
Bilal Derardja

Innovative Approaches for Mapping the 
Pressurized Irrigation Systems Performances 
Under Unsteady Flow Conditions

DICATECh 

Coordinator: Prof. Michele Mossa

2022Abstract
Nowadays, the management of pressurized irrigation networks requires plenty of 
information to provide an efficient and reliable service to farmers. An approach 
called MASSPRES is being developed as a collaboration between FAO and 
CIHEAM-Bari with the goal of developing a reliable modernization strategy and 
improving the performance of pressurized irrigation systems. Mapping the 
perturbation, which is represented by the unsteady state flow analysis, is one of 
the most significant steps of this approach. The perturbation in hydraulic networks 
for irrigation systems is often created when sudden changes in flow rates occur in 
the pipes. This is essentially due to the manipulation of hydrants (service outlets) 
according the operational scenarios called configurations.
During the perturbation occurrence, pressure waves propagate through the 
networks pipes that may lead to a signification pressure variation. This variation 
could expose the irrigation system’s components to a substantial danger that 
could cause significant damage. To model such a phenomenon, several 
computational algorithms have been developed. The majority of these models 
aimed to simulate the unsteady state conditions induced by the farmer’s behavior. 
The most recent ones are efficient enough to provide a good image of the 
perturbation occurrence through different indicators, however, one of the main 
draw backs of such model is the significantly high time and computational costs. 
In the present work, two different generations of models were developed. The first 
is a directly programmed model that was devaloped based on the method of 
characteristics and two indicators have been introduced: i) The hydrant risk 
indicator (HRI), which is defined as the ratio between the participation probability 
of hydrant no. x in the riskiest configurations and its total number of participations; 
and ii) the relative pressure exceedance (RPE), which provides the variation of the 
unsteady state pressure with respect to the nominal pressure. The two indicators 
could help managers better understand the network behavior with respect to the 
perturbation by defining the riskiest hydrants and the potentially affected pipes. 
Although, knowing the riskiest hydrants in the network is an important piece of 
information, managing ramified networks in real time will remain a difficult task to 
handle in real time. Thus, the need of developing a real time Decision Support 
System (RTDSS) that could process such information and guide the manager in 
real time is crucial.
For this aim, two thousand configurations (operational scenarios) were simulated 
using the directly programmed model from the first step and fed to train a new 
model based on deep learning with the objective of forecasting the maximum 
pressure occurred due to the perturbation at each section. The occurred pressure 
is represented as classes according to the case sensitivity and the required 
precision. Steps of 1, 2 and 3 bars were simulated. The model proved to be 
significantly time saving compared to previous approaches as the results are 
produced instantaneously with a forecasting accuracy of 85 %. Furthermore, using 
the confusion matrix, the error committed by the model is of one class lower or 
higher that may be considered tolerable according to the system sensitivity.
This approach was applied on a pressurized on-demand irrigation system located 
in south of Italy that consists of 19 hydrants and covers 57 hectares. Nonetheless, 
the deep learning-based model needs to be trained on each section. Thus, as a 
main step of the method of characteristics, the network was discretized into 1017 
sections of 3 meter each. Training the deep learning model for such number of 
sections is not practical and time consuming. For this reason, a code was 
developed using autoencoding combined with t-distributed stochastic neighbor 
embedding (t-SNE) algorithm for features extraction and their visualization 
respectively. It is principally to cluster the sections according to their behavior to 
the perturbation, thus, reduce the number of trainings of the previously mentioned 
model. Nine zones of similar behavior were determined by the present developed 
code and the deep learning model will be trained only on these zones representing 
all the sections.
The two last developed codes could be integrated for a decision support system 
(DSS) for modelling the perturbation in the on-demand pressurized irrigation 
networks that would add a significant contribution to provide practical 
recommendations for real-time decision-making processes. which was not 
possible using directly programmed software. In
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EXTENDED ABSTRACT (English) 

 

Nowadays, the management of pressurized irrigation networks requires plenty 

of information to provide an efficient and reliable service to farmers. An approach called 

MASSPRES is being developed as a collaboration between FAO and CIHEAM-Bari with 

the goal of developing a reliable modernization strategy and improving the performance 

of pressurized irrigation systems. Mapping the perturbation, which is represented by 

the unsteady state flow analysis, is one of the most significant steps of this approach. 

The perturbation in irrigation networks is often created when sudden changes in flow 

rates occur in the pipes. This is essentially due to the manipulation of hydrants (service 

outlets) according the operational scenarios called configurations.  

During the perturbation occurrence, pressure waves propagate through the 

networks pipes that may lead to a signification pressure variation. This variation could 

expose the irrigation system’s components to a substantial danger that could cause 

significant damage.  

To model such a phenomenon, several computational algorithms have been 

developed. The majority of these models aimed to simulate the unsteady state 

conditions induced by the farmer’s behavior. The most recent ones are efficient enough 

to provide a good image of the perturbation occurrence through different indicators, 

however, one of the main draw backs of such model is the significantly high time and 

computational costs. 

In the present work, two different generations of models were developed. The 

first is a directly programmed model that was devaloped based on the method of 

characteristics and two indicators have been introduced: i) The hydrant risk indicator 

(HRI), which is defined as the ratio between the participation probability of hydrant no. 
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x in the riskiest configurations and its total number of participations; and ii) the relative 

pressure exceedance (RPE), which provides the variation of the unsteady state 

pressure with respect to the nominal pressure. The two indicators could help managers 

better understand the network behavior with respect to the perturbation by defining the 

riskiest hydrants and the potentially affected pipes. 

Although, knowing the riskiest hydrants in the network is an important piece of 

information, managing ramified networks in real time will remain a difficult task to 

handle in real time. Thus, the need of developing a real time Decision Support System 

(RTDSS) that could process such information and guide the manager in real time is 

crucial. 

For this aim, two thousand configurations (operational scenarios) were 

simulated using the directly programmed model from the first step and fed to train a 

new model based on deep learning with the objective of forecasting the maximum 

pressure occurred due to the perturbation at each section. The occurred pressure is 

represented as classes according to the case sensitivity and the required precision. 

Steps of 1, 2 and 3 bars were simulated. The model proved to be significantly time 

saving compared to previous approaches as the results are produced instantaneously 

with a forecasting accuracy of 85 %. Furthermore, using the confusion matrix, the error 

committed by the model is of one class lower or higher that may be considered tolerable 

according to the system sensitivity. 

This approach was applied on a pressurized on-demand irrigation system 

located in south of Italy that consists of 19 hydrants and covers 57 hectares. 

Nonetheless, the deep learning-based model needs to be trained on each section. Thus, 

as a main step of the method of characteristics, the network was discretized into 1017 

sections of 3 meter each. Training the deep learning model for such number of sections 

is not practical and time consuming. For this reason, a code was developed using 

autoencoding combined with t-distributed stochastic neighbor embedding (t-SNE) 

algorithm for features extraction and their visualization respectively. It is principally to 

cluster the sections according to their behavior to the perturbation, thus, reduce the 
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number of trainings of the previously mentioned model. Nine zones of similar behavior 

were determined by the present developed code and the deep learning model will be 

trained only on these zones representing all the sections. 

The two last developed codes could be integrated for a decision support system 

(DSS) for modelling the perturbation in the on-demand pressurized irrigation networks 

that would add a significant contribution to provide practical recommendations for real-

time decision-making processes. which was not possible using directly programmed 

software. 

 

Keywords: pressurized irrigation systems; on-demand operation; perturbation; 

unsteady state flow; method of characteristics; deep neural networks; feature 

extraction. 
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EXTENDED ABSTRACT (Italian) 

 

Attualmente la gestione delle reti di irrigazione in pressione richiede operatori 

competenti e qualificati capaci di interpretare una larga mole di dati e informazioni per 

fornire un servizio efficiente e affidabile agli utenti. Un approccio tecnico scientifico, 

denominato MASSPRES, utile ad affrontare questa problematica è stato proposto, 

grazie a una collaborazione tra FAO e CIHEAM-Bari, con l'obiettivo di sviluppare una 

strategia di modernizzazione affidabile e migliorare le prestazioni dei sistemi irrigui in 

pressione. La mappatura delle variazioni di pressione, che è definita dall'analisi del moto 

vario che si osserva nelle reti irrigue in pressione, è uno dei modelli più significativi tra 

tutti quelli proposti. La perturbazione nelle reti di irrigazione si genera per effetto di 

improvvise variazioni della portata trasportata nelle condotte; evenienza dovuta per lo 

più alla movimentazione degli idranti che si osserva in ragione delle esigenze idriche 

delle colture e/o delle consuetudini (comportamenti abituali) degli agricoltori (scenari 

di esercizio o configurazioni). 

Quando si genera la perturbazione, attraverso le tubazioni della rete si 

propagano onde di pressione che possono portare ad una sua variazione significativa, 

il che espone l’infrastruttura a rischio perché detta variazione potrebbe causare danni 

significativi alle condotte che compongono la rete irrigua. 

Per modellare tale fenomeno, nel tempo, sono stati sviluppati diversi algoritmi 

di calcolo, la maggior parte dei quali tendeva a simulare il fenomeno fisico osservato 

come indotto dalle variazioni di esercizio dell’infrastruttura con significativo onere 

computazionale. Più di recente, sono stati esplorati anche approcci diversi, come quelli 

che fanno uso di indicatori sintetici, che però hanno ancora il loro limite nel tempo di 

elaborazione e quindi negli elevati costi computazionali. 

In questa attività di ricerca dottorale sono state sviluppate due diverse 

generazioni di modelli. Il primo è un modello “direttamente programmato” che è stato 
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sviluppato sulla base del metodo delle curve caratteristiche. Il concetto di 

programmazione diretta si basa sull'esecuzione di istruzioni precedentemente 

programmate e su un insieme di equazioni matematiche che seguono scenari probabili 

stabiliti.  

Allo scopo sono stati definiti due indicatori: i) l'indicatore di rischio dell'idrante 

(Hydrant Risk Indicator, HRI), che rappresenta il rapporto tra la probabilità che l’idrante 

ennesimo sia parte attiva negli scenari di esercizio a maggior rischio di fallanza a causa 

dell’insorgenza di fenomeni di moto vario e il numero totale di volte in cui è parte attiva 

in una configurazione; e ii) il superamento di pressione relativa (Relative Pressure 

Exceedance, RPE), che fornisce la variazione della pressione durante l'occorrenza del 

moto vario rispetto al valore di ì pressione nominale della tubazione coinvolta. Essi 

possono aiutare i gestori a comprendere meglio il comportamento della rete rispetto 

alla perturbazione che può essere generata individuando gli idranti che possono indurre 

le perturbazioni più gravose e le tubazioni a maggiore rischio potenziale. 

Sebbene conoscere gli idranti più rischiosi della rete sia un'informazione 

importante, la gestione di reti irrigue in tempo reale rimane tuttavia un compito difficile, 

per cui è emersa sin da subito la necessità di sviluppare un sistema di supporto alle 

decisioni (Real Time Decision Support System, RTDSS), in grado di elaborare in tempo 

reale tali informazioni e guidare le scelte gestionali di esercizio della rete. 

A tal fine sono state simulate duemila configurazioni (scenari di esercizio) 

utilizzando il modello programmato direttamente dal primo step, sì da alimentare e 

addestrare un nuovo modello basato sul deep learning al fine di effettuare una 

previsione affidabile del valore di pressione massima che può generarsi in ciascuna 

sezione per effetto del moto vario. Il nuovo modello introdotto si è rivelato 

particolarmente efficace in quanto molto più veloce nel generare l’informazione cercata 

rispetto a quanto richiesto con gli approcci precedenti (il dato è stato prodotto 

istantaneamente con una accuratezza dell’85%. 

Questo approccio è stato applicato a un reale sistema irriguo con esercizio a 

domanda situato nel sud dell'Italia; la rete si compone di 19 idranti distribuiti su una 

superficie di 57 ettari. Per tale rete, al fine di ridurre ulteriormente i tempi di elaborazione 
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con la tecnica dell’apprendimento profondo (deep learning), è stato sviluppato un altro 

modello che si avvale dell’autoencoding combinato con l'algoritmo t-SNE (t-distributed 

Stochastic Neighbor Embedding) per l'estrazione delle caratteristiche e la loro 

visualizzazione. Tale modello raggruppa le sezioni (sono 1017 nel caso in studio) in 

ragione del comportamento rispetto alla perturbazione, riducendo così il numero di 

addestramenti. In tal modo il codice di calcolo sviluppato ha individuato nove zone di 

comportamento analogo, e, conseguentemente, il modello di deep learning è stato 

addestrato solo su queste. Questi due modelli possono essere integrati per un sistema 

di supporto alle decisioni (DSS) utile a simulare il comportamento in moto vario nelle 

reti irrigue alla domanda e soprattutto consentirebbe di poter fornire, in tempo reale, 

informazioni indispensabili per operare scelte gestionali consapevoli e in sicurezza. 

 

Parole chiave: reti di irrigazione in pressione; reti con esercizio a domanda;  

perturbazione; moto vario; metodo delle curve caratteristiche; reti neurali profonde; 

estrazione delle caratteristiche. 
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

1.1 Background 

The rising population and living standards are increasing the demand for 

agricultural goods, putting strains on water supplies and further on water-use decision-

making mechanisms in irrigation systems to the test (Fernández García, et al., 2020). 

Modernization of irrigation networks has implied the replacement of previous open 

channel networks by pressurized ones. This change allows the implementation of 

pressurized irrigation systems (drip and sprinkler) which guarantee better services to 

the users and a higher distribution efficiency in comparison with the previous systems 

(Lamaddalena & Sagardoy, 2000). The optimum design and management of 

pressurized water distribution networks for irrigation have had the attention of the 

researchers, managers and decision-making agents (Fouial, et al., 2020; Rodríguez 

Díaz, et al., 2020).  

Operating on-demand, systems are designed to deliver water at the flow rates 

and pressures required by on-farm irrigation systems, considering the time, duration, 

and frequency as defined by the farmers (Calejo, et al., 2008). In on-demand irrigation 

systems, a group of hydrants operating at the same time is known as a configuration. 

Changing from a configuration to another is the main origin of perturbation in such 

systems (Lamaddalena, et al., 2018). 

Many authors (Clemmens, 2006; Playán & Mateos, 2006) have emphasized 

that improving the performance of existing irrigation schemes is a critical topic to 

decrease excessive water use and enhance system efficiency. To build up a reliable 

modernization strategy and improve the performance of the irrigation systems, a 

methodology named MASSCOTE (mapping system and services for canal operation 

techniques) has been developed by Food and Agriculture Organization (FAO) (Renault, 

et al., 2007). Aimed at a similar purpose for pressurized irrigation networks, a new 
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approach called MASSPRES (mapping system and services for pressurized irrigation 

networks) is being developed as a collaboration between FAO and CIHEAM-Bari (Centre 

International de Hautes Etudes Agronomiques Méditerranéennes-Bari). One of the most 

important aspects in the new approach is mapping the perturbation. 

Unsteady state flow analysis is one of the most challenging flow problems both 

in the design and operation phases of water pipeline systems. Its control is essential to 

guarantee a safe functioning of the pressurized networks (Abuiziah, et al., 2013). The 

relationship between the irrigation network behavior and the origin of the perturbation 

is governed by differential equations. However, the correlation between the response 

and the factors affecting the perturbation is complex. Nevertheless, many studies have 

developed models based on different numerical methods. Among the others, (Triki, 

2018) conducted research for developing a model to study mainly two scenarios, 

water-hammer up- and down-surge events. A 1-D unconventional water-hammer 

model inserting the Vitkovsky and the Kelvin-Voigt formulations for describing the flow 

behavior and solved by the method of characteristics (MOC). Another study was 

elaborated to investigate the effects of pump’s moment of inertia on pipeline water 

hammer control using the MOC (Wan, et al., 2019). 

Perturbation in pressurized irrigation systems is the unsteady state conditions, 

in which large pressure waves may occur in the system and could result a failure in the 

pump or one of its components, pipe ruptures or in the best scenario system’s fatigue. 

Most of these networks are on-demand irrigation systems in which farmers have 

continuous access to water. This means that the flow in the network pipes may be 

significantly variable according to the farmers behavior. Thus, it is essential to simulate 

this variation by generating different operational scenarios changing the hydrants 

functioning modes (closed, opened, closing or opening) to ensure the safety and the 

good functioning of the system (Boulos, et al., 2005). The operational scenario was 

assigned as a configuration i.e., a configuration in this case is a set of various 

functioning modes for the different hydrants. Knowing that an irrigation hydrant is an 

outlet connecting the pressurized water distribution network to the on-farm irrigation 

systems. The perturbation is created by changing the functioning mode of some 
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hydrants representing the behavior of farmers. The four possible functioning modes of 

a hydrant are, remaining closed, remaining opened, in the closing and opening process. 

Codes for simulating the perturbation in pressurized irrigation systems have 

come through two generations. The first includes directly programmed software using 

different available numerical methods such as the method of characteristics (MOC). 

The direct programming concept is based on the execution of previously programmed 

instructions and a set of mathematical equations that follow established probable 

scenarios. This was used and explained by (Lamaddalena, et al., 2018) and (Derardja, 

et al., 2019), in which some indicators were introduced. Different numerical methods 

including the MOC are explained in detail in numerous text books such as (Záruba, 

1993; Sharp & Sharp, 1995). 

Based on the latter mentioned method, a friendly user software was developed 

and new indicators have been introduced to represent the behavior of the pressurized 

irrigation networks to the perturbation propagated through the network pipes, knowing 

that different boundary conditions were considered. The hydrant risk indicator (HRI), 

that describes the degree of risk of each hydrant on the system by causing pressure 

waves propagating through the system pipes, and the relative pressure exceedance 

(RPE), that represents the variation of the pressure in the system with respect to the 

pipe nominal pressure. The latter is interpreted as a warning signal that a pipe in the 

system may collapse. This model is used as well as big data generator. This study was 

applied on a pressurized on-demand irrigation system located in south of Italy that 

consists of 19 hydrants and covers 57 hectares. 

According to both the computer’s characteristics and the size of the network to 

be analyzed, the computational time may vary. Using an average characteristics 

commercial computer of nowadays, the software takes 15 to 16 hours to simulate 

2000 configurations for the irrigation network used in the present study. This software 

is considered to be time and computationally expensive which is expected according 

to the method followed (MOC) and the number of iterations to be handled. The output 

is a large dataset, due to a discretization through space (along the different network 
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pipes) and a second discretization through time (all over the simulation time) with a 

step that is defined by a specific equation taking into consideration the wave celerity 

and the minimum section length (Larock, et al., 1999). 

However, to establish a consistent modernization strategy for improving the 

irrigation services to users and mainly to integrate them in decision-making tools, new 

powerful and flexible models able to give results on real time, needs to be introduced 

(Perea, et al., 2019). 

The second generation of codes were introduced using deep neural networks 

(a subset of machine learning). The latest technique is addressed to the computation 

and time consumption issues of the first-generation software, consequently to be 

integrated in real-time decision-making systems. It is important to mention that, the 

directly programmed software was used as big data generators for training the model 

developed using deep neural networks. 

In problems with a large dataset, machine learning algorithms can provide a 

better alternative solution to the directly programmed software in term of speed and 

accuracy. Although, in an initial phase, machine learning models may require significant 

time for being properly trained (Géron, 2019), it could provide instantaneous results 

with acceptable accuracy in usage phase. As a part of artificial intelligence, it is worth 

to mention, that machine learning is the study of algorithms that automatically learn 

through an experience. The aim of automated learning is to make forecasting or making 

decisions without even being explicitly programmed to do. Practically, it turns out to 

help the machine following different approaches to develop its own algorithm through 

the analysis of the available data (Jin, 2020). For developing a more powerful and 

flexible model there is a need for a high-level features extraction from data. This is one 

of the main advantages of deep learning algorithms (Raschka & Mirjalili, 2017; 

Deisenroth, et al., 2020), thus, it was selected for the present research. Deep Learning 

is a machine learning technique that constructs artificial neural networks to reproduce 

the structure and function of the human brain. It is a tool for processing big datasets, 

as its performance improves while analyzing larger data (Brownlee, 2016). 
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Introducing a new method for assessing the behavior of pressurized irrigation 

systems in case of unsteady flow conditions based on deep learning shortens 

drastically the time to instantaneous analysis. This offers a great potential to be used 

as a real-time decision-making tool and providing the manager with information about 

the risks of perturbations in the network. 

The early mentioned studies were elaborated working on an irrigation network 

in south of Italy, that is of 3 km pipes length. The perturbation was simulated using a 

directly programmed software by generating 2000 configurations. The output was of 

1017 sections resulted from the space discretization during the calculation process 

using the MOC. Each section comprises the behavior of the network as pressure values 

to the occurred perturbation. In the case of the deep neural network based model must 

be trained on each section. This represents a huge challenge specially for larger 

irrigation network as the training process of the deep neural network will be very time 

consuming. To bypass this problem, a technique called autoencoding has been 

introduced in a next step. 

Autoencoders are artificial neural networks that learn to rebuild or copy the input 

to the output. For an initial sight the task is easy, but it gets its meaning and difficulty 

by adding some constraints according to the addressed issue. The neural network 

width is reduced until the so-called bottle neck, then increased to reach the initial 

number of neurons at the level of the output. The constraint in this case is the size 

limitation at the bottle neck layer. In other words, autoencoders are forced to learn 

dense representations of input data, often known as latent representations. As dense 

representations are of substantially lower dimension compared to the input data, 

autoencoders are useful for feature extraction and dimensionality reduction (Géron, 

2019). 

It is important to mention that an autoencoder is a stack of encoder and 

decoder. The encoder extracts the main features of the input until the latent 

representation. Subsequently, the decoder tries to rebuild the input starting from the 

extracted features (laten representation). In the present study an autoencoder was 
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trained and the encoder was saved extracting the main features representing the 

different sections of the irrigation network through. An algorithm known as t-SNE was 

built on the output of the encoder for visualizing data in two-dimensional map as 

clusters of similar behavior zones. The deep neural network for unsteady state pressure 

forecasting developed in a previous step will be trained for the resulted Ncluster number 

of clusters and not on each section of the network which will reduce considerably the 

training time. Thus, providing both designers and managers with adequate analysis on 

the hydraulic behavior of the system under unsteady flow conditions as well as the 

potential of integrating the developed models for a decision support system for real 

time decision making. 

1.2 Objectives and contributions 

Thus, the objective of the thesis is to introduce a new approach for mapping 

the perturbation in on-demand pressurized irrigation systems with the aim of building a 

reliable modernization strategy and to improve pressurized irrigation management.  To 

establish this strategy powerful and flexible tools need to be developed and to be 

integrated in decision support systems. For this purpose, two models were developed. 

The first is directly programmed based on the method of characteristics along with 

introducing two new indicators. The second was build using a deep neural network that 

was trained on big data generated by the first model. The deep neural network based 

model may provide the manager with information about the risks of perturbations in the 

network in real time. 
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CHAPTER 2. OVERVIEW OF THE NUMERICAL METHOD AND THE 

ARTIFICIAL NEURAL NETWORK USED FOR THE UNSTEADY STATE 

FLOW SIMULATION 

2.1 Introduction 

Pressurized irrigation systems working on demand were the object of 

considerable attention in the sixties and seventies and a considerable number of them 

were designed and implemented in the Mediterranean basin mainly but also in other 

parts of the world (Lamaddalena & Sagardoy, 2000). Fluid transient analysis is one of 

the most challenging and complicated flow problems in the design and the operation of 

water pipeline systems. Transient control has become an essential requirement for 

ensuring safe operation of water pipeline systems (Abuiziah, et al., 2013). 

Two main aspects are highlighted in this chapter. The first is the hydraulic 

principle of the unsteady state flow and the development of the equations ruling the 

phenomenon. Different boundary conditions were considered as well. This part is for 

the development of the first model based on the method of characteristics and the 

model is considered directly programmed.  

In the second part, historical trend of machine learning and concepts about 

artificial neural networks related to the present issue were covered. In this case the 

model is not anymore directly programmed following predefined instructions, but learns 

by itself the hidden patterns behind the data and build its own algorithm. 
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2.2 Unsteady state flow conditions hydraulic principles background 

2.2.1 The pressurised irrigation systems flow conditions 

A steady flow is one in which the flow parameters (velocity, pressure) may 

differ from point to another but do not change with time. If at any point in the fluid, the 

flow parameters change with time, the flow is described as unsteady. In practice, there 

is always slight variations in velocity and pressure, but if the average values are 

constant, the flow is considered steady. 

Due to different causes, the flow regime in a pressurized pipeline system can 

be suddenly changed and a series of pressure waves propagate along the pipes. Then 

it gradually depreciates because of energy losses due to friction forces. This transient 

event is a phenomenon called water hammer. 

2.2.2 Causes of transient flow 

The most common causes creating pressure waves propagating through the 

pressurized irrigation systems are (Bergant, et al., 2008): 

- Pump start up or shut down, especially stop due to power failure;  

- Valves operation; 

- Air pockets in pipelines, especially at pump start;  

- Changes in boundary pressures (e.g., losing overhead storage tank, 

adjustments in the water level at reservoirs, pressure changes in tanks, 

etc.); 

- Rapid changes in demand conditions (e.g., hydrant flushing); 

- Changes in transmission conditions (e.g., main break). 

2.2.3 Factors affecting the transient flow severity 

The magnitude of the pressure waves depends on many factors, mainly 

summarized in (Bergant, et al., 2008): 

- The initial flow velocity; 
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- Pipelines length (the longer the pipeline the stronger the hydraulic transients 

is);  

- The geometry of the network and the topography of the area to be irrigated; 

- The change of flow rate (The more rapidly the flow changes, the higher are 

the generated pressure waves amplitude); 

- The elastic properties of both water and pipes. 

2.2.4 Developing the unsteady state flow equations  

2.2.4.1 Established assumptions 

Possible mechanisms that may significantly affect pressure wave forms 

include unsteady friction, cavitation, a number of fluid–structure interaction effects, 

viscoelastic behavior of the pipe-wall material, leakages and blockages. These are 

usually not included in standard water hammer software packages and are often 

“hidden” in practical systems (Bergant, et al., 2008). 

The following assumptions have been considered to develop the software code: 

- Flow in the pipeline is considered to be one-dimensional with mean velocity 

and pressure values at each section (the velocity and the pressure; at a 

given instant time vary only in the direction of the flow and not across the 

cross-section); 

- Unsteady friction losses are approximated to be equal to the losses for the 

steady-state losses;  

- Pipes are full of water during all the transient flow and no water column 

separation phenomenon occurs; 

- Free gas content of the liquid is small such that the wave speed can be 

regarded as a constant; 

- The elasticity of the pipe wall and the liquid behave linearly; 

- Structure-induced pressure changes are small compared to the water 

hammer pressure wave in the liquid. 
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2.2.4.2 Euler equation  

The Euler equation is determined by applying Newton's second law to a small 

cylindrical control volume of fluid near the pipe centerline as illustrated in the Fig. 1. 

Disregard differences in fluid or flow parameters throughout the cross section, the 

resulting equation will apply to one-dimensional flow along the pipeline (Larock, et al., 

1999). 

 

Fig. 1 - A cylindrical fluid element illustrating the different applied forces 

Applying the Newton’s second law along the streamline direction results: 

∑ 𝐹𝑠 = 𝑚𝑎𝑠 = 𝑚
dV

dt

  (2.1) 

m: is the mass of the fluid in the cylindrical fluid element. 

 The term 
dV

dt
 is the total derivative of the fluid mean velocity. Projecting the 

different applied forces and representing the mass in terms of density and volume, Eq. 

2.1 results: 



11 

pdA - (𝑝 +
𝜕𝑝

𝜕𝑠
 ds)dA - dW sin𝜃 − 𝜏𝜋𝑑(ds) =

dW

𝑔
.
dV

dt

  (2.2) 

p: pressure head (𝑁/𝑚2
); 

A: the area of the pipe’s cross section (𝑚2
); 

s: distance along the pipe (m); 

g: gravitational acceleration (𝑚/𝑠2
); 

dW: unit weight (𝑁); 

θ: angle between the pipe and the horizontal plane; 

τ: wall shear stress (𝑁/𝑚2
). 

Writing the wall shear stress as a function of mean velocity V, pipe diameter D, 

fluid density ρ, and viscosity μ, and the equivalent sand-grain roughness r. 

Simplifications have been proceeded to eliminate the wall shear stress and write it with 

the form of frictional head loss. The new form of Euler equation of motion has been 

obtained 

𝑑𝑉

𝑑𝑡
+

1

𝜌

𝜕𝑝

𝜕𝑠
+ 𝑔

𝑑𝑧

𝑑𝑠
+

𝑓

2𝐷
𝑉|𝑉| = 0 (2.3) 

 

z: elevation of pipe centerline (𝑚); 

𝑓 : Darcy-Weisbach friction factor; 

D: pipe diameter (𝑚). 

2.2.4.3 Conservation of mass 

As illustrated in Fig. 2, the mass conservation principle is applied on a 

controlled volume of length ds. The result of this application is as following: 
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𝜌𝐴V - [𝜌𝐴𝑉 +
𝜕

𝜕𝑠
(𝜌𝐴𝑉)ds] =

𝜕

𝜕𝑠
(𝜌𝐴𝑑𝑠) (2.4) 

 

Fig. 2 - Applying the mass conservation principle on a control volume 

Expanding the parentheses of Eq. 2.4 and equations for wave speed through 

thin-walled pipes with the different possible cases were considered (detailed 

explanation is available in (Ghidaoui, 2004)). The final form of the mass conservation 

equation is: 

1

𝜌

𝑑𝑝

𝑑𝑡
+ 𝑎2

𝜕𝑉

𝜕𝑠
= 0 (2.5) 

 

(Wylie, et al., 1993) shows that the equation for wave speed can be 

conveniently expressed in the general form 

𝛼 = √

𝐸𝑣

𝜌𝑣

1 +
𝐸𝑣

𝐸𝑝

𝐷
𝑒

 (2.6) 

a: the wave speed (𝑚/s); 
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𝐸𝑝: Young’s elastic modulus (𝑁/𝑚2
); 

𝐸𝑣: liquid elastic modulus (𝑁/𝑚2
); 

e: thickness of pipe wall (𝑚𝑚); 

ρ: fluid density (kg/𝑚3
); 

D: pipe diameter (𝑚𝑚). 

Many numerical methods were developed to solve the set of partial differential 

equations (2.3 and 2.5), in which the method of characteristics. 

2.2.4.4 THE METHOD OF CHARACTERISTICS 

Throughout the history of water hammer analysis, several ingenious and 

effective ways for solving the Euler and mass conservation equations have been 

developed. Those approaches reflected the sophistication of numerical analytic skills 

at the time, as well as the practitioners' inventiveness. The advent of low-cost, high-

performance desktop computers in recent years has resulted in the development of 

numerically highly accurate solution techniques for these equations capable of 

including a wide range of boundary and starting conditions. The method of 

characteristics is now the most general and extensively used methodology for solving 

these problems (Afshar & Rohani, 2008; Ghidaoui, et al., 2005). It's no surprise that 

this strategy is particularly compatible with numerical solutions provided by a digital 

computer. As a result, the method of characteristics is considered in this study. 

It is worth mentioning that software like CEBELMAIL, SURGE, AFT Impulse or 

HAMMER use the method of characteristics as calculation engine. 

The characteristic method makes it possible to replace the two partial 

differential equations 2.3 and 2.5 with a set of ordinary differential equations 

(Wichowski, 2006). The development of the method starts by presuming that the pair 

of Eq. 2.3 and 2.5 may be replaced by some linear combination of themselves. Using 

a Lagrange multiplier 𝜆 as a constant linear scale factor. 
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𝜆(
𝑑𝑉

𝑑𝑡
+

1

𝜌

𝜕𝑝

𝜕𝑠
+ 𝑔

𝑑𝑧

ds

+
𝑓

2D

𝑉|𝑉|) + (𝑎2
𝜕𝑉

𝜕𝑠
+

1

𝜌

𝑑𝑝

𝑑𝑡
) = 0 (2.7) 

 

Splitting 
𝑑𝑉

𝑑𝑡
 and 

𝑑𝑝

𝑑𝑡
 into their component parts, and regrouping the terms, the 

equation gives: 

(𝜆
𝜕𝑉

𝜕𝑡
+ 𝜆𝑉

𝜕𝑉

𝜕𝑠
) +

𝜆

𝜌

𝜕𝑝

𝜕𝑠
+ 𝜆𝑔

𝑑𝑧

ds

+ 𝜆
𝑓

2D

𝑉|𝑉| + 𝑎2
𝜕𝑉

𝜕𝑠
+ (

1

𝜌

𝜕𝑝

𝜕𝑡

+
𝑉

𝜌

𝜕𝑝

𝑑𝑠
) = 0 

(2.8) 

[𝜆
𝜕𝑉

𝜕𝑡
+ (𝜆𝑉 + 𝑎2)

𝜕𝑉

𝜕𝑠
] + [

1

𝜌

𝜕𝑝

𝜕𝑡
+ (

𝜆

𝜌
+

𝑉

𝜌
)

𝜕𝑝

𝑑𝑠
] + 𝜆𝑔

𝑑𝑧

ds

+ 𝜆
𝑓

2D

𝑉|𝑉| = 0 

(2.9) 

Notice that,  

[𝜆
𝜕𝑉

𝑑𝑡
+ (𝜆𝑉 + 𝑎2)

𝜕𝑉

𝜕𝑠
] = 𝜆

𝑑𝑉

dt

   if   𝜆
𝑑𝑠

dt

= 𝜆𝑉 + 𝑎2
 (2.10) 

And  

[
1

𝜌

𝜕𝑝

𝜕𝑡
+ (

𝜆

𝜌
+

𝑉

𝜌
)

𝜕𝑝

𝑑𝑠
] =

1

𝜌

𝑑𝑝

dt

   if   
1

𝜌

𝑑𝑠

𝑑𝑡
=

𝜆

𝜌
+

𝑉

𝜌
 (2.11) 

Thus, we require for 
𝑑𝑠

𝑑𝑡
 that 

𝑑𝑠

𝑑𝑡
= 𝑉 +

𝑎2

𝜆
       and      

𝑑𝑠

𝑑𝑡
= 𝑉 + 𝜆 (2.12) 

Equating these two expressions to eliminate 
𝑑𝑠

𝑑𝑡
 and then solving for 𝜆 leads to: 
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𝜆 = ±𝑎 (2.13) 

With 𝜆 again equals the wave speed, we find that the equations for the 

characteristcs are: 

𝑑𝑠

𝑑𝑡
= 𝑉 + 𝑎     and     

𝑑𝑠

𝑑𝑡
= 𝑉 − 𝑎 (2.14) 

 

The resulting equations will be expressed in terms of piezometric head H(m) 

using 𝑝 = 𝜌𝑔(𝐻 − 𝑧). These equations are typically described in  different hydraulic 

textbooks discussing the water hammer phenomenon (Chaudhry, 1979; Mambretti, 

2013). 

It is important to mention that the slope of the characteristic curves on the 

space-time planes is a function of V(s , t). This is introduced in the numerical solution 

procedure as explained hereafter. 

Finally, the final set of equations is as following 

𝐶+ : 
𝑑𝑉

𝑑𝑡
+

𝑔

𝑎

𝑑𝐻

𝑑𝑡
−

𝑔

𝑎
𝑉

𝑑𝑧

𝑑𝑠
+

𝑓

2𝐷
𝑉|𝑉| = 0  only when  

𝑑𝑠

𝑑𝑡
=

𝑉 + 𝑎 

(2.15) 

𝐶− : 
𝑑𝑉

𝑑𝑡
−

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+

𝑔

𝑎
𝑉

𝑑𝑧

𝑑𝑠
+

𝑓

2𝐷
𝑉|𝑉| = 0 only when   

𝑑𝑠

𝑑𝑡
=

𝑉 − 𝑎 

(2.16) 

 

The equations  
𝑑𝑠

𝑑𝑡
= 𝑉 + 𝑎  and  

𝑑𝑠

𝑑𝑡
= 𝑉 − 𝑎 are the characteristics of Eq. 

2.15 and 2.16, respectively.  
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The integration of (
𝑑𝑠

𝑑𝑡
= 𝑉 + 𝑎) gives (𝑡 =

1

𝑉+𝑎
∗ 𝑠 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) that is 

represented by the curve 𝐶+
. Similarly, for (

𝑑𝑠

𝑑𝑡
= 𝑉 − 𝑎), (𝑡 = −

1

𝑎−𝑉
∗ 𝑠 +

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) is determined and represented by the curve 𝐶−
, Fig. 3. 

The characteristic curves can be approximated to straight lines over each single 

∆𝑡 interval. In fact, (i) ∆𝑡 may be made as small as one wishes, and (ii) usually a>>V, 

causing   
𝑑𝑠

𝑑𝑡
   to be nearly constant (Wylie, et al., 1993; Chaudhry, 2014). We seek to 

find the values of V and H at the point 𝑃𝑛. They are calculated basing on V and H at the 

points C, L and R of the previous time following the characteristic curves 𝐶+
 and 𝐶−

. 

V and H at 𝑃𝑛 become the known values for the subsequent time calculation, Fig. 3. 

For this situation, the finite difference approximations to Eqs. 2.15 and 2.16 

become 

𝐶+ : 
𝑉𝑃𝑛 − 𝑉𝐿

∆𝑡
+

𝑔

𝑎

𝐻𝑃𝑛 − 𝐻𝐿

∆𝑡
−

𝑔

𝑎
𝑉𝐿

𝑑𝑧

𝑑𝑠
+

𝑓

2𝐷
𝑉𝐿|𝑉𝐿| = 0 (2.17) 

𝐶− : 
𝑉𝑃𝑛 − 𝑉𝑅

∆𝑡
−

𝑔

𝑎

𝐻𝑃𝑛 − 𝐻𝑅

∆𝑡
+

𝑔

𝑎
𝑉𝑅

𝑑𝑧

𝑑𝑠
+

𝑓

2𝐷
𝑉𝑅|𝑉𝑅| = 0 (2.18) 
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Fig. 3 - Interpolation of H and V values on the ∆s-∆t grid 

The last two equations include six unknown terms 𝑉𝑃𝑛, 𝐻𝑃𝑛, 𝑉𝐿, 𝐻𝐿, 𝑉𝑅 and 

𝐻𝑅. In the earlier time, values of H and V are known only at the points C, Le and Ri. 

Using linear interpolation as shown in Fig. 3, 𝑉𝐿, 𝐻𝐿, 𝑉𝑅 and 𝐻𝑅  are to be expressed 

as function of 𝑉𝐶, 𝐻𝐶, 𝑉𝐿𝑒, 𝐻𝐿𝑒, 𝑉𝑅𝑖 and 𝐻𝑅𝑖.  

More in detail, along the 𝐶+
 characteristic we assume: 

∆𝑥

∆𝑠
=

𝑉𝐿 − 𝑉𝑐

𝑉𝐿𝑒 − 𝑉𝑐
=

𝐻𝐿 − 𝐻𝑐

𝐻𝐿𝑒 − 𝐻𝑐
 (2.19) 

 

solving the above equations for 𝑉𝐿 and 𝐻𝐿, we obtain  

𝑉𝐿 = 𝑉𝑐 + 𝑎
∆𝑡

∆𝑠
(𝑉𝐿𝑒 − 𝑉𝑐) (2.20) 

𝐻𝐿 = 𝐻𝑐 + 𝑎
∆𝑡

∆𝑠
(𝐻𝐿𝑒 − 𝐻𝑐) (2.21) 

 



18 

An analogous approach can be applied along the 𝐶−
 characteristic. 

𝑉𝑅 = 𝑉𝐶 + 𝑎
𝛥𝑡

𝛥𝑠
(𝑉

Ri
− 𝑉𝐶) (2.22) 

𝐻𝑅 = 𝐻𝐶 + 𝑎
𝛥𝑡

𝛥𝑠
(𝐻

Ri
− 𝐻𝐶) (2.23) 

 

This leads to solve Eqs. 2.17 and 2.18 simultaneously for 𝑉𝑃𝑛 and 𝐻𝑃𝑛 as 

following: 

𝑉𝑃𝑛 =
1

2
[(𝑉𝐿 + 𝑉𝑅) +

𝑔

𝑎
(𝐻𝐿 − 𝐻𝑅) +

𝑔

𝑎
∆𝑡(𝑉𝐿 − 𝑉𝑅)𝑠𝑖𝑛𝜃 −

𝑓∆𝑡

2𝐷
(𝑉𝐿|𝑉𝐿| + 𝑉𝑅|𝑉𝑅|) (2.24) 

𝐻𝑃𝑛 =
1

2
[
𝑎

𝑔
(𝑉𝐿 − 𝑉𝑅) + (𝐻𝐿 + 𝐻𝑅) + ∆𝑡(𝑉𝐿 + 𝑉𝑅)𝑠𝑖𝑛𝜃 −

𝑎

𝑔

𝑓∆𝑡

2𝐷
(𝑉𝐿|𝑉𝐿| − 𝑉𝑅|𝑉𝑅|) (2.25) 

 

Usually, the slope term (
𝑑𝑧

𝑑𝑠
= 𝑠𝑖𝑛 𝜃) is small and may be neglected (Chaudhry, 

2014).  

The complexity of irrigation systems is the non-uniformity of pipe materials and 

pipe sizes, which requires a pipe discretization where each elementary section has 

constant geometrical and physical properties. Each elementary section is divided into 

an integer number of elements 𝑁𝑆𝑖, with length ∆𝑠𝑖, whose value is calculated, to have 

the same ∆𝑡 in all the system (Lamaddalena & Pereira, 2007). 

A steady-state simulation is executed for each configuration of hydrants 

simultaneously operating. The obtained results (H and V) will constitute the initial 

conditions for running the transient simulation. The computer code calculates the water 

hammer process until the simulation time reaches a predefined observation time 
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(𝑇𝑚𝑎𝑥), generally assumed large enough to reach again the new steady-state flow 

conditions. 

2.2.4.5 Boundary conditions equations  

The boundary conditions at each end of the pipes describe externally imposed 

conditions on V and H. The application of the differential equations assumes the 

boundary conditions described hereafter. The variables V and H are indexed with 𝑃𝑖 

corresponding to the points, one on each side of the boundary section, which are nearly 

superposed as it is shown in Fig. 4. For all the other parameters, only the number of 

the pipes is used as an index to prevent any complication in naming. In both cases of 

upstream and downstream end boundaries of the systems, only one point exists 

following 𝐶−
 and 𝐶+

, respectively. 

2.2.4.5.1 At the reservoir level (upstream end of the network) 

If a reservoir with constant pressure head 𝐻0 is located upstream the network, 

then:  

𝐻𝑃1
= 𝐻0 (2.26) 

By substitution into Eq. 2.18, 𝑉𝑃1
 is obtained.  

𝑉𝑃1
= 𝑉2 +

𝑔

𝑎
(𝐻0 − 𝐻2) −

𝑓𝛥𝑡

2𝐷
𝑉2|𝑉2| (2.27) 

In which 𝑉2 and 𝐻2 are the mean velocity and piezometric head at the Δ𝑠 

downstream the reservoir and Δ𝑡 earlier time. 

2.2.4.5.2 At valves level 

Being located at the downstream end of the pipes, the valve closure is assumed 

to induce a linear flow velocity variation at the cross-section according to the following 

equation: 
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𝑉𝑃1
= 𝑉0 ∗ (1 −

𝑡

𝑇𝑐
) (2.28) 

where 𝑉0 (𝑚/𝑠) is the initial flow velocity and 𝑇𝑐 (s) is the valve closure. 

𝐻𝑃1
= 𝐻2 −

𝑎

𝑔
(𝑉𝑃1

− 𝐻2) −
𝑎

𝑔

𝑓𝛥𝑡

2𝐷
𝑉2|𝑉2| (2.29) 

In which 𝑉2 and 𝐻2 are the mean velocity and piezometric head at the Δ𝑠 

upstream the valve and Δ𝑡 earlier time. 

For any value of 𝑉𝑃𝑁+1
, including zero. 

2.2.4.5.3 Internal boundary conditions 

Junctions with two and three pipes are considered: 

- Two-pipe junction: 

A two-pipe junction is shown in Fig. 2 (a).  

 

   

Fig. 4 - Boundary conditions at a typical series pipe junction 
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In the case of no external demand, the values of the four unknowns can be 

found by solving the set of equations below: 

• following 𝐶+
: 

𝑉𝑃1
= (𝑉𝐿1

+
𝑔

𝑎1
𝐻𝐿1

−
𝑓1∆𝑡

2𝐷1
𝑉𝐿1

|𝑉𝐿1
|) − (

𝑔

𝑎1
)𝐻𝑃1

 (2.30) 

• following 𝐶−
: 

𝑉𝑃2
= (𝑉𝑅2

−
𝑔

𝑎2
𝐻𝑅2

−
𝑓2∆𝑡

2𝐷2
𝑉𝑅2

|𝑉𝑅2
|) + (

𝑔

𝑎2
)𝐻𝑃2

 (2.31) 

• the conservation of mass equation: 

𝑉𝑃1
𝐴1 = 𝑉𝑃2

𝐴2 (2.32) 

• the energy equation at the points 𝑃1 and 𝑃2, neglecting the difference 

in velocity heads and any local losses: 

𝐻𝑃1
= 𝐻𝑃2

 (2.33) 

Solving the above system of equations, the head value H at the junction can be 

calculated as follows: 

𝐻𝑃1
= 𝐻𝑃2

=
𝐶3𝐴1 − 𝐶1𝐴2

𝐶2𝐴2 + 𝐶4𝐴1
 (2.34) 

𝐶1, 𝐶2, 𝐶3 and 𝐶4 are function of the known values obtained from the earlier 

time. By means of back-substitution, also the flow velocity can be found. 

In the case of a series of two pipes with an external constant demand 𝑄𝑑𝑒𝑚 

(m3/s) (that is delivered by one hydrant), a similar system of equations can be used, 

modifying only Eq. 2.32 as follows: 

𝑉𝑃1
𝐴1 = 𝑉𝑃2

𝐴2 + 𝑄𝑑𝑒𝑚 (2.35) 
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that makes Eq. 2.34 to become:  

𝐻𝑃1
= 𝐻𝑃2

=
𝐶3𝐴1 − 𝐶1𝐴2 − 𝑄𝑑𝑒𝑚

𝐶2𝐴2 + 𝐶4𝐴1
 (2.36) 

- Three- pipe junction 

A three-pipe junction is shown in Fig. 2 (b). 

In the case of a pipe junction with one inflow and two outflows, the following 

equations are used to find the six unknowns: 

Pipe 1, 𝐶+
:                         𝑉𝑃1

= 𝐶1 − 𝐶2𝐻𝑃1
 (2.37) 

Pipe 2, 𝐶−
:                         𝑉𝑃2

= 𝐶3 + 𝐶4𝐻𝑃2
 (2.38) 

Pipe 3, 𝐶−
:                         𝑉𝑃3

= 𝐶5 + 𝐶6𝐻𝑃3
 (2.39) 

Conservation of mass:               𝑉𝑃1
𝐴1 = 𝑉𝑃2

𝐴2 + 𝑉𝑃3
𝐴3 (2.40) 

Energy balance, neglecting local losses:  𝐻𝑃1
= 𝐻𝑃2

= 𝐻𝑃3
 (2.41) 

Solving the previous set of equations leads to 

𝐻𝑃1
= 𝐻𝑃2

= 𝐻𝑃3
=

𝐶1𝐴1 − 𝐶3𝐴2 − 𝐶5𝐴3

𝐶2𝐴1 + 𝐶4𝐴2 + 𝐶6𝐴3
 (2.42) 

In the case of a three-pipe junction with an outlet, in the previous set of 

equations, only the Eq. 2.40 has to be modified as follows: 

𝑉𝑃1
𝐴1 = 𝑉𝑃2

𝐴2 + 𝑉𝑃3
𝐴3 + 𝑄𝑑𝑒𝑚 (2.43) 

while the Eq. 2.42 becomes: 
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𝐻𝑃1
= 𝐻𝑃2

= 𝐻𝑃3
=

𝐶1𝐴1 − 𝐶3𝐴2 − 𝐶5𝐴3 − 𝑄𝑑𝑒𝑚

𝐶2𝐴1 + 𝐶4𝐴2 + 𝐶6𝐴3
 (2.44) 

 

2.3 Artificial neural networks background 

2.3.1 Introduction to machine learning 

As a part of artificial intelligence, it is worth to mention that machine learning 

(ML) is the study of algorithms that automatically learn through an experience. As 

defined by a computer scientist “A computer program is said to learn from experience 

E with respect to some task T and some performance measure P, if its performance on 

T, as measured by P, improves with experience E.” (Mitchell, 1997). The experience 

can be gotten from an available data known as "training data" in supervised learning or 

as feedback during the learning process like in the case of reinforcement learning. The 

aim of automated learning is to make predictions or decisions without even being 

explicitly programmed to do. Practically, it turns out to help the machine following 

different approaches to develop its own algorithm through the analysis of the available 

data (Jin, 2020).  

According to the criteria taken into consideration, many approaches of machine 

learning are available. If we consider feedback as a criterion for division, mainly we get 

three categories. Supervised, unsupervised and reinforcement learning (Reddy, et al., 

2018).  

2.3.2 Supervised and unsupervised Learning Algorithms  

Supervised learning algorithms are algorithms that learn from given input and 

the associated output to develop a way to produce more correct predictions for new 

(unseen) data. This prediction should be with the minimum possible error. Supervised 

learning was used to develop the model for pressure classes forecasting. 
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In the other hand, unsupervised learning algorithms are those that deal only 

with input and there is no expected output. There is no objective test for distinguishing 

whether a value is a feature or a target provided by a supervisor. The great example is 

the one of clustering data into groups having similar behaviour that was used for the 

model based on autoencoding. 

2.3.3 Deep neural networks 

Artificial Neural Networks (ANN) are a subfield of machine learning. It is a 

computational representation of the human brain made up of a series of layers of 

artificial neurons as shown in Fig. 5. For a closer idea, it is a mathematical function 

created by combining multiple smaller functions. The core of deep learning is the 

availability of powerful computers and large data to train deep neural networks. For this 

reason, deep learning models have grown is size over time with the main advantage of 

learning more complex information. With the term deep, we mean the number of layers 

is higher than the early used neural networks. Fig. 6 illustrates the comparison between 

older learning algorithms and deep learning performance with respect of data amount. 

It is important to consider the architecture determination that refers to the 

structure of the neural network. it consists of the number layers, the number of neurons 

for each layer and how the layers are connected to each other. These architectural 

considerations are known as the depth and the width of the layers, respectively. The 

best architecture selection may be reached via experimentation oriented by the 

performance of the model on the validation set. 

The data is fed to the neural network through the input layer and being 

processes along the hidden layers. The output of the model is presented at the level of 

the so-called output layer. 
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Fig. 5 - Multilayer perceptron neural network 

 

Fig. 6 - Performance of the two techniques with the amount of data 

Many books and articles cut through mathematical talk around machine 

learning algorithms and explain detailed concepts (Subramanian, s.d.; Yan, 2021). In 

this work, we will focus on the application of the appropriate methods and techniques 
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to reach our objectives.  In the studied problem, machine learning is great for these two 

reasons:  

- The current executions need a lot of accurate tuning or lengthy series of 

rules, in which the machine learning algorithm seeks simplifying the code 

to perform better than the conventional approach.  

- Getting clear idea about complex issues that deal with big data. 

2.3.4 Learning process 

Building a deep neural network involves two main set of components, 

hyperparameters and parameters. Hyperparameters are elements that are set before 

training the model and that are not to be updated during the learning phase such as the 

number of layers, activation function, the batch size and the number of epochs. In the 

other hand, parameters are the elements that get updated as a part of the model learning 

such as weights.  

Training a neural network is an iterative process progressing with updating 

weights that improves the model’s forecasting accuracy for each iteration. It is 

performed through a prefixed number of iterations called epochs that is the number of 

passages through all the dataset. As a part of the repetitive process, the error in the 

forecast made by the model respect to the real pressure class value in the current state 

is to be estimated using a loss function. Based on the estimated loss the weights are 

updated to reduce the error for the next evaluations. 

During the training phase, the model focuses on finding the best combination 

or set of weights to make the model forecasting performance as high as possible for 

the studied problem. Weights are parameters within the neural network that converts 

input data through the hidden layers. The inputs get multiplied by the assigned weights 

and added to a bias (Eq. 2.45) then passed through an activation function (Eq. 2.46) 

to the next layer as input or observed if it is the last layer (Fig. 7). 

𝑆1
𝐿 = ∑ 𝑊1,𝑖

𝐿 𝑋𝑖
𝐿−1 + 𝑏 (2.45) 
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𝑋1
𝐿 = 𝑓(𝑆1

𝐿) (2.46) 

- 𝑊1,𝑖
𝐿 ∶ weighs from the nodes i of the previous layer (L-1) to the node 1 of 

the layer L. 

- 𝑋𝑖
𝐿−1 ∶ outputs of the nodes i from the previous layer (L-1). 

- 𝑏: the bias parameter of the affine transformation. In the absence of any 

input, the transformation's output is based to b. 

- 𝑆1
𝐿 ∶ the output of the transformation that is the input for the activation 

function (𝑓). 

- 𝑋1
𝐿 ∶ the output of the node 1 of the layer L. 

2.3.4.1 Activation function 

Activation functions play an important role by adding non-linearity into neural 

networks, permitting the neural networks to learn powerful operations and find out 

complicated patterns. The selected activation function for the different layers is ReLu 

(Rectified Linear Units), while for the output layer is Softmax to represent the output as 

probabilities. ReLu is defined as following: 

𝑓(𝑆) = max {0, S} (2.47) 
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Fig. 7 - A scheme mapping input to output for an artificial neuron 

The Softmax activation function calculates the relative probabilities using the 

values from the output layer x to determine the final probability value. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑁
𝑗

 (2.48) 

N is the total number of output layer neurons. 

2.3.4.2 Loss function  

The function used to assess the associated weights in the context of an 

optimization method is referred to as the objective function. We may strive to maximize 

or decrease the objective function, which means we are looking for a set of weights 

with the greatest or lowest score. Typically, while using neural networks, we want to 

reduce error. As a result, the objective function is also known as a cost function or a 

loss function, and the value computed by the loss function is simply referred to as loss. 

There are various loss functions to select from, it can be challenging to identify 

which one to use. According to the studied problem, the selection of the loss function 

may become easier. For the model using deep neural networks for pressure classes 
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forecasting, the problem is of multi-class classification type. A logarithmic loss function 

called “categorical_crossentropy” was selected in this case. This latter is defined as 

following:  

𝐿(𝑦 − 𝑦̂) = ∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦𝑖̂

𝑁

𝑖

 (2.49) 

In which 𝑦̂  is the predicted value and y is the expected output, 𝑦𝑖̂ is the 𝑖𝑡ℎ
 

value in the neural network output and 𝑦𝑖 is the correspoinding target value. N is the 

number of the model’s output values. 

2.3.4.3 Optimization function 

The process of the losses’ minimization is elaborated through the called 

optimization function. This is elaborated by adapting the attributes of the neural network 

such weights and learning rate to reduce the losses. For this reason, it is essential to 

choose the appropriate optimization function. 

Adam, for adaptive moments, is an adaptive learning rate optimization 

algorithm that was selected in this study is one of the most famous and used 

optimization functions (Kingma & Ba, 2014). Some parameters are to be selected first 

as following: 

- Ss  for the step size, suggested equal to 0.001; 

- E1 and E2 for exponential decay rates for moment estimates that they vary 

in the interval [0, 1), in the present study are suggested equal to 0.9 and 

0.999 respectively; 

- Ns for numerical stabilization constant, suggested equal to 10−8
; 

- Initialize 1
st

 and 2
nd

 moment variables (s, r) and the time step (t) to 0. 

The optimization function starts by computing the gradient g as following: 
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g =
1

𝑁𝑚
∇𝜃 ∑ L(f(x𝑖; θ), y𝑖)

𝑁𝑚

𝑖

 (2.50) 

In which 𝑁𝑚 is the number of examples in a minibatch from the training set, L 

is the loss function, f(x𝑖; θ) is the predicted output of the input x𝑖
, y𝑖

 is the 

corresponding target output, and finally θ that is an initial parameter getting updated as 

explained here after. 

After that the biased first and second moments get updated each time t: 

s = E1 ∗ s + (1 − E1)g 
(2.51) 

r = E2 ∗ r + (1 − E2)gʘg 
(2.52) 

Both moments get updated is a second step: 

ŝ =
𝑠

1 − 𝐸1
𝑡 (2.53) 

r̂ =
𝑟

1 − 𝐸2
𝑡 (2.54) 

In a final step the update value gets calculated and updated as following:  

∆θ =  −Ss
ŝ

√𝑟̂ + 𝑁𝑠
 (2.55) 

θ = θ + ∆θ 
(2.56) 

The algorithm keeps repeating the above process until a stopping selected 

criterion. 
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2.3.5 Autoencoder module 

Autoencoders are neural networks that learn to build an output to be similar to 

the input with the smallest possible error. Autoencoders are unsupervised learning 

algorithms, more precisely, they are considered to be self-supervised because they 

create their own labels from the training data. Mainly, autoencoders compress the input 

data into a lower-dimension layer (called code or latent space), afterward recreate the 

output from the compressed layer. The compression and recreation phases are 

respectively the encoder and the decoder. The committed error between the original 

and the reconstructed data is controlled by a loss function. It is worth to mention that 

autoencoders are lossy because the output is never built exactly as the input, in fact, 

the output is close but degraded. Various dimensionality reduction algorithms exist, the 

big advantage of using autoencoders is capacity of handling large datasets 

(Goodfellow, et al., 2016). 

The output of the encoder is the vector r that is the representation of the input 

x (Fig. 8). This first part can be presented by the encoder function 𝑓 in which 𝑟 = 𝑓(𝑥). 

The second part seeks to rebuild the input x’ from the vector r represented by the 

decoder function 𝑔 in which 𝑥′ = 𝑔(𝑟). The learning process of the autoencoder is 

basically minimizing the loss function 𝐿(𝑥, 𝑔(𝑓(𝑥))) that penalizes 𝑔(𝑓(𝑥)) for not 

being similar to the input x. 

As autoencoders are simply artificial neural networks, the learning process is 

as mentioned previously. The selection of the different functions may vary according 

to the case. 

The autoencoder tries to rebuild its own input that are pressure values. The 

most convenient loss function is the mean squared error (MSE). It is derived by 

averaging the squared differences between predicted and real values. The outcome is 

always positive, regardless of the sign of the predicted and real values. The loss value 

is to be reduced, thus, it may be employed in a maximal optimization process by setting 

the score to a negative number. The loss function is defined as following:   
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𝐿(𝑦 − 𝑦̂) =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=0

 (2.57) 

As mentioned earlier, 𝑦̂  is the predicted value and y is the expected output, 𝑦𝑖̂ 

is the 𝑖𝑡ℎ
 value in the neural network output and 𝑦𝑖 is the correspoinding target value. 

N is the number of the model’s output values. 

 

 

Fig. 8 - Undercomplete autoencoder architecture 

2.3.6 t-distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE is an unsupervised, randomized algorithm that applies non-linear 

dimensionality reduction technique focusing on keeping similar data points close 

together in lower dimensional space (2 or 3D). In the present study, the data is reduced 

to a reasonable level using the encoder saved from the previous step. Afterwards, t-

SNE is used for 2D visualization. It is great at conserving as much relevant information 
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as possible from the available high-dimensional data, as well as increasing the 

interpretability of the data in the lower dimension. As mentioned before, t-SNE could be 

used directly for dimensionality reduction but for large datasets it is advantageous to 

use an encoder first. 

t-SNE algorithm consists of two parts. Firstly, the algorithm starts by converting 

the high-dimensional Euclidean distances between data points into conditional 

probabilities. In other words, finding the pairwise similarity between nearby points in 

the high dimensional dataset. The similarity of the points 𝑥𝑗 (neighbours) to the point 

𝑥𝑖 is calculated through the conditional probability 𝑝𝑗|𝑖, whereas, similar 𝑥𝑗 to 𝑥𝑖 is, 

higher is 𝑝𝑗|𝑖. For 𝑖 ≠ 𝑗 the conditional probability is defined as following: 

𝑝𝑗|𝑖 =  
exp (−‖𝑥𝑖 − 𝑥𝑗‖

2
/2𝜎𝑖

2)

∑ exp (−‖𝑥𝑖 − 𝑥𝑘‖2/2𝜎𝑖
2)𝑘≠𝑖

 (2.58) 

Whereas, 𝜎𝑖 is the Gaussian variance that is centred on the point 𝑥𝑖, 𝑝𝑖|𝑖= 0 

and ∑ 𝑝𝑗|𝑖𝑗 = 1 for all i. 

To symmetrize the conditional probabilities the average of the two probabilities 

is considered as following: 

𝑝𝑖𝑗 =  
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑁ℎ
 (2.59) 

𝑁ℎ is the number of elements in the high-dimensional dataset. 

For the second part, Student t-distribution is used with one freedom degree as 

the heavy-tailed distribution in the low-dimensional map. As a result, the joint 

probabilities 𝑞𝑖𝑗 are defined as following: 

𝑞𝑖𝑗 =  
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖2)−1
𝑘≠𝑙

 (2.60) 
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t-SNE seeks a low-dimensional data representation minimizing the mismatch 

between 𝑝𝑖𝑗 and 𝑞𝑖𝑗. The joint probabilities 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are equal if the points 𝑦𝑖 and 𝑦𝑗 

perfectly model the similarity between the points 𝑥𝑖 and 𝑥𝑗. 

For measuring the accuracy of similarity modelling, the gradient of the Kullback-

Leibler divergence between P and Q is used (P and Q are respectively the conditional 

probability distribution and the Student-t based joint probability distribution over all 

other datapoints). The gradient 
𝛿𝐶

𝛿𝑦
 is given by: 

𝛿𝐶

𝛿𝑦𝑖
= 4 ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)−1

𝑗

 (2.61) 

C is the cost function. 

𝑦(𝑡) = 𝑦(𝑡−1) +  𝜂
𝛿𝐶

𝛿𝑦
+ 𝛼(𝑡)(𝑦(𝑡−1) − 𝑦(𝑡−2)) (2.62) 

Where 𝑦(𝑡)
 and 𝛼(𝑡) are respectively is the solution and the momentum at the 

iteration t and 𝜂 is the learning rate.
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CHAPTER 3. METHODOLOGY 

3.1 Study area 

The developed model was tested on a network selected from Sinistra Ofanto 

irrigation scheme in the province of Foggia that is managed by the Consortium of 

Capitanata in the Puglia Region - Italy. The scheme is divided into 7 districts (numbered 

from 4 to 10) which are subdivided into sectors. The area is irrigated by reservoirs 

supplied from the Capacciotti dam through a conveyance pipe as shown Fig. 9. The 

irrigation sectors are ramified distribution networks and serve the farmers through 

outlets (called hydrants), mostly designed for a minimum pressure head of 20 m and 

a discharge of 10 l/s (Lamaddalena, et al., 2004). The study was performed for the 

sector 25 in district 4 that is an on-demand drip irrigation system. Both district 4 and 

the sector 25 are illustrated in Fig. 10 and 11 respectively. 

The cropping patterns are similar amongst the different irrigation districts 

(Vineyards 63.4 %, olive trees 20.3 %, orchards 3.6 % and horticulture 12.7 %). The 

climate in this area is semi-arid to sub-humid and defined as ‘Maritime-Mediterranean’ 

with an annual average precipitation of about 500 mm which is poorly distributed (Er-

Rami, et al., 2021). 

The sector consists of 19 hydrants served by gravity from a reservoir with a 

piezometric elevation of 128 m a.s.l. The nominal pressure of all network pipes is equal 

to 10 bars (the maximum pressure tolerable by the pipes). The conveyance conduits 

are steel pipes while the sectors are equipped with PVC pipes. 
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Fig. 9 - The “Sinistra Ofanto” irrigation scheme 

 

Fig. 10 - Layout of the district 4 network 
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Fig. 11 - Layout of the network (sector 25) 

IN is the initial node of each section, FN is the final node, LandEl is the land 

elevation and Diam is the pipes diameter. The land elevation is refered to the final node. 

3.2 The MOC based model 

3.2.1 The calculation process 

In a first step, the model generates the set number of configurations. It provides 

the possibility to set different possible scenarios including the various functioning 
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modes for the hydrant as well as the valves closure arrangement. The generated 

configurations are uniformly distributed for the representability purposes.  

In order to define the initial conditions for the unsteady flow analysis, a steady 

state simulation was executed for each configuration. The piezometric elevation (H) and 

the velocity (V) are defined for each section of the pressurized irrigation system.  

The perturbation is generated through the hydrants’ manipulation. Starting with 

the pre-computed H and V from the steady state conditions, calculations of the new 

values 𝐻𝑃𝑛
 and 𝑉𝑃𝑛

 are carried out for each grid point with an increment of Δ𝑡. 

Therefore, new values of H and V are obtained and are to replace the previous ones. 

The process continues for the pre-fixed simulation time. The software selects the 

maximum and the minimum pressure occurred at each section through the time of 

simulation (selection through time). The output at this level is an array of 𝑁𝑐 

configurations rows and 𝑋𝑃 maximum and minimum pressure values for each grid 

node (section). This output will be used for training the deep neural network model.  

 A second selection through the pipe sections for 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 is performed 

(selection through space). The analysis results are tabulated as maximum and 

minimum pressure head occurred for each pipe that will be the basis of the calculation 

of one of the introduced indicators (Hydrant Risk Indicator, HRI). 

As it was mentioned before, in this study 𝑇𝑚𝑎𝑥 has been chosen equal to 30 

(sec), for which the variation of propagated pressure waves magnitude is no more 

significant. For larger network the time of simulation may be higher, the same may 

happen in the case of systems of certain geo-planimetric conditions. The calculation 

process is summarized in the flow chart illustrated in Fig. 12.  
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Fig. 12 - Computer Code Flowchart. 

3.2.2 The Hydrant Risk Indicator (HRI)  

By analyzing the impacts of different configurations on the hydraulic behavior 

of the irrigation system, the Hydrant Risk Indicator evaluates the sensitivity of the 

network in terms of pressure to each hydrant manipulation. It is defined as the ratio 

between the participation of the hydrant in the riskiest configurations and its total 

number of participations. 

A chosen percentage of the riskiest configurations will yield an upper and lower 

pressure envelope. The upper envelope represents the maximum pressure magnitude 
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recorded through all the pipes, while the lower envelope represents the minimum 

recorded pressure magnitude values. 

HRI reflects the potential risk created by each hydrant. Hydrants significantly 

impacting the overall performance in terms of pressure are expected to appear more 

frequently in the risky configurations.  

HRI =  
RPN

TPN
 (3.1) 

TPN is the Total Participation Number, and RPN is the Risky Participation 

Number. A hydrant will be considered when it is being closed or opened, which is the 

main reason of the perturbation.  

Knowing that the maximum and the minimum pressures are separately treated 

and presented 

- 𝐻𝑅𝐼𝑃𝑚𝑖𝑛
 indicates the ability of each hydrant to create a negative wave 

(𝑃min), (RPN takes into consideration only the opening mode). 

- and 𝐻𝑅𝐼𝑃𝑚𝑎𝑥
 indicates the ability of each hydrant to create a positive wave 

(𝑃max), (RPN takes into consideration the closing mode).  

It is worth mentioning that the total number of configurations has to be taken to 

ensure that the indicator achieves the stabilization stage as explained hereafter. 

3.2.3 Relative pressure exceedance (RPE)  

It numerically represents the pressure variation and the created risk with respect 

to the nominal pressure. The RPE was introduced to help both the designer and 

manager analyze the irrigation systems operating on-demand and illustrate the weak 

points of the system where any pipe damage may occur. RPE is defined as following: 

RPE = 100 ∗ 
𝑃𝑚𝑎𝑥 − NP

NP
 (3.2) 
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RPE is the relative pressure exceedance (%); 𝑃max (bar), the maximum 

pressure recorded throughout the simulation time at each section; NP (bar), the nominal 

pressure. In the present study.  

The RPE is presented as 10% equiprobability curves, where each curve 

represents a probability of occurrence. 

3.3 The deep neural network based model 

3.3.1 The functioning principle of the pressure classes forecasting model  

Assessing the perturbation in pressurized irrigation networks with directly 

programmed software is time consuming, in such situation, integrating the software for 

real-time decision-making is not possible. Therefore, a novel framework is proposed to 

tremendously reduce the time consumption and warrant being integrated as a part for 

mapping the perturbation in a whole real-time decision-making system for best 

irrigation networks management. 

The work was performed through two main steps. The first was elaborated by 

slightly modifying the MOC based model developed in (Lamaddalena, et al., 2018) and 

(Derardja, et al., 2019) to get the output and the enclosed information as an input for 

the new model. This input is presented as a table of which columns represent the 

different features. Features include each hydrant functioning mode (closing, opening, 

closed and opened), the valve closing time and the hydrant closing arrangement type 

(the table is illustrated in Fig. 13 as the input of the deep neural network). The 

combination of the mentioned features is referred as a configuration. Along with each 

configuration, the output of the MOC based model will be fed as an expected output 

from the deep learning model to investigate the correlation existence between the 

features and real output (deep learning training phase). The MOC based model output 

is the maximum recorded pressure at each section of the irrigation network. In a further 

step, the pressure is converted into classes of 1, 2 or 3 bars step instead of decimal 

values. 
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The different rows of the input table represent the number of simulated 

configurations.  Some data types can be categorial (for example the valve closing 

arrangement) thus specific encoding should be taken into consideration (giving a code 

for each mode).  

The second step is to build and train a deep learning model. It learns paths and 

relations between the input and the output of the MOC based model. The model learns 

to assess the behavior of irrigation networks to the perturbation occurrence without 

being directly programmed.  

It is worth to mention that models developed using deep learning, with the 

previously mentioned input and characteristics are valid only (tailored) for the studied 

irrigation system. In other words, for a new system, the model should be trained on the 

system’s data that are specific to it.  

Several programming languages are suitable as an environment for developing 

deep learning models in which each language offers a stronghold on a specific concept. 

As it is one of the most popular and the fastest growing programming languages 

(Srinath, 2017), Python was used for this study. 

 

Fig. 13 - Multilayer perceptron neural network. 
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The previously mentioned steps are illustrated by the flow chart in Fig. 14. After 

getting trained, the new model forecasts instantaneously the pressure classes for new 

possible scenarios, called configurations.  

 

 

Fig. 14 - Flow chart of the model phases 
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3.3.2 The model’s architecture  

A multilayer perceptron network (MLP) was used in the present study. The 

performance of the model is affected by many parameters such as the architecture of 

the neural network, in which the number of layers and neurons of each layer, the 

activation, the loss and the optimization functions.  

The model is fed through an input layer, whereas the number of its neurons is 

the number of the data features after being encoded (using one-hot-encoding).  In the 

present case, the considered features are the hydrants functioning modes (4 modes), 

the closing time (considered equal for all hydrants) and the closing arrangement type 

(one type was chosen). The result of the encoding phase that is the number of neurons 

in the input layer is 78 (19 hydrants * 4 functioning modes + 1 closing time + 1 

closing arrangement), Fig. 13. The output later contains a number of neurons equal to 

the number classes covering the reached pressure that depends on the chosen step. 

In the simulated 2000 configurations, the pressure ranges from 4 to more than 15 bars, 

if a step of 2 bars is considered, the number of pressure classes will be 6 to cover this 

range. Regarding the hidden layers, the number of neurons is varying between 150 to 

500 neurons. 

Increasing the number of layers or neurons by layer increases the adaptivity so 

the model can learn more detailed information. But it can lead in some cases to the 

called over-fitting, means the model learns well from the training set but turns to not be 

capable to generalize on new data (test set). In fact, the choice depends on the 

complexity of the problem itself, the two variables are set by trial and error aiming to 

get the best performance (Goodfellow, et al., 2016). The latter mentioned process is 

known as the hyperparameter tuning. 

3.3.3 The clustering model 

In the framework of introducing machine learning into the pressurized irrigation 

systems perturbation assessment, the deep neural network based model developed in 

the previous step for maximum pressure forecasting must be trained on each section 

of the irrigation network. The sections length, in the order of 3 meters, is determined in 
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the data preparation phase using a directly programmed software based on the MOC. 

The selected irrigation network (sector 25) is of about 3000 meters, thus, 1017 

sections. Training the previously mentioned model on such number is not practical and 

requires a long time at the training phase. Therefore, extracting the called main features 

or the representative sections of the irrigation network is the solution key for this issue. 

The different sections will be presented as clusters of similar behavior. In other words, 

sections belonging to the same cluster have a similar behavior to the occurred 

perturbation. 

The core part of this step of the work aims to develop a model for features 

extraction of the irrigation networks’ different sections. The data input to be analyzed 

include the pressure at all the network sections, that are 3 meters distanced, each have 

Nconf pressure values (Nconf is the number of configuration). Going through the different 

configurations, the model extracts the main features and presents sections of similar 

behaviour to the occurred perturbation as clusters.  

Before training the autoencoder, it is necessary to establish a set of 

hyperparameters, mainly four. Firstly, the latent layer size that is the number of neurons 

in the middle layer, smaller size results more compression of the input.  The depth of 

the neural network or the number of layers. The width that is the number of neurons by 

layer maintaining the reduction of the neurons number until the latent space then 

increasing the number until the output layer. The autoencoder architecture generally is 

symmetric respect to the latent layer but is not a requirement, whereas the output layer 

should be as the same size as the input one. Lastly, the loss function that leads the 

update of the different parameters during the learning phase. 

The model is built up of an encoder (the saved first part of a trained 

autoencoder) with a t-SNE algorithm for 2D visualisation. It is important to mention that 

the model developed in this step is to be introduced in between the first two ones 

developed earlier in this thesis as shown in Fig. 15. The model developed in the second 

step will be trained only Ncluster instead of Nsec. 
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Fig. 15 - Flow chart of the three phases 

 

3.4 Data Pre-processing 

Almost all data need to be pre-processed before being fed to the deep learning 

algorithms. Data quality is crucial when it comes to deep learning models performance, 

thus, different techniques could be used according to various requirements.  

3.4.1 One-Hot-Encoding data 

The One-Hot-Encoding approach was used to encode the introduced variables 

in a way that the model does not attempt to identify a link or a relation between them.  

The variables are supplied in binary form, and the active class is fired (given a value of 

1), while the others are set to 0. In the case of hydrants functioning modes, the variable 

takes the values 1, 2, 3 or 4 in which 1 is represented as [1000], 2 as [0100] etc. 
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3.4.2 Split into Train and Test Sets 

After the data has been properly fed into the model, it must be divided into 

training and test sets (as an example, 80 percent of the data is used to train the model, 

while the remaining 20 percent is used to test it by comparing the model's forecasts to 

the expected output). The splitting size depends mainly on the size of the original data 

itself. It is worth noting that this technique is best suited for big datasets with solid 

evidence that both the training and test sets are representative of the problem; 

otherwise, the downside of this technique may appear. It is about having the so-called 

high variance; which indicates that altering the selected training set causes a 

considerable change in forecasting accuracy. 

The class values balance is a crucial information while dealing with 

classification challenges. For imbalanced classes distribution, the observations appear 

in some classes more than others. This is a prevalent problem in practice, and it must 

be addressed appropriately throughout the data preparation process. Referring to the 

present case study, more observations appear in classes for pressure ranging between 

6 and 14 bars. 

One of the widely used techniques for handling this challenge is the k-fold cross 

validation. It splits the original data into k-folds (k parts), trains the algorithm on k-1 

folds and then evaluates it on the held back one. This procedure is to be performed k 

times, each holding back a different fold ant it allows each fold to serve as a test set. 

As a summary of the performance evaluation, this approach reports the mean across 

the various splits. It results a more accurate estimation of the developed model real 

performance. The number of folds (k) should be accurately chosen. In the present 

study, the model was simulated for a list of k values (2 to 13 folds) that will be 

discussed in more detail in a further section. The higher that k is, the more computing 

expensive the model becomes. 
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3.5 Performance evaluation  

Deep learning algorithms are evaluated using metrics. It is important to choose 

them appropriately to get the real model’s performance that affects the choices and the 

importance weight of the different characteristics. In the present work, the developed 

model for forecasting the pressure classes is of classification problems type, thus the 

classification accuracy was used. It is the number of correct forecasting as a ratio of 

all forecasting made. 

3.5.1 Confusion matrix 

The accuracy is one of the most common evaluation metrics for classification 

problems, it is also the most misused. The so-called confusion matrix is at the heart of 

the performance evaluation of multiclass classification algorithms. The confusion 

matrix is defined as the matrix that contains the ratio of expected to actual class 

instances. It enables the creation of a wide range of performance measurements for 

multiclass classification, typically the accuracy (Markoulidakis, et al., 2021).  In other 

words, It provides information about an overall correctly forecasted classes as well as 

incorrect forecasting with errors being made. Presenting forecasting on the horizontal 

axis and the real outcomes on the vertical one. The correct forecasting fall on the 

diagonal of the matrix (𝐶𝑖,𝑖) and the incorrectly over and under forecasted values on the 

right and the left of the diagonal, respectively. 
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Fig. 16 – Confusion matrix for multiclass classification problems 

 

3.5.2 Learnig curve 

Along with the training process, the accuracy will be graphed as a function of 

epochs number, nevertheless the value is associated with the model’s final accuracy. 

If the model is learning well, the graph shows the correct forecast out of the total ones 

improving over time. 

The powerful deep learning algorithms may learn too well until the point of over 

fitting the training data. It is for this reason such algorithms need to be used carefully.  

Learning curves are commonly used as a diagnostic tool for incrementally learning 

models (optimize the internal parameters over time). Training the model and testing it 

can be evaluated by plotting the accuracy as a function of epochs number (the model 

passes through all the data in one epoch). After each epoch, the performance of the 

model is updated for both the training and the testing. 

The learning process stops either automatically using for example the called 

early stopping in keras or by plotting the learning curve versus the number of epochs 

then selecting the good fit. 
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CHAPTER 4. Results and discussion 

4.1 Results of the MOC based model 

4.1.1 The uniformity of the randomly generated configurations  

The strong variation of the discharges flowing into the network due to the 

variation in the demand is the first provoker of the perturbation in the pressurized 

irrigation systems. That variation is presented through the different configurations. With 

a view to having a good representation, the software uses a random number generator 

to run different configurations following a uniform distribution function (having the same 

possibility of getting one operating mode for each hydrant), see Fig. 17. The reported 

results refer to the opening/closing of two hydrants, as this situation occurs with higher 

probability compared to the simultaneous opening/closing of 3, 4 or 5 hydrants, and 

stronger waves with respect to the opening/closing of one hydrant do occur. 

Fig. 17 - Uniformity distribution of the random number generator (500 hydrants 

configurations). 

4.1.2 Comparison of the model’s output to the commercial product Hammer 

A validated commercial software, named HAMMER (Bentley), was used to 

simulate 100 configurations. The same configurations were simulated using the 

developed model during this study. The output of both models are pressure profiles 
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through all the networks pipes Reservoir to Node 16. The root mean squared error 

between the output of the two models is illustrated in Fig. 18. The chart shows an 

increasing error from the upstream end of the irrigation network (reservoir) to the 

downstream end of the profiles (node 16). This is because of the increasing sensitivity 

of the network to the occurring perturbation at the level of the downstream pipes, thus, 

the pressure values presented as envelops become larger. It is worth to mention that 

the error at the level of the reservoir is slightly higher than the following sections 

because of the set boundary conditions parameters between the two models. In 

addition to the boundary conditions, the output that is not perfectly the same may be 

affected by other factors such as, the unknown time step used in the commercial model 

while the present developed one is approximately of 0.003, hydrants were connected 

through 1 m pipes to the network pipes while is possible to connect them directly to 

the network in the present developed model. 

 

Fig. 18 - Root Mean Square Error along with the profile Res-Node 16 
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4.1.3 Computation of the RPE representation 

In this study, the hydrant closing time Tc= 0 was considered, as it represents 

the riskiest case that may happen. The irrigations system consists of four layout 

profiles; only the profile Res-Node16 is presented in Fig. 19. After the perturbation, the 

maximum pressure waves were recoded along the pipes and presented as 10% 

equiprobability curves. The maximum pressure variation for the different steady-state 

conditions at node 16 is around 0.35 bar and increases when moving from the 

upstream end of the studied profile to downstream. 

 It is worth mentioning that the code imposes a constraint of not having the 

water colum separation even with the occurrence of low pressure, in line with the 

assumption mentioned above that the pipes are assumed to be full and remain full 

during the transient flow occurence, which enables the application of the differential 

equations. 

RPE provides a very clear idea about the pipes under risk (Pmax influence). The 

pipes are considered to be safe when RPE values are negative, which means that the 

maximum occurred pressure does not exceed the nominal pressure. As the value of 

zero means that the transient pressure is equal to the nominal pressure, from that value 

onwards the pipes start being under risk. 

In Fig. 19, the pipes for the main line (Res-Node 8) are in the safe range (RPE 

< 0). At the level of the node 8, which is the entrance of the branch “8-16”, the RPE 

starts to take positive values with less than 10 % probability of occurrence. The zone 

corresponding to the hydrants from 11 to 13 is potentially subject to failure with 10 % 

probability of occurrence. The more distant the section from the upstream end, the 

greater the risk of pipe failure. The failure reaches its maximum occurrence probability 

of 40% (100%-60%) at the downstream end of the layout profiles (hydrant 16). 

In parallel with the probability of occurrence and the corresponding zones, it is 

important to mention the role of the RPE that provides an overview of the exceedance 

severity. 
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Fig. 19 - Relative Pressure Exceedance ‘RPE’ for 500 configurations.  

 

4.1.4 Calculation of HRI 

To assess the network response to the different perturbations of configurations, 

500 different configurations were generated and analyzed. The number of 

configurations was run not only to satisfy the uniformity test, but also for the stability 

of the indicator. In fact, the HRI graph starts to take its final shape at around 350 

configurations, where only the real risky hydrants will appear. Once the values are 

stabilized, the increase of the number of configurations does not significantly affect the 

results. See Fig. 20, 21 and 22.  
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Fig. 20 - Hydrant Risk Indicator ‘HRI’ for 50 configurations. 

 

 

Fig. 21 - Hydrant Risk Indicator ‘HRI’ for 350 configurations.  

 



56 

 

Fig. 22 - Hydrant Risk Indicator ‘HRI’ for 500 configurations.  

 

By running 500 configurations for the allocated system where all nodes are 

represented, the contribution of the riskiest hydrants could be easily identified by 

noticing the extreme irregularities of the generated graphs Fig. 20. In the presented 

case, the hydrants 14, 15, 16 and 20 could be identified as risky hydrants that could 

generate positive pressure waves.  

The term “Risky Configuration” could be precisely defined, in this case, as the 

configuration causing exceedance of the allowed domain of variation in pressure set by 

the manager according to certain criteria, mainly the system infrastructure. 

In these extreme cases, “Risky Hydrants” have a high probability to cause either 

positive or negative waves. The impacts of such cases could cause serious problems. 

4.2 Results of the deep neural network based model 

Using deep learning, a model to forecast the class of the maximum pressure in 

the irrigation network was developed. The forecasted pressure values are represented 

as classes. Being the model, accuracy is strongly related to the targeted step, 2 bar 
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step was chosen, obtaining a model accuracy of 85 %, that is sufficient to provide a 

clear idea about the risk severity. In fact, the accuracy in this case can be considered 

even higher that will be explained hereafter with the called confusion matrix. Changing 

the class step is possible and affects the forecasting accuracy positively if the step is 

larger. 

An Artificial Neural Network (ANN) of 11 layers (1 input, 9 hidden and 1 output 

layers) was built. The output layer contains a number of neurons equal to the number 

classes, that depends on the chosen step, covering the reached pressures. Two 

thousand configurations were simulated and the pressure ranges from 4 to more than 

15 bars, so if a 2 bar step is considered, 6 pressure classes are enough to cover this 

range. For the hidden layers, the number of neurons is between 150 to 500. 

The efficient Adam gradient descent optimization algorithm and the logarithmic 

loss function “categorical crossentropy” were used. The rectified linear unit (ReLU) 

activation function was selected for hidden layers. Being this work related to a 

multiclass classification problem, a softmax activation function was used at the level 

of the output layer. 

4.2.1 Average accuracy using k-fold cross validation 

As mentioned earlier, the deep learning algorithms are evaluated using the 

called metrics. Since dealing with multiclass classification, the accuracy as a 

performance metrics was set. The study was elaborated through two sections, the first 

is to have the average accuracy, in which the k-fold cross validation technique was 

used. Different values of k were run (2 to 13 folds). It is clearly illustrated in Fig. 23 that 

the average accuracy is increasing with the number of folds until k = 5, after that, it 

keeps fluctuating between 84 to 85%. The highest average accuracy was reached for 

8 folds. 

Having sparce values for accuracy (min and max) is because splitting the data 

into many folds increases the probability of having a non-representative training and/or 

the testing examples. On the other hand, calculating the average of the many different 
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splits increases the overall accuracy by compensation and it is one of the used 

techniques to avoid the previously mentioned “high variance”. 

For an overall performance evaluation, 5-folds splitting is the best choice and 

the one selected since it is less computationally expensive and with a good accuracy 

respect to other cases. As selected in the previous step, 5 folds is best representing 

the study. It means that the model splits the data into 80 and 20 % for training and test 

sets respectively, and that this procedure is repeated 5 times, holding back a different 

test set (20%) each time. 

 

Fig. 23 - Average, minimum and maximum accuracy in function of k cross-validation 

values. 

4.2.2 Confusion matrix 

In the present study, the confusion matrix makes results less confusing by 

breaking down the different forecasting, correct, wrongly over or underestimated class 

and how far it is from the correct one. Three cases were simulated by changing the 

pressure class step (1, 2 and 3 bars) and the average accuracy is around 75, 84 and 

90 % respectively.  

k 
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The correct forecasts are on the diagonal (darker color, Fig. 24). Taking the 

example of 3 bar pressure step confusion matrix, the class 2 on the vertical axis 

represents the actual or the real class. On the horizontal axis 91 % are correctly 

forecasted as class 2, 3% as class 1 and 6% as class 3. It is clear that wider the class 

is, higher the probability for the model to get the correct forecasting. In the opposite 

side, converging to precise forecasting reduces the accuracy which is the case for 1 

bar pressure step. 

The class step is selected depending on the sensitivity of the pressurized 

irrigation system. Choosing a smaller step helps to get a good intuition about the 

model’s real accuracy and its distribution. For instance, a pressure of 10.90 belongs to 

the class [10:11] and forecasting it as belonging to the class [11:12] does not expose 

the pressurized pipes to a high risk. A step of 2 bars is considered to be appropriate for 

irrigation systems. 

 

Fig. 24 - Confusion matrices for 1, 2 and 3 bars steps classification. 

 

In most of practical study cases, data is not uniformly distributed. In the present 

case study, the pressure reaches values higher than 16 bar only a few times, hence 

miss predicting has a significant impact on the percentage of overall correct 

forecasting. The distribution in the test set (real classification) is depicted in Fig. 25. As 

previously stated, the first and last classes contain less data than the other. 
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Fig. 25 - The data distribution in the test set (real classes). 

The results of the model may vary slightly due to the stochastic nature of the 

used algorithms, the evaluation procedure and/or differences in numerical precision. 

The model should be run several times for comparing the average outcome. 

4.2.3 Learning process  

In this section, we seek evaluating the model’s behavior during the learning 

process. Thus, three cases are presented here after (for 1, 2 and 3 bar class step). It 

shows experience on the horizontal axis and learning development on the vertical axis. 

The used metric (accuracy) to evaluate model learning should be maximized. The 

higher the accuracy, the better the model learns. If reached, a value of 1 indicates that 

the training dataset was learned perfectly and no mistakes were made. Meanwhile, the 

validation curve should converge to a certain acceptable accuracy. The behavior of the 

developed model can be diagnosed with the help of the curves’ shape and the learning 

dynamics. 

In the three graphs (Fig. 26, 27 and 28), the curve for training is rising 

(increasing accuracy) with respect to the number of epochs tending to 1 or 100%, 

whereas for validation curves it converges to 79, 85 and 90 % for 1, 2 and 3 bar steps 

respectively, taking into account that, as mentioned before, results may vary slightly 

due to the nature of the algorithm. The curves stabilize at different number of epochs, 

in which 1 bar step needs approximately 170 epochs to learn the information from data; 

this is obvious since we seek narrow classes forecasting (intervals). In the case of 2 

and 3 bar steps, the model stabilizes earlier since the information is easier to get for 

larger intervals (approximately 55 and 30 epochs respectively).  

https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
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Fig. 26 - Learning curve for 1 bar pressure step classification 

 

Fig. 27 - Learning curve for 2 bar pressure step classification 
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Fig. 28 - Learning curve for 3 bar pressure step classification 

4.3 Results of the clustering model 

An autoencoder was built and trained to extract the main features and learn to 

rebuild the initial data from these features. The used data is of 1017 network sections 

for 2000 different configurations, the model was trained and tested on 80 and 20% of 

the configurations respectively. The model consists of an artificial neural network of 7 

layers (input, 5 hidden and an output layer). The input layer is of 1017 neurons that is 

equal to the number of pressurized network sections, the number of neurons decreases 

until the called bottle neck with 20 neurons for extracting the main features of the data. 

The number of neurons by layer increases back symmetrically to reach 1017 at the 

output layer, the autoencoder is illustrated in Fig. 29. 
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Fig. 29 - The autoencoder neural network structure 

The efficient Adam gradient descent optimization algorithm and the Mean 

Squared Error (MSE) loss function were used. The rectified linear unit (ReLU) activation 

function was selected for layers.  

The first part, the encoder, is saved and called after to be combined with t-SNE 

as shown in Fig. 30. The model ends by clustering the different sections of the network 

to groups of similar behavior zones to the perturbation. 
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Fig. 30 - A combined encoder and t-SNE algorithm model. 

4.3.1 Learning process  

To assess the committed error of the autoencoder in rebuilding the input 

starting from the extracted features along the learning process, two curves (training and 

validation curve) were plotted to visualize the decreasing error (Fig. 31). As mentioned 

before, the used loss function is the mean squared error, the committed error is 

decreasing along with the number of epochs that ends with converging curves to 0.003 

after 45 epochs.  
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Fig. 31 - Loss function curves for the training and test sets during model training 

 

4.3.2 Clustering output 

As explained here before, clustering is often used as a data analysis technique 

for discovering interesting patterns in data, such as groups of customers based on their 

behavior. 

Fig. 32 shows the results obtained on the patterns obtained from the different 

sections’ response to the perturbation occurred through the network. Each point on the 

graph represents a replicate pattern, where the multidimensional data has been reduced 

to two dimensions. The output of the encoder that represents the main freatures 

extracted from the data is presented in 2 dimensions by the use of t-SNE. The graph 

shows nine visible clustersn, however, they can be considered more or less according 

to how much similar clusters are. The number of clusters is the number of zones that 

have similar behavior to the perturbation and that are representing all the network 

sections. Thus, the deep neural network for pressure classes forecasting will be trained 

only on this number of clusters instead of being trained on all the sections (that are 

1017 in the present case study). Larger the network, more noticeable the reduction in 

time consumption as the number of sections will be much higher. 
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Fig. 32 - Two dimensions t-SNE representation of the encoder output
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CHAPTER 5. CONCLUSION 

The performance of on-demand pressurized irrigation systems is highly 

affected by the unsteady flow, which highlights the importance of identifying 

appropriate indicators to be integrated in designing and managing pressurized system.   

To that end, a user-friendly computer code capable of simulating the real 

operating conditions of a pressurized irrigation system and, consequently, the unsteady 

flow, through the random opening and closing of hydrants was developed. The code 

makes it possible to investigate and quantify the generated effects through two simple  

indicators developed in the framework of this study (Hydrant Risk Indicator ‘HRI’ and 

Relative Pressure Exceedance ‘RPE’).  

Such informative indicators could significantly contribute to more efficient 

operation management of on-demand pressurized systems by avoiding highly risky 

probabilistic configurations. Moreover, they could be embedded in the designing phase 

allowing for better interpretation of the impacts of different design alternatives.   

Management of pressurized irrigation systems in which the assessment of the 

possible perturbation needs powerful and new techniques, principally for real time 

decision making. In fact, even if many software codes were available with different 

computational potential and applicability the analysis of the aforementioned 

phenomenon is computationally expensive and requires powerful computers and 

extended simulation times. 

As a result, a novel framework is presented to drastically minimize time 

consumption and merit inclusion as part of a real-time decision-making system for the 

optimum irrigation network management. The model requires initially enough time to 

be trained, but it rapidly becomes cost-effective. 

In the second part of this work, using supervised learning algorithms, a model 

was successfully built and trained to provide accurate forecasting pressure classes. 
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Given a set of features (hydrant different functioning modes, closing time etc.) and a 

target (the actual pressure class), the model finds a function approximator for 

classification that is a sequence of non-linear layers linking the input with the output 

layer. 

According to the required pressure step, classes are forecasted with accuracy 

of around 75, 84 and 90 % 1, 2 and 3 bar steps respectively. Indeed, the results are 

even better as the mistaken forecasting in most cases are one class higher or lower, 

because in many cases the absolute pressure was on the classes edges. 

The developed model using deep neural networks in the present work 

represents the first attempt to use deep learning for assessing the perturbation in 

pressurized irrigation systems working on demand. The introduced technique and the 

developed model could be a first step in mapping the perturbation in such systems and 

provide a powerful tool for managers and decision makers towards a more consistent 

control in particular for real time decision making. Furthermore, the model provides 

more flexibility and a great potential for being trained and learn more features from the 

farmers behavior feedback by implementing necessary equipment.  

Many parameters affect the behavior of the pressurized irrigation network to the 

often-occurring perturbation. For instance, the location of each section having its own 

specification such as the location respect to the source of perturbation, the pipe 

diameter, the type of material, the thickness etc. For this, different behavior to the 

perturbation may occur at different sections of the network. As each section of the 

irrigation network represents a different behavior to the perturbation, the deep neural 

network based model developed in the previous step should be trained on each of them 

that will be time consuming. Therefore, a second model was developed using 

autoencoding combined with t-SNE algorithm for clustering the irrigation network 

sections into groups of similar behavior and reducing the number of trainings for the 

previous model.  

The first part of the clustering model is called autoencoder that is an artificial 

neural network, it is trained to rebuild its input after being reduced to what is considered 
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main features. Being trained for 60 epochs using the mean squared error as loss 

function, the error maid by the model is reduced and stabilized at 0.003. Subsequently, 

the first part of the autoencoder (called encoder) is registered and used for extracting 

the main features of the data. The t-SNE algorithm clusters the extracted features into 

groups that represent similar behavior zones of the irrigation network to the 

perturbation. Nine zones are distinguished, on which the deep learning model will be 

trained instead of all the sections. It is important to mention that the training will be only 

once, thus the trained model will be saved and combined for a decision support system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

Acknowledgements 

 

I would like to express my deepest gratitude to my supervisors Prof. Umberto 

Fratino and Dr. Eng. Nicola Lamaddalena for their continuous support and help with 

advices, suggestions, encouragement and professional guidance during all the work 

phases enabled the completion of the present work. I could not have imagined having 

better mentors for my Ph.D study. 

I wish to extend my special thanks to Prof. Juan Antonio Rodríguez Díaz for 

giving me the opportunity to join his team and for his precious advices. I would like to 

take this opportunity to thank as well all the team, specially, Dr. Rafael González Perea. 

Besides them, I would like to thank my thesis reviewing committee, Prof. Emilio 

Camacho Poyato and Prof. André Daccache for their insightful comments and 

encouragement. 

I am grateful to Polytechnic University of Bari for providing the opportunity to 

resume my academic attainments through the PhD scholarships program for the 

international students. 

I owe a deep sense of gratitude to CIHEAM Bari for an open and productive 

environment for the research. Special thanks to the Land and Water Resources 

Management department staff, Dr. Fadhila, Dr. Roula and all my colleagues and 

friends. I dedicate warm thanks to my brothers and not friends Wahid and Ahmed.  

Last but not least, I want to thank my mother Zeineb and my father Idris, 

without you none of this would indeed be possible. My supporters, my brother Zakaria, 

my dear sisters, my wife and my daughter who were always next to me.  

 

 

 



72 

 



73 

References 

Abuiziah, I., Ahmed, O. & Driss, O., 2013. Simulating Flow Transientsin 

Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump 

Combined with Air Chamber. International Journal of Mechanical, Industrial Science 

and Engineering, pp. 2391-2397. 

Afshar, M. & Rohani, M., 2008. Water hammer simulation by implicit method 

of characteristic. International Journal of Pressure vessels and piping, 85(12), pp. 851-

859. 

Bergant, A. et al., 2008. Parameters affecting water-hammer wave attenuation, 

shape and timing—Part 1: Mathematical tools. Journal of Hydraulic Research, pp. 373-

381. 

Bergant, A. et al., 2008. Parameters affecting water-hammer wave attenuation, 

shape and timing—Part 2: Case studies. Journal of Hydraulic Research, 46(3), pp. 

382-391. 

Boulos, P. F., Karney, B. W., Wood, D. J. & Lingireddy, S., 2005. Hydraulic 

transient guidelines for protecting water distribution systems. Journal‐American Water 

Works Association, pp. 111-124. 

Brownlee, J., 2016. Deep learning with Python: develop deep learning models 

on Theano and TensorFlow using Keras. s.l.:Machine Learning Mastery. 

Calejo, M., Lamaddalena, N., Teixeira, J. & Pereira, L. S., 2008. Performance 

analysis of pressurized irrigation systems operating on-demand using flow-driven 

simulation models. agricultural water management, pp. 154-162. 

Chaudhry, M. H., 1979. Applied hydraulic transients. Springer. 

Chaudhry, M. H., 2014. Transient-flow equations. In: Applied hydraulic 

transients. s.l.:Springer, pp. 35-64. 

Clemmens, A. J., 2006. Improving irrigated agriculture performance through an 

understanding of the water delivery process. Irrigation and Drainage: The journal of the 

International Commission on Irrigation and Drainage, pp. 223-234. 



74 

Deisenroth, M. P., Faisal, A. A. & Ong, C. S., 2020. Mathematics for machine 

learning. s.l.:Cambridge University Press. 

Derardja, B., Lamaddalena, N. & Fratino, U., 2019. Perturbation indicators for 

on-demand pressurized irrigation systems. Water, p. 558. 

Er-Rami, M. et al., 2021. Analysis of irrigation system performance based on 

an integrated approach with Sentinel-2 satellite images. Journal of Agricultural 

Engineering. 

Fernández García, I. et al., 2020. Trends and challenges in irrigation scheduling 

in the semi-arid area of Spain. Water, p. 785. 

Fouial, A., Lamaddalena, N. & Rodriguez Diaz, J. A., 2020. Generating hydrants’ 

configurations for efficient analysis and management of Pressurized Irrigation 

distribution systems. Water, p. 204. 

Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras, and 

TensorFlow: Concepts, tools, and techniques to build intelligent systems. s.l.:O'Reilly 

Media. 

Ghidaoui, M. S., 2004. On the fundamental equations of water hammer. Urban 

Water Journal, 1(2), pp. 71-83. 

Ghidaoui, M. S., Zhao, M., McInnis, D. A. & Axworthy, D. H., 2005. A review of 

water hammer theory and practice. Appl. Mech. Rev., 58(1), pp. 49-76. 

Goodfellow, I., Bengio, Y. & Courville, A., 2016. Deep learning. s.l.:MIT press. 

Jin, W., 2020. Research on Machine Learning and Its Algorithms and 

Development. s.l., IOP Publishing, p. 012003. 

Kingma, D. P. & Ba, J., 2014. Adam: A method for stochastic optimization. 

arXiv preprint arXiv:1412.6980. 

Lamaddalena, N. et al., 2004. Participatory water management in Italy: case 

study of the Consortium “Bonifica della Capitanata”. Options Méditerranéennes Series 

B, pp. 159-169. 



75 

Lamaddalena, N., Khadra, R., Derardja, B. & Fratino, U., 2018. A new indicator 

for unsteady flow analysis in pressurized irrigation systems. Water Resources 

Management, pp. 3219-3232. 

Lamaddalena, N. & Pereira, L. S., 2007. Pressure-driven modeling for 

performance analysis of irrigation systems operating on demand. Agricultural water 

management, pp. 36-44. 

Lamaddalena, N. & Sagardoy, J., 2000. Performance Analysis of On-Demand 

Pressurized Irrigation Systems. s.l.:Food & Agriculture Org.. 

Larock, B. E., Jeppson, R. W. & Watters, G. Z., 1999. Hydraulics of pipeline 

systems. s.l.:CRC press. 

Mambretti, S., 2013. Water hammer simulations. s.l.:Wit Press. 

Markoulidakis, I. et al., 2021. Multiclass Confusion Matrix Reduction Method 

and Its Application on Net Promoter Score Classification Problem. Technologies, 9(4), 

p. 81. 

Mitchell, T. M., 1997. Machine learning.  

Perea, R. G., Poyato, E. C., Montesinos, P. & Díaz, J. R., 2019. Prediction of 

irrigation event occurrence at farm level using optimal decision trees. Computers and 

electronics in agriculture, pp. 173-180. 

Playán, E. & Mateos, L., 2006. Modernization and optimization of irrigation 

systems to increase water productivity. Agricultural water management, pp. 100-116. 

Raschka, S. & Mirjalili, V., 2017. Python Machine Learning: Machine Learning 

and Deep Learning with Python. Scikit-Learn, and TensorFlow. Second edition ed. 

Reddy, Y., Viswanath, P. & Reddy, B. E., 2018. Semi-supervised learning: A 

brief review. Int. J. Eng. Technol, p. 81. 

Renault, D., Facon, T. & Wahaj, R., 2007. Modernizing Irrigation Management: 

The MASSCOTE Approach--Mapping System and Services for Canal Operation 

Techniques. s.l.:Food & Agriculture Org.. 



76 

Rodríguez Díaz, J. A., Perea, R. G. & Moreno, M. Á., 2020. Modelling and 

Management of Irrigation System. Water, 12(3), p. 697. 

Sharp, B. & Sharp, D., 1995. Water hammer: practical solutions. s.l.:Elsevier. 

Srinath, K., 2017. Python–the fastest growing programming language. 

International Research Journal of Engineering and Technology (IRJET), 4(12), pp. 354-

357. 

Subramanian, V., n.d. Deep Learning with PyTorch: A practical approach to 

building neural network models using PyTorch. 2018: Packt Publishing Ltd. 

Triki, A., 2018. Further investigation on water-hammer control inline strategy in 

water-supply systems. Journal of Water Supply: Research and Technology—AQUA, 

67(1), pp. 30-43. 

Wan, W., Zhang, B. & Chen, X., 2019. Investigation on water hammer control 

of centrifugal pumps in water supply pipeline systems. Energies, 12(1), p. 108. 

Wichowski, R., 2006. Hydraulic transients analysis in pipe networks by the 

method of characteristics (MOC). Archives of Hydro-Engineering and Environmental 

Mechanics, 53(3), pp. 267-291. 

Wylie, E. B., Streeter, V. L. & Suo, L., 1993. Fluid transients in systems. 

s.l.:Prentice Hall Englewood Cliffs, NJ. 

Yan, W., 2021. Computational methods for deep learning. s.l.:Springer. 

Záruba, J., 1993. Water hammer in pipe-line systems. s.l.:Elsevier. 

 

 

 

 

 

 



Bilal Derardja 

Date of birth: 08/01/1989 Nationality: Algerian Gender: Male  

b.derardja.dz@gmail.com

01/02/2022 – CURRENT – Italy 
WATER RESOURCES MANAGMENT CONSULTANT – CIHEAM BARI - MEDITERRANEAN AGRONOMIC INSTITUTE OF BARI 

Models' developer and researcher in water resources management related issues.

02/05/2018 – 31/10/2018 – Italy 
ASSISTANT RESEARCHER – POLYTECHNIC UNIVERSITY OF BARI 

Indexes for unsteady flow in hydraulic pressurized systems

01/01/2017 – 31/12/2017 – Italy 
ASSISTANT RESEARCHER – MEDITERRANEANAGRONOMIC INSTITUTE OF BARI 

Pursue the research activity on the topic “Definition of perturbation indicators as a part ofthe MASSPRES
program”, the activity is part of “FAO-Africa” project. 
Facing an over designed irrigation system problem in Egypt, I have developed a softwarefor running different
possible scenarios providing the manager a decision tool for best irrigation scheduling.
Worked in several regional water related projects in the Mediterranean countries (e.g.Egypt, Jordan and Tunisia)
related to on demand irrigation systems, water conjunctive use and irrigation modernization assessment.

2018 – 2020 (participation) 
A new methodology to modernize pressurized irrigation systems: MApping System and Services for PREssurized 
Irrigation Systems - MASSPRES 

MASSPRESS is a step-wise approach for the mapping of the behaviour of pressurized irrigation systems and the
assessment of their hydraulic performance at network and hydrant level. The collaboration was between the Food and
Agriculture Organization of the United Nations (“FAO”) and International Centre for Advanced Mediterranean
Agronomic Studies – Mediterranean Agronomic Institute, Bari (CIHEAM Bari). 
I participated in developing the unsteady state flow conditions model, as a part of the COPAM model for assessing the
performance of the irrigation systems. I participated as well in writing a chapter in the FAO paper as an output of the
elaborated work.

02/2020 – 02/2020 (participation)
Organization of a high level technical workshop on “Can Water Productivity Improvements Save Us from Global 
Water Scarcity?” at the CIHEAM Bari Institute 

Within the framework of the WASAG Working Group on Agricultural Water Use (led by the International Water
Management Institute, IWMI) IWMI organized a workshop together with the CIHEAM - Mediterranean Agronomic
Institute of Bari (CIHEAM Bari) and the CGIAR Research Program on Water, Land and Ecosystems (WLE), hosted at the
CIHEAM Bari.

2018 – 2018 (participation)
Support Sustainable Water Managment and Irrigation Modernization for Newly Reclaimed Areas Project (TCP/
EGY/3604) and Implementing the 2030 Agenda for water efficiency/productivity and water sustainability in 
NENA countries. 
I participated in developing a model for assessing the hydraulic performance of an oversized irrigation system in Egypt for the 
rehabilitation.

WORK EXPERIENCE

◦ 

◦ 

◦ 

PROJECTS 

Tel: (+39) 3512586731           bilal.derardja@poliba.it 



2017 – 2017 (participation)
Strengthening Agricultural Water Efficiency and Productivity on the African and Global Level 

The project was funded by the Swiss Agency for Development and Corporation (SDC). The project was of collaboration
between the Food and Agriculture Organization of the United Nations (“FAO”) and the Mediterranean Agronomic
Institute of Bari MAIB aiming mainly at: 

Reducing vulnerability in Jordan in the context of water scarcity and increasing food/energy demand;
Enhancing capacity for increased water use efficiency in small-scale irrigation in Burkina Faso, Morocco and
Uganda.

11/2018 – 01/2022 – Italy 
PHD IN RISK AND ENVIRONMENTAL, TERRITORIAL AND BUILDING DEVELOPMENT – Polytechnic University of Bari, 
Bari (Italy) 

04/10/2014 – 13/10/2016 – Italy 
MASTER OF SCIENCE IN LAND AND WATER RESOURCES MANAGEMENT – Mediterranean Agronomic Institute of Bari 

09/2009 – 06/2014 – Algeria 
HYDRAULIC ENGINEERING – The National Highest School of Hydraulics (Ecole Nationale Supérieure d'Hydraulique),
Blida 

Mother tongue(s):  ARABIC |  THAMAZIGHTH 

Other language(s):  

UNDERSTANDING SPEAKING WRITING

Listening Reading Spoken production Spoken interaction

ENGLISH C1 C1 C1 C1 C1

FRENCH C1 C1 B2 B2 B2

ITALIAN B2 B2 B2 B2 B1

Levels: A1 and A2: Basic user; B1 and B2: Independent user; C1 and C2: Proficient user

◦ 
◦ 

EDUCATION AND TRAINING

LANGUAGE SKILLS 

09/2013 – 09/2013 
TRAINING AT ALGERIE ENGINEERING (BUREAU OF STUDIES), BATNA (ALGERIA) 

07/2012 – 07/2012 
TRAINING AT HYDRAULIC SUBDIVISION OF N’GAOUS, BATNA (ALGERIA) 



Monograph 

 Derardja, B 2014, ‘L’approvisionnement en eau potable de la ville d’Arris à partir du transfertKoudiat Lemdouar-
Batna’, Engineering thesis, National High School of Hydraulics, Blida(Algeria).

 Derardja, B et al. 2015, ‘Irrigation Project, San Ferdinando Scheme’, First level Master ofScience, Mediterranean 
Agronomic Institute of Bari (Italy).

 Derardja, B 2016, ‘Perturbation indicators for the pressurized irrigation systems’, Second levelMaster of Science, 
Mediterranean Agronomic Institute of Bari (Italy).

 Derardja, B et al., 2022. 'Innovative Approaches for Mapping the Pressurized Irrigation Systems Performances 
Under Unsteady Flow Conditions', PhD dissertation, Polytechnic University of Bari.

Publications 

 Lamaddalena, N., Khadra, R., Derardja, B., & Fratino, U. (2018). A new indicator for unsteady flow analysis in 
pressurized irrigation systems. Water Resources Management, 32(9), 3219-3232.
 Derardja, B., Lamaddalena, N., & Fratino, U. (2019). Perturbation indicators for on-demand pressurized 
irrigation systems. Water, 11(3), 558.
 Alobid, M., Derardja, B., & Szűcs, I. (2021). Food Gap Optimization for Sustainability Concerns, the Case of 
Egypt. Sustainability, 13(5), 2999.
Alobid, M., Derardja, B., and Szűcs, I. (2022). Economic Analysis of an Optimized Irrigation System: Case of 
Sant’ Arcangelo, Southern Italy. European Online Journal of Natural and Social Sciences, 11(1), 134-155.

Submitted 

A research article titled “A rough artificial intelligence model for forecasting unsteady state pressure values in
irrigation systems”, written by Bilal Derardja, Umberto Fratino, Nicola Lamaddalena, R. González Perea and J.A.
Rodríguez Díaz. The article was submitted to “Computers and Electronics in Agriculture” on December 05 ,
2021.
A research article titled "The effects of Land Consolidation Projects of Pressurized Irrigation System
Performance and the Cost: A Case Study from Turkey", written by Firat Arslan, Aymen Sawassi, Bilal Derardja,
Hasan Degirmenci and Nicola Lamaddalena. The Article was submitted to "Advances in Water Resources" on
January 31th, 2022.

Using different programming languages,  four models have been developed: 

 Water-hammer simulator, in the framework of the master of science thesis for better understanding the 
unsteady flow phenomenon in the pressurized irrigation systems. Three new indicators have been set up. 
Steady-State simulator for analysing a specific conditions over designed irrigation system in Egypt.
 Using Octave, a mathematical model was build to find the optimum land reallocation and production 
distribution for minimizing the food gap (case study of Egypt).
 An intelligent model that simulates the perturbation in pressurized systems using machine learning.

PUBLICATIONS 

◦

◦

◦

◦

◦

◦

◦

◦ 

th

◦ 

JOB RELATED SKILLS 

◦

◦
◦

◦

◦


	CV_Bilal Derardja.pdf
	Bilal
        Derardja
	WORK EXPERIENCE
	WATER RESOURCES MANAGMENT CONSULTANT
                    
                    
                        –
                    
                    
                        CIHEAM BARI - MEDITERRANEAN AGRONOMIC INSTITUTE OF BARI
	ASSISTANT RESEARCHER
                    
                    
                        –
                    
                    
                        POLYTECHNIC UNIVERSITY OF BARI
	ASSISTANT RESEARCHER
                    
                    
                        –
                    
                    
                        MEDITERRANEANAGRONOMIC INSTITUTE OF BARI

	PROJECTS
	A new methodology to modernize pressurized irrigation systems: MApping System and Services for PREssurized Irrigation Systems - MASSPRES
	Organization of a high level technical workshop on “Can Water Productivity Improvements Save Us from Global Water Scarcity?” at the CIHEAM Bari Institute
	Support Sustainable Water Managment and Irrigation Modernization for Newly Reclaimed Areas Project (TCP/EGY/3604) and Implementing the 2030 Agenda for water efficiency/productivity and water sustainability in NENA countries.
	Strengthening Agricultural Water Efficiency and Productivity on the African and Global Level

	EDUCATION AND TRAINING
	PHD IN RISK AND ENVIRONMENTAL, TERRITORIAL AND BUILDING DEVELOPMENT
                    
                    
                        –
                    
                    
                        Polytechnic University of Bari, Bari (Italy)
	MASTER OF SCIENCE IN LAND AND WATER RESOURCES MANAGEMENT
                    
                    
                        –
                    
                    
                        Mediterranean Agronomic Institute of Bari
	TRAINING AT HYDRAULIC SUBDIVISION OF N’GAOUS, BATNA (ALGERIA)
	TRAINING AT ALGERIE ENGINEERING (BUREAU OF STUDIES), BATNA (ALGERIA)
	HYDRAULIC ENGINEERING
                    
                    
                        –
                    
                    
                        The National Highest School of Hydraulics (Ecole Nationale Supérieure d'Hydraulique), Blida

	LANGUAGE SKILLS
	PUBLICATIONS
	Monograph
	Publications
	Submitted

	JOB RELATED SKILLS
	Using Visual basic, Octave and Python I have developed four models:






