the system

dynamics of the mission of interest (e.g. robots moving at medium-low velocity) is set

to 1 Hz.

ROS Implementation Agents in the network transmit AgentState messages to the

Manager at fixed rate. The Manager receives all of these messages, exploits a mes-

sage filters ApproximateTimeSync policy to synchronize updates coming from different

agents, and uses the resulting information to update its knowledge of the world model.

Swarm Manager 79

Figure 5.3: RVIZ visualization of the world model known by the Manager at time t, after a
successful synchronization of the AgentState messages from all agents.

Synchronization is needed as messages emitted by different agents might arrive with

different latencies on the Manager side: in our settings, a synchronization time-window

of 0.7 s is enough. The framework is also robust to scenarios where an agent goes out

of communication range and does not further provide status updates: if such condition

is detected, the Manager quickly updates its synchronization policy to keep managing

the rest of the robotic team.

We use a graph data structure from the networkx python library [160] to store the

Manager’s world model as a set of nodes and edges.

When a communication node dropping event is specified in the AgentState message

received by an agent, the Manager adds a fixed node in the graph to represent the static

communication asset dropped by that robot, at that time, in that specific location.

Fig. 5.3 reports a RVIz visualization of the world model constructed and published

by the Manager after successful reception and synchronization of the different status

updates provided by the different agents. The Manager is indicated with a blue cube,

Swarm Manager 80

mobile agents are indicated with green spheres, and the dropped communication nodes

are indicated with red cylinders.

5.2.2 Computation Offloading Request Generation

A robot can ask the Manager to offload a given computation if in need as illustrated

in 5.1.1. If perception related tasks (e.g. lidar odometry, object detection) need to be

always runned on more powerful servers, computationally-constrained platforms might

offload perception-related computation from mission start.

ROS Implementation An agent in the team willing to offload computation can

express this in the request subfield of the AgentState message that is constantly provided

to the Manager to update its world model specifying the name of the task he wants to

offload (e.g. LOCUS, YOLO), along with the size expressed in Mb of the current sensor

reading (e.g. lidar scan, camera image). As stated earlier, the AgentState message can

host multiple offloading requests of different natures in the same message.

5.2.3 Computation Offloading Request Handling

At each world model update at time t, we define with RT
i the computation offloading

request of the agent i for the task T with data size L, and represent with R the set of

all computation offloading requests received by clients at the current iteration.

When receiving computation offloading requests from agents, the Manager makes use

of its updated world model to process requests accordingly in a sequential fashion. For

each client request, the Manager tries to take two decisions: i) where to execute the task

(e.g. identify the optimum server), and ii) how to route the data for that client/server

communication given the current global status of the network (e.g. identify the optimum

route). The two fundamental steps needed to handle a computation offloading request

are described in the following, while Algorithm 1 provides a high-level schematization

of the computation offloading requests handling logic.

Swarm Manager 81

Optimum Server Computation

When a computation offloading request is received from a client, the Manager exploits

its updated world model to understand where is best to execute the task of interest

given the current status of the system. First, the Manager extracts the subset of nodes

in the graph that are directly or indirectly connected to the client. Then, only a subset

of the nodes that are potentially available for computation (e.g. servers) are retained.

Finally, for each server, a server score is calculated where the metric is general and

can be defined by the user. For example the score of a server machine increases with

increasing computational capability, connectivity to the client and battery level. In the

current implementation the battery level of a machine is not taken in consideration

when computing server scores: the score of a server is decreased only when its battery

level goes below a certain user-definable threshold. After scores have been computed for

all potential servers, the optimum server is identified as the machine that maximizes the

server score. If no servers are available, the client needs to execute the task on-board,

until a server becomes available again.

Task-Aware Server Score Computation An important feature of the framework

is that the resource allocator logic of the Manager is task-aware meaning that it will

autonomously adapt to different server score computation metrics depending on what

is the nature of the task that the client is willing to offload. For example, for a client

requesting LOCUS offloading, any machine equipped with a powerful CPU will be con-

sidered during server score computation, while for a client requesting to offload YOLO,

the server score will be greatly increased only for the subset of machines equipped with

on-board GPUs. Overall, the goal of the resource allocator logic of the Manager is

to identify the absolute best suitable machine for the specific computation offloading

requested by the client.

Load Balancing To avoid overloading individual machines, the Manager keeps track

of decisions taken for other client requests within the same world model update: this

information is used to decrease the score of servers that are already serving other clients

and avoid Denial of Service (DoS) scenarios. In the current implementation, we set to

Swarm Manager 82

zero the score of a server machine if this machine is already serving a maximum number

of clients indicated with DoS_T (to prevent computationally-constrained platforms

from being potential server candidates, all is needed is to set DoS_T to zero when

instantiating that specific instance of the Agent class). This therefore translates into

an implicit mechanism of Load Balancing at the resource allocation level.

Exploiting Failures In multi-robot exploration missions of extreme environments,

failures of on-board sensors and/or mobility systems represent a real possibility. For

example, a lidar sensor might fell from the rigid mounting on-board of a robot, making

the agent "blind" if no other exteroceptive sensors are available. As another example,

a robot might get stuck on muddy areas, or a legged-platform might fall on a negative-

obstacle. In all these scenarios, by exploiting on-board health monitoring modules, it is

possible to enclose in an additional sub-field of the AgentState message, a health status

flag that can be set to false when a critical failure is experienced by the platform. When

such event is detected on the Manager side, the Manager can exploit the failure of this

agent, send commands to shut down on-board sensors and redundant processes to save

power, and increase the score of this machine during the server computation stage: by

doing this, the "dead" machine will actually be used to serve as a computational asset

for the needs of other robots, enhancing therefore the overall performance of the robotic

team and improving the level of cooperatively behaviours in the swarm.

Optimum Route Computation

Once an optimum server has been identified, the Manager exploits its globally-aware

knowledge of the network status to identify the optimum route that minimizes com-

munication latency between client (source) and server (destination) by maximizing the

average communication bandwidth and minimizing the number of communication hops.

To enhance the processing time needed for the optimum route computation, the Man-

ager analyzes, among all possible paths in the network connecting source to destination,

only a subset of paths whose number of communication hops does not exceed a pre-

defined threshold.

Swarm Manager 83

Traffic Management Accordingly to what happens when computing server scores,

the Manager keeps track of the size in Mb/s of streams already instantiated for other

client-server communications in the current world model update, to account for the

actual available bandwidth on different communication edges while computing the op-

timum route for another client request. This therefore enables the Manager to achieve

optimum and globally-aware traffic management in multi-client scenarios and decrease

network congestion.

ResetResourceAllocationFromPreviousIteration()
for T in ["lidar_odometry","object_detection"] do

for RT
i in R do

data_size ← RT
i .L

server_scoresi ← {} get optimum server;
optimum_serveri ← None
for {j in N | j ̸= i and j.clients < DoS_T and ∃ pathi,j in G} do

server_scorej ← computationj/hop_wise_distanceij

if T is "object_detection" then
server_scorej ← server_scorej ∗ j.has_GPU
server_scoresi.insert(server_scorej)

end
end
optimum_serveri ← argmax(server_scoresi)
if optimum_serveri ̸= None then

path_scoresi ← {}
best_pathi ←None
all_paths ← GetAllPaths(G, i, optimum_serveri, cutoff)
for k in all_paths do

path_scorek ←
∑

Eink E.BW / number_of_hopsk

path_scoresi.insert(path_scorek)
end
best_pathi ← argmax(path_scoresi)
ProvideSolutionTo(RT

i , optimum_serveri, optimum_pathi)
for E in optimum_pathi do

E.BW ← E.BW - data_size
end
optimum_server_i.number_of_clients + +

end
end

end
Algorithm 1: Computation Offloading Requests Handling

Swarm Manager 84

Solution Generation

When a solution for the client request has been successfully computed, the Manager ag-

gregates the resulting information into a unified ManagerResponse message that can be

communicated to the client to instantiate the client-server communication for offloading

purposes.

ROS Implementation As stated earlier, the computed solution is constructed by

means of string concatenation (e.g. spot1/scom1/husky1) where the first string rep-

resents the client, the last string represents the server, and every string in the between

represent the intermediate communication hop of the route chosen by the Manager for

client-server communication.

5.2.4 Computation Offloading

When a valid solution for the computation offloading request is returned by the Man-

ager, the client can use it to offload its sensory stream.

ROS Implementation To start the offloading mechanism, the client needs to operate

the following steps. First, it has to create an empty DataWithRouteInfo message and

enclose in the full route field the route chosen by the Manager. Then, it has to wrap

the sensory data coming from on-board drivers (e.g. lidar scan, camera image) into

the data field of the DataWithRouteInfo message. In order to ensure that this data

will travel across the network through the route chosen by the Manager, the client first

needs to remove its name from the route provided by the Manager, and then encapsulate

the so called remaining route in the route field of the DataWithRoute info message.

Once the above steps have been performed, the client can send the data to the next

hop of communication. Then, later in the network each node in the graph acts as a

logical switch on reception of a DataWithRouteInfo message as always, by removing its

name from the route information, and forwarding the data with the updated remaining

route to the next hop of communication: more details on the forwarding mechanism

are provided in 6.2.5.

Swarm Manager 85

Figure 5.4: Spot1 offloads its lidar stream to the optimum server husky1 for high-definition
ego-motion estimation purposes through the optimum route chosen by the Manager displayed
in green. The lidar data offloaded by spot1 pass through scom1 placed at the end of the
straight corridor, to then go to scom7, to finally reach the husky1 server identified as optimum
server by the Manager.

This process is automatically triggered for each sensor message coming from the on-

board drivers within the 1 s time window that separates consecutive transmissions

of AgentState message updates to the Manager (which then translate into updated

offloading solutions provided by the Manager at 1 Hz). For example, if the input

sensory data rate is 10 Hz, 10 messages will be offloaded through the route and to the

destination specified in the latest available Manager’s solution that is stored on-board

of each agent. Given the moderate system dynamics, we assume that communication

links maintain their status unchanged during the 1s time window: this assumption can

be however relaxed by increasing the Manager’s update rate to higher values, assuming

Swarm Manager 86

Figure 5.5: Handling of computation offloading request from a single client. In this case
spot1 is exploring the lower floor after autonomous stair descent operation, and offloading
its lidar stream to husky1 for ego-motion estimation. The optimum route chosen by the
Manager to instantiate robot to robot communication and high-volume lidar data exchange
after the perception offloading request is displayed in green: it starts from spot1, then pass
through scom11, scom7, to finally reach the husky1 server identified as optimum server by
the Manager.

high-rate profilements of communication link status are provided by mission logging

utilities.

5.2.5 Forwarding Mechanism

A key idea of the presented framework is to realize dynamic data routing behaviours

by encapsulating the route information inside the message that is travelling across the

network itself. When a DataWithRouteInfo message arrives on a communication hop,

to exploit a Software Defined Networking paradigm in absence of OpenFlow enabled

devices, each communication hop executes the abstract forwarding procedure described

in the next paragraph.

ROS Implementation The first thing performed by a network element receiving a

DataWithRouteInfo message is removing its own name from the route specified in the

Swarm Manager 87

Figure 5.6: Examples of multi-client management. For the computation offloading request
generated by spot1 the Manager chooses husky1 as optimum server and spot1/scom7/husky1
as optimum route (green). For the computation offloading request generated by spot2 the
Manager chooses husky4 as optimum server and spot2/scom2/husky4 as optimum route (red).

route field of the DataWithRouteInfo message to obtain the remaining route, while

leaving the full route subfield of the DataWithRouteInfo message unchanged. At this

point two main situations can occur: i) a next-hop of communication exists in the

remaining route, ii) no next-hop of communication exists in the remaining route. In

the case where a next-hop of communication exists in the remaining route, the network

element overwrites the route field of the received DataWithRouteInfo with the updated

remaining route and forwards the resulting data to the next hop through the dedicated

communication channel. In the case where no next-hop of communication exists in

the remaining route: i) if the received DataWithRouteInfo contains “input data” (e.g.

sensory data travelling in the forward direction from client to server) then the data

has to be processed on-board as the current recipient machine is actually the optimum

server chosen by the Manager to execute the computation required by the client, ii)

if the received DataWithRouteInfo contains “output data” (e.g. output of server-side

Swarm Manager 88

computation travelling in the backward direction from server to client) then the client

has successfully received the result of the offloaded computation.

This therefore realizes a Software Defined Networking communication paradigm as the

route for the client-server communication is dynamically chosen and updated by the

Manager at the update rate r.

5.2.6 Server Side Processing

When the sensory data offloaded by the client successfully reaches the optimum server

through the optimum route chosen by the Manager, the server-machine has to oper-

ate the computation required by the client on the received data. For example, if the

received DataWithRouteInfo message contains lidar sensory data, the input lidar mes-

sage is processed by a dedicated LOCUS process running on the server machine. If

the received DataWithRouteInfo message contains image sensory data, the input im-

age message is processed by a dedicated YOLO process running on the server machine.

Obviously, powerful server-side machines can allocate much larger computational cap-

abilities to perform the task of interest with respect to what could be achievable on the

computationally-constrained client platform. The high-definition server-side processing

is therefore a key component in the overall enhancement of the distributed situational

awareness retrieved by the heterogeneous multi-robot system.

ROS Implementation Each Agent in the team comes equipped with dedicated ROS

nodes for LOCUS and YOLO processing that can be used on the robot with intra-

robot calls as sensory messages arrive from on-board drivers. Server machines, not

only dispose of dedicated ROS nodes for proprietary processing purposes, but can also

instantiate additional dedicated LOCUS server and YOLO server nodes that can be

used to perform computation on the data received by the clients. Multiple ROS nodes

can be instantiated on the same server machine for server computation related purposes

of different received client streams, depending on the available computational resources

on-board.

On the receiver side it is important to implement a sorting layer that takes care of

processing received messages in sequential order to cope with potential out-of-order

Swarm Manager 89

arrivals of messages caused by sudden changes in network routes dynamically chosen

by the Manager, as these could translate into potential different time of arrivals on

the receiver side, despite being sent in a correct sequential order from the computation

offloading client.

For each message received by each client, the server machine, populates a dedicated

queue of messages each time a new message arrives. Then, with multi-threading tech-

niques, the server goes over the queue of each type of data of each client, and process it

accordingly. A rate-limiter publisher of the received data to server-dedicated ROS nodes

has been also implemented to avoid performance degradation in case of communication

bursts.

5.2.7 Sending back the result

Once the sever-side computation on the input data provided by the client is completed,

the output product of the computation needs to be delivered back to the client. The

result of the server-side computation is delivered back to the offloading client through

the inverse route used to transfer the sensory data in the forward direction (e.g. from

client to server), which is stored on server-machines upon reception of clients data.

Generally speaking, the backward route to deliver outputs from server back to client can

simply be the latest available stored backward route obtained from the latest message

received by the specific client whose computation request has just been fulfilled.

ROS Implementation After the server-side processing is completed, the ouput data

product (e.g. Odometry output from LOCUS, Image detection output from YOLO), is

retrieved by the server through its dedicated intra-robot subscribers to output product

topics. Once the output message of interest is retrieved, the server is responsible to

wrap this data in the output data subfield of a freshly created DataWithRouteInfo

message, that is then paired with the backward route information (which is computed

by inverting the full route field of the DataWithRouteInfo message received by the

client) to deliver back the result of the computation to the client. The client therefore

successfully receives the result of the offloaded computation: for example, for LOCUS

offloading this translates into a computationally-constrained platform knowing a high-

Swarm Manager 90

definition odometry estimate of its position without having performed any computation

on board.

5.2.8 Network Delay Simulation

At each communication hop, the time needed to transmit a message with data size

L (in Mb) over a communication link Eij with bandwidth BW t
ij (in Mb/s) at time

t is expressed by d = L/BW t
ij. We model the end-to-end delay from a source to a

destination node in the graph as the sum of the communication delays introduced by

each communication hop in the route from source to destination.

The total offloading time can be therefore decomposed into the following sub-components:

• Forward Network Delay: amount of time in seconds needed by the DataWith-

RouteInfo message transmitted by the client to reach, through the communication

route chosen by the Manager, the destination server.

• Processing Time: amount of time in seconds needed by the server to process

the client request, namely the time needed by the server to operate a desired

computation on the client’s input data.

• Backward Network Delay: amount of time in seconds needed by the DataWith-

RouteInfo message transmitted by the server to reach, through the communication

route chosen by the Manager, the destination client to deliver back the result of

the offloaded computation. When offloading lidar odometry computation, the

backward network delay is much smaller than the forward one, as the output of

the server-side computation (e.g. Odometry message) is much more lightweight

then a lidar scan message.

The total offloading time is therefore modeled, for each message, as the sum of Forward

Network Delay, Processing Time and Backward Network Delay.

5.2.9 Backup Manager

The proposed framework implements automatic ways of monitoring the health of the

central orchestrator, along with automatism to dynamically elect the backup Manager

Swarm Manager 91

machine to act as central orchestrator in case of failures of the previous one. As men-

tioned earlier, at each update of the world model, the Manager provides all agents

with information on: i) the name of the next backup Manager (computed as the most

connected node in the graph with computational capabilities), ii) a list of the dropped

communication nodes in the world (these constitute essential knowledge requirements

about the world status that a newly elected Manager needs to satisfy in order to make

globally aware resource allocation decisions). When no responses from the Manager are

received by agents after a pre-estabilished timeout threshold, the Manager’s replace-

ment stage is entered.

Figure 5.7: Demonstration of recovery from central orchestrator’s death. At time t1, base1
is the Manager of the robot team, but fails afterwards. At time t2, husky1 is elected as new
Manager of the robot team and keeps handling the decision making at the computation and
network allocation level.

ROS Implementation Each agent reads the name of the successor Manager from

the latest stored ManagerResponse message. At this point, a given agent can find

himself in two conditions: i) being the successor, ii) not being the successor. If the

first case occurs, the agent immediately proceeds to take the place of the Manager

and instantiates all the resources needed to keep the orchestration going. In this case,

the ROS publisher/subscriber paradigm simplifies the implementation, as the successor

Swarm Manager 92

only needs to register as a subscriber to the topics already directed to the supervising

entity. Furthermore, this allows the Manager replacement process to be completely

masked from the eyes of all other agents, as they will continue to communicate with the

controller through the same channels. Video demo: https://youtu.be/O412vszjI-U

Swarm Manager 93

https://youtu.be/O412vszjI-U

Chapter 6

Integrated System Performance

In this chapter we test the integrated system performance on a real multi-robot dataset

collected by NeBula’s robots during the Beta 2 Course of the Urban Circuit round of

the DARPA Subterranean Challenge. We demonstrate initial results on enhancements

achieved through the use of Swarm Manager on the situational awareness accuracy

retrieved by a team of four heterogeneous robots involved in the autonomous exploration

a multi-level and perceptually-degraded dismissed power plant in Elma, WA, under

severe computation and communication constraints.

First, we describe the nature of the dataset gathered during the multi-robot mission,

and briefly describe how this has been interfaced to Swarm Manager. Then, we present

enhancements achieved in localization accuracy of a computationally-constrained legged

platform by means of LOCUS offloading. Finally, we present improvements in object de-

tection precision of a computationally-constrained legged platform by means of YOLO

offloading. For each type of task offloading, we showcase decreased battery-usage on-

board of robot clients which could therefore translates in extended autonomy time and

potential increased information gain.

6.1 Dataset Description

The heterogeneous robotic team is composed of two Cleopatra Husky ground vehicles,

and two Boston Dynamics Spot legged platforms, whose hardware description is repor-

ted in Fig. 6.1. Namely, the team is made of husky1, husky4, spot1, spot2.

The robots communicate with the base through a layer-2 mobile ad-hoc mesh network

94

Figure 6.1: Hardware specifications for husky and spot NeBula robots.

constructed and expanded with commercial off-the-shelf MANET radios from Silvus

Technologies (SC4240E-235-BB) and Persistent Systems (MPU5).

The dataset contains information of available communication links in the wireless mesh

network along with their bandwidth status, which are logged on base-station from Silvus

nodes at 1 Hz throughout the 1 hour mission. The dataset also contains data logged

on-board of each robot including: i) lidar stream from a Velodyne VLP16 at 10 Hz,

ii) throttled 424x240 px camera stream from an Intel RealSense D435i at 10 Hz, iii)

vehicle state updates at 1 Hz with information on vehicle position.

During the operation, multiple radio communication nodes are deployed by robots at

different times to maintain a backbone wireless mesh network: scom1, scom11, scom7,

scom5, scom3. Agents in the dataset include therefore: base1, husky1, husky4, spot1,

spot2, scom1, scom11, scom7, scom5, scom3.

Figure 6.3 reports location of communication nodes dropped during the mission by

spot1, which is the robot we focus on as offloading client: in the multi-level exploration

Integrated System Performance 95

Figure 6.2: Silvus radios used in the mission. Mobile agents can carry multiple commu-
nication nodes that are autonomously dropped when a mission-level criteria is met (e.g. low
bandwidth and/or signal-to-noise ratio with respect to the base station)

spot1 drops a communication node before descending stairs, and one communication

node when reaching the lower floor, creating therefore 7 m vertically-displaced high-

bandwidth communication link to maintain communication with the team.

We think this dataset represents a formidable opportunity to test performance of SDN-

inspired paradigms in dynamic multi-robot mesh networks under severe communication

constraints as the dataset presents challenging conditions for inter-robot communica-

tion including constrained radio bandwidths, sudden loss of communication links, and

evolves over a multiple-floor exploration. Currently, this dataset is not open source,

but it may be in the future.

We parse the multi-robot dataset into a readable format for the Swarm Manager frame-

work accumulating AgentState message updates for each agent (e.g. position, commu-

nication logs). From mission start, all agents in the world provide their status updates

through the wireless mesh network to the Manager which is elected to be base1 at

start. At 1Hz, the Manager receives status update messages from agents in the world

and updates its world model. The updated world model is then exploited to handle

computation offloading requests generated by clients. For each client request, the Man-

ager tries to compute the optimum server and the optimum route to satisfy the client’s

offloading need. If a solution is found, that is communicated to the client which will

Integrated System Performance 96

Figure 6.3: Location of communication node dropping for the autonomous exploration of
spot1 robot during the Beta 2 round of the Urban Circuit of the DARPA Subterranean
Challenge. Top) spot1 drops a communication node before stair descent. Bottom) spot1
lands on the lower floor, 7 m underground and drops a communication node to maintain a
vertical communication channel with the above wireless mesh network. Images taken from
DARPA matterport.

handle it accordingly to instantiate the offloading mechanism as described in section

5.3.

Integrated System Performance 97

6.2 LOCUS Offloading Results

We demonstrate the effectiveness of the proposed framework by proving that offload-

ing the computationally-heavy LOCUS task from a computationally-limited platform

(spot1) to a heavily-equipped ground-server through the high-speed route chosen by

the Manager, results in greater accuracy of the localization estimate of the agent, and

therefore in enhanced distributed situational awareness accuracy retrieved by the het-

erogeneous multi-robot team.

In the results reported here, lidar scans provided by a Velodyne VLP16 at 10 Hz are

preliminary downsampled with a voxel-grid filter with 0.1 m leaf size and expressed

in base link frame. We benchmark pure lidar odometry performance with no integra-

tion of additional sensing modalities (e.g. VO, IMU). The average size of single lidar

messages is 1.3 Mb with substantial variations in closed and open spaces. As shown

later, lidar streaming results to be achievable through the high-speed routes chosen

by the Manager with acceptable bandwidth requirements, translating into an overall

LOCUS offloading time that is suitable for global localization enhancement purposes

(e.g. odometry updates at the LAMP-robot level).

In the comparison, spot1 only has 1 thread allocated for scan-registration, and needs

to apply an additional RDF with 90% decimation percentage to try to keep-up with

the lidar processing at sensor rate if executing LOCUS on-board. On the other hand,

husky1 dispose of 4 threads for scan-registration and can downsample less heavily the

input lidar data: in this test a 80% RDF decimation percentage was chosen for husky-

side processing. We compare the Absolute Position Error (APE) of the trajectories

generated by LOCUS on the spot1 robot when not offloading, and on the server when

the client offloads under orchestration of Swarm Manager against the ground-truth

information (Fig. 6.11) to assess accuracy enhancements. The ground-truth trajectory

of the robot is retrieved as explained in 4.5.

As demonstrated below, the edge ground-server can exploit its advanced computational

capabilities to operate ego-motion estimation at a higher level of fidelity on the received

lidar data, enhancing therefore the overall localization estimate of the computationally-

Integrated System Performance 98

constrained offloading platform with acceptable latencies (Fig. 6.15). As a consequence,

the offloading client does not perform heavy computation on-board, saves more battery,

and can therefore aim for a longer exploration.

Figure 6.4: On the left, full ground-truth map of the Urban Circuit of the DARPA Subter-
ranean Challenge. On the right, the ground-truth map of spot1 specific exploration.

While the framework is designed to dynamically choose the optimum server at each cli-

ent request (e.g. at 1 Hz), to demonstrate the proof of concept of increased localization

accuracy under orchestration of Swarm Manager, the results presented in this section

are obtained with husky1 being statically set to be the optimum server for the compu-

tation offloading request of spot1. As for the network route, the spot1 client offloads

its lidar stream to the husky1 server through the optimum route which is dynamically

chosen by the Manager given the current status of the wireless mesh network as the

exploration evolves. Video demo: https://youtu.be/9-u0CZ6dA3o

The results presented below demonstrate how offloading LOCUS computation to power-

ful robot peers through the high speed routes chosen by the globally-aware Swarm

Manager can enhance the localization accuracy of computationally-constrained plat-

forms (Fig. 6.11) of heterogeneous multi-robot systems, enhancing therefore the overall

accuracy of the retrieved distribuited situational awareness.

Integrated System Performance 99

https://youtu.be/9-u0CZ6dA3o

Figure 6.5: Top-view of the maps produced by LOCUS on client (spot1) and server (husky1)
for the exploration of spot1 in Urban Beta 2. The server-side computed LOCUS on client’s
data results in substantially greater accuracy.

Figure 6.6: Side-view of the maps produced by LOCUS on client (spot1) and server (husky1)
for the exploration of spot1 in Urban Beta 2.

Integrated System Performance 100

Figure 6.7: Orbit-view of the map produced by LOCUS on husky1 server on the lidar stream
offloaded by spot1 client during the exploration of spot1 in Urban Beta 2.

Figure 6.8: Trajectories estimated by LOCUS on client (spot1) and server (husky1) for the
exploration of spot1 in Urban Beta 2.

Integrated System Performance 101

Figure 6.9: Profiling of the x,y,z components of the odometries generated by LOCUS on
client and server against the ground-truth information. A lower downsampling percentage on
the server side and a faster computation capability makes edge-processing of the ground-server
achieve substantially better estimates with the respect to the performance achievable on the
robot, expecially for the z component.

Figure 6.10: Profiling of the roll, pitch, yaw components of the odometries generated by
LOCUS on client and server against the ground-truth information. A lower downsampling
percentage on the server side and a faster computation capability makes edge-processing of the
ground-server achieve sensibly better estimates with the respect to the performance achievable
on the robot.

Integrated System Performance 102

Figure 6.11: Absolute Position Error (APE) of the trajectories produced by LOCUS on the
robot client (spot1) and on the server (husky1) for the exploration of spot1 in Urban Beta
2. This is the key result of the thesis work as we demonstrate higher perception accuracy
of computationally-constrained platforms with a centrally-managed offloading mechanism.
Computing high definition LOCUS on the server side results in greater accuracy of the front-
end information, which then translates into greater consistency of the global localization at
the back-end level. Deploying the proposed framework on a real multi-robot systems could
potentially enable the performance of the multi-robot team as discussed.

Figure 6.12: Absolute Position Error (APE) statistics of the trajectories produced by
LOCUS on client (spot1) and server (husky1) for the exploration of spot1 in Urban Beta
2. The server side processing achieves lower max and mean error, along with lower standard
deviation.

Integrated System Performance 103

Figure 6.13: Absolute Position Error (APE) distribution of the trajectories produced by
LOCUS on client (spot1) and server (husky1) for the exploration of spot1 in Urban Beta 2.

Figure 6.14: Box plot visualization of the Absolute Position Error (APE) of the trajectory
estimated by LOCUS on client (spot1) and server (husky1) for the exploration of spot1 in
Urban Beta 2.

Integrated System Performance 104

Figure 6.15: Evolution of the total processing time (transmission, edge-computation, re-
transmission) for LOCUS offloading of spot1 robot during the exploration of the Beta 2
Course of the DARPA Subterranean Challenge on husky1 server. Operation time is compar-
able to on-board performance. Sudden drops in communication bandwidths to other hop of
communication when exploring the lower floor result in the lidar message being delivered to
the server side with some delay. Individual sub-components of the total offloading time are
represented in red (forward delay), green (processing time), and blue (backward delay).

Figure 6.16: Average number of lidar scans dropped every 5 seconds. Husky1 acts as server
for Spot1 LOCUS offloading. By using 4 threads for scan registration, the server is able to
process much more information with respect to the client, despite the lower RDF percentage
(80%). If LOCUS is executed on-board of spot, that results in a higher number of not
processed information, and therefore in a lower ego-motion estimation accuracy.

Integrated System Performance 105

Figure 6.17: Snapshot of the optimum network route chosen by the Manager for LOCUS
offloading of spot1 to the optimum server husky1. At this moment, spot1 is exploring the
lower floor and continuously offloading its lidar stream to husky1 through scom11 and scom7
bridge; husky1 is receiving the data, processing it, and sending the computed high-definition
odometric result back to the client. Spot1 therefore receives a high-definition estimate of its
position in the environment at the front-end level, from the machine dynamically chosen by
the Manager.

Figure 6.18: Evolution of the bandwidth usage for the offloaded lidar stream of spot1 robot
during the exploration of hte Urban Beta 2 Circuit.

Integrated System Performance 106

6.2.1 Autonomy Time

Fig. 6.19 shows how offloading LOCUS computation decreases the battery usage of

the agent increasing its autonomy time. When not offloading LOCUS computation,

spot1 experiences both background and foreground battery drain, arriving at end of

mission with approximately 60% battery level. When offloading LOCUS computation

spot1 saves power on-board, reaching end of mission with 85% battery level. Results

are obtained with the method outlined in Section 6.1.1, where for the sake of simplicity

we ignore foreground drain components introduced by other processes of the autonomy

stack running on-board (e.g. traversability analysis, object detection, etc). Battery

drain of server machines are not profiled as we assume availability of heavily equipped

platforms whose energy resources are enough to prove this overall proof concept.

Figure 6.19: Comparison of spot1 battery level from start to end of mission in Urban Beta
2 with (blue line) and without (red line) LOCUS offloading. Offloading LOCUS computation
results in decreased battery usage on the agent and increased autonomy time. Please note
that while the full mission duration is 1 hour, spot1 exploration starts late at 1300s and ends
early at 2800s: for this reason, the profiled battery drain is reported only for the exploration
time of interest.

As expected, offloading computationally-expensive perception-related tasks results in

a substantial decrease of battery usage in the robot, leading to increased autonomy,

exploration time, and potential information gain.

Integrated System Performance 107

6.3 YOLO Offloading Results

In this section we demonstrate enhancements on the situational awareness accuracy re-

trieved by computationally-constrained platforms of heterogeneous multi-robot systems

on the semantic understanding level by means of YOLO offloading for a single client

(spot1) to a single server (husky1) through the use of Swarm Manager. Video demo:

https://youtu.be/ZOpz0Ux-XaQ

In the comparison, when not offloading, spot1 needs to downsample the camera inputs

logged at 424x240 px resolution at 10 Hz rate by a 50% factor to cope with constrained

computation on-board and pursue real-time operation. As stated earlier, a possible

shortcoming of this approach is that a downsampled version of the image might result in

degraded YOLO detection performance as the more downsampled the image, the harder

is for YOLO to successfully find the object of interest. Otherwise, when offloading, spot1

can stream its full resolution image feed (the average size of single image message is

2.4 Mb) to the optimum server and through the optimum route dynamically chosen by

the Manager to take advantage of the server side computation at full-resolution, which

runs YOLO on the full received image and provides back the client with a response

if an artifact of interest was detected in the camera stream with suitable bandwidth

requirements leading to near real-time operation at the communication level.

We analyze the number of detections produced by YOLO in the two cases and eval-

uate enhancements in object detection precision. As demonstrated below, the edge

ground-server can exploit its advanced computational capabilities to run YOLO at full

resolution, achieving therefore increased number of detections and enhanced precision

increasing the overall reliability of the distribuited situational awareness retrieved from

the heterogeneous multi-robot system in the unknown environment. While in the real

mission ground-robots run YOLO and legged robots run Tiny-YOLO, we fix YOLO as

single object detector module across all robots to benchmark enhancements achievable

for a single system.

Integrated System Performance 108

https://youtu.be/ZOpz0Ux-XaQ

Figure 6.20: Snapshot of the optimum network route chosen by the Manager for YOLO
offloading of spot1 to the optimum server husky1. At this moment, spot1 is entering an open-
space area located on the first floor.

Integrated System Performance 109

Figure 6.21: YOLO detections on spot1 camera stream when running on-board of the robot
with a 50 % downsampling factor.

Figure 6.22: Evolution of the detection confidence of a backpack in the spot1 camera stream
when running YOLO on husky1 server receiving the full-resolution image offloaded by spot1
through the route chosen by the Manager.

Integrated System Performance 110

Figure 6.23: Barplot representing the total number of YOLO detections performed on the
image stream for robot and server. When processing on-board of the robot, the image is
downsampled of 50 % factor to cope with the constrained available resources: this results in
a total of 19 total detections in this test. When offloading, the client can provide the server
with the full-resolution image: in this case the server runs full YOLO on the received image
stream, resulting in more detections, a total of 44 in this case. Among all the detections, in
this run only a single TP is encountered (backpack): for this artifact the server-side detection
provides higher detection confidence (96%) against the robot-side (85%)

Figure 6.24: Comparison of YOLO detection precision (TP/(TP+FP)) computed with a
80% confidence filter when executed on client (red), and on the server (blue). The server side
achieves higher precision than the robot side. As specified in Section 6.3, the same version of
YOLO (YOLOv4) is used in the benchmarking on both robot and server.

Integrated System Performance 111

6.3.1 Autonomy Time

Fig. 6.25 shows how offloading YOLO computation decreases the battery usage of the

agent increasing its autonomy time. When not offloading YOLO computation, spot1

experiences both background and foreground battery drain, arriving at end of mission

with approximately 80% battery level. When offloading YOLO computation spot1

saves power on-board, reaching end of mission with 86% battery level. Results are

obtained with the method outlined in Section 6.1.1, where for the sake of simplicity

we ignore foreground drain components introduced by other processes of the autonomy

stack running on-board (e.g. traversability analysis, lidar-odometry, etc).

Figure 6.25: Comparison of spot1 battery level from start to end of mission in Urban Beta
2 with and without YOLO offloading. Offloading YOLO computation results in decreased
battery usage on the agent and increased autonomy time. Please note that while the full
mission duration is 1 hour, spot1 exploration starts late at 1300s and ends early at 2800s: for
this reason, the profiled battery drain is reported only for the exploration time of interest.

As expected, offloading semantic understanding tasks results in a substantial decrease

of battery usage in the robot, leading to increased autonomy, exploration time, and

potential information gain.

Integrated System Performance 112

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Conclusions of this dissertation are two-fold, at the intersection of perception and net-

working.

First, achieving accurate lidar odometry in perceptually-challenging conditions can be

difficult due to the lack of reliable perceptual features, presence of noisy sensor meas-

urements, and high-rate motions. While integrating additional sensing modalities can

help address these challenges, potential sensor failures can have dramatic impacts on

the mission outcome if not robustly handled. In this dissertation, we present a lidar

odometry system to enable accurate and resilient ego-motion estimation in challenging

real-world scenarios. The proposed system, LOCUS, provides an accurate multi-stage

scan matching unit equipped with an health-aware sensor integration module for seam-

less loose integration of additional sensing modalities. The proposed architecture is

adaptable to heterogeneous robotic platforms and is optimized for real-time operation.

We compare LOCUS against state-of-the-art open-source algorithms and demonstrate

top-class accuracy in perceptually-challenging real-world datasets, top-class computa-

tion time and superior robustness to sensor failures, yet with greater CPU load. Finally,

we demonstrate field-proven real-time operation of LOCUS on two different robots in-

volved in fully autonomous exploration of Satsop power plant during the Urban Circuit

of the DARPA Subterranean Challenge, where the proposed system was a key compon-

ent of CoSTAR team’s solution that achieved first place.

113

Second, retrieving accurate distributed situational awareness on a heterogeneous multi-

robot system can be difficult due to potential constrained computational capabilities of

less-capable agents (e.g. legged, aerial) limiting the accuracy of on-board localization

and semantic understanding modules. While inter-agent offloading mechanisms super-

vised by a central entity could benefit the robotic team with distributed computation

capabilities, the failure of the central orchestrator might translate into catastrophic

consequences. In this dissertation, we present Swarm Manager, a novel framework that

exploits Distributed Computation and Software Defined Networking paradigms to en-

hance perception accuracy of computationally constrained platforms in heterogeneous

multi-robot systems, by allowing robots in the team to offload heavy computation (e.g.

lidar odometry, object detection) to other more resourceful peers under decision of a

globally-aware and dynamically eligible central orchestrator. For each offloading re-

quest, Swarm Manager simultaneously identifies the optimum server where is best to

execute the task, and the optimum route through is best to route the data given the

current knowledge of the system state. The presented approach provides resilience to

the failure of the central orchestrator by means of a dynamic leader election mechan-

ism. We demonstrate successful operation of Swarm Manager on the data collected by

a team of four autonomous robots exploring the Satsop power plant during the Urban

Circuit of the DARPA Subterranean Challenge and showcase improvements in localiz-

ation accuracy by means of LOCUS offloading, and improvements in object detection

precision by means of YOLO offloading.

We think that the concept of Swarm Manager opens up for new avenues of advanced

cooperative behaviours in multi-robot teams. For example, a server performing ego-

motion estimation and mapping on the lidar stream offloaded by a client, could use this

information to look for potential inter-robot loop closures between its own map and the

client’s one.

7.2 Future Work

In the localization domain, future work will investigate novel point cloud filtering and

point cloud registration strategies to improve accuracy of ego-motion estimation, along

Conclusions and Future Work 114

with continuing efforts in decreasing the computational load of LOCUS as it is currently

impacting the operation of computationally-constrained platforms.

In the distributed computation domain, future work will test Swarm Manager over large

heterogeneous multi-robot systems during real-world field deployments.

Conclusions and Future Work 115

Chapter 8

Publications

• "LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry

and 3D Mapping in Real-Time" Matteo Palieri, Benjamin Morrell, Abhishek

Thakur, Kamak Ebadi, Jeremy Nash, Arghya Chatterjee, Christoforos Kanel-

lakis, Luca Carlone, Cataldo Guaragnella, Ali-akbar Agha-mohammadi - IEEE

Robotics and Automation Letters, 2020.

• "LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of

Perceptually-Degraded Subterranean Environments" Kamak Ebadi, Yun Chang,

Matteo Palieri, Alex Stephens, Alex Hatteland, Eric Heiden, Abhishek Thakur,

Nobuhiro Funabiki, Benjamin Morrell, Sally Wood, Luca Carlone, Ali-akbar

Agha-mohammadi - IEEE International Conference on Robotics and Automa-

tion, 2020.

• "Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environ-

ments with Legged Locomotion" Amanda Bouman, Muhammad Fadhil Ginting,

Nikhilesh Alatur, Matteo Palieri, David D. Fan, Thomas Touma, Torkom Pail-

evanian, Sung-Kyun Kim, Kyohei Otsu, Joel Burdick, Ali-akbar Agha-mohammadi

- IEEE International Conference on Intelligent Robots and Systems, 2020.

• "DARE-SLAM: Degeneracy-Aware and Resilient Loop Closing in Perceptually-

Degraded Environments" Kamak Ebadi, Matteo Palieri, Sally Wood, Curtis Pad-

gett, Ali-akbar Agha-mohammadi - Journal of Intelligent and Robotic Systems,

2021.

116

• "Maximum Correntropy Kalman Filter for Orientation Estimation With Applica-

tion to LiDAR Inertial Odometry" Seyed Fakoorian, Matteo Palieri, Angel Santamaria-

Navarro, Cataldo Guaragnella, Dan Simon, Ali-akbar Agha-mohammadi - Dy-

namic Systems and Control Conference, 2020.

• "Power Management Framework for Optical Infrastructure" Luigi Mantellini, Marco

Mussini, Giorgio Parladori, Domenico Scarpelli, Matteo Palieri, Cataldo Guarag-

nella, Francesco Nicassio, Francesco Triggiani - IEEE International Conference on

Transparent Optical Networks, 2020.

• "NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM

CoSTAR at the DARPA Subterranean Challenge" Ali Agha, Kyohei Otsu, Ben-

jamin Morrell, David D. Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-

Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Fadhil

Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry,

Michael Wolf, Andrea Tagliabue, Tiago Stegun Vaquero, Matteo Palieri, et al. -

Journal of Field Robotics, 2021.

• "Swarm Manager: Distributed Situational Awareness on a Heterogeneous Multi-

Robot System" Matteo Palieri et al. Currently in submission process.

Publications 117

Bibliography

[1] Mica Endsley. ‘Situation awareness analysis and measurement, chapter theor-

etical underpinnings of situation awareness’. In: A Critical Review (Jan. 2000),

pp. 3–33 (cit. on p. 1).

[2] Lynne E Parker, Daniela Rus and Gaurav S Sukhatme. ‘Multiple mobile robot

systems’. In: Springer Handbook of Robotics. Springer, 2016, pp. 1335–1384 (cit.

on p. 1).

[3] T. Arai, E. Pagello and L.E. Parker. ‘Guest editorial advances in multirobot

systems’. In: IEEE Transactions on Robotics and Automation 18.5 (Oct. 2002),

pp. 655–661. doi: 10.1109/tra.2002.806024. url: https://doi.org/10.

1109/tra.2002.806024 (cit. on p. 2).

[4] Robert Bogue. ‘Robots for monitoring the environment’. In: Industrial Robot:

An International Journal (2011) (cit. on p. 2).

[5] Valerio Digani et al. ‘Towards decentralized coordination of multi robot systems

in industrial environments: A hierarchical traffic control strategy’. In: 2013 IEEE

9th International Conference on Intelligent Computer Communication and Pro-

cessing (ICCP). IEEE. 2013, pp. 209–215 (cit. on p. 2).

[6] James S Jennings, Greg Whelan and William F Evans. ‘Cooperative search and

rescue with a team of mobile robots’. In: 1997 8th International Conference

on Advanced Robotics. Proceedings. ICAR’97. IEEE. 1997, pp. 193–200 (cit. on

p. 2).

[7] Haris Balta et al. ‘Integrated data management for Science & a fleet of search-

and-rescue robots’. In: Journal of Field Robotics 34.3 (2017), pp. 539–582 (cit.

on p. 2).

[8] Junichi Haruyama et al. ‘Lunar holes and lava tubes as resources for lunar science

and exploration’. In: Moon. Springer, 2012, pp. 139–163 (cit. on pp. 2, 3).

118

https://doi.org/10.1109/tra.2002.806024
https://doi.org/10.1109/tra.2002.806024
https://doi.org/10.1109/tra.2002.806024

[9] Takahiro Sasaki et al. ‘Where to map? iterative rover-copter path planning

for mars exploration’. In: IEEE Robotics and Automation Letters 5.2 (2020),

pp. 2123–2130 (cit. on p. 2).

[10] M. Bajracharya, M. W. Maimone and D. Helmick. ‘Autonomy for Mars Rovers:

Past, Present, and Future’. In: Computer 41.12 (2008), pp. 44–50. doi: 10.1109/

MC.2008.479 (cit. on p. 2).

[11] Jordan Ford et al. ‘Technologies Enabling the Exploration of Lunar Pits’. In:

International Symposium on Artificial Intelligence, Robotics and Automation in

Space (i-SAIRAS) (2020) (cit. on p. 2).

[12] Keir Groves et al. ‘Robotic Exploration of an Unknown Nuclear Environment

Using Radiation Informed Autonomous Navigation’. In: Robotics 10.2 (2021),

p. 78 (cit. on p. 2).

[13] url: https://www.equipment-news.com/foton-motor-involved-rescue-

mission-chiang-rai-thailand/ (cit. on p. 3).

[14] Andrew W Daga et al. ‘Lunar and martian lava tube exploration as part of an

overall scientific survey’. In: Annual Meeting of the Lunar Exploration Analysis

Group. Vol. 1515. 2009, p. 15 (cit. on p. 3).

[15] Glen Cushing. ‘Candidate Cave Entrances on Mars’. In: Journal of Cave and

Karst Studies, Vol. 74, p. 33-47 74 (Apr. 2012), pp. 33–47. doi: 10 . 4311 /

2010EX0167R (cit. on p. 3).

[16] Samuel B Kesner et al. ‘Mobility and power feasibility of a microbot team system

for extraterrestrial cave exploration’. In: Proceedings 2007 IEEE International

Conference on Robotics and Automation. 2007, pp. 4893–4898 (cit. on p. 3).

[17] Timothy Titus et al. ‘Science and technology requirements to explore caves in

our Solar System’. In: White Paper (July 2020). doi: 10.13140/RG.2.2.22126.

43844 (cit. on p. 3).

[18] Vlada Stamenković et al. ‘The next frontier for planetary and human explora-

tion’. In: Nature Astronomy 3.2 (2019), pp. 116–120 (cit. on p. 3).

[19] T. Touma et al. ‘Mars Dogs: Biomimetic Robots for the Exploration of Mars,

from its Rugged Surface to its Hidden Caves’. In: AGU Fall Meeting. 2020 (cit.

on p. 3).

BIBLIOGRAPHY 119

https://doi.org/10.1109/MC.2008.479
https://doi.org/10.1109/MC.2008.479
https://www.equipment-news.com/foton-motor-involved-rescue-mission-chiang-rai-thailand/
https://www.equipment-news.com/foton-motor-involved-rescue-mission-chiang-rai-thailand/
https://doi.org/10.4311/2010EX0167R
https://doi.org/10.4311/2010EX0167R
https://doi.org/10.13140/RG.2.2.22126.43844
https://doi.org/10.13140/RG.2.2.22126.43844

[20] url: https://www.express.co.uk/news/science/1110234/nasa-announcement-

moon-settlement-sea-of-tranquility-lunar-mission (cit. on p. 4).

[21] DARPA. DARPA Subterranean Challenge. https://www.subtchallenge.com.

2018 (cit. on p. 7).

[22] url: https://www.darpa.mil/program/darpa- subterranean- challenge

(cit. on p. 7).

[23] Ali Agha et al. ‘Nebula: Quest for robotic autonomy in challenging environ-

ments; team costar at the darpa subterranean challenge’. In: arXiv preprint

arXiv:2103.11470 (2021) (cit. on pp. 8–10, 24, 31, 70).

[24] url: http://wiki.ros.org/melodic (cit. on p. 11).

[25] Khalid Yousif, Alireza Bab-Hadiashar and Reza Hoseinnezhad. ‘An overview to

visual odometry and visual SLAM: Applications to mobile robotics’. In: Intelli-

gent Industrial Systems 1.4 (2015), pp. 289–311 (cit. on p. 14).

[26] C. Cadena et al. ‘Past, Present, and Future of Simultaneous Localization And

Mapping: Towards the Robust-Perception Age’. In: IEEE Transactions on Ro-

botics 6 (2016), 1309–1332 (cit. on p. 14).

[27] Randall C Smith and Peter Cheeseman. ‘On the representation and estimation

of spatial uncertainty’. In: The international journal of Robotics Research 5.4

(1986), pp. 56–68 (cit. on p. 14).

[28] John J Leonard and Hugh F Durrant-Whyte. ‘Simultaneous map building and

localization for an autonomous mobile robot.’ In: IROS. Vol. 3. 1991, pp. 1442–

1447 (cit. on p. 14).

[29] Feng Lu and Evangelos Milios. ‘Globally consistent range scan alignment for

environment mapping’. In: Autonomous robots 4.4 (1997), pp. 333–349 (cit. on

p. 14).

[30] Michael Bloesch et al. ‘Robust visual inertial odometry using a direct EKF-based

approach’. In: 2015 IEEE/RSJ international conference on intelligent robots and

systems (IROS). IEEE. 2015, pp. 298–304 (cit. on pp. 14, 16).

[31] Andrew J Davison et al. ‘MonoSLAM: Real-time single camera SLAM’. In: IEEE

transactions on pattern analysis and machine intelligence 29.6 (2007), pp. 1052–

1067 (cit. on p. 14).

BIBLIOGRAPHY 120

https://www.express.co.uk/news/science/1110234/nasa-announcement-moon-settlement-sea-of-tranquility-lunar-mission
https://www.express.co.uk/news/science/1110234/nasa-announcement-moon-settlement-sea-of-tranquility-lunar-mission
https://www.subtchallenge.com
https://www.darpa.mil/program/darpa-subterranean-challenge
http://wiki.ros.org/melodic

[32] Tim Bailey and Hugh Durrant-Whyte. ‘Simultaneous localization and map-

ping (SLAM): Part II’. In: IEEE robotics & automation magazine 13.3 (2006),

pp. 108–117 (cit. on p. 14).

[33] Michael Calonder. EKF SLAM vs. FastSLAM–A comparison. Tech. rep. 2006

(cit. on p. 14).

[34] Zheng Fang et al. ‘Robust autonomous flight in constrained and visually de-

graded shipboard environments’. In: Journal of Field Robotics 34.1 (2017), pp. 25–

52 (cit. on p. 14).

[35] Michael Montemerlo and Sebastian Thrun. ‘Simultaneous localization and map-

ping with unknown data association using FastSLAM’. In: 2003 IEEE Interna-

tional Conference on Robotics and Automation (Cat. No. 03CH37422). Vol. 2.

IEEE. 2003, pp. 1985–1991 (cit. on p. 14).

[36] Francisco J Perez-Grau et al. ‘An architecture for robust UAV navigation in

GPS-denied areas’. In: Journal of Field Robotics 35.1 (2018), pp. 121–145 (cit.

on p. 14).

[37] Jakob Engel, Vladlen Koltun and Daniel Cremers. ‘Direct sparse odometry’.

In: IEEE transactions on pattern analysis and machine intelligence 40.3 (2017),

pp. 611–625 (cit. on p. 14).

[38] Jakob Engel, Jörg Stückler and Daniel Cremers. ‘Large-scale direct SLAM with

stereo cameras’. In: 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2015, pp. 1935–1942 (cit. on p. 14).

[39] Stefan Leutenegger et al. ‘Keyframe-based visual–inertial odometry using non-

linear optimization’. In: The International Journal of Robotics Research 34.3

(2015), pp. 314–334 (cit. on pp. 14, 16).

[40] Michael Milford and Gordon Wyeth. ‘Persistent navigation and mapping using

a biologically inspired SLAM system’. In: The International Journal of Robotics

Research 29.9 (2010), pp. 1131–1153 (cit. on p. 14).

[41] Raul Mur-Artal and Juan D Tardós. ‘Orb-slam2: An open-source slam system

for monocular, stereo, and rgb-d cameras’. In: IEEE transactions on robotics

33.5 (2017), pp. 1255–1262 (cit. on p. 14).

BIBLIOGRAPHY 121

[42] Frank R Kschischang, Brendan J Frey and H-A Loeliger. ‘Factor graphs and

the sum-product algorithm’. In: IEEE Transactions on information theory 47.2

(2001), pp. 498–519 (cit. on p. 14).

[43] Jorge J Moré. ‘The Levenberg-Marquardt algorithm: implementation and the-

ory’. In: Numerical analysis. Springer, 1978, pp. 105–116 (cit. on p. 15).

[44] Baichuan Huang, Jun Zhao and Jingbin Liu. ‘A survey of simultaneous localiz-

ation and mapping with an envision in 6g wireless networks’. In: arXiv preprint

arXiv:1909.05214 (2019) (cit. on p. 16).

[45] Jorge Fuentes-Pacheco, José Ruiz-Ascencio and Juan Manuel Rendón-Mancha.

‘Visual simultaneous localization and mapping: a survey’. In: Artificial intelli-

gence review 43.1 (2015), pp. 55–81 (cit. on p. 16).

[46] T. Qin, P. Li and S. Shen. ‘Vins-mono: A robust and versatile monocular visual-

inertial state estimator’. In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–

1020 (cit. on pp. 16, 50).

[47] Thomas Schneider et al. ‘maplab: An open framework for research in visual-

inertial mapping and localization’. In: IEEE Robotics and Automation Letters

3.3 (2018), pp. 1418–1425 (cit. on p. 16).

[48] Antoni Rosinol et al. ‘Kimera: an open-source library for real-time metric-semantic

localization and mapping’. In: 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2020, pp. 1689–1696 (cit. on pp. 16, 70).

[49] Davide Scaramuzza and Friedrich Fraundorfer. ‘Visual odometry [tutorial]’. In:

IEEE robotics & automation magazine 18.4 (2011), pp. 80–92 (cit. on p. 16).

[50] David Nistér, Oleg Naroditsky and James Bergen. ‘Visual odometry’. In: Pro-

ceedings of the 2004 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2004. CVPR 2004. Vol. 1. Ieee. 2004, pp. I–I (cit. on

p. 16).

[51] Tony Lindeberg. ‘Scale invariant feature transform’. In: (2012) (cit. on p. 16).

[52] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. ‘Surf: Speeded up robust

features’. In: European conference on computer vision. Springer. 2006, pp. 404–

417 (cit. on p. 16).

BIBLIOGRAPHY 122

[53] Ethan Rublee et al. ‘ORB: An efficient alternative to SIFT or SURF’. In: 2011

International conference on computer vision. Ieee. 2011, pp. 2564–2571 (cit. on

p. 16).

[54] Sunglok Choi, Jaehyun Park and Wonpil Yu. ‘Resolving scale ambiguity for

monocular visual odometry’. In: 2013 10th International Conference on Ubiquit-

ous Robots and Ambient Intelligence (URAI). IEEE. 2013, pp. 604–608 (cit. on

p. 16).

[55] Mingyang Li and Anastasios I Mourikis. ‘High-precision, consistent EKF-based

visual-inertial odometry’. In: The International Journal of Robotics Research

32.6 (2013), pp. 690–711 (cit. on p. 16).

[56] Guoquan Huang, Michael Kaess and John J Leonard. ‘Towards consistent visual-

inertial navigation’. In: 2014 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2014, pp. 4926–4933 (cit. on p. 16).

[57] Christian Forster et al. ‘On-manifold preintegration for real-time visual–inertial

odometry’. In: IEEE Transactions on Robotics 33.1 (2016), pp. 1–21 (cit. on

p. 16).

[58] Raúl Mur-Artal and Juan D Tardós. ‘Visual-inertial monocular SLAM with map

reuse’. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 796–803 (cit.

on p. 16).

[59] Danping Zou, Ping Tan and Wenxian Yu. ‘Collaborative visual SLAM for mul-

tiple agents: A brief survey’. In: Virtual Reality & Intelligent Hardware 1.5

(2019), pp. 461–482 (cit. on p. 16).

[60] Nishant Kejriwal, Swagat Kumar and Tomohiro Shibata. ‘High performance loop

closure detection using bag of word pairs’. In: Robotics and Autonomous Systems

77 (2016), pp. 55–65 (cit. on p. 16).

[61] Relja Arandjelovic et al. ‘NetVLAD: CNN architecture for weakly supervised

place recognition’. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2016, pp. 5297–5307 (cit. on p. 16).

[62] Paulo Vinicius Koerich Borges and Stephen Vidas. ‘Practical infrared visual

odometry’. In: IEEE Transactions on Intelligent Transportation Systems 17.8

(2016), pp. 2205–2213 (cit. on p. 17).

BIBLIOGRAPHY 123

[63] T. Dang C. Papachristos S. Khattak F. Mascarich and K. Alexis. ‘Robust Thermal-

Inertial Localization for Aerial Robots: A Case for Direct Methods’. In: Inter-

national Conference on Unmanned Aircraft Systems (ICUAS). 2019, pp. 1061–

1068 (cit. on p. 17).

[64] A. Nuchter et al. ‘6D SLAM with an application in autonomous mine mapping’.

In: Conference on Robotics and Automation, 2004. Ed. by Ieee International.

vol. 2, . IEEE: Proceedings. ICRA’04. 2004, 2004, pp. 1998–2003 (cit. on p. 17).

[65] T. Shan et al. ‘LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smooth-

ing and Mapping’. In: IEEE/RSJ IROS. IEEE. 2020 (cit. on pp. 17, 21, 22,

50).

[66] T. Shan and B. Englot. ‘LeGO-LOAM: Lightweight and ground-optimized lidar

odometry and mapping on variable terrain’. In: 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4758–

4765 (cit. on pp. 17, 18, 21, 22, 50).

[67] J. Zhang and S. Singh. ‘LOAM: Lidar Odometry and Mapping in Real-time’. In:

Robotics: Science and Systems, vol. 2. IEEE. 2014, p. 9 (cit. on pp. 17, 21, 22,

50).

[68] X. Ji et al. ‘LLOAM: LiDAR Odometry and Mapping with Loop-closure Detec-

tion Based Correction’. In: 2019 IEEE International Conference on Mechatronics

and Automation (ICMA). IEEE, 2019, pp. 2475–2480 (cit. on p. 17).

[69] D. Kohler, H. Rapp and D. Andor. ‘Real-time loop closure in 2D LIDAR SLAM’.

In: 2016 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2016, pp. 1271–1278 (cit. on pp. 17, 22, 50).

[70] R. Dubé et al. SegMap: 3D segment mapping using data-driven descriptors. pre-

print. arXiv, 2018. arXiv: 1804.09557 (cit. on p. 17).

[71] Cedric Le Gentil, Teresa Vidal-Calleja and Shoudong Huang. ‘IN2LAAMA: In-

ertial Lidar Localization Autocalibration and Mapping’. In: IEEE Transactions

on Robotics (2020) (cit. on pp. 17, 21, 22).

[72] Mikaela Angelina Uy and Gim Hee Lee. ‘Pointnetvlad: Deep point cloud based

retrieval for large-scale place recognition’. In: Proceedings of the IEEE Confer-

BIBLIOGRAPHY 124

https://arxiv.org/abs/1804.09557

ence on Computer Vision and Pattern Recognition. 2018, pp. 4470–4479 (cit. on

p. 17).

[73] Renaud Dubé et al. ‘Segmatch: Segment based loop-closure for 3d point clouds’.

In: arXiv preprint arXiv:1609.07720 (2016) (cit. on p. 17).

[74] Xieyuanli Chen et al. ‘OverlapNet: Loop closing for LiDAR-based SLAM’. In:

arXiv preprint arXiv:2105.11344 (2021) (cit. on p. 17).

[75] Kamak Ebadi et al. ‘DARE-SLAM: Degeneracy-Aware and Resilient Loop Clos-

ing in Perceptually-Degraded Environments’. In: arXiv preprint arXiv:2102.05117

(2021) (cit. on pp. 17, 18, 70).

[76] Andrea Tagliabue et al. ‘LION: Lidar-Inertial observability-aware navigator for

Vision-Denied environments’. In: arXiv preprint arXiv:2102.03443 (2021) (cit.

on pp. 17, 22).

[77] S. Singh J. Zhang. ‘Laser–visual–inertial odometry and mapping with high ro-

bustness and low drift’. In: Journal of Field Robotics. 2018, pp. 1242–1264 (cit.

on pp. 17, 21, 22, 50).

[78] Yoshua Nava. ‘Visual-LiDAR SLAM with loop closure’. PhD thesis. KTH Royal

Institute of Technology, 2018 (cit. on p. 17).

[79] José-Luis Blanco-Claraco. ‘A Modular Optimization Framework for Localization

and Mapping.’ In: Robotics: Science and Systems. 2019 (cit. on p. 17).

[80] J. M. M. Montiel R. Mur-Artal and J. D. Tardos. ‘ORB-SLAM: a versatile and

accurate monocular SLAM system’. In: IEEE transactions on robotics 31, no.

5. IEEE. 2015, pp. 1147–1163 (cit. on p. 18).

[81] S. Leutenegger et al. ‘Keyframe-based visual–inertial odometry using nonlinear

optimization’. In: nternational Journal of Robotics Research, vol. 34, no. 3. 2015,

pp. 314–334 (cit. on p. 18).

[82] M. Hutter M. Bloesch S. Omari and R. Siegwart. ‘Robust visual inertial odo-

metry using a direct ekf-based approach’. In: International Conference on Intel-

ligent Robots and Systems (IROS). IEEE. 2015, pp. 298–304 (cit. on p. 18).

[83] D. Tardioli et al. ‘Ground robotics in tunnels: Keys and lessons learned after 10

years of research and experiments’. In: Journal of Field Robotics 36.6 (2019),

pp. 1074–1101 (cit. on p. 18).

BIBLIOGRAPHY 125

[84] Kamak Ebadi et al. ‘LAMP: Large-Scale Autonomous Mapping and Position-

ing for Exploration of Perceptually-Degraded Subterranean Environments’. In:

ICRA. IEEE. 2020 (cit. on pp. 18, 21, 22, 45, 63, 70).

[85] Paul J Besl and Neil D McKay. ‘Method for registration of 3-D shapes’. In:

Sensor fusion IV: control paradigms and data structures. Vol. 1611. International

Society for Optics and Photonics. 1992, pp. 586–606 (cit. on p. 19).

[86] url: http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD1/

(cit. on p. 20).

[87] Szymon Rusinkiewicz and Marc Levoy. ‘Efficient variants of the ICP algorithm’.

In: Proceedings third international conference on 3-D digital imaging and mod-

eling. IEEE. 2001, pp. 145–152 (cit. on p. 20).

[88] Yang Chen and Gérard Medioni. ‘Object modelling by registration of multiple

range images’. In: Image and vision computing 10.3 (1992), pp. 145–155 (cit. on

p. 20).

[89] Aleksandr Segal, Dirk Haehnel and Sebastian Thrun. ‘Generalized-icp.’ In: Ro-

botics: science and systems. Vol. 2. 4. Seattle, WA. 2009, p. 435 (cit. on pp. 20,

21).

[90] José-Luis Blanco-Claraco. ‘A Modular Optimization Framework for Localization

and Mapping.’ In: Robotics: Science and Systems. 2019 (cit. on pp. 21, 22).

[91] M. Bosse and R. Zlot. ‘Continuous 3D scan-matching with a spinning 2D laser’.

In: ICRA. 2009, pp. 4312–4319 (cit. on pp. 21, 22).

[92] Peter Biber and Wolfgang Straßer. ‘The normal distributions transform: A new

approach to laser scan matching’. In: Proceedings 2003 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.

03CH37453). Vol. 3. IEEE. 2003, pp. 2743–2748 (cit. on pp. 21, 22).

[93] et al. S. Agarwal K. Mierle. ‘Ceres solver available Online:’ in: http://ceres-

solver.org (cit. on p. 21).

[94] Giorgio Grisetti et al. ‘Least Squares Optimization: from Theory to Practice’.

In: Robotics 9.3 (2020), p. 51. doi: 10.3390/robotics9030051 (cit. on p. 21).

[95] W. Shao et al. ‘Stereo visual inertial lidar simultaneous localization and map-

ping’. In: IROS. 2019 (cit. on pp. 21, 22, 39, 50).

BIBLIOGRAPHY 126

http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD1/
https://doi.org/10.3390/robotics9030051

[96] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech. rep.

Georgia Institute of Technology, 2012 (cit. on p. 21).

[97] Heng Yang, Jingnan Shi and Luca Carlone. ‘Teaser: Fast and certifiable point

cloud registration’. In: arXiv preprint arXiv:2001.07715 (2020) (cit. on p. 21).

[98] H. Ye, Y. Chen and M. Liu. ‘Tightly coupled 3d lidar inertial odometry and

mapping’. In: ICRA. 2019, pp. 3144–3150 (cit. on pp. 22, 39, 50).

[99] Eijiro Takeuchi and Takashi Tsubouchi. ‘A 3-D scan matching using improved 3-

D normal distributions transform for mobile robotic mapping’. In: 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE. 2006, pp. 3068–

3073 (cit. on p. 22).

[100] R. Zlot and M. Bosse. ‘Three-dimensional mobile mapping of caves.’ In: Journal

of Cave & Karst Studies 76.3 (2014) (cit. on p. 22).

[101] R. Zlot and M. Bosse. ‘Efficient large-scale three-dimensional mobile mapping

for underground mines’. In: Journal of Field Robotics 31.5 (2014), pp. 758–779

(cit. on p. 22).

[102] M. Bosse, R. Zlot and P. Flick. ‘Zebedee: Design of a spring-mounted 3-d range

sensor with application to mobile mapping’. In: IEEE Transactions on Robotics

28.5 (2012), pp. 1104–1119 (cit. on p. 22).

[103] url: https : / / commercialsecurityinstallers . com / commercial - video -

analytics/ (cit. on p. 23).

[104] Christian Szegedy et al. ‘Going deeper with convolutions’. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9

(cit. on p. 24).

[105] Wei Liu et al. ‘Ssd: Single shot multibox detector’. In: European conference on

computer vision. Springer. 2016, pp. 21–37 (cit. on p. 24).

[106] Joseph Redmon et al. ‘You only look once: Unified, real-time object detection’.

In: Proceedings of the IEEE conference on computer vision and pattern recogni-

tion. 2016, pp. 779–788 (cit. on p. 24).

[107] Joseph Redmon and Ali Farhadi. ‘YOLO9000: better, faster, stronger’. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2017, pp. 7263–7271 (cit. on p. 24).

BIBLIOGRAPHY 127

https://commercialsecurityinstallers.com/commercial-video-analytics/
https://commercialsecurityinstallers.com/commercial-video-analytics/

[108] Joseph Redmon and Ali Farhadi. ‘Yolov3: An incremental improvement’. In:

arXiv preprint arXiv:1804.02767 (2018) (cit. on p. 24).

[109] Alexey Bochkovskiy, Chien-Yao Wang and Hong-Yuan Mark Liao. ‘YOLOv4:

Optimal Speed and Accuracy of Object Detection’. In: arXiv preprint arXiv:2004.10934

(2020) (cit. on p. 24).

[110] Wadim Kehl et al. ‘Deep learning of local rgb-d patches for 3d object detection

and 6d pose estimation’. In: European conference on computer vision. Springer.

2016, pp. 205–220 (cit. on p. 24).

[111] Waleed Ali et al. ‘Yolo3d: End-to-end real-time 3d oriented object bounding box

detection from lidar point cloud’. In: Proceedings of the European Conference on

Computer Vision (ECCV) Workshops. 2018, pp. 0–0 (cit. on p. 24).

[112] Yin Zhou and Oncel Tuzel. ‘Voxelnet: End-to-end learning for point cloud based

3d object detection’. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2018, pp. 4490–4499 (cit. on p. 24).

[113] Martin Simony et al. ‘Complex-yolo: An euler-region-proposal for real-time 3d

object detection on point clouds’. In: Proceedings of the European Conference on

Computer Vision (ECCV) Workshops. 2018, pp. 0–0 (cit. on p. 24).

[114] Changhyun Choi and Henrik I Christensen. ‘3d textureless object detection and

tracking: An edge-based approach’. In: 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems. IEEE. 2012, pp. 3877–3884 (cit. on

p. 24).

[115] Zhong-Qiu Zhao et al. ‘Object detection with deep learning: A review’. In: IEEE

transactions on neural networks and learning systems 30.11 (2019), pp. 3212–

3232 (cit. on p. 24).

[116] Edward Terry et al. ‘Object and Gas Source Detection with Robotic Platforms in

Perceptually-Degraded Environments’. In: RSS Workshop: Robots in the Wild:

Challenges in Deploying Robust Autonomy for Robotic Exploration. 2020 (cit. on

p. 24).

[117] Yunyang Xiong et al. ‘MobileDets: Searching for Object Detection Architectures

for Mobile Accelerators’. In: arXiv preprint arXiv:2004.14525 (2020) (cit. on

p. 24).

BIBLIOGRAPHY 128

[118] Guoqiang Hu, Wee Peng Tay and Yonggang Wen. ‘Cloud robotics: architecture,

challenges and applications’. In: IEEE network 26.3 (2012), pp. 21–28 (cit. on

p. 25).

[119] Dominique Hunziker et al. ‘Rapyuta: The roboearth cloud engine’. In: 2013 IEEE

international conference on robotics and automation. IEEE. 2013, pp. 438–444

(cit. on p. 25).

[120] Gajamohan Mohanarajah et al. ‘Rapyuta: A cloud robotics platform’. In: IEEE

Transactions on Automation Science and Engineering 12.2 (2014), pp. 481–493

(cit. on p. 25).

[121] Kiril Antevski et al. ‘Enhancing edge robotics through the use of context inform-

ation’. In: Proceedings of the Workshop on Experimentation and Measurements

in 5G. 2018, pp. 7–12 (cit. on p. 25).

[122] Ali Marjovi, Sarvenaz Choobdar and Lino Marques. ‘Robotic clusters: Multi-

robot systems as computer clusters: A topological map merging demonstration’.

In: Robotics and Autonomous Systems 60.9 (2012), pp. 1191–1204 (cit. on p. 26).

[123] Brian P Gerkey and Maja J Mataric. ‘Sold!: Auction methods for multirobot

coordination’. In: IEEE transactions on robotics and automation 18.5 (2002),

pp. 758–768 (cit. on p. 26).

[124] Yu Zhang and Lynne E Parker. ‘Multi-robot task scheduling’. In: 2013 IEEE

International Conference on Robotics and Automation. IEEE. 2013, pp. 2992–

2998 (cit. on p. 26).

[125] Paulo AL Rego et al. ‘Performing computation offloading on multiple platforms’.

In: Computer Communications 105 (2017), pp. 1–13 (cit. on p. 27).

[126] Victor Kathan Sarker et al. ‘Offloading slam for indoor mobile robots with edge-

fog-cloud computing’. In: 2019 1st international conference on advances in sci-

ence, engineering and robotics technology (ICASERT). IEEE. 2019, pp. 1–6 (cit.

on p. 27).

[127] Joshua Vander Hook et al. ‘Mars on-site shared analytics information and com-

puting’. In: Proceedings of the International Conference on Automated Planning

and Scheduling. Vol. 29. 2019, pp. 707–715 (cit. on pp. 27, 28).

BIBLIOGRAPHY 129

[128] Federico Rossi et al. ‘The Pluggable Distributed Resource Allocator (PDRA): a

Middleware for Distributed Computing in Mobile Robotic Networks’. In: 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2020, pp. 4337–4344 (cit. on p. 28).

[129] Karthik Kumar et al. ‘A Survey of Computation Offloading for Mobile Systems’.

In: Mobile Networks and Applications 18.1 (Apr. 2012), pp. 129–140. doi: 10.

1007/s11036-012-0368-0. url: https://doi.org/10.1007/s11036-012-

0368-0 (cit. on p. 28).

[130] Luca Ballotta, Luca Schenato and Luca Carlone. ‘Computation-communication

trade-offs and sensor selection in real-time estimation for processing networks’.

In: IEEE Transactions on Network Science and Engineering 7.4 (2020), pp. 2952–

2965 (cit. on p. 28).

[131] Akhlaqur Rahman et al. ‘Energy-efficient optimal task offloading in cloud net-

worked multi-robot systems’. In: Computer Networks 160 (2019), pp. 11–32 (cit.

on p. 28).

[132] Zicong Hong et al. ‘Multi-hop cooperative computation offloading for industrial

IoT–edge–cloud computing environments’. In: IEEE Transactions on Parallel

and Distributed Systems 30.12 (2019), pp. 2759–2774 (cit. on p. 28).

[133] Baichuan Liu et al. ‘Joint computation offloading and routing optimization for

uav-edge-cloud computing environments’. In: 2018 IEEE SmartWorld, Ubiquit-

ous Intelligence & Computing, Advanced & Trusted Computing, Scalable Com-

puting & Communications, Cloud & Big Data Computing, Internet of People and

Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).

IEEE. 2018, pp. 1745–1752 (cit. on p. 28).

[134] Biwei Li et al. ‘A high efficient multi-robot simultaneous localization and map-

ping system using partial computing offloading assisted cloud point registration

strategy’. In: Journal of Parallel and Distributed Computing 149 (Mar. 2021),

pp. 89–102. doi: 10.1016/j.jpdc.2020.10.012. url: https://doi.org/10.

1016/j.jpdc.2020.10.012 (cit. on p. 28).

[135] Swarnava Dey and Arijit Mukherjee. ‘Robotic slam: a review from fog com-

puting and mobile edge computing perspective’. In: Adjunct Proceedings of the

BIBLIOGRAPHY 130

https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1016/j.jpdc.2020.10.012
https://doi.org/10.1016/j.jpdc.2020.10.012
https://doi.org/10.1016/j.jpdc.2020.10.012

13th International Conference on Mobile and Ubiquitous Systems: Computing

Networking and Services. 2016, pp. 153–158 (cit. on p. 29).

[136] Li Qingqing et al. ‘Offloading Monocular Visual Odometry with Edge Comput-

ing’. In: Proceedings of the 2019 5th International Conference on Systems, Con-

trol and Communications. ACM, Dec. 2019. doi: 10.1145/3377458.3377467.

url: https://doi.org/10.1145/3377458.3377467 (cit. on p. 29).

[137] L. Qingqing et al. ‘Edge Computing for Mobile Robots: Multi-Robot Feature-

Based Lidar Odometry with FPGAs’. In: 2019 Twelfth International Conference

on Mobile Computing and Ubiquitous Network (ICMU). IEEE, Nov. 2019. doi:

10.23919/icmu48249.2019.9006646. url: https://doi.org/10.23919/

icmu48249.2019.9006646 (cit. on p. 29).

[138] Swarnava Dey and Arijit Mukherjee. ‘Robotic SLAM’. In: Adjunct Proceedings of

the 13th International Conference on Mobile and Ubiquitous Systems: Computing

Networking and Services. ACM, Nov. 2016. doi: 10.1145/3004010.3004032.

url: https://doi.org/10.1145/3004010.3004032 (cit. on p. 29).

[139] Bruno Duarte Gouveia et al. ‘Computation Sharing in Distributed Robotic Sys-

tems: A Case Study on SLAM’. In: IEEE Transactions on Automation Science

and Engineering 12.2 (Apr. 2015), pp. 410–422. doi: 10.1109/tase.2014.

2357216. url: https://doi.org/10.1109/tase.2014.2357216 (cit. on p. 29).

[140] Jixiang Zhu. Computation offloading and task scheduling among multi-robot sys-

tems. 2017 (cit. on p. 29).

[141] Kyohei Otsu et al. ‘Supervised autonomy for communication-degraded subter-

ranean exploration by a robot team’. In: 2020 IEEE Aerospace Conference.

IEEE. 2020, pp. 1–9 (cit. on p. 30).

[142] Tiago Stegun Vaquero et al. ‘Traversability-aware signal coverage planning for

communication node deployment in planetary cave exploration’. In: The Inter-

national Symposium on Artificial Intelligence, Robotics and Automation in Space

(i-SAIRAS). 2020 (cit. on p. 31).

[143] Muhammad Fadhil Ginting et al. ‘CHORD: Distributed data-sharing via hybrid

ROS 1 and 2 for multi-robot exploration of large-scale complex environments’.

BIBLIOGRAPHY 131

https://doi.org/10.1145/3377458.3377467
https://doi.org/10.1145/3377458.3377467
https://doi.org/10.23919/icmu48249.2019.9006646
https://doi.org/10.23919/icmu48249.2019.9006646
https://doi.org/10.23919/icmu48249.2019.9006646
https://doi.org/10.1145/3004010.3004032
https://doi.org/10.1145/3004010.3004032
https://doi.org/10.1109/tase.2014.2357216
https://doi.org/10.1109/tase.2014.2357216
https://doi.org/10.1109/tase.2014.2357216

In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5064–5071 (cit. on

p. 31).

[144] Tiago Vaquero et al. ‘Energy-aware data routing for disruption tolerant networks

in planetary cave exploration’. In: (2019) (cit. on p. 31).

[145] Bruno Astuto A Nunes et al. ‘A survey of software-defined networking: Past,

present, and future of programmable networks’. In: IEEE Communications sur-

veys & tutorials 16.3 (2014), pp. 1617–1634 (cit. on p. 33).

[146] Nick McKeown et al. ‘OpenFlow: enabling innovation in campus networks’. In:

ACM SIGCOMM computer communication review 38.2 (2008), pp. 69–74 (cit.

on p. 33).

[147] Riccardo Trivisonno et al. ‘SDN-based 5G mobile networks: architecture, func-

tions, procedures and backward compatibility’. In: Transactions on Emerging

Telecommunications Technologies 26.1 (2015), pp. 82–92 (cit. on p. 33).

[148] Konstantinos Poularakis et al. ‘Bringing SDN to the mobile edge’. In: 2017 IEEE

SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-

puted, Scalable Computing & Communications, Cloud & Big Data Computing,

Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CB-

DCom/IOP/SCI). IEEE. 2017, pp. 1–6 (cit. on p. 33).

[149] Liang Zhao et al. ‘A novel cost optimization strategy for SDN-enabled UAV-

assisted vehicular computation offloading’. In: IEEE Transactions on Intelligent

Transportation Systems 22.6 (2020), pp. 3664–3674 (cit. on p. 33).

[150] Matteo Palieri et al. ‘Locus: A multi-sensor lidar-centric solution for high-precision

odometry and 3d mapping in real-time’. In: IEEE Robotics and Automation Let-

ters 6.2 (2020), pp. 421–428 (cit. on pp. 37, 65).

[151] Ali Agha. CoSTAR team website. 2020. url: https://costar.jpl.nasa.gov/

(cit. on p. 37).

[152] Jeffrey Scott Vitter. ‘Faster methods for random sampling’. In: Communications

of the ACM 27.7 (1984), pp. 703–718 (cit. on p. 41).

[153] Radu Bogdan Rusu and Steve Cousins. ‘3d is here: Point cloud library (pcl)’.

In: ICRA. IEEE. 2011, pp. 1–4 (cit. on pp. 41, 46).

BIBLIOGRAPHY 132

https://costar.jpl.nasa.gov/

[154] Angel Santamaria-navarro et al. ‘Towards Resilient Autonomous Navigation of

Drones’. In: International Symposium on Robotics Research. 2019 (cit. on pp. 42,

43, 63).

[155] A. Bouman et al. ‘Autonomous Spot: Long-range Autonomous Exploration of

Extreme Environments with Legged Locomotion’. In: IROS 2020 () (cit. on

pp. 43, 46).

[156] Seyed Fakoorian et al. ‘Maximum Correntropy Kalman Filter for Orientation Es-

timation With Application to LiDAR Inertial Odometry’. In: Dynamic Systems

and Control Conference. Vol. 84270. American Society of Mechanical Engineers.

2020, V001T05A008 (cit. on p. 45).

[157] Eric Nelson. Berkley Localization and Mapping. 2016. url: https://github.

com/erik-nelson/blam (cit. on p. 50).

[158] Shibo Zhao et al. ‘Super Odometry: IMU-centric LiDAR-Visual-Inertial Estim-

ator for Challenging Environments’. In: arXiv preprint arXiv:2104.14938 (2021)

(cit. on p. 50).

[159] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.

https://github.com/MichaelGrupp/evo. 2017 (cit. on p. 51).

[160] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. ‘Exploring Network

Structure, Dynamics, and Function using NetworkX’. In: Proceedings of the 7th

Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught and Jar-

rod Millman. Pasadena, CA USA, 2008, pp. 11 –15 (cit. on p. 80).

BIBLIOGRAPHY 133

https://github.com/erik-nelson/blam
https://github.com/erik-nelson/blam
https://github.com/MichaelGrupp/evo

	Introduction
	Multi-Robot Systems
	Applications
	Challenges
	DARPA Subterranean Challenge (SubT)
	Goal of the work
	Organization of the work

	Background and Related Work
	Localization
	Simultaneous Localization And Mapping (SLAM)
	Structure of a SLAM system
	Types of SLAM system
	Related Work

	Lidar Odometry
	Related Work

	Object Detection
	Related Work

	Distributed Computation
	Approaches
	Fields
	Related Work

	Networking
	Mobile Ad Hoc Network
	Related Work
	Software Defined Networking
	Related Work

	Contributions
	Gaps
	Contributions

	LOCUS
	System Description
	Point Cloud Preprocessor
	Scan Matching Unit
	Sensor integration module
	Scan-to-scan
	Scan-to-submap
	Notes on multi-threading

	Environment Adaptation: Flat Ground Assumption
	Adaptation for Different Platforms

	Field Experiments
	Ablation Study
	Evaluation Against the State-of-the-Art
	Accuracy Evaluation
	Robustness Evaluation
	Efficiency Evaluation

	Real-Time Operation Across Different Platforms
	Hardware and Tuning
	Performance

	Discussion

	Conclusions
	Ongoing Work
	Open Space Detector
	Map Sliding Window

	LAMP back-end

	Swarm Manager
	Entities
	Nodes
	Edges
	Messages

	Interactions
	Updating Manager's World Model
	Computation Offloading Request Generation
	Computation Offloading Request Handling
	Optimum Server Computation
	Optimum Route Computation
	Solution Generation

	Computation Offloading
	Forwarding Mechanism
	Server Side Processing
	Sending back the result
	Network Delay Simulation
	Backup Manager

	Integrated System Performance
	Dataset Description
	LOCUS Offloading Results
	Autonomy Time

	YOLO Offloading Results
	Autonomy Time

	Conclusions and Future Work
	Conclusions
	Future Work

	Publications

