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Abstract: Metaheuristic algorithms currently represent the standard approach to engineering op-
timization. A very challenging field is large-scale structural optimization, entailing hundreds of
design variables and thousands of nonlinear constraints on element stresses and nodal displacements.
However, very few studies documented the use of metaheuristic algorithms in large-scale structural
optimization. In order to fill this gap, an enhanced hybrid harmony search (HS) algorithm for
weight minimization of large-scale truss structures is presented in this study. The new algorithm,
Large-Scale Structural Optimization–Hybrid Harmony Search JAYA (LSSO-HHSJA), developed here,
combines a well-established method like HS with a very recent method like JAYA, which has the
simplest and inherently most powerful search engine amongst metaheuristic optimizers. All stages
of LSSO-HHSJA are aimed at reducing the number of structural analyses required in large-scale
structural optimization. The basic idea is to move along descent directions to generate new trial
designs, directly through the use of gradient information in the HS phase, indirectly by correcting
trial designs with JA-based operators that push search towards the best design currently stored
in the population or the best design included in a local neighborhood of the currently analyzed
trial design. The proposed algorithm is tested in three large-scale weight minimization problems of
truss structures. Optimization results obtained for the three benchmark examples, with up to 280
sizing variables and 37,374 nonlinear constraints, prove the efficiency of the proposed LSSO-HHSJA
algorithm, which is very competitive with other HS and JAYA variants as well as with commercial
gradient-based optimizers.

Keywords: harmony search; JAYA; large-scale structural optimization; truss structures

1. Introduction

Metaheuristic optimization methods inspired by evolution theory, life sciences and
zoology, physics and astronomy, human sciences, etc., are successfully utilized in science
and engineering. For example, genetic algorithms (GA) [1], differential evolution [2],
simulated annealing (SA) [3], particle swarm optimization (PSO) [4], ant colony optimiza-
tion (ACO) [5], firefly algorithm (FFA) [6], cuckoo search (CS) [7], ant lion optimizer [8],
Tabu search (TS) [9], harmony search (HS) [10], teaching-learning based optimization
(TLBO) [11], JAYA [12], big bang-big crunch (BBBC) [13], charged system search (CSS) [14],
ray optimization (RO) [15], colliding bodies optimization [16], water evaporation optimiza-
tion (WEO) [17], cyclical parthenogenesis algorithm (CPA) [18], and coyote optimization
algorithm (COA) [19] are representative metaheuristic methods with several variants
documented in the optimization literature.

Generally speaking, optimization algorithms may be trajectory-based or population-
based. In the former case, a single design is elaborated in each iteration, thus building a
“trajectory” connecting the initial solution with the optimal solution and passing through
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all intermediate solutions found in each iteration. Trajectory-based algorithms include
gradient-based methods using linear or quadratic approximations of the optimization prob-
lem as well as some metaheuristic algorithms such as, for example, simulated annealing,
randomized local search and simplified variants of differential evolution. Population-based
algorithms update a population of candidate solutions until the search process converges
to the optimum design after a predefined number of iterations or function evaluations.
This category practically includes all metaheuristic algorithms except those classified above
as trajectory-based algorithms.

While metaheuristic algorithms practically became the standard approach to engi-
neering optimization (see, for example, the review articles and books [20–24] focusing on
structural optimization), the “no free lunch” theorem [25,26] had an important consequence
in the fact that no metaheuristic algorithm can prove itself superior over all other algo-
rithms in all problems. A general-purpose universal optimization algorithm does not exist
from the theoretical point of view. However, an algorithm can outperform its competitors
if it is specialized to the specific problem at hand. For this reason, most of the metaheuristic
algorithms lost their appeal just after a very few years. This is not the case of Harmony
Search (HS) [10], which was developed almost 20 years ago, but remains a very popular
optimization algorithm.

The HS method is a population-based metaheuristic algorithm that simulates the pro-
cess of searching for a perfect state of harmony performed by jazz players. The relationship
of HS to music is well summarized in Yang [27]. Three possible options are available to a
skilled musician who is improvising: (1) play any famous piece of music (a series of pitches
in harmony) exactly from his or her memory; (2) play something similar to a known piece
(thus adjusting the pitch slightly); (3) compose new or random notes. These three options
were formalized by Geem et al. [10] into the harmony search optimization algorithm. A
set of NPOP randomly generated solutions are stored in a matrix called harmony memory
[HM]. New trial designs may be extracted from [HM] or randomly selected according to
the value taken by the harmony memory considering rate (HMCR) parameter. Design
variables may be modified according to the value taken by the pitch adjustment rate (PAR)
parameter; the bandwidth parameter (bw) quantifies the amount of variation given to a
variable in the pitch adjustment operation.

Structural optimization is an important field of engineering concerned with the op-
timum design of structures [28–30]. The most common goal in structural optimization is
to minimize the weight of the structure in the presence of limitations on deformations,
stresses, critical loads, natural frequencies, etc. However, other objectives can be considered
such as, for example, to minimize stresses or maximize stiffness. Structural optimization
problems may be of three types: (i) sizing optimization where design variables correspond
to geometric dimensions such as, for example, the cross-sectional areas of the elements
forming the structure; (ii) shape optimization where design variables define the profile of
the structure (e.g., coordinates of nodes); (iii) topology optimization where design variables
define the distribution of the material in the structure.

The easiness of implementation of HS soon attracted many structural optimization
experts that developed several variants of the algorithm after the pioneering studies by
Lee and Geem [31,32]. In particular, researchers attempted to (i) minimize the sensitivity
of convergence behavior to the setting of HMCR, PAR and bw parameters; (ii) reduce the
number of structural analyses and speed up the search process by removing trial solutions
yielding no improvements in design. These abilities turn very useful, especially in the
optimization of large-scale structures. For example, Saka [33] used an adaptive error strat-
egy to handle slightly infeasible designs. Maheri and Narimani [34] considered designs
deemed worse than the worst design stored in [HM], yet distant from local optima. Murren
and Khandelwal [35] generated random trial solutions within intelligently specified search
neighborhoods. Mahdavi et al. [36] dynamically updated the PAR and bw parameters in the
search process, while Carbas and Saka [37] used another dynamic scheme for updating the
HMCR and PAR parameters. Hasancebi et al. [38] probabilistically selected HS parameters
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to the adapt search to varying features of design space. A self-adaptive HS algorithm also
implemented by Degertekin [39]. Kaveh and Naiemi [40] developed a multi-adaptive HS
variant updating internal parameters linearly or exponentially. Geem and Sim [41] devel-
oped a parameter-setting-free technique selecting specific operators for each variable stored
in [HM]. Turky and Abdullah [42] developed a multi-population approach where each
sub-population operates on a different region of search space. Finally, HS was hybridized
with other metaheuristic methods [43–48], gradient-based optimizers [49] and approx-
imate line search strategies exploiting explicitly available gradient information [50–52].
In a very recent study, Ficarella et al. [53] synthesized all approaches mentioned above
by combining the HS metaheuristic engine with search direction mechanisms, gradient
information-based search, and 1-D simulated annealing search. While the different studies
published in the literature considered structures of increasing complexity over the years, it
has to be noted that only Ref. [51] directly deals with large-scale structural optimization
problems, including more than 250 sizing variables.

The JAYA algorithm was developed by Rao [12] in 2016. This population-based
method relies on the simplest search strategy ever implemented in metaheuristic opti-
mization: trial solutions are generated, always moving towards the best design and away
from the worst design of the population. Remarkably, JAYA needs only two standard
control parameters, such as population size and limit number of iterations. The very simple
formulation and inherently efficient search strategy explain why JAYA is probably the
most exploited metaheuristic algorithm in the last few years. However, while JAYA often
achieves a high success rate in finding the global optimum regardless of population size
and initial solutions, the number of required analyses is not always significantly lower
than those reported for the other state-of-the-art metaheuristic methods (see, for example,
Ref. [53]). In this regard, Degertekin et al. [54–56] developed an efficient JAYA variant for
weight minimization of truss structures, trying to avoid unnecessary structural analyses
that would not yield design improvements. While this enhancement made JAYA suitable
also for structural optimization problems, since only one test case in [54–56] included more
than 200 sizing variables, similar to HS, also JAYA’s performance in large-scale structural
optimization should further be investigated.

The above arguments indicate that very few studies focused on the use of metaheuris-
tic algorithms in large-scale structural optimization problems. The same conclusion can
be drawn for all methods besides HS and JAYA. In order to overcome this limitation, a
novel hybrid harmony search–JAYA algorithm for large-scale sizing optimization of truss
structures is developed in this paper. As mentioned above, both HS and JAYA are highly
attractive algorithms for the engineering community: the former has a well-established
practice over 20 years while the latter has an inherently powerful search engine. Here,
we try to combine these algorithms in order to solve large-scale structural optimization
problems where it is essential to limit the total number of structural analyses required by
the search process as each analysis is computationally expensive. The HS engine is the back-
bone of the newly developed algorithm, but trial designs and search directions generated
in the HS phase are enhanced by the JAYA strategy. Explicit gradient information available
from the formulation of the truss optimization problem are utilized to perturb design.

The new algorithm developed in this study, denoted as LSSO-HHSJA (i.e., Large-Scale
Structural Optimization–Hybrid Harmony Search JAYA), is, in essence, an enhanced hybrid
HS algorithm with multiple line searches, which uses the JAYA search strategy to mini-
mize the number of structural analyses required in the optimization process. This makes
LSSO-HHSJA suitable for computationally expensive large-scale structural optimization
problems, including multiple loading conditions, hundreds of variables, and thousands of
nonlinear constraints on nodal displacements and element stresses. In large-scale structural
optimization, metaheuristic algorithms are competitive with gradient-based algorithms as
long as the number of structural analyses per design cycle NAN-cycle is significantly smaller
than the number of optimization variables NDV. In metaheuristic optimization, NAN-cycle is
usually equal to or at most twice the population size NPOP. In gradient-based optimization,
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NAN-cycle is at least equal to (NDV+1) if one assumes that forward finite differences are
used for computing gradients of nonlinear constraints with respect to design variables.
A vast number of studies demonstrated that population-based metaheuristic optimizers
can find global optima or nearly global optimum designs even if NPOP << NDV. Basically,
by improving the quality of the trial designs generated in each iteration, it is possible
to efficiently search the design space even with up to one order of magnitude smaller
populations than the number of design variables. Such a condition is also satisfied by the
formulation of the proposed LSSO-HHSJA algorithm.

In summary, the proposed LSSO-HHSJA formulation attempts to reduce the number
of structural analyses entailed by the optimum design of large-scale structures. For this
purpose, trial designs are generated by perturbing optimization variables along descent
directions where it is very likely to reduce cost function in a fast way. Such a goal is
accomplished both directly, using explicitly available gradient information in the HS phase,
and indirectly, correcting trial designs with JA-based operators that push the search towards
the best designs included in the current population or in a neighborhood of the currently
analyzed trial design.

The LSSO-HHSJA algorithm will be tested in three large-scale weight minimization
problems of truss structures: (i) a planar 200-bar truss subject to five independent loading
conditions, optimized with 200 sizing variables and 3500 nonlinear constraints; (ii) a spatial
1938-bar tower subject to three independent loading conditions, optimized with 204 sizing
variables and 20,700 nonlinear constraints; (iii) a spatial 3586-bar tower subject to three
independent loading conditions, optimized with 280 sizing variables and 37,374 nonlinear
constraints. Truss structures are pin-connected skeletal structures very often selected by
designers for testing novel structural optimization algorithms.

Optimization results demonstrate the validity of the proposed approach: LSSO-HHSJA
is very competitive with other HS and JAYA variants as well as commercial gradient-
based optimizers.

The paper is structured as follows. Section 2 recalls the basic formulations of HS and
JAYA used as a starting point for the present investigation. Section 3 describes the new
hybrid algorithm LSSO-HHSJA developed in this study. Section 4 recalls the formulation of
the truss-sizing design problem, outlines the implementation of the optimization process,
describes the three benchmark cases, and discusses optimization results. Finally, Section 5
summarizes the main findings of this study and outlines directions for future research.

2. Basic Formulations of HS and JAYA Algorithms
2.1. The HS Algorithm

The classical HS formulation includes the following steps.

(1) NPOP solutions are stored in the Harmony Memory [HM] matrix: each row corre-
sponds to a candidate design while columns store the values of variables. Designs
are sorted by increasing structural weights (feasible designs) or penalized weights
(infeasible designs). The limit number of iterations Nitermax is specified by the user.
The harmony memory considering rate (HMCR), pitch adjustment rate (PAR), and
bandwidth amplitude (bw) parameters may be specified by the user or adaptively
changed in the search process.

[HM] =


x1

1
x2

1
. . .

xNPOP−1
1
xNPOP

1

x1
2

x2
2

. . .
xNPOP−1

2
xNPOP

2

. . .

. . .

. . .

. . .

. . .

x1
NDV−1

x2
NDV−1

. . .
xNPOP−1

NDV−1
xNPOP

NDV−1

x1
NDV

x2
NDV
. . .

xNPOP−1
NDV
xNPOP

NDV

 (1)

(2) A trial design (called “harmony”) is generated using three rules: (i) random selection;
(ii) harmony memory consideration; (iii) design vector adjustment. In random selec-
tion, each variable is randomly chosen from [HM]. The harmony memory considering
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rate HMCR ranges between 0 and 1, and expresses the probability of selecting a value
xi
′ from the available set (x1

i , x2
i , . . . , xNPOP−1

i , xNPOP
i ) stored in the [HM]. The trial

design X′ = {x1
′, x2

′, . . . , xN
′} is kept or modified based on the pitch adjustment rate

parameter PAR, which states the probability (1 − PAR) of keeping the set values xi
′.

(3) A random number (rnd) is generated for each design variable. If rnd < HMCR, HS
takes a value from the corresponding column of [HM] and checks if it has to be pitch
adjusted. If rnd < PAR, the variable is modified as (xi

′ ± rnd · bw) where bw is an
arbitrary distance bandwidth. Conversely, if rnd > HMCR, a new value is randomly
generated for the design variable.

(4) If the new harmony X′ is better than the worst design Xworst, it is included in [HM]
replacing Xworst.

(5) Steps (1) through (4) are repeated until a pre-specified number of iterations or function
evaluations (i.e., structural analyses) are executed. The computational cost of the
optimization process hence is NPOP × Nitermax analyses, which may not be affordable
for large-scale problems.

The convergence behavior of HS may be improved by adapting internal parameters
HMCR, PAR and bw or generating trial designs that always lie in descent directions. The
latter improves the HS ability to find global optima or nearly global optimum solutions
(see, for example, [53]). However, performing too many line searches may complicate the
original formulation of HS by a large extent.

2.2. The JAYA Algorithm

The JAYA method is very simple to implement because it has only one equation for
perturbing design. Let Xj,k,it be the value of the jth design variable (j = 1, . . . , NDV) for the
kth design of population (k = 1, . . . , NPOP) at the itth iteration. The Xj,k,it value is modified
as follows:

Xnew
j,k,it = Xj,k,it + r1,j,it

(
Xj,best,it −

∣∣∣Xj,k,it

∣∣∣)− r2,j,it

(
Xj,worst,it −

∣∣∣Xj,k,it

∣∣∣) (2)

where: Xnew
j,k,it is the updated value of variable Xj,k,it; r1,j,it and r2,j,it are two random numbers

in the interval [0,1] for the jth variable; Xj,best,it and Xj,worst,it, respectively, are the values of
the jth variable for the best design Xbest,it and worst design Xworst,it of the population in
the current iteration.

The r1,j,it

(
Xj,best,it −

∣∣∣Xj,k,it

∣∣∣) term describes the JAYA’s tendency to approach the best

design Xbest,it, while the −r2,j,it

(
Xj,worst,it −

∣∣∣Xj,k,it

∣∣∣) term refers to the tendency of moving
away from the worst design Xworst,it. Random factors r1 and r2 allow design space to be well

explored while the absolute value
∣∣∣Xj,k,it

∣∣∣ in Equation (2) further enhances exploration [12].
The new trial solution Xk

new generated with Equation (2) is compared with its counter-
part Xk

pre stored in the population. If Xk
new is better than Xk

pre, the population is updated
by replacing Xk

pre with Xk
new. This process is repeated until reaching the limit number of

iterations/analyses. Similar to HS, the computational cost of the JAYA search may be NPOP
× Nitermax structural analyses. Degertekin et al. [54–56] attempted to limit the number of
analyses by directly rejecting heavier designs than those stored in the population. However,
such a strategy did not allow to find the global optimum in all structural design problems
(see, for example, Ref. [53]).

3. The LSSO-HHSJA Algorithm

The LSSO-HHSJA algorithm developed here combines the HS and JAYA methods.
The main goal of the new algorithm is to efficiently explore design space, generating high
quality trial designs on descent directions without complicating too much the inherently
simple formulations of HS and JAYA. This allows limiting the number of structural analy-
ses making it affordable to solve large-scale structural optimization problems. The new



Appl. Sci. 2021, 11, 3270 6 of 34

algorithm is now described in detail. Its flow chart is shown in Figure 1. A population of
NPOP candidate designs is randomly generated as follows:

xk
j = xL

j + ρk
j (x

U
j − xL

j )

{
j = 1, . . . , NDV
k = 1, . . . , NPOP

(3)

where NDV is the number of optimization variables and ρk
j is a random number in the (0,1)

interval.
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Similar to [53], parameters HMCR and PAR are adaptively changed in the optimiza-
tion process. The bw parameter also is not necessary as new trial designs always lie on
descent directions.

3.1. Step 1: Generation of New Trial Designs

Let XOPT = {xOPT,1, xOPT,2, . . . , xOPT,NDV} be the best design of population and
∇W(XOPT) the cost function gradient computed at XOPT. A random number NRND,j in the
(0,1) interval is generated for each optimization variable. A recursive cycle is performed
for each design variable from 1 to NDV.
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If NRND,j > HMCR, the new value xTR,j randomly assigned to the currently perturbed
jth design variable (j = 1, 2, . . . , NDV) is:

(
xOPT,j − xL

j

)
>
(

xU
j − xOPT,j

)
& ∂W/∂xj < 0 ⇒ xTR,j = xOPT,j − NRND,j·

(
xOPT,j − xL

j

)
·µj(

xOPT,j − xL
j

)
<
(

xU
j − xOPT,j

)
& ∂W/∂xj < 0 ⇒ xTR,j = xOPT,j − NRND,j·

(
xU

j − xOPT,j

)
·µj

(4)

where ∂W/∂xj is the sensitivity of cost function to the currently perturbed jth design
variable while µj = (∂W/∂xj)/|| ∇W(XOPT)|| is the normalized sensitivity. Sensitivities
∂W/∂xj are explicitly available for truss-sizing optimization problems (the cost function W
corresponds to the structural weight) and positive over the whole design space. Hence,
using the ‘−’ sign allows generating trial points lying on descent directions based on
gradient information available for the cost function.

Similar to classical HS, the new value xTR,j is not selected from the NPOP values
available in the corresponding column of the [HM] matrix if NRND,j > HMCR. Equation (4)
is more likely to be used when HMCR takes a small value. Perturbations of optimization
variables (xTR,j − xOPT,j) are weighted by sensitivities ∂W/∂xj to compute cost function
variation ∆WTR for the new harmony XTR. This variation is the scalar product of the
gradient vector ∇W(XOPT) and the search direction STR

T = (XTR − XOPT) defined by the
new trial design and the current best record:

∆WTR = STR
T ∇W(XOPT) =

NDV

∑
j=1

(xTR,j − xOPT,j)∂W/∂x (5)

If ∆WTR < 0, the STR
T vector defines a descent direction. For that purpose, all incre-

ments (xTR,j − xOPT,j) · ∂W/∂xj should be negative. The strategy stated in Equation (6) is
used for retaining or adjusting variable perturbations (j = 1, 2, . . . , NDV):{ (

∂W/∂xj
)
·
(

xTR,j − xOPT,j
)
< 0 ⇒ Leave xTR,j unchanged(

∂W/∂xj
)
·
(

xTR,j − xOPT,j
)
> 0 ⇒ Reset xTR,j as xTR,j

′ =
(
1 + NRND,j

)
·xOPT,j − NRND,j·xTR,j

(6)

The second relationship is a mirroring strategy to transform a non-descent direction
STR into its opposite, the descent direction −STR. Random numbers NRND,j < 1 limit
variable step sizes, reducing the risk that the corrected design may turn infeasible if it
tends to reduce cost function too quickly. The scalar product of STR and the actual descent
direction SMIRR defined by the mirroring is −NRND,j · (xTR,j − xOPT,j)2, hence rather large if
NRND,j tends to unity.

If NRND,j < HMCR, regardless of the current value of PAR, we define an interval limited
by the two adjacent values x̂HM,less

TR,j and x̂HM,more
TR,j to the xOPT,j value stored in the current

best record XOPT, such that x̂HM,less
TR,j < xOPT,j < x̂HM,more

TR,j . The jth variable is updated as
(j = 1, 2, . . . , NDV):

xTR,j = xOPT,j +
(

NRND,j − 0.5
)
·Max

[(
xOPT,j − x̂HM,less

TR,j

)
;
(

x̂HM,more
TR,j − xOPT,j

)]
(7)

By considering the difference (NRND,j − 0.5), the value xOPT,j is reduced or increased
using Equation (7). However, the latter may not be the best strategy if the sensitivities
∂W/∂xj are positive over the whole design space, such as it occurs in the weight minimiza-
tion problems of truss structures considered in this study. For this reason, if (xTR,j − xOPT,j)
· ∂W/∂xj < 0, the trial value xTR,j generated with Equation (7) is retained and checked for
pitch adjustment later. Otherwise, if (xTR,j − xOPT,j) · ∂W/∂xj > 0, the JAYA’s characteristic
Equation (2) is modified as follows in order to adjust the value of xTR,j:

xTR,j
′ = xOPT,j + β1,j

(
x̂best

TR,j − xOPT,j

)
− β2,j

(
x̂worst

TR,j − xOPT,j

)
(8)

where: β1,j and β2,j are two random numbers in the interval [0,1]; x̂worst
TR,j = Min[

x̂HM,more
TR,j ; xTR,j

]
and x̂best

TR,j = Min
[

x̂HM,less
TR,j ;

(
2·xTR,j − xOPT,j

)]
. In Equation (8), the ab-



Appl. Sci. 2021, 11, 3270 8 of 34

solute value is not necessary for xOPT,j as this is a sizing variable. Basically, LSSO-HHSJA
attempts to escape from the “bad” value xTR,j of the jth design variable (i.e., larger than
xOPT,j) and to approach the “good” value xTR,j

′ (i.e., smaller than xOPT,j), which satisfies the
(xTR,j

′ − xOPT,j) · ∂W/∂xj < 0 condition. The (2 · xTR,j − xOPT,j) value is obtained by mirroring
xTR,j with respect to xOPT,j to transform the nondescent direction (xTR,j − xOPT,j) into the
descent direction −(xTR,j − xOPT,j). Rather than considering the whole population stored
in [HM], the JAYA-based strategy implemented by LSSO-HHSJA limits the search in the
[x̂best

TR,j; x̂worst
TR,j ] neighborhood of currently best value xOPT,j for the jth variable by exploring

the descent directions (x̂best
TR,j − xOPT,j) and −(x̂worst

TR,j − xOPT,j).

Unlike Ref. [53] where the x̂HM,less
TR,j and x̂HM,more

TR,j values defining the search interval

for NRND,j < HMCR were related to a generic value x̂HM
TR,j extracted from the [HM] memory,

which may even be very far from the optimum, LSSO-HHSJA always keeps searching
for high quality trial designs in the neighborhood of the best design currently stored in
the population. This elitist strategy is implemented in Equation (7) and even more in
Equation (8), which defines descent directions for the JAYA operator.

If NRND,j < HMCR and NRND,j < PAR, the xTR,j (or xTR,j
′) value is pitch adjusted as:

(
xpitch,adj

TR,j

)′
= xTR,j − NRND,j·

∣∣xTR,j − xOPT,j
∣∣

NGtot
·NGpitch,adj (j = 1, 2, . . . , NDV) (9)

where NGpitch,adj is the total number of pitch adjusted values while NGtot is the total
number of generated trial designs. The latter is reset as (NGpitch,adj + 1) if the number of
pitch-adjusted variables included in a new harmony is larger than the number of design
variables perturbed with gradient information. Similar to [53], the bandwidth parameter bw
of classical HS is not necessary. Equation (9) accounts for optimization history by including
the ratio between the number of trial designs NGpitch,adj generated via pitch adjustment
and the total number of trial designs NGtot generated until that moment. However, it is
enough to consider only the reduction of design variables with respect to the corresponding
values stored in XOPT.

Since for truss-sizing problems, it holds ∂W/∂xj > 0 over the whole design space, all

values xTR,j or xTR,j
′ or

(
xpitch,adj

TR,j

)′
defined with Equations (4) and (6) or Equations (7)–(9)

are forced to be smaller than the corresponding values xOPT,j stored in XOPT in order to lie
on descent directions. While this may increase the rate of reduction of structural weight, it
may, however, lead to generating infeasible trial designs if sizing variables are reduced too
quickly. For this purpose, another pitch adjusted value is defined for xTR,j or xTR,j

′ using a
JAYA-based strategy:(

xpitch,adj
TR,j

)′′
= xTR,j + β1,j

(
xOPT,j − xTR,j

)
− β2,j

(
x2nd−best,j − xTR,j

)
(10)

where x2nd-best,j is the value of the jth variable stored in the 2nd best design of the population.
The pitch adjusted value for xTR,j or xTR,j

′ is finally defined as:

xpitch,adj
TR,j = Median

{
xTR,j or xTR,j

′ ;
(

xpitch,adj
TR,j

)′
;
(

xpitch,adj
TR,j

)′′}
(11)

The median value given by Equation (11) represents a good balance between taking
large perturbations of sizing variables along descent directions to achieve a very fast
reduction of structural weight (this ability turns very useful in the early optimization
iterations especially if the population is dominated by conservative designs) and exploring
for high quality solutions that are likely not to violate constraints. For example, the latter
may occur if x2nd-best,j > xOPT,j.
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Similar to [53], HMCR and PAR are automatically adapted by LSSO-HHSJA in each
iteration as:

HMCRq = HMCRextracted
q·WHSaver,end

q−1

WHSaver,init
q−1 ·

NGpitch,adj
NGgradient

PARq = PARextracted
q·WHSaver,end

q−1

WHSaver,init
q−1 ·
||XOPT,end−XWORST,end||q−1

||XOPT,init−XWORST,init||q−1 ·
NGpitch,adj
NGgradient

(12)

where: q denotes the current iteration; WHSaver,init
q−1 and WHSaver,end

q−1, respectively, are
the average costs of designs stored in [HM] at the beginning and the end of the previous
iteration (rated successful if WHSaver,end

q−1/WHSaver,init
q−1 < 1); XOPT,init and XWORST,init,

XOPT,end and XWORST,end, respectively, are the best and worst designs at the beginning and
the end of the previous iteration. The number of trial designs NGgradient generated using
gradient information is reset to (NGgradient + 1) if more than NDV/2 design variables are
perturbed with Equation (4) without using the mirroring strategy of Equation (6).

Random values HMCRextracted
q and PARextracted

q are defined as:{
HMCRextracted

q = 0.01 + ξHMCR·(0.99− 0.01)
PARextracted

q = 0.01 + ξPAR·(0.99− 0.01)
(13)

where ξHMCR and ξPAR are two random numbers in the interval (0,1). The bounds of
0.01 and 0.99 set in Equation (13) allow all possible values of internal parameters to be
covered [37]. For q = 1, it holds HMCRq = HMCRextracted

q and PARq = PARextracted
q.

It can be seen that HMCR and PAR tend to decrease more sharply if the cost function
is reduced by a great extent. This occurs when the definition of new trial designs is
dominated by gradient information and it is easier to satisfy the condition NRND,j > HMCR.
This scenario is consistent with small values of the NGpitch,adj/NGgradient ratio. Pitch
adjusting becomes less effective for a less sparse population characterized by small values
of the ||XOPT,end − XWORST,end||/||XOPT,init − XWORST,init|| ratio.

3.2. Step 2: Evaluation of Trial Design XTR and Population Updating

LSSO-HHSJA evaluates the new trial design XTR defined in Step 1 by considering the
following four cases: (1) XTR feasible & W(XTR) < WOPT; (2) XTR feasible but W(XTR) >
WOPT; (3) XTR infeasible & W(XTR) < WOPT; (4) XTR infeasible & W(XTR) > WOPT. This is
a far more general approach than classical HS where XTR may at most replace only the
worst design Xworst stored in [HM].

3.2.1. Case 1: XTR Feasible and W(XTR) < WOPT

Xworst is removed from [HM] and the new trial design XTR is reset as XOPT. The
former optimum hence becomes the second-best design of the population and is hence reset
as X2ndBEST. The second worst design of the previous population is reset as Xworst in the
updated population. In [53], the remaining (NPOP − 2) designs were updated by randomly
combining the directions formed by XOPT and the currently selected harmony, XOPT and
2nd best design, XOPT and the harmony corresponding to the largest approximate gradient
with respect to XOPT.

Since in truss-sizing optimization problems the gradients of the cost function are
constant over the whole design space, the above-mentioned process may be significantly
simplified and enhanced by implementing a JAYA-based approach. For that purpose, each
(XNPOP−2)r harmony is tentatively updated by LSSO-HHSJA using Equation (14), with r ∈
(NPOP − 2):

(XNPOP−2)
r,new = (XNPOP−2)

r + ω1
(
XOPT − (XNPOP−2)

r)−ω2
(
Xworst − (XNPOP−2)

r) (14)

where ω1 and ω2 are two vectors of NDV random numbers in the interval [0,1]: in particular,
ω1,j and ω2,j are generated for the jth component of the processed harmony, best and worst
designs. Since the goal is to improve the (XNPOP−2)r harmony, LSSO-HHSJA tries to
search along the descent direction (XOPT − (XNPOP−2)r) with respect to (XNPOP−2)r and
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escape from the worst design of the population Xworst, which certainly will not improve
(XNPOP−2)r.

If (XNPOP−2)r,new is feasible and W((XNPOP−2)r,new) < W((XNPOP−2)r), it replaces the
old harmony (XNPOP−2)r in [HM]. Otherwise, (XNPOP−2)r is retained. The population is
reordered based on the cost of each designs and the next harmony is processed. LSSO-
HHSJA finally checks for convergence in Step 3.

3.2.2. Case 2: XTR Feasible but W(XTR) > WOPT

The trial design XTR was compared with the rest of the population in [53] by modifying
only the (NPOP − p) candidate designs that ranked below XTR. Again, the directions
formed by XOPT and the currently selected harmony, XOPT and 2nd best design, XOPT
and the harmony corresponding to the largest approximate gradient with respect to XOPT
were combined in order to generate each new trial design. The LSSO-HHSJA algorithm
developed in this study adopts a much more comprehensive approach. First, a mirroring
strategy is used for transforming the non-descent direction (XTR − XOPT) into a descent
direction. For that purpose, the trial design XTR

mirr is defined as:

XTR
mirr = (1 + ηmirr

)
XOPT − ηmirrXTR (15)

where ηMIRR is a random number in the interval (0,1), which limits step size to reduce the
probability of generating an infeasible trial design. If W

(
XTR

mirr) > W(XTR), XTR
mirr is

directly discharged; XTR is hence compared with the designs stored in [HM]. Conversely,
if XTR

mirr is feasible and it holds W
(
XTR

mirr) < W(XTR). (this is likely to occur because
the cost function of truss-sizing optimization problems is linear), XTR

mirr is compared with
the designs stored in [HM].

Similar to case (1), LSSO-HHSJA utilizes Equation (14) to update the (NPOP − p) har-
monies ranking below XTR or XTR

mirr. Each new harmony is then evaluated as explained
for case (1). Convergence check is done in Step 3.

3.2.3. Case 3: XTR Infeasible and W(XTR) < WOPT

An approximate line search is performed on the descent direction STR = (XTR − XOPT)
limited by XOPT and XTR. As explained in Ref. [53], three random numbers ξ1, ξ2 and
ξ3 in the interval (0,1) are generated to respectively define points XTR,appr

(1) = XOPT +
ξ1STR, XTR,appr

(2) = XOPT + ξ2STR and XTR,appr
(3) = XOPT + ξ3STR on STR. Optimization

constraints are evaluated at these points; by including responses for XOPT and XTR, it
is possible to fit the 4th order polynomials Gk,APP(α) for active constraints. For sizing
optimization problems of truss structures, cost function (i.e., structural weight) is linear
with respect to sizing variables and it obviously takes its minimum at α = 1, that is at
XTR. The algebraic equations Gk,APP(α) = 0 are solved for all active constraints that turn
infeasible moving from XOPT to XTR. A new trial design is hence defined as X = XOPT +
Min{1;αMIN}STR where αMIN is the smallest root found for the Gk,APP(α) = 0 equations.

If a better design than XOPT is found, it is stored as the new best record and the worst
design Xworst is removed from the population. The second worst design becomes the new
worst design and the former best design becomes the second best design. The (NPOP − 2)
designs ranked below XOPT and X2ndBEST are analyzed and eventually updated with the
JAYA-based strategy, Equation (14), used for case (1). The convergence check is hence done
in Step 3. Unlike Ref. [53], LSSO-HHSJA now updates the whole population each time the
approximate line search provides a good trial design X. This allows the candidate designs
stored in [HM] to improve more rapidly.

If the approximate line search is unsuccessful, Ref. [53] re-iterated the search by
increasing the order of polynomial approximation up to 10 and eventually performed a
1-D probabilistic search based on simulated annealing. However, this process may require
too many structural analyses in large-scale optimization. For this reason, the LSSO-HHSJA
algorithm developed in this study combines a mirroring strategy with a JAYA-based
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strategy to turn XTR feasible. For that purpose, two trial designs (XTR)′ and (XTR)” are
defined as follows:{ (

XTR
mirr)′ = (1 + ηmirr)XOPT − ηmirrXTR(

XTR
mirr)′′ = XTR + ω1(XOPT −XTR)−ω2(X2ndBEST −XTR)

(16)

where ηMIRR is a random number in the interval (0,1) while random vectors ω1 and ω2 are
similar to those of Equation (14). The mirroring strategy used for generating

(
XTR

mirr)′,
Equation 16(a) (i.e., the first relationship of Equation (16)), steers the search in the opposite
direction (XOPT − XTR) to the infeasible direction (XTR − XOPT); however, (XOPT − XTR)
is a non-descent direction. Hence, the random number ηMIRR has two functions: (i) to
reduce step size in order not to increase cost function too much; (ii) if XOPT lies on or is
very close to the boundary of feasible search domain, it may be good to limit step size in
order to reduce the probability of generating another infeasible trial design.

The JAYA-based strategy used for generating
(
XTR

mirr)′′ , Equation (16) (i.e. the
second relationship of Equation (16)), tries to approach XTR to the current best record by
moving along (XOPT − XTR), which is opposite to the infeasible direction (XTR − XOPT).
Furthermore, the search is “confined” between the best two candidate solutions currently
stored in [HM], where it may be easier to define high quality trial designs. This would
allow at least to minimize the increase in cost function.

The new trial designs
(
XTR

mirr)′ and
(
XTR

mirr)′′ are evaluated. If both designs are
feasible, they are checked against XOPT according to case (1) and case (2) described above.
The same is done if only one between

(
XTR

mirr)′ and
(
XTR

mirr)′′ is feasible. If no feasible
solution is obtained, a trial design between XOPT and X2ndBEST is generated as follows:

XTR = XOPT + α(XOPT −X2ndBEST) (17)

where α is a random number between 0 and 1. The new trial design will be in all likelihood
feasible if both XOPT and X2ndBEST are feasible and hence it will be evaluated according to
case (1) or case (2).

3.2.4. Case 4: XTR Infeasible and W(XTR) > WOPT

This is the worst possible case, although very unlikely to occur because LSSO-HHSJA
forms trial designs by perturbing variables so as to move along descent directions. Never-
theless, the present algorithm utilizes a mirroring strategy to transform the non-descent
direction (XTR − XOPT) into the descent direction (XTR

mirr − XOPT). Furthermore, (XTR −
XOPT) is also an unfeasible direction and hence LSSO-HHSJA tries to move along (XTR

mirr

− XOPT) to recover such a gap. The new trial design XTR
mirr is defined as:

XTR
mirr = (1 + ηmirr)XOPT − ηmirrXTR (16(a) rep.)

The new harmony XTR
mirr is evaluated. The best record and the population are

updated as explained above if case (1) or case (2) or case (3) occurs. Convergence check is
then done in Step 3.

If XTR and XTR
mirr are infeasible and Min{W(XTR); W(XTR

mirr)} > WOPT, their po-
sitions are updated by reducing distances from XOPT and in all likelihood constraint
violations. That is:

(
XTR

mirr)′ = XOPT +
(
XTR

mirr −XOPT
)( GLIM

Max{Gk}

)
(XTR)

′ = XOPT + (XTR −XOPT)
(

GLIM
Max{Gk}

) (18)

where: k = 1, . . . , NCact is the number of violated constraints; Max{Gk} is the largest nodal
displacement or element stress (including buckling) computed from structural analysis
and GLIM is the corresponding allowable limit.
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In Ref. [53], Equation (18) was re-iterated until at least one trial point among (XTR)′

and (XTR
mirr)′ became feasible and, ultimately, a 1-D simulated annealing search in the

neighborhood of XOPT was carried out to locally improve designs included in [HM]. A
different strategy is adopted by LSSO-HHSJA to reduce the number of structural analyses
entailed by this phase. If (XTR)′ or (XTR

mirr)′ is feasible, the new design is ranked with
respect to the current population as described for cases (1) and (2), where the latter case (i.e.,
W(XTR) > WOPT) is much more likely to occur. If both (XTR)′ and (XTR

mirr)′ are infeasible,
the best design with the lowest constraint violation amongst XTR, (XTR)′ and (XTR

mirr)′ is
set as XTR,WORST and a JAYA-based equation is used for generating yet another trial design:

(XTR)
JAYA = XTR + ω1(XOPT −XTR)−ω2(XTR,WORST −XTR) (19)

where random vectors ω1 and ω2 are similar to those of Equations (14) and (16). Basically,
LSSO-HHSJA attempts first to simultaneously reduce constraint violation and cost function
with Equations (16) and (18). Should this not work, Equation (19) moves XTR towards XOPT

by escaping from the infeasible region of search space. If (XTR)
JAYA also turns infeasible

and the population has at least one infeasible design, the trial solution with the lowest
constraint violation amongst XTR, (XTR)′, (XTR

mirr)′ and (XTR)
JAYA is compared with the

infeasible designs stored in [HM]. Conversely, if XTR, (XTR)′, (XTR
mirr)′ and (XTR)

JAYA

violate constraints but [HM] has only feasible designs, the four trial points are discharged
and a new trial design between XOPT and X2ndBEST is generated using Equation (17); the
corresponding operations described in Section 3.2.3 are then carried out.

3.3. Step 3: Check for Convergence

Standard deviations on variables and cost functions of the candidate designs stored
in [HM] decrease as LSSO-HHSJA approaches the global optimum. Hence, the present
algorithm normalizes standard deviations with respect to the average design Xaver =(

∑NPOP
k=1 Xk

)
/NPOP (the generic component is xaver,j =

(
∑NPOP

k=1 xj
k
)

/NPOP) and the average

weight Waver =
(

∑NPOP
k=1 W(Xk)

)
/NPOP. The termination criterion is:

Max

{ STD{||X1−Xaver||,||X2−Xaver||,...,||XNPOP−Xaver ||}
||Xaver|| ;

STD{W1, W2,..., WNPOP}
Waver

}
≤ εCONV (20)

where the convergence limit εCONV is 10−15, less than the double-precision limit of available
computers. Steps 1 through 3 are repeated until the LSSO-HHSJA algorithm converges to
the global optimum.

3.4. Step 4: Terminate Optimization Process

LSSO-HHSJA terminates the optimization process and writes output data in the
results file.

4. Test Problems and Optimization Results
4.1. Statement of the Optimization Problem

The sizing optimization problem for a truss structure with NOD nodes (k = 1, 2, . . . ,
NOD) and NEL elements (j = 1, 2, . . . , NEL), subject to NLC independent loading conditions
(ilc = 1, 2, . . . , NLC), can be stated as a weight minimization problem:

Minimize W(X) = ρg
NEL

∑
j=1

ljxjSubject to


uL
(x,y,z),k ≤ u(x,y,z),k,ilc ≤ uU

(x,y,z),k
σL

j ≤ σj,ilc ≤ σU
j

xL
j ≤ xj ≤ xU

j

(21)

where:
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• xj is the cross-sectional area of the jth element of the truss, included as a sizing design
variable, ranging between its lower bound xL

i and upper bound xU
i ;

• lj is the length of the jth element of the structure;
• g is the gravity acceleration (9.81 m/s2) and ρ is the material density. The g term must

not be considered if structural weight is expressed in kg as it was done in the present
study;

• u(x,y,z),k,ilc are the displacements of the kth node in the coordinate directions, varying
between the lower limit uL

(x,y,z),k and the upper limit uU
(x,y,z),k;

• σj,ilc is the stress in the jth element, varying between σL
j (compressive stress limit

accounting also for bucking strength) and σU
j (allowable tension limit);

• ilc indicates the ilcth loading condition acting on the structure. Constraints on nodal
displacements, element stresses and buckling strengths are normalized with respect
to their corresponding limits.

A large-scale truss structure is comprised of hundreds or thousands of elements, which
may be categorized into groups in order to reduce the number of sizing variables. Hence,
a large-scale optimization problem usually counts at least 200 design variables. Since
the structure must withstand several independent loading conditions, the optimization
problem has several thousands of nonlinear constraints on nodal displacements, element
stresses (including buckling strength). Here, we optimize a planar 200-bar truss subject to
five independent loading conditions (200 sizing variables and 3500 nonlinear constraints), a
spatial 1938-bar tower subject to three independent loading conditions (204 sizing variables
and 20,700 nonlinear constraints), and a spatial 3586-bar tower subject to three independent
loading conditions (280 sizing variables and 37,374 nonlinear constraints).

4.2. Implementation of the LSSO-HHSJA Algorithm and Comparison with Other Optimizers

The proposed algorithm was implemented in the Fortran programming language. A
standard Fortran compiler was utilized for this purpose. The finite element analyses of
truss structures entailed by optimization runs were performed by means of another Fortran
routine developed by the authors. The linear system {F} = [K]{u} formed by nodal forces,
global stiffness matrix and nodal displacements for each loading condition was solved by
inverting the stiffness matrix [K] with a classical matrix triangularization algorithm. The
main program perturbs design as explained in Section 3 and calls the structural analysis
routine each time a new trial solution has to be evaluated.

The optimized designs of LSSO-HHSJA were compared with the best solutions quoted
in the literature for each test problem. In particular, the following algorithms were con-
sidered: (i) other HS variants such as the hybrid HS algorithms with line search strat-
egy of Refs. [51,53], the adaptive HS (AHS) algorithm of Ref. [38], the self-adaptive HS
(SAHS) algorithm of Ref. [39]; (ii) other JAYA variants like the improved and parameterless
JAYA algorithms of Refs. [54–56]; (iii) the multi-level and multi-point simulated annealing
(CMLPSA) of Ref. [51] and the hybrid fast simulated annealing (HFSA) of Ref. [53]; (iv)
the hybrid big bang–big crunch (hybrid BBBC) algorithms with line search strategies of
Refs. [51,53]; (v) the BBBC algorithm with upper bound search strategy (BBBC-UBS) of
Ref. [57]; (vi) the sinusoidal differential evolution (SinDE) algorithm of Ref. [58]; (vii) the
SQP optimization routine of MATLAB [59] and the SQP/SLP optimization routines of
DOT [60]. The selected metaheuristic algorithms are similar to LSSO-HHSJA because they
include parameter adaptation and strategies to generate trial designs in all likelihood better
than the current candidate solutions stored in the population. SQP (sequential quadratic
programming) and SLP (sequential linear programming), respectively, are the best and the
simplest gradient-based optimization algorithms and hence turn very useful in evaluating
how fast LSSO-HHSJA reduces structural weight or constraint violation once the initial
population is given.

All algorithms were coded in the Fortran programming language following the in-
dications given in literature by their developers in order to have a homogeneous basis
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of comparison with LSSO-HHSJA. Commercial optimizers were executed in their rec-
ommended software environments. When SLP/SQP could not directly provide a good
design for some test problem, they were alternatively executed in a cascade optimization.
For each population size, twenty independent optimization runs starting from different
populations were performed for LSSO-HHSJA and the other metaheuristic optimizers in
order to account for their stochastic nature. Initial points selected for CMLPSA, SQP and
SLP coincided with the best/average/worst designs included in the initial populations
generated for each independent run of LSSO-HHSJA. Uniform initial designs with sizing
variables all set to their upper or lower bounds also were considered for gradient-based
optimization.

The population size of LSSO-HHSJA was determined from sensitivity analysis while,
for adaptive HS [38,39], BBBC-UBS [57] and sinDE [58], it was set as NPOP = 20 or 50 to limit
the theoretical computational cost of these algorithms to NPOP×ITERmax structural analyses.
The latter values are fully consistent with the population size values indicated in the above-
mentioned references. The NPOP = 20 value was also chosen for improved/parameterless
JAYA, actually insensitive to population size in truss optimization problems (see results
reported in Refs. [54–56]). It should be noted that the parameterless JAYA algorithm of
Ref. [56] was not executed using the suggested initial population size of 10× NDV, because
the generation of each population in the independent runs would have required between
2000 and 2800 structural analyses, which is up to 30% of the computational costs quoted in
the literature for the selected design examples. Such a choice allowed computational cost
of structural optimization to be limited by a significant extent.

Optimum designs were rated feasible if they fully satisfied design constraints. Al-
though LSSO-HHSJA does not require penalty function (similar to the CMLPSA, HFSA,
hybrid HS and hybrid BBBC with line search algorithms of Refs. [51,53]), the option of
using a static penalty function strategy with a constant penalty factor throughout the
optimization process was also made available to the user. Penalty factor was varied from
0 (i.e., original LSSO-HHSJA formulation with no penalty functions) to 1020 (i.e., 0, 100

= 1, 101, 102, . . . , 1020). The very large values of penalty factor prevent inefficient meta-
heuristic search engines to converge to a feasible optimized design. Remarkably, standard
deviation on optimized weight never exceeded 10−4 of the target structural weight for
all test problems, thus proving the LSSO-HHSJA’s insensitivity to constraint handling
strategy. The results tables given in the rest of this section refer to the standard case without
penalty function.

4.3. Planar 200-Bar Truss Structure

The planar 200-bar truss structure shown in Figure 2 was optimized with 200 sizing
variables corresponding to the cross-sectional areas of each element. The structure is subject
to five independent loading conditions:

(a) 4449.741 N (i.e., 1000 lbf) in the positive X-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48,
57, 62, 71;

(b) 44.497 kN (i.e., 10,000 lbf) in the negative Y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12,
14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46,
47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75;

(c) Loading conditions a) and b) acting together.
(d) 4449.741 N (i.e., 1000 lbf) in the negative X-direction at nodes 5, 14, 19, 28, 33, 42, 47,

56, 61, 70, 75;
(e) Loading conditions (b) and (d) acting together.
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This test problem has 3500 non-linear constraints on nodal displacements and element
stresses. The displacements of all free nodes in both coordinate directions X and Y must
be less than ±1.27 cm (i.e., ±0.5 in). The allowable stress (the same in tension and com-
pression) is 206.91 MPa (i.e., 30,000 psi). All non-linear constraints were independently
evaluated, and no constraint grouping was adopted. The same was done for all test prob-
lems considered in this study. Cross-sectional areas vary between 0.64516 cm2 (i.e., 0.1 in2)
and 645.16 cm2 (i.e., 100 in2).

In order to make a direct comparison with the hybrid HS algorithm of Ref. [51],
LSSO-HHSJA optimizations were also executed for different population sizes: respectively,
NPOP = 20, 50, 100, 200, 500 and 1000. The same was done for the other hybrid HS algorithm
of Ref. [53] compared with LSSO-HHSJA. Table 1 shows that all HS variants were practically
insensitive to population size. However, only the present algorithm always converged to
feasible designs while the other hybrid HS variants found optimal solutions that slightly
violate displacement constraints. The robustness of LSSO-HHSJA is confirmed by the
fact that it is not possible to establish any direct relationship between population size
and computational cost of the optimization process in terms of the required number of
structural analyses.
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Table 1. Sensitivity of LSSO-HHSJA and other hybrid HS variants’ convergence behavior to popula-
tion size for the 200-bar truss problem.

NPOP Structural Weight (kg) Structural Analyses Constraint Tolerance (%)

20
12,483.673 5562 Feasible

12,490.377 * 5668 * 0.00735 *
12,489.460 � 5716 � 0.003451 �

50
12,483.563 5734 Feasible

12,490.482 * 6604 * 0.00750 *
12,489.457 � 6040 � 0.003250 �

100
12,484.135 6096 Feasible

12,490.542 * 6360 * 0.00750 *
12,489.778 � 5621 � 0.002802 �

200
12,483.982 5436 Feasible

12,490.332 * 5679 * 0.00730 *
12,489.700 � 5831 � 0.003168 �

500
12,483.339 5637 Feasible
12,490.414* 5940 * 0.00643 *
12,489.619 � 6372 � 0.003524 �

1000
12,484.054 6373 Feasible
12,490.427* 5938 * 0.00560 *
12,489.564 � 6217 � 0.003329 �

* Results reported in Ref. [51]; � Results obtained using the hybrid HS algorithm of Ref. [53].

Table 2 shows the optimization results obtained by LSSO-HHSJA and its competitors in
the 200-bar truss problem. The results of the independent optimization runs that provided
the lowest and the highest structural weights for each algorithm are respectively denoted
by “Best” and “Worst” in the table. Furthermore, results of the optimization runs completed
within the smallest and largest number of structural analyses are respectively denoted
by “Fastest” and “Slowest” in the table. The same nomenclature has been utilized for all
results tables presented in the article.

The present algorithm clearly outperformed the other metaheuristic methods because
it achieved the lowest structural weight and always converged to feasible solutions. LSSO-
HHSJA was the best optimizer overall because it designed the lightest structure (weighing
12,483.339 kg) within only 5637 analyses. The other algorithms found heavier designs
in their best optimization runs and completed those runs within at least 5679 analyses.
CMLPSA also converged to feasible designs in all optimization runs but its best weight
was almost 10 kg heavier than the one found by LSSO-HHSJA. The worst optimization
runs of JAYA, adaptive HS variants, BBBC-UBS, sinDE and SQP-MATLAB converged to
feasible solutions, but the corresponding structural weights were between 18–19 kg (for
BBBC-UBS, JAYA and SQP-MATLAB) and 57–293 kg (for sinDE and adaptive HS variants)
heavier than the worst design found by the present algorithm.

The weight reduction achieved by LSSO-HHSJA with respect to the hybrid HS al-
gorithm described in [51] was only 0.0560%, but the present algorithm completed the
optimization process within less structural analyses and, as mentioned above, it converged
to a feasible solution. The other hybrid HS variant described in [53] also was implemented
for this test problem and achieved a better design than the one quoted in [51]: however,
the optimized weight was practically the same (i.e., only 0.007% reduction) and the corre-
sponding optimal solution remained infeasible although constraint violation was reduced
by about 50%. The computational cost of the optimization did not change much passing
from the hybrid HS variants of Refs. [51,53] to the present algorithm. In fact, Table 2 shows
that LSSO-HHSJA saved on average only 225 structural analyses with respect to Ref. [51]
and only 160 analyses with respect to Ref. [53], which is about 3.5% of the computational



Appl. Sci. 2021, 11, 3270 17 of 34

cost of the optimization. However, it must be remarked once again that only LSSO-HHSJA
could find feasible solutions in all optimization runs.

Table 2. Optimization results obtained for the 200-bar truss design example.

Optimized Weight (kg) Number of Structural Analyses Constraint Violation (%)

LSSO-HHSJA Present

Best: 12,483.339 Best: 5637
Worst: 12,484.135 Fastest: 5436 Feasible
Mean: 12,483.791 Slowest: 6373

STD: 0.3144 Mean/STD: 5806 ± 357

Hybrid HS with LS [51]

Best: 12,490.332 Best: 5679 Best: 0.00730
Worst: 12,490.542 Fastest: 5668 Worst: 0.00750
Mean: 12,490.430 Slowest: 6604 Mean: 0.00695

STD: 0.07470 Mean/STD: 6031 ± 377 STD: 0.000772

Hybrid HS with LS [53]

Best: 12,489.457 Best: 6040 Best: 0.003250
Worst: 12,489.778 Fastest: 5621 Worst: 0.002802
Mean: 12,489.596 Slowest: 6372 Mean: 0.003254

STD: 0.1291 Mean/STD: 5966 ± 324 STD: 0.0002565

Hybrid BBBC with LS [51]

Best: 12,490.439 Best: 7745 Best: 0.00559
Worst: 12,490.932 Fastest: 1924 Worst: 0.00625
Mean: 12,490.680 Slowest: 9460 Mean: 0.00626

STD: 0.1773 Mean/STD: 5652 ± 2912 STD: 0.000347

CMLPSA [51]

Best: 12,492.888 Best: 11,726
Worst: 12,493.290 Fastest: 10,338 Feasible
Mean: 12,493.081 Slowest: 12,118

STD: 0.2014 Mean/STD: 11,394 ± 935

Improved/parameterless
JAYA [54–56]

Best: 12,490.603 Best: 12,869 Best: 0.03490
Worst: 12,502.175 Fastest: 12,316 Worst: Feasible
Mean: 12,494.460 Slowest: 14,326 Mean: 0.01888

STD: 3.056 Mean/STD: 12,818 ± 601 STD: 0.01644

AHS [38]

Best: 12,497.475 Best: 16,981 Best: 0.1570
Worst: 12,777.339 Fastest: 15,063 Worst: Feasible
Mean: 12,567.441 Slowest: 21,412 Mean: 0.08363

STD: 174.716 Mean/STD: 17,130 ± 2996 STD: 0.06836

SAHS [39]

Best: 12,495.939 Best: 15,812 Best: 0.1824
Worst: 12,669.384 Fastest: 13,384 Worst: Feasible
Mean: 12,553.754 Slowest: 17,464 Mean: 0.09718

STD: 144.817 Mean/STD: 15,618 ± 1681 STD: 0.07942

BBBC-UBS [57]

Best: 12,490.035 Best: 15,250 Best: 0.05540
Worst: 12,502.346 Fastest: 13,865 Worst: Feasible
Mean: 12,497.562 Slowest: 16,198 Mean: 0.03048

STD: 4.170 Mean/STD: 14,795 ± 1141 STD: 0.02837

sinDE [58]

Best: 12,502.536 Best: 21,653 Best: 0.05880
Worst: 12,541.640 Fastest: 17,124 Worst: Feasible
Mean: 12,520.999 Slowest: 22,635 Mean: 0.03030

STD: 16.369 Mean/STD: 20,766 ± 2472 STD: 0.03017

SQP-MATLAB

Best: 12,491.400 Best: 28,198 Best: 0.05131
Worst: 12,503.300 Fastest: 24,619 Worst: Feasible
Mean: 12,498.034 Slowest: 38,410 Mean: 0.03298

STD: 5.661 Mean/STD: 30,990 ± 5957 STD: 0.03969

As far as it concerns the adaptive HS variants compared with LSSO-HHSJA, Table 2
confirms that using line search strategies that generate trial designs lying on descent
directions is far more effective than adapting only the HMCR and PAR parameters in the
context of a classical HS formulation. In fact, the best designs found by AHS [38] and
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SAHS [39] exhibited the largest constraint violations amongst the different methods as well
as the largest structural weights for the worst optimization runs.

A very important point is to limit the number of descent directions utilized to form
high quality trial designs and update population in the current iteration. The JAYA-based
Equations (14), (16) and (19) combined by LLSO-HHSJA with the line search-based HS
architecture greatly help to accomplish these tasks. Furthermore, JAYA naturally tries
to avoid low quality designs, and this reduces the probability of dealing with infeasible
regions of search space. Finally, Equations (14), (16) and (19) make it unnecessary to
perform 1-D probabilistic searches based on SA if trial designs are worse than the current
best record. Indeed, these searches were significantly reduced passing from the hybrid HS
formulation [51] to its enhanced version [53]. However, they still played some role in the
optimization process, thus complicating the practical implementation of the algorithm.

Interestingly, improved/parameterless JAYA [54–56] ranked right after LSSO-HHSJA,
hybrid HS and BBBC variants [51,53] and CMLPSA [51]. In fact, while most of the algo-
rithms listed in Table 2 converged to structural weights between 12,483.3 and 12,492.9 kg,
JAYA’s average constraint violation was only 0.01888%, much less than for BBBC-UBS [57]
(0.03048%), sinDE [58] (0.03030%) and adaptive HS [38,39] (between 0.08363 and 0.09718%).
This confirms the inherent ability of JAYA to move towards good regions of search space
but also that a sufficient number of descent directions must be considered in order to form
new trial designs of very high quality in each iteration.

LSSO-HHSJA ranked 2nd overall after hybrid BBBC [51] in terms of the average
number of required structural analyses but BBBC’s computational cost increased by almost
five times passing from NPOP = 20 to 1000: in particular, the slowest optimization run of
hybrid BBBC, corresponding to NPOP = 1000, took 9460 structural analyses vs. only 6373
analyses of LSSO-HHSJA (just one more analysis than the hybrid HS variant of Ref. [53]).
CMLPSA [51], JAYA [54–56] and BBBC-UBS [57] ranked after the hybrid HS and hybrid
BBBC algorithms and were on average two times slower than LSSO-HHSJA. Adaptive
HS [38,39] variants and sinDE [58] were the slowest metaheuristic methods and required
on average from 15,618 to 20,766 structural analyses vs. only 5806 analyses of the present
algorithm. SQP-MATLAB was considerably slower than the other optimizers and required
five times more analyses than LSSO-HHSJA. Such behavior was seen regardless of starting
SQP optimizations from very conservative or unconservative designs and can be explained
with the inherent complexity of the 200-bar truss problem that makes it difficult for SQP to
solve the approximate sub-problems built in each iteration.

The present algorithm was slightly less robust in terms of optimized weight than the
other HS, BBBC and SA methods analyzed in Refs. [51,53] but considerably less sensitive
to initial population/design than all other optimizers including SQP-MATLAB. However,
the standard deviation on optimized weight was always less than 1.4% of the best design
for all algorithms compared in this study. LSSO-HHSJA obtained the second lowest
standard deviation on the required number of structural analyses after the hybrid HS
variant of Ref. [53] but the referenced algorithm obtained slightly heavier designs that
violate displacement constraints on average by 0.003254%. Hence, the present algorithm is
also the most robust optimizer overall for the 200-bar truss design problem.

Figure 3 compares the convergence curves recorded for the best optimization runs
of LSSO-JAYA and its competitors. For the sake of clarity, the plot is limited to the first
13,000 structural analyses, and the 8000–128,000 kg structural weight range is selected for
the Y-axis. Second, the curves relative to hybrid HS variants [51,53] are averaged. Last, the
figure includes only the plot relative to the best adaptive HS method [38,39].
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It can be seen from the figure that all methods started their optimizations from initial
populations, including best individual/designs about 16 times heavier than the target
optimization weight of about 12,490 kg. However, structural weight was drastically
reduced (by about 150,000 kg) within the first 400 structural analyses by all optimizers
except hybrid BBBC with line search strategy [51]. CMLPSA [51] also utilizes line search
to perturb design but the set of descent directions considered for this purpose delivers
only one trial design at a time while LSSO-JAYA, hybrid HS and hybrid BBBC [51,53]
operate on a population of candidate solutions. Adaptive HS [38,39], BBBC-UBS [57] and
improved/parameterless JAYA [54–56] were even faster than LSSO-HHSJA between 400
and 3200 analyses but then had to penalize weight for recovering constraint violations
while the present algorithm always conducted its search in the feasible design space
and generated the best intermediate designs amongst all methods until the end of the
optimization process.

In summary, the results presented for the 200-bar problem demonstrate with no
shadow of a doubt that the LSSO-HHSJA’s selection of good descent directions is much
more effective than (i) considering a larger set of search directions that however explore
the fraction of design space covered by the current population in less detail (i.e., LSSO-
HHSJA vs. hybrid HS/BBBC with line search [51,53]) or (ii) simply escaping from the worst
design and approaching the best design stored in the current population (i.e., LSSO-HHSJA
vs. improved/parameterless JAYA [54–56]). Hence, the hybrid algorithmic formulation
implemented by LSSO-HHSJA is very effective.

4.4. Spatial 1938-Bar Tower

The second design example considered in this study is the weight minimization of the
spatial 1938-bar truss tower with 481 nodes shown in Figure 4. The tower is 285 m tall; its
layout section is a regular dodecagon at the ground level and a square at the top segment.
The numbering of nodes proceeds from structure’s top to bottom as follows: (i) Segment 1
ends into the top node 1; (ii) 25 sets of 4 nodes each, from 2-3-4-5 to 98-99-100-101, belonging
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to segments 1 and 2; (iii) 16 sets of 8 nodes each, from 102-103-104-105-106-107-108-109 to
222-223-224-225-226-227-228-229, belonging to Segment 3; (iv) 21 sets of 12 nodes each, from
230-231-232-233-234-235-236-237-238-239-240-241 to 470-471-472-473-474-475-476-477-478-
479-480-481, belonging to Segment 4. The nomenclature of segments included in the tower
is detailed in the appendix. This large-scale optimization problem included 204 sizing
variables and was originally presented in [53,54]. The Young’s modulus E of the material
is 68.971 GPa, while the mass density is 2767.991 kg/m3. Structural symmetry allows to
categorize bars into 204 groups (see Table A1 of the Appendix A) each of which includes
elements with the same cross-sectional area taken as a sizing variable.
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The tower must carry the three independent loading conditions listed in Table 3. The
first loading condition presents concentrated forces at all free nodes acting downward;
force magnitude increases from top to bottom of the structure: the total load acting on
the tower is more than 20 times larger than the gravity load corresponding to the target
structural weight. The second loading condition includes concentrated forces acting in the
X-direction; forces applied to the left side of the tower (for example, at nodes 98, 101, 228
etc.) act in the positive X-direction while forces applied to the right side of the tower (for
example, at nodes 99, 100, 224 etc.) act in the negative X-direction: hence, the resultant
forces of this loading condition bend the tower rightwards. The third loading condition
includes concentrated forces acting in the Y-direction; forces applied to the front side of
the tower (for example, at nodes 100, 101, 226 etc.) act in the positive Y-direction while
forces applied to the rear side of the tower (for example, at nodes 98, 99, 222 etc.) act in the
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negative Y-direction: hence, the resultant forces of this loading condition tend to compress
the tower about the XZ symmetry plane of the structure.

Table 3. Loading conditions acting on the 1938-bar tower.

Loading Condition 1

X None

Y None

Z

−13.5 kN @ nodes 1 through 61 (the “–“ sign indicates that concentrated forces act in the negative Z-direction);
−27 kN @ nodes 62 through 101;
−40.5 kN @ nodes 102 through 229;
−54 kN @ nodes 230 through 469.

Loading condition 2

X

+6.672 kN @ nodes 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57,
58, 61, 62, 65, 66, 69, 70, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188,
196, 204, 220, 228, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467;
−4.448 kN @ nodes 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56,
59,60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 104, 112, 120, 128, 136, 144, 152, 160,
168, 176, 184, 192, 200, 208, 216, 224, 233, 245, 257, 269, 281, 293, 305, 317, 329, 341, 353, 365, 377, 389, 401, 413,
425, 437, 449, 461 (the “–“ sign indicates that concentrated forces act in the negative X-direction).

Y None

Z None

Loading condition 3

X None

Y

−4.448 kN @ nodes 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55,
58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 110, 118, 126, 134, 142, 150, 158,
166, 174, 182, 190, 198, 206, 214, 222, 230, 242, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422,
434, 446, 458 (the “–“ sign indicates that concentrated forces act in the negative Y-direction);
+4.448 kN @ nodes 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57,
60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 106, 114, 122, 130, 138, 146, 154,
162, 170, 178, 186, 194, 202, 210, 218, 226, 236, 248, 260, 272, 284, 296, 308, 320, 332, 344, 356, 368, 380, 392, 404,
416, 428, 440, 452, 464.

Z None

The optimization problem has 20,070 non-linear constraints on nodal displacements,
member stresses and critical buckling loads. Displacements of free nodes in the X, Y,
Z directions must not exceed ±40.64 cm (i.e., ±16 in). The allowable tensile stress is
275.9 MPa (i.e., 40,000 psi). The buckling strength of the jth element of the structure is
−100.01πEAj/8lj2 as the tower includes tubular elements with a nominal diameter to
thickness ratio of 100. Cross-sectional areas vary between 0.64516 and 1290.32 cm2 (i.e.,
between 0.1 and 200 in2).

The optimization results obtained for the 1938-bar tower design example are presented
in Table 4. LSSO-HHSJA’s optimization runs were carried out for NPOP = 20 and 500 in
order to have a fair comparison with the hybrid HS, hybrid BBBC and HFSA algorithms of
Ref. [53] and the improved JAYA algorithm of Ref. [54]. No data are listed in the table for
sinDE [58] and SQP-MATLAB as those algorithms could not find satisfactory designs. In
particular, sinDE’s best record after 104,000 structural analyses still weighted about 111.4
ton (i.e., more than 10 ton heavier than the optimized designs achieved by its competitors)
and violated displacement constraints by about 1%. SQP-MATLAB could not complete a
single loop optimization successfully and was hence alternated with SQP-DOT. However,
after about 25,000 structural analyses, the SQP’s current best record was still heavier than
the feasible solutions obtained by all metaheuristic algorithms compared in Table 4 (i.e.,
about 101.5 kg vs. at most 101.120 kg) and violated constraints by 0.258%.
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Table 4. Optimization results obtained for the 1938-bar tower design example.

Optimized Weight (ton) Number of Structural Analyses Constraint Violation (%)

LSSO-JAYA
Present

Best: 98.822 Best: 7529
FeasibleWorst: 98.860 Worst: 7780

Mean/STD: 98.832 ± 0.01980 Mean/STD: 7680 ± 284

Hybrid HS with LS
[53]

Best: 100.008 Best: 7931
FeasibleWorst: 100.240 Worst: 8694

Mean/STD: 100.147 ± 0.467 Mean/STD: 8395 ± 657

Hybrid BBBC with LS
[53]

Best: 99.164 Best: 8167
FeasibleWorst: 99.225 Worst: 9655

Mean/STD: 99.179 ± 0.02687 Mean/STD: 8861 ± 526

HFSA
[53]

Best: 99.794
FeasibleWorst: 101.251 13201 ± 598

Mean/STD: 100.523 ± 0.516

Improved JA
[54]

Best: 99.255 Best: 20,051
FeasibleWorst: 99.265 Worst: 21,980

Mean/STD: 99.263 ± 0.003536 Mean/STD: 21,136 ± 843

AHS
[38]

Best: 100.750 Best: 19,139
FeasibleWorst: 103.421 Worst: 17,184

Mean/STD: 101.919 ± 1.653 Mean/STD: 18,394 ± 1134

SAHS
[39]

Best: 100.120 Best: 15,437
FeasibleWorst: 104.368 Worst: 14,297

Mean/STD: 102.623 ± 2.188 Mean/STD: 15,201 ± 1383

BBBC-UBS
[57]

Best: 101.120 Best: 17,461
FeasibleWorst: 102.628 Worst: 19,980

Mean/STD: 101.335 ± 0.3033 Mean/STD: 18,930 ± 666

SLP-DOT 102.789 12,310 Feasible

It can be seen from Table 4 that LSSO-HHSJA was the best algorithm also in this design
example because it converged to the global minimum weight of 98.822 kg within only
7529 structural analyses. All metaheuristic algorithms found a feasible solution ranking in
the following order in terms of optimized weight: LSSO-HHSJA, hybrid BBBC with line
search [53], improved JAYA [54], HFSA [53], hybrid HS with line search [53], SAHS [39],
AHS [38] and BBBC-UBS [57]. In particular, structural weight increased by about 2.33%
passing from the present algorithm to BBBC-UBS.

The computational cost of optimization process varied much more significantly than
structural weight: from the 7529 structural analyses required by the present algorithm
to the 20,051 analyses required by improved JAYA [54]. In general, the optimizers that
implemented more sophisticated line search strategies such as LSSO-HHSJA, hybrid HS
and hybrid BBBC [53], HFSA [53] and improved JAYA [54] outperformed their competitors.
Interestingly, improved JAYA was about 2.7 times slower than LSSO-HHSJA, while hybrid
HS and hybrid BBBC were at most 15% slower than the present algorithm. This is a
direct consequence of the fact that improved JAYA actually worked with a simplified line
search strategy comparing each trial design Xk

new only with its counterpart design Xk
pre

of the current population. Conversely, hybrid HS and hybrid BBBC always considered a
rather large set of descent directions to form a new trial design XTR. Parameter adaptation
confirmed itself definitely less effective than line search strategy. In fact, the AHS [38] and
SAHS [39] algorithms exhibited the largest average weights and the heaviest worst designs
over the independent optimization runs.

LSSO-HHSJA was also the most robust optimizer overall with the lowest standard
deviations on optimized weight and required number of structural analyses. As expected,
adaptive HS variants [38,39] were characterized by the largest statistical dispersions on
structural weight and computational cost. This is fully consistent with the fact that AHS [38]
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and SAHS [39] are inherently more sensitive than LSSO-HHSJA to the sequence of gener-
ated random numbers in the search process. In fact, while SAHS and AHS, respectively,
need NDV or (NDV + 2) random numbers to form a new trial design in the current it-
eration, LSSO-HHSJA may need up to (NDV + 2) + 2 × NDV × (NPOP − 2) random
numbers because the new trial design must also be evaluated according to the four cases
described in Section 3.2. Hence, LSSO-HHSJA may dispose of a much larger number of
optimal combinations of random numbers than SAHS and AHS and this makes the present
algorithm less sensitive to independent optimization runs.

Convergence curves of the best optimization runs executed for the algorithms listed
in Table 4 are compared in Figure 5. Again, the plot is limited to the first 13,000 structural
analyses for the sake of clarity while the 50–650 ton weight range is represented for the
Y-axis; the figure includes only the plot relative to the best adaptive HS method [38,39].
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Interestingly, LSSO-HHSJA generated better intermediate designs than the hybrid HS
with line search [53] throughout optimization process. Adaptive HS was initially faster than
the present algorithm, but such a fast weight reduction resulted in the presence of several
steps in the convergence curve with marginal improvements in design. LSSO-HHSJA
recovered the weight gap with respect to adaptive HS within only 3000 structural analyses.
Hybrid fast SA [53] and improved JAYA [54] were the most competitive algorithms with
LSSO-HHSJA but they soon reduced their structural weight reduction rates crossing the
LSSO-HHSJA’s best run convergence curve after about 4850 and 5150 analyses, respectively.
SLP-DOT soon generated infeasible designs and had to penalize weight in order to recover
constraint violation.

4.5. Spatial 3586-Bar Truss Tower

The last design example is the weight minimization of the spatial 3586-bar tower with
897 nodes shown in Figure 6. This large-scale optimization problem, originally presented
in [51], has 280 sizing variables. Material properties are the same as in the 1938-bar tower
problem. Structural symmetry allows to categorize bars into 280 groups (see Figure A1 and
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Table A1 of the Appendix A) each of which includes elements with the same cross-sectional
area taken as a sizing variable.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 34 
 

389, 401, 413, 425, 437, 449, 461, 473, 486, 502, 518, 534, 550, 566, 582, 598, 606, 622, 638, 654, 670, 686, 702, 
718, 734, 750, 766, 782, 798, 814, 830, 846, 862, 878 (the “–“ sign indicates that concentrated forces act in the neg-
ative X-direction). 

Y None 
Z None 

Loading condition 3 
X None 

Y 

−4.448 kN @ nodes 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 
55, 58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 110, 118, 126, 134, 142, 
150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 242, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 
398, 410, 422, 434, 446, 458, 470, 482, 498, 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 690, 706, 722, 
738, 754, 770, 786, 802, 818, 834, 850, 866 (the “–“ sign indicates that concentrated forces act in the negative Y-
direction);  
+4.448 kN @ nodes 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 
57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 106, 114, 122, 130, 138, 
146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 236, 248, 260, 272, 284, 296, 308, 320, 332, 344, 356, 368, 
380, 392, 404, 416, 428, 440, 452, 464, 476, 490, 506, 522, 538, 554, 570, 586, 602, 618, 634, 650, 666, 682, 698, 
714, 730, 746, 762, 778, 794, 810, 826, 842, 858, 874. 

Z None 

 
Figure 6. Schematic of the spatial 3586-bar tower (representative story and junction numbers also 
are shown): (a) Assembly view; (b) Color view of the five segments and three junction modules 
included in the structure; (c) Transition from the top of the tower to segment 1 (top of the struc-
ture); (d,e) Transitions between segments 2 and 3, and between segments 3 and 4 (center of the 

Figure 6. Schematic of the spatial 3586-bar tower (representative story and junction numbers also are shown): (a) Assembly
view; (b) Color view of the five segments and three junction modules included in the structure; (c) Transition from the top
of the tower to segment 1 (top of the structure); (d,e) Transitions between segments 2 and 3, and between segments 3 and
4 (center of the structure); (f) Transition between segments 4 and 5 (bottom of the structure); (g) Layout view indicating
key-nodes.

The tower is 415 m tall, includes five segments and three junction modules; its layout
section is a regular hexadecagon at the ground level and a square at the top segment. In
Figure 6b, the segments of the structure are represented in different colors. Figure 6c–f
clarifies the storey numbering, progressing from the top to the bottom of the structure.
The layout view of Figure 6g indicates the nodes limiting the tower cross-sections for the
different segments. Node and element group numbering increases from the top to the
bottom of the structure.

The square-based pyramid “Segment 1” includes element groups 1 through 57; the
square-based prismatic “Segment 2” groups 58 through 97; group 98 connects segments 1
and 2; the octagon-based prismatic “Segment 3” includes groups 99 through 143; group 144
connects segments 3 and 4; the dodecagon-based prismatic “Segment 4” includes groups
145 through 204; group 205 connects segments 4 and 5; the hexadecagon-based prismatic
“Segment 5” includes groups 206 through 280.
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It can be seen from Figure 6g that the node numbering is the same as for the 1938-bar
tower up to node 481. The tower is then completed by 25 sets of 16 nodes each, from
482-483-484-485-486-487-488-489-490-491-492-493-494-495-496-497 to 882-883-884-885-886-
887-888-889-890-891-892-893-894-895-896-897, belonging to Segment 5.

The tower must carry the three independent loading conditions listed in Table 5. The
explanation given in Section 4.4 holds true also for the 3586-bar structure. However, the
total load acting on the tower (i.e., about 4862 ton) now is about 15 times larger than the
gravity load corresponding to the target structural weight. In the second loading condition,
forces acting in the positive X-direction on the left side of the tower are applied, for example,
at nodes 98, 101, 228, 479, etc.; forces acting in the negative X-direction on the right side
of the tower are applied, for example, at nodes 99, 100, 224, 473, etc. In the third loading
condition, forces acting in the positive Y-direction on the front side of the tower are applied,
for example, at nodes 100, 101, 226, 476, etc.; forces acting in the negative Y-direction on the
rear side of the tower are applied, for example, at nodes 98, 99, 222, 470, etc.

Table 5. Loading conditions acting on the 3586-bar tower.

Loading Condition 1

X None

Y None

Z

−13.5 kN @ nodes 1 through 61 (the “–“ sign indicates that concentrated forces act in the negative Z-direction);
−27 kN @ nodes 62 through 101;
−40.5 kN @ nodes 102 through 229;
−54 kN @ nodes 230 through 481;
−67.5 kN @ nodes 482 through 881.

Loading condition 2

X

+6.672 kN @ nodes 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57,
58, 61, 62, 65, 66, 69, 70, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180,
188, 196, 204, 220, 228, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455,
467, 479, 494, 510, 526, 542, 558, 574, 590, 606, 622, 638, 654, 670, 686, 702, 718, 734, 750, 766, 782, 798, 814, 830,
846, 862, 878;
−4.448 kN @ nodes 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56,
59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 104, 112, 120, 128, 136, 144, 152,
160, 168, 176, 184, 192, 200, 208, 216, 224, 233, 245, 257, 269, 281, 293, 305, 317, 329, 341, 353, 365, 377, 389, 401,
413, 425, 437, 449, 461, 473, 486, 502, 518, 534, 550, 566, 582, 598, 606, 622, 638, 654, 670, 686, 702, 718, 734, 750,
766, 782, 798, 814, 830, 846, 862, 878 (the “–“ sign indicates that concentrated forces act in the negative X-direction).

Y None

Z None

Loading condition 3

X None

Y

−4.448 kN @ nodes 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55,
58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 110, 118, 126, 134, 142, 150, 158,
166, 174, 182, 190, 198, 206, 214, 222, 230, 242, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422,
434, 446, 458, 470, 482, 498, 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 690, 706, 722, 738, 754, 770, 786,
802, 818, 834, 850, 866 (the “–“ sign indicates that concentrated forces act in the negative Y-direction);
+4.448 kN @ nodes 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57,
60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 106, 114, 122, 130, 138, 146, 154,
162, 170, 178, 186, 194, 202, 210, 218, 226, 236, 248, 260, 272, 284, 296, 308, 320, 332, 344, 356, 368, 380, 392, 404,
416, 428, 440, 452, 464, 476, 490, 506, 522, 538, 554, 570, 586, 602, 618, 634, 650, 666, 682, 698, 714, 730, 746, 762,
778, 794, 810, 826, 842, 858, 874.

Z None

The optimization problem includes 37,374 non-linear constraints on nodal displace-
ments, member stresses and critical buckling loads using the same limits defined for the
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1938-bar tower problem. Side constraints on sizing variables also coincide with those of
the previous design example.

Table 6 presents the results obtained for the 3586-bar tower design example. LSSO-
HHSJA’s optimization runs were carried out for NPOP = 20 and NPOP = 500 for two
reasons: (i) to have statistically more significant results than Ref. [51], which illustrated
only the case NPOP = 500; (ii) to make optimization runs of adaptive HS variants [38,39],
improved/parameterless JAYA [54–56], BBBC-UBS [57] and sinDE [58] computationally
affordable as the computational cost of those algorithms is proportional to the population
size NPOP. In regard to issue (i), the hybrid HS, hybrid BBBC and HFSA algorithms of [53]
were used to solve this test problem as none of the metaheuristic algorithms described in
Ref. [51] could find a feasible solution. In regard to issue (ii), by setting NPOP = 20 and
a computational budget of 20,000 structural analyses, it was possible to complete up to
1000 optimization iterations for adaptive HS and sinDE, and about 2000 iterations for the
improved/parameterless JAYA and BBBC-UBS algorithms. The selected 20,000 analyses
computational budget is consistent with the data listed in Table 4 for the 1938-bar tower,
a similar structure yet with about one-half nodes/elements than the 3586-bar tower. The
largest fraction of computation time entailed by a single structural analysis of a 3D truss
structure is associated with the inversion of the global stiffness matrix [K] to solve the
linear system {F} = [K]{u}: this operation was found to be four times more expensive for the
3586-bar tower.

Table 6. Optimization results obtained for the 3586-bar tower design example.

Optimized Weight (ton) Number of Structural Analyses Constraint Violation (%)

LSSO-JAYA Present

Best: 323.175 Best: 10,997

FeasibleWorst: 323.722 Worst: 11,753

Mean/STD: 323.287 ± 0.158 Mean/STD: 11,262 ± 534

Hybrid HS with LS [51] 325.381 11,312 0.06110

Hybrid HS with LS [53]

Best: 323.611 Best: 11,504 Best: 0.03679

Worst: 324.794 Worst: 12,046 Worst: 0.02170

Mean/STD: 324.202 ±
0.4358 Mean/STD: 11,904 ± 628 Mean/STD: 0.0317 ±

0.00986

Hybrid BBBC with LS [51] 325.980 14,616 0.06180

Hybrid BBBC with LS [53]

Best: 324.246 Best: 12,356 Best: 0.02376

Worst: 325.752 Worst: 13,403 Worst: 0.03750

Mean/STD: 325.299 ±
0.5607 Mean/STD: 13,295 ± 789 Mean/STD: 0.0269 ± 0.0104

CMLPSA [51] 326.185 16,240 0.105

HFSA [53]

Best: 323.567

Feasible
Worst: 325.329 14,466 ± 565

Mean/STD: 324.385 ±
0.4283

Improved/parameterless JA
[54–56]

Best: 323.977

FeasibleWorst: 324.431 Computational budget: 20,000
structural analyses

Mean/STD: 324.130 ± 0.287

BBBC-UBS [57]

Best: 325.097

FeasibleWorst: 327.681 Computational budget: 20,000
structural analyses

Mean/STD: 325.541 ± 1.083

SLP-MATLAB & DOT 326.278 16,480 Feasible

No data are listed in Table 6 for adaptive HS variants [38,39] and sinDE [58] because
the best candidate designs included in the population after 20,000 structural analyses still
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were between 10% and 15% heavier than the optimum design found by LSSO-HHSJA and
violated displacement constraints by an amount between 3% and 5%. Once again, using
parameter adaptation without any line search strategy does not allow to efficiently solve
large structural optimization problems.

LSSO-HHSJA was once again the most efficient optimizer overall converging to the
lowest structural weight of 323.175 ton, within the smallest number of structural analyses,
10,997. The hybrid HS and hybrid BBBC variants including line search strategies and 1-D
probabilistic search developed in [53] found lighter designs than those reported in [51] also
reducing constraint violations. HFSA [53] totally outperformed CMLPSA [51] converging
to a lighter feasible design, very close to the global optimum found by the present algorithm
(i.e., 323.567 vs. 323.175 ton). Hence, HFSA should be considered the 2nd best optimizer
overall after LSSO-HHSJA.

Improved/parameterless JAYA [54–56] and BBBC-UBS [57] also found feasible solu-
tions, lighter than those quoted in [51] for hybrid HS, hybrid BBBC and CMPLSA, but
their optimization runs were always stopped before reaching a fully converged solution
in the sense of Equation (20). However, improved/parameterless JAYA’s design was only
0.248% heavier than the global optimum found by LSSO-HHSJA. This confirms the utility
of integrating JAYA-based operators in a harmony search architecture. BBBC-UBS [57] also
reached a rather satisfactory performance (i.e., feasible solution with only 0.595% weight
penalty with respect to LSSO-HHSJA) but was outperformed by improved/parameterless
JAYA [54–56], which adopts a very similar elitist strategy as BBBC-UBS to accept/reject
new trial designs but has the inherent capability to move towards the best design of the
population and move away from the worst design.

SQP also converged to a feasible solution that is about 1% heavier than the best design
found by LSSO-HHSJA. However, the rate of success of this gradient-based algorithm was
rather low and less than 10% of the different optimization runs started from each of the 500
designs included in the LSSO-HHSJA’s initial population converged to feasible designs
lighter than 330 ton. The average constraint violation was of the order of 0.15%, similar to
that reported in [51] for SQP.

Similar to that seen for the 200-bar truss and 1938-bar tower problems, the number of
structural analyses varied more significantly than the optimized weight passing from one
algorithm to another. HFSA [53] was on average about 30% slower than LSSO-HHSJA while
improved/parameterless JAYA [54–56] and BBBC-UBS [57] were about two times slower
than the present algorithm. Multiple line searches put in the context of a population-based
search appear to be the most efficient approach to handle the complex design spaces with
many design variables and nonlinear constraints that characterize large-scale structural
optimization problems.

LSSO-HHSJA presented the lowest standard deviations on optimized weight and
required structural analyses. All of the algorithms compared in Table 6 were actually
robust and the ratio between standard deviation on optimized weight and average opti-
mized weight never exceeded 0.34%. This confirms the validity of the selected competi-
tors of LSSO-HHSJA that provide effective information on the real performance of the
proposed algorithm.

Optimal values of sizing variables determined for the three design examples were
not listed in the results tables for the sake of brevity. In the spatial towers examples,
cross-sectional areas of bars increased from top to bottom of each segment thus realizing
uniform stiffness designs. Each segment contributed to the total structural weight by the
same extent regardless of having 3586 or 1938 elements in the tower. The bottom segment
(i.e., respectively, “5” and “4” for the 3586-bar and 1938-bar towers) counted by almost
50% of the total weight. For example, Figure 7 compares the optimized cross-sections by
LSSO-HHSJA and its competitors for the 3586-bar tower problem. Distributions relative to
hybrid HS/BBBC variants with line search of [51,53] are averaged for the sake of clarity.



Appl. Sci. 2021, 11, 3270 28 of 34

Appl. Sci. 2021, 11, x FOR PEER REVIEW 28 of 34 
 

It can be seen from Figure 7 that cross-sectional areas of each segment are distributed 
in fashion of “oscillating waves” between very small and very large areas. Values of large 
areas tend to increase from the top to the bottom of the segment while values of small 
areas tend to be constant. In particular, the SQP’s design is characterized by linearly in-
creasing element areas towards the bottom of each segment while the other members are 
sized at their minimum gage. Interestingly, optimal cross-sectional areas of LSSO-HHSJA 
and HFSA [53] are much closer to the SQP’s area distribution than those of the hybrid 
HS/BBBC variants [51,53]. The linearly increasing areas realize the uniform stiffness pro-
file required by the second loading condition acting on the tower. 

 
Figure 7. Optimized cross-sectional areas of the 3586-bar tower. 

Convergence curves for this optimization problem are shown in Figure 8, where the 
plot is limited to the first 16,000 structural analyses and the 200–3000 ton weight range is 
represented for the Y-axis. The figure does not include the optimization histories of im-
proved/parameterless JAYA [54–56] and BBBC-UBS [57] algorithms as these curves lie 
well above the one relative to hybrid BBBC with line search of Ref. [51]. This is a direct 
consequence of the low ratio (i.e., less than 0.1) between population size and number of 
optimization variables determined for NPOP = 20. Although convergence behavior of im-
proved/parameterless JAYA was proven to be insensitive to population size in many stud-
ies, including the results presented here, it is a matter of fact that this algorithm (as well 
as BBBC-UBS) attempts to replace candidate designs one by one without discharging Xworst 
before all of the NPOP = 20 designs were perturbed in the current iteration. Such a strategy 
may lead to too many analyses being performed, especially when there is a large set of 
optimization variables that drive the search process. For example, the bottom segments 
“4” or “5” include between 27% and 30% of the total number of design variables and count 
by 50% of the structural weights of the two towers. 

It can be seen that LSSO-HHSJA again generated better intermediate designs than 
hybrid HS with line search [51,53] throughout optimization process. The significant im-
provement in convergence behavior seen for the hybrid HS and hybrid BBBC variants of 
Ref. [53] over the formulations of [51] was due both to having enhanced the line search strat-
egy and carried out independent optimization runs to have statistically significant results. 

Figure 7. Optimized cross-sectional areas of the 3586-bar tower.

It can be seen from Figure 7 that cross-sectional areas of each segment are distributed
in fashion of “oscillating waves” between very small and very large areas. Values of large
areas tend to increase from the top to the bottom of the segment while values of small areas
tend to be constant. In particular, the SQP’s design is characterized by linearly increasing
element areas towards the bottom of each segment while the other members are sized
at their minimum gage. Interestingly, optimal cross-sectional areas of LSSO-HHSJA and
HFSA [53] are much closer to the SQP’s area distribution than those of the hybrid HS/BBBC
variants [51,53]. The linearly increasing areas realize the uniform stiffness profile required
by the second loading condition acting on the tower.

Convergence curves for this optimization problem are shown in Figure 8, where the
plot is limited to the first 16,000 structural analyses and the 200–3000 ton weight range
is represented for the Y-axis. The figure does not include the optimization histories of
improved/parameterless JAYA [54–56] and BBBC-UBS [57] algorithms as these curves lie
well above the one relative to hybrid BBBC with line search of Ref. [51]. This is a direct
consequence of the low ratio (i.e., less than 0.1) between population size and number
of optimization variables determined for NPOP = 20. Although convergence behavior of
improved/parameterless JAYA was proven to be insensitive to population size in many
studies, including the results presented here, it is a matter of fact that this algorithm (as
well as BBBC-UBS) attempts to replace candidate designs one by one without discharging
Xworst before all of the NPOP = 20 designs were perturbed in the current iteration. Such
a strategy may lead to too many analyses being performed, especially when there is a
large set of optimization variables that drive the search process. For example, the bottom
segments “4” or “5” include between 27% and 30% of the total number of design variables
and count by 50% of the structural weights of the two towers.
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It can be seen that LSSO-HHSJA again generated better intermediate designs than
hybrid HS with line search [51,53] throughout optimization process. The significant
improvement in convergence behavior seen for the hybrid HS and hybrid BBBC vari-
ants of Ref. [53] over the formulations of [51] was due both to having enhanced the
line search strategy and carried out independent optimization runs to have statistically
significant results.

HFSA [53] was competitive with LSSO-HHSJA over the first 6400 structural analyses
(see the inset of Figure 8 showing the detail of convergence curves in the weight range from
300 to 475 ton) and the convergence curves of the two algorithms repeatedly crossed each
other before this turning point. Interestingly, the convergence trends of SA-based variants
(i.e., CMLPSA and HFSA) almost overlapped with the SQP’s trend in the early optimization
iterations. This can be explained with the informal argument that simulated annealing
develops one design at a time like SLP/SQP and CMLPSA/HFSA form their trial designs
by perturbing the current best record in the fashion XTR = XOPT + ∇WT(XOPT)(ρ ∗ δX),
which practically corresponds to a linearization with random coefficients; the “∗” symbol
denotes a new vector is defined by multiplying term by term one vector of random numbers
and one perturbation vector with respect to XOPT. This similarity becomes more evident
as the initial design of the gradient-based optimizer is close to the starting point or the best
design included in the initial population of the metaheuristic algorithm.

The SQP’s convergence curve shown in Figure 8 presents the typical steps correspond-
ing to the transition from MATLAB to DOT optimization routines, which made it possible
to reach a monotonic convergence behavior. As usual, the gradient-based optimizer re-
duced the structural weight by a great extent in the early optimization cycles and then
stepped in order to recover the constraint violation. Conversely, LSSO-HHSJA operates
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on a set of descent directions and can select the best path to remain always in the feasible
search space.

5. Conclusions

The paper presented a new hybrid metaheuristic optimization algorithm, LSSO-
HHSJA, combining the harmony search optimization (HS) and JAYA methods. LSSO-
HHSJA forms trial designs enhancing the HS architecture with multiple line searches based
on explicitly available gradient information. These line searches are then augmented by
JAYA’s based operators, which finally allow to minimize the number of structural analyses
required in the optimization process. All stages of LSSO-HHSJA attempt to generate trial
designs lying on descent directions with respect to the best individual(s) stored in the popu-
lation of the current iteration. The new algorithm developed in this study was successfully
tested in three large-scale sizing optimization problems of truss structures (i.e., planar
200-bar truss, spatial 1938-bar tower, spatial 3586-bar tower) including up to 280 sizing
variables and 37,374 nonlinear constraints. LSSO-HHSJA was very competitive with other
HS and JAYA variants, other state-of-the art metaheuristic methods (i.e., simulated anneal-
ing, big bang-big crunch and sinusoidal differential evolution), and commercially available
gradient-based optimizers (i.e., sequential quadratic programming and sequential linear
programming). Remarkably, the proposed algorithm always converged to the lowest
structural weight, obtained feasible designs, and required less structural analyses than
other HS variants that implemented line search and/or parameter adaptation strategies.

An interesting question that may arise looking at the formulation of LSSO-HHSJA is
the following. Would it be possible to “capture” the effect of each strategy implemented in
LSSO-HHSJA (i.e., the role played by each “decision” made by LSSO-HHSJA to activate
one or another available option in its formulation) on final results? A careful analysis of
the proposed algorithm reveals that all “decisions” actually are of two types: (i) to use
gradient information, mirroring strategies and line searches to generate new trial designs on
descent directions with respect to the current best record or currently selected individuals
of population; (ii) to push the search towards the best designs currently stored in the
population and at the same time escape from the worst designs. The proposed algorithm
has a highly dynamic character that efficiently integrates types (i) and (ii) throughout
optimization process. It can be concluded that the separating effects of each search strategy
implemented in LSSO-HHSJA on the final results is definitely less important than how
these strategies may concur to determine the optimal solution.

The results of this study confirmed the utility of using trial descent directions to form
new candidate solutions. This approach is more effective than simply updating the internal
parameters of HS with more or less sophisticated strategies. The JAYA’s rationale appears
very suited for the purpose as it enhances the search of descent directions by avoiding the
worst regions of design space. The generation of new trial designs hence relies only on the
best quality directions without performing unnecessary analyses. Future investigations
will regard discrete structural optimization problems also with non-explicitly available
gradients, and other structural elements such as beams and shells.

Author Contributions: All authors contributed equally to all phases involved the preparation of the
article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data on numerical optimization available upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 3270 31 of 34

Appendix A. Details of Geometry for the 1938 and 3586-Bar Towers

As mentioned in the main part of the paper, the 3586-bar tower was obtained by
adding the bottom segment to the 1938-bar tower. Hence, from the top of the spire to the
ground level, the 3586-bar tower includes: (a) a 15-storey square-based pyramid segment
of height 60 m; (b) a 10-storey square-based prismatic segment of height 40 m and side
length 5 m; (c) a 15-storey octagon-based prismatic segment of height 75 m and radius 5 m;
(d) a 20-storey dodecagon-based prismatic segment of height 100 m and radius 8 m; (e)
a 25-storey hexadecagon-based prismatic segment of height 125 m and radius 12 m. The
three intermediate modules (each is 5 m tall) of the tower, connect adjacent segments of
different profile. The 1938-bar tower includes instead only segments (a–d) as well as two
intermediate modules of height 5 m connecting segments (b) and (c), and (c) and (d).

Figure A1 illustrates in detail the segments and the connecting modules of the 3586-bar
tower. Figure A1a–g cover also the case of the 1938-bar tower. Element group numbering
progresses from the top to the bottom of the structure.

Table A1. Element grouping for the two space towers optimized in this study. Group element numbers are indicated
between parentheses. Elements shared by the two towers are typed in bold.

(1) 1–4 (41) 177–184 (81) 357–364 (121) 695–702 (161) 1231–1242 (201) 1867–1890 (241) 2723–2754
(2) 5–6 (42) 185–186 (82) 365–366 (122) 703–718 (162) 1243–1266 (202) 1891–1902 (242) 2755–2770

(3) 7–10 (43) 187–190 (83) 367–370 (123) 719–726 (163) 1267–1278 (203) 1903–1914 (243) 2771–2786
(4) 11–14 (44) 191–194 (84) 371–374 (124) 727–734 (164) 1279–1290 (204) 1915–1938 (244) 2787–2818
(5) 15–22 (45) 195–202 (85) 375–382 (125) 735–750 (165) 1291–1314 (205) 1939–1986 (245) 2819–2834
(6) 23–24 (46) 203–204 (86) 383–384 (126) 751–758 (166) 1315–1326 (206) 1987–2002 (246) 2835–2850
(7) 25–28 (47) 205–208 (87) 385–388 (127) 759–766 (167) 1327–1338 (207) 2003–2018 (247) 2851–2882
(8) 29–32 (48) 209–212 (88) 389–392 (128) 767–782 (168) 1339–1362 (208) 2019–2050 (248) 2883–2898
(9) 33–40 (49) 213–220 (89) 393–400 (129) 783–790 (169) 1363–1374 (209) 2051–2066 (249) 2899–2914

(10) 41–42 (50) 221–222 (90) 401–402 (130) 791–798 (170) 1375–1386 (210) 2067–2082 (250) 2915–2946
(11) 43–46 (51) 223–226 (91) 403–406 (131) 799–814 (171) 1387–1410 (211) 2083–2114 (251) 2947–2962
(12) 47–50 (52) 227–230 (92) 407–410 (132) 815–822 (172) 1411–1422 (212) 2115–2130 (252) 2963–2978
(13) 51–58 (53) 231–238 (93) 411–418 (133) 823–830 (173) 1423–1434 (213) 2131–2146 (253) 2979–3010
(14) 59–60 (54) 239–240 (94) 419–420 (134) 831–846 (174) 1435–1458 (214) 2147–2178 (254) 3011–3026
(15) 61–64 (55) 241–244 (95) 421–424 (135) 847–854 (175) 1459–1470 (215) 2179–2194 (255) 3027–3042
(16) 65–68 (56) 245–248 (96) 425–428 (136) 855–862 (176) 1471–1482 (216) 2195–2210 (256) 3043–3074
(17) 69–76 (57) 249–256 (97) 429–436 (137) 863–878 (177) 1483–1506 (217) 2211–2242 (257) 3075–3090
(18) 77–78 (58) 257–258 (98) 437–462 (138) 879–886 (178) 1507–1518 (218) 2243–2258 (258) 3091–3106
(19) 79–82 (59) 259–262 (99) 463–470 (139) 887–894 (179) 1519–1530 (219) 2259–2274 (259) 3107–3138
(20) 83–86 (60) 263–266 (100) 471–478 (140) 895–910 (180) 1531–1554 (220) 2275–2306 (260) 3139–3154
(21) 87–94 (61) 267–274 (101) 479–494 (141) 911–918 (181) 1555–1566 (221) 2307–2322 (261) 3155–3170
(22) 95–96 (62) 275–276 (102) 495–502 (142) 919–926 (182) 1567–1578 (222) 2323–2338 (262) 3171–3202

(23) 97–100 (63) 277–280 (103) 503–510 (143) 927–942 (183) 1579–1602 (223) 2339–2370 (263) 3203–3218
(24) 101–104 (64) 281–284 (104) 511–526 (144) 943–978 (184) 1603–1614 (224) 2371–2386 (264) 3219–3234
(25) 105–112 (65) 285–292 (105) 527–534 (145) 979–990 (185) 1615–1626 (225) 2387–2402 (265) 3235–3266
(26) 113–114 (66) 293–294 (106) 535–542 (146) 991–1002 (186) 1627–1650 (226) 2403–2434 (266) 3267–3282
(27) 115–118 (67) 295–298 (107) 543–558 (147) 1003–1026 (187) 1651–1662 (227) 2435–2450 (267) 3283–3298
(28) 119–122 (68) 299–302 (108) 559–566 (148) 1027–1038 (188) 1663–1674 (228) 2451–2466 (268) 3299–3330
(29) 123–130 (69) 303–310 (109) 567–574 (149) 1039–1050 (189) 1675–1698 (229) 2467–2498 (269) 3331–3346
(30) 131–132 (70) 311–312 (110) 575–590 (150) 1051–1074 (190) 1699–1710 (230) 2499–2514 (270) 3347–3362
(31) 133–136 (71) 313–316 (111) 591–598 (151) 1075–1086 (191) 1711–1722 (231) 2515–2530 (271) 3363–3394
(32) 137–140 (72) 317–320 (112) 599–606 (152) 1087–1098 (192) 1723–1746 (232) 2531–2562 (272) 3395–3410
(33) 141–148 (73) 321–328 (113) 607–622 (153) 1099–1122 (193) 1747–1758 (233) 2563–2578 (273) 3411–3426
(34) 149–150 (74) 329–330 (114) 623–630 (154) 1123–1134 (194) 1759–1770 (234) 2579–2594 (274) 3427–3458
(35) 151–154 (75) 331–334 (115) 631–638 (155) 1135–1146 (195) 1771–1794 (235) 2595–2626 (275) 3459–3474
(36) 155–158 (76) 335–338 (116) 639–654 (156) 1147–1170 (196) 1795–1806 (236) 2627–2642 (276) 3475–3490
(37) 159–166 (77) 339–346 (117) 655–662 (157) 1171–1182 (197) 1807–1818 (237) 2643–2658 (277) 3491–3522
(38) 167–168 (78) 347–348 (118) 663–670 (158) 1183–1194 (198) 1819–1842 (238) 2659–2690 (278) 3523–3538
(39) 169–172 (79) 349–352 (119) 671–686 (159) 1195–1218 (199) 1843–1854 (239) 2691–2706 (279) 3539–3554
(40) 173–176 (80) 353–356 (120) 687–694 (160) 1219–1230 (200) 1855–1866 (240) 2707–2722 (280) 3555–3586
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Figure A1. Details of element group numbering for the spatial 3586-bar truss tower: (a) Top-level storey of the square-
based pyramid segment; (b) Second storey from the top of the tower; (c) Top-level storey of the square-based prismatic 
segment; (d) Transition from the bottom level-storey of the square-based prismatic segment to the top-level storey of the 
octagon-based prismatic segment; (e) Top-level storey of the octagon-based prismatic segment; (f) Transition from the 
bottom-level storey of the octagon-based prismatic segment to the top-level storey of the dodecagon-based prismatic seg-
ment; (g) Top-level storey of the dodecagon-based prismatic segment; (h) Transition from the bottom-level storey of the 
dodecagon-based prismatic segment to the top-level storey of the hexadecagon-based prismatic segment; (i) Top-level 
storey of the hexadecagon-based prismatic segment. 
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Figure A1. Details of element group numbering for the spatial 3586-bar truss tower: (a) Top-level storey of the square-based
pyramid segment; (b) Second storey from the top of the tower; (c) Top-level storey of the square-based prismatic segment; (d)
Transition from the bottom level-storey of the square-based prismatic segment to the top-level storey of the octagon-based
prismatic segment; (e) Top-level storey of the octagon-based prismatic segment; (f) Transition from the bottom-level storey of
the octagon-based prismatic segment to the top-level storey of the dodecagon-based prismatic segment; (g) Top-level storey
of the dodecagon-based prismatic segment; (h) Transition from the bottom-level storey of the dodecagon-based prismatic
segment to the top-level storey of the hexadecagon-based prismatic segment; (i) Top-level storey of the hexadecagon-based
prismatic segment.
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