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MULTIPLICITY AND CONCENTRATION RESULTS FOR A MAGNETIC

SCHRÖDINGER EQUATION WITH EXPONENTIAL CRITICAL GROWTH IN R2

PIETRO D’AVENIA AND CHAO JI

Abstract. In this paper we study the following nonlinear Schrödinger equation with magnetic field
(ε

i
∇− A(x)

)2

u+ V (x)u = f(|u|2)u, x ∈ R
2
,

where ε > 0 is a parameter, V : R2 → R and A : R2 → R2 are continuous potentials and f : R → R

has exponential critical growth. Under a local assumption on the potential V , by variational methods,
penalization technique, and Ljusternick-Schnirelmann theory, we prove multiplicity and concentration of
solutions for ε small.
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1. Introduction and main results

In this paper, we are concerned with multiplicity and concentration results for the following nonlinear
magnetic Schrödinger equation

(1.1)
(ε

i
∇−A(x)

)2
u+ V (x)u = f(|u|2)u in R2,

where u ∈ H1(R2,C), ε > 0 is a parameter, V : R2 → R is a continuous function, f : R → R, and the
magnetic potential A : R2 → R2 is Hölder continuous with exponent α ∈ (0, 1].

Equation (1.1) arises when one looks for standing wave solutions ψ(x, t) := e−iEt/~u(x), with E ∈ R,
of

i~
∂ψ

∂t
=

(~

i
∇−A(x)

)2
ψ + U(x)ψ − f(|ψ|2)ψ in R2 × R.

From a physical point of view, the existence of such solutions and the study of their shape in the
semiclassical limit, namely, as ~ → 0+, or, equivalently, as ε→ 0+ in (1.1), is of the greatest importance,
since the transition from Quantum Mechanics to Classical Mechanics can be formally performed by
sending the Planck constant ~ to zero.

For equation (1.1), there is a vast literature concerning the existence and multiplicity of bound state
solutions, in particular for the case with A ≡ 0. The first result in this direction was given by Floer and
Weinstein in [28], where the case N = 1 and f = iR is considered. Later, many authors generalized this

2010 Mathematics Subject Classification. 35J20, 35J60, 35B33.
Key words and phrases. Nonlinear Schrödinger equation, Magnetic field, Exponential critical growth, Trudinger-Moser

inequality, Penalization technique.
P. d’Avenia is supported by PRIN project 2017JPCAPN Qualitative and quantitative aspects of nonlinear PDEs. C. Ji

is partially supported by Shanghai Natural Science Foundation (18ZR1409100).
1

http://arxiv.org/abs/1906.10937v2


2 P. D’AVENIA AND C. JI

result to larger values of N , using different methods. In [25], del Pino and Felmer studied existence and
concentration of the solutions for the following problem

{

−ε2∆u+ V (x)u = f(u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

where Ω is a possibly unbounded domain in RN , N ≥ 3, the potential V is locally Hölder continuous,
bounded from below away from zero, there exists a bounded open set Λ ⊂ Ω such that

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x),

and the nonlinearity f satisfies some subcritical growth conditions. For further results about existence,
multiplicity and qualitative properties of semiclassical states with various types of concentration behav-
iors, which have been established under various assumptions on the potential V and on the nonlinearity
f , see [1,3,4,6,8,10,11,16,18,19,24,26,35–37] the references therein (see also [2,7,29] for the fractional
case).

On the other hand, also the magnetic nonlinear Schrödinger equation (1.1) has been extensively inves-
tigated by many authors applying suitable variational and topological methods (see [5,13–15,20,23,27,32]
and references therein). It is well known that the first result involving the magnetic field was obtained
by Esteban and Lions [27]. They used the concentration-compactness principle and minimization ar-
guments to obtain solutions for ε > 0 fixed and N = 2, 3. In particular, due to our scope, we want
to mention [5] where the authors use the penalization method and Ljusternik-Schnirelmann category
theory for subcritical nonlinearities and [15] where the existence of a complex solution in presence of
a nonlinearity with exponential critical growth in R2 is proved, and the recent contribution [12] where
a multiplicity result for a nonlinear fractional magnetic Schrödinger equation with exponential critical
growth in the one-dimensional case is given.

In this paper, motivated by [5,25], we prove multiplicity and concentration of nontrivial solutions for
problem (1.1), combining some assumptions on V , the penalization technique by del Pino and Felmer [25]
and the Ljusternik-Schnirelmann theory.

Assume that V verifies the following properties:

(V1) there exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R2;
(V2) there exists a bounded open set Λ ⊂ R2 such that

V0 = min
x∈Λ

V (x) < min
x∈∂Λ

V (x).

Observe that

M := {x ∈ Λ : V (x) = V0} 6= ∅.
Moreover, let the nonlinearity f be a C1-function satisfying:

(f1) f(t) = 0 if t ≤ 0;
(f2) there holds

lim
t→+∞

f(t2)t

eαt
2 =

{

0, for α > 4π,

+∞, for 0 < α < 4π;

(f3) there is a positive constant θ > 2 such that

0 <
θ

2
F (t) ≤ tf(t), ∀ t > 0, where F (t) =

∫ t

0
f(s)ds;

(f4) there exist two constants p > 2 and

Cp > max

{

[

βp

( 2θ

θ − 2

) 1

min{1, V0}
](p−2)�2

, V0

(

p− 2

p

)
p−2
2

Sp/2
p

}

> 0
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such that

f ′(t) ≥ p− 2

2
Cpt

(p−4)/2 for all t > 0,

where

βp = inf
u∈Ñ0

Ĩ0(u), Ĩ0(u) :=
1

2

∫

R2

(|∇u|2 + V0|u|2)dx− 1

p

∫

R2

|u|pdx,

Ñ0 := {u ∈ H1(R2,R)\{0} : Ĩ ′0(u)[u] = 0},
and Sp is the best constant for the Sobolev inequality

Sp

(

∫

R2

|u|pdx
)2/p

≤
∫

R2

|(∇u|2 + |u|2)dx;

(f5) f
′(t) ≤ (e4πt − 1) for any t ≥ 0.

Observe that assumptions (f4) and (f5) imply that there exist two positive constants C1 and C2 such
that

C1t
(p−4)/2 ≤ f ′(t) ≤ C2t, as t→ 0+

and so p > 6.
Our main result is

Theorem 1.1. Assume that V satisfies (V1), (V2) and f satisfies (f1)–(f5). Then, for any δ > 0 such
that

Mδ := {x ∈ R2 : dist(x,M) < δ} ⊂ Λ,

there exists εδ > 0 such that, for any 0 < ε < εδ, problem (1.1) has at least catMδ
(M) nontrivial

solutions. Moreover, for every sequence {εn} such that εn → 0+ as n → +∞, if we denote by uεn one
of these solutions of (1.1) for ε = εn and ηεn ∈ R2 the global maximum point of |uεn |, then

lim
εn→0+

V (ηεn) = V0.

It is well known that, when we want to study by variational methods this type of equations in the
whole R2, we meet several difficulties due to the unboundedness of the domain and to the exponential
critical growth of the nonlinearity. Moreover, we only know local information on the potential V , and
we don’t have any condition on V at infinity. Thus we adapt the penalization technique explored in [25].
It consists in making a suitable modification on the nonlinearity f , solving a modified problem and then
check that, for ε small enough, the solutions of the modified problem are indeed solutions of the original
one. It could be interesting to consider our problem without relying upon condition near 0.
It is worthwhile to remark that in the arguments developed in [25], one of the key points is the existence
of estimates involving the L∞-norm of the solutions of the modified problem. In the the magnetic case,
this kind of estimates are more delicate, due also to the fact that we deal with complex valued functions.
For subcritical nonlinearities, Alves et al. in [5] obtained L∞-estimates of the solutions of the modified
problem by a different approach, which is based on Moser’s iteration method (see [34]) instead of Kato’s
inequality. Here the problem we deal with has exponential critical growth in R2, so the method in [5]
does not seem fully applicable.

The paper is organized as follows. In Section 2 we introduce the functional setting, give some pre-
liminaries and study the limit problem. In Section 3, we study the modified problem. We prove the
Palais-Smale condition for the modified functional and provide some tools which are useful to establish
a multiplicity result. In Section 4, we show a multiplicity result for he modified problem. Finally, in
Section 5, we complete the paper with the proof of Thereom 1.1.
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Notation.

• C,C1, C2, . . . denote positive constants whose exact values are inessential and can change from
line to line;

• BR(y) denotes the open disk centered at y ∈ R2 with radius R > 0 and Bc
R(y) denotes the

complement of BR(y) in R2;
• ‖ · ‖, ‖ · ‖q, and ‖ · ‖L∞(Ω) denote the usual norms of the spaces H1(R2,R), Lq(R2,R), and

L∞(Ω,R), respectively, where Ω ⊂ R2, and ‖ · ‖V0 := (‖∇ · ‖2 + V0‖ · ‖2)1/2.

2. The variational framework and the limit problem

In this section, we present the functional spaces that we use, we introduce a classical equivalent version
of (1.1), we give some useful preliminary remarks, and we study a limit problem which will be useful for
our arguments.

For u : R2 → C, let us denote by

∇Au :=
(∇
i
−A

)

u,

and

H1
A(R

2,C) := {u ∈ L2(R2,C) : |∇Au| ∈ L2(R2,R)}.
The space H1

A(R
2,C) is an Hilbert space endowed with the scalar product

〈u, v〉 := Re

∫

R2

(

∇Au∇Av + uv
)

dx, for any u, v ∈ H1
A(R

2,C),

where Re and the bar denote the real part of a complex number and the complex conjugation, respectively.
Moreover we denote by ‖u‖A the norm induced by this inner product.

On H1
A(R

2,C) we will frequently use the following diamagnetic inequality (see e.g. [33, Theorem 7.21])

(2.1) |∇Au(x)| ≥ |∇|u(x)||.
Moreover, making a simple change of variables, we can see that (1.1) is equivalent to

(2.2)
(1

i
∇−Aε(x)

)2
u+ Vε(x)u = f(|u|2)u in R2,

where Aε(x) = A(εx) and Vε(x) = V (εx).
Let Hε be the Hilbert space obtained as the closure of C∞

c (R2,C) with respect to the scalar product

〈u, v〉ǫ := Re

∫

R2

(

∇Aεu∇Aεv + Vε(x)uv
)

dx

and let us denote by ‖ · ‖ε the norm induced by this inner product.
The diamagnetic inequality (2.1) implies that, if u ∈ H1

Aε
(R2,C), then |u| ∈ H1(R2,R) and ‖u‖ ≤

C‖u‖ε. Therefore, the embedding Hε →֒ Lr(R2,C) is continuous for r ≥ 2 and the embedding Hε →֒
Lr
loc(R

2,C) is compact for r ≥ 1.
About the nonlinearity, we observe that, by (f1) and (f2), fixed q > 2, for any ζ > 0 and α > 4π,

there exists a constant C > 0, which depends on q, α, ζ, such that

(2.3) f(t) ≤ ζ +Ct(q−2)/2(eαt − 1) for all t ≥ 0

and, using (f3), we have

(2.4) F (t) ≤ ζt+ Ctq/2(eαt − 1) for all t ≥ 0.

Moreover, it is easy to see that, by (2.3) and (2.4),

(2.5) f(t2)t2 ≤ ζt2 + C|t|q(eαt2 − 1) for all t ∈ R
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and

(2.6) F (t2) ≤ ζt2 + C|t|q(eαt2 − 1) for all t ∈ R.

Finally, let us recall the following version of Trudinger-Moser inequality as stated e.g. in [1, Lemma
1.2].

Lemma 2.1. If α > 0 and u ∈ H1(R2,R), then
∫

R2

(eαu
2 − 1)dx < +∞.

Moreover, if ‖∇u‖22 ≤ 1, ‖u‖2 ≤ M < +∞, and 0 < α < 4π, then there exists a positive constant
C(M,α), which depends only on M and α, such that

∫

R2

(eαu
2 − 1)dx ≤ C(M,α).

For our scope, we need also to study the following limit problem

−∆u+ V0u = f(u2)u, u : R2 → R,(2.7)

whose associated C1-functional, defined in H1(R2,R), is

IV0(u) :=
1

2

∫

R2

(|∇u|2 + V0u
2)dx− 1

2

∫

R2

F (u2)dx.

Let

NV0 := {u ∈ H1(R2,R) \ {0} : I ′V0
(u)[u] = 0}

and

cV0 := inf
u∈NV0

IV0(u).

By (f1) and (f4), for each u ∈ H1(R2,R)\{0}, there is a unique t(u) > 0 such that

IV0(t(u)u) = max
t≥0

IV0(tu) and t(u)u ∈ NV0 .

Then, using the assumptions on f , arguing as in [38, Lemma 4.1 and Theorem 4.2] we have that

0 < cV0 = inf
u∈H1(R2,R)\{0}

max
t≥0

IV0(tu).

Moreover, recalling that a positive ground state solution ω ∈ H1(R2,R) of (2.7) satisfies IV0(ω) ≤
IV0(v) for all positive nontrivial solutions v ∈ H1(R2,R) of (2.7), by [9, Corollary 1.5], we get

Lemma 2.2. Problem (2.7) has a positive ground state solution ω ∈ H1(R2,R) which is radially sym-
metric.

Proof. Let us recall that [9, Corollary 1.5] states that, if h : R → R is a continuous function satisfying:

(i) limt→0+ h(t)/t = 0;
(ii) there holds

lim
t→+∞

h(t)

eαt2
=

{

0, for α > 4π,

+∞, for 0 < α < 4π;

(iii) there exist λ > 0 and p > 2 such that h(t) ≥ λtp−1 for t ≥ 0 and

(2.8) λ >

(

p− 2

p

)
p−2
2

Sp/2
p ,

where Sp is the best Sobolev constant for Sp‖v‖2p ≤ ‖v‖2;
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then

(2.9) −∆v + v = h(v)

has a nontrivial radial positive solution v̂ ∈ H1(R2,R), namely I(v̂) ≤ I(ṽ) for every nontrivial positive
solution ṽ ∈ H1(R2,R) of (2.9), where

I(v) := 1

2
‖v‖2 −

∫

R2

H(v)dx, H(t) :=

∫ t

0
h(s)ds.

In particular, condition (2.8) allows to prove that

c̄ = inf
v∈H1(R2,R)\{0}

max
t≥0

I(tv) < 1

2
.

Now, if we take

(2.10) h(t) := f(t2)t/V0

in (2.9), we have that (i) and (ii) are easily satisfied, and, using assumption (f4) we get that (iii) is
satisfied for λ = Cp/V0. Thus (2.9) with h as in (2.10) admits a positive radial nontrivial ground state
solution v̂ ∈ H1(R2,R).
Observe now that, if v̂ ∈ H1(R2,R) is a solution of (2.9) where h is given by (2.10), then û := v̂(

√
V0·) ∈

H1(R2,R) is a solution of (2.7) and, since by (2.10),

H(t) =
1

V0

∫ t

0
f(s2)sds =

1

2V0
F (t2),

we have IV0(ũ) = I(ṽ). Analogously, if ũ ∈ H1(R2,R) is an arbitrary solution of (2.7) and ṽ := ũ(·/√V0),
then ṽ ∈ H1(R2,R) is a solution of (2.9) and IV0(ũ) = I(ṽ).
Hence, if v̂ ∈ H1(R2,R) is a positive radial nontrivial ground state of (2.9), then, if ω = v̂(

√
V0·),

ũ ∈ H1(R2,R) is an arbitrary solution of (2.7) and ṽ := ũ(·/√V0), we have

IV0(ω) = I(v̂) ≤ I(ṽ) = IV0(ũ)

and we conclude. �

Note that, by [39, Proposition 2.1], every radially symmetric ground state solution of (2.7) decays
exponentially at infinity with its gradient, and is C2(R2,R) ∩ L∞(R2,R).

The elements of NV0 satisfy the following property.

Lemma 2.3. There exists K > 0 such that, for all u ∈ NV0, ‖u‖V0 ≥ K.

Proof. By (2.5), for any 0 < ζ < V0/2 and α > 4π, we have that there exists C > 0 such that, for every
u ∈ NV0 ,

(2.11)

∫

R2

(|∇u|2 + V0|u|2)dx ≤ ζ

∫

R2

|u|2 + C

∫

R2

|u|q(eα|u|2 − 1)dx.

Moreover, by the Hölder inequality it follows

(2.12)

∫

R2

|u|q(eα|u|2 − 1)dx ≤ ‖u‖q2q
(

∫

R2

(eα|u|
2 − 1)2dx

)1/2
≤ C‖u‖qV0

(

∫

R2

(e2α|u|
2 − 1)dx

)1/2

where we have used the inequality

(2.13) (et − 1)s ≤ ets − 1, for s > 1 and t ≥ 0.

Now assume by contradiction that there exist a sequence (un) ⊂ NV0 such that ‖un‖V0 → 0 as n→ +∞.
Then, for n large enough and ᾱ ∈ (0, 4π), using Lemma 2.1, we get

(2.14)

∫

R2

(e2α|un|2 − 1)dx ≤
∫

R2

(e
2α‖un‖2V0

(

un
‖un‖V0

)2

− 1)dx ≤
∫

R2

(e
ᾱ

(

un
‖un‖V0

)2

− 1)dx ≤ C.
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Thus, combining (2.11), (2.12), and (2.14), we reach the contradiction. �

The following lemma is the upper bound estimate of the ground state energy which is important for
our arguments.

Lemma 2.4. The minimax level cV0 verifies

0 < cV0 <
θ − 2

2θ
min{1, V0}.

Proof. Arguing as in [38], we can find that there exists ω∗ ∈ H1(R2,R) \ {0} such that Ĩ0(ω
∗) = βp and

Ĩ ′0(ω
∗) = 0 (see (f4) for the definitions of Ĩ0 and βp). By the characterization of cV0 given before and by

(f4) we have

0 < cV0 ≤ max
t≥0

IV0(tω
∗) ≤ max

t≥0

{ t2

2
‖ω∗‖2V0

− Cpt
p

p
‖ω∗‖pp

}

= C2/(2−p)
p βp <

θ − 2

2θ
min{1, V0}.

�

Finally we prove the following useful result.

Lemma 2.5. Let (ωn) ⊂ NV0 be a sequence satisfying IV0(ωn) → cV0 . Then (ωn) is bounded in H1(R2,R)
and, up to a subsequence, ωn ⇀ ω in H1(R2,R). Moreover, if ω 6= 0, then ωn → ω ∈ NV0 in H1(R2,R)
and ω is a ground state for problem (2.7). If ω = 0, then there exists (ỹn) ⊂ R2 with |ỹn| → +∞ and
ω̃ ∈ NV0 such that, up to a subsequence, ωn(·+ ỹn) → ω̃ in H1(R2,R) and ω̃ is a ground state for problem
(2.7).

Proof. By (f3) and Lemma 2.4, it follows that

θ − 2

2θ
lim sup

n
‖ωn‖2V0

≤ lim sup
n

{(1

2
− 1

θ

)

‖ωn‖2V0
+

∫

R2

(1

θ
f(ω2

n)ω
2
n − 1

2
F (ω2

n)
)

dx
}

= lim sup
n

{

IV0(ωn)−
1

θ
I ′V0

(ωn)[ωn]
}

= cV0 <
θ − 2

2θ
min{1, V0}.

Thus,

(2.15) lim sup
n

‖ωn‖2V0
< 1,

and for some subsequence, still denoted by (ωn), we can assume that there exists ω ∈ H1(R2,R) such
that ωn ⇀ ω in H1(R2,R), ωn → ω in Lr

loc(R
2,R), for any r ≥ 1 and ωn → ω a.e. in x ∈ R2.

Now we divide our study into two cases.
Case 1: ω 6= 0.
Observe that, for every φ ∈ C∞

c (R2,R),

f(ω2
n)ωnφ→ f(ω2)ωφ a.e. in R2 as n→ +∞

and that, by (2.3), we have that for any ζ > 0, q > 2, and α > 4π, there exists C > 0 such that, for
every φ ∈ C∞

c (R2,R),

|f(ω2
n)ωnφ| ≤ ζ|ωn||φ|+ C|ωn|q−1(eαω

2
n − 1)|φ|

with

ζ|ωn||φ|+ C|ωn|q−1(eαω
2
n − 1)|φ| → ζ|ω||φ|+ C|ω|q−1(eαω

2 − 1)|φ| a.e. in R2 as n→ +∞.
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Moreover, by the Hölder inequality, (2.13), Sobolev inequality, (2.15), and Lemma 2.1, for suitable r > 1,
q > 2, α > 4π, and p > 1, we have that, for all n ∈ N,

∫

R2

[

|ωn|q−1(eαω
2
n − 1)

]r
dx ≤ ‖ωn‖r(q−1)

pr(q−1)

(

∫

R2

(eαrp
′ω2

n − 1)dx
)1/p′

≤ C‖ωn‖r(q−1)
V0

(

∫

R2

(e
αrp′‖ωn‖2V0

(|ωn|/‖ωn‖V0 )
2

− 1)dx
)1/p′

≤ C.

Thus
|ωn|q−1(eα|ωn|2 − 1)⇀ |ω|q−1(eα|ω|

2 − 1) in Lr(R2,R)

and, since |ωn|⇀ |ω| in L2(R2,R) we have that

ζ

∫

R2

|ωn||φ|dx+ C

∫

R2

|ωn|q−1(eαω
2
n − 1)|φ|dx → ζ

∫

R2

|ω||φ|dx + C

∫

R2

|ω|q−1(eαω
2 − 1)|φ|dx

as n→ +∞.
Hence, a variant of the Lebesgue Dominated Convergence Theorem implies that

∫

R2

f(ω2
n)ωnφdx→

∫

R2

f(ω2)ωφdx,

and so ω is a nontrivial critical point for IV0 .
Since, by the Fatou’s Lemma,

∫

R2

(1

θ
f(ω2)ω2 − 1

2
F (ω2)

)

dx ≤ lim inf
n

∫

R2

(1

θ
f(ω2

n)ω
2
n − 1

2
F (ω2

n)
)

dx,

we have

cV0 ≤ IV0(ω) = IV0(ω)−
1

θ
I ′V0

(ω)[ω]

=
(1

2
− 1

θ

)

‖ω‖2V0
+

∫

R2

(1

θ
f(ω2)ω2 − 1

2
F (ω2)

)

dx

≤ lim inf
n

{(1

2
− 1

θ

)

‖ωn‖2V0
+

∫

R2

(1

θ
f(ω2

n)ω
2
n − 1

2
F (ω2

n)
)

dx
}

= lim inf
n

{

IV0(ωn)−
1

θ
I ′V0

(ωn)[ωn]
}

= cV0 .

Hence, using again the Fatou’s Lemma, we have

0 ≤ lim inf
n

[

(1

2
− 1

θ

)

(‖ωn‖2V0
− ‖ω‖2V0

)

]

≤ lim sup
n

[

(1

2
− 1

θ

)

(‖ωn‖2V0
− ‖ω‖2V0

)

]

= lim sup
n

[

IV0(ωn)− cV0 +

∫

R2

(1

θ
f(ω2)ω2 − 1

2
F (ω2)

)

dx−
∫

R2

(1

θ
f(ω2

n)ω
2
n − 1

2
F (ω2

n)
)

dx
]

=

∫

R2

(1

θ
f(ω2)ω2 − 1

2
F (ω2)

)

dx− lim inf
n

[

∫

R2

(1

θ
f(ω2

n)ω
2
n − 1

2
F (ω2

n)
)

dx
]

≤ 0,

and we conclude.
Case 2: ω = 0.
We claim that, in this case, there exist R, η > 0, and (ỹn) ⊂ R2 such that

(2.16) lim
n

∫

BR(ỹn)
ω2
ndx ≥ η.
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Indeed, if this does not hold, for any R > 0, one has

lim
n

sup
y∈R2

∫

BR(y)
ω2
ndx = 0,

and by [30, Chapter 6, Lemma 8.4], for every τ > 2,

(2.17) lim
n

‖ωn‖τ = 0.

By (2.5) and the fact that (ωn) ⊂ NV0 , for 0 < ζ < V0/2 and α > 4π, there exists C > 0 such that

(2.18)

∫

R2

(|∇ωn|2 + V0ω
2
n)dx ≤ ζ

∫

R2

ω2
n + C

∫

R2

|ωn|q(eαω
2
n − 1)dx.

In virtue of (2.15), we may choose r > 1 and α > 4π such that rα‖ωn‖2V0
< 4π for n ∈ N large enough.

Thus, by the Hölder inequality, inequality (2.13), Lemma 2.1, and (2.17), it follows that
∫

R2

|ωn|q(eαω
2
n − 1)dx ≤ ‖ωn‖qqr′

(

∫

R2

(erαω
2
n − 1)dx

)1/r

≤ ‖ωn‖qqr′
(

∫

R2

(e
rα‖ωn‖2V0

(ωn/‖ωn‖V0 )
2

− 1)dx
)1/r

= on(1),

(2.19)

where r′ is the conjugate exponent of r.
Using (2.18) and (2.19), we have that ωn → 0 in H1(R2,R) as n→ +∞, and, consequently, IV0(ωn) → 0
as n→ +∞, which is in contradiction with IV0(ωn) → cV0 > 0 as n→ +∞.
By (2.16), we have that |ỹn| → +∞. Otherwise, there exists R̄ > 0 such that

lim
n

∫

BR̄(0)
ω2
ndx ≥ η

and so ω 6= 0, which is a contradiction.
Since IV0 and the norm ‖ · ‖V0 in H1(R2,R) are invariant by translation, we have

IV0(ωn(·+ ỹn)) → cV0 .

Moreover ωn(·+ ỹn) ∈ NV0 and, by (2.15),

lim sup
n

‖ωn(·+ ỹn)‖2V0
< 1.

Thus, there exists ω̃ ∈ H1(R2,R) with, by (2.16), ω̃ 6= 0, such that

ωn(·+ ỹn)⇀ ω̃ in H1(R2,R).

Repeating the same arguments used in Case 1, it is easy to obtain that ωn(· + ỹn) → ω̃ ∈ NV0 in
H1(R2,R) and ω̃ is a ground state for problem (2.7). �

3. The modified problem

In this section we introduce a modified problem for (2.2) and we show some properties of its func-
tional. As in [25], to study (1.1), or equivalently, (2.2) by variational methods, we modify suitably the
nonlinearity f so that, for ε > 0 small enough, the solutions of such modified problem are also solutions
of the original one. More precisely, we fix k > 0 such that

0 < cV0 <
(1

2
− 1

θ
− 1

2k

)

min{1, V0} <
θ − 2

2θ
min{1, V0}.

By the assumptions on f there exists a unique number a > 0 verifying kf(a) = V0, where V0 is given
in (V1). Hence we consider the function

f̂(t) :=

{

f(t), t ≤ a,

V0/k, t > a.
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As, for instance, in [5], we take 0 < ta < a < Ta and ϑ ∈ C∞
0 (R,R) such that

(ϑ1) ϑ(t) ≤ f̂(t) for all t ∈ [ta, Ta];

(ϑ2) ϑ(ta) = f̂(ta), ϑ(Ta) = f̂(Ta), ϑ
′(ta) = f̂ ′(ta), and ϑ

′(Ta) = f̂ ′(Ta);
(ϑ3) the map ϑ is increasing in [ta, Ta].

Using the above functions we can define f̃ ∈ C1(R,R) as follows

f̃(t) :=

{

f̂(t) if t 6∈ [ta, Ta],

ϑ(t) if t ∈ [ta, Ta].

Now we introduce the penalized nonlinearity g : R2 × R → R

(3.1) g(x, t) := χΛ(x)f(t) + (1− χΛ(x))f̃(t),

where χΛ is the characteristic function on Λ and G(x, t) :=

∫ t

0
g(x, s)ds.

In view of (f1)–(f5) and (ϑ1)–(ϑ3), we have that g is a Carathéodory function satisfying the following
properties:

(g1) g(x, t) = 0 for each t ≤ 0;
(g2) lim

t→0+
g(x, t) = 0 uniformly in x ∈ R2;

(g3) g(x, t) ≤ f(t) for all t ≥ 0 and uniformly in x ∈ R2;
(g4) 0 < θG(x, t) ≤ 2g(x, t)t, for each x ∈ Λ, t > 0;
(g5) 0 < g(x, t) ≤ V0/k, for each x ∈ Λc, t > 0;
(g6) for each x ∈ Λ, the function t 7→ g(x, t) is strictly increasing in t ∈ (0,+∞) and for each x ∈ Λc,

the function t 7→ g(x, t) strictly is increasing in (0, ta).

Then we consider the modified problem

(3.2)
(1

i
∇−Aε(x)

)2
u+ Vε(x)u = g(εx, |u|2)u in R2.

Note that, if u is a solution of problem (3.2) with

|u(x)|2 ≤ ta for all x ∈ Λc
ε, Λε := {x ∈ R2 : εx ∈ Λ},

then u is a solution of problem (2.2).
The functional associated to problem (3.2) is

Jε(u) :=
1

2

∫

R2

(|∇Aεu|2 + Vε(x)|u|2)dx− 1

2

∫

R2

G(εx, |u|2)dx,

defined in Hε. It is standard to prove that Jε ∈ C1(Hε,R) and its critical points are nontrivial weak
solutions of the modified problem (3.2).

Now we show that the functional Jε satisfies the Mountain Pass Geometry.

Lemma 3.1. For any fixed ε > 0, the functional Jε satisfies the following properties:

(i) there exist β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r;
(ii) there exists e ∈ Hε with ‖e‖ε > r such that Jε(e) < 0.

Proof. Let us prove (i).
By (g3) and (2.6), fixed q > 2 and α > 4π, for any ζ > 0 and there exists C > 0 such that

(3.3) G(εx, |u|2) ≤ ζ|u|2 + C|u|q(eα|u|2 − 1) for all x ∈ R2.

By the Hölder and Sobolev inequalities and (2.13) it follows

(3.4)

∫

R2

|u|q(eα|u|2 − 1)dx ≤ ‖u‖q2q
(

∫

R2

(eα|u|
2 − 1)2dx

)1/2
≤ C‖u‖qε

(

∫

R2

(e2α|u|
2 − 1)dx

)1/2
.
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Now, let us observe that, by the diamagnetic inequality (2.1), if u ∈ Hε \ {0}, it follows that
|u|
‖u‖ε

∈ H1(R2,R),
∥

∥

∥

|u|
‖u‖ε

∥

∥

∥

2

2
≤ 1

V0
,

∥

∥

∥
∇ |u|
‖u‖ε

∥

∥

∥

2

2
≤ 1.

Therefore, if we consider ‖u‖ε = r > 0, for αr2 < π, by Lemma 2.1, there exists a constant C > 0 such
that

(3.5)

∫

R2

(e2α|u|
2 − 1)dx =

∫

R2

(e
2αr2

(

|u|
‖u‖ε

)2

− 1)dx <

∫

R2

(e
2π
(

|u|
‖u‖ε

)2

− 1)dx ≤ C.

Then, by (3.3), (3.4), and (3.5), for any ζ > 0, there exits C > 0 such that

Jε(u) ≥
1

2

(

1− ζ

V0

)

r2 − Crq

for any u ∈ Hε with ‖u‖ε = r small enough and we can conclude easily since q > 2.
To prove (ii), let us fix ϕ ∈ C∞

c (R2,C) \ {0} with supp(ϕ) ⊂ Λε. By (3.1) and (f4) we get

Jε(tϕ) ≤
t2

2
‖ϕ‖2ε −

Cp

p
tp‖ϕ‖pp

and we can conclude passing to the limit as t→ +∞, being p > 2. �

Hence we can define the minimax level

cε = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t))

where
Γε = {γ ∈ C([0, 1],Hε) : γ(0) = 0 and Jε(γ(1)) < 0}.

The following results are important to prove the (PS)cε condition for the functional Jε.

Lemma 3.2. Assume that (un) ⊂ Hε is a (PS)d sequence for the functional Jε. If

(3.6) 0 < d < min{1, V0}
(1

2
− 1

θ
− 1

2k

)

,

then (un) is bounded in Hε and

lim sup
n

‖|un|‖2 < 1.

Proof. By (g4) and (g5) we have

d+ on(1) + on(1)‖un‖ε ≥ Jε(un)−
1

θ
J ′
ε(un)[un]

=
(1

2
− 1

θ

)

‖un‖2ε +
∫

R2

(1

θ
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)

dx

≥
(1

2
− 1

θ

)

‖un‖2ε +
∫

Λc
ε

(1

θ
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)

dx

≥
(1

2
− 1

θ

)

‖un‖2ε −
1

2

∫

Λc
ε

G(εx, |un|2)dx

≥
(1

2
− 1

θ

)

‖un‖2ε −
1

2k

∫

R2

V (εx)|un|2dx

≥
(1

2
− 1

θ
− 1

2k

)

‖un‖2ε.

Thus (un) is bounded in Hε and
(1

2
− 1

θ
− 1

2k

)

‖un‖2ε ≤ d+ on(1).
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Hence, by (3.6) and the diamagnetic inequality (2.1) we have

min{1, V0}
(1

2
− 1

θ
− 1

2k

)

lim sup
n

‖|un|‖2 ≤
(1

2
− 1

θ
− 1

2k

)

lim sup
n

‖un‖2ε ≤ d < min{1, V0}
(1

2
− 1

θ
− 1

2k

)

and we can conclude. �

The next result is a version of the celebrated Lions Lemma (see e.g. [38]), which is useful in our
arguments.

Lemma 3.3. Let d > 0 and (un) ⊂ Hε be a (PS)d sequence for Jε such that un ⇀ 0 in Hε as n→ +∞
and lim supn ‖|un|‖ < 1. Then, one of the following alternatives occurs:

(i) un → 0 in Hε as n→ +∞;
(ii) there are a sequence (yn) ⊂ R2 and constants R, β > 0 such that

lim inf
n

∫

BR(yn)
|un|2dx ≥ β.

Proof. Assume that (ii) does not hold. Then, for every R > 0, we have

lim
n

sup
y∈R2

∫

BR(y)
|un|2dx = 0.

Being (|un|) bounded in H1(R2), by [30, Chapter 6, Lemma 8.4], it follows that ‖un‖τ → 0 as n→ +∞,
for any τ > 2.
Since, by Lemma 3.2, (un) is a bounded (PS)d sequence for Jε, then, using (g3) and (2.5) we have that
for any ζ > 0 there exists C > 0 such that

0 ≤ ‖un‖2ε =
∫

R2

g(εx, |un|2)|un|2dx+ on(1)

≤ ζ

∫

R2

|un|2dx+ C

∫

R2

|un|q(eα|un|2 − 1)dx+ on(1)

≤ ζ

V0
‖un‖2ε + C

∫

R2

|un|q(eα|un|2 − 1)dx+ on(1)

for every α > 4π.
Since lim supn ‖|un|‖ < 1, arguing as in the proof of Lemma 3.1, we have that ‖un‖ε → 0 in Hε and we
conclude. �

The following lemma provides a range of levels in which the functional Jε verifies the Palais-Smale
condition.

Lemma 3.4. The functional Jε satisfies the (PS)d condition at any level 0 < d <
(

1
2− 1

θ− 1
2k

)

min{1, V0}.

Proof. Let (un) ⊂ Hε be a (PS)d for Jε. By Lemma 3.2, (un) is bounded in Hε and lim supn ‖|un|‖ < 1.
Thus, up to a subsequence, un ⇀ u in Hε and un → u in Lq

loc(R
2,R) for all q ≥ 1 as n→ +∞. Moreover,

by (g3) and (2.3), it follows that, fixed q > 2, for any ζ > 0 and α > 4π, there exists a constant C > 0,
which depends on q, α, ζ, such that for every φ ∈ Hε,

∣

∣

∣

∣

Re

∫

R2

g(εx, |un|2)unφdx
∣

∣

∣

∣

≤ ζ

∫

R2

|un||φ|dx+ C

∫

R2

|φ||un|q−1(eα|un|2 − 1)dx.

Arguing as in Lemma 2.5, we have

Re

∫

R2

g(εx, |un|2)unφdx→ Re

∫

R2

g(εx, |u|2)uφdx.
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Thus, u is a critical point of Jε.
Let R > 0 be such that Λε ⊂ BR/2(0). We show that for any given ζ > 0, for R large enough,

lim sup
n

∫

Bc
R(0)

(|∇Aεun|2 + Vε(x)|un|2)dx ≤ ζ.(3.7)

Let φR ∈ C∞(R2,R) be a cut-off function such that

φR = 0 x ∈ BR/2(0), φR = 1 x ∈ Bc
R(0), 0 ≤ φR ≤ 1, and |∇φR| ≤ C/R

where C > 0 is a constant independent of R. Since the sequence (φRun) is bounded in Hε, we have

J ′
ε(un)(φRun) = on(1),

that is

Re

∫

R2

∇Aεun∇Aε(φRun)dx+

∫

R2

Vε(x)|un|2φRdx =

∫

R2

g(εx, |un|2)|un|2φRdx+ on(1).

Since ∇Aε(unφR) = iun∇φR + φR∇Aεun, using (g5), we have
∫

R2

(|∇Aεun|2 + Vε(x)|un|2)φRdx =

∫

R2

g(εx, |un|2)|un|2φRdx−Re

∫

R2

iun∇Aεun∇φRdx+ on(1)

≤ 1

k

∫

R2

Vε(x)|un|2φRdx− Re

∫

R2

iun∇Aεun∇φRdx+ on(1).

By the definition of φR, the Hölder inequality and the boundedness of (un) in Hε, we obtain
(

1− 1

k

)

∫

R2

(|∇Aεun|2 + Vε(x)|un|2)φRdx ≤ C

R
‖un‖2‖∇Aεun‖2 + on(1) ≤

C1

R
+ on(1)

and so we can reach our claim.
Since un → u in Lr

loc(R
2), for all r ≥ 1, up to a subsequence, we have that

|un| → |u| a.e. in R2 as n→ +∞.

Then

g(εx, |un|2)|un|2 → g(εx, |u|2)|u|2 a.e. in R2 as n→ +∞.

Moreover, |un| → |u| in Lr
loc(R

2) for all r ≥ 1.
Let

P (x, t) := g(εx, t2)t and Q(t) := eαt
2 − 1, t ∈ R,

where α > 4π with α‖|un|‖ < 4π for n large. Using (g3) and (f2), it is easy to see that

lim
t→+∞

P (x, t)

Q(t)
= 0 uniformly for x ∈ R2

and, by Lemma 2.1,

sup
n

∫

R2

Q(|un|)dx ≤ C.

Then [17, Theorem A.I] implies

lim
n

∫

BR(0)

∣

∣

∣
g(εx, |un|2)|un|2 − g(εx, |u|2)|u|2

∣

∣

∣
dx = 0.

Moreover, by (g5) and (3.7) we have

lim sup
n

∫

Bc
R(0)

∣

∣

∣
g(εx, |un|2)|un|2 − g(εx, |u|2)|u|2

∣

∣

∣
dx ≤ lim sup

n

2

k

∫

Bc
R(0)

(|∇Aεun|2 + V (εx)|un|2)dx <
2ζ

k
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for every ζ > 0.
Hence

∫

R2

g(εx, |un|2)|un|2dx→
∫

R2

g(εx, |u|2)|u|2dx as n→ +∞.

Finally, since J ′
ε(u) = 0, we have

on(1) = J ′
ε(un)[un] = ‖un‖2ε −

∫

R2

g(εx, |un|2)|un|2dx = ‖un‖2ε − ‖u‖2ε + on(1).

Thus, the sequence (un) strong converges to u in Hε. �

Since we would like to find multiple solutions of the functional Jε, it is natural to consider it constrained
to the Nehari manifold associated to our problem, that is

Nε := {u ∈ Hε\{0} : J ′
ε(u)[u] = 0}.

In virtue of (g6), it can be shown that for any u ∈ Hε \ {0}, there exists a unique tε > 0 such that

max
t≥0

Jε(tu) = Jε(tεu)

and tεu ∈ Nε. Thus, cε can be characterized as follows

cε = inf
u∈Hε\{0}

sup
t≥0

Jε(tu) = inf
u∈Nε

Jε(u).

Moreover, arguing as in Lemma 2.3, we also have that there exists γ > 0, which is independent of ε > 0,
such that

‖u‖ε ≥ γ > 0, for each u ∈ Nε.(3.8)

Now we show that Nε is a natural constraint, namely that the constrained critical points of the
functional Jε on Nε are the critical points of Jε in Hε. First we prove the following property.

Proposition 3.5. The functional Jε restricted to Nε satisfies the (PS)d condition at any level 0 < d <
(

1
2 − 1

θ − 1
2k

)

min{1, V0}.

Proof. Let (un) ⊂ Nε be a (PS)d sequence of Jε restricted to Nε. Then, Jε(un) → d as n → +∞ and
there exists (λn) ⊂ R such that

J ′
ε(un) = λnT

′
ε(un) + on(1),(3.9)

where Tε : Hε → R is defined as

Tε(u) := ‖u‖2ε −
∫

R2

g(εx, |u|2)|u|2dx.

Observe that, arguing as in Lemma 3.2, we get that (un) is bounded in Hε and lim supn ‖|un|‖2 < 1.
Note that, using the definition of g, the monotonicity of ϑ, and (f4), we obtain

T ′
ε(un)[un] = −2

∫

R2

g′(εx, |un|2)|un|4dx ≤ −2

∫

Λε∪{|un|2<ta}
f ′(|un|2)|un|4dx

≤ −(p− 2)Cp

∫

Λε∪{|un|2<ta}
|un|pdx ≤ −(p− 2)Cp

∫

Λε

|un|pdx.

Thus, up to a subsequence, we may assume that T ′
ε(un)[un] → ς ≤ 0.

Let us prove that ς 6= 0. Indeed, if ς = 0, then

on(1) = |T ′
ε(un)[un]| ≥ C

∫

Λε

|un|pdx.
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Thus we obtain that un → 0 in Lp(Λε,C), and by interpolation, we also have un → 0 in Lτ (Λε,C),
for all τ ≥ 1. Moreover, arguing as in Lemma 3.2, we have that ‖|un|‖ < 1 for n large. Hence, from
J ′
ε(un)[un] = 0, (g3), (g5), (2.5), the Hölder inequality and Lemma 2.1, we conclude that

‖un‖2ε =
∫

R2

g(εx, |un|2)|un|2dx ≤
∫

Λε

f(|un|2)|un|2dx+
1

k

∫

Λc
ε

V (εx)|un|2dx

≤ ζ

∫

Λε

|un|2dx+ C

∫

Λε

|un|q(eα|un|2 − 1)dx+
1

k

∫

Λc
ε

V (εx)|un|2dx

=
1

k

∫

Λc
ε

V (εx)|un|2dx+ on(1),

which implies that un → 0 in Hε. This is a contradiction with (3.8). Therefore, ς < 0 and by (3.9) we
deduce that λn = on(1).
On the other hand, since, by the definition of g and (f5), for every φ ∈ Hε we have that

∫

R2

g′(εx, |un|2)|un|3|φ|dx =

∫

Λε

f ′(|un|2)|un|3|φ|dx+

∫

Λc
ε

f̃ ′(|un|2)|un|3|φ|dx

≤
∫

Λε

(e4π|un|2 − 1)|un|3|φ|dx+

∫

Λc
ε∩{|un|2≤Ta}

f̃ ′(|un|2)|un|3|φ|dx

≤
∫

R2

(e4π|un|2 − 1)|un|3|φ|dx+ C

∫

R2

|un|3|φ|dx,

using (g3), (2.3), the fact that lim supn ‖|un|‖ < 1, the Hölder and Sobolev inequalities, for every φ ∈ Hε,
we obtain

|T ′
ε(un)[φ]| ≤ 2‖un‖ε‖φ‖ε + 2

∫

R2

g(εx, |un|2)|un||φ|dx+ 2

∫

R2

g′(εx, |un|2)||un|3|φ|dx

≤ C

[

‖un‖ε‖φ‖ε +
∫

R2

|un|q−1(eα|un|2 − 1)|φ|dx +

∫

R2

(e4π|un|2 − 1)|un|3|φ|dx

+

∫

R2

|un|3|φ|dx
]

≤ C(‖un‖ε + ‖un‖q−1
ε + ‖un‖3ε)‖φ‖ε.

Then, the boundedness of (un) implies the boundedness of T ′
ε(un) and so, by (3.9), we can infer that

J ′
ε(un) = on(1), that is (un) is a (PS)d sequence for Jε. Hence, we apply Lemma 3.4 to conclude. �

As a consequence we get

Corollary 3.6. The constrained critical points of the functional Jε on Nε are critical points of Jε in
Hε.

4. Multiple solutions for the modified problem

In this section, we prove a multiplicity result for the modified problem (3.2) using the Ljusternik-
Schnirelmann category theory. In order to get it, we first provide some useful preliminaries.

Let δ > 0 be such that Mδ ⊂ Λ, ω ∈ H1(R2,R) be a positive ground state solution of the limit
problem (2.7), and η ∈ C∞(R+, [0, 1]) be a nonincreasing cut-off function defined in [0,+∞) such that
η(t) = 1 if 0 ≤ t ≤ δ/2 and η(t) = 0 if t ≥ δ.
For any y ∈M , let us introduce the function

Ψε,y(x) := η(|εx− y|)ω
(εx− y

ε

)

exp
(

iτy

(εx− y

ε

))

,
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where
τy(x) := A1(y)x1 +A2(y)x2.

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).

Note that tεΨε,y ∈ Nε.
Let us define Φε :M → Nε as

Φε(y) := tεΨε,y.

By construction, Φε(y) has compact support for any y ∈M .
Moreover, the energy of the above functions has the following behavior as ε→ 0+.

Lemma 4.1. The limit
lim
ε→0+

Jε(Φε(y)) = cV0

holds uniformly in y ∈M .

Proof. Assume by contradiction that the statement is false. Then there exist δ0 > 0, (yn) ⊂ M and
εn → 0+ satisfying

∣

∣

∣
Jεn(Φεn(yn))− cV0

∣

∣

∣
≥ δ0.

For simplicity, we write Φn, Ψn and tn for Φεn(yn), Ψεn,yn and tεn , respectively.
We can check that

(4.1) ‖Ψn‖2εn →
∫

R2

(|∇ω|2 + V0ω
2)dx as n→ +∞.

Indeed, by a change of variable of z = (εnx− yn)/εn, the Lebesgue Dominated Convergence Theorem,
the continuity of V and yn ∈M ⊂ Λ(which is bounded), we deduce that

∫

R2

V (εnx)|Ψn|2dx =

∫

R2

V (εnz + yn)|η(|εnz|)ω(z)|2dx→ V0

∫

R2

ω2dx as n→ +∞.

Moreover, by the same change of variable z = (εnx− yn)/εn, we also have
∫

R2

|∇Aεn
Ψn|2dx = ε2n

∫

R2

|η′(|εnz|)ω(z)|2dz +
∫

R2

|η(|εnz|)∇ω(z)|2dz

+

∫

R2

∣

∣

∣
η(|εnz|)

(

A(yn)−A(εnz + yn)
)

ω(z)
∣

∣

∣

2
dz

+ 2εn

∫

R2

η(|εnz|)η′(|εnz|)ω(z)∇ω(z) ·
z

|z|dz.

It is clear that

lim
n

∫

R2

|η(|εnz|)∇ω(z)|2dz =
∫

R2

|∇ω(z)|2dz.

Moreover, using the definition of η, the Hölder continuity with exponent α ∈ (0, 1] of A, the exponential
decay of ω, and the Lebesgue Dominated Convergence Theorem, we can infer

∫

R2

|η′(|εnz|)ω(z)|2dz = on(1),

∫

R2

|η(|εnz|)η′(|εnz|)ω(z)∇ω(z)|dz = on(1),

and
∫

R2

∣

∣

∣
η(|εnz|)

(

A(yn)−A(εnz + yn)
)

ω(z)
∣

∣

∣

2
dz ≤ Cε2αn

∫

|εnz|≤δ
ω2(z)|z|2αdz = on(1),
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obtaining (4.1).
On the other hand, since J ′

εn(tnΨn)(tnΨn) = 0, by the change of variables z = (εnx − yn)/εn, observe
that, if z ∈ Bδ/εn(0), then εnz + yn ∈ Bδ(yn) ⊂Mδ ⊂ Λ, we have

‖Ψn‖2εn =

∫

R2

g(εnz + yn, t
2
nη

2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

=

∫

R2

f(t2nη
2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

≥
∫

Bδ/(2εn)(0)
f(t2nω

2(z))ω2(z)dz

≥
∫

Bδ/2(0)
f(t2nω

2(z))ω2(z)dz

≥ f(t2nγ
2)

∫

Bδ/2(0)
ω2(z)dz

for all n large enough and where γ = min{ω(z) : |z| ≤ δ/2}.
If tn → +∞, by (f4) we deduce that ‖Ψn‖2εn → +∞ which contradicts (4.1).
Therefore, up to a subsequence, we may assume that tn → t0 ≥ 0.
If tn → 0, using the fact that f is increasing and the Lebesgue Dominated Convergence Theorem, we
obtain that

‖Ψn‖2εn =

∫

R2

f(t2nη
2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz → 0, as n→ +∞,

which contradicts (4.1). Thus, we have t0 > 0 and
∫

R2

(|∇ω|2 + V0ω
2)dx =

∫

R2

f(t0ω
2)ω2dx,

so that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain that t0 = 1 and so, using the Lebesgue Dominated
Convergence Theorem, we get

lim
n

∫

R2

F (|tnΨn|2)dx =

∫

R2

F (ω2)dx.

Hence

lim
n
Jεn(Φεn(yn)) = IV0(ω) = cV0

which is a contradiction and conclude. �

Now we define the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and consider Υ : R2 → R2 defined by setting

Υ(x) :=

{

x, if |x| < ρ,
ρx/|x|, if |x| ≥ ρ.

The barycenter map βε : Nε → R2 is defined by

βε(u) :=
1

‖u‖22

∫

R2

Υ(εx)|u(x)|2dx.

We have

Lemma 4.2. The limit

lim
ε→0+

βε(Φε(y)) = y

holds uniformly in y ∈M .



18 P. D’AVENIA AND C. JI

Proof. Assume by contradiction that there exists κ > 0, (yn) ⊂M and εn → 0 such that

(4.2) |βεn(Φεn(yn))− yn| ≥ κ.

Using the change of variable z = (εnx− yn)/εn, we can see that

βεn(Φεn(yn)) = yn +

∫

R2

(Υ(εnz + yn)− yn)η
2(|εnz|)ω2(z)dz

∫

R2

η2(|εnz|)ω2(z)dz

.

Taking into account (yn) ⊂M ⊂Mδ ⊂ Bρ and the Lebesgue Dominated Convergence Theorem, we can
obtain that

|βεn(Φεn(yn))− yn| = on(1),

which contradicts (4.2). �

Now, we prove the following useful compactness result.

Proposition 4.3. Let εn → 0+ and (un) ⊂ Nεn be such that Jεn(un) → cV0 . Then there exists (ỹn) ⊂ R2

such that the sequence (|vn|) ⊂ H1(R2,R), where vn(x) := un(x+ ỹn), has a convergent subsequence in
H1(R2,R). Moreover, up to a subsequence, yn := εnỹn → y ∈M as n→ +∞.

Proof. Since J ′
εn(un)[un] = 0 and Jεn(un) → cV0 , arguing as in the proof of Lemma 3.2, using Lemma

2.4, we can prove that there exists C > 0 such that ‖un‖εn ≤ C for all n ∈ N and lim supn‖|un|‖ < 1.
Arguing as in the proof of Lemma 3.3 and recalling that cV0 > 0, we have that there exist a sequence
(ỹn) ⊂ R2 and constants R, β > 0 such that

(4.3) lim inf
n

∫

BR(ỹn)
|un|2dx ≥ β.

Now, let us consider the sequence (|vn|) ⊂ H1(R2,R), where vn(x) := un(x+ ỹn).
By the diamagnetic inequality (2.1), we get that (|vn|) is bounded in H1(R2,R), and using (4.3), we
may assume that |vn|⇀ v in H1(R2,R) for some v 6= 0.
Let now tn > 0 be such that ṽn := tn|vn| ∈ NV0 , and set yn := εnỹn.
By the diamagnetic inequality (2.1), we have

cV0 ≤ IV0(ṽn) ≤ max
t≥0

Jεn(tun) = Jεn(un) = cV0 + on(1),

which yields IV0(ṽn) → cV0 as n→ +∞.
Since the sequences (|vn|) and (ṽn) are bounded in H1(R2,R) and |vn| 6→ 0 in H1(R2,R), then (tn) is
also bounded and so, up to a subsequence, we may assume that tn → t0 ≥ 0.
We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn|) is bounded, we have ṽn → 0 in H1(R2,R),
that is IV0(ṽn) → 0, which contradicts cV0 > 0.
Thus, up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v 6= 0 in H1(R2,R), and, by Lemma 2.5,
we can deduce that ṽn → ṽ in H1(R2,R), which gives |vn| → v in H1(R2,R).
Now we show the final part, namely that (yn) has a subsequence such that yn → y ∈M .
Assume by contradiction that (yn) is not bounded and so, up to a subsequence, |yn| → +∞ as n→ +∞.
Choose R > 0 such that Λ ⊂ BR(0). Then for n large enough, we have |yn| > 2R, and, for any
x ∈ BR/εn(0),

|εnx+ yn| ≥ |yn| − εn|x| > R.
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Since un ∈ Nεn, using (V1) and the diamagnetic inequality (2.1), we get that
∫

R2

(|∇|vn||2 + V0|vn|2)dx ≤
∫

R2

g(εnx+ yn, |vn|2)|vn|2dx

≤
∫

BR/εn (0)
f̃(|vn|2)|vn|2dx+

∫

Bc
R/εn

(0)
f(|vn|2)|vn|2dx.

(4.4)

Since |vn| → v in H1(R2,R) and f̃(t) ≤ V0/k, we can see that (4.4) yields

min
{

1, V0

(

1− 1

k

)}

∫

R2

(|∇|vn||2 + |vn|2)dx = on(1),

that is |vn| → 0 in H1(R2,R), which contradicts to v 6≡ 0.
Therefore, we may assume that yn → y0 ∈ R2.
Assume by contradiction that y0 6∈ Λ. Then there exists r > 0 such that for every n large enough we
have that |yn − y0| < r and B2r(y0) ⊂ Λ

c
. Then, if x ∈ Br/εn(0), we have that |εnx+ yn − y0| < 2r so

that εnx+ yn ∈ Λ
c
and so, arguing as before, we reach a contradiction.

Thus, y0 ∈ Λ.
To prove that V (y0) = V0, we suppose by contradiction that V (y0) > V0. Using the Fatou’s lemma, the
change of variable z = x+ ỹn and maxt≥0 Jεn(tun) = Jεn(un), we obtain

cV0 = IV0(ṽ) <
1

2

∫

R2

(|∇ṽ|2 + V (y0)|ṽ|2)dx− 1

2

∫

R2

F (|ṽ|2)dx

≤ lim inf
n

(1

2

∫

R2

(|∇ṽn|2 + V (εnx+ yn)|ṽn|2)dx− 1

2

∫

R2

F (|ṽn|2)dx
)

= lim inf
n

(t2n
2

∫

R2

(|∇|un||2 + V (εnz)|un|2)dz −
1

2

∫

R2

F (|tnun|2)dz
)

≤ lim inf
n

Jεn(tnun) ≤ lim inf
n

Jεn(un) = cV0

which is impossible and we conclude. �

Let now
Ñε := {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},

where h : R+ → R+, h(ε) → 0 as ε→ 0+.

Fixed y ∈ M , since, by Lemma 4.1, |Jε(Φε(y)) − cV0 | → 0 as ε → 0+, we get that Ñε 6= ∅ for any ε > 0
small enough.

We have the following relation between Ñε and the barycenter map.

Lemma 4.4. We have
lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0+ as n→ +∞. For any n ∈ N, there exists un ∈ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u)− y| = inf
y∈Mδ

|βεn(un)− y|+ on(1).

Therefore, it is enough to prove that there exists (yn) ⊂Mδ such that

lim
n

|βεn(un)− yn| = 0.

By the diamagnetic inequality (2.1), we can see that IV0(t|un|) ≤ Jεn(tun) for any t ≥ 0. Therefore,

recalling that (un) ⊂ Ñεn ⊂ Nεn , we can deduce that

(4.5) cV0 ≤ max
t≥0

IV0(t|un|) ≤ max
t≥0

Jεn(tun) = Jεn(un) ≤ cV0 + h(εn)
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which implies that Jεn(un) → cV0 as n→ +∞.
Then, Proposition 4.3 implies that there exists (ỹn) ⊂ R2 such that yn = εnỹn ∈Mδ for n large enough.
Thus, making the change of variable z = x− ỹn, we get

βεn(un) = yn +

∫

R2(Υ(εnz + yn)− yn)|un(z + ỹn)|2dz
∫

R2 |un(z + ỹn)|2dz
.

Since, up to a subsequence, |un|(·+ ỹn) converges strongly in H1(R2,R) and εnz + yn → y ∈M for any
z ∈ R2, we conclude. �

Finally, we present a relation between the topology of M and the number of solutions of the modified
problem (3.2).

Theorem 4.5. For any δ > 0 such that Mδ ⊂ Λ, there exists ε̃δ > 0 such that, for any ε ∈ (0, ε̃δ),
problem (3.2) has at least catMδ

(M) nontrivial solutions.

Proof. Given δ > 0, by Lemma 4.1, Lemma 4.2, and Lemma 4.4, and arguing as in [21, Section 6], we
can find ε̃δ > 0 such that for any ε ∈ (0, ε̃δ), the following diagram

M
Φε−→ Ñε

βε−→Mδ

is well defined and βε ◦ Φε is homotopically equivalent to the embedding ι : M → Mδ. Thus, [16,
Lemma 4.3] (see also [22, Lemma 2.2]) implies that

catÑε
(Ñε) ≥ catMδ

(M).

By Proposition 3.5, we have also that Jε satisfies the Palais-Smale condition on Ñε (taking ε̃δ smaller if
necessary). Hence, by the Ljusternik-Schnirelmann theory for C1 functionals (see [38, Theorem 5.20]),
we get at least catMδ

(M) critical points of Jε restricted to Nε which are, by Corollary 3.6, critical points

for Jε in Ñε. �

5. Proof of Theorem 1.1

In this section we prove our main result. The idea is to show that the solutions uε obtained in Theorem
4.5 satisfy

|uε(x)|2 ≤ ta for x ∈ Λc
ε

for ε small. The key ingredient is the following result.

Lemma 5.1. Let εn → 0+ and un ∈ Ñεn be a solution of problem (3.2) for ε = εn. Then Jεn(un) → cV0 .
Moreover, there exists (ỹn) ⊂ R2 such that, if vn(x) := un(x + ỹn), we have that (|vn|) is bounded in
L∞(R2,R) and

lim
|x|→+∞

|vn(x)| = 0 uniformly in n ∈ N.

Proof. Since Jεn(un) ≤ cV0 + h(εn) with limn h(εn) = 0, we can argue as in the proof of Lemma 4.4 (see
(4.5)) to conclude that Jεn(un) → cV0 .
Thus, by Proposition 4.3, we obtain the existence of a sequence (ỹn) ⊂ R2 such that (|vn|) ⊂ H1(R2,R),
where vn(x) := un(x+ ỹn), has a convergent subsequence in H1(R2,R). Moreover, up to a subsequence,
yn := εnỹn → y ∈M as n→ +∞.
For any R > 0 and 0 < r ≤ R/2, let η ∈ C∞(R2), 0 ≤ η ≤ 1 with η(x) = 1 if |x| ≥ R and η(x) = 0 if
|x| ≤ R− r and |∇η| ≤ 2/r.
For each n ∈ N and L > 0, we consider the functions

vL,n(x) :=

{

|vn(x)| if |vn(x)| ≤ L,

L if |vn(x)| > L,
zL,n := η2v

2(β−1)
L,n vn, and wL,n := ηvβ−1

L,n |vn|,
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where β > 1 will be determined later.

Since, by the diamagnetic inequality (2.1) we have that

Re(∇Aεn (·+ỹn)vn · ∇Aεn (·+ỹn)zL,n) = η2v
2(β−1)
L,n |∇Aεn (·+ỹn)vn|2 +Re(∇vnvn)∇(η2v

2(β−1)
L,n )

= η2v
2(β−1)
L,n |∇Aεn (·+ỹn)vn|2 + |vn|∇|vn|∇(η2v

2(β−1)
L,n )

≥ η2v
2(β−1)
L,n |∇|vn||2 + 2η∇ηv2(β−1)

L,n |vn|∇|vn|,

using also the fact that un is a solution of problem (3.2) for ε = εn, the Young inequality (with τ > 0),
(g3), (2.5), for α > 4π and for a fixed q > 2, given 0 < ζ < V0, there exists C > 0 such that

∫

R2

|∇|vn||2η2v2(β−1)
L,n dx ≤

∫

R2

|∇|vn||2η2v2(β−1)
L,n dx+ 2

∫

R2

η∇ηv2(β−1)
L,n |vn|∇|vn|dx

+

∫

R2

V (εnx+ εnỹn)η
2v

2(β−1)
L,n |vn|2dx

+ 2

∫

R2

η|∇η|v2(β−1)
L,n |vn||∇|vn|| − ζ

∫

R2

η2v
2(β−1)
L,n |vn|2dx

≤ Re

∫

R2

(∇Aεn (·+ỹn)vn · ∇Aεn (·+ỹn)zL,n)dx

+Re

∫

R2

V (εnx+ εnỹn)vnzL,ndx

+ τ

∫

R2

|∇|vn||2η2v2(β−1)
L,n dx+

1

τ

∫

R2

|∇η|2v2(β−1)
L,n |vn|2dx

− ζ

∫

R2

η2v
2(β−1)
L,n |vn|2dx

=

∫

R2

g(εnx+ εnỹn, |vn|2)η2v2(β−1)
L,n |vn|2dx

+ τ

∫

R2

|∇|vn||2η2v2(β−1)
L,n dx+

4

τr2

∫

R−r≤|x|≤R
v
2(β−1)
L,n |vn|2dx

− ζ

∫

R2

η2v
2(β−1)
L,n |vn|2dx

≤ C

∫

R2

|vn|q(eα|vn|
2 − 1)η2v

2(β−1)
L,n dx

+ τ

∫

R2

|∇|vn||2η2v2(β−1)
L,n dx+

4

τr2

∫

R−r≤|x|≤R
|vn|2βdx.

(5.1)

Hence, choosing τ > 0 sufficiently small, we get

(5.2)

∫

R2

|∇|vn||2η2v2(β−1)
L,n ≤ C

[

∫

|x|≥R−r
|vn|q+2(β−1)(eα|vn|

2 − 1)dx +
1

r2

∫

R−r≤|x|≤R
|vn|2βdx

]

.

Moreover, arguing similarly to (5.1), we can conclude that

(5.3)

∫

R2

η2v
2(β−1)
L,n |vn|2dx ≤ C

[

∫

|x|≥R−r
|vn|q+2(β−1)(eα|vn|

2 − 1)dx+
1

r2

∫

R−r≤|x|≤R
|vn|2βdx

]

.
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On the other hand, using the Sobolev embedding, (5.2), (5.3), the Hölder inequality with t, σ, τ > 1,
1/σ + 1/τ = 1/t, σ(q − 2) ≥ 2, and (2.13), we have

‖wL,n‖2q ≤ C

∫

R2

(|∇wL,n|2 + |wL,n|2)dx

≤ C
(

∫

R2

|∇η|2|vn|2βdx+ β2
∫

R2

η2v
2(β−1)
L,n |∇|vn||2dx+

∫

R2

η2v
2(β−1)
L,n |vn|2dx

)

≤ Cβ2
( 1

r2

∫

R−r≤|x|≤R
|vn|2βdx+

∫

|x|≥R−r
|vn|q+2(β−1)(eα|vn|

2 − 1)dx
)

≤ Cβ2

[

R2/t

r2
+

(

∫

|x|≥R−r
|vn|σ(q−2)dx

)1/σ(
∫

R2

(eτα|vn|
2 − 1)dx

)1/τ
]

(

∫

|x|≥R−r
|vn|2βt/(t−1)dx

)(t−1)/t
.

(5.4)

Since (|vn|) is convergent inH1(R2,R), there exists h ∈ H1(R2,R) such that, for all n ∈ N, |vn(x)| ≤ h(x)
a.e. in R2. So, using Lemma 2.1, for all τ > 1 and α > 4π, we know that

∫

R2

(eτα|vn|
2 − 1)dx ≤

∫

R2

(eταh
2 − 1)dx < +∞.(5.5)

By (5.4) and (5.5), it follows that

(

∫

|x|≥R
vqβL,ndx

)2/q
≤ ‖wL,n‖2q ≤ Cβ2

(

1 +
R2/t

r2

)(

∫

|x|≥R−r
|vn|2βt/(t−1)

)(t−1)/t

and, applying the Fatou’s Lemma as L→ +∞, we obtain

(

∫

|x|≥R
|vn|qβdx

)2/q
≤ Cβ2

(

1 +
R2/t

r2

)(

∫

|x|≥R−r
|vn|2βt/(t−1)

)(t−1)/t
.

Arguing as in [31], if we take ζ := q(t−1)
2t , β := ζm, with m ∈ N∗, and s := 2t

t−1 , we obtain

(

∫

|x|≥R
|vn|sζ

m+1
dx

)1/(sζm+1)
≤ Cζ−m

ζmζ−m
(

1 +
R2/t

r2

)1/(2ζm)(
∫

|x|≥R−r
|vn|sζ

m
)1/(sζm)

for every m ∈ N∗. Then, for r = rm := R/2m, m ∈ N∗, using also that 2/t < 2, we get

(

∫

|x|≥R
|vn|sζ

m+1
dx

)1/(sζm+1)
≤

(

∫

|x|≥R−rm+1

|vn|sζ
m+1

dx
)1/(sζm+1)

≤ C
∑m

i=1 ζ
−i
ζ
∑m

i=1 iζ
−i

exp
(

m
∑

i=1

ln(1 + 22(i+1))

2ζ i

)(

∫

|x|≥R/2
|vn|sζdx

)1/(sζ)
.

Hence, passing to the limit as m→ +∞ in the last inequality, we obtain

‖vn‖L∞(Bc
R(0)) ≤ C

(

∫

|x|≥R
|vn|qdx

)1/q
.(5.6)

For x0 ∈ R2, we can use the same argument taking η ∈ C∞
0 (R2, [0, 1]) with η(x) = 1 if |x − x0| ≤ ρ̃,

η(x) = 0 if |x− x0| > 2ρ, with ρ̃ < ρ, and |∇η| ≤ 2/ρ̃, to prove that

‖vn‖L∞(B2ρ(x0))
≤ C

(

∫

|x|≤2ρ
|vn|qdx

)1/q
.(5.7)
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Thus, by (5.6), (5.7), and using a standard covering argument and the boundedness of (|vn|) in Lq(R2,R),
it follows that

‖vn‖∞ ≤ C.

Now, we use again the convergence of (|vn|) in H1(R2,R) on the right side of (5.6) to get

lim
|x|→+∞

|vn| = 0 uniformly in n ∈ N

and the proof is complete. �

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ > 0 be such that Mδ ⊂ Λ. We want to show that there exists ε̂δ > 0 such
that for any ε ∈ (0, ε̂δ) and any uε ∈ Ñε solution of problem (3.2), it holds

‖uε‖2L∞(Λc
ε)

≤ ta.(5.8)

We argue by contradiction and assume that there is a sequence εn → 0 such that for every n there exists
un ∈ Ñεn which satisfies J ′

εn(un) = 0 and

‖un‖2L∞(Λc
εn

) > ta.(5.9)

As in Lemma 5.1, we have that Jεn(un) → cV0 , and therefore we can use Proposition 4.3 to obtain a
sequence (ỹn) ⊂ R2 such that yn := εnỹn → y0 for some y0 ∈ M . Then, we can find r > 0, such that
Br(yn) ⊂ Λ, and so Br/εn(ỹn) ⊂ Λεn for all n large enough.

Using Lemma 5.1, there exists R > 0 such that |vn|2 ≤ ta in Bc
R(0) and n large enough, where vn =

un(· + ỹn). Hence |un|2 ≤ ta in Bc
R(ỹn) and n large enough. Moreover, if n is so large that r/εn > R,

then Λc
εn ⊂ Bc

r/εn
(ỹn) ⊂ Bc

R(ỹn), which gives |un|2 ≤ ta for any x ∈ Λc
εn . This contradicts (5.9) and

proves the claim.
Let now εδ := min{ε̂δ, ε̃δ}, where ε̃δ > 0 is given by Theorem 4.5. Then we have catMδ

(M) nontrivial

solutions to problem (3.2). If uε ∈ Ñε is one of these solutions, then, by (5.8) and the definition of g,
we conclude that uε is also a solution to problem (2.2).
Finally, we study the behavior of the maximum points of |ûε|, where ûε(x) := uε(x/ε) is a solution to
problem (1.1), as ε→ 0+.
Take εn → 0+ and the sequence (un) where each un is a solution of (3.2) for ε = εn. In view of (g2),
there exists γ ∈ (0, ta) such that

g(εx, t2)t2 ≤ V0
2
t2, for all x ∈ R2, |t| ≤ γ.

Arguiguing as above we can take R > 0 such that, for n large enough,

(5.10) ‖un‖L∞(Bc
R(ỹn)) < γ.

Up to a subsequence, we may also assume that for n large enough

(5.11) ‖un‖L∞(BR(ỹn)) ≥ γ.

Indeed, if (5.11) does not hold, up to a subsequence, if necessary, we have ‖un‖∞ < γ. Thus, since
J ′
εn(uεn) = 0, using (g5) and the diamagnetic inequality (2.1) that

∫

R2

(|∇|un||2 + V0|un|2)dx ≤
∫

R2

g(εnx, |un|2)|un|2dx ≤ V0
k

∫

R2

|un|2dx

and, being k > 1, ‖un‖ = 0, which is a contradiction.
Taking into account (5.10) and (5.11), we can infer that the global maximum points pn of |uεn | belongs
to BR(ỹn), that is pn = qn + ỹn for some qn ∈ BR. Recalling that the associated solution of problem
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(1.1) is ûn(x) = un(x/εn), we can see that a maximum point ηεn of |ûn| is ηεn = εnỹn + εnqn. Since
qn ∈ BR, εnỹn → y0 and V (y0) = V0, the continuity of V allows to conclude that

lim
n
V (ηεn) = V0.

�
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Appl., 1, Birkhäuser Boston, Boston, 1989. 2

[28] A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J.
Funct. Anal. 69 (1986), 397–408. 1

[29] X. He, W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities,
Calc. Var. Partial Differential Equations 55 (2016), art. 91, 39 p. 2
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