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Abstract: Liver segmentation is a crucial step in surgical planning from computed tomography
scans. The possibility to obtain a precise delineation of the liver boundaries with the exploitation of
automatic techniques can help the radiologists, reducing the annotation time and providing more
objective and repeatable results. Subsequent phases typically involve liver vessels’ segmentation
and liver segments’ classification. It is especially important to recognize different segments, since
each has its own vascularization, and so, hepatic segmentectomies can be performed during surgery,
avoiding the unnecessary removal of healthy liver parenchyma. In this work, we focused on the liver
segments’ classification task. We exploited a 2.5D Convolutional Neural Network (CNN), namely
V-Net, trained with the multi-class focal Dice loss. The idea of focal loss was originally thought as
the cross-entropy loss function, aiming at focusing on “hard” samples, avoiding the gradient being
overwhelmed by a large number of falsenegatives. In this paper, we introduce two novel focal Dice
formulations, one based on the concept of individual voxel’s probability and another related to the
Dice formulation for sets. By applying multi-class focal Dice loss to the aforementioned task, we were
able to obtain respectable results, with an average Dice coefficient among classes of 82.91%. Moreover,
the knowledge of anatomic segments’ configurations allowed the application of a set of rules during
the post-processing phase, slightly improving the final segmentation results, obtaining an average
Dice coefficient of 83.38%. The average accuracy was close to 99%. The best model turned out to be
the one with the focal Dice formulation based on sets. We conducted the Wilcoxon signed-rank test to
check if these results were statistically significant, confirming their relevance.

Keywords: liver segmentation; focal Dice loss; liver segments’ classification; convolutional neural
network; V-Net

1. Introduction

Computed Tomography (CT) is one of the most adopted imaging methodologies to
accomplish different medical tasks. If combined with intelligent systems based on artificial
intelligence, its range of applicability includes, but is not limited to, Computer-Aided
Diagnosis (CAD) systems and intelligent applications supporting surgical procedures [1,2].

Liver segmentation is a pivotal task in abdominal radiology, as it is essential for several
clinical tasks, including surgery, radiotherapy, and objective quantification [3]. In addition,
several pieces of clinical evidence over the last few decades have demonstrated the necessity
to go beyond the conception of the liver as a single object (from a morphological perspec-
tive), but rather to consider the liver as formed by functional segments [4]. Couinaud’s
classification [5] of liver segments is the most widely adopted system for this purpose, since
it is especially useful in surgery setups. The separation of these anatomical areas can be
exploited for tumor resections in Computer-Assisted Surgery (CAS) systems [6], allowing
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surgeons to focus on different segments. In this way, a surgeon can avoid removing healthy
liver parenchyma, by performing a segmentectomy, also reducing the risk of complications
for the patient [7].

However, different other tissues and organs, such as the kidney and spleen, are in
the abdominal area. Since the tissues in such an area are characterized by similar intensity
levels when acquired by CT or other imaging systems in general, their segmentation with
automatic methods is not a simple task. In fact, the segmentation of organs in the abdominal
area is mostly tackled by employing manual or semi-automatic approaches [8,9]. To do
this, there is a multitude of traditional image processing algorithms for biomedical image
segmentation, including thresholding algorithms, Region-Growing (RG) algorithms, level
sets, and graph cuts.

Deep Learning (DL) is an emerging paradigm that is changing the world of medical
imaging. DL consists of the application of hierarchical computational models that can
directly learn from data, creating representations with multiple levels of abstraction [10].
Thanks to the natural proneness of DL architectures to process grid-like data, such as images
or multi-dimensional signals, they are extensively investigated in image classification and
segmentation tasks; in fact, several works have already demonstrated their capabilities to
outperform the state-of-the-art in such tasks, making them valid systems to be applied also
in the medical domain [1,11–14].

DL architectures may be employed for both classification and segmentation tasks, i.e.,
the delineation of areas or Regions of Interest (ROIs) within images or volumes. In this
regard, it is necessary to distinguish between semantic segmentation [15,16] and object
detection [17,18] approaches implemented using DL methodologies. The first aims at
producing a dense, pixel- (or voxel-) level segmentation mask, whereas the latter aims
at individuating the bounding boxes of the regions of interest [19,20]. In many contexts,
precise segmentation masks are more useful than bounding boxes, especially in the medical
domain, but they require more human effort for labeling the ground-truth dataset required
to train and validate the models (since a domain expert must manually produce precise
voxel-level masks to create the dataset themselves).

In this work, we performed the segmentation of the liver segments. This task may be
performed directly or by performing a prior segmentation of the liver parenchyma. Al-
though literature exists for both approaches, our experiments revealed that liver parenchyma
segmentation is not needed to train a multi-class classification DL model on liver segments,
since applying liver masks to the volumes reduces the context. Nonetheless, other authors
found this step useful [21].

1.1. Deep Learning in Radiology

Radiology involves the exploitation of 3D images that result from non-invasive tech-
niques such as Magnetic Resonance Imaging (MRI) or CT, allowing studying the anatomical
structures inside the body. When there is the need to delineate the boundary of organs or
lesions, e.g., in CAS or radiomics [22] workflows, the manual delineation of boundaries
performed by trained radiologists is considered the gold standard. Unfortunately, this
operation is tedious and can lead to errors, since it involves the annotation of a volume
composed of many slices. Lastly, inter- and intra-observer variability are well-known
problems in the medical imaging landscape, further showing the limitations of the classical
workflow [23].

In this context, the design and implementation of automatic systems, often based on DL
architectures, capable of performing organ and lesion segmentation are very appreciated,
since they can reduce the workload of radiologists and also increase the robustness of the
findings [24]. The application of artificial intelligence methodologies in the radiological
workflow is leading to a huge impact in the field, with a special regard for oncological
applications [25].
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Important radiological tasks that can be efficiently met by DL methodologies include
classification, the detection of diseases or lesions, the quantification of radiographic charac-
teristics, and image segmentation [11,14,26,27].

In this work, the possibility to automatically delineate the boundaries of liver segments
can be effectively exploited by radiologists and surgeons to improve the surgery workflow
with CASs for liver tumor resections.

The interested reader is referred to the works of Liu et al. [28] and Litjens et al. [29] for
a wider perspective on the architectures that can be exploited to solve clinical problems in
radiology with deep learning.

1.2. Liver Parenchyma Segmentation

Prencipe et al. developed an RG algorithm for liver and spleen segmentation [30]. The
crucial point of segmentation algorithms based on RG is the individuation of a suitable
criterion for growing the segmentation mask including only those pixels belonging to
the area of interest. In particular, the authors devised an algorithm that, starting from
an initial seed point, created a tridimensional segmentation mask adopting two utility
data structures, namely the Moving Average Seed Heat map (MASH) and the Area Union
Map (AUM), with the positive effect of avoiding the choice of the subsequent seeds from
unsuitable locations while propagating the mask.

There is a realm of other techniques proposed for liver segmentation. Contrast en-
hancement and cropping were used for pre-processing by Bevilacqua et al. [11]. Then, local
thresholding, the extraction of the largest connected component, and the adoption of opera-
tors from a mathematical morphology were applied to obtain the 2D segmentation. Finally,
the obtained mask was broadcast upward and downward to process the entire volume.

In [31], an automatic 3D segmentation approach was presented, where the seed was
chosen via the minimization of an objective function and the homogeneity criteria based
on the Euclidean distance of the texture features related to the voxels. The homogeneity
criteria can also depend on the difference between the currently segmented area and the
pixel intensity [32–34] or pixel gradient [35,36]. There exist also other approaches based on
the adoption of a suitable homogeneity criteria [37,38].

As useful pre-processing techniques, it is worth noting the adoption of the Non-
Sub-sampled Contourlet Transform (NSCT) to enhance the liver’s edges [39] and the
implementation of a contrast stretch algorithm and an atlas intensity distribution to create
voxel probability maps [40]. For the post-processing step, we note the adoption of an
entropy filter for finding the best structural element [41] or the adoption of the GrowCut
algorithm [42,43]. Other approaches that involve image processing techniques both for pre-
and post-processing can be found in [12,44].

1.3. Liver Segments’ Classification

There are some approaches proposed in the literature for liver segments’ classification.
Most of the published research tries to obtain the segments from an accurate modeling of
the liver vessels.

Oliveira et al. employed a geometric fit algorithm, based on the least-squares method,
to generate planes for separating the liver into its segments [45].

Yang et al. exploited a semi-automatic approach for calculating the segments [6]. The
user has to input the root points for the branches of the portal vein and the hepatic veins,
and then, a Nearest Neighbor Approximation (NNA) algorithm is implemented to assign
each liver voxel to a specific segment. The classification was very straightforward: the
voxel belonged to the segment whose branch was nearest to that voxel.

Among the approaches that aim to directly classify liver segments, it is worth noting
the work of Tian et al. [21], who offered the first publicly available dataset for liver segments’
classification. They realized an architecture based on U-Net [46], but with considerations
for the Global and Local Context (GLC), resulting in a model that they referred to as
GLC U-Net.
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Yan et al. collected a huge CT dataset, composed of 500 cases, to realize CAD sys-
tems targeted at the liver region [47]. The ComLiver datasets include labels for liver
parenchyma, vessels, and Couinaud segments. For the task of performing Couinaud
segmentation, the authors compared only 3D CNN models, namely Fully Convolutional
Networks (FCNs) [48], U-Net [46,49], U-Net++ [50], nnU-Net [51], Attention U-Net (AU-
Net) [52], and Parallel Reverse Attention Network (PraNet) [53].

In this work, we introduce two possible definitions of the Focal Dice Loss (FDL),
and we compare them with a definition already provided by Wang et al. [54]. One of
the proposed FDL definitions is similar to that of Wang et al., whereas the other one is
more adherent to the original formulation provided by Lin et al. [55], considering the
modulating factor on the single voxel and not on the whole Dice loss. In particular, we
trained a 2.5D CNN model, the V-Net architecture, originally proposed for 3D segmentation
by Milletari et al. [56], but in a multi-class classification fashion. We also implemented and
tested a rule-based post-processing to correct the segmentation errors.

2. Materials and Methods
2.1. Dataset

To train and validate our models, we used the Medical Segmentation Decathlon Task
08 (MSD 08 dataset [57]). This dataset is composed of 443 portal venous phase CT scans.
The pixel spacing in the x/y direction is in the range [0.57, 0.9], whereas the thickness
lies between [2.5, 5.0]. We considered liver segments’ annotations (n = 193) realized in a
studio by Lenovo [21]. We exploited 168 CT scans as the training set and 25 CT scans as the
validation set. For the selected training set, the frequencies of class values for each segment
are represented in Table 1. Some examples from the MSD 08 dataset with the annotations
of the Lenovo team are depicted in Figure 1. As pre-processing, images were clipped to
the Hounsfield Unit (HU) range [−150, 350] and then rescaled in the range [0, 1], as already
performed in [14].

Figure 1. Medical Segmentation Decathlon Task 08 [57], with annotations from Tian et al. [21].
Left: original slices; middle: slices with segments’ annotations; right: meshes’ reconstructions
of annotations.
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Table 1. Class distribution for the selected training set (n=168) from MSD 08 dataset.

Class Voxels Frequency fk (%) 1
fk

log( 1
fk
)

Background 2,561,653,684 95.35 1.05 0.0476

Segment I 5,653,635 0.21 475.17 6.1637

Segment II 15,076,888 0.56 178.18 5.1828

Segment III 8,858,869 0.33 303.25 5.7146

Segment IV 14,139,614 0.53 189.99 5.2470

Segment V 16,275,115 0.61 165.07 5.1063

Segment VI 15,679,458 0.58 171.34 5.1436

Segment VII 23,566,210 0.88 114.00 4.7362

Segment VIII 25,548,239 0.95 105.15 4.6554

2.2. Convolutional Neural Network

Encoder–decoder architectures (especially those that are U-shaped) have drawn much
attention in the biomedical semantic segmentation domain [28]. Important examples are
the U-Net model for 2D image segmentation [46], its 3D counterpart [49], and the V-Net
model [56]. Compared to U-Net, V-Net employs down-convolutions instead of max pooling
and residual connections inside the encoding or decoding path. Applications of 3D V-Net
include prostate segmentation [56] and vertebrae segmentation [58]. A 2.5D variant of
V-Net has been successfully applied for liver and vessels’ segmentation [14,59] and lung
parenchyma, together with COVID-19 lesions’ segmentation [22].

In this work, we implemented the 2.5D architecture, but in a multi-class classification
fashion, with a different loss function (focal Dice loss). The scheme of the employed
architecture is depicted in Figure 2.

Figure 2. V-Net for multi-class segments’ classification.

For the liver segments’ classification task, we randomly sampled 2.5D, i.e., 2D multi-
channel, patches composed of 5 slices from volumes of the training set, as performed in
Altini et al. [14]. We trained the V-Net model for 1000 epochs, for each of the proposed loss
function configurations reported in Section 3. The learning rate started from 0.01 and was
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reduced by a factor of 10 every 166 epochs. The Adam optimizer [60], with a batch size of 4,
was used to carry out the training process.

2.2.1. Focal Loss

In order to ease the convergence process and to perform the desired optimization of
the task, the loss function has to be selected accurately. Lin et al. introduced the concept of
focal loss [55]. The main idea is that, for detectors (but we can extend this consideration
to semantic segmentation classifiers), a mechanism is needed to focus on hard samples
(i.e., samples difficult to classify), avoiding that the gradient is overwhelmed by the larger
number of falsenegatives. According to the convention introduced in [55], we can define
the Cross-Entropy (CE) loss as:

CE(p, y) =
{
− log(p) i f y = 1
−log(1− p) i f y = 0

(1)

where y ∈ {0, 1} is the binary ground-truth label and p ∈ [0, 1] is the probability estimated
from the model when y = 1. Lin et al. introduced pt for notational convenience:

pt =

{
p i f y = 1

1− p i f y = 0
(2)

so that we can rewrite CE(p, y) = CE(pt) = −log(pt). A weighted version of the cross-
entropy can be introduced. For instance, let α be a weighting factor in the range [0, 1], so
that α is adopted for class y = 1 and 1− α is exploited for class y = 0. Typically, α may be
chosen by the inverse class frequency [55]. Introducing αt, analogously to pt, it is possible
to define the α-balanced CE loss as:

CE(pt) = −αt log(pt) (3)

In order to redefine the cross-entropy loss, Lin et al. added a modulating factor
(1− pt)γ to the CE loss, where γ ≥ 0 can be found with cross-validation, and it is called
the focusing parameter.

Then, the CE Focal Loss (FL) is:

FL(pt) = −(1− pt)
γ log(pt) (4)

The authors noted that this formulation has two main properties:

1. The loss is unaffected when there is a misclassification with a small pt; meanwhile, if
pt is large (near 1), the loss for well-classified examples is reduced. This means that
easy examples are not penalized, if compared to “hard” examples;

2. The rate with which easy examples are down-weighted is governed by the focusing
parameter γ. For γ = 0, the FL corresponds to the standard CE, whereas for larger
values of γ, there is an increase in the modulating effect. Lin et al. found γ = 2 as the
best value in their experiments [55].

Furthermore, FL can be weighted, so that the α-balanced FL can be defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (5)

According to [55], this yields a slight improvement in accuracy, over the naive non-α-
balanced form.

2.2.2. Focal Dice Loss

After the introduction of the FL, Wang et al. proposed the Focal Dice Loss (FDL) and
effectively employed it for brain tumor segmentation [54].
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The Dice coefficient (DH) is usually defined for sets (let B be the binarized prediction
and G the ground-truth volume) as:

DH =
2 · |G ∩ B|
|G|+ |B| (6)

We define this as the “hard” Dice coefficient DH , in the sense that it is defined for
binary data only. Let us consider the estimated probability predicted volume P, composed
of N voxels. Each element pi ∈ P ranges in [0, 1], whereas each gi ∈ G belongs to {0, 1}.
Then, the “soft” Dice coefficient DS can be defined as:

DS =
2 ∑N

i=1 pigi + ε

∑N
i=1 pi + ∑N

i=1 gi + ε
(7)

where ε is a term for numerical stability, avoiding divisions by zero or by very small values.
In our experiments, we set ε = 10−5. The “hard” Dice coefficient DH is useful for assessing
the final results, whereas the “soft” formulation DS is needed during the optimization
process, where a differentiable function is compulsory.

Then, we can introduce a “soft” Dice coefficient loss DLS simply as:

DLS = 1− DS (8)

These definitions hold for the binary classification case, but they can be easily general-
ized for t = 1, . . . , k classes. For each value of t, we can compute the binary DLSt , so that
the weighted multi-Dice loss (MDLS) can be written as:

MDLS =
k

∑
t=1

ωtDLSt (9)

where ωt ≥ 0 is the weighting parameter for the class t and DLSt is the binary soft Dice
loss for class t. A common way to tune the ωt parameters is to exploit the logarithm of
the inverse class frequency, as reported in Table 1. Nonetheless, in our experiments, this
did not result in improvements, so we chose the version with all ωt = 1, with t = 1, . . . , k.
Starting from this definition, Wang et al. defined their FDL as:

FDLW =
k

∑
t=1

ωt(1− DSt

1
γ ) (10)

where DSt is the “soft” Dice coefficient for class t, and a factor 1
γ , with γ ≥ 1, is applied as

the exponent of DSt for each class. According to Wang et al., their FDL formulation has
three properties:

1. FDL is basically unaffected by pixels, which are misclassified to class t with a large
DSt . Conversely, FDL is significantly decreased when DSt is small;

2. The rate with which better-segmented classed are weighted lower is governed by the
parameter γ. For γ = 1, we have that FDL corresponds to MDLS. Increasing γ, the
network is forced to focus on classes with bad segmentation;

3. Since FDL is based on the definition of the Dice coefficient, it focuses on the relevant
metric for assessing brain tumor segmentation (the case studied in [54]).

In this paper, we defined two versions of the FDL. The first one is similar to the one
proposed by Wang et al.:

FDLA =
k

∑
t=1

ωt(1− DLSt)
γ (11)

with γ ≥ 1.



Appl. Sci. 2022, 12, 3247 8 of 16

The second one is based on the concept of the focal loss of Lin et al. [55]. First, we
define the “soft” Focal Dice Coefficient (FDC), which can be formulated as:

FDCSt =
2 ∑N

i=1 pγ
i gi + ε

∑N
i=1 pγ

i + ∑N
i=1 gi + ε

(12)

Then, we calculated the FDL as:

FDLB =
k

∑
t=1

ωt(1− FDCSt) =
k

∑
t=1

ωt(FDLt) (13)

We excluded class t associated with the background, and we divided the sum in
Equations (11) and (13) by k− 1. In our case, we note that the FDCSt numerator sums only
the terms that have a gi = 1. This means that we can have two possible categories of values
for pi:

• A high value of pi, associated with true positives;
• A low value of pi, associate to false negatives.

For misclassifications, our goal was to reduce the total value of FDCSt , penalizing the
pi values. Since pi values lie in the range [0, 1], we added a modulating factor γ ≥ 1. When
pi ≤ 0.5, we can see that the reduction of pi is greater than when pi ≥ 0.5. This means that a
voxel with a low pi value provides a minor contribution to the FDCSt after the modulation.
We can see how the γ value affects the pi values in Figure 3.

Figure 3. Left: values of FDLW as a function of the Dice coefficient varying γ. Center: values of
FDLA as a function of the Dice loss. Right: values of pi varying γ in the FDLB formulation.

2.3. Post-Processing

The post-processing consisted of two phases: in the first, we retained only the largest
connected component for each segment; in the second, we eliminated all segments’ incon-
sistencies, i.e., we avoided the presence, on the same axial slice, of inconsistent segments
(from an anatomical perspective). To introduce this concept, we realized the inconsistency
matrix reported in Table 2.

This table was inspired by the liver anatomy. Considering only slices on the axial
plane, we can divide the liver into three regions: (1) above the left branch of the portal vein,
(2) below the right branch of the portal vein, and (3) between the two branches. For each
region, as it is possible to see from Figure 4, the allowed segments are:

1. Segments II, IV, VII, and VIII;
2. Segments III, IV, V, and VI;
3. Segments III, IV, VII, and VIII.
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Table 2. Segments’ inconsistency table. If the presence of the pair of segments in the same axial slice
is possible, we inserted a “1” into the matrix, otherwise a “0”.

Segment I II III IV V VI VII VII

I 1 1 1 1 1 1 1 1

II 1 1 0 1 0 0 1 1

III 1 0 1 1 1 1 1 1

IV 1 1 1 1 1 1 1 1

V 1 0 1 1 1 1 0 0

VI 1 0 1 1 1 1 0 0

VII 1 1 0 1 0 0 1 1

VIII 1 1 0 1 0 0 1 1

Figure 4. Liver segments’ anatomy. Data generated by the Database Center for Life Science (DBCLS)
https://dbcls.rois.ac.jp/index-en.html, last accessed: 17 January 2022; data provided by BodyParts3D
https://lifesciencedb.jp/bp3d/?lng=en, last accessed: 17 January 2022 [61].

From these observations, we derived these substitution rules:

• Left Branch (LB): above the LB, all the voxels classified as Segment III are relabeled
as Segment II; below the LB, all the voxels classified as Segment II are relabeled as
Segment III;

• Right Branch (RB):

– Above the RB, all the voxels classified as Segment V are relabeled as Segment
VIII, and below the RB, Segment VIII labels are reassigned to Segment V;

– Above the RB, all the voxels classified as Segment VI are relabeled as Segment VII;
below the RB, all the voxels classified as Segment VII are relabeled as Segment VI.

In order to define and localize in the CT volume the two aforementioned branches,
i.e., the LB and RB, of the portal vein, we implemented a majority criterion based on
the classification of the voxels. The first slice where the sum of the counts of the voxels
belonging to Segments III, IV, V, and VI was less than the sum of the counts of the remaining
voxels in the first slice above the RB.

Similarly, the first slice where the sum of the counts of the voxels from Segments II, IV,
VII, and VIII was higher than the sum of the counts of the remaining voxels in the first slice
above the LB.

https://dbcls.rois.ac.jp/index-en.html
https://lifesciencedb.jp/bp3d/?lng=en


Appl. Sci. 2022, 12, 3247 10 of 16

3. Experimental Results

In order to assess the performances of the different classifiers obtained by varying
the FDL formulation and the associated modulation factor γ, we assessed the “hard” Dice
coefficient DHt for each class t, the average DHavg Dice coefficient across all classes, the
mean accuracy Aavg, and the confusion matrix, in order to see the relationships of the
errors from different segments. We compared the FDL presented by Wang et al. with the
ones presented in this paper. We considered five values for the modulation parameter:
γ ∈ {1, 1.25, 1.5, 1.75, 2}. The case γ = 1 is equivalent to using the Dice coefficient as defined
in Equation (7). For each experiment, we checked if the application of the post-processing
was beneficial or not.

Experimental results are reported in Tables 3–6, for models trained with FDLA, FDLB,
FDLW , and DL, respectively. Figure 5 shows the segmentation obtained for a single CT
scan, adopting FDLA with γ = 2.

Figure 5. (a) Prediction obtained from the 2.5D V-Net trained with our formulation of the focal
Dice loss. For these images, the model was trained with FDLA with γ = 2. (b) Corresponding
ground-truth.

Table 3. Results for the models trained with the FDLA formulation, as defined in Equation (11).
Comparisons for the different liver segments. PP stands for Post-Processing. DHt is the “hard” Dice
coefficient for class t. It is reported as a percentage. DHavg is the arithmetic mean of DHt . DHstd is the
standard deviation of DHt . The average accuracy is denoted as Aavg.

Models DH0 DH1 DH2 DH3 DH4 DH5 DH6 DH7 DH8 DHavg DHstd Aavg

γ = 1.25 99.84 79.27 83.35 79.02 74.43 72.96 77.68 82.80 78.31 80.85 7.88 98.77

γ = 1.25, PP 99.84 79.27 83.35 79.02 74.43 72.96 77.68 82.80 78.31 80.85 7.88 98.77

γ = 1.5 99.84 78.82 81.04 76.75 73.88 74.62 78.50 82.19 78.92 80.51 7.74 98.75

γ = 1.5, PP 99.82 79.30 81.68 77.18 73.13 74.06 79.20 82.80 79.03 80.69 7.84 98.76

γ = 1.75 99.86 82.09 82.81 80.60 74.61 73.37 77.83 84.41 80.53 81.79 7.71 98.85

γ = 1.75, PP 99.85 81.89 83.57 80.50 74.79 73.35 78.67 84.56 80.63 81.98 7.66 98.86

γ = 2 99.88 82.31 85.38 81.56 76.84 75.58 78.91 84.96 80.76 82.91 7.17 98.92

γ = 2, PP 99.86 83.09 86.03 82.68 77.00 75.53 79.04 85.90 81.32 83.38 7.17 98.94
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Table 4. Results for the models trained with the FDLB formulation, as defined in Equation (13).
Comparisons for the different liver segments. PP stands for Post-Processing. DHt is the “hard” Dice
coefficient for class t. It is reported as a percentage. DHavg is the arithmetic mean of DHt . DHstd is the
standard deviation of DHt . The average accuracy is denoted as Aavg.

Models DH0 DH1 DH2 DH3 DH4 DH5 DH6 DH7 DH8 DHavg DHstd Aavg

γ = 1.25 99.87 82.97 83.78 80.67 72.61 74.86 79.51 83.46 79.63 81.93 7.73 98.86

γ = 1.25, PP 99.86 83.31 83.47 79.47 72.23 74.94 79.81 83.49 79.68 81.81 7.80 98.86

γ = 1.5 99.86 81.84 83.35 81.31 74.11 74.96 77.36 81.80 78.44 81.45 7.62 98.80

γ = 1.5, PP 99.85 81.89 83.93 82.21 74.28 75.54 78.45 82.48 78.77 81.93 7.47 98.82

γ = 1.75 99.85 81.89 83.93 82.21 74.28 75.54 78.45 82.48 78.77 81.93 7.47 98.82

γ = 1.75, PP 99.80 78.61 84.64 84.29 74.69 73.99 77.83 82.92 80.02 81.86 7.75 98.78

γ = 2 99.82 81.38 83.58 81.05 73.56 74.98 77.73 83.93 79.72 81.75 7.65 98.78

γ = 2, PP 99.81 80.75 83.52 80.78 73.78 75.90 78.78 84.46 80.47 82.03 7.47 98.81

Table 5. Results for the models trained with the FDLW formulation, as defined in Equation (10).
Comparisons for the different liver segments. PP stands for Post-Processing. DHt is the “hard” Dice
coefficient for class t. It is reported as a percentage. DHavg is the arithmetic mean of DHt . DHstd is the
standard deviation of DHt . The average accuracy is denoted as Aavg.

Models DH0 DH1 DH2 DH3 DH4 DH5 DH6 DH7 DH8 DHavg DHstd Aavg

γ = 1.25 99.87 82.82 85.71 82.54 76.58 75.58 78.79 84.59 80.22 82.97 7.21 98.91

γ = 1.25, PP 99.87 83.03 86.18 82.89 76.73 74.83 79.01 84.61 79.81 82.99 7.33 98.91

γ = 1.5 99.85 80.49 83.84 80.10 74.14 75.43 78.04 82.75 78.65 81.48 7.57 98.79

γ = 1.5, PP 99.84 80.51 84.97 81.47 74.29 76.13 79.52 83.61 79.07 82.16 7.42 98.83

γ = 1.75 99.80 79.49 82.80 76.39 73.04 73.95 77.81 82.84 78.73 80.54 7.98 98.73

γ = 1.75, PP 99.79 79.29 82.67 76.00 73.20 74.69 78.44 83.39 79.06 80.73 7.90 98.74

γ = 2 99.79 78.92 83.57 73.08 73.35 74.76 77.80 82.45 79.74 80.38 8.18 98.73

γ = 2, PP 99.78 79.24 83.48 71.98 73.28 74.50 78.64 82.92 79.53 80.37 8.31 98.73

Table 6. Results for the models trained with the Dice loss, which corresponds to the case of γ = 1
for all the previously defined focal Dice losses. Comparisons for the different liver segments. PP
stands for Post-Processing. DHt is the “hard” Dice coefficient for class t. It is reported as a percentage.
DHavg is the arithmetic mean of DHt . DHstd is the standard deviation of DHt . The average accuracy is
denoted as Aavg.

Models DH0 DH1 DH2 DH3 DH4 DH5 DH6 DH7 DH8 DHavg DHstd Aavg

γ = 1 99.86 80.64 83.88 82.22 74.49 75.05 77.59 83.66 79.5 81.88 7.56 98.82

γ = 1, PP 99.86 80.75 84.13 83.20 74.68 75.65 77.81 83.66 79.61 82.15 7.47 98.84

In the case of FDLW , the best model was the one with γ = 1.25 after post-processing.
A possible justification is that larger values of γ result in flattening too much the loss of the
volumetric predictions, so that those having a good Dice coefficient are too penalized.

For the FDLs defined in this paper, the model trained FDLA achieved the best per-
formance also in the case γ = 2, after post-processing, while the one trained with FDLB

obtained the best performance in the configuration γ = 2.
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Concerning FDLB, in our experiments, we found that the model trained with γ > 2
could not generalize, and the FDLt for at least a class remained one (worst case) during the
training. A possible explanation could be similar to the one provided for the FDLW from
the paper of Wang et al. [54]. When you increase the value of γ, even the high values of pi
are penalized, as we can see from Figure 3.

We tested if FDLA was better than the other formulations. To do this, we performed
the Wilcoxon signed-rank test, obtaining that FLDA showed superior performances to
FDLB with pvalue = 0.003, to FDLW with pvalue = 0.034, and to DL with pvalue = 0.011.
Considering, as usual, the significance threshold αth = 0.05, the obtained results were
statistically significant.

We also report the normalized confusion matrices in Figure 6. Elements in the main
diagonal of the row-normalized and column-normalized confusion matrices are the preci-
sion(s) and recall(s) of the corresponding classes, respectively. From the confusion matrices,
we can see that the most frequent errors arose between (in all the list here, the notation
is predicted segment and ground-truth segment): Segment I and the background (this
could be due to the fact that the CNN classifies the vena cava as Segment I, instead of
background), Segment II and Segment III (this depends on the fact that the LB is predicted
in a lower position than the real one), Segment IV and Segment II (they are adjacent on the
axial plane), Segment VIII and Segment IV (they are adjacent on the axial plane), Segment
V and Segment VI (they are adjacent on the axial plane), and Segment VIII and Segment
VII (they are adjacent on the axial plane).

Figure 6. (Top) Row-normalized confusion matrices. (Bottom) Column-normalized confusion ma-
trices. Left: Confusion matrix for the model trained with FDLW . Center: Confusion matrix for the
model trained with FDLA. Right: Confusion matrix for the model trained with FDLB.

Existing approaches are compared in Table 7. We note that existing works did not
provide results (as DH) for each segment. Different papers, such as [6,45], only pro-
posed a qualitative assessment of the obtained results via expert radiologists, whereas
Tian et al. [21] and Yan et al. [47] only reported the aggregated Dice coefficientper case
across all classes.
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Table 7. Literature overview for liver segments’ classification. Quantitative results are not available
for [6,45], since they only provided visual assessment of the segments’ classification.

Paper Method Dataset Dice per Case

Tian et al. [21]

GLC U-Net

MSD 08, n = 193

92.80± 3.80

U-Net 83.86± 5.44

U-Net 2.5D 89.04± 4.30

U-Net 3D 88.93± 4.44

U-Net with convolutional LSTM 90.06± 4.01

Yan et al. [47]

FCN [48]

Local Dataset, n = 500

82.60± 4.29

U-Net [46] 83.80± 4.01

U-Net++ [50] 82.69± 4.57

nnU-Net [51] 81.70± 4.12

AU-Net [52] 82.31± 4.23

PraNet [53] 83.03± 4.28

Oliveira et al. [45] Geometric fit algorithm SLIVER07 [62], n = 20 N/A

Yang et al. [6] Nearest Neighbor Algorithm Local Dataset, n = 43 N/A

4. Conclusions and Future Works

In this paper, we proposed two novel focal Dice loss formulations for liver segments’
classification and compared them with the previous one presented in the literature. The
problem of correctly identifying liver segments is pivotal in surgical planning, since it
can allow more precise surgery, as performing segmentectomies. In fact, according to the
Couinaud model [5], hepatic vessels are the anatomic boundaries of the liver segments.
Therefore, in current hepatic surgery, the identification of the liver vessel tree can avoid the
unnecessary removal of healthy liver parenchyma, thus lowering the risk of complications
that can arise from larger resections [7]. Despite this, in the literature, many authors that
focused on liver segments’ classification methods usually only provided visual assessment
(as [6,45]), making it difficult to benchmark different algorithms for this task. Thanks to
the work of Tian et al. [21], a huge dataset composed of CT scans with liver segments’
annotation is now publicly available, easing the development and evaluation of algorithms
suited for the task. Our CNN-based approach allowed us to obtain reliable results, with the
best formulation, FDLA with γ = 2, obtaining an average Dice coefficient higher than 83%
and an average accuracy higher than 98%. The adoption of a rule-based post-processing,
which implements a mechanism for detecting and resolving inconsistencies across axial
slice images, allowed slightly improving the obtained results for different models. Given
that the difference between the models was exiguous, it may be necessary to exploit a
different model to assess a clearer difference between these loss functions.

A limitation of this work is the absence of an external validation dataset, which is
due to the facts that there is a lack of annotated datasets with liver segments and it is
very expensive to create a local one labeled by radiologists. Furthermore, with more GPU
memory available, more complex 3D architectures capable of handling a larger context can
be exploited, whereas in this work, we limited this to five slices at once.

As future work, we note that another possible way to approach this task consists of
determining regression planes using a 3D CNN. Even if there are classical approaches (as
Oliveira et al. [45]) devoted to the estimation of these cutting planes, there are actually no
DL-based approaches in this direction (Tian et al. [21] and Yan et al. [47], as us, developed
a semantic segmentation model), which can be more resilient to overfitting and to the
prediction of inconsistent segments’ classification.
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