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Highlights

A theoretical model for multi-layer jamming systems

Fabio Caruso, Giacomo Mantriota, Luciano Afferrante, Giulio Reina

• A theoretical model to predict stiffness change in multi-layer jamming
structure is presented

• The model captures the nonlinear behavior with a piecewise linear ap-
proximation

• Analytical predictions are in a good agreement with FEM simulations

• Force and deflection at full-slip increase with friction coefficient and
vacuum pressure

• Deflection at full-slip is independent of the number of layers
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Abstract

On-demand stiffening methods are receiving increasing attention from the
soft robotics community, due to the need of both flexibility and stiffness in
many applications. Among the various methods, jamming-based techniques
became very popular thanks to features such as fast and reversible transition
between flexible and rigid states and easy fabrication. However, an analytical
model of these structure, taking into account the nonlinearities involved in
the change in stiffness, is a challenging task. In this effort, we propose an
analytical model for predicting the change in the bending stiffness of a multi-
layer jamming structure. We then compare our model with finite elements
simulations, showing a very good agreement. The proposed model captures
the intrinsic mechanics of these systems and provides a powerful tool for
properly design their response to meet the requirement needed for a specific
application.

Keywords: Multi-layer jamming, theoretical model, variable stiffness,
controllable stiffness, wearable robotics, soft robotics, vacuum jamming

1. Introduction

Inspired by nature, in the past years, many researchers focused their at-
tention on controlling mechanical properties on-demand [1]. This is particu-
larly crucial in the field of soft robotics where both flexibility and stiffness are
required in many applications [2][3][4], including minimally invasive surgery
(MIS) [5], rehabilitation [6], exoskeletons [7], haptic interfaces [8], soft grip-
pers [9], locomotion [10] and aerospace [11].
Stiffness modulation have been demonstrated using different strategies, for
example thermal activation [12], electric[13] or magnetic field stimulation
[14]. However, jamming-based methods are gaining increasing attention due
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to their specific characteristics: fast and reversible transition between flex-
ible and rigid states almost without a change in volume, cost-effectiveness,
easy fabrication, easy to scale and lightweight [15][16][17][18]. Layer jamming
typically consists of layers of compliant materials, such as sheets of paper or
plastic (PET), placed in a airtight bag and connected to a vacuum regulator
[19][20]. In these structures, the change in stiffness is governed by the slip at
the interfaces between the layers [21][22][23]. The response of the structure
to an external load can be divided in three major phases: a pre-slip phase, a
partial-slip phase and a full-slip phase, as shown in Figure 1.

While this behavior has been studied and analytically modeled for a two-
layer jamming structure [24], to the best of author’s knowledge no studies
presented an analytical model extended to the case of an arbitrary number
of layers, which are the structures used in real-world applications. In this
work, we propose a simple analytical 2D model based on a piecewise linear
approximation to reproduce the response of a multi-layer jamming structure
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Figure 1: Schematic representation of the three deformation phases experienced by a
multi-layer jamming structure.
a) Pre-slip phase, in which the bending stiffness is maximal and there is no-slip at the
interfaces between the layers.
b) Partial-slip phase, in which some interfaces starts to slip, causing a progressive reduction
in the bending stiffness.
c) Full-slip phase, in which all the layers are in slip causing the bending stiffness to be
minimal.
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when subjected to a 3-point bending test. The predictions of our analytical
model were then compared with the results of 2-D finite element simulation,
showing a good agreement. As the number of layers increases, the compu-
tational cost of the finite element simulations can be very expensive, thus
an analytical model is extremely important because enables researchers to
rapidly and accurately predict the response of these structures. Finally, we
have analyzed the effect of the main design parameters (i.e., number of layers,
vacuum pressure and coefficient of friction) on the bending stiffness of the
structure in all the three deformation phases, which provide important infor-
mation for mechanical optimization of materials, dimensions and operating
conditions that are extremely useful in many applications, such as rehabili-
tation devices, exoskeletons and soft grippers [25].
The paper is organized as follows. We first present the derivation of the
analytical model with all the assumptions in Section 2. In the same section
we present the formulation of the finite element method used to validate the
proposed model. Then in Section 3 our analytical predictions are compared
with the results of finite element simulations. Finally Section 4 contains the
conclusions.

2. Methods

2.1. Analytical modelling

Consider a layer-jamming structure with an arbitrary number of layers
n, subjected to a 3-point bending test. Let the structure be subjected to
a vacuum pressure p. As the load F increases, the structure experiences
three different deformation phases Figure 1: a) A pre-slip phase, in which
the longitudinal shear stress at the interfaces between layers remains below
the static friction limit (µP ). b) A partial-slip phase, in which the structure
can be considered divided in two parts. An external cohesive region, where
the longitudinal shear stress at the interfaces between two adjacent layers
remains below the friction limit, and an internal slip region where the longi-
tudinal shear stress at the interfaces equals the maximum admissible shear
stress. As a result, layers in the internal region are in slip while those of the
external region remains in stick regime. c) A full-slip phase, in which all the
layers are in slip. Depending on the deformation phase, the stiffness of the
structure will be different. To describe this behavior, we assume that the
layers height is considerably smaller than its length and width, the structure
undergoes small deflections, and the deformations are restricted to the xy
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plane. Therefore, we model the layers using the Euler-Bernoulli beam the-
ory, as this is a commonly adopted model for this problem [24][26] . Also, we
neglect edge effects and interactions between layers and the membrane and
we assume that the coefficient of friction µ and the pressure p are constant
along the interfaces. Under this assumption, the relationship between the
deflection at the center of the structure w and the applied load F is given
by the well known formula

w =
FL3

48EI
(1)

where E is the Young’s modulus of the layers, I is the second moment of
area and L is the length of the structure. During the pre-slip and full-slip
phases, the value of I is already known in literature and can be expressed by

Ipre−slip =
b(nh)3

12
(2)

Ifull−slip =
nbh3

12
(3)

where b and h are the width and the height of a single layer and n is
the total number of layers. However, to the best of author’s knowledge,
no studies investigated the computation of the bending stiffness during the
partial-slip phase and the critical transverse loads at which slip occurs.
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Figure 2: Schematic representation of the transverse loads, axial and longitudinal shear
stresses in a four-layer jamming structure. F0 is the transverse load at which layers 2 and
3 start to slip. F1, instead, is the additional transverse force needed to cause slip between
layers 1-2 and 3-4.
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2.1.1. 4-Layer-jamming structure

First let us consider the four layer-jamming structure shown in Figure 2.
Due to the load and geometry symmetry, we put our attention only on one
half of the structure. As already mentioned, in the pre-slip phase, the whole
structure behaves as a single beam. Therefore, the relationship between the
resultant moment at each cross-section and the axial stress distribution is
given by the Navier equation,

σ(x, y) =
yM (x)

Ipre−slip
(4)

where M(x) = F(L/2-x)/2 is the resultant moment and y is the distance
from the neutral axis. As the load F increases the longitudinal shear stress at
the interfaces will rise as a consequence. According to the Jourasky formula
applied to rectangular cross-sections, the maximum shear stress occurs at
the central interface and is given by

τslip =
3F0

2A
(5)

where F0 is the maximum load before slip occurs and A = 4bh is the
cross-section area. As the maximum possible shear stress at the interfaces is
equal to the frictional limit (µp), the value of F0 can be expressed as

F0 =
2µ pA

3
(6)

The corresponding maximum value of the axial stress σ0 occurs at x = 0,
y = 2h ,F = 2F0, i.e.,

σ0 = σ(0, 2h) =
3F0 L

16 b h2
(7)

Equation (5) can be also expressed as a function of σ0 indeed, from the
static equilibrium of the upper half of the beam along the x-axis we obtain

τslip = µp =
2σ0 h

L
(8)

When the transverse load reaches the critical value F0, the interface be-
tween layers 2 and 3 starts to slip. For successive load enhancements, we
can assume that the structure is divided in two beams which experience the
same deflection and are subjected to the same stress state. The axial stress
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distribution, in this case, could be seen as the sum of the distribution in
the pre-slip phase, caused by F0, and the distribution generated by an ad-
ditional force, (as shown in Figure 2). As the transverse load increases, the
longitudinal shear stress between the interfaces that are still in full stick will
grow. In order to find the value of the additional force F1 that causes slip,
we need to derive an expression for the longitudinal shear stress at the inter-
faces between layers 1-2 and 3-4 as a function of σ0 and σ1. Solving the static
equilibrium of layers 1 and 4 along the longitudinal direction, we obtain

τ1−2 = τ3−4 =
h

L
(σ0 + 2σ1) (9)

Equating (8) and (9) and solving for σ1, we get σ1 = σ0/2 and hence in
terms of the external transverse loads

F1 =
F0

4
(10)

Table 1 and Figure 3 summarizes the relationships between the applied
load F, the second moment of area I and the deflection at the center of the
structure w, during the three deformation phases.

Pre-slip Partial-slip Full-slip

F F < 2F0 2F0 < F < 2 (F1 + F0) F > 2 (F0 + F1)

I Ipre−slip = b (4h)3

12
Ipartial−slip = 2b (2h)3

12
Ifull−slip = 4b h3

12

w w = FL3

48EIpre−slip
w = (F−2F0)L3

48EIpartial−slip
w = (F−2(F0+F1))L3

48EIfull−slip

Table 1: Relationships between the applied load F, the second moment of area I and
the deflection at the center of the structure w, during the three deformation phases of a
four-layer jamming structure
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Figure 3: A conceptual representation of the force versus deflection relation for a four-layer
jamming structure subjected to a three-point bending test

2.1.2. n-Layer-jamming structure

Consider a more general case, in which the number of layers n is an
arbitrary even number. Due to the symmetry of the problem after the first
slip, we can further simplify the formulation considering only the upper half
of the structure. Compared to the previous case, there are multiple interfaces
at which the slip could occur. In order to determine the first interface that
reaches the frictional limit we need to calculate the longitudinal shear stress
τ(0, y) at the cross section x=0 by solving the static equilibrium along the
longitudinal direction for a generic portion of the structure of length L/2 and
height H-y, which returns

τ(0, y) =
σ0 + 2σ1y/H + σ0y/H

L
H(1 − y/H) (11)

where H is the height of upper half of the structure, L is the length of the
entire structure and σ0 and σ1 are the axial stresses caused by the transverse
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loads F0 and F1 (see Figure 4a). Now, equating (11) to the maximum value of
the longitudinal shear stress (τslip = σ0H/L) and solving for y/H, we obtain

y

H
=

2σ1
σ0

1 + 2σ1
σ0

(12)

where y is the height at which the shear stress of slip τslip is reached. Fig-
ure 4b, shows y is a monotonically increasing function of σ1/σ0, so demon-
strating that, the first interface that enters in slip is the one nearest to the
center of the structure.

L/2
σ1 σ0

σ1

y

x

a) b)

Figure 4: a) Longitudinal shear stress along the cross-section of the upper half of a multi-
layer jamming structure at x = 0, for three different values of σ1/σ0. b) Plot of equation
(12)

Therefore, during the transition from pre-slip to full-slip, the structure
can be described as divided in two parts. A cohesive region, in which the lay-
ers are attached to each other, and a slip region in which layers are detached,
see Figure 5. Following the same procedure of the four-layer structure, we
compute the value of the maximum axial stress σi and the corresponding ad-
ditional transverse force Fi that causes slip at the i-th interface. Generalizing
equation (9), we define an expression for τ(i), which is the longitudinal shear
stress at the i-th interface
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τ(i) =
σtop(i) + σint(i)

L
(H − ih) (13)

where σint(i) and σtop(i) are

σint(i) = σbot(i) +m(i)h (14)

σtop(i) = −σtop(i− 1) − σi (15)

and m(i) is given by

m(i) =
σtop(i) − σbot(i)

H − (i− 1)h
(16)

Now, equating (13) to the maximum value of the longitudinal shear stress
(τslip = σ0H/L) and solving for σi, we obtain

σi =
(H − h (i− 1))

(
H σ0
2

+ (H − h i)
(
σint(i−1)

2
+ σtop(i−1)

2
− h (σint(i−1)−σtop(i−1))

2 (H−h (i−1))

))
h (H − h i)

(17)
which is the value of the additional axial stress experienced by the layers

in the cohesive region, which causes slip at the i-th interface. The expression
of the corresponding additional transverse force Fi is given by

Fi =
2σi (H − h (i− 1))2 + h2 σl (i) (i− 1)

6L
i = 1, ...., n/2 − 1 (18)

where σl is the additional axial stress experienced by the layers that are
already in slip.

σl (i) = σint(i) − σint(i− 1) (19)

The general expression of the second moment of area I during the partial-
slip phase can be computed as follows

Ipartial−slip(i) = 2
b [(n/2 + 1 − i)h]3

12
+

2 b h3

12
(i−1) i = 1, ...., n/2−1 (20)

9



where b and h are the width and height of a single layer and n is the
total number of layers. Substituting (18) and (20) into (1) we obtain the
additional deflection wi caused by the additional force 2Fi.

wi =
2FiL

3

48EIpartial−slip(i)
i = 1, ...., n/2 − 1 (21)

Now, substituting (8) extended to the case of n layers (σ0 = µ pL/(nh/2))
into equation (17) and expressing the value of σtop, σbot, σint and σl as a func-
tion of µ p, the formulas of the transverse forces and the corresponding deflec-
tions can be also expressed in terms of the coefficient of friction µ, vacuum
pressure p, height h, width b, number of layers n, layers height h, Young
modulus E and layers length L

F0 =
2µ p b h n

3
(22)

F1 =
µ p b h n

3 (n− 2)
(23)

F2 =
2µ p b h (n2 − 6n+ 12)

3 (n2 − 6n+ 8)
(24)

Fi =
2µ p b h (n3 − 6 (i− 1)n2 + 12 (i− 1)2 n− 8 (i3 − 3 i2 + 2 i))

3 (n3 − 6 (i− 1)n2 + (12 (i− 1)2 − 4)n− 8 (i3 − 3 i2 + 2 i))
i = 3, ...., n/2−1

(25)

w0 =
µ pL3

3 Eh2 n2
(26)

w1 =
2µ pL3

3 Eh2 n2 (n− 2)
(27)

w2 =
4µ pL3

3 Eh2 n (n2 − 6n+ 8)
(28)

wi =
4µ pL3

3E h2(n3 − 6 (i− 1)n2 + (12 (i− 1)2 − 4)n− 8 (i3 − 3 i2 + 2 i))
i = 3, ...., n/2−1

(29)
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Table 2 summarizes the relationships between the applied load F, the
second moment of area I, and the deflection at the center of the structure w,
during the three deformation phases of a n-layer-jamming structure. Figure
5 show a schematic representation of the loads and stresses experienced by
the structure in the partial-slip phase. In particular, in blue are indicated
both the transverse load and the distribution of the axial stresses causing slip
between layers i and i-1, while in red are indicated the additional transverse
force and the distribution of the additional axial stresses producing slip be-
tween layers i and i+1.

Pre-slip Partial-slip Full-slip

F F < 2F0 2F0 < F < 2 (F0 +
∑n/2−1

i=1 Fi) F > 2 (F0 +
∑n/2−1

i=1 Fi)

I Ipre−slip = b (nh)3

12
Ipartial−slip (i) = 2 b [(n/2+1−i)h]3

12
+ 2 b (i−1)h3

12
Ifull−slip = nb h3

12

w w = FL3

48EIpre−slip
w =

F−2(
∑i−1

i=0 Fi)L
3

48EIpartial−slip(i)
w =

(F−2(F0+
∑n/2−1

i=1 Fi))L
3

48EIfull−slip

Table 2: Relationships between the applied load F, the second moment of area I and
the deflection at the center of the structure w, during the three deformation phases of a
multi-layer jamming structure

σl (i)

σiσtop(i -1)

n/2

i +1
i

σtop(i) σi

i -1
i -2

1

σtop(i -1)= +

σint(i)

H
slip τ

y
x

L/2

F0
Fi

F1+ +. .. Fi-1

σbot(i -1)

σ int(i -1)

σbot(i)

σint(i)

+

Figure 5: Schematic representation of the transverse loads, axial and longitudinal shear
stresses in the partial-slip phase of a multi-layer jamming structure.
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2.2. Finite Element formulation
To validate our analytical approach, a finite element model Figure 6 was

developed. The simulations were performed using the commercial software
ANSYS. Since all the loads and the corresponding deflections occur in the x-y
plane, each layer was modeled with 2-D plane-strain elements (PLANE182).
Each layer was meshed using a square four node plane strain element with a
side length equals to half of the layer height, as done in the work of Narang
et al. [24]. The interaction between two adjacent layers was modeled using
the elements CONTA172 and TARGE169 with a constant coefficient of fric-
tion based on Coulomb’s Law. The vacuum pressure was applied through
a uniform distributed load acting on all the external surfaces of the struc-
ture. Due to the symmetry of the problem, the computational cost of the
simulation was reduced considering only one half of the structure. For this
reason, a zero horizontal displacement boundary condition was applied at
the nodes on the center of the structure. Furthermore, vertical displacement
was constrained at the end of the structure at the central interface. Finally,
an incremental downward vertical displacement was applied at the first node
of the top surface.

h

L/2

p
w

Figure 6: 2-D finite element model overview

3. Results

In this section, we present a comparison between the predictions of our
analytical model and the results obtained by the 2-D FE analysis. In particu-
lar, we investigate the effect of the main design inputs (i.e., number of layers,
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vacuum pressure and coefficient of friction) on the relationship between the
applied load F and the deflection w at the center of the structure in a 3-point
bending test.

3.1. Effect of the number of layers

In order to study the effect of the number of layers on the bending stiffness
of the structure, we have carried out five simulations in which the number
of layers n was varied from 4 to 20 in increments of four. In all simulations,
geometric and material properties were chosen in accordance with the typi-
cal range of values used in layer-jamming applications [27], that are: height
h = 0.5 [mm], length L = 100 [mm], width b = 50 [mm], Young’s modulus
E = 6 [GPa], Poisson’s ratio ν = 0.156. In addition, a vacuum pressure
p = 50 [kPa] was applied on the external surfaces and the coefficient of fric-
tion was set to µ = 0.5. Notice that in the analytical model the elastic
modulus E was replaced by the plane-strain Young’s modulus E = E

1−ν2 as
b >> h. As shown in Figure 7, the predictions of our analytical model are in
good agreement with the results obtained by the finite element simulations.
Notice that the red dots have coordinates (wi,Fi) and represent the tran-
sition loads and the corresponding deflections at which change in bending
stiffness occurs, due to slip at the i-th interface. As expected, in the pre-slip
phase, the bending stiffness of the structure is proportional to n3 as shown
in (2). In addition, the force F0 and the deflection w0, at which the first slip
occurs, are proportional to n and 1/n2 respectively. These dependencies are
already known in literature and have been validated both with experiments
and finite element simulations [24]. As the load F increases, the structure
enters in the partial-slip phase and the force versus deflection relationship
becomes non-linear. In our model we capture this behavior with a piece-wise
linear approximation, in which the gradual change in stiffness and the tran-
sition loads at which this change occurs are described by equation (20) and
(18), respectively. Thanks to this approach, we are also able to predict the
last transition load at which the structure enters in the full-slip phase. Its
expression is given by

Ffull−slip = 2 (F0 +

n/2−1∑
i=1

Fi) (30)

where F0 and Fi are given by (6) and (18), respectively. As shown in
Figure 7, the value of Ffull−slip scales with n. In addition, another interesting
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results is that the deflection wfull−slip at which the structure enter in the full-
slip phase does not depend on the number of layers. The analytical expression
of wfull−slip is given by

wfull−slip = w0 +

n/2−1∑
i=1

wi (31)

where w0 is the deflection at which the structure shifts from the pre-
slip to the partial-slip phase, while wi, expressed in (21), is the additional
deflection caused by the additional force Fi. With reference to Figure 7, the
difference between the slope of the last segment (full-slip phase) and that of
the previous one (last stage of the partial-slip phase) reduces as the number of
layers increases. As a result, the percentage variation of the bending stiffness,
which is proportional to the slope of the segments, becomes negligible when
the number of layers is sufficiently large. Furthermore, most of the change in
the bending stiffness is confined to a small range of deflections. Finally, we
notice the percentage difference between the values of Ffull−slip given by our
analytical model and the corresponding values obtained by FEM simulations
slightly increases with the number of layers. One of the main reasons of such
increase is probably due to the overall growth in the height of the structure.
Indeed, the more the height increases the more we move away from the Euler-
Bernoulli assumption h << L. In addition, a second source of error could be
due to the stress concentration occurring near the supports and the applied
load, which is observed to increase with the number of layers.
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Figure 7: The force vs. deflection relation for a multi-layer jamming structure with dif-
ferent number of layers. Analytical predictions (red) are compared with FEM results
(blue).

3.2. Effect of the vacuum pressure

To investigate the effect of the vacuum pressure on the bending stiffness
of the structure, we have performed five simulations in which the vacuum
pressure was varied from 20 to 100 [kPa] in increments of 20 [kPa]. The
number of layers was kept constant and equals to n = 20 and all the other
variables were maintained equal to the previous set of simulations. Figure
8 shows the comparison between the analytical and numerical results. As
expected, the bending stiffness in the pre-slip phase does not depend on the
vacuum pressure, as the structure is cohesive such phase. However, both the
first transition force F0 and the corresponding deflection w0 scale with the
vacuum pressure p. It is also interesting to notice that Ffull−slip and wfull−slip
are proportional to the vacuum pressure p.

15



������������������

Figure 8: The force vs. deflection relation for a 20-layer jamming structure with different
values of the vacuum pressure. Analytical predictions (red) are compared with FEM
results (blue).

3.3. Effect of the coefficient of friction

To investigate the effect of coefficient of friction on the bending stiffness
of the structure, we have performed five simulations in which the coefficient
of friction µ was varied from 0.2 to 0.6 in increments of 0.1. The number
of layers and the vacuum pressure were kept constant and equals to n = 20
and p = 50 [kPa], respectively. All the other variables were maintained equal
to the first set of simulations. Figure 9 shows the comparison between the
analytical and numerical results. As expected, changing either the coefficient
of friction or the vacuum pressure produces the same effect on the general
behavior of the structure. Similar to the previous case, the slope of the curve
(which is proportional to the bending stiffness) in the pre-slip phase does not
depend on the coefficient of friction because no interface is sliding. On the
contrary the forces of first slip F0 and full slip Ffull−slip (and corresponding
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deflections) linearly increase with µ.

������������������

Figure 9: The force vs. deflection relation for a 20-layer jamming structure with different
values of the coefficient of friction. Analytical predictions (red) are compared with the
FEM results (blue).

Finally, Figure 10 shows FEM results of the three deformation phases ex-
perienced by an 8-layer structure. While in the pre-slip stage (Figure 10(a))
all layers are still attached, in the partial-slip phase (Figure 10(b)) two dif-
ferent regions can be observed: an inner region, in which layers are in slip,
and an outer region where the layers are still in stick regime. These results
confirmed our hypothesis that slip propagates from the inner to the outer
interfaces. Finally, the full-slip phase in which all the layers are in slip is
shown in Figure 10(c). For the sake of readability, only the right-end portion
of the structure is shown.
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(a) (b) (c)

h

PRE-SLIP PARTIAL-SLIP FULL-SLIP

SLIP

NO SLIP

NO SLIP

Figure 10: Deformation phases in a 8-layer structure extracted from FEM simulations: a)
pre-slip phase in which all the layers are attached, b) partial-slip phase in which the layers
in the inner region are in slip (green bracket) while the layers in the outer region are still
attached (red brackets) c) full-slip phase in which all the layers have slipped.

4. Conclusion

In this work, we presented a 2D analytical model for predicting the change
in the bending stiffness of a multi-layer jamming structure when subjected to
a 3-point bending test. Previous works introduced analytical models limited
to the case of two-layers jamming structures and extended the analysis to
multi-layer structures using only finite elements models.
In contrast, our analytical model predicted the change in stiffness as well as
the transition loads and the corresponding deflections of a structure with an
arbitrary number of layers. In particular, the model is able to capture the
nonlinear change in stiffness in the partial-slip phase, with a piecewise linear
approximation that represents one of the main contributions of this work.
Furthermore we have demonstrated that slip starts at the central interface
and propagates form the center to the end of the structure, forming two sep-
arate regions: an inner region, in which layers are in slip and an outer region
where layers are still attached.
In order to keep the complexity of the model at an acceptable level, we used
the Euler-Bernoulli beam theory to model the layers and computed all the
equilibria in the undeformed configuration. We validated our model compar-
ing it with 2D finite element simulations, showing a good agreement for small
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deflections.
Our formulation is simple and computationally efficient compared to the
finite element model, in which the computational time increases with the
number of layers and the solution could take hours to converge.
We have finally investigated the effect of the main design inputs (i.e, num-
ber of layers, coefficient of friction and vacuum pressure) on the bending
stiffness of the structure. We have found that the deflection at which the
structure enters in the full-slip phase is independent of the number of layers
and that force and deflection at full-slip increase with the friction coefficient
and vacuum pressure. The proposed model is computationally cheap and can
accurately capture the intrinsic mechanics of these systems, providing a pow-
erful tool for properly design their response to meet the requirement needed
for a specific application.
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