
03 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Graph neural networks for recommendation leveraging multimodal information / Malitesta, Daniele. - ELETTRONICO. -
(2024). [10.60576/poliba/iris/malitesta-daniele_phd2024]

This is a PhD Thesis

Original Citation:

Graph neural networks for recommendation leveraging multimodal information

Published version
DOI:10.60576/poliba/iris/malitesta-daniele_phd2024

Terms of use:
Altro tipo di accesso

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/264941 since: 2024-01-19

Politecnico di Bari

Department of Electrical and Information Engineering

Electrical and Information Engineering Ph.D. Program
SSD: ING-INF/05 - Information Processing Systems

Final Dissertation

Graph Neural Networks
for Recommendation leveraging

Multimodal Information

by

Daniele Malitesta

Supervisor

Prof. Tommaso Di Noia

Coordinator of the Ph.D. Program

Prof. Mario Carpentieri

Course XXXVI, 01/11/2020 - 31/10/2023

Department of Electrical and Information Engineering

Electrical and Information Engineering Ph.D. Program
SSD: ING-INF/05 - Information Processing Systems

Final Dissertation

Graph Neural Networks
for Recommendation leveraging

Multimodal Information

by

Daniele Malitesta

Referees

Prof. Ludovico Boratto
Prof. Pasquale Minervini

Supervisor

Prof. Tommaso Di Noia

Coordinator of the Ph.D. Program

Prof. Mario Carpentieri

Course XXXVI, 01/11/2020 - 31/10/2023

Dedicated to those I love.

Abstract

In the era of digital information overload on the Internet, recommender systems act
as filtering algorithms to provide users with items that might meet their interests
according to expressed preferences and items’ properties and characteristics. Among
the various recommendation paradigms so far, collaborative filtering has represented
the most successful one thanks to the easy application of its recommendation algorithms
whose high level performance in terms of recommendation accuracy is widely recognized.
Despite the recent success of machine and deep learning techniques for collaborative
filtering which have been e�ectively applied to recommender systems to improve the
learning and profiling abilities of such models, recommendation still remains an highly-
challenging task. Among the most debated open issues in the community, this thesis
considers two algorithmic and conceptual ones, namely: (i) the inexplicable nature of
users’ preferences, especially when they come in the form of implicit feedback; (ii) the
e�ective exploitation of the collaborative information in the designing and training of
recommendation models.

In specific scenarios and domains such as fashion, food, tourism, and media content
recommendation, the shallow item’s profile, commonly based upon the information
conveyed within the user-item interactions only, may be enhanced through the multi-
faceted characteristics describing items. Driven from these assumptions, in the first part
of this thesis, we propose to apply multimodal deep learning strategies for multimedia
recommendation; the scope is to study and design recommendation algorithms based
upon the principles of multimodality to possibly match each items’ characteristic to
the implicit preference expressed by the user, thus addressing the (i) issue.

Recent collaborative filtering approaches leverage the representational power of
machine learning systems to profile users and items through embedding vectors in the
latent space. In doing so, however, such recommendation models disregard a wide range
of structural properties which are naturally encoded into the user-item interaction
data. Indeed, recommendation datasets are easily describable under the topology of a
bipartite and undirected graph, with users and items being the graph nodes connected
at multiple distance hops. In this respect, the application of graph neural networks,

viii

recent machine learning techniques specifically tailored to learn from non-euclidean
data, is of the utmost importance to provide a refined representation of users and
items which can mine near- and long-distance relationships in the user-item graphs.
Indeed, this is one possible way to exploit the collaborative signal, which is e�ectively
propagated within the user-item graph, thus addressing the (ii) issue.

Far from considering multimodal-aware and graph-based recommender systems
from a separate perspective, this thesis conclusively aims to match the two families of
recommendation strategies to propose an approach leveraging graph neural networks
and multimodal information data. In seeking this joint research objective, other
numerous micro aspects within the two macro areas (introduced above) are examined.
Indeed, the thesis is a systematic compendium of careful additional analyses regarding,
among the others, reproducibility, novel evaluation dimensions, and tasks and scenarios
complementary to recommendation.

Publications

Some ideas and figures have appeared previously in other publications. A complete list
of my publications during the PhD is available in the following. Note that, in some
cases, the author list follows the alphabetical order. For this reason, for each paper,
corresponding authors are explicitly denoted through boldface.

[1] Alberto Carlo Maria Mancino, Antonio Ferrara, Salvatore Bufi, Daniele
Malitesta, Tommaso Di Noia, and Eugenio Di Sciascio. “KGTORe: Tailored Rec-
ommendations through Knowledge-aware GNN Models.” In: RecSys. ACM, 2023,
pp. 576–587.

[2] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice
Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia.
“V-Elliot: Design, Evaluate and Tune Visual Recommender Systems.” In: RecSys.
ACM, 2021, pp. 768–771.

[3] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and
Felice Antonio Merra. “A Study of Defensive Methods to Protect Visual Rec-
ommendation Against Adversarial Manipulation of Images.” In: SIGIR. ACM, 2021,
pp. 1094–1103.

[4] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Vincenzo
Paparella, and Claudio Pomo. “Auditing Consumer- and Producer-Fairness in Graph
Collaborative Filtering.” In: ECIR (1). Vol. 13980. Lecture Notes in Computer Science.
Springer, 2023, pp. 33–48.

[5] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio
Ferrara, Daniele Malitesta, and Claudio Pomo. “How Neighborhood Exploration
influences Novelty and Diversity in Graph Collaborative Filtering.” In: MORS@RecSys.
Vol. 3268. CEUR Workshop Proceedings. CEUR-WS.org, 2022.

x

[6] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, An-
tonio Ferrara, Daniele Malitesta, and Claudio Pomo. “Reshaping Graph Rec-
ommendation with Edge Graph Collaborative Filtering and Customer Reviews.” In:
DL4SR@CIKM. Vol. 3317. CEUR Workshop Proceedings. CEUR-WS.org, 2022.

[7] Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio
Merra. “Assessing Perceptual and Recommendation Mutation of Adversarially-
Poisoned Visual Recommenders (short paper).” In: DP@AI*IA. Vol. 2776. CEUR
Workshop Proceedings. CEUR-WS.org, 2020, pp. 49–56.

[8] Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Daniele Malitesta, and
Felice Antonio Merra. “Adversarial Attacks against Visual Recommendation: an
Investigation on the Influence of Items’ Popularity.” In: OHARS@RecSys. Vol. 3012.
CEUR Workshop Proceedings. CEUR-WS.org, 2021, pp. 33–44.

[9] Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto,
and Erasmo Purificato. “First International Workshop on Graph-Based Approaches
in Information Retrieval (IRonGraphs 2024).” In: To Appear in Proceedings of the
46th European Conference on Information Retrieval (2024).

[10] Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria
Mancino, Eugenio Di Sciascio, and Tommaso Di Noia. “A Topology-aware Analysis
of Graph Collaborative Filtering.” In: arXiv:2308.10778 (2023).

[11] Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia, and
Antonio Ferrara. “An Out-of-the-Box Application for Reproducible Graph Collabo-
rative Filtering extending the Elliot Framework.” In: UMAP (Adjunct Publication).
ACM, 2023, pp. 12–15.

[12] Daniele Malitesta, Claudio Pomo, and Tommaso Di Noia. “Graph Neural
Networks for Recommendation: Reproducibility, Graph Topology, and Node Rep-
resentation.” In: Accepted as tutorial at the 2nd Learning on Graphs Conference
arXiv:2310.11270 (2023).

[13] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Felice Antonio Merra,
Tommaso Di Noia, and Eugenio Di Sciascio. “Formalizing Multimedia Recommenda-
tion through Multimodal Deep Learning.” In: Under review at ACM Transactions on
Recommender Systems arXiv:2309.05273 (2023).

[14] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, and Tommaso Di
Noia. “Disentangling the Performance Puzzle of Multimodal-aware Recommender
Systems.” In: EvalRS@KDD. Vol. 3450. CEUR Workshop Proceedings. CEUR-WS.org,
2023.

xi

[15] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, and Tommaso Di
Noia. “On Popularity Bias of Multimodal-Aware Recommender Systems: A Modalities-
Driven Analysis.” In: MMIR@MM. ACM, 2023, pp. 59–68.

[16] Daniele Malitesta, Giuseppe Gassi, Claudio Pomo, and Tommaso Di Noia.
“Ducho: A Unified Framework for the Extraction of Multimodal Features in Recom-
mendation.” In: ACM Multimedia. ACM, 2023, pp. 9668–9671.

[17] Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio Merra.
“A Study on the Relative Importance of Convolutional Neural Networks in Visually-
Aware Recommender Systems.” In: CVPR Workshops. Computer Vision Foundation /
IEEE, 2021, pp. 3961–3967.

[18] Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio Merra.
“Leveraging Content-Style Item Representation for Visual Recommendation.” In:
ECIR (2). Vol. 13186. Lecture Notes in Computer Science. Springer, 2022, pp. 84–92.

[19] Felice Antonio Merra, Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta,
and Alberto Carlo Maria Mancino. “Denoise to Protect: A Method to Robustify
Visual Recommenders from Adversaries.” In: SIGIR. ACM, 2023, pp. 1924–1928.

[20] Dario Di Palma, Vito Walter Anelli, Daniele Malitesta, Vincenzo Paparella, Clau-
dio Pomo, Yashar Deldjoo, and Tommaso Di Noia. “Examining Fairness in Graph-
Based Collaborative Filtering: A Consumer and Producer Perspective.” In: IIR.
Vol. 3448. CEUR Workshop Proceedings. CEUR-WS.org, 2023, pp. 79–84.

[21] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice
Antonio Merra, Claudio Pomo, Francesco M. Donini, Eugenio Di Sciascio, and
Tommaso Di Noia. “The Challenging Reproducibility Task in Recommender Systems
Research between Traditional and Deep Learning Models.” In: SEBD. Vol. 3194.
CEUR Workshop Proceedings. CEUR-WS.org, 2022, pp. 514–521.

[22] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice
Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia.
“Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender
Systems Evaluation.” In: SIGIR. ACM, 2021, pp. 2405–2414.

[23] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice
Antonio Merra, Claudio Pomo, Francesco Maria Donini, Eugenio Di Sciascio, and
Tommaso Di Noia. “How to Perform Reproducible Experiments in the ELLIOT
Recommendation Framework: Data Processing, Model Selection, and Performance
Evaluation.” In: IIR. Vol. 2947. CEUR Workshop Proceedings. CEUR-WS.org, 2021.

xii

[24] Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro Bellogín,
Eugenio Di Sciascio, and Tommaso Di Noia. “Challenging the Myth of Graph Collab-
orative Filtering: a Reasoned and Reproducibility-driven Analysis.” In: RecSys. ACM,
2023, pp. 350–361.

Table of contents

List of figures xix

List of tables xxiii

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Research Contributions . 4

1.2.1 Chapter 4: Formalizing multimedia recommendation 4
1.2.2 Chapter 5: Leveraging the visual modality in multimedia recom-

mendation . 5
1.2.3 Chapter 6: Evaluation of graph-based recommender systems . . 6
1.2.4 Chapter 7: Graph-based recommendation exploiting multimodal

information . 7
1.3 Bibliographical Notes . 8

2 Background on recommender systems 11
2.1 Preliminaries . 11

2.1.1 Rating prediction . 12
2.1.2 Top-k recommendation . 12

2.2 Taxonomy of recommender systems . 13
2.2.1 Collaborative filtering approaches 14
2.2.2 Content-based approaches . 16
2.2.3 Hybrid approaches . 17

2.3 The recommendation pipeline . 17
2.3.1 Recommendation input . 17
2.3.2 Optimization and negative sampling 18
2.3.3 Evaluation . 20

xiv Table of contents

3 Background on graph neural networks 27
3.1 Basic notions about graphs . 27

3.1.1 Definition of graph . 28
3.1.2 Adjacency matrix . 28
3.1.3 Node features . 29

3.2 The message passing algorithm . 29
3.2.1 Message aggregation . 30
3.2.2 Node embedding update . 30
3.2.3 Layer combination . 31
3.2.4 Matrix format and self-loops . 31

3.3 Popular graph neural network architectures 32
3.3.1 Graph convolutional network 32
3.3.2 Graph attention network . 32
3.3.3 Graph isomorphism network . 33

3.4 Tasks in graph representation learning 33
3.4.1 Node classification . 34
3.4.2 Link prediction . 35
3.4.3 Graph structure learning . 36

4 Formalizing multimedia recommendation 39
4.1 Motivations . 39
4.2 Literature review . 41

4.2.1 Which modalities? . 42
4.2.2 How to process modalities? . 43
4.2.3 When to fuse modalities? . 44
4.2.4 Similar works . 45

4.3 A formal multimodal schema for multimedia recommendation 46
4.3.1 Classical recommendation task 46
4.3.2 Multimodal input data . 47
4.3.3 Multimodal feature processing 48
4.3.4 Multimodal feature fusion . 50
4.3.5 Multimodal recommendation task 51

4.4 Conceptual validation of the schema 52
4.4.1 Case 1: micro-video recommendation 52
4.4.2 Case 2: food recommendation 54
4.4.3 Case 3: outfit fashion compatibility 56
4.4.4 Case 4: artist and song recommendation 57

Table of contents xv

4.5 Technical challenges . 58
4.5.1 Missing modalities in the input data 58
4.5.2 Pre-trained feature extractors 58
4.5.3 Modalities representation . 59
4.5.4 Multimodal-aware fusion and optimization 59

4.6 Summary . 60

5 Leveraging the visual modality in multimedia recommendation 61
5.1 Ducho: an extractor for multimodal features 61

5.1.1 Architecture . 62
5.1.2 Extraction pipeline . 65
5.1.3 Ducho as Docker application . 66
5.1.4 Demonstrations . 66

5.2 Reproducing and evaluating visually-aware recommender systems . . . 68
5.2.1 V-Elliot: the visual recommendation framework 70
5.2.2 Execution of an experimental flow 72
5.2.3 The impact of pre-trained feature extractors 72

5.3 Content-style item representation for visually-aware recommendation . 79
5.3.1 Method . 80
5.3.2 Experiments . 82
5.3.3 Results . 83

5.4 Adversarial attacks and defenses in visually-aware recommendation . . 85
5.4.1 The threat model . 86
5.4.2 Experiments . 87

5.5 Summary . 90

6 Evaluation of graph-based recommender systems 93
6.1 Graph collaborative filtering within Elliot 94

6.1.1 Proposed application . 95
6.2 Reproducing and benchmarking graph-based recommender systems . . 98

6.2.1 Background and reproducibility analysis 101
6.2.2 Replication of prior results . 106
6.2.3 Benchmarking graph CF approaches using alternative baselines 108
6.2.4 Extending the experimental comparison to new datasets 109

6.3 A topology-aware analysis of graph collaborative filtering 117
6.3.1 Topological characteristics in recommendation data 119
6.3.2 Topological characteristics in graph collaborative filtering 123

xvi Table of contents

6.3.3 Proposed analysis . 127
6.3.4 Results and discussion . 131

6.4 How neighborhood exploration influences novelty and diversity 138
6.4.1 Novelty and diversity in recommendation 140
6.4.2 Reformulating explicit message-passing 140
6.4.3 Experiments and discussion . 143

6.5 Auditing consumer- and provider-fairness 147
6.5.1 A formal taxonomy of graph CF 149
6.5.2 Weighting the importance of graph edges 152
6.5.3 Experimental settings and protocols 154
6.5.4 Taxonomy-aware evaluation . 155
6.5.5 Trade-o� analysis . 157

6.6 Summary . 160

7 Graph-based recommendation exploiting multimodal information 163
7.1 Novelty and diversity in multimodal-aware recommendation 163

7.1.1 Novelty and diversity in recommendation 164
7.1.2 Proposed analysis . 165
7.1.3 Results and discussion . 166

7.2 Multimodality and items’ popularity bias 169
7.2.1 Popularity bias in recommendation 172
7.2.2 Factorization models leveraging multimodal information 172
7.2.3 Proposed analysis . 174
7.2.4 Results and discussion . 176

7.3 A comprehensive benchmarking within Elliot 182
7.3.1 Datasets . 183
7.3.2 Multimedia recommender systems 183
7.3.3 Evaluation metrics . 184
7.3.4 Reproducibility . 185
7.3.5 Benchmarking results . 185

7.4 Leveraging textual review content on graph edges for recommendation . 186
7.4.1 Review-based recommendation 189
7.4.2 Methodology . 190
7.4.3 Experiments and discussion . 196

7.5 Summary . 201

8 Conclusion 203

Table of contents xvii

9 Future directions 207
9.1 Multimodal-aware recommendation . 207

9.1.1 Domain-specific multimodal features 207
9.1.2 Multimodality on user-item interactions 208
9.1.3 Fine-grained multimodal features 208
9.1.4 An extensive evaluation of multimedia recommender systems . . 209

9.2 Graph-based recommendation . 210
9.2.1 Topological properties in graph collaborative filtering 210
9.2.2 Bridging recommendation and link prediction 210
9.2.3 How powerful is adjacency normalization for recommendation? . 215

9.3 Graph-based recommendation leveraging multimodal information . . . 216
9.3.1 Exploiting reviews on user-user and item-item graphs 216
9.3.2 A feature propagation approach for missing modalities 218

List of figures

4.1 Our multimodal schema for multimedia recommendation. After (1) a
modality-aware feature extraction, the extracted features may be either
directly represented into a unique latent space (2a) or projected into a
di�erent latent space for each modality (2b). While in the former case,
the multimodal representation is used to produce a prediction (4), in the
latter case, all modalities must undergo a fusion phase (3). In the early
fusion (3a), we produce a final representation that is used for prediction
(4). Otherwise, we first produce a di�erent prediction for each modality
(4), and then we fuse them (late fusion) into a single predicted value (3b). 47

4.2 A visual representation of Joint and Coordinate multimodal representa-
tion (above and below, respectively). 49

5.1 Ducho’s pipeline for multimodal feature extraction, managed by the
Dataset, Extractor, and Runner modules. 65

5.2 Overview of V-Elliot. After the initial Loading (optionally complemented
by Prefiltering and Splitting strategies), the Data Input Pipeline interacts
with the Recommendation module to inject the visual data and train the
model. The Metrics module evaluates the performance, whose values
can be validated by statistical hypothesis tests. The Output module
reports statistics and results. 70

5.3 A Visually-Aware Recommender System (VRS). 74
5.4 Positive (green) and top-5 (red) item features in the latent space for (a)

AlexNet and (b) ResNet50. The VisDiv@5 (the line connecting the two
centroids) are 67.83 and 416.22 respectively. 79

5.5 Our proposed pipeline for visual recommendation, involving content-style
item features, attention mechanisms, and a neural architecture. 82

xx List of figures

5.6 (a) is the image of a low-recommended product. (b, c, d) are the
perturbed versions with PGD (‘ = 8) applied against DNNs without
defense (T), or with the Adversarial Training (AT) and Free AT (FAT).
The attacks have pushed the product towards higher ranking positions
without visually-perceptible artifacts. 86

6.1 Architecture of Elliot for graph collaborative filtering. We integrate
PyTorch Geometric as backend, categorize graph models into two classes,
and dockerize the application. 95

6.2 Screenshot of the application start, where user can select the model
(e.g., NGCF) and the dataset (e.g., Gowalla). 97

6.3 A toy user-item graph where the ego user node (highlighted) receives
the information flow from the (a) 1-, (b) 2-, and (c) 3-hop neighbor
nodes (highlighted). Arrows’ direction is a visual representation of the
information flow. 114

6.4 Percentage variation between the nDCG on user quartiles and the average
nDCG value across all users (indicated as the dashed line), for each
model-dataset setting. Rows refer to user quartiles when considering (a)
1-, (b) 2-, and (c) 3-hop. 116

6.5 Pearson correlation of the selected characteristics. Many values in
[≠0.5,0.5] indicate loosely correlated pairs. 133

6.6 Node degree probability distribution on Gowalla. The black points (i.e.,
the real data) would be approximated by a function in-between the
power-law and the exponential. 137

6.7 User and item neighborhood exploration after (a) 2 and (b) 3 hops.
Contributions to the ego node update are highlighted through dashed
ovals. Edge direction indicates the message propagation from neighbor
to ego nodes. 142

6.8 Accuracy/Novelty (a) and Accuracy/Diversity (b) trade-o�s of graph
models with explicit (i.e., filled bar plots) and implicit message-
passing (i.e., patterned bar plots) on Amazon Digital Music for top-20
recommendation lists. As for explicit message-passing, results are further
categorized into different- and same-node type explorations (i.e., the
leftmost and central tabs in each plot, respectively), when varying the
number of hops from 1 to 2. Accuracy, novelty, and diversity are assessed
through Recall (in teal blue), EPC (in lime green), and Gini (in melon),
respectively. Best viewed in color. 147

List of figures xxi

6.9 Kiviat diagrams indicating the performance of selected pure and graph
CF recommenders on overall accuracy (i.e., O-Acc, calculated with the
nDCG@20), item exposure (i.e., I-Exp, calculated with the APLT@20 [3]),
and user fairness (U-Fair, calculated with the UMADrat@20 [81]). Higher
means better. 150

6.10 Overall Accuracy/Item Exposure, Overall Accuracy/User Fairness, and
Item Exposure/User Fairness trade-o�s on Amazon Men, assessed
through nDCG/APLT, nDCG/UMADrank, and APLT/UMADrank,
respectively. Each point depicts a model hyper-parameter configuration
set belonging to the corresponding Pareto frontier. Colors refer to a
particular baseline, while lines styles discern their technical strategies
based on the proposed taxonomy. Arrows indicates the optimization
direction for each metric on x and y axes. 159

7.1 Short-head and long-tail items from the O�ce dataset in the Amazon
catalog. 171

7.2 Percentage variation on the (a) Recall, (b) iCov, and (c) APLT when
training the multimodal recommender systems with either visual or
textual modalities. The 0% line stands for the reference performance
provided by the multimodal version of the model. All results refer to
the top@20 recommendation lists. 180

7.3 Performance analysis on Clothing when comparing (a) Recall vs. APLT,
(b) Recall vs. iCov, and (c) iCov vs. APLT for di�erent modality settings
involving the multimodal, visual, and textual modalities. Metrics are
on top@20. 182

7.4 A subset of users, items, and reviews users wrote about items, along
with the expressed ratings (in the range 1-5). Despite being connected
to the same items, users u1-u2, and users u1-u3 do not share similar
opinions about the interacted items. 189

7.5 Overview of the node refining algorithm proposed for EGCF. A statically-
weighted GCN network a�ected by node representation error (a) is
corrected through another GCN network (b), where an opinion-based
embedding is extracted from each review as edge side information to
weight the importance of the neighbor nodes on their ego nodes. 196

xxii List of figures

7.6 Recommendation performance of EGCF, i.e., Recall@k (histogram bars
in teal blue) and EFD@k (histogram bars in lime green), on top-10
recommendation lists, when varying the number of explored hops from
1 to 4. 200

9.1 An example of how users generate and upload multimodal feedback about
interacted items (e.g., textual reviews, product photos, or even video reviews)
on online platforms. Such user-item sources of information may be suitably
exploited to better profile user’ preferences. 209

9.2 Contour plot of the symmetric adjacency normalization (left-side in each
subfigure) alongside the node degree co-occurrence (right-side in each
subfigure) for (a) Allrecipes and (b) Gowalla datasets. 220

9.3 Feature propagation applied for varying percentages of items with miss-
ing modalities for the MMSSL model trained on Amazon Baby. 221

List of tables

4.1 Overview of the core questions which arise when modelling a multimedia
recommender system based upon multimodality, as observed in the
most updated literature. HFE: Handcrafted Feature Extraction, TFE:
Trainable Feature Extraction, MMR: Multimodal Representation. . . . 42

4.2 Four literature examples of multimodal frameworks for multimedia
recommendation. For each work, we report the performed task, the
considered modalities for each input to the system (e.g., user and item),
the feature extraction and multimodal representation strategies, the
multimodal fusion, and the adopted inference/loss functions. 55

5.1 An overview of all modalities, sources, and backends combinations
available in Ducho. 63

5.2 Most popular Visual Recommender Systems from the literature. For each
work, we report its reference, publication year, adopted side information
(i.e., either the image or the extracted visual feature of the item), the
image feature extractor (with the chosen extraction layer and the training
strategy), and link to the o�cial code (if any). FC: fully-connected, FM:
feature maps. 70

5.3 Measured accuracy and beyond-accuracy metrics for the tested Visual
Recommender Systems and datasets on top-100 recommendation lists.
Best values are reported in bold, while the second-best are underlined. 73

5.4 Recommendation results on top-100 lists. 78
5.5 Average visual diversity (VisDiv) on top-100 lists. 79
5.6 Accuracy and beyond-accuracy metrics on top-20 recommendation lists. . . 84
5.7 Ablation study on di�erent configurations of attention, ian, and oan. 84
5.8 Category Hit Ratio @ 20 results on Amazon Women and Amazon Men. We

mark in bold the most e�ective attacks. 88

xxiv List of tables

5.9 Average values of Success Rate (SR), Feature Loss (FL) and Learned
Perceptual Image Patch Similarity (LPIPS) for each <dataset, attack,
defense> combination. LPIPS is multiplied by 100. We mark in bold
the best results for each considered metric. 90

6.1 Analysis of baselines used in each of the selected graph-based mod-
els, categorized into classic and graph CF. A colored tick ‘3’ denotes
when one of the baselines is also among the selected set of graph-based
approaches for our study. 104

6.2 Analysis of the datasets adopted in each graph-based approach. 105
6.3 Results of our replicability study on Gowalla, Yelp 2018, and Amazon

Book for the selected state-of-the-art graph-based recommender systems.
We calculate the performance shift between our conducted experiments
and the original ones (as reported in their papers). Note that models
have been sorted out according to the chronological order. 108

6.4 Graph-based CF solutions tested against unpersonalized (i.e., reference)
and classical CF approaches on Gowalla, Yelp 2018, and Amazon Book.
While results for the graph-based approaches have been directly reported
from our reproducibility study (see above), classical CF recommender
systems have been fine-tuned on the two datasets to find their best
configurations. Boldface and underline refer to best and second-to-best
values, respectively. 110

6.5 Statistics calculated on the training sets of Gowalla, Yelp 2018, Amazon
Book, Allrecipes, and BookCrossing. We indicate the number of user-
item interactions through’ Edges’ while ’Avg. Deg. (U)’ and ’Avg.
Deg. (I)’ refer to users’ and items’ average node degree (i.e., average
interaction number). 111

6.6 Graph-based CF solutions tested against unpersonalized (i.e., reference)
and classical CF approaches on Allrecipes and BookCrossing. Boldface
and underline refer to best and second-to-best values, respectively. . . . 112

6.7 Graph-based recommender systems, ranked according to their Recall@20
and nDCG@20 on all the tested datasets. For each model, we also report
its relative improvement with respect to the worst-performing approach
on the same dataset (in green). 113

6.8 Selected models for our study. For each of them, we report year, works
using them as baselines, and which topological characteristics are inte-
grated in the models’ formulations. 127

List of tables xxv

6.9 Selected classical and topological characteristics. We report the full
name, the symbol, whether it is rescaled via log10, and the shorthand
adopted. 132

6.10 Dataset overall statistics and characteristic aggregated statistics (min-
imum and maximum values, mean, and standard deviation) on the
sampled sub-datasets. 132

6.11 Results of the explanatory model with the Recall@20 as recommendation
metric. Besides the row in light gray standing for the R2, the other
rows refer to the learned characteristics’ coe�cients (with the statistical
significance). Constant (i.e., ◊0) is the expected value of Recall@20. . . 134

6.12 Results of the explanatory model on Gowalla (Recall@20) obtained
with LightGCN and SVD-GCN, for di�erent proportions of sub-datasets
generated through node- and edge-dropout. The header reports a
graphical intuition of –’s variation and average sampling statistics. . . 138

6.13 Additional results for RQ1 on Amazon-Book. The current table is to be
interpreted the same way as Table 6.11. 138

6.14 Additional results for RQ2 on DGCF and UltraGCN. The current table
is to be interpreted the same way as Table 6.12. 139

6.15 Statistics of the tested datasets. 145
6.16 Overall recommendation performance on accuracy, novelty, and diversity

metrics for top-20 recommendation lists, when comparing explicit to
implicit message propagation. Bold and underline stand for best and
second-to-best values, respectively. 146

6.17 Categorization of the chosen graph baselines according to the proposed
taxonomy. For each model, we refer to the technical description reported
in the original paper and try to match it with our taxonomy. 150

6.18 Best metric results (and corresponding graph CF model) for each <di-
mension, value> pair, on the Amazon Men dataset for top-20 lists.
Bold is used to indicate the best result in the pairs having a two-valued
dimension, while † is used only for the “explored nodes” dimension to
indicate also the best results on same and di�erent. The symbols

¯̀
` and

`̀
˘ indicate whether better stands for high or low values. We use “rank”
and “rat” as the UMADrank@k and UMADrat@k. 156

7.1 Statistics of the tested datasets. 166
7.2 Set of explored and fixed hyper-parameters for our study. 167

xxvi List of tables

7.3 Accuracy results of the tested baselines when considering the top-10, top-
20, and top-50 recommendation lists. Boldface and underline stand for
best and second-to-best results on each dataset/metric pair, respectively.168

7.4 Novelty and diversity results of the tested baselines when considering
the top-10, top-20, and top-50 recommendation lists. Boldface and
underline stand for best and second-to-best results on each dataset/met-
ric pair, respectively. 170

7.5 Statistics of the tested datasets. 176
7.6 Results in terms of recommendation accuracy (Recall, nDCG), diversity

(iCov) and popularity bias (APLT). For accuracy metrics, ø means better
performance, while ¿ means less diversity and more popularity bias. We
remind that, while iCov and APLT metrics would generally adhere to
the principle of “higher is better” (ø) for an ideal recommender system,
in this work we consider the opposite as we want to emphasize which
models are performing worst in terms of diversity and popularity bias. . 178

7.7 Statistics of the tested datasets. 183
7.8 An overview on the selected multimedia recommender systems, along

with their publication venue and year, and a non-exhaustive set of papers
where they are used as baselines. 184

7.9 Benchmarking results on selected datasets and state-of-the-art multi-
media recommender systems. The reported values refer to accuracy
and beyond-accuracy recommendation metrics, on top@10 and top@20
recommendation lists. For each metric-dataset pair, boldface and
underline indicate best and second-to-best values. 187

7.10 Statistics of the tested datasets. 197
7.11 Accuracy metrics, i.e., Recall, nDCG, and AR, for top-10 lists. Best

value is in bold, while second-to-best is underlined. 199
7.12 Calculated novelty metrics, i.e., EPC and EFD, on the left side, and

diversity indices, i.e., Gini, SE, and iCov, on the right side, for top-10
lists. Best value is in bold, while second-to-best is underlined. 200

9.1 Results of state-of-the-art item recommendation and link prediction
models trained and evaluated for the task of recommendation. The
metrics are Recall@20 and nDCG@20, and the selected dataset is Yelp-
2018. 215

Chapter 1

Introduction

With the advent of the Internet and the World Wide Web, several popular companies
decided to invest into online platforms to advertise their products and/or services to
customers all over the world. Most of people in today’s society devotes an increasing
portion of the daily routine into navigating through web pages o�ering, among the
others, fashion items or electronic devices on e-commerce platforms, micro-videos, TV
series, or movies on video streaming platforms, songs or podcasts on music streaming
platforms, and restaurants or locations of interest on booking and tourism platforms.

Due to the ever-growing plethora of products/services o�ered on online platforms,
customers might easily feel lost when surfing such heterogeneous and large catalogues,
also considering that customers are not usually completely sure of their own preferences
and tastes. Recommender systems (RSs) [260] have been e�ciently employed to
mitigate the so-called information overload problem, given their capability to profile
users and items and filter only those products/services which might be of interest to
customers. In this respect, the scientific literature enumerates diverse strategies and
paradigms to address the recommendation task, from shallower solutions based upon
heuristics and similarity measures [246, 259, 271] to more nuanced approaches which
make use of the most recent advances in machine and deep learning to train powerful
representation algorithms [126, 128, 160, 216, 371].

Among the most successful stories in recommendation, collaborative filtering
(CF) [94] has settled as one of the most popular one, thanks to its easy rationales and
applicability. Indeed, the core idea behind CF is that users which have interacted with
the same items in the past might likely share tastes and preferences, thus justifying
the recommendation of similar items in the near future. Particularly, the current
literature regarding CF approaches for recommendation indicates that factorization-
based models [126, 128, 160] represent the state-of-the-art solutions. In a nutshell,

2 Chapter 1 Introduction

factorization-based approaches in CF work by mapping users and items in the system
to embedded vectors in the latent space, and optimize a loss function driven by specific
task or objective to pursue [216].

Despite the recognized success of CF techniques, recommendation still remains a
challenging task. Among the open research challenges in the community, two of the most
fundamental ones regard (i) the inexplicable nature of users’ feedback [60], especially
when it comes in implicit form (e.g., like/dislike, view/not-view); (ii) the useful and
meaningful exploitation of the collaborative signal [325] in novel recommendation
systems. In order to address (i) and (ii), diverse solutions have been proposed so far.

As for the (i) open challenge, there exist recommendation scenarios and domains,
such as fashion [65, 361, 380], music [70, 236, 312], video [45, 67, 339], food [171, 222,
321], and tourism [274] recommendation, where the multi-faceted content character-
izing items and users’ preferences towards items can help generating more accurate
recommendations with respect to traditional recommendation models which make
use of the only information conveyed by the user-item interaction matrix. Recom-
mendation algorithms leveraging multimedia content [189, 269, 309, 404] suitably
embody the exploitation of multimodal side information [125, 338, 339, 382, 406, 407]
(e.g., product images and descriptions, users’ reviews, audio tracks) to enhance the
representational power of embedded users’ and items’ profiles. By injecting high-level
multimodal features extracted through deep learning models pre-trained for image
classification [122], text sentiment analysis [256], and audio classification [130] into the
recommendation downstream task, such models have continued to raise the performance
limits of recommender systems for some time now.

Collaborative filtering (CF) promotes the idea of similar users interacting with
similar items. Put into other words, the CF rationale may be defined as the collab-
orative signal of users and items interacting at multiple distance hops. Despite CF
increasingly-popular application to the task of recommendation, the question is “are
we really using the collaborative signal in the proper and most meaningful way?” [325].
When it comes to factorization-based approaches such as matrix factorization with
Bayesian personalized ranking (MFBPR) [258], an argument might be said that the
collaborative signal is only exploited in the formulation of the loss function (i.e.,
BPR). However, this is never employed to learn more refined users’ and items’ latent
embeddings. In this respect, graph neural networks [51, 119, 410] are powerful and
recent machine learning architectures which work on graph-like data (such as users
and items interactions in a recommendation system) through the message-passing
paradigm. That is, node representations (users and items) are iteratively refined

1.1 Thesis Statement 3

through the representations of nodes from the neighborhood, at increasing distance hops.
Graph-based recommender systems [32, 46, 126, 217, 248, 307, 324, 325, 343] have
recently taken over personalized recommendation, provide incredibly-higher accuracy
performance to traditional approaches in CF.

Multimodal-aware and graph-based recommendation systems are indubitably among
the trending algorithms in recommender systems in the last few years. Thus, it becomes
important, if not imperative, to consider how and to what extent integrating their
diverse but complementary strategies into a unique recommendation framework. The
idea is to identify the current pitfalls in both families of recommender systems, and
combine them to help strengthening one another.

1.1 Thesis Statement
The content of this thesis is organized into thematic chapters, where each chapter
reports on the background notions, analyses, and proposals from the papers which
refer to that specific theme. Note that the papers ordering across the various chapters
do not necessarily follow the chronological one; indeed, the idea was to provide an
as much comprehensive and cohesive narrative as possible across the whole thesis,
from multimodal-aware recommender systems and graph-based recommendation, to
conclusively combine the two solutions.

To begin with, Chapter 2 and Chapter 3 provide the useful background notions and
definitions regarding recommender systems and graph neural networks, respectively.
Indeed, they represent the two main research topics of this thesis, and their formal
presentation comes as essential to the other chapters in the thesis.

Then, the main research contributions are extensively described in Chapter 4,
Chapter 5, Chapter 6, Chapter 7. Concretely, Chapter 4 and Chapter 5 are devoted to
the formalization, theoretical/empirical analysis, and proposal of novel approaches in
multimodal-aware recommendation; in a complementary manner, Chapter 6 provides a
comprehensive introduction to graph-based recommendation, by considering di�erent
and novel evaluation dimensions which help unveiling unexpected and interesting
aspects in the same topic; conclusively, Chapter 7 proposes a cohesive combination
of multimodal-aware and graph-based recommender systems, through an insightful
analysis of their multi-sided performance, and a novel graph-based recommendation
approach which aims to overcome known issue in the related literature through the
injection of multimodal content.

4 Chapter 1 Introduction

In conclusion, Chapter 8 wraps up the main take-home messages of this thesis.
Intentionally, a separate chapter (i.e., Chapter 9) has been devoted to introducing
the future research directions of this thesis. Indeed, we decide to provide intuitions,
formalizations, and preliminary experimental results of the possible new research paths
that naturally derive from the findings proposed in this thesis.

1.2 Research Contributions
The current section aims to o�er a synthetic but comprehensive overview of the research
contributions from this thesis, as organized into thematic chapters. For each of them,
we briefly summarize the content, report on the related publications, and give complete
details about the role of the Ph.D. candidate, Daniele Malitesta, in such publications.
Note that, in all the papers cited in this section, and as already indicated in the thesis
preamble, Daniele Malitesta is the corresponding author.

1.2.1 Chapter 4: Formalizing multimedia recommendation

Contributions

While recommendation systems leveraging multimedia content have long established as
successful and e�cient approaches in the literature, their application of multimodal deep
learning strategies remains not clearly defined, formalized, and empirically analyzed.
To this end, this chapter provides one of the first formal re-definition of multimedia
recommendation under the lens of multimodal deep learning. A careful study of the
related literature helps recognizing recurrent patterns in adopting multimodal strategies
for multimedia recommendation to design a formal and unified scheme, conceptually
applicable to exisiting multimedia recommender systems.

Publications

The chapter covers the topics presented and explored in “Formalizing Multimedia
Recommendation through Multimodal Deep Learning” [205], currently under review at
ACM Transactions on Recommender Systems Journal (TORS).

Ph.D. candidate’s role

Daniele Malitesta is the corresponding author of the paper [205].

1.2 Research Contributions 5

1.2.2 Chapter 5: Leveraging the visual modality in multimedia
recommendation

Contributions

The chapter deals with one of the possible application of multimodal-aware recom-
mendation, that of visually-aware recommender systems. This family of recommender
systems leverage the visual modality to enhance the representation of items and users’
preferences towards items. The chapter opens with the proposal of a framework
for the extraction of multimodal features in recommendation (Ducho) which can be
easily and seamlessly integrated with V-Elliot, our proposed framework for rigorous
and reproducible evaluation of visually-aware recommender systems. The so-built
visual-based recommendation pipeline paves the way to multiple empirical analyses
on the performance of such models, especially in terms of the pre-trained deep learn-
ing network adopted to extract high-level visual features from product images. The
presented findings are eventually applied to two scenarios and settings: (i) fashion
recommendation, with the proposal of a novel visually-aware recommender system
which is capable of disentangling users’ preferences at the granularity of content-style
representation of product images; (ii) the application of adversarial attacks to product
images to drive the recommendation of niche products close to the one of popular
products, along with the evaluation on the e�cacy of defensive countermeasures.

Publications

The chapter covers the topics presented and explored in “Ducho: A Unified Framework
for the Extraction of Multimodal Features in Recommendation” [208], presented at the
31st International Conference on Multimedia (MM 2023); “V-Elliot: Design, Evaluate
and Tune Visual Recommender Systems” [12], presented at the 15th Conference
on Recommender Systems (RecSys 2021); “A Study on the Relative Importance
of Convolutional Neural Networks in Visually-Aware Recommender Systems” [82],
presented at the 4th Workshop on Computer Vision for Fashion, Arts, and Design, co-
located with the 2021 Conference on Computer Vision and Pattern Recognition (CVPR
2021); “Leveraging Content-Style Item Representation for Visual Recommendation” [83],
presented at the 44th European Conference on Information Retrieval (ECIR 2022);
“Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual
Recommenders” [21], presented at the Discussion Papers co-located with the 20th
International Conference of the Italian Association for Artificial Intelligence (AIxIA
2021).

6 Chapter 1 Introduction

Ph.D. candidate’s role

Daniele Malitesta is the corresponding author of the papers [12, 21, 82, 83, 208].

1.2.3 Chapter 6: Evaluation of graph-based recommender
systems

Contributions

The chapter delves into an extensive evaluation of graph-based recommendation. First,
an out-of-the-box application extending the Elliot framework and using CUDA tech-
nologies with Docker is presented. Then, the framework is exploited to run a complete
reproducibility study on selected graph-based recommender systems, indicating how
traditional recommendation approaches, such as neighborhood-based ones, may un-
expectedly outperform the selected graph-based solutions. Indeed, an analysis on
the information conveyed by node degree at multiple distance hops unveils that the
performance of (graph-based) recommender systems may depend on the properties of
the dataset such models are trained on. These findings open to more careful and novel
investigations on the possible dependences between the topological characteristics of
recommendation datasets (measured as node degree, clustering coe�cient, and degree
assortativity) and recommendation performance of graph-based recommender systems.
Conclusively, the chapter outlines a formal taxonomy of graph-based recommendation
approaches from the literature, which recognizes node representation and neighborhood
exploration as the main steps in the usual graph-based recommendation pipeline.
The exploration of di�erent solutions for the node representation and neighborhood
exploration shows significant performance variations when considering accuracy and
beyond-accuracy recommendation measures, separately and jointly in a multi-objective
evaluation setting.

Publications

The chapter covers the topics presented and explored in “An Out-of-the-Box Application
for Reproducible Graph Collaborative Filtering extending the Elliot Framework” [210],
presented at the 31st Conference on User Modeling, Adaptation, and Personalization
(UMAP 2023); “Challenging the Myth of Graph Collaborative Filtering: a Reasoned
and Reproducibility-driven Analysis” [20], presented at the 17th Conference on Recom-
mender Systems (RecSys 2023); “A Topology-aware Analysis of Graph Collaborative
Fitering” [209], under review at the 2nd Learning on Graphs Conference (LoG 2023);

1.2 Research Contributions 7

“How Neighborhood Exploration influences Novelty and Diversity in Graph Collabora-
tive Filtering” [18], presented at the 2nd Workshop on Multi-Objective Recommender
Systems, co-located with the 16th Conference on Recommender Systems (RecSys 2022);
“Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering” [17],
presented at the 45th European Conference on Information Retrieval (ECIR 2023);
“Examining Fairness in Graph-Based Collaborative Filtering: A Consumer and Pro-
ducer Perspective” [240], presented at the 13th Italian Information Retrieval Workshop
(IIR 2023).

Ph.D. candidate’s role

Daniele Malitesta is the corresponding author of the papers [17, 18, 20, 209, 210, 240].

1.2.4 Chapter 7: Graph-based recommendation exploiting
multimodal information

Contributions

The ultimate objective of this thesis is to bring multimodality to graph-based recom-
mendation to empower the latter with the high-level multimodal features enhancing
the representation of users and items; the purpose is to tackle both conceptual issues
(inexplicable nature of implicit feedback) and, consequently, algorithmical issues (such
as oversmoothing). In this respect, this chapter provides an innovative analysis on
the performance of state-of-the-art graph-based recommender systems leveraging mul-
timodal information under several evaluation perspectives encompassing, among the
others, novelty, diversity, bias, and fairness recommendation measures. On such a basis,
the chapter ends with the proposal of a novel graph-based recommendation approach
which leverages users’ generated reviews as the textual features to characterize edges
in the user-item bipartite graph. By revisiting the implicit feedback issue as a node
representation error in the application of the message passing, the proposed solution
adopts the sentiment conveyed by the reviews as a way to address the issue and, as
positive side e�ect, mitigate the negative e�ects of oversmoothing.

Publications

The chapter covers the topics presented and explored in “Disentangling the Performance
Puzzle of Multimodal-aware Recommender Systems” [206], presented at the 2nd
Workshop on A Well-Rounded Evaluation of Recommender Systems (EvalRS), co-

8 Chapter 1 Introduction

located with the 29th SIGKDD on Knowledge Discovery and Data Mining (KDD 2023);
“On Popularity Bias of Multimodal-aware Recommender Systems: a Modalities-driven
Analysis” [207], presented at the 1st Workshop on Deep Multimodal Learning for
Information Retrieval (MMIR), co-located with the 31st International Conference
on Multimedia (MM 2023); “Reshaping Graph Recommendation with Edge Graph
Collaborative Filtering and Customer Reviews” [19], presented at the Workshop on
Deep Learning for Search and Recommendation (DL2SR), co-located with the 31st
ACM International Conference on Information & Knowledge Management (CIKM
2022).

Ph.D. candidate’s role

Daniele Malitesta is the corresponding author of the papers [19, 206, 207].

1.3 Bibliographical Notes
For the sake of completeness, in this last section, we report on the publications which
have been listed in the Publications section in the preamble of this thesis, but have not
been cited among the research contributions. Specifically, we categorize them into two
groups, namely: (i) research contributions regarding the main topics of this thesis that
cannot properly be considered as paper publications (e.g., workshops and tutorials); (ii)
other publications whose topics are similar/related to those of this thesis and where, in
same cases, the Ph.D. candidate (Daniele Malitesta) is not the corresponding author.

Workshops and tutorials

• “First International Workshop on Graph-Based Approaches in Information Re-
trieval (IRonGraphs 2024)”, accepted as workshop at the 46th European Confer-
ence on Information Retrieval (ECIR 2024).

• “Graph Neural Networks for Recommendation: Reproducibility, Graph Topology,
and Node Representation” [211], accepted as tutorial at the 2nd Learning on
Graphs Conference (LoG 2023).

Other publications
GNNs and KGs for recommendation

1.3 Bibliographical Notes 9

• “KGTORe: Tailored Recommendations through Knowledge-aware GNN Mod-
els” [212], accepted at the 17th Conference on Recommender Systems (RecSys
2023).

Adversarial attacks and defenses for visually-aware recommender systems

• “A Study of Defensive Methods to Protect Visual Recommendation Against
Adversarial Manipulation of Images” [16], accepted at the 44th International
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2021).

• “Adversarial Attacks against Visual Recommendation: an Investigation on
the Influence of Items’ Popularity” [22], accepted at the Workshop on Online
Misinformation- and Harm-Aware Recommender Systems (OHARS), co-located
with the 15th Conference on Recommender Systems (RecSys 2021).

• “Denoise to Protect: A Method to Robustify Visual Recommenders from Adver-
saries” [220], accepted at the 46th International SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2023).

Elliot, a framework for reproducibile recommender systems and their evaluation

• “The Challenging Reproducibility Task in Recommender Systems Research be-
tween Traditional and Deep Learning Models” [10], accepted at the 30th Sympo-
sium on Advanced Database System (SEBD 2022).

• “Elliot: A Comprehensive and Rigorous Framework for Reproducible Recom-
mender Systems Evaluation” [11], accepted at the 44th International SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2021).

• “How to Perform Reproducible Experiments in the ELLIOT Recommendation
Framework: Data Processing, Model Selection, and Performance” [13], accepted
at the 11th Italian Information Retrieval Workshop (IIR 2021). Evaluation

Chapter 2

Background on recommender
systems

In the era of online platforms for e-commerce, media content delivery, tourism, food,
and social networks, recommender systems play the key role of bridging the gap
between customers’ needs and products/services o�ered on such platforms. Specifically,
recommender systems are (machine learning) algorithms aimed to exploit recorded
user-item interactions to unveil hidden preference patterns, thus suggesting novel
items to users. This chapter is devoted to the presentation and formalization of the
personalized recommendation scenario. First, we provide the formal definitions for
the recommendation task(s). Then, we deep dive into a widely-recognized taxonomy
of popular recommendation approaches. Finally, we take into account the common
recommendation pipeline, by focusing on three of its main stages. In this respect, we
consider (i) the recommendation input to inject in the system, (ii) the optimization
technique (in the case of model-based recommender systems) with an optional stage for
negative sampling of items, and (iii) the evaluation protocol to evaluate the performance
of any recommender system. The content of this chapter is inspired by [260] and other
papers we will cite in the following.

2.1 Preliminaries
Let U and I be the sets of users and items in the recommendation system, respectively,
where |U| = N and |I| = M . Then, let R œ RN◊M be the user-item preference matrix,
whose entries are continuous values such as the range {1, . . . ,5} (explicit feedback) or
binary values such as {0,1} (implicit feedback). In the case of implicit feedback, note
that the value 0 may not necessarily indicate that the user disliked a specific item; in

12 Chapter 2 Background on recommender systems

a more broader sense, the value 0 stands for an item that has not been interacted by
the user yet. In this respect, we may also define the set of items the user u œ U has
interacted with (i.e., her positive items) as I+

u = {i œ I | Rui = 1}. Trivially, the set of
items the user has not interacted with yet is defined as I≠

u = {i œ I | Rui = 0} = I \I+
u .

Since the set of negative items I≠
u might be quite large for most of the users, we

devote Section 2.3.2 to the presentation of the most popular techniques in the literature
to perform negative sampling.

Based upon the notions and background concepts provided above, in the following,
we formalize two of the most commont tasks in recommendation, namely, rating
prediction and top-k recommendation. The two tasks are inherently and conceptually
related, but show some di�erences we seek to outline.

2.1.1 Rating prediction

Let u œ U and i œ I≠
u be a user and one of her negative items, respectively. The task of

rating prediction is about finding the function which maps the selected user and item
to the predicted rating the user may express about the item. The function definition is:

RATING PREDICTION: U ◊I æ R. (2.1)

For example, the predicted rating for user u and her negative item i is obtained as:

R̂ui = fl(u,i), (2.2)

where fl(·) is the rating prediction function defined above. Note that the task of rating
prediction may be casted to a regression or binary classification task. Indeed, in an
explicit feedback scenario, the regression task is the most suitable one to model rating
prediction. On the contrary, in an implicit feedback setting, binary classification is the
most suitable one to model rating prediction.

2.1.2 Top-k recommendation

Let u œ U be a user in the recommendation system, and k be a threshold to filter out
items from the negative item setting of u, namely, I≠

u [k]. The top-k recommendation
task is defined as finding the utility function according to which the negative items of
each user are sorted in descending order and filtered out to select the top-k negative

2.2 Taxonomy of recommender systems 13

items. The function definition is:

TOP-k RECOMMENDATION: U ◊I æ R. (2.3)

For example, the predicted utility for user u and her negative item i is obtained as:

Ŝui = ‡(u,i), (2.4)

where ‡(·) is the utility prediction function defined above. On such a basis, we retrieve,
for each user, the list of k negative with the highest utility score:

u æ

Y
________]

________[

i1,

i1,

. . . ,

ik

, (2.5)

where items have been re-indexed according to the values of Ŝuú, such that Ŝu0 > Ŝu1 >

· · · > Ŝuk. Trivially, it becomes evident how the utility prediction function ‡(·) and
the rating prediction function fl(·) may overlap. Indeed, The top-k recommendation
task can be considered as one possible following step after the rating prediction task,
where items are re-ordered for each user according to their predicted score.

It is also important to mention that most of the machine learning based approaches
in recommendation which are designed and evaluated to pursue the task of top-k
recommendation do not explicitly optimize a ranking-driven loss function during their
training. Indeed, the common practice is to optimize a loss function which minimizes
the error in predicting the interaction scores (i.e., rating prediction task), or an hybrid
loss function which considers predicted scores for both positive and negative items.
This aspect will be widely presented in Section 2.3.2.

2.2 Taxonomy of recommender systems
The history of recommender systems have known several approaches raising and
settling as state-of-the-art solutions in the community. Despite the large plethora
of recommendation techniques proposed so far, the literature recognizes three main
families of recommender systems, that may be categorized according to the following
taxonomy: (i) collaborative filtering approaches, (ii) content-based approaches, and

14 Chapter 2 Background on recommender systems

(iii) hybrid approaches. In the following, we present each of these recommendation
families by describing their main ideas and formulations, along with some of the most
popular techniques from the state-of-the-art.

2.2.1 Collaborative filtering approaches

Collaborative filtering [94] (CF) is currently among the prominent paradigms in
recommendation. Recommendation approaches following the CF solution promote the
idea that similar users (in terms of similar user profiles) may interact with similar items
in the future. On such a basis, CF approaches heavily rely on the availability of user
interactions with items. In the following, we present two of the main subcategories
of recommender systems adopting the CF rationale, namely, neighborhood-based and
model-based approaches.

Neighborhood-based approaches

Among the pioneer approaches in CF, neighborhood-based ones leverage the concept
of users’ or items’ similarities based upon some heuristics.

For instance, ItemkNN [271] predicts whether a user u and an item i could interact
depending on the similarity between i and the other items u has interacted with:

flItemkNN(u,i) =
ÿ

jœI+
u

sim(i, j), (2.6)

where I+
u is the set of items interacted by user u, while sim(·) is a similarity function

(e.g., the cosine similarity) computed between the i-th and j-th column vectors of the
user-item interaction matrix. For computational purposes, often times the set I+

u is
restricted to the k-most similar items.

The dual approach, UserkNN [259], estimates the interaction score of (u,i) based
upon the similarity between u and the other users i has been interacted by:

flUserkNN(u,i) =
ÿ

vœU+
i

sim(u,v), (2.7)

where, complementarily to above, U+

i is the set of users that interacted with item i.
Finally, another famous and e�cient solution in this family of recommender systems

is RP3— [246]. This technique is based upon the random walk process performed within
the user-item interaction graph. Specifically, the authors discuss about the possibility
to model the user navigation throughout the item catalogue through a 3-hops random

2.2 Taxonomy of recommender systems 15

walk. That is, user u starts by exploring one of the interacted items at random (1st
hop), then goes through one of the users who interacted with that itemm (2nd hop),
and finally picks one of the other items that user has interacted with (3rd hop). Let
D œ R(N+M)◊(N+M) be the diagonal matrix where each element in the diagonal is the
degree of a user or an item. The probability matrix P œ R(N+M)◊(N+M) of a user
picking any of the interacted item is given by:

P = D≠1A, (2.8)

where A œ R(N+M)◊(N+M) is the adjacency matrix obtained from the user-item in-
teraction matrix R (refer to Section 3.1.2 for a general description of the adjacency
matrix for graph neural network models). By generalizing, after l random walk hops,
the probability matrix is calculated as:

Ph = (D≠1A)h. (2.9)

On such a basis, the final formulation the authors provide is given by:

flRP
3—(u,i) = p3

ui

d—
ii

, (2.10)

where p3
ui is the entry of the P3 matrix corresponding to user u and item i, while

dii is the i-th entry of the diagonal matrix D with — œ R, — > 0.0. Note that the
— factor serves as flattening term to promote the diversity of recommended items
(see Section 2.3.3). When calculating the utility score for user u and two items i and j,
and assuming that p3

ui ƒ p3
uj (i.e., the probability of reaching the two items through

random walk is almost equal), the predicted utility score should not be penalized for
that one item having a smaller degree (i.e., smaller number of recorded interactions).

Model-based approaches

With the advent of machine and deep learning, model-based recommender systems have
increasingly taken over personalized recommendation. Di�erently from neighborhood-
based approaches, such solutions exploit the user-item interaction matrix to learn a
parametric rating/utility function to predict the rating/utility score of any user-item
pair. Among the various techniques proposed in the literature, factorization-based ones
have been largely adopted over the years. The main rationale is to represent users’ and

16 Chapter 2 Background on recommender systems

items’ profiles through latent embeddings, and learn their weights by optimize some
loss function (see Section 2.3.2).

Specifically, we indicate with eu œ Rd and ei œ Rd the embeddings for user u

and item i and, generally, d π N,M . One of the widely-popular approaches, matrix
factorization [160] (MF), estimates the user-item interaction score through the dot
product of their embeddings:

flMF(u,i) = e€
u ei. (2.11)

By leveraging the representational power of deep neural networks, in neural collaborative
filtering [128] (NCF), the authors propose to predict the user-item interaction score
through the following:

flNCF(u,i) = ‡(W · (mlp([eu,ei])+eu §ei)) , (2.12)

where ‡(·) is an activation function (e.g., the sigmoid), W is a weight matrix, mlp(·)
is a multilayer perceptron where the input is the concatenation of the user and item
embeddings, and § is the element-wise product. In SimpleX [216], the authors introduce
a score function which is based upon the importance of the items interacted by each
user:

flSimpleX(u,i) = ‡(–eu +(1≠–)W ·eÕ
u), (2.13)

where sim(·) is a similarity function (e.g., the cosine similarity), – is a weighting
hyper-parameter, W is a weight matrix, and eÕ

u is obtained as the weighted aggregation
(e.g., through attention) of the embeddings of the items interacted by u.

2.2.2 Content-based approaches

Di�erently from collaborative filtering approaches in recommendation, content-based
recommender systems [233] leverage the content information describing users and items
in the system. In the case of items, they are generally represented through attribute
metadata, or through any other source of structured data such as knowledge graphs or
images/texts. Recommendation in content-based recommender systems usuall involves
three core steps [38, 107], namely: (i) representation of items’ content in a proper and
meaningful description space; (ii) learning of users’ profile by collecting their preference
data in the form of interacted items’ content and trying to generalize on it; (iii) items’
filtering to suggest relevant items to each user according to her preference. Based upon
the way such algorithms are designed, they can e�ectively be used to tackle some issues
in the literature such as the cold-start issue (see later), as each (new) item in the system

2.3 The recommendation pipeline 17

comes with its descriptive content. At the same time, learning users’ profiles through
the items’ content may drive the algorithm towards an overspecialization scenario
where the recommender tends to recommend items which are too much homogeneous
to the ones the user has already interacted with; this may undermine other objectives
such as diversity and novelty of recommendations (see Section 2.3.3).

2.2.3 Hybrid approaches

As their name suggest, hybrid approaches [7] in recommendation are designed to
incorporate the positive aspects of both collaborative filtering and content-based
recommendation systems. Indeed, most of the recent and current solutions in recom-
mendation, especially when it comes to multimedia- and knowledge-aware recommender
systems, may be defined as hybrid approaches. In this respect, all the recommender
systems which are going to be presented in this dissertation, both the evaluated ones
and the proposed ones, should be intended as hybrid recommender systems.

2.3 The recommendation pipeline
The usual recommendation pipeline to find the suitable rating/utility function may de-
pend on the specific recommendation approach. In the case of model-based approaches
(using machine learning techniques), the pipeline essentially comprises three stages [11],
namely: (i) the input processing and injection into the recommender system, (ii) the
model optimization through a loss function and the optional items’ negative sampling,
and (iii) the evaluation of the performance. On the contrary, as for neighborhood-based
approaches, only (i) and (iii) take place. In the following, we explore and describe each
of these stages of the pipeline.

2.3.1 Recommendation input

Providing meaningful input data to the recommendation system is of the utmost
importance to produce high-quality recommendations. Depending on the type of
recommender system, the injected inputs may change. Nevertheless, in the simplest
configuration, any recommender system takes as input the user-item interaction matrix
R, as well as the list of users and items in the system.

Then, when considering content-based or hybrid recommender systems, users and
items may come with additional content or side information which provide further
description of their profiles, independently on the recorded user-item interactions. For

18 Chapter 2 Background on recommender systems

instance, in specific scenarios and domains such as fashion recommendation, items’
representation can be enhanced through visual/textual features extracted from product
images/descriptions. For other similar examples, consider again the cases presented
in Section 2.2.2 and Section 2.2.3.

Finally, data input might undergo some pre-processing operations. While the
existing literature enumerates a wide range of approaches for data pre-processing, here
we describe one the most popularly-adopted one, namely, the p-core. Before presenting
the p-core, it becomes essential to provide a formal distinction between cold/warm
users and items. Under a certain threshold p, warm (cold) users are those users who
have more (less) than p interactions; trivially, warm users are the most active ones
on the platform, while cold users are the least active ones. On the item side, the
definition applies similarly. That is, under a certain threshold p, warm (cold) items
are those items having more (less) than p interactions in the systems; trivially, warm
items are the most popular ones, cold items are the least popular ones. Note that other
definitions of warm/cold users and items exist; however, the one presented above is
strictly related to the formulation of the p-core we introduce in the following.

In this sense, the p-core technique can be applied to both users and items in the
recommendation system. In general, the p-core strategy filters out users (items) which
have less than p interactions in the user-item interaction matrix. This approach is
usually adopted to retain only warm users (items) in the system, and it is strictly
related to the known issue of cold-start. Indeed, when keeping only users having more
than p interactions in the system, we allow the recommendation algorithm to uncover
preference patterns from a richer source of data. Conversely, without the application of
the p-core, all users are taken into account during the designing of the recommendation
approach; indeed, the recommender system may be not capable to infer preference
predictions over cold users as much as it does on warm users. Trivially, the dual is
true on the item side.

2.3.2 Optimization and negative sampling

This pipeline stage [216] is involved only in the case of model-based recommendation
approaches. As recognised in the related literature, approaches in recommendation
mainly adopt five training objectives. Note that, in some of the described optimizations,
strategies for items’ negative sampling are adopted.

Indeed, the most popular one is Bayesian personalized ranking (BPR), whose
rationale drives from the concept of interacted (i.e., positive) and non-interacted (i.e.,
negative) items for each user in the catalogue. Let T = {(u,i, j) | i œ I+

u · j œ I≠
u } be

2.3 The recommendation pipeline 19

a set of triples including, for each user u, a positive and a negative item. BPR seeks to
maximize the posterior probability of each user u preferring a positive item i over a
negative item j. Thus, the BPR loss function is calculated as:

LBPR(�) = ≠
ÿ

(u,i,j)œT
ln ‡(R̂ui ≠ R̂uj), (2.14)

where � is the vector of all model’s weights (e.g., in the case of MF, the user and item
embeddings), ‡(·) is the sigmoid function, and R̂ui, R̂uj are the predicted scores for
the pairs of user u with the positive item i, and user u with the negative item j.

The pairwise hinge loss (PH) works by maximizing the distance between the user-
positive item pair and the user-negative item pair, at least under a certain marginal
threshold. Let T + = {(u,i) | i œ I+

u } and T ≠ = {(u,j) | j œ I≠
u } be the sets of pairs of

users and their positive items, and user and their negative items. Then, the PH loss is
defined as:

LPH(�) =
ÿ

(u,i)œT +

ÿ

(u,j)œT ≠
wui[m+ ||eu ≠ei||2 ≠ ||eu ≠ej ||2]+, (2.15)

where wui is a ranking loss weight, m > 0 is the margin size, and [x]+ = max(x,0).
The binary cross-entropy loss (BCE) is adopted for the task of binary classification,

discerning whether an item should be classified as positive or negative for a given user:

LBCE(�) = ≠
ÿ

(u,k)œT +fiT ≠
Rukln(R̂uk)+(1≠Ruk)ln(1≠ R̂uk), (2.16)

where Ruk = 1 if k œ I+
u , 0 otherwise. The multiclass version of the previous loss implies

the recast of the item recommendation problem to a multiclass classification one where,
for each user, the model predicts which of the items (from the whole catalogue) the
user will likely interact with. Such a loss function is named softmax cross-entropy loss
(SCE), and is calculated as:

LSCE(�) = ≠
ÿ

uœU

ÿ

kœI
Rukln

A
exp(R̂uk)

q
vœI exp(R̂uv)

B

, (2.17)

where exp(·) is the exponential function.

20 Chapter 2 Background on recommender systems

The mean square error (MSE) measures the distance between the true and predicted
score for each user-item pair:

LMSE(�) =
ÿ

(u,k)œT +fiT ≠
(Ruk ≠ R̂uk)2. (2.18)

While we defined I≠
u as the set of all negative items for user u, oftentimes it is

computationally-expensive to work with such a large set of elements. For this reason,
the common approach is to sample a subset of negative items for each user, namely,
negative sampling. Indeed, the authors of BPR suggest to sample, for each pair of
user-positive item, only one negative item for that user. Nevertheless, the solution can
be trivially generalized to sampling M≠ negative items for each user.

Let Î≠
u be the set of sampled negative items for user u, with |Î≠

u | = M≠. An
additional training objective which have been successfully adopted over the last few
years in the literature is the contrastive loss. For instance, the authors in SimpleX
propose a cosine contrastive loss (CC) defined as:

LCC(�) =
ÿ

(u,i)œT +
(1≠ R̂ui)+ w

M≠
ÿ

jœÎ≠
u

[R̂uj ≠m]+, (2.19)

where m is a margin size as in the PH loss, while w controls the relative weights of the
two addendum of the loss.

2.3.3 Evaluation

The final stage of any recommendation pipeline is the evaluation of the performance of
the recommender system. In the following, we analyze two major aspects, regarding
the (i) dataset splitting paradigm, and (ii) the metrics formulation.

Dataset splitting

Before introducing the formulations for all evaluation metrics, it is fundamental (as
in any machine learning task) to separate the data into three sets, defined as train,
validation, and test sets. In this respect, the literature enumerates di�erent strategies
for dataset splitting.

As already done in previous sections of this chapter, we remind just few of them,
according to their popularity. Generally, the main strategies for dataset splitting are
twofold, depending on whether they are performed via a (i) random splitting or (ii)
time-aware splitting.

2.3 The recommendation pipeline 21

In the random setting, user-item interactions are split in a random manner into
train, validation, and test sets. This random splitting may be random on the whole
set of user-item interactions, or may be performed at user-level. In this latter case,
interactions are split so that, for each user, a certain percentage of her interactions stay
in the train, validation, and test sets (e.g., 80%, 10%, and 10% as a general practice).
Trivially, it becomes evident that in the first scenario, it might happen that not all
initial users are retained in the training, validation, and test sets. On the contrary,
when performing a random splitting on user-level, it is quite likely the whole set of
initial users will be present in all the three sets.

Conversely, the time-aware splitting requires an indication of when any user-
item interaction occurred. On such a basis, the initial user-item interaction data
is chronologically sorted on user-level. This allows to split the dataset into a train
set where, for each user, interactions occurred before a specific time threshold; in
the validation and test sets, instead, the remaining interactions are collected. An
argument might be made that this time-aware splitting is the one which better depicts
a real-world scenario. Indeed, the recommendation system should be ideally able to
predict novel user-item interactions in the future, starting from the ones performed
in the past. Nevertheless, it should be noted that this splitting requires the time
information to be recorded along with each user-item interaction; unfortunately, this is
the case for several datasets in the current literature.

When splitting the original dataset into train, validation, and test, it might be the
case that the users and items appearing in each of them may not be overlapping sets.
Indeed, by indicating Utrain, Uval, and Utest as the sets of users belonging to the train,
validation, and test set, respectively, we have that Utrain fi Uval fi Utest = U . However,
in the most general setting, we may have that Utrain ”= Uval ”= Utest ”= U (note that
this cannot happen when performing a random/temporal-aware splitting on user-level).
On the item side, when following any of the dataset splitting introduced above, it is
quite likely that not all item sets in the train, validation, and test are overlapped. That
is, Itrain ”= Ival ”= Itest ”= I. Since in the common settings used to train and evaluate
recommender systems the learning is transductive, the recommendation algorithm
cannot be tested over users and/or items which are not present in the train set. Thus,
whatever the type of evaluation, the evaluation stage should first remove from the
validation/test sets those interactions involving users and/or items which do not belong
to the train set (the one which is known by the model in advance).

22 Chapter 2 Background on recommender systems

Recommendation metrics

The selection of the proper metric(s) to perform the model evaluation is highly depen-
dent on the recommendation task to be pursued, namely, either rating prediction or
top-k recommendation. Moreover, the recent literature has raised the urge to test the
performance of recommender systems under metrics other than the commonly-adopted
accuracy ones. Such class of metrics is better known as beyond-accuracy metrics, and
capture other recommendation objectives. For instance, it might be interesting to assess
the ability of the recommender system to generate novel [310, 311] and diverse [108,
276] recommendation lists for each user; moreover, in the recent need to tackle issues
related to bias and seek fairness in recommendation [3, 26, 39, 81, 141], it could be
useful to evaluate the performance of a recommender system under these perspectives.
In the following, we provide a twofold categorization of the most commonly-adopted
metrics, based upon: (i) the recommendation task, and (ii) accuracy/beyond-accuracy.
Accuracy metrics. When dealing with the task of rating prediction, any error-based
metric can be helpful to evaluate the performance of a recommender system. Let Dtrain

and Dtest be the sets of user-item interactions in the train, and test sets, respectively.
The rating prediction task may be evaluated through the mean absolute error (MAE),
mean squared error (MSE), or the root mean squared error (RMSE) formulated as
follows:

MAE = 1
|Dtest|

ÿ

(u,i)œDtest

abs(R̂ui ≠Rui), (2.20)

MSE = 1
|Dtest|

ÿ

(u,i)œDtest

(R̂ui ≠Rui)2, (2.21)

RMSE =
ı̂ıÙ

1
|Dtest|

ÿ

(u,i)œDtest

(R̂ui ≠Rui)2 =
Ô

MSE, (2.22)

where abs(·) is the absolute value operation.
When dealing with the task of top-k recommendation, multiple possible evaluation

paradigms exist. Among them, we remind the all-unrated items one. Specifically, under
this paradigm, the first step is to predict the whole user-item interaction matrix through
the recommendation algorithm. Second, a list of recommended items is generated for
each user, based upon the predicted score for each item in the train set. As this list
may be quite large, it is common practice to retain only the top-k items according to
the predicted ratings. Finally, accuracy recommendation metrics are calculated, by
considering the generated list of k items, and the items each user has interacted with

2.3 The recommendation pipeline 23

in the test set. We define such sets as I(u)

test, while the list of k recommended items for
user u is indicated as I(u)

rec . In the following, we report the formulation for the recall
(Recall@k), hit ratio (HR@k), precision (Precision@k), and normalized discounted
cumulative gain (nDCG@k):

Recall@k = 1
|Utest|

ÿ

uœUtest

|I(u)

test fl I(u)

rec |
|I(u)

test|
, (2.23)

HR@k = |Uhits@k|
|Dtest|

, (2.24)

Precision@k = 1
|Utest|

ÿ

uœUtest

|I(u)

test fl I(u)

rec |
|I(u)

rec |
, (2.25)

nDCG@k = 1
|Utest|

ÿ

uœUtest

kÿ

i=1

2reli ≠1
log2(i+1) , (2.26)

where Uhits@k = {u œ Utest | I(u)

test fl I(u)

rec ”= ÿ}, while reli = 1 if i œ I(u)

test, 0 otherwise.
For the sake of completeness, we also report two recommendation metrics which

are used to measure the accuracy of recommendation, but when considering the whole
set of recommendable items (not only up to the k-th item in the recommendation
list). They are the area under curve (AUC) and the average recall (AR), formulated as
follows:

AUC = 1
|Utest|

ÿ

uœUtest

1
|I(u)

test ◊I \I(u)

test|

ÿ

(i,j)œI(u)
test◊I\I(u)

test

(R̂ui > R̂uj), (2.27)

AR = 1
|Utest|

ÿ

uœUtest

1
|I(u)

test|

|I(u)
test|ÿ

k=1

rel(k), (2.28)

where (·) is the function returning 1 if the input condition is true, 0 otherwise, while
rel(k) is 1 if the item in the k-th position is relevant for user u, 0 otherwise.
Beyond-accuracy metrics. In this section, we explore four families of beyond-
accuracy recommendation metrics accounting for the novelty and diversity of the
produced recommendation lists, along with those regarding the concepts of bias and
fairness in recommendation.

In terms of recommendation novelty [311], we recall the expected popularity com-
plement (EPC) and the expected free discovery (EFD). First, we define the sets of seen,
relevant, and chosen items as I(u)

seen, I(u)

rel and I(u)

chosen, where I(u)

chosen = I(u)

seen fl I(u)

rel .

24 Chapter 2 Background on recommender systems

Then, the formulations for EPC@k and EFD@k are:

EPC@k = c

|Utest|
ÿ

uœUtest

ÿ

ikœI(u)
rel

p(seen | k,u,I(u)

rel)p(rel | ik,u)(1≠p(seen | ik)), (2.29)

EFD@k = 1
|Urel|

1
|I(u)

rel |

ÿ

iœI(u)
rel

log2p(i | seen), (2.30)

where p(test) and p(rel) stand for the probability of an item to be seen and rele-
vant, respectively. Conceptually, the two measures indicate the expected number of
recommended unknown items which are also relevant, and the expected number of
recommended known items which are also relevant, respectively.

In terms of recommendation diversity [108, 276], we recall the gini index (Gini@k)
and the Shannon Entropy (SE@k). For the Gini@k, we first define:

Gini@k¿ = 1
|Utest|

ÿ

uœUtest

1
k ≠1

q|I(u)
rec |

i=1
(2i≠ |I(u)

rec |≠1)times(i)
q|I(u)

rec |
i=1

times(i)
, (2.31)

where times(i) is a function returning the number of times item i appears in the
recommendation lists. Gini@k¿ has values close to 0 when diversity of recommended
items is high, meaning that the probability of all items being recommended is almost
the same. Given that we usually adopt metrics formulations which adhere to the
principle higher is better, we will use the version Gini@k = 1 ≠ Gini@k¿. As for the
SE@k, we have:

SE@k = 1
|Utest|

ÿ

uœUtest

≠
|I(u)

rec |ÿ

i=1

times(i)
q|I(u)

rec |
i=1

times(i)
ln

Q

ca
times(i)

q|I(u)
rec |

i=1
times(i)

R

db , (2.32)

where SE@k is 0 when a single item is always recommended, and it reaches the value
ln(|I(u)

test|) when all items are recommended with the same frequency.
In the intersection between recommendation novelty and diversity, we should

remember the concept of coverage. Such a property can be measured through the item
coverage (iCov@k), to be intended as the number of di�erent items which are covered
across all recommendation lists for all users in the system. Its formulations is given by:

iCov@k = |t
uœUtest I(u)

rec |
Itest

. (2.33)

2.3 The recommendation pipeline 25

When it comes to bias in recommendation, several di�erent definitions may be
taken into account. One of the most common ones regards items’ popularity bias, and
it needs the preliminary definition of short head and long tail items, which is highly
related to the warm/cold items definition we provided above. By plotting item IDs
from the most popular (with highest number of interactions) to the least popular on
the x axis, and the items’ popularity on the y axis, one may note that popular items
are much fewer than niche ones. To statistically split items into most and least popular
ones, we may apply the 80%/20% Pareto principle, according to which the 80% or
items’ popularity is cumulatively provided by the 20% of the items in the catalogue
(i.e., the popular ones); similarly, the 20% of popularity is cumulatively provided by
the 80% of items in the catalogue (i.e., the niche ones). From a visual inspection of the
2D plot mentioned above, popular items belong to the so-called short head (Ish). On
the contrary, the niche items belong to the long tail (Ilt). Based upon the concepts
of short head and long tail items, in the following, we recall three commonly-adopted
recommendation metrics to measure the ability of a recommender system to retrieve
items from the long tail. Indeed, one of the purposes of any provider is to sell as much
numerous as possible items from the catalogue, especially the niche ones, since the
popular items are the ones which have much higher chances to be recommended and
sold to the users. That is also why items’ popularity bias is sometimes referred to as
provider fairness. The three metrics [3] we present are the average recommendation
popularity (ARP@k), the average percentage of long tail items (APLT@k), and the
average coverage of long tail items (ACLT@k):

ARP@k = 1
|Utest|

ÿ

uœUtest

q
iœI(u)

rec
pop(i)

|I(u)

rec |
, (2.34)

APLT@k = 1
|Utest|

ÿ

uœUtest

{|i | i œ Ilt flI(u)

rec |}
|I(u)

rec |
, (2.35)

ACLT@k = 1
|Utest|

ÿ

uœUtest

ÿ

iœI(u)
rec

(i œ Ilt), (2.36)

where pop(·) is the function returning the popularity (number of interactions) of an
item, while (·) is the function returning 1 if the item belongs to the long tail, 0
otherwise. First, the ARP@k represent the average popularity of the recommende
items: the lower the better, as this means more items from the long tail are retrieved.
Then, the APLT@k stands for the average percentage of items from the long tail:
the higher the better, meaning that more recommended items are from the long tail.

26 Chapter 2 Background on recommender systems

Finally, the ACLT@k is the average number of recommended items from the long tail:
again, the higher the better.

To conclude this chapter, we present the recommendation metrics accounting for
fairness in recommendation. As already stated for bias, recommendation fairness may
refer to several concepts and meanings. For the sake of this thesis and chapter, we
are now referring to the concept of producing recommendations which are fair to all
users groups in the system. Similarly to the bias setting, also in this case it becomes
fundamental to formally define a criterion to split users into groups. Once again, the
80%/20% Pareto principle comes in handy, as it works similarly to the previous case,
but with a di�erent meaning. Indeed, in the case of users, we are categorizing users
into those who are highly active on the platform (warm users) and those who are least
active on the platform (cold users). The careful reader may have noticed that we
already gave such a definition in the previous sections of this chapter, but adopting
another mathematical criterion (i.e., the p-core strategy). Given that this definition of
fairness accounts for users, it is oftentimes referred to as consumer fairness. In this
respect, the idea is that users on a platform should receive recommendations with
equal quality independently on their activity level on the platform. To measure this
property on recommender systems [81], one possibility is to adopt the mean absolute
deviation over users for ratings (UMADrat@k), whose formulation we report in the
following:

UMADrat@k = avg
uœUcold,vœUwarm

(MAD(R̂uú, R̂vú)), (2.37)

where avg(·) is the function taking the average over all users from the cold set Ucold

and warm set Uwarm, while MAD(R̂uú, R̂vú) is the mean absolute deviation between
the average rating received by cold and warm users, respectively. Note that the formula
may be trivially extended to rankings instead of ratings.

Chapter 3

Background on graph neural
networks

Graph neural networks have revolutionized machine and deep learning over the last
decade. As the name suggests, such neural architectures are especially tailored to work
on graph-structured data, such as social networks, citation networks, knowledge graphs,
molecules, and recommendation networks. As a useful background to understand graph-
based recommendation approaches (one of the core topics in this thesis), we devote
this chapter to providing a brief overview of the main definitions and concepts behind
graph neural networks. In this respect, we first introduce some notions about graphs as
data structures. Second, we introduce the message passing iterative algorithm, which
represents the most atomic building block of any graph neural network model. Then,
we recall some of the most popular graph neural network architectures in the recent
literature. Finally, we describe and formalize the main tasks graph neural networks are
currently trained on. The content of this chapter is inspired by the following papers
and books in the literature [51, 119, 410].

3.1 Basic notions about graphs
This first section of the chapter addresses some basic notions about graphs as data
structures. After a formal definition of what a graph is, along with its multiple
variations, we formalize the adjacency matrix and node features, which constitute the
main components to define a graph.

28 Chapter 3 Background on graph neural networks

3.1.1 Definition of graph

We define a graph through the set of nodes V and edges E connecting such nodes,
namely, G = (V ,E). Specifically, an edge between node v œ V and w œ V exists if
the two nodes are connected. When edges in a graph come with a direction (e.g.,
node v is connected to node w but not viceversa), the graph is said to be directed;
otherwise, if the edge direction is not defined (e.g., v is connected to w and also the
viceversa holds true) the graph is said to be undirected. Nodes in a graph may belong
to disjoint partitions, namely, V = V1 fi V2, . . . , fi Vp, having Vi flVj = ÿ ,’i ”= j. This
type of graph, named heterogeneous, has edges which may connect nodes from di�erent
partitions following a specific rationale. However, when edges only connect nodes from
di�erent partitions, the graph is said to be multipartite. A special case of such graphs
is the bipartite one, where nodes belong to two di�erent partitions, and nodes from one
partition can only be connected to nodes from the other partition. A classical example
of bipartite graph is the user-item recommendation graph on e-commerce platforms,
where users may only interact with items and viceversa (the graph is also undirected).

3.1.2 Adjacency matrix

An adjacency matrix represents the graph G into matrix format. By assigning each
node in the graph an ordering (i.e., nodes are represented by specific rows and columns
in the matrix), the adjacency matrix A œ R|V|◊|V| is designed such that Av,w = a if
there exists an edge connecting v and w, 0 otherwise. In a directed graph, Avw ”= Awv

in general, while in an undirected graph, A is symmetric and Avw = Awv. Note that
the entry Avw = a is a real-valued number which represents the weight of the edge
connecting the nodes v and w (for instance, the value may be positive or negative when
the graph is directed to indicate the di�erent edge direction). For the sake of simplicity,
and in general, Avw = {0,1}, where the edge weight is discretized to represent the
absence or presence of an edge, respectively. Finally, note also that in multipartite
graphs (e.g., bipartite graphs) there exist entire portions of the adjacency matrix
whose entries are zero, as in such a family of graphs some node partitions are not
connected one another. It is also important to introduce the concept of neighborhood
of a node v, defined as the set of nodes which are connected to v through one edge.
Let N (v) = {w œ V | Avw = 1} be the neighborhood of v. Then, we calculate the degree
of v as |N (v)| or, alternatively, q

wœN (v) Avw.
In the training of graph neural networks (see later), it is common practice to

consider the symmetric normalized adjacency matrix (i.e., Asym). Starting from the

3.2 The message passing algorithm 29

definition of adjacency matrix, we calculate Asym as:

Asym = D≠ 1
2 AD≠ 1

2 . (3.1)

The purpose of this normalization is to flatten the weight importance of all nodes in the
graph based upon their degree to tackle possible instabilities during the optimization
of the graph neural network.

3.1.3 Node features

Nodes in a graph may be associated with attributes or features describing them.
Generally, such features are formally represented through a real-valued matrix X œ
R|V|◊d where d is the dimensionality of the feature matrix. While X may consist
of features describing real-world characteristics of the nodes (e.g., continuous and
categorical features representing patients in a patients-diseases bipartite graph), it may
also stand for embeddings in the latent space which do not have a direct connection to
real-world properties (e.g., vector embeddings such as in user-item bipartite graphs
which are mapped to user and item unique identifiers and trained end-to-end in the
downstream task).

3.2 The message passing algorithm
Independently on the graph learning strategy adopted (see Section 3.3), the most
atomic building block of any graph neural network architecture lies in the message
passing algorithm. In its most generalized version, such a procedure works by updating
the latent representation of each node (defined as ego node in this context) through
the information conveyed by the nodes directly connected to the ego one (defined as
the neighbor nodes). The information from the neighborhood is usually referred to as
messages, which are aggregated and used to update the representation of the ego node.
Finally, the message passing schema is iteratively applied for L layers, and the various
node representations are eventually combined to obtain a unique representation for
each node. As usually reported in the literature, the message passing algorithm is a
generalization of the convolution operation (performed on 2D data such as images) to
non-Euclidean data (such as graphs). In the following, a formal definition for each of
such steps, namely, message aggregation, node embedding update, and layer combination,
is presented and formally described.

30 Chapter 3 Background on graph neural networks

3.2.1 Message aggregation

Let x(l)
v œ Rdl be the representation of node v œ V at layer l, with 0 Æ l Æ L, and dl the

embedding dimension at layer l. We obtain the aggregated messages from the neighbor
nodes of v through the following:

m(l)
v = aggregate(l)({x(l)

w | w œ N (v)}), (3.2)

where m(l)
v œ Rdl is the aggregated message from the neighbor nodes of v at layer l,

aggregate(l) is the aggregation function over the neighbor nodes of v, and x(l)
w œ Rdl is

the embedding of one of the neighbor nodes of v. For instance, a popular choice for
the aggregate(l) function is the element-wise addition:

m(l)
v =

ÿ

wœN (v)

Avwx(l)
w , (3.3)

where Avw is the entry of the adjacency matrix corresponding to weight of the edge
connecting the nodes v and w (if any). The adjacency matrix may be normalized into
the symmetric normalized adjacency matrix, especially when it is required to flatten
the importance of any neighbor node independently on its degree:

m(l)
v =

ÿ

wœN (v)

AvwÒ
|N (v)||N (w)|

x(l)
w , (3.4)

where in the denominator we are considering the node degree of the ego node and each
neighbor node.

3.2.2 Node embedding update

Once the aggregated message from the neighbor nodes has been calculated, the node
embedding can be updated to obtain the representation at layer l +1:

x(l+1)

v = update(l)(x(l)
v ,m(l)

v), (3.5)

where x(l+1)

v œ Rdl+1 is the updated embedding representation of node v at layer
l +1, update(l) is the update function for the ego node at layer l, and x(l)

v is usually
included to leverage the current representation of the ego node into the message passing
formulation. For instance, a popular choice to design the update(l) function is a neural

3.2 The message passing algorithm 31

network where x(l)
v and m(l)

v are the two inputs:

x(l+1)

v = ‡(W(l)
egox(l)

v +W(l)
neighm(l)

v), (3.6)

where ‡(·) is the activation function of the neural network (e.g., the sigmoid or ReLU),
while W(l)

ego œ Rdl◊dl+1 and W(l)
neigh œ Rdl◊dl+1 are the weights of the neural networks

referring to the ego node and the message aggregated through the aggregate(l) function,
respectively.

3.2.3 Layer combination

The final stage in the message passing algorithm is the combination of all node embed-
ding representations obtained in each layer l. Let x(0)

v = xv be the node representation
for the layer 0, which corresponds to the initial embedding representation of the node
(e.g., initialized with random values). Then, the layer combination is obtained as:

x̂v = combine({x(0)

v , x(1)

v , . . . , x(l)
v , . . . , x(L)

v }), (3.7)

where combine can be di�erent operations, such as the element-wise addition, the
mean, the concatenation, or the last obtained representation is selected:

ADD: x̂v =
ÿ

0ÆlÆL

x(l)
v , (3.8)

MEAN: x̂v = 1
L

ÿ

0ÆlÆL

x(l)
v , (3.9)

CONCAT: x̂v = {x(0)

v || x(1)

v || . . . || x(l)
v . . . || x(L)

v }, (3.10)
LAST: x̂v = x(L)

v , (3.11)

where x̂v is the final representation of the node v.

3.2.4 Matrix format and self-loops

The formulations provided above for the message passing algorithm are expressed
at node level. However, in most of the cases, the message passing algorithm can be
expressed into a more compact matrix format which comprises all graph nodes at once,
and the formulation becomes as follows:

X(l+1) = ‡(X(l)W(l)
ego +AX(l)W(l)

neigh), (3.12)

32 Chapter 3 Background on graph neural networks

where X(l) œ R|V|◊dl includes all node embeddings into one matrix. Generally, the
update(l) function is removed by adding self-loops in the adjacency matrix, namely,
the ego node is added to the set of neighbor nodes during the message aggregation
operation. The matrix formulation becomes:

X(l+1) = ‡((A+ I)X(l)W(l)), (3.13)

where A+ I is used to add self-loops to the adjacency matrix, and the presence of a
single W(l) matrix indicates that the W(l)

ego and W(l)
neigh are shared into one matrix.

3.3 Popular graph neural network architectures
Depending on the specific strategies and operations adopted for the message passing,
the literature recognizes di�erent graph neural networks architectures. In the following,
we present and formalize the most popular ones, namely, graph convolutional network
(GCN), graph attention network (GAT), and graph isomorphism network (GIN).

3.3.1 Graph convolutional network

The graph convolutional network architecture (GCN) proposed by Kipf et al. [158] is
one of the pioneer works in graph neural networks. The layer is defined as:

X(l+1) = ‡(ÃX(l)W(l)), (3.14)

where Ã = (D+ I)≠ 1
2 (A+ I)(D+ I)≠ 1

2 is the symmetric normalized adjacency matrix
(with self-loops obtained through the identity matrix I œ R|V|◊|V|) and ‡(·) is the
activation function (usually the ReLU).

3.3.2 Graph attention network

The graph attention network architecture (GAT) was first introduced by the work
of Velickovic et al. [313], and it is one of the first approaches to leverage attention
mechanisms to weight the relative importance of each neighbor node to its corresponding
ego node. Specifically, the message passing schema of GAT is defined as:

X(l+1) = ‡(�AX(l)W(l)), (3.15)

3.4 Tasks in graph representation learning 33

where � œ R|V|◊|V| is the weight matrix obtained through attention mechanisms.
Specifically, by considering the ego node v œ V along with its neighbor nodes ’w œ N (v),
the attention mechanism is formulated as:

�vw = exp(LeakyReLU(T[Wxv||Wxw]))
q

wœN (v) exp(LeakyReLU(T[Wxv||Wxw])) , (3.16)

where exp(·) is the exponential function, T œ R1◊2dl is the projection matrix, and || is
the concatenation operation.

3.3.3 Graph isomorphism network

By demonstrating that graph neural network architectures such as GCN cannot properly
capture the di�erences between various graph structures, the work by Xu et al. [352]
proposes a novel and simple solution, that is as powerful as the Weisfeiler-Lehman
graph isomorphism test. For this reason, the architeture is called graph isomorphism
network (GIN), and its layer is formulated as:

X(l+1) = mlp((A+(1+ ‘)I)X(l)), (3.17)

where mlp(·) is a neural network layer, and ‘ is a constant.

3.4 Tasks in graph representation learning
This last section of the chapter is devoted to presenting three popular tasks which use
graph neural networks, namely, (i) node classification, (ii) link prediction, and (iii)
graph structure learning. Their formalizations are based upon the encoder-decoder
framework. In its most generic version, an encoder function maps the adjacency matrix
and initial node features of a graph to an embedded representation of the nodes:

ENCODER: R|V|◊|V| ◊R|V|◊d0 æ R|V|◊dL . (3.18)

Given the way it is formulated, the encoder function is nothing but any message passing
procedure iterated over L propagation layers, namely, any presented graph neural
network architecture from above.

As for the decoder function, it takes the encoded representation of the nodes as
input, and produces some outputs which depend on the specific task we are considering.
Such an output may be a probability vector over the set of possible classes C (i.e., node

34 Chapter 3 Background on graph neural networks

classification), a similarity score between two node embeddings (i.e., link prediction),
or a learned version of the adjacency matrix (i.e., graph structure learning):

DECODER: R|V|◊dL
Ë
◊R|V|◊dL

È

¸ ˚˙ ˝
LP

æ R|V|◊|V|
¸ ˚˙ ˝

GSL

◊R|V|◊|C|
¸ ˚˙ ˝

NC

◊R+

¸˚˙˝
LP

, (3.19)

where we abbreviate link prediction, graph structure learning, and node classification
through LP, GSL, and NC, respectively. In the following, we describe the three selected
tasks regarding graph representation learning, by re-casting each of them into the
encoder-decoder framework we just presented.

3.4.1 Node classification

Node classification is probably one of the primary and most popular task to benchmark
the performance of graph neural networks. As any classification task in machine
learning, node classification involves the training of a graph neural network model
to predict the correct class each node in the graph belongs to. Let yv œ R|C| be the
one-hot-encoding vector indicating to which class node v œ V belongs to, where yv[c] is
1 if v belongs to class c œ C, 0 otherwise.

In terms of encoder function, it maps the adjacency matrix and the initial node
features to embedded node representations:

ENCODER: R|V|◊|V| ◊R|V|◊d0 æ R|V|◊dL , (3.20)

whose formulation is a graph neural network:

ENCODER(A,X) = X̂. (3.21)

As for the decoder function, it maps the embedded node representations to probability
vectors over the set of possible classes C:

DECODER: R|V|◊dL æ R|V|◊|C|, (3.22)

whose formulation is:

DECODER(ENCODER(A,X)) = DECODER(X̂) = Ŷ, (3.23)

where Ŷ is the predicted vector probability over the set of classes C for all nodes.

3.4 Tasks in graph representation learning 35

The loss function for node classification is the negative log-likelihood loss function:

L = ≠log(softmax(Ŷ,Y)), (3.24)

where log(·) and softmax(·) are the logarithm and softmax functions, respectively,
while Y|V|◊|C| is the one-hot-encoding vector indicating to which class each node belongs
to, respectively. Di�erently from other classification tasks in machine learning, node
classification is often referred to as a semi-supervised task because nodes in the test set
(whose label/class is not known during the training) are still exploited in the message
passing procedure. However, their are not used in the calculation and minimization of
the loss function. In such cases, nodes in the test set are defined as transductive. On
the contrary, when test nodes are not used during the training phase at all, such nodes
are defined as inductive.

3.4.2 Link prediction

Link prediction is another popular task where graph neural networks are widely
exploited. The task involves the prediction, in a graph structure, of the existence of an
edge between pairs of nodes.

In the case of link prediction, the encoder function maps the adjacency matrix and
the initial node representations to the nodes embedded representations in the latent
space:

ENCODER: R|V|◊|V| ◊R|V|◊d0 æ R|V|◊dL , (3.25)

As already seen for node classification, the encoder function is formulated as:

ENCODER(A,X) = X̂. (3.26)

A decoder function, paired with the encoder one, is aimed at reconstructing some graph
structure properties, such as which are the neighbor nodes of a given ego node:

DECODER: R|V|◊dL ◊R|V|◊dL æ R|V|◊|V| ◊R+. (3.27)

For instance, we apply the decoder function to predict whether there exists an edge
between each pair of nodes in the graph (i.e., we are approximating the adjacency
matrix):

DECODER(ENCODER(X),ENCODER(X)) = DECODER(X̂,X̂) = Â, (3.28)

36 Chapter 3 Background on graph neural networks

where Â is the approximated version of the adjacency matrix. A possible way of
modeling the decoder function is through the matrix factorization paradigm, which
calculates the similarity score of two entities (nodes) through the inner product of
their embedded representations. As the message passing allows to incorporate the
information conveyed by the neighbor nodes into the ego node at multiple layers, the
inner product between two ego nodes provides also an indication of how the neighbor
nodes of the two ego nodes are similar (i.e., we are reconstructing the graph structural
properties). Thus, in the case of inner-product, we have:

DECODER(X̂,X̂) = X̂€X̂. (3.29)

In such a scenario, the loss is a pairwise one, and may be the mean squared error:

L = ||X̂€X̂≠A||22. (3.30)

Note that we are, as a common practice, the adjancecy matrix is masked during the
training phase, so that only some edges are known, while the remaining ones are used
to test the performance of the trained model. Moreover, the training set may contain
both positive (i.e., existing) and negative (i.e., non-existing) edges. The negative edges
are obtained through negative sampling strategies, such as the one adopted in Bayesian
personalized ranking (BPR) in recommendation [258].

3.4.3 Graph structure learning

Finally, we take into account the task of learning and/or refining the structure of a
graph, namely, graph structure learning.

As observed for the other tasks in graph representation learning, graph structure
learning involves an encoder function defined as follows:

ENCODER: R|V|◊|V| ◊R|V|◊d0 æ R|V|◊dL , (3.31)

which is a graph neural network:

ENCODER(A,X) = X̂. (3.32)

The decoder function works by generating an updated/refined version of the adjacency
matrix, starting from the embedded node representations obtained from the encoder.

3.4 Tasks in graph representation learning 37

Its signature is:
DECODER: R|V|◊dL æ R|V|◊|V|. (3.33)

In this respect, the literature mainly recognizes three families of strategies to model the
decoder function. The first involves metric-wise approaches, which leverage similarity
metrics to estimate the edge weight between pairs of nodes, such as the inner-product
or the cosine similarity of node embeddings:

DECODER¸ ˚˙ ˝
inner-product

: ‡(X̂€X̂), (3.34)

DECODER¸ ˚˙ ˝
cosine

: cos(X̂§W,X§W), (3.35)

where ‡(·) is any activation function (e.g., the sigmoid), while cos(·) is the cosine
similarity function, and W are trainable weights (e.g., obtained from the edge features
in the graph). The second type of approaches is defined as neural approaches, and
the graph attention network layer belongs to this family (refer again to Section 3.3.2).
Finally, the third group of approaches works by learning the entries of the adjacency
matrix as free parameters.

Generally, graph structure learning is performed as a side task along with a main
task (such as node classification). For this reason, the loss function involves two
components, namely, a main task loss, and a regularization loss:

L = Ltask +⁄Lreg(Â,X̂). (3.36)

The regularization term may assume di�erent formulations depending on the graph
properties one wants to optimize, such as the sparsity of the adjacency matrix, or the
smoothness.

Chapter 4

Formalizing multimedia
recommendation

In this chapter, we first provide a comprehensive literature review of multimodal
approaches for multimedia recommendation from the last eight years. Second, we outline
the theoretical foundations of a multimodal pipeline for multimedia recommendation by
identifying and formally organizing recurring solutions/patterns. Third, we demonstrate
its rationale by conceptually applying it to selected state-of-the-art approaches in
multimedia recommendation. Finally, we highlight the significant unresolved challenges
in multimodal deep learning for multimedia recommendation. Our primary aim is to
provide guidelines for designing and implementing the next generation of multimodal
approaches in multimedia recommendation.

4.1 Motivations
Our experience of daily life is intrinsically multimodal. We interact with objects
surrounding us through our five senses. For instance, watching a movie can involve three
senses (i.e., modalities): we watch it (visual modality) while listening to the dialogues
(audio modality) and possibly reading its subtitles (textual modality). Multimodal
learning has been one of the hot topics in deep learning for some years now, addressing
applicative domains such as medical imaging [34, 109, 129, 303], autonomous driving [44,
152, 350, 400], speech/emotion recognition [173, 198, 241, 244], multimedia retrieval [53,
135, 136, 174], and, only recently, multimodal large language modelling [368]. Given
the success and popularity it has encountered, some works have tried to outline,
categorize, and formalize the core concepts behind multimodality in deep learning [28,
29, 227]. Remarkably, the literature recognizes five steps and challenges when designing

40 Chapter 4 Formalizing multimedia recommendation

a multimodal deep learning pipeline [29]: representation, translation, alignment, fusion,
and co-learning.

Similarly to the cited domains and applications, approaches in multimedia recom-
mendation have been shown to e�ectively apply multimodal deep learning techniques
to the recommendation task. The idea is to model users’ and items’ profiles through
the di�erent modalities and suitably capture the multi-faceted nature of their intercon-
nections. Recent works in the literature have brought multimodality to multimedia
recommendation [189, 269, 309, 404] tackling (just to mention a few) micro-video
recommendation [45, 67, 339], food recommendation [171, 222, 321], outfit fashion
compatibility [65, 361, 380], and artist/song recommendation [70, 236, 312]. However,
and di�erently from the other outlined domains and scenarios, recommendation lacks
a shared theoretical formalization to align the multimedia recommendation problem
with the same formal pipeline proposed in multimodal deep learning [28, 29, 227].

For these reasons, in this chapter, we first review the most popular and recent
state-of-the-art approaches in multimedia recommendation. Indeed, it emerges that
three main design choices are involved when proposing novel multimedia recommender
systems leveraging multimodality: (i) Which modalities to suitably describe the
user/item input data; (ii) How to extract and process meaningful multimodal represen-
tations; (iii) When to integrate and inject multimodal data into the training/inference
steps. While observing that many multimedia recommendation approaches are rarely
aligned on the techniques to adopt for (i), (ii), and (iii), we maintain this could limit
the future development of novel solutions in the field. This is true since each work
claims to advance with respect to the state-of-the-art but it becomes cumbersome to
distinguish which conceptual strategies are contributing the most [206]. Thus, inspired
by the multimodal pipeline formalized in multimodal deep learning [28, 29, 227], we
try to align the same schema with the three design choices recognized above. Our
objective is to define a conceptual and theoretical schema that uses multimodality
to encompass and summarize the most di�used solutions/patterns in the multimedia
recommendation literature. To the best of our knowledge, this represents the first
attempt that, di�erently from similar works in the literature [189, 404], formalizes
multimedia recommendation through the core concepts theorized in multimodal deep
learning [28, 29, 227].

To sum up, our contributions are:

1. We review existing works in multimedia recommendation adopting multimodal
learning techniques, highlighting common and di�erent architectural choices;
in this respect, we categorize the reviewed papers according to the type of

4.2 Literature review 41

multimodal input (i.e., What), the technique for features processing (i.e., How),
and the moment to integrate modalities (i.e., When).

2. On such basis, and following the related literature on multimodal deep learning,
we revisit the multimedia recommendation task under the lens of multimodal
deep learning; by mapping the multimodal pipeline outlined in [28, 29, 227] to
the threefold categorization from above, we provide the general formulations for a
formal schema involving three steps: multimodal input data, multimodal feature
processing, and multimodal feature fusion.

3. First, we select four multimodal approaches from the recent literature spanning
various domains and scenarios in multimedia recommendation; then, we show
how the proposed multimodal schema conceptually applies to the selected models
in all the steps of the pipeline, thus proving its e�ectiveness.

4. Driven by the previous findings, we outline technical and conceptual challenges.

We release a GitHub repository with all the reviewed papers: https://github.com/
sisinflab/Formal-MultiMod-Rec.

4.2 Literature review
In this section, we present a literature review on recent multimodal applications for
the task of multimedia recommendation. Table 4.1 reports 43 papers collected from
the proceedings of top-tier conferences and journals over the last eight years. A careful
review and analysis aimed at outlining recurrent schematic and observed patterns
suggests categorizing the retrieved papers according to three key questions:

• Which modalities to choose for the input data?

• How to process multimodal features in terms of feature extraction and represen-
tation?

• When to fuse the di�erent modalities to integrate them into the final recom-
mendation framework?

To collect all reviewed papers, we also include a public GitHub repository1 to access
their direct DOIs. We intend to update this repository with the most recent works
leveraging multimodality for multimedia recommendation.

1https://github.com/sisinflab/Formal-MultiMod-Rec.

https://github.com/sisinflab/Formal-MultiMod-Rec
https://github.com/sisinflab/Formal-MultiMod-Rec
https://github.com/sisinflab/Formal-MultiMod-Rec

42 Chapter 4 Formalizing multimedia recommendation

Table 4.1 Overview of the core questions which arise when modelling a multimedia recom-
mender system based upon multimodality, as observed in the most updated literature. HFE:
Handcrafted Feature Extraction, TFE: Trainable Feature Extraction, MMR: Multimodal
Representation.

Papers Year Modalities (Which?) Feature Processing (How?) Fusion (When?)

Visual Textual Audio HFE TFE MMR Early Late
Pretrained End-to-End Joint Coordinate

Ferracani et al. [98]
2015

3 3 3 3
Jia et al. [144] 3 3 3 3
Li et al. [175] 3 3 3 3

Nie et al. [232] 2016 3 3 3 3 3
Chen et al. [63] 3 3 3 3

Han et al. [120]
2017

3 3 3 3 3
Oramas et al. [236] 3 3 3 3 3
Zhang et al. [385] 3 3 3 3 3

Ying et al. [369] 2018 3 3 3 3
Wang et al. [317] 3 3 3 3

Liu et al. [181]

2019

3 3 3 3
Chen et al. [66] 3 3 3
Wei et al. [339] 3 3 3 3 3 3

Cheng et al. [69] 3 3 3
Dong et al. [91] 3 3 3 3 3
Chen et al. [65] 3 3 3 3
Yu et al. [373]

2020

3 3 3 3 3 3 3

Cui et al. [78] 3 3 3 3 3
Wei et al. [338] 3 3 3 3 3 3
Sun et al. [293] 3 3 3 3
Chen et al. [57] 3 3 3 3
Min et al. [222] 3 3 3 3 3
Shen et al. [277] 3 3 3 3 3 3
Yang et al. [361] 3 3 3 3 3
Tao et al. [305] 3 3 3 3 3 3

Yang et al. [359] 3 3 3 3 3

Sang et al. [270]

2021

3 3 3 3 3
Liu et al. [193] 3 3 3 3 3 3

Zhang et al. [382] 3 3 3 3 3
Vaswani et al. [312] 3 3 3 3 3

Lei et al. [171] 3 3 3 3 3
Wang et al. [321] 3 3 3 3

Zhan et al. [380]

2022

3 3 3 3
Wu et al. [341] 3 3 3 3 3
Yi et al. [365] 3 3 3 3 3
Yi et al. [366] 3 3 3 3 3 3
Liu et al. [194] 3 3 3 3 3
Mu et al. [223] 3 3 3 3 3
Chen et al. [55] 3 3 3 3 3 3
Zhou et al. [406] 3 3 3 3 3

Wang et al. [320]
2023

3 3 3 3 3 3
Wei et al. [336] 3 3 3 3 3 3
Zhou et al. [407] 3 3 3 3 3

4.2.1 Which modalities?

In multimedia recommendation scenarios, input data generally comes in at least two of
the three most common modalities in literature, namely Visual, Textual, and Audio
modalities. As evident from the collected papers, the vast majority of works consider
the visual and textual modalities, which mainly refer to product images and descriptions
(e.g., [78, 91, 120, 181, 380, 382]), respectively, while fewer examples leverage such

4.2 Literature review 43

modalities to describe video frames and captions (e.g., [144, 270, 321]) or users’ social
media interactions through uploaded photographs together with texts (e.g., [63, 359,
385]). Another emerging trend from the literature is that audio is by far the most
underrepresented modality, and it is usually coupled with the textual one to describe
music in the form of audio signals and songs’ descriptions (e.g., [236, 312]). Conversely,
the related literature shows that the audio modality is frequently exploited for video
input data (e.g., [305, 320, 338, 339, 366]) which is also the unique scenario involving
all modalities.

The observed disparity in data modalities is not only linked to the specific task the
various approaches address (e.g., product, song, or micro-video recommendation) but
it is also found in each modality’s di�erent availability. In this respect, for example,
datasets collecting user-item interactions on e-commerce platforms (e.g., the Amazon
reviews dataset or IQON300) are more easily accessible than the ones involving social
media videos. For instance, one may consider that a version of the TikTok dataset
(introduced in [339]) has been made available with pre-trained multimodal features
involving visual, audio, and textual modalities only recently [336]. This modality
misalignment is among the most discussed challenges in the community, so we decide
to dedicate a section to it later (refer to Section 4.5.1).

4.2.2 How to process modalities?

Once modalities have been selected for data inputs, two primary operations usually
get involved in processing the multimodal data to be fed into the recommender
system. First, high-level features are extracted from each of the available modalities.
Interestingly, early approaches adopt handcrafted feature extraction (HFE) strategies
(e.g., color histograms) as described in [63, 144, 175, 232]. However, with the outbreak
and the increasing popularity encountered by deep learning and deep neural models
for image and text classification, object detection, and speech recognition, trainable
feature extractors (TFE) soon became the de facto standard in the learning of latent
features from the input data. In this respect, the literature [82] indicates that the
common approach is to use the activation of one of the final hidden layers of deep
neural networks. For instance, the authors of [193, 194, 222, 293, 317, 336, 373] exploit
features extracted from deep networks. Furthermore, we categorize TFE strategies
based on the use of Pretrained deep networks and End-to-End learned models. The
former refer to the possibility of transferring the learned knowledge of already-trained
deep networks to di�erent domains, tasks, and datasets (e.g., see [300]), whereas
the latter usually leverage custom deep neural networks trained in the downstream

44 Chapter 4 Formalizing multimedia recommendation

recommendation task. As evident from the collected papers, the pre-trained solution
(e.g., [57, 66, 91, 98, 270, 277, 338, 369]) widely surpasses the end-to-end one (e.g., [120,
236, 385]) in terms of popularity, as the adoption of ready-to-use embedded features
obtained from state-of-the-art deep learning models represents a more e�cient and
convenient approach than performing computationally-expensive and data-eager trained
feature extractions. Nevertheless, an argument might be made that using features
extracted through models already trained on di�erent datasets and tasks could limit
their expressiveness regarding the actual multimedia recommendation task. For this
reason, we deepen into the issue in Section 4.5.2.

The second operation involved in the feature processing phase regards the imple-
mentation of a multimodal representation (MMR) solution to establish relations among
the extracted modalities. We recognize two main approaches, namely, either combining
all modalities so that they belong to a unique representation (Joint) or keeping them
separated to leverage the di�erent influence they may have on recommendation (Coor-
dinate). From the collected papers, it follows that both the former (e.g., [55, 65, 98,
223, 293, 369, 380]), and the latter (e.g., [232, 339, 361, 365, 382]) are almost equally
preferred; however, the coordinate multimodal representation is slightly more popular
as learning di�erent representations for each involved modality may help unveil the spe-
cific contribution it brings to the final personalized recommendation. Indeed, this could
support explainability, which is among the hottest topics in the community [391], and
especially in multimedia recommendation scenarios, where user-item interactions may,
by nature, be driven by non-evident and sometimes contrasting users’ preferences and
tastes [60, 66, 338]. Finally, the authors from [66, 69] do not integrate any multimodal
representation approach since they exploit multimodality only for the optimization of
the loss but not to predict user-item preferences.

4.2.3 When to fuse modalities?

The last stage in the multimodal pipeline deals with the fusion of the di�erent processed
modalities so that they can be eventually integrated into the recommendation outcome
as a single representation of multiple coordinated modalities. This process may take
place before or after the prediction of the user-item preference score. On this basis,
the former and the latter approaches are usually known as Early (e.g., [312, 339]) and
Late (e.g., [78, 365]) fusion, respectively. It is worth pointing out that some solutions
recognize a third strategy (i.e., Hybrid fusion) that combines the two versions mentioned
above, but for the sake of simplicity, we decide to categorize the works performing this
kind of multimodal fusion as a particular case of late fusion. Additionally, we recognize

4.2 Literature review 45

that several approaches from the literature do not provide a precise di�erentiation
between joint multimodal representation and early fusion. To better clarify this
technical aspect, we propose to consider fusion as an optional operation that takes
place after the feature processing phase only in the case of coordinate multimodal
representation (you may refer to Section 4.5.3). Indeed, as evident from the table, Joint
multimodal representation and Early/Late fusion never occur in the same approach.
What is more, we observe that early fusion, employed, for instance, in [55, 91, 194, 223,
232, 270, 277, 341, 382, 385], is more popular than late fusion, used in [78, 336, 361, 365,
366, 406, 407]. Motivating this tendency is an unanswered research question that we
leave as a possible open issue to impact the design of recommender systems leveraging
multimodality. In this respect, you may refer to Section 4.5.4 for our discussion on the
current challenges about modality fusion.

4.2.4 Similar works

For the sake of completeness, we review the current literature works that provide similar
contributions to ours to outline the main di�erences. As already mentioned, pioneer
works such as [28, 29, 227] introduce and formalize (for the first time) the core concepts
and ideas behind the field of multimodal deep learning. After that, the recent years
have seen a growing interest in systematically reviewing and schematizing techniques for
multimodal fusion [100], spanning di�erent application domains such as medicine [306],
conversational artificial intelligence [297], and visual content syntesis [393], up to
addressing complex and novel machine learning strategies including meta-learning [203].
Although the cited works share similar rationales to ours, their focus is more general
(e.g., deep learning) or heterogeneous (e.g., medicine) with respect to the multimedia
recommendation task.

In the recommendation domain, the study presented in [222] is among the closest
and most influential works to our proposal in the intention of introducing a unified
framework for food recommendation which leverages the concept of multimodality;
however, the work is di�erent from ours in that: (i) it only addresses the task of
food recommendation, and (ii) it does not provide either mathematical formalizations
analysis of the proposed multimodal pipeline. Furthermore, it is worth recalling two
surveys regarding the topic of multimodal recommender systems [189, 404] on arXiv at
the moment this thesis is written. Among the two, the work presented in [404] shows the
major similarities to our proposal, especially when recognizing a multimodal pipeline
for multimedia recommendation. Nevertheless, what we propose in this chapter stands
out for the following novel contributions: (i) we systematically follow the multimodal

46 Chapter 4 Formalizing multimedia recommendation

pipeline outlined in [28, 29, 227] in the attempt to adapt it to the three main questions
arising in the multimedia recommendation literature, namely, Which?, How?, and
When?; (ii) we provide mathematical formalizations for each step of the proposed
multimodal pipeline to sketch a formal schema for the next generation of multimodal
approaches addressing multimedia recommendation; (iii) we identify a wider set of
challenges regarding each step in the multimodal pipeline.

4.3 A formal multimodal schema for multimedia
recommendation

As previously outlined, the literature shows recurrent schematic patterns in adopting
multimodal techniques for the task of multimedia recommendation. However, when
considering the latest solutions in the field (Section 4.2) it appears evident that,
di�erently from what happens for other applicative domains in machine learning, such
approaches do not seem to follow any shared and o�cially recognized formal schema
aligned with the principles of multimodal deep learning [28, 29, 227]. To sort things
out, in this section, we propose to formally revisit multimedia recommendation under
the lens of multimodal deep learning (Figure 5.2). First, we formalize the standard
recommendation task. Then, we theoretically give answers to the core questions
previously outlined, namely: Which multimodal input data to adopt, How to extract
multimodal features and set relationships among them, and When to fuse modalities.
Finally, we specify the multimedia recommendation task through multimodality. In
the following, we use the bold notation only when we explicitly define a vector for
which we indicate its elements (i.e., scalars or other vectors).

4.3.1 Classical recommendation task

Despite we already introduced and described the recommendation task in Section 2.1.2,
we recall and expand the main notions in the following. We consider users, items, and
user-item interactions as the inputs to the recommender system. We denote with u œ U ,
i œ I, and r œ R a user, an item, and a user-item interaction, respectively. To ease the
notation, we say x œ X is a general input to the system, with X = U fiI fiR. Given
a set of input data X , and defined fl(·) as the preference score prediction function, a
recommender system aims to build a top@k list of items maximizing the following

4.3 A formal multimodal schema for multimedia recommendation 47

࢛

MODALITIES

. . .
. . .

MULTIMODAL
FEATURE

EXTRACTOR
ሻڄሺ࣐

MULTIMODAL
REPRESENTATION

JOINT
ሻڄሺࣆ

COORDINATE
ࣆ . . .ڄ

INFERENCE
ሻڄሺ࣋

EARLY
FUSION
ሻڄሺࢋࢽ

LATE
FUSION
ሻ(1)ڄሺࢽ (2)

(a)

(b)

MULTIMODAL
FUSION

(3)

(a)

(b)

(4)

࢘

Which? How? When?

INPUT

Fig. 4.1 Our multimodal schema for multimedia recommendation. After (1) a modality-aware
feature extraction, the extracted features may be either directly represented into a unique
latent space (2a) or projected into a di�erent latent space for each modality (2b). While
in the former case, the multimodal representation is used to produce a prediction (4), in
the latter case, all modalities must undergo a fusion phase (3). In the early fusion (3a), we
produce a final representation that is used for prediction (4). Otherwise, we first produce a
di�erent prediction for each modality (4), and then we fuse them (late fusion) into a single
predicted value (3b).

posterior probability (prob):

�̂fl = argmax
�fl

prob(�fl | X), (4.1)

where �fl = [◊(0)

fl ,◊
(1)

fl , . . . ,◊
(|Wfl|≠1)

fl] is the vector collecting all weights for the inference
function fl(·), Wfl = {◊

(0)

fl ,◊
(1)

fl , . . . ,◊
(|Wfl|≠1)

fl } is the set of such weights, and |Wfl| its
cardinality. For instance, in the case of latent factor models (e.g., matrix factoriza-
tion [160]), the set of trainable weights Wfl involves the user and item embeddings.

4.3.2 Multimodal input data

As shown in Figure 5.2, the first step of our multimodal schema is to identify input
modalities. A common list of modalities for each input data (i.e., user, item, user-item
interaction) in multimedia scenarios may be defined as follows:

• visual (v), e.g., images, video frames;

• textual (t), e.g., image captions, video subtitles, song lyrics, reviews;

• audio (a), e.g., songs, podcasts, movie soundtracks.

48 Chapter 4 Formalizing multimedia recommendation

Formally, we define m œ M as an admissible modality for the system (i.e., M = {v,t,a}).
We should mention that data may come with all such modalities or just a subset. For
instance, videos from video streaming platforms (such as Netflix or Amazon Prime
Video) have frames (v), subtitles and/or descriptions (t), and an audio track and/or
soundtrack (a). Similarly, e-commerce platforms (such as Amazon or Zalando) sell
products that may come with photographs (v) and reviews which stand for the textual
feedback users express towards those products (t).

Let x œ X be an input to the recommender system, whose set of available modalities
is indicated as Mx ™ M. We represent the content data of input x in modality m

as c
(m)

x , with m œ Mx, and the vector of content data for input x in all modalities as
cx. Concerning the examples from above, a video item x may be described through
three modalities (i.e., Mx = {v,a,t}) and, for example, its visual content data (a
frame) is an RGB image indicated as c

(v)

x . Similarly, a fashion item x may be described
through two modalities (i.e., Mx = {v,t}) and, for example, its textual content data
(the description) is a set of words indicated as c

(t)

x .

4.3.3 Multimodal feature processing

As in Figure 5.2, multimodal inputs are processed to be transferred into a low-
dimensional representation. This step runs through a multimodal feature extractor
and a component that constructs a multimodal feature representation.

Feature extraction

Content input data is generally not exploitable as it is in a recommender model (e.g.,
the matrix of pixels from an image is not meant to be directly integrated into a
recommender). Hence, our schema introduces a Feature Extractor (FE) component to
extract features, which should follow two principles, being (i) high-level (i.e., meaningful
for the recommender system) and (ii) functional to the final recommendation task.
Indeed, choosing the most suitable feature extractor for each modality may a�ect the
performance.

Let c
(m)

x be the content data for input x in modality m œ Mx. Then, let Ïm(·) be
the feature extractor function for the modality m. We define the feature extraction
process in the modality m as:

c(m)

x = Ïm(c(m)

x) ’m œ Mx, (4.2)

4.3 A formal multimodal schema for multimedia recommendation 49

. . .

ሻڄሺߤ

. . .

. . .

ሻڄభሺߤ

. . .

ሻڄమሺߤ

ሻڄయሺߤ

JOINT

COORDINATE

࢞ࡷ

. . .

ܿ௫
ሺభሻ

ܿ௫
ሺమሻ

ܿ௫
ሺయሻ

ǁܿ௫

ܿ௫
ሺభሻ

ܿ௫
ሺమሻ

ܿ௫
ሺయሻ

ǁܿ௫
ሺభሻ

ǁܿ௫
ሺమሻ

ǁܿ௫
ሺయሻ

Fig. 4.2 A visual representation of Joint and Coordinate multimodal representation (above
and below, respectively).

where c
(m)

x is the extracted feature for input x in modality m. We use the notation
cx = [c(0)

x , c
(1)

x , . . . , c
(|Mx|≠1)

x] to refer to the vector of extracted features for input x in all
modalities. Generally speaking, Ïm(·) may refer either to a handcrafted extractor, HFE
(e.g., SIFT and color histogram for visual, and MFCCs for audio), or to a trainable
extractor, TFE (e.g., deep learning-based models such as CNNs for visual, audio, and
textual). In the latter case, Ïm(·) can be either pre-trained or trained end-to-end along
with the recommender system.

Multimodal representation

Once high-level features have been extracted from each modality of the input data,
the next step is to design a Representation strategy to handle the relationships among
modalities and eventually inject such data into the recommender system. As shown
in Section 4.2, the literature follows two main approaches: Joint and Coordinate
(Figure 4.2). The former relies on projecting multimodal features into a shared latent
space to produce a unique final representation (e.g., concatenation is usually the
simplest approach). Conversely, the latter involves adopting a di�erent latent space
for each modality, with the possibility of setting specific constraints among modalities
that are expressed, for instance, through similarity metrics. In the following, we
mathematically formalize the two strategies.
Joint representation. Let cx be the vector of extracted features for input x in all
modalities. In the case of Joint representation, we assume µ(·) is the function to

50 Chapter 4 Formalizing multimedia recommendation

produce the multimodal representation of the extracted features. Thus:

c̃x = µ(cx), (4.3)

where c̃x is the multimodal representation for input x.
Coordinate representation. Let c

(m)

x be the extracted feature for input x in modality
m œ Mx. In the case of Coordinate representation, we assume µm(·) is the multimodal
representation function for modality m, and let Kx be a set of constraints on multimodal
representations of input x. Thus, we say:

c̃(m)

x = µm(c(m)

x) subject to Kx, with |Kx| Ø 0, (4.4)

where c̃
(m)

x is the coordinate multimodal representation for input x in modality m.
Note that in Equation (4.4) we denote with c̃x = [c̃(0)

x , c̃
(1)

x , . . . , c̃
(|Mx|≠1)

x] the vector of
coordinate multimodal representations for input x in all modalities.

4.3.4 Multimodal feature fusion

As an optional third step, when Coordinate representation is used, our multimodal
schema allows an additional Fusion step to combine all produced multimodal represen-
tations. In the following, we describe the inference step in the two cases of Early and
Late fusion.
Early fusion. Let c̃x be the vector of coordinate multimodal representations for input
x in all modalities. Then, let “e(·) be the function for Early fusion. We generate the
multimodal representation for input x as:

c̃x = “e(c̃x). (4.5)

Note that after applying Equation (4.5), everything we describe in the following also
applies to Joint representation. We obtain the predicted output ŷ for input x as:

R̂ = fl(c̃x) (4.6)

Late fusion. Let c̃
(m)

x be the coordinate multimodal representation for input x in
modality m œ Mx. We first predict the di�erent output values for each modality as:

R̂(m) = fl(c̃(m)

x) ’m œ Mx. (4.7)

4.3 A formal multimodal schema for multimedia recommendation 51

Let ŷ be the vector of multimodal predicted outputs in all modalities. If we denote
“l(·) as the function for Late fusion, we finally aggregate (fuse) all modality-aware
predictions:

R̂ = “l(R̂). (4.8)

Whatever the type of Fusion, the literature shows that various works perform this
operation di�erently, from more straightforward solutions such as concatenation and
element-wise addition, multiplication, or average to more refined techniques (i.e.,
neural-based ones, like attention mechanisms). Note that we consider Late fusion also
when multimodal representations are exploited for some specific components of the
loss function; indeed, in such settings, multimodal fusion does not occur even until the
very last stage of the recommendation pipeline (i.e., the calculation and optimization
of the loss function).

4.3.5 Multimodal recommendation task

Let WÏ, Wµ, and W“ be the sets of the additional model trainable weights from
(i) feature extraction, (ii) multimodal representation, and (iii) multimodal fusion,
respectively. Note that they could be empty, as the correspondent functions may be non-
trainable. Then, given the set of multimodal input data X , we extend Equation (4.1):

�̂ = argmax
�

prob(�|X), (4.9)

where � = [�fl,�Ï,�µ,�“], with

�Ï = [◊(0)
Ï ,◊(1)

Ï , . . . ,◊(|WÏ|≠1)
Ï], �µ = [◊(0)

µ ,◊(1)
µ , . . . ,◊(|Wµ|≠1)

µ], �“ = [◊(0)
“ ,◊(1)

“ , . . . ,◊(|W“ |≠1)
“],

(4.10)
as the vectors of the model’s feature extractor weights, multimodal representation
weights, and multimodal fusion weights, respectively. We solve Equation (4.9) by
optimizing the loss L:

L = Lrec(�, R̂,R)+–Lreg(�) (4.11)

where R is the ground-truth value corresponding to the predicted output R̂, and – is a
model hyper-parameter to weight the regularization component of the loss function
(i.e., Lreg). Algorithm 1 provides a general overview of the overall multimodal schema
we presented.

52 Chapter 4 Formalizing multimedia recommendation

Algorithm 1: Multimodal schema for multimedia recommendation
Input: Set of available modalities M; set of multimodal input data X and
admissible modalities Mx, ’x œ X .

Output: Trained model’s weights �̂.
Initialize all model’s trainable weights �.
repeat

extract features according to Equation (4.2)
if Joint representation then

get joint representation according to Equation (4.3)
get model’s prediction according to Equation (4.6)

else if Coordinate representation then
get coordinate multimodal representations according to Equation (4.4)
if Early fusion then

get multimodal representation according to Equation (4.5)
get model’s prediction according to Equation (4.6)

else if Late fusion then
get predictions for each modality according to Equation (4.7)
get model’s prediction according to Equation (4.8)

for ◊̂ œ �̂ do
update ◊̂ according to Equation (4.9), by optimizing the loss function L
in Equation (4.11)

end
until convergence;
Return �̂.

4.4 Conceptual validation of the schema
After having described the formalism behind our proposed multimodal schema for mul-
timedia recommendation, we devote the current section to the validation of the schema
by conceptually applying it to four state-of-the-art approaches from the literature
(Table 4.2). To demonstrate how our formal solution is designed to generally work with
multiple recommendation scenarios involving multimedia user-item data interactions,
we choose the proposed examples spanning a wide range of tasks, namely micro-video
recommendation [339], food recommendation [321], outfit fashion compatibility [120],
and artist/song recommendation [236].

4.4.1 Case 1: micro-video recommendation

Wei et al. [339] build a bipartite user-item graph for micro-video personalized recom-
mendation. The idea behind the approach is to exploit high-order users-items relations

4.4 Conceptual validation of the schema 53

leveraging the multimodal nature of recommended items (i.e., micro-videos), to which
users may experience di�erent attitudes. The authors adopt a graph convolutional
network [158] to refine user and item embeddings (conditioned on the graph topology).

Multimodal input data

Micro-videos (the items) are described via three modalities, namely: visual (i.e., frames),
textual (i.e., user-generated captions and descriptions) and audio (i.e., the audio track,
that is not always available). It is worth pointing out that also users are described
through three embeddings representing how each item modality might influence them
di�erently. Nevertheless, they cannot be formally considered as multimodal input
data (we do not report any information about the multimodal input data and feature
extraction columns in the table).

Feature extraction

Visual features are extracted through a pretrained ResNet50 [122] only from key video
frames. Textual features are derived from Sentence2Vector [24]. Audio features are
extracted using a pre-trained VGGish [130].

Multimodal representation

The framework leverages three versions of the same bipartite user-item graph (i.e., one
for each micro-video modality). The graph convolutional layer first aggregates the
neighborhood features of the ego node and then combines the result of such aggregation
with the collaborative embedding and the multimodal representation from the previous
iteration. Given the formalism introduced above, we might say this approach goes
under the definition of Coordinate representation. The model adopts a linear projection
for each modality to map the input into a modality-specific latent space, both in the
aggregation and combination steps. No explicit constraints are introduced.

Multimodal fusion

The adoption of a multimodal coordinate representation requires a modality fusion
phase. This is performed through element-wise addition among modalities for users
and items. As this occurs before feeding them into the inference function, we categorize
it as Early fusion.

54 Chapter 4 Formalizing multimedia recommendation

Inference and loss function

As in several collaborative filtering approaches, the inference is performed through the
inner product between the multimodal representations of users and items. Regarding the
loss function, the authors use the broadly-adopted BPR [258] optimization framework,
maximizing the distance between predicted ratings for positive items (i.e., the ones
interacted by users) and negative items (i.e., the ones not already interacted by users).

4.4.2 Case 2: food recommendation

Wang et al. [321] introduce a tripartite framework for food recommendation whose
pipeline involves the retrieval of recipes according to user-generated videos, the profiling
of users based upon their social media interactions, and the final health-aware food
recommendation of recipes.

Multimodal input data

On the user side, it should be noticed that the input data does not properly follow the
above definition we provide about multimodality, as users are profiled only according to
the textual description of their generated tweets. However, we maintain the importance
of this example since it represents one of the few approaches in the literature that
proposes to model users through a multimodality-like solution. On the other side,
items’ description is multimodal because it integrates frames of user-generated videos
to retrieve recipes from (i.e., visual modality) and descriptions of recipe ingredients
(i.e., textual modality).

Feature extraction

Users’ tweets are the input to what the authors define as a word-class interaction-based
recurrent convolutional network (WIRCNN), which involves a recurrent neural network
(RNN) and a convolutional neural network (CNN) to classify user tags. As for items,
sampled video frames are encoded through a pre-trained VGGNet-19 [284], while
textual recipe ingredients are processed via TextCNN [156].

Multimodal representation

Given that the user profile is not multimodal per se, we do not recognize any multimodal
representation stage. On the item side, the multimodal representation is Coordinate,
but no particular operation is performed on the extracted multimodal features.

4.4 Conceptual validation of the schema 55

Table 4.2 Four literature examples of multimodal frameworks for multimedia recommendation.
For each work, we report the performed task, the considered modalities for each input to the
system (e.g., user and item), the feature extraction and multimodal representation strategies,
the multimodal fusion, and the adopted inference/loss functions.

Paper Input Modalities Multimodal
Input Data

Feature
Extraction

Multimodal
Representation Multimodal Fusion Inference and Loss

M
ic

ro
-v

id
eo

re
co

m
m

en
da

ti
on

Wei et al. [339]

User
Visual Coordinate, aggre-

gation of node’s
neighborhood and
combination with
the ego node. Pro-
jection in both ag-
gregation and com-
bination.

Early, modalities are
combined through ad-
dition.

Inference via inner-
product between final
user and item embed-
dings. BPR is the op-
timization function.

Textual
Audio

Item
Visual Video frames ResNet50

Textual Captions and
descriptions

Sentence2Vector

Audio Audio track VGGish

Fo
od

re
co

m
m

en
da

ti
on

Wang et al. [321]
User Textual Users’ tweets Bi-RNN & CNN Score prediction with

MLP for user tags.
Loss is cross-entropy.
User embedding is
later adopted for
recommendation.

Item Visual Video Frames VGGNet-19 Coordinate, no par-
ticular operation
performed.

Early, modalities are
combined via concate-
nation.

User-item score predic-
tion with MLP and
cross-entropy.

Textual Recipe ingredients TextCNN

O
ut

fit
fa

sh
io

n
co

m
pa

ti
bi

lit
y

Han et al. [120] Item Visual Product images InceptionV3 Joint, features are
projected into a
shared embedding
space.

The visual modality is
used for the inference.

Textual Descriptions One-hot-encode The textual modality
is used for the con-
trastive component of
the loss function.

A
rt

is
t

an
d

so
ng

re
co

m
m

en
da

ti
on

Oramas et al. [236] Item Textual Artist biography Custom CNN Coordinate, textual
and audio features
normalized and op-
tionally fed into two
separate MLPs.

Early, either normal-
ized features are con-
catenated and fed into
a one-layer MLP, or
multimodal representa-
tions are connected to
the one-layer MLP.

Inference via inner-
product between user
and final item embed-
dings. Cosine distance
is the loss function.

Audio Audio
spectrogram Custom CNN

Multimodal fusion

No modality fusion is run over user profiles. Regarding items, authors adopt an Early
modality fusion by concatenating the visual and textual features.

Inference and loss function

User embeddings are learned for tag prediction, with a one-layer MLP used to predict
scores and cross-entropy as a loss function. The final user embeddings are eventually
exploited for the main task of food recommendation. Contrarily, item embeddings are
directly adopted for the score prediction, run with a one-layer MLP trained on a binary
cross-entropy loss.

56 Chapter 4 Formalizing multimedia recommendation

4.4.3 Case 3: outfit fashion compatibility

Han et al. [120] propose a framework to recommend the next fashion item that matches
a set of already chosen ones to produce a visually appealing outfit. The authors address
the task by considering the items composing a fashionable outfit as a temporal sequence,
so they leverage a bidirectional LSTM [116].

Multimodal input data

Recommendation is multimodal because the authors adopt both product images (i.e.,
visual modality) and text descriptions of the fashion items extracted from the product
details (i.e., textual modality).

Feature extraction

The visual features of fashion items are extracted from a GoogleNet InceptionV3 [298]
pretrained network (the TFE), whose dimensionality is 2048. As for the textual
description, each word is a one-hot-encoded vector.

Multimodal representation

Visual and textual extracted features are projected into a unique latent space, whose
dimensionality is 512. According to the earlier formalism, this approach follows a
Joint multimodal representation. On the one hand, 2048-dimensional visual features
are compressed into a 512-dimensional embedding through a fully connected neural
network layer, which is trained end-to-end with the recommendation model. On the
other hand, the textual features for each description are first projected into the 512-
dimensional latent space through linear mapping (i.e., adopting a projection matrix,
which is also trained end-to-end). Then, the authors adopt bag-of-words to obtain a
unique representation for the description of each fashion item.

Inference and loss function

Only the visual modality is adopted as input for the recommendation inference. How-
ever, the textual modality is exploited jointly with the visual input to minimize the
contrastive component of the loss function, for whom the cosine similarity measures
the distance between visual and textual modalities in the shared latent space.

4.4 Conceptual validation of the schema 57

4.4.4 Case 4: artist and song recommendation

The approach introduced by Oramas et al. [236] deals with the task of music recom-
mendation. Specifically, the authors propose to divide the problem into artist and song
recommendations by learning their separate embeddings and leveraging the textual
artist biography and audio spectrogram as inputs.

Multimodal input data

Multimodality is to be found in the item’s description, which is based upon artist
biography (i.e., textual modality) and audio spectrogram derived from songs (i.e., audio
modality).

Feature extraction

Artist biographies are processed through the state-of-the-art CNN, which is re-trained
using word2vec word embeddings pre-trained on the Google News dataset [221]. As for
the song latent factors, a custom CNN with 256, 512, and 1024 convolutional filters is
trained on the time axis, having as output the 4096-dense layer.

Multimodal representation

Before further processing the extracted multimodal features, both textual and audio
features are normalized. Afterward, they optionally go through two separate MLPs
(i.e., Coordinate representation).

Multimodal fusion

The authors explore two possibilities: if no MLP processing occurred in the multimodal
representation stage, then normalized features are concatenated and fed into a one-layer
MLP; otherwise, multimodal representations are connected to the one-layer MLP. They
adopt an Early multimodal fusion in both cases.

Inference and loss function

Inference is run through the inner product between user and item final embeddings,
while cosine distance is the chosen loss function as the learned latent embeddings are
l2-normalized.

58 Chapter 4 Formalizing multimedia recommendation

4.5 Technical challenges
This section aims to overview the main technical challenges we recognize in multimodal
approaches for multimedia recommendation. Starting from the proposed schema we
presented in the previous sections, we outline the evident (or even less evident) issues
emerging from the literature.

4.5.1 Missing modalities in the input data

Describing data under the lens of multimodality may be a two-sided coin. From one
perspective, multimodality helps enrich the informative content carried by the input,
thus exploring data’s multi-faceted nature to learn better-tailored user-item preference
patterns [208]. On the other side, the need to provide descriptive content for every
input modality may come at the expense of some missing modalities (e.g., a video
dataset could integrate videos having no textual content, for example, subtitles or
descriptions may be only sometimes available). Tackling the modality misalignment in
the data is a recent and widely discussed challenge in other domains [169, 201, 378,
381], and requires ad-hoc techniques to provide equal representation of all involved
modalities to fully exploit their informative richness [202, 294]. Nevertheless, to the
best of our knowledge, the issue remains open in recommendation.

4.5.2 Pre-trained feature extractors

Deep learning models processing images, texts, or audio have been shown to enrich
the informative content of items’ profiles in several recommendation algorithms. In
most solutions, such architectures are used as pre-trained blocks to extract high-level
features from the input data, thus exploiting the capability of deep neural networks
to transfer knowledge among di�erent datasets and/or tasks. Despite the ease of
adopting ready-to-use feature extraction networks, we seek to underline a conceptual
limitation that, to the best of our knowledge, is only partially investigated in the
literature. Indeed, pre-trained representations extracted through state-of-the-art deep
learning models are not necessarily supposed to capture those semantic features, which
will likely captivate users for their final decision-making process. As an example, the
embedding feature extracted from a product image (e.g., a bag) through a pre-trained
deep convolutional network (e.g., ResNet50) is carrying high-level informative content
driven by the task of image classification, but this does not mean the same knowledge
will be helpful to predict whether the product could be recommended to a user.

4.5 Technical challenges 59

4.5.3 Modalities representation

The multimodal representation of the extracted input data is among the main stages
in the multimodal schema we described since it establishes the relationships for the
selected input modalities. Nonetheless, the literature is not generally aligned on its
definition since most of the works usually refer to Joint representation and Early
fusion interchangeably. We recognize this as a conceptual issue because the two stages
(i.e., representation and fusion) should be considered separately. We maintain that
the former stands for the initial step to set interconnections among early-extracted
multimodal features, while the latter, despite dealing again with modalities relationships,
involves features that have been further processed towards the task optimization (i.e.,
recommendation in our case), thus embodying di�erent rationales and techniques.
Furthermore, the related literature suggests two possible solutions to multimodal
representation, either Joint or Coordinate, where the latter additionally requires the
subsequent fusion step. However, each of the paradigms’ advantages and whether they
might depend on the task remain under investigation.

4.5.4 Multimodal-aware fusion and optimization

While multimodal representation builds on input modalities in the early stages of the
schema, multimodal fusion accounts for multimodal features that have already been
processed, with a specific focus on the last steps (i.e., inference and model optimization).
Similarly to what was observed above, multimodal fusion may come in the form of Early
or Late fusion. The significant di�erence between the two approaches lies in preserving
or not modalities separation during the inference (i.e., Late and Early, respectively).
The literature demonstrates the vast predominance of Early solutions, whereas several
works quite often refer to Late fusion by mistaking it for Early fusion. Indeed, providing
a precise definition for the two is of paramount importance because the two approaches
may serve di�erent purposes. The rationale of Late fusion is to keep the modalities
separation explicit during the inference phase so that the contribution of each modality
is observable up to the last operation. Moreover, the literature is not aligned on
the operation to fuse modalities. Non-trainable fusion functions (e.g., element-wise
addition) are usually the preferred direction given that it is more lightweight and easy
to perform to trainable approaches (e.g., neural networks) which (on their side) may
allow to better tailor user-item preference prediction.

60 Chapter 4 Formalizing multimedia recommendation

4.6 Summary
In this chapter, we highlighted the importance of formalizing the multimedia recommen-
dation task under the lens of multimodal deep learning. By recognizing how the main
recommendation approaches in the related literature fall into some recurrent strategy
patterns, we outlined a unified multimodal schema that, following the established multi-
modal deep learning pipeline, formalizes the core stages of multimedia recommendation
as: (i) multimodal input data, (ii) multimodal feature processing, (iii) multimodal
feature fusion, and (iv) the multimodal recommendation task. After that, we applied
the proposed schema to four multimedia recommendation scenarios. The proposed
formal schema along with its conceptual application gave the opportunity to highlight
technical challenges in the field of multimedia recommendation leveraging multimodal
information. While the next chapter is devoted to analyze some of these challenges (i.e.,
“pre-trained feature extractors”, “modalities representation”, and “multimodal-aware
fusion and optimization”) we are still in the process of studying the interesting issue of
“missing modalities in the input data”. In this respect, you may refer to the preliminary
proposal of an approach (based upon Feature Propagation [263]) to tackle the issue in
the last chapter of this thesis.

Chapter 5

Leveraging the visual modality in
multimedia recommendation

The current chapter studies and proposes novel solutions addressing each of the
highlighted technical issues still existing in multimedia recommendation leveraging
multimodal information; note that each of them may be mapped to a specific stage
of the multimodal pipeline formalized in the previous chapter. It is important to
mention that while the provided formalization is to be intended in a general multimedia
recommendation setting, this chapter specifically takes into account visually-aware
recommender systems, namely, the recommendation approaches working with product
images. After an initial presentation of two complementary frameworks, Ducho and
V-Elliot, aimed to the extraction of multimodal features for recommendation and
reproducibility of visually-aware recommender systems, respectively, we propose to use
them to benchmark visually-aware recommendation models with varying pre-trained
deep learning networks for the visual extraction. Results motivate the consideration of
two specific scenarios and settings, namely, fashion recommendation and adversarial
attacks/defenses against visually-aware recommender systems. In the former, we
propose a novel recommendation approach which disentangles the users’ preferences
at the granularity of content and style of images depicting clothes; in the latter, we
investigate how and to what extent the human customers on e-commerce platforms
may perceive the adversarial attacks on product images.

5.1 Ducho: an extractor for multimodal features
Despite being the initial stage of any multimodal recommendation pipeline, the ex-
traction of meaningful multimodal features is paramount in delivering high-quality

62 Chapter 5 Leveraging the visual modality in multimedia recommendation

recommendations [82]. However, the current practice of employing diverse multimodal
extraction procedures in each recommendation framework poses limitations. Firstly,
these diverse implementations hinder the interdependence across various multimodal
recommendation frameworks, making their fair comparison di�cult [206]. Secondly,
despite the availability of numerous pre-trained deep learning models in popular
open source libraries, the lack of shared interfaces for feature extraction across them
represents a challenge for model designers.

To address these shortcomings, we propose Ducho, a unified framework designed
to streamline the extraction of multimodal features for recommendation systems. By
integrating widely-adopted deep learning libraries as backends such as TensorFlow,
PyTorch, and Transformers, we establish a shared interface that empowers users to
extract and process audio, visual, and textual features from both items and user-item
interactions (see Table 5.1). This abstraction allows to leverage methods from each
backend without being encumbered by the specific implementation that backend poses.
A notable feature of our framework lays in its easily configurable extraction pipeline,
which can be personalized using a YAML-based file. Users can specify the desired
models, their respective backends, and models’ parameters (e.g., extraction layer).

By looking at the related literature, the most similar application to Ducho is
Cornac [269], a framework for multimodal-aware recommendation. For the sake of
completeness, we report their main di�erences. Di�erently from Cornac, Ducho: (i)
is specifically aimed to provide customizable multimodal feature extractions, being
completely agnostic to the downstream recommender system that might exploit the
extracted features, thus being easily applicable to any model; (ii) provides the user
with the possibility to select the deep learning extraction model, its backend, and its
output layer; (iii) introduces the audio modality to the modalities set.

To foster the adoption of Ducho, we also develop a public Docker image pre-equipped
with a ready-to-use CUDA environment1, and propose three demos to show Ducho’s
functionalities. The GitHub repository, which comes with all needed resources is
available at: https://github.com/sisinflab/Ducho.

5.1.1 Architecture

Ducho’s architecture is built upon three main modules, namely, Dataset, Extractor,
and Runner, where the first two modules provide di�erent implementations depending
on the specific modality (i.e., audio, visual, textual) taken into account. We also remind

1https://hub.docker.com/r/sisinflabpoliba/ducho.

https://github.com/sisinflab/Ducho
https://hub.docker.com/r/sisinflabpoliba/ducho

5.1 Ducho: an extractor for multimodal features 63

Table 5.1 An overview of all modalities, sources, and backends combinations available in
Ducho.

Modalities
Sources Backends

Items Interactions TensorFlow PyTorch Transformers

Audio 3 3 3 3
Visual 3 3 3 3

Textual 3 3 3

the Configuration one among the other auxiliary components. The architecture is
designed to be highly modular, possibly integrating new modules or customizing the
existing ones. In the following, we dive deep into each outlined module/component.

Dataset

The Dataset module manages the loading and processing of the input data provided by
the user. Starting from a general shared schema for all available modalities, this module
provides three separate implementations: Audio, Visual, and Textual Datasets. As
a common approach in the literature, the Audio and Visual Datasets require the path
to the folder from which image/audio files are loaded, while the Textual Dataset works
through a tsv file mapping all the textual characteristics to the inputs.

Noteworthy, and di�erently from other existing solutions, Ducho may handle each
modality in two fashions, depending on whether the specific modality is describing
either the items (e.g., product descriptions) or the interactions among users and
items (e.g., reviews [19]). Concretely, while items are mapped to their unique ids
(extracted from the filename or the tsv file), interactions are mapped to the user-item
pair (extracted from the tsv file) they refer to. Although the pre-processing and
extraction phases do not change at items- and interactions-level (see later), we believe
this schema may perfectly suit novel multimodal-aware recommender systems with
modalities describing every type of input source (even users).

Another important task for the Dataset module is to handle the pre-processing
stage of data input. Depending on the specific modality involved, Ducho o�ers the
possibility to:

• audio: load the input audio by extracting the waveform and sample rate, and
re-sample it according to the sample rate the pre-trained model was trained on;

• visual: convert input images into RGB and resize/normalize them to align with
the pre-trained extraction model;

64 Chapter 5 Leveraging the visual modality in multimedia recommendation

• textual: (optionally) clean the input texts to remove or modify noisy textual
patterns such as punctuation and digits.

After the extraction phase (see later), the Dataset module is finally in charge of
saving the generated multimodal features into numpy array format following the file
naming scheme from the previous mapping.

Extractor

The Extractor module builds an extraction model from a pre-trained network and
works on each loaded/pre-processed input sample to extract its multimodal features.
In a similar manner to the Dataset module, the Extractor provides three di�erent im-
plementations for each modality, namely, the Audio, Visual, and Textual Extractors.
Ducho exposes a wide range of pre-trained models from three main backends: Tensor-
Flow, PyTorch, and Transformers. The following modality/backend combinations are
currently available:

• audio: PyTorch (Torchaudio) and Transformers;

• visual: Tensorflow and PyTorch (Torchvision);

• textual: Transformers (and SentenceTransformers).

To perform the feature extraction, Ducho takes as input the (list of) extraction
layers for any pre-trained model. Since each backend handles the extraction of hidden
layers within a network di�erently, we follow the guidelines provided in the o�cial
documentations, assuming that the user will follow the same naming/indexing scheme
of the layers and know the structure of the selected pre-trained model in advance. The
interested reader may refer to the README2 under the config/ folder on GitHub
for an exhaustive explanation on how to set the extraction layer in each setting of
modality and backend.

Finally, for the textual case, the user can also specify the specific task the pre-trained
model should be trained on (e.g., sentiment analysis), as each pre-trained network may
come with di�erent versions depending on the training strategy.

Runner

The Runner module is the orchestrator of Ducho, whose purpose is to instantiate,
call, and manage all the described modules. With its API methods, this module can

2https://github.com/sisinflab/Ducho/blob/main/config/README.md.

https://github.com/sisinflab/Ducho/blob/main/config/README.md

5.1 Ducho: an extractor for multimodal features 65

Fig. 5.1 Ducho’s pipeline for multimodal feature extraction, managed by the Dataset, Extrac-
tor, and Runner modules.

trigger the complete extraction pipeline (see later) of one single modality or all the
modalities involved simultaneously.

The Runner module is conveniently customized through an auxiliary Configuration
component which stores and exposes all parameters to configure the extraction pipeline.
Even if a default configuration is already made available for the user’s sake, Ducho
allows to override some (or all) its parameters through an external configuration file
(in YAML format) and/or key-value pairs as input arguments if running the scripts
from the command line. Once again, we suggest the readers refer to the README
under the config/ folder on GitHub to understand the general schema of the YAML
configuration file.

5.1.2 Extraction pipeline

The overall multimodal extraction pipeline is represented in Figure 5.2. Through the
Dataset module, the load and preprocess steps take place, assuming that the user is
providing the input data and the YAML configuration file (overridable from command
line) to customize the extraction. Then, the Extractor module is in charge of building
the extraction model(s) by setting the backends and output layer(s). Finally, after
the multimodal feature extraction, features are saved to the output path in numpy
format (the Dataset module again controls this latter phase). As previously described,
the whole process is orchestrated by the Runner module.

66 Chapter 5 Leveraging the visual modality in multimedia recommendation

5.1.3 Ducho as Docker application

To fully exploit the GPU-speedup implemented in all backends we use for the multimodal
feature extraction, one of the basic requirements is to setup a suitable development
environment where the backends’ versions are compatible with CUDA and, optionally,
cuDNN. Generally, setting a workstation where all such libraries/tools are correctly
aligned is challenging. To this end, we decide to dockerize Ducho by making it into
a Docker image (available on Docker Hub3) with all packages already installed in a
tested and safe virtualization environment on your physical machine.

Our Docker image is built from an NVIDIA-based image which comes with CUDA
11.8 and cuDNN 8 on Ubuntu 22.04, Python 3.8 and Pip, and our cloned repository
having all Python packages already installed and ready to be used. A possible container
instantiated from the image should specify the gpus to use from the host machine (this
feature is currently available on Docker but it depends on the version of CUDA to be
installed), and the volume you may want to use to save the framework’s outputs.

Note that a generic container instantiated from our image would prompt the user
to a shell environment where one could run custom multimodal feature extractions via
the command line, and also create custom configuration files for the same purpose.

5.1.4 Demonstrations

This section proposes three use cases (i.e., demos) which show some of the main
functionalities in Ducho and how to exploit them within a complete multimodal
extraction pipeline. The guidelines and codes are accessible at this link4 to run the
demos (i) on your local machine, (ii) in a Docker container, and (iii) on Google Colab.
Note that we specifically selected these demos as to replicate some real recommendation
tasks involving multimodal features.

Demo 1: visual + textual items features

Fashion recommendation is probably one of the most popular task involving multimodal
features to describe items. Generally, fashion products come with images (i.e., visual)
and descriptions (i.e., textual) which may captivate the attention of the customer.
Input data. We use a small fashion dataset where each item has its own image and
other metadata such as gender, category, colour, season, and product title. As for the
visual modality, we save a subsample of 100 random images from the dataset in jpeg

3https://hub.docker.com/r/sisinflabpoliba/ducho.
4https://github.com/sisinflab/Ducho/tree/main/demos.

https://hub.docker.com/r/sisinflabpoliba/ducho
https://github.com/sisinflab/Ducho/tree/main/demos

5.1 Ducho: an extractor for multimodal features 67

format; as for the textual modality, we produce for each of these items a description
obtained as the combination of all the metadata fields from above, and store it into a
tsv file where the first and second columns map item ids and descriptions, respectively.
Note that, if no item column name is provided, Ducho selects, by default, the last
column as the one holding the items’ descriptions.
Extraction. In terms of extraction models, we adopt VGG19 and Xception for
the product images, and Sentence-BERT pre-trained for semantic textual similarity
for the descriptions. For each extraction model, we select the extraction layer, the
pre-processing, and the library where the deep network should be retrieved from.
Output. Through the configuration file, we set Ducho to save the visual and textual
embeddings to custom folders, where each embedding is a numpy array whose filename
corresponds to the item name from the original input data. Additionally, Ducho keeps
track of the log file in a dedicated folder within the project.

Demo 2: audio + textual items features

When it comes to recommending songs to users, audio and textual features may enhance
the representation of each song, where the former are structured as a waveform, the
latter as sentences referring, for instance, to the music genre of the song.
Input data. We use a small music genres dataset where each item comes with the
binary representation of its waveform (we save it as wav audio track) and its music
genre (we interpret it as textual song description and save it into a tsv file similarly to
the previous demo). Given the heavy computational costs deep learning-based audio
extractors require, we decide to select a small subset of the input songs (i.e., 10) just
for the purpose of this demo.
Extraction. For the extraction of audio features we exploit Hybrid Demucs pre-
trained for the task of music source separation. As for the textual extraction, we re-use
the same deep neural model from the previous demo, since we are not interested in
extracting other specific high-level features from music genres.
Output. Once again, we use the configuration file to specify the output folders for
both the audio and textual embeddings. Please note that the extraction of audio
features might take some time depending on the machine you are running Ducho on,
as the deep audio extractor might require high computational resources to run.

Demo 3: textual items/interactions features

Online platforms usually allow customers to express reviews and comments about the
products they have enjoyed to share their experience with other potentially-interested

68 Chapter 5 Leveraging the visual modality in multimedia recommendation

customers. In an e-commerce scenario, items may come with textual descriptions of
the product characteristics (as seen in Demo 1). However, textual reviews of users
commenting on those items may also be involved. Unlike most existing literature
works, which usually refer to both sources of information as items’ representations, we
decide to conceptually distinguish between items- and interactions (i.e., user-item)-side
representations for the former and the latter, respectively.
Input data. We adopt the widely-popular Amazon recommendation dataset where
each user’s purchase keeps track of metadata such as customer/product ids, the review
text, the rating, and the purchase date. In a similar manner to the other demos,
we retain only a small subset of the original dataset including 100 reviews and the
corresponding product descriptions (obtained as the concatenation of their product
title and category). Specifically, we save descriptions and reviews into separate tsv files
where the former follow the same format as Demo 1 and Demo 2, while the latter maps
user/item ids to review texts. Note that the number of products does not correspond
to the number of user-item interactions as we only consider the set of unique interacted
items. While Ducho extracts, by default, description/interaction texts from the last
column of the tsv file, here we provide explicit column names to tell Ducho where to
retrieve product descriptions and user reviews from the respective tsv files.
Extraction. While for the items’ descriptions we use again the same sentences encoder
as in Demo 1 and 2, we decide to extract textual features from users’ reviews through
a multilingual BERT-based model pre-trained on customers’ reviews and specify the
task of sentiment analysis for this model.
Output. Textual item features are saved to numpy arrays whose filenames are the
item ids. Conversely, the textual interaction features are saved under the filename
obtained from user and item ids to provide a unique pointer to each review.

5.2 Reproducing and evaluating visually-aware rec-
ommender systems

In some domains, such as fashion [137], food [95], or tourism [274], the visual appearance
of a product image (e.g., piece of clothing or dish) is crucially important since it may
a�ect user’s final decision [124, 125]. Visual Recommender Systems (VRSs) integrate
visual features of product images extracted through an image feature extractor (referred
to as IFE, usually a CNN) into the recommendation pipeline to learn more tailored
user profiles, overcoming issues such as data sparsity and cold-start [125].

5.2 Reproducing and evaluating visually-aware recommender systems 69

The business of several online platforms is based on user-generated products and
images (e.g., Pinterest, Amazon, Zalando, and Instagram). Consequently, Academia
and Industry have channelled a considerable e�ort in designing novel approaches for
visual recommendation [65, 142, 239]. Table 5.2 provides an outline of the most popular
VRSs adopted as baselines in the recent literature, with some technical information on
the input data type, the extraction layer and the training methodology for the IFE,
and the o�cial code link (if available).

Despite their adoption as baselines in several recent works (e.g., [16, 106, 344,
367, 374, 377]), to date nobody provided a unique framework implementing all these
VRSs. Moreover, oftentimes, reproducibility is not even a feasible option since an
o�cial code is not always released (see “Code” in Table 5.2). Parra et al. [245] have
recently proposed a tutorial on visual recommendation, presenting some (but not all)
the above cited VRSs. Nevertheless, their work was not devoted to integrate the visual
models into a complete framework for recommendation. Additionally, the copiousness
of novel recommendation algorithms has generated confusion about choosing the
correct baselines, the hyperparameter optimization, and the experimental evaluation
to follow [267, 268]. Unreproducible evaluation and unfair comparisons [296] have
recently arisen as a critical issue in the recommender systems community [80]. To
this end, Anelli et al. [11] proposed Elliot, a framework for rigorous and reproducible
recommender systems. The project is publicly available on GitHub, and provides several
strategies for dataset loading, prefiltering, and splitting, along with hyperparameter
optimization, recommendation models, and statistical hypothesis tests to build a
reproducible experimental benchmark.

This second part of the chapter aims to provide a comprehensive demonstration of
how to use Elliot for visual-based recommendation. Elliot for Visual recommendation
(V-Elliot) implements all 6 VRSs from Table 5.2, with the possibility of leveraging:
(i) a wide range of visual side information as input (e.g., the product image or its
high-level visual feature extracted through a CNN-based IFE), (ii) a specific data input
pipeline (implemented in TensorFlow) to e�ciently handle memory-intensive streams
of multidimensional data and inject them seamlessly into the recommendation flow,
and (iii) an easy-to-use tool to train and test complex configurations of heterogeneous
state-of-the-art (and custom) recommender systems by combining V-Elliot with the
Elliot environment5.

5The code is publicly available at: https://github.com/sisinflab/elliot.

https://github.com/sisinflab/elliot

70 Chapter 5 Leveraging the visual modality in multimedia recommendation

Table 5.2 Most popular Visual Recommender Systems from the literature. For each work, we
report its reference, publication year, adopted side information (i.e., either the image or the
extracted visual feature of the item), the image feature extractor (with the chosen extraction
layer and the training strategy), and link to the o�cial code (if any). FC: fully-connected,
FM: feature maps.

VRS Year
Side Info Image Feature Extractor

Code
Image Feature Extraction Layer Training

FC FM Pretrained End-to-End
VBPR [125] 2016 X X X ◊
DeepStyle [188] 2017 X X X ◊
DVBPR [151] 2017 X X X [link]
ACF [60] 2017 X X X [link]
VNPR [234] 2018 X X X ◊
AMR [302] 2020 X X X [link]

Data Input Pipeline

Sample Load Batch Feed

Sample Load Batch Feed
Sample Load Batch Feed

… … … …

Output

Metrics

Stat. Tests

Prefiltering

Splitting

Recommendation
Hyperoptimization

Loading

Fig. 5.2 Overview of V-Elliot. After the initial Loading (optionally complemented by Prefilter-
ing and Splitting strategies), the Data Input Pipeline interacts with the Recommendation
module to inject the visual data and train the model. The Metrics module evaluates the
performance, whose values can be validated by statistical hypothesis tests. The Output
module reports statistics and results.

5.2.1 V-Elliot: the visual recommendation framework

Elliot for Visual recommendation (V-Elliot) executes complex and reproducible experi-
mental flows. As pointed out in Anelli et al. [11], the flexibility of the framework allows
the user to design and run multiple possible settings through a concise configuration
file, while seven modules are transparently loaded, each playing a specific functional
role in the experimental flow. In addition to the already-existing modules (Figure 5.2),
V-Elliot introduces a component to handle the loading and injection of visual side
information (e.g., images and visual features) into the recommendation model.

The Loading module already supports various information sources (e.g., item
features, semantic information [23], visual embeddings [125], and images [151]). As for

https://github.com/kang205/DVBPR
https://github.com/ChenJingyuan91/ACF
https://github.com/duxy-me/AMR

5.2 Reproducing and evaluating visually-aware recommender systems 71

the visual-based input data, the user can indicate the folder path where images (or
features) are stored in separate files, which will be later injected on-the-fly into the
framework when necessary. It is common knowledge that this strategy could alleviate
the impact of memory-intensive experiments involving multidimensional visual data,
which rarely can be pre-loaded into memory in advance. Users can also configure
the settings for data pre-processing. In this respect, the Prefiltering module o�ers,
among all, the possibility of applying the filter-by-rating and k-core strategies on
the data, where the former removes user-item interactions whose preference score
is smaller than a fixed (or data-based) threshold, and the latter filters out users,
items, or both, with less than k interactions. Interestingly, the implementation of
k-core algorithm also allows to retain cold users and items. Then, the Splitting
module provides various temporal- and random-based splitting strategies, ranging from
hold-out to cross-validation mechanisms. V-Elliot leverages a Data Input Pipeline
to e�ciently load visual-based input data and feed VRSs with it. The module is
built upon the popular TensorFlow data input pipeline, which operates according to
the producer/consumer paradigm, and consists of the following steps: (i) the next
user-item interaction is sampled from the training set, (ii) visual data that has to be
associated with the sample is loaded and (optionally) pre-processed, e.g., undergoing a
normalization phase, (iii) samples are (optionally) grouped into batches, and (iv) the
batches feed the recommendation algorithm. The Recommendation module interacts
with the Data Input Pipeline, and integrates with an ever-growing set of state-of-the-art
recommendation models seamlessly. To the best of our knowledge, V-Elliot is the
framework providing the highest number of VRSs from the literature integrated into a
complete system for recommendation (see again Table 5.2). Moreover, the simplicity
of extending the set of available recommender systems through custom and external
models, and an exhaustive number of hyper-parameter tuning strategies considerably
ease the prototyping phase. The training procedure is assisted by the Metrics module
that evaluates the model performance (with metrics ranging from accuracy to beyond-
accuracy ones) and drives the selection of the best hyper-parameters configuration.
Furthermore, the V-Elliot memory-optimized version of the visual-based Data Input
Pipeline is also exploited to speed up the evaluation process. The evaluation phase
may be further refined by computing two statistical hypothesis tests, i.e., Wilcoxon
and Paired t-test, using the Statistical Tests module. Finally, V-Elliot collects the
results through the Output module, which stores detailed performance tables, whereas
model weights and recommendation lists may be saved for the sake of reproducibility,
further analysis, and future experiments.

72 Chapter 5 Leveraging the visual modality in multimedia recommendation

5.2.2 Execution of an experimental flow

Setting

To encourage researchers to try V-Elliot, we show the experiments run on two fashion
datasets (i.e., Amazon Baby and Amazon Boys & Girls [124, 218]) filtered through the
5-core technique as suggested in He et al. [124, 125]. The final statistics are: 606 users,
1761 items, and 3882 interactions for Amazon Baby, and 1425 users, 5019 items, and
9213 interactions for Amazon Boys & Girls. For each item image, we have extracted
high-level visual features with a pre-trained ResNet50 [122], following the findings
shown in [82]. We split the data adopting the temporal leave-one-out protocol. To tune
the hyper-parameters on the validation set, we performed a grid search using HR@100
as the validation metric. Table 5.3 presents the accuracy and beyond-accuracy metric
values measured on the top-100 recommendation lists for each best model. The Elliot
configuration files are reported in Table 5.3.

Results

Table 5.3 shows that ACF is the most accurate model on Amazon Baby, providing also
the most novel recommendation lists (i.e., EFD and EPC) and being the second-to-best
regarding diversity and coverage (i.e., Gini, SE, and iCov). Interestingly, DeepStyle
settles as one of the most accurate models on Amazon Boys & Girls.

However, ACF still reaches remarkable accuracy results (it is the third-best recom-
mender), confirming the performance observed on Amazon Baby. It is worth mentioning
that the proposed analysis could be easily extended to wider search spaces, more met-
rics (e.g., bias measures), and additional (non-visual) recommender models (e.g., deep
neural collaborative models), to eventually build an exhaustive evaluation workflow for
recommendation.

5.2.3 The impact of pre-trained feature extractors

Given the representational power of convolutional neural networks (CNNs) in capturing
characteristics and semantics of the images in supervised learning tasks, such as image
classification, state-of-the-art VRSs often exploit pretrained CNNs to implement the
Image Feature Extractor (IFE) component of a VRS, as shown in Figure 5.5. This
approach allows VRSs to exploit: (i) the high-level visual representational power of
CNNs, and (ii) their ability to generalize on datasets di�erent from the ones they were
trained on, e.g., ImageNet [88]. Despite their success, there is a lack of homogeneity in

5.2 Reproducing and evaluating visually-aware recommender systems 73

Table 5.3 Measured accuracy and beyond-accuracy metrics for the tested Visual Recommender
Systems and datasets on top-100 recommendation lists. Best values are reported in bold,
while the second-best are underlined.

Model Accuracy Beyond-Accuracy
HR nDCG Precision MAP EFD EPC Gini SE iCov

Amazon Baby - [Elliot Configuration File: demo_amazon_baby.yml]
VBPR 0.0743 0.0160 0.0007 0.0008 0.0075 0.0008 0.5730 10.0093 1386
DVBPR 0.0413 0.0082 0.0004 0.0004 0.0039 0.0004 0.1421 7.7011 370
ACF 0.1221 0.0384 0.0012 0.0022 0.0169 0.0018 0.6711 10.1862 1392
DeepStyle 0.0561 0.0117 0.0006 0.0005 0.0055 0.0006 0.7490 10.2992 1393
VNPR 0.0479 0.0112 0.0005 0.0006 0.0052 0.0005 0.2058 8.5920 965
AMR 0.0858 0.0192 0.0009 0.0010 0.0092 0.0009 0.5752 10.0083 1389

Amazon Boys & Girls - [Elliot Configuration File: demo_amazon_boys_girls0.yml]
VBPR 0.0295 0.0068 0.0003 0.0004 0.0036 0.0003 0.4141 11.0699 3687
DVBPR 0.0309 0.0082 0.0003 0.0005 0.0038 0.0004 0.4692 11.2376 3842
ACF 0.0351 0.0075 0.0004 0.0003 0.0037 0.0004 0.0257 6.7975 120
DeepStyle 0.0653 0.0210 0.0007 0.0013 0.0099 0.0010 0.2886 10.5499 3176
VNPR 0.0260 0.0053 0.0003 0.0003 0.0029 0.0003 0.6421 11.6361 3925
AMR 0.0365 0.0094 0.0004 0.0005 0.0047 0.0004 0.5349 11.4075 3902

the selection of the pretrained networks in the literature, which usually happens to be a
fixed choice. For instance, Hou et al. [133] propose an explainable fashion recommender
system leveraging textual attributes, regions of item images, and a global visual profile
of images extracted through AlexNet [164] , then Chen et al. [66] use VGG19 [284] to
implement an explainable fashion recommender systems based upon image regions and
user reviews, and finally Chen et al. [59] exploit ResNet50 [122] to generate a high-level
description of recipe images which, along with textual descriptions, addresses the task
of cross-modal recipe retrieval.

In this third part of the chapter, we aim at studying the impact of the three most
popular pretrained CNN classes, namely AlexNet, VGG19, and ResNet50, used widely
in the prior literature on a suite of competitive VRSs, contemplating four models, i.e.,
VBPR [125], DeepStyle [188], ACF [60], and VNPR [234]. The combinations of these
CNNs and VRSs constitute the state-of-the-art for visual recommender models. Our
contributions are two-fold: we evaluate to what extent di�erent CNN architectural
styles a�ect recommendation in terms of: (i) accuracy and beyond-accuracy metrics,
and (ii) visual diversity of recommended items with respect to the ones previously
consumed by each user.

https://github0.com/sisinflab/elliot/blob/master/config_files/demo_amazon_baby0.yml
https://github0.com/sisinflab/elliot/blob/master/config_files/demo_amazon_boys_girls.yml

74 Chapter 5 Leveraging the visual modality in multimedia recommendation

,0$*(�)($785(
(;75$&725

9,68$//<�$:$5(�
5(&200(1'(5

�

�

�

��� ���

$OH[1HW
9**��
5HV1HW��

Fig. 5.3 A Visually-Aware Recommender System (VRS).

Visual recommendation problem

A visual recommendation problem (VRP) tailors recommendation problem to the cases
where item images are available, e.g., fashion and food recommendation. Let X be
the set of item images. We aim at finding the image feature extraction function f to
obtain the visual features of each image f(xi) = Ïi, with xi œ X , enhancing, or even
replacing, the recommendation-specific item representation. When pretrained CNNs
are utilized as Image Feature Extractors (IFEs), it is common to extract the features
on the layer activations, either convolutional or fully-connected.

Related work

Several works verified performance enhancements when integrating item visual fea-
tures [74, 124, 125, 283]. The vast majority of them use high-level features extracted
from CNNs, e.g., [124, 125], that could be either pretrained on a general-purpose dataset,
e.g., ImageNet [88], or trained jointly with recommendation task, e.g., DVBPR [151].
As for the first category, VBPR [125] is the leading solution including visual features
extracted from a pre-trained AlexNet [164] to extend the BPR-MF score function [258].
A year later, Liu et at. [188] proposed DeepStyle, a VBPR-based technique that assigns
higher importance to the image style at the expense of the image category. Similarly,
Niu et al. presented VNPR [234], which concatenates the PCA-reduced represen-

5.2 Reproducing and evaluating visually-aware recommender systems 75

tation of item images extracted through an AlexNet-like architecture [403] to their
recommendation embeddings before feeding it into a neural-based recommender model.
Then, Chen et al. [60] implemented ACF, which (di�erently from the previous ap-
proaches) adopts the feature maps extracted from a convolutional layer of a pretrained
ResNet152 [122] to weight the di�erent regions within users’ positive item images
through attention mechanisms. Chen et al. [66] designed an attention-based approach
for explainable fashion recommendations by exploiting a pretrained VGG19 [122].

While big e�orts have been dedicated to building accurate VRSs, we noticed a lack in
exploring how much the chosen pretrained CNN would impact on the recommendation
performance. Indeed, we found that AlexNet, ResNet, and VGG are the most popular
networks, i.e., at least 7 papers for the first [123–125, 133, 188, 218, 234], 6 for the
second [16, 59, 60, 235, 302, 362], and 3 for the third one [66, 344, 346], but there are
no exhaustive studies to verify their di�erences. In this respect, we aim to fill this gap
by studying various configurations of state-of-the-art VRSs using standard pretrained
CNNs, i.e., AlexNet, VGG19, and ResNet50.

Experiment Settings

Datasets. We investigate two fashion datasets, i.e., Amazon Baby and Amazon Boys &
Girls [124, 218]. Both were filtered through the 5-core technique as suggested in [124,
125] to avoid cold-start users, thus resulting in the following statistics: the former
counts 606 users, 1761 items, and 3882 registered interactions, while the latter covers
600 users and 2760 items, with 3910 ratings.
Image Feature Extractors. We study three IFEs: AlexNet, VGG19, and ResNet50.
The first, AlexNet [164], is a 8-layer CNN, i.e., 5 convolutional and 3 fully-connected
layers. This is one of the first architectures to introduce ReLU activation function [225]
to address the saturation issue of the tanh function. The second, VGG19 [284], is one of
the first deep-CNN, consisting of 19 layers, i.e., 16 convolutional and 3 fully-connected
layers. All convolutions are built on a 3 ◊ 3 kernel, and, like AlexNet, ReLU is the
activation function. The last, ResNet50 [122], is the 50-deep CNN belonging to the
ResNet family. It adopts residual blocks to tackle the training degradation problem
observed in deep-CNNs. The ResNet family won the ILSVRC-2015 [191], outperforming
their non-residual counterparts, e.g., VGG19.
Visual-based Recommender Models. We explore four VRSs: VBPR, DeepStyle,
VNPR, and ACF. The first, Visual Bayesian Personalized Ranking (VBPR) [125],
calculates the predicted rating for a user u and an item i as R̂ui = e€

u ei + ◊€
u WÏi,

where ◊u is the user’s visual latent vector, Ïi is the item feature extracted from a

76 Chapter 5 Leveraging the visual modality in multimedia recommendation

fully-connected layer, and W is an embedding matrix to project Ïi into ◊u’s space.
DeepStyle [188], updates the VBPR score function by subtracting a e€

u ci term where
ci embodies the categorical information of i. Visual Neural Personalized Ranking
(VNPR) [234], computes the (u,i) preference score with a MLP whose input is the
concatenation of the element-wise product of (eu,ei) and (vu,Ï̂i), where the latter con-
sists of the visual user profile and the PCA compression of Ïi . Attentive Collaborative
Filtering (ACF) [60], predicts the user’s score of an unrated item using two attention
networks to weigh its importance in the set of u-positive items and the regions within
these images. The ACF feature is the feature map extracted from a conv layer.
Evaluation Metrics. We study accuracy and beyond-accuracy metrics evaluated on
top-k recommendation lists. As for the accuracy measures, we adopt Recall@k, the
fraction of recommended products in the top-k that hit test items and the AUC, a
k-independent metric defined as the probability of ranking a positive item more than a
random negative one. Then, the beyond-accuracy measures are iCov@k, the percentage
of recommended items in the top-k lists and the EFD@k, a measure of the model
capacity of suggesting relevant long-tail (unpopular) items [310]. All the above cited
metrics range from 0 to 1, the closer to 1 the better.
Reproducibility. We split the datasets by adopting the temporal leave-one-out
paradigm, i.e., for each user, the test and validation sets contain the last and second-to-
last interactions. We apply a grid-search to tune the hyperparameters on the validation
set. We release our code6 implemented in Elliot [11].

Results and Discussion

This section evaluates the e�ects of varying the IFE on the top of the tested VRSs.
All the metrics are computed for the top-100 recommendations. We will refer to each
of them without the k term, e.g., iCov instead of iCov@100.
Analysis of Recommendation Results. Table 5.4 reports the accuracy and beyond-
accuracy recommendation metrics. To begin with, it can be observed that VRSs built
upon ResNet50 exhibit the best recommendation performance. Indeed, we notice that
the VRS variants adopting visual features extracted from ResNet50 outperform the
other IFE in 72% of the experimented cases. AlexNet settles as the second quality-level
IFE, leaving VGG19 to the last place despite its widely-recognized ability to extract
visual and stylistic content from images [146]. We may explain this, saying that deeper
convolutional networks with residual blocks, such as ResNet50, produce more accurate
recommendations thanks to their representational power.

6https://github.com/sisinflab/CNNs-in-VRSs

https://github.com/sisinflab/CNNs-in-VRSs

5.2 Reproducing and evaluating visually-aware recommender systems 77

Additionally, we observe that the positive impact of ResNet50 on recommendation is
uniformly not confirmed for ACF. In this setting, AlexNet is the pre-trained CNN that
ensures the best accuracy performance in both the tested datasets. For instance, ACF
using AlexNet features has a Recall equal to 0.0450, compared to the ResNet50 value
of 0.0300. The reason for these outcomes could lie in the specific model characteristic.
Indeed, di�erently from the other explored VRSs which take the output of a fully-
connected layer as input, ACF leverages visual features extracted from a convolutional
layer for the sake of the component-level attention mentioned in Section 5.2.3. As
convolutional layers catch a lower-level representation of images compared to fully-
connected ones, it entails that the di�erent extraction layer is dramatically reducing
the observed importance of IFE’s depth in VRSs.

Furthermore, we evaluate the e�ects of varying the IFE on beyond-accuracy metrics,
i.e., iCov and EFD. Similarly to the analysis of the accuracy-based results, both the
beyond-accuracy measures reach the best values when ResNet50 is used as IFE. For
example, considering the EFD measured for DeepStyle on Amazon Baby, the usage of
ResNet50 produces the best metric value, i.e., 0.0271. In this setting, it is interesting
to notice that only by changing the IFE from the original paper [188], i.e., AlexNet,
we obtain an EFD improvement of +75%. This novel finding could be explained by
the fact that the extracted features of deeper and complex CNNs, like ResNet50, allow
learning more diverse users’ preferences.

In summary, the results validate the hypothesis according to which the impact
strength on VRSs can significantly vary based on the pretrained CNN employed. In
fact, the deeper networks, such as ResNet50, seem to provide a much higher quality of
recommendation in strong VRSs such as DeepStyle and VBPR. For average-quality
VRSs, not a single CNN type outperforms the rest. Finally, we witness the same trend
on beyond-accuracy metrics, such as item coverage and novelty, which directly measure
the impact on users, platform owners, and third-party sellers in terms of economic
gains and experience satisfaction [2, 166].
Analysis of Users Visual Profile. This section quantitatively and qualitatively
evaluates to what extent each user’s top-100 recommended items are visually similar,
or dissimilar, to the list of positive ones. To address this analysis, we define the visual
diversity (VisDiv@k) as the Euclidean distance between the visual features centroids
extracted from both the positive and top-100 recommended items. Such distance is
calculated after the application of the t-SNE algorithm to the feature embeddings
to project them into a 2D latent space, which also come in handy for visualization
purposes (see later).

78 Chapter 5 Leveraging the visual modality in multimedia recommendation

Table 5.4 Recommendation results on top-100 lists.
Dataset VRS IFE Recall AUC iCov EFD

Amazon
Baby

AlexNet 0.1304 0.6308 0.9886 0.0142
VBPR VGG19 0.1568 0.6344 0.9875 0.0162

ResNet50 0.2063 0.6475 0.9915 0.0246
AlexNet 0.1337 0.6094 0.9994 0.0155

DeepStyle VGG19 0.1683 0.6372 0.9960 0.0191
ResNet50 0.2195 0.6400 10.000 0.0271
AlexNet 0.1271 0.5544 0.7910 0.0158

ACF VGG19 0.1073 0.5477 0.7763 0.0132
ResNet50 0.1023 0.5532 0.7791 0.0122
AlexNet 0.0561 0.5221 0.6303 0.0061

VNPR VGG19 0.0891 0.5349 0.8001 0.0111
ResNet50 0.1221 0.5817 0.9733 0.0141

Amazon
Boys &
Girls

AlexNet 0.1033 0.6348 0.9808 0.0137
VBPR VGG19 0.1133 0.6262 0.9681 0.0140

ResNet50 0.1250 0.6606 0.9837 0.0146
AlexNet 0.0983 0.6160 0.9993 0.0114

DeepStyle VGG19 0.1133 0.6307 0.9996 0.0168
ResNet50 0.1250 0.6402 0.9957 0.0152
AlexNet 0.0450 0.5120 0.8043 0.0047

ACF VGG19 0.0433 0.4955 0.7424 0.0049
ResNet50 0.0300 0.5235 0.7518 0.0029
AlexNet 0.0317 0.5018 0.5319 0.0043

VNPR VGG19 0.0417 0.5358 0.6272 0.0051
ResNet50 0.0800 0.5727 0.9667 0.0094

Table 5.5 reports the average VisDiv on all users. Investigating this quantitative
metric, it can be observed that the settings with higher VisDiv are connected to the
ones with the most accurate and diverse recommendation performance in Table 5.4.
For instance, when comparing VBPR experiments varying the IFE, both visual and
recommendation metrics reach the highest values when using ResNet50. To be specific,
VisDiv, i.e., 17.05 and 20.67, Recall, i.e., 0.2063 and 0.1250, EFD, i.e., 0.0246 and 0.0146,
on Amazon Baby and Amazon Boys & Girls respectively, confirm that a higher VisDiv
value can be linked to better recommendation performance. Coherently, comparing the
bold values of Table 5.4 and Table 5.5, it can be seen that VRSs using the IFE with
ResNet50 produce the best performing and most visually-diverse recommendations.

To conclude, Figure 5.4 helps to inspect the visual di�erences of the positive and
top-5 VBPR-based recommended items of a user sampled from Amazon Boys & Girls
when the image features are extracted from AlexNet (Figure 5.4a) and ResNet50

5.3 Content-style item representation for visually-aware recommendation 79

Table 5.5 Average visual diversity (VisDiv) on top-100 lists.

Dataset VRS IFE
AlexNet VGG19 ResNet50

Amazon
Baby

VBPR 13.16 14.92 17.05
DeepStyle 14.52 14.10 16.64
ACFú 53.93 59.93 52.27
VNPR 7.40 20.75 10.32

Amazon
Boys &
Girls

VBPR 10.16 15.62 20.67
DeepStyle 12.32 14.27 20.08
ACFú 58.46 70.73 48.31
VNPR 11.96 8.98 27.27

* Visual features have been flattened for t-SNE.

(a) AlexNet (b) ResNet50
Fig. 5.4 Positive (green) and top-5 (red) item features in the latent space for (a) AlexNet and
(b) ResNet50. The VisDiv@5 (the line connecting the two centroids) are 67.83 and 416.22
respectively.

(Figure 5.4b). It can be observed that, while the usage of AlexNet leads to the
recommendation of items visually similar to the positive ones, i.e., all items are in the
“trekking shoes" category as shown in Figure 5.4a, the application of ResNet50 makes
recommendations more diverse, i.e., boots and socks in Figure 5.4b, and even with
variable colour, e.g., the recommended jackets.

5.3 Content-style item representation for visually-
aware recommendation

Recently, there have been a few attempts trying to uncover user’s personalized visual
attitude towards finer-grained item characteristics, e.g., [60, 66, 69, 133]. These

80 Chapter 5 Leveraging the visual modality in multimedia recommendation

solutions disentangle product images at (i) content-level, by adopting item metadata
and/or reviews [69, 238], (ii) region-level, by pointing the user’s interest towards parts
of the image [66, 346] or video frames [60], and (iii) both content- and region-level [133].
Indeed, most of these approaches [60, 66, 133, 346] exploit attention mechanisms to
weight the importance of the content or the region in driving the user’s decisions.

Despite their superior performance, we recognize practical and conceptual limitations
in adopting both content- and region-level item features, especially in the fashion domain.
The former rely on additional side information (e.g., image tags or reviews), which
could be not-easily and rarely accessible, as well as time-consuming to collect, while
the latter ignore stylistic characteristics (e.g., color or texture) that can be impactful
on the user’s decision process [413].

Driven by these motivations, we propose a pipeline for visual recommendation,
which involves a set of visual features, i.e., color, shape, and category of a fashion
product, whose extraction is straightforward and always possible, describing items’
content on a stylistic level. We use them as inputs to an attention- and neural-based
visual recommender system, with the following purposes:

• We disentangle the visual item representations on the stylistic content level (i.e.,
color, shape, and category) by making the attention mechanisms weight the
importance of each feature on the user’s visual preference and making the neural
architecture catch non-linearities in user/item interactions.

• We reach a reasonable compromise between accuracy and beyond-accuracy per-
formance, which we further justify through an ablation study to investigate
the importance of attention (in all its configurations) on the recommendation
performance. Notice that no ablation is performed on the content-style input
features, as we learn to weight their contribution through the end-to-end attention
network training procedure.

Code and datasets to reproduce our model are available at: https://github.com/
sisinflab/Content-Style-VRSs.

5.3.1 Method

In the following, we present our visual recommendation pipeline (Figure 5.5).
Let S be the set of content-style features to characterize item images. Even if

we adopt S = {color,shape,category}, for the sake of generality, we indicate with
fs
i œ R1◊vs the s-th content-style feature of item i. Since all fs

i do not necessarily

https://github.com/sisinflab/Content-Style-VRSs
https://github.com/sisinflab/Content-Style-VRSs

5.3 Content-style item representation for visually-aware recommendation 81

belong to the same latent space, we project them into a common latent space R1◊d, i.e.,
the same as the one of eu and ei. Thus, for each s œ S, we build an encoder function
encs : R1◊vs ‘æ R1◊d, and encode the s-th content-style feature of item i as:

es
i = encs(fs

i) (5.1)

where es
i œ R1◊d, and encs is either trainable, e.g., a multi-layer perceptron (MLP), or

handcrafted, e.g., principal-component analysis (PCA). We use an MLP-based encoder
for the color feature, a CNN-based encoder for the shape, and PCA for the category.
Attention Network. We seek to produce recommendations conditioned on the visual
preference of user u towards each content-style item characteristic. That is, the model is
supposed to assign di�erent importance weights to each encoded feature es

i based on the
predicted user’s visual preference (r̂u,i). Inspired by previous works [60, 66, 133, 346],
we use attention. Let ian(·) be the function to aggregate the inputs to the attention
network eu and es

i , e.g., element-wise multiplication. Given a user-item pair (u,i),
the network produces an attention weight vector au,i = [a0

u,i,a
1
u,i, . . . ,a

|S|≠1

u,i] œ R1◊|S|,
where as

u,i is calculated as:

as
u,i = Ê2(Ê1ian(eu,es

i)+b1)+b2 = Ê2(Ê1(eu §es
i)+b1)+b2 (5.2)

where § is the Hadamard product (element-wise multiplication), while Êú and bú are
the matrices and biases for each attention layer, i.e., the network is implemented
as a 2-layers MLP. Then, we normalize au,i through the temperature-smoothed
softmax function [131], so that q

s as
u,i = 1, getting the normalized weight vector

–u,i = [–0
u,i,–

1
u,i, . . . ,–

|S|≠1

u,i]. We leverage the attention values to produce a unique and
weighted stylistic representation for item i, conditioned on user u:

wi =
ÿ

sœS
–s

u,ies
i (5.3)

Finally, let oan(·) be the function to aggregate the latent factor qi and the output of
the attention network wi into a unique representation for item i, e.g., through addition.
We calculate the final item representation qÕ

i as:

eÕ
i = oan(ei,wi) = ei +wi (5.4)

Neural Inference. To capture non-linearities in user/item interactions, we adopt an
MLP to run the prediction. Let concat(·) be the concatenation function and out(·) be

82 Chapter 5 Leveraging the visual modality in multimedia recommendation

6W\OLVWLF
)HDWXUH�

([WUDFWRUV

FRORU

VKDSH

FDWHJRU\

LDQ
FRORU

VKDSH

FDWHJRU\

$WWHQWLRQ
1HWZRUN

����

����

����

RDQ

0/3
,7(0

86(5

�����

,PSRUWDQFH�:HLJKWV

�����

�����

&RQWHQW�6W\OH�
)HDWXUHV

$WWHQWLRQ��DQG�1HXUDO�EDVHG�9LVXDO�5HFRPPHQGHU([WUDFWRUV/DWHQW
)DFWRUV

Fig. 5.5 Our proposed pipeline for visual recommendation, involving content-style item
features, attention mechanisms, and a neural architecture.

a trainable MLP, we predict rating r̂u,i for user u and item i as:

R̂u,i = out(concat(eu,eÕ
i)) (5.5)

Objective Function and Training. We use Bayesian personalized ranking (BPR) [258].
Given a set of triples T (user u, positive item p, negative item n), we seek to optimize
the following objective function:

argmin
�

ÿ

(u,p,n)œT
≠ln(sigmoid(R̂u,p ≠ R̂u,n))+⁄||�||2 (5.6)

where � and ⁄ are the set of trainable weights and the regularization term, respectively.
We build T from the training set by picking, for each randomly sampled (u,p) pair,
a negative item n for u (i.e., not-interacted by u). Moreover, we adopt mini-batch
Adam [157] as optimizing algorithm.

5.3.2 Experiments

Datasets. We use two popular categories from the Amazon dataset [124, 218], i.e.,
Boys & Girls and Men. After having downloaded the available item images, we filter
out the items and the users with less than 5 interactions [124, 125]. Boys & Girls
counts 1,425 users, 5,019 items, and 9,213 interactions (density is 0.00129), while Men
counts 16,278 users, 31,750 items, and 113,106 interactions (density is 0.00022). In
both cases, we have, on average, > 6 interactions per user.

5.3 Content-style item representation for visually-aware recommendation 83

Feature Extraction and Encoding. Since we address a fashion recommendation
task, we extract color, shape/texture, and fashion category from item images [304, 413].
Unlike previous works, we leverage such features because they are easy to extract and
always accessible and represent the content of item images at a stylistic level. We extract
the color information through the 8-bin RGB color histogram, the shape/texture
as done in [304], and the fashion category from a pretrained ResNet50 [59, 82, 102,
362], where “category” refers to the classification task on which the CNN is pretrained.
As for the features encoding, we use a trainable MLP and CNN for color (a vector) and
shape (an image), respectively. Conversely, following [234], we adopt PCA to compress
the fashion category feature, also to level it out to the color and shape features that
do not benefit from a pretrained feature extractor.
Baselines. We compare our approach with pure collaborative and visual-based
approaches, i.e., BPRMF [258] and NeuMF [128] for the former, and VBPR [125],
DeepStyle [188], DVBPR [151], ACF [60], and VNPR [234] for the latter.
Evaluation and Reproducibility. We put, for each user, the last interaction into
the test set and the second-to-last into the validation one (i.e., temporal leave-one-out).
Then, we measure the model accuracy with the hit ratio (HR@k, the validation metric)
and the normalized discounted cumulative gain (nDCG@k) as performed in related
works [60, 128, 389]. We also measure the fraction of items covered in the catalog
(iCov@k), the expected free discovery (EFD@k) [310], and the diversity with the 1’s
complement of the Gini index (Gini@k) [118]. For the implementation, we used the
framework Elliot [11, 12].

5.3.3 Results

What are the accuracy and beyond-accuracy recommendation performance?
Table 5.6 reports the accuracy and beyond-accuracy metrics on top-20 recommendation
lists. On Amazon Boys & Girls, our solution and DeepStyle are the best and second-
best models on accuracy and beyond-accuracy measures, respectively (e.g., 0.03860 vs.
0.03719 for the HR). In addition, our approach outperforms all the other baselines on
novelty and diversity, covering a broader fraction of the catalog (e.g., iCov ƒ 90%).
As for Amazon Men, the proposed approach is still consistently the most accurate
model, even beating BPRMF, whose accuracy performance is superior to all other
visual baselines. Considering that BPRMF covers only the 0.6% of the item catalog,
it follows that its superior performance on accuracy comes from recommending the
most popular items [39, 214, 411]. Given that, we maintain the competitiveness of
our solution, being the best on the accuracy, but also covering about 29% of the item

84 Chapter 5 Leveraging the visual modality in multimedia recommendation

Table 5.6 Accuracy and beyond-accuracy met-
rics on top-20 recommendation lists.
Model HR nDCG iCov EFD Gini

Amazon Boys & Girls — configuration file
BPRMF .01474 .00508 .68181 .00719 .28245
NeuMF .02386 .00999 .00638 .01206 .00406
VBPR .03018 .01287 .71030 .02049 .30532
DeepStyle .03719 .01543 .85017 .02624 .44770
DVBPR .00491 .00211 .00438 .00341 .00379
ACF .01544 .00482 .70731 .00754 .40978
VNPR .01053 .00429 .51584 .00739 .13664
Ours .03860 .01610 .89878 .02747 .49747

Amazon Men — configuration file
BPRMF .01947 .00713 .00605 .00982 .00982
NeuMF .01333 .00444 .00076 .00633 .00060
VBPR .01554 .00588 .59351 .01042 .17935
DeepStyle .01634 .00654 .84397 .01245 .33314
DVBPR .00123 .00036 .00088 .00069 .00065
ACF .01548 .00729 .19380 .01147 .02956
VNPR .00528 .00203 .59443 .00429 .16139
Ours .02021 .00750 .28995 .01242 .06451

Table 5.7 Ablation study on di�erent configu-
rations of attention, ian, and oan.

Components Boys & Girls Men
ian(·) oan(·) HR iCov HR iCov

No Attention .01263 .01136 .01462 .02208
Add Add .02316 .00757 .02083 .00076
Add Mult .02246 .00458 .00768 .00079
Concat Add .01404 .00518 .02113 .00076
Concat Mult .02456 .00458 .00891 .00085
Mult Add .03860 .89878 .02021 .28995
Mult Mult .02807 .00478 .01370 .01647

catalog and supporting the discovery of new products (e.g., EFD = 0.01242 is the
second to best value). That is, the proposed method shows a competitive performance
trade-o� on accuracy and beyond-accuracy metrics.
How performance is a�ected by di�erent configurations of attention, ian,
and oan?

Following [66, 133], we feed the attention network by exploring three aggregations
for the inputs of the attention network (ian), i.e., element-wise multiplication/addition
and concatenation, and two aggregations for the output of the attention network (oan),
i.e., element-wise addition/multiplication. Table 5.7 reports the HR, i.e., the validation
metric, and the iCov, i.e., a beyond-accuracy metric. No ablation study is run on
the content-style features, as their relative influence on recommendation is learned
during the training. First, we observe that attention mechanisms, i.e., all rows but
No Attention, lead to better-tailored recommendations. Second, despite the {Concat,
Add} choice reaches the highest accuracy on Men, the {Mult, Add} combination we
used is the most competitive on both accuracy and beyond-accuracy metrics.

https://github.com/sisinflab/Content-Style-VRSs/blob/master/config_files/evaluate_amazon_boys_girls.yml
https://github.com/sisinflab/Content-Style-VRSs/blob/master/config_files/evaluate_amazon_men.yml

5.4 Adversarial attacks and defenses in visually-aware recommendation 85

5.4 Adversarial attacks and defenses in visually-
aware recommendation

The literature has shown that deep neural networks (DNNs) are vulnerable to adversarial
examples [36, 299] minimal-corrupted images crafted to fool the network. Szegedy
et al. [299] formalized the adversarial generation problem by solving a box-constrained
L-BFGS. Goodfellow et al. [115] used the sign of the gradient of the loss function to
perturb the images in the Fast Gradient Sign Method (FGSM). Madry et al. [204]
adapted FGSM and Basic Iterative Method [114] to iteratively update the perturbation
and get stronger adversarial samples. Carlini et al. [50] (C & W) boosted the Szegedy et
al. [299] strategy to craft powerful samples able to deceiving state-of-the-art adversarial
detector [49]. However, the Adversarial Training, proposed by Goodfellow et al. [115],
has demonstrated substantial DNN’s protection when adversarial samples are injected
into the training data at a long-time training cost. This issue has been recently
addressed by Shafahi et al. [275] with the proposal of the 3 ≠ 30 times faster Free
Adversarial Training.

Consequently, adversarially-perturbed product images have been also shown to fool
the DNNs used in visually-aware recommender systems (VRs) to extract the visual
features [84]. Tang et al. [302] tested the accuracy degradation when VBPR is trained
on noisy images (integrity attack), while Noia et al. [235] demonstrated the adversary’s
capability to increase (or decrease) the recommendability of a category of products
(integrity attack) even on the adversarial regularized [127] version of VBPR, namely
AMR [302].

In this last part of the chapter, we investigate the e�cacy of defensive mechanisms
[115, 275] against powerful attacks [48, 115, 204] when the adversary wants to alter the
recommendation lists of a VRS by poisoning the training data by inserting adversarial
product images, e.g., one perturbs images of low popular products so that they are
misclassified as popular ones. Furthermore, we provide a visual-oriented evaluation of
adversarial images through o�ine visual metrics trying to mimicking human evaluation
to verify to what extent users might become aware of such subtle data poisoning in
the received recommendations (Figure 5.6).

The main contributions are twofold: (1) we verify the ine�cacy of state-of-the-art
adversarial training procedure in defending the DNNs used in VRS from adversarially-
poisoned training product images; (2) we evaluate the human-perceptibility with
o�ine measures. Source code, data, and experimental parameters are available at:
https://github.com/sisinflab/Perceptual-Rec-Mutation-of-Adv-VRs.

https://github.com/sisinflab/Perceptual-Rec-Mutation-of-Adv-VRs

86 Chapter 5 Leveraging the visual modality in multimedia recommendation

D��&OHDQ
5HF��3RVLWLRQ����WK

E��$WWDFN���7
5HF��3RVLWLRQ����WK
/3,36��������

F��$WWDFN���$7
5HF��3RVLWLRQ����WK
/3,36��������

G��$WWDFN���)$7
5HF��3RVLWLRQ����WK
/3,36��������

Fig. 5.6 (a) is the image of a low-recommended product. (b, c, d) are the perturbed versions
with PGD (‘ = 8) applied against DNNs without defense (T), or with the Adversarial Training
(AT) and Free AT (FAT). The attacks have pushed the product towards higher ranking
positions without visually-perceptible artifacts.

5.4.1 The threat model

The dependence of a VRS from visual features extracted from pre-trained DNNs
has been exploited by adversaries to poison the training data with the insertion of
adversarial samples [195, 235, 302]. To generate the targeted adversarial attack the
optimization problem formulation is:

max
”i:Î”iÎpÆ‘

LF (xi +”i,yi) s.t. yi = m (5.7)

where F is a DNN, LF is the cost function of F , ”i is the ‘-bounded perturbation of xi

that will make the product image be misclassified by F as the (more popular) product
category m, and Î·Îp is the Lp norm. For instance, the adversary can poison the data
adding a perturbed image of “Jersey, T-shirt” misclassified as “Brassiere” (Fig. 5.6)
causing a variation in the VRS since fi will be extracted from xadv

i = xi +”i.
Recently, studies on the robustification of DNNs have shown the adversarial training

by Goodfellow et al. [115] is one of the most prominent defense technique. After the
definition of the adversary threat model (i.e., the attack strategy), the adversarial
minimax formulation is:

min
Â◊

ÿ

(xi,yi)œI
max

”i:Î”iÎpÆ‘
LF (xi +”i, yi) (5.8)

where Â◊ represents the model parameters of the robustified network (ÂF).
Let Âfi the visual features of the image xi associated to a product image extracted

from ÂF . In this work, we want to verify if the application of adversarial training

5.4 Adversarial attacks and defenses in visually-aware recommendation 87

methods can limit poisoning attacks against VRSs [235, 302] since each user-item score
prediction R̂ui depends on Âfi. Furthermore, we want to investigate whether the usage
of adversarial trained DNNs will make the adversarial perturbation evident to such an
extent that it makes the perturbed samples identifiable via a human evaluation.

5.4.2 Experiments

Setup

The experiments are conducted on two fashion datasets, i.e., Amazon Women and Amazon
Men made publicly available by He et al. [124]. They come with both users’ ratings
and product pictures uploaded by the platform owner and third-party sellers (say,
the possible adversaries). Amazon Women counts 16668 users, 2981 items, and 54473
ratings, while Amazon Men counts 24379, 7371, and 89020. We split the data following
the time-aware leave-one-out protocol [127].

To empirically study the e�cacy of defenses and evaluate the visual appearance
of adversarial samples, we tested two VRS: VBPR by He et al. [125], and AMR by
Tang et al. [302], a VBPR extension that includes the adversarial regularizer of visual
features proposed by He et al. [127]. The complete set of experimental parameters is
reported in the GitHub repository.

Evaluation of Recommendation Performance

Table 5.8 shows the recommendation variation before and after the attacks. We evaluate
the variation of recommendation with the Category Hit Ratio [235], that measures
the average number of a (pushed) category of items in the top-K recommendation
lists. In particular, results in Table 5.8 are measured on the following source-target
combinations: “Sandal”-“Running Shoe” for Amazon Men, while “Jersey, T-shirt”-
“Brassiere” for Amazon Women, where the adversary tries to push a source category by
perturbing the product picture to be classified as a target class, e.g., the class of a very
popular category.

Analyzing VBPR outcomes, PGD attack shows the highest variation of Category
Hit Ratio @ 20 in the defense-free experiments. For instance, PGD (‘ = 8) increases
by more than 2.3 times the Category Hit Ratio @ 20 of the source category in the
<Amazon Women, VBPR, Traditional> setting. The same trend is not true for the
defense contexts. C&W attacks have increased the Category Hit Ratio @ 20 by 71.09%,
while PGD (‘ = 8) by 69.35%. Furthermore, Table 5.8 confirms that the adversarial

88 Chapter 5 Leveraging the visual modality in multimedia recommendation

Table 5.8 Category Hit Ratio @ 20 results on Amazon Women and Amazon Men. We mark in
bold the most e�ective attacks.

Model Attack Amazon Women Amazon Men
T AT FAT T AT FAT

VBPR

No-Attack 0.4377 0.5108 0.3417 0.6352 0.3028 0.3702
FGSM (‘ = 4) 0.3860 0.6032 0.6088 0.5665 0.6029 0.5688
FGSM (‘ = 8) 0.4057 0.6186 0.6313 0.6052 0.5879 0.5596
PGD (‘ = 4) 0.4377 0.6309 0.6263 1.0936 0.6211 0.5778
PGD (‘ = 8) 1.4462 0.6413 0.6139 1.5736 0.6247 0.6141
C&W 0.4147 0.6280 0.5729 0.5972 0.6652 0.6444

AMR

No-Attack 0.9449 0.8342 0.5063 0.3876 0.4924 0.1070
FGSM (‘ = 4) 1.3173 0.7135 0.4565 0.3295 0.4332 0.4103
FGSM (‘ = 8) 1.2814 0.7137 0.4429 0.3053 0.4318 0.4007
PGD (‘ = 4) 1.1958 0.6473 0.4900 0.8064 0.4435 0.4173
PGD (‘ = 8) 1.2377 0.6770 0.4445 2.1264 0.4323 0.3942
C&W 1.3012 0.7159 0.4977 0.3610 0.4293 0.4378

training strategies have failed in protecting VBPR since the data poisoning is always
e�ective in any defended settings.

Investigating AMR results, the attacks are quite e�ective in the defense-free set-
tings as much as in VBPR, and confirm PGD (‘ = 8) as the most powerful method.
Interestingly, the joint usage of (1) adversarial training procedures on the DNN and
(2) the adversarial regularization on the recommender embeddings (APR) significantly
reduced the e�ectiveness of the dataset poisoning. Indeed, 75% of attacks have not
increased the Category Hit Ratio @ 20 of the low popular category of products.

Visual Evaluation

To investigate the e�cacy of attacks in poisoning the VRS, we studied the attack
Success Rate (SR), the Feature Loss (FL), and the Learned Perceptual Image Patch
Similarity (LPIPS) [386]. Given the importance that visual features hold in VRSs,
FL calculates the MSE between extracted features before and after the attack. That
is, it provides a measure of visual features’ shifting in the latent space, and how this
has a�ected recommendation. The idea behind LPIPS is to produce a perceptual
distance value between two similar images by leveraging (1) knowledge extracted
from convolutional layers inside state-of-the-art CNNs and (2) collected human visual
judgments about those pairs of similar images. We computed this metric fine-tuning a
VGG [284] network since Zhang et al. [386] proposed this configuration as the best one
at imitating a real human-evaluation in circumstances comparable to visual attacks.

5.4 Adversarial attacks and defenses in visually-aware recommendation 89

Table 5.9 reports the LPIPS results, along with SR and FL values. It is worth
recalling that a large (small) FL value stands for semantically di�erent (similar) images
from DNN’s point of view. Similarly, a large (small) LPIPS value means the two
compared images would likely be considered as visually di�erent (similar) by humans.

Two general observations arise here. First, the FL is strictly correlated to the SR,
i.e., an attack is successful when the extracted features are noticeably shifted in the
latent space. Second, all attack combinations are able to keep LPIPS values within low
ranges, in accordance with the imperceptible nature of adversarial perturbations on
images [299]. Thus, we connect this obtained measure with the attack e�cacy in both
failing the classifier (i.e., the DNN) and the VRS. What follows is a detailed evaluation
of scenarios involving (or not) defensive techniques for the DNN.
Defense-free Setting. In the defense-free scenario, PGD (‘ = 4) is the least perceptible
attack (with the lowest LPIPS values) even considering a near-100% SR and a successful
pushing of attacked products. On the other hand, FGSM (‘ = 8) fails to hide the
produced perturbations, reaching the highest perceptible visual di�erence on Amazon
Women (2.8505). Coherently, this setting also shows a low SR and a weak alteration of
visual recommendations (see Table 5.8).
Defense Setting. Let us focus on the two defenses. Here, it becomes fundamental
to consider the LPIPS value along with its corresponding SR and recommendation
variations. As a matter of fact, in a defense context, where all attacks averagely tend to
perform worse at failing the DNN classifier, a measured low average LPIPS value might
trivially mean very few images were successfully attacked. For instance, the described
situation occurs in the combination <Amazon Men, PGD (‘ = 4), Adversarial Training>.
However, since these attacks have still been e�ective in pushing low ranked category
products (as evident in Table 5.8), then adversaries could exploit their hardly-human
perceptibility to craft even stronger perturbations (e.g., increasing ‘). An intriguing
situation is when LPIPS on the defended DNN is higher than the non-defended one.
The worst case is <Amazon Men, FGSM (‘ = 8), Adversarial Training>, which shows a
34% increase of LPIPS compared to the Traditional training. We explain this result
considering that and attack might need to produce larger perturbations to move the
category of the few correctly attacked images (about 24% in the cited example) towards
the targeted one. Not only is the attack ine�cient, but it risks human identification.

90 Chapter 5 Leveraging the visual modality in multimedia recommendation

Table 5.9 Average values of Success Rate (SR), Feature Loss (FL) and Learned Perceptual
Image Patch Similarity (LPIPS) for each <dataset, attack, defense> combination. LPIPS is
multiplied by 100. We mark in bold the best results for each considered metric.

Dataset Attack
Image Feature Extractor

Traditional Adversarial Training Free Adversarial Training
SR FL LPIPS SR FL LPIPS SR FL LPIPS

Amazon
Women

FGSM (‘ = 4) 17.70% 0.0096677 0.2388 0.00% 0.0000113 0.1353 0.00% 0.0000094 0.1041
FGSM (‘ = 8) 28.32% 0.0220499 2.8505 2.65% 0.0000851 1.8298 0.00% 0.0000671 1.2119
PGD (‘ = 4) 84.96% 0.0276645 0.1860 0.00% 0.0000119 0.1093 0.00% 0.0000102 0.0860
PGD (‘ = 8) 100.00% 0.1303309 1.1136 3.54% 0.0000974 0.7683 0.00% 0.0000735 0.6369
C & W 89.38% 0.0212380 0.2678 6.19% 0.0001770 0.0731 6.19% 0.0003376 0.0816

Amazon
Men

FGSM (‘ = 4) 65.45% 0.0140948 0.1861 18.32% 0.0000330 0.1407 15.18% 0.0000278 0.1074
FGSM (‘ = 8) 86.91% 0.0363190 1.7124 23.56% 0.0002658 2.2903 20.42% 0.0002320 1.2293
PGD (‘ = 4) 96.86% 0.0368843 0.1669 18.32% 0.0000334 0.1257 15.18% 0.0000283 0.0892
PGD (‘ = 8) 100.00% 0.1349854 0.6916 24.08% 0.0002801 0.7997 20.94% 0.0002371 0.6468
C & W 89.01% 0.0205172 0.2279 48.17% 0.0028022 0.2688 42.41% 0.0019080 0.1490

5.5 Summary
This chapter was devoted to analyzing and proposing novel solutions to the technical
challenges recognizable in multimedia recommendation (and outlined in the previous
chapter) in the particular setting of visually-aware recommender systems. First, a
unified framework for the extraction of multimodal features in recommendation (Ducho)
was proposed. Second, to seek reproducibility in visual-based recommender systems, V-
Elliot (an extension of the Elliot framework) was introduced. The two frameworks were
later exploited to benchmark the performance of visually-aware recommender systems
with a number of pre-trained visual extractors, highlighting how deeper visual feature
extractors (i.e., ResNet50) may provide improved recommendation performance on
accuracy and beyond-accuracy measures, both qualitatively and quantitatively. Later,
other outlined technical challenges were addressed by considering two scenarios and
tasks in visually-aware recommendation: (i) fashion recommendation and (ii) adversarial
attacks/defenses against visually-aware recommender systems. In terms of (i), we
proposed a novel approach able to disentangle the users’ preferences at the granularity
of content-style properties of fashion products, outperforming other recommendation
baselines on a number of accuracy and beyond-accuracy recommendation measures;
moreover, an ablation study further motivated the design choices for our proposed
approach. Regarding (ii), an investigation on the e�ects of adversarially-attacked
product images for visual-based recommendation, along with defensive countermeasures,
shed light on how such attacks may be perceived by the human customers on a number
of computer vision metrics; specifically, we demonstrated the alarming weakness of
adversarial training in protecting the recommendation performance, while the visual
evaluation suggested defense scenarios with few successfully attacked images and barely

5.5 Summary 91

perceptible visual artifacts that still keep breaking recommendation performance are
blind spots that adversaries could explore deeper for their malicious purposes.

This chapter, along with the previous one, conclude the thesis’ section about
recommendation approaches leveraging multimodal information. The next chapter will
deal with the second core topic discussed in this thesis, namely, graph neural networks
(GNNs)-based recommendation approaches.

Chapter 6

Evaluation of graph-based
recommender systems

By leveraging the same experimental and evaluation paradigms adopted in the previous
chapters of the thesis, the current chapter proposes a multi-sided analysis on the
second main topic of this thesis work, namely: GNNs-based recommender systems.
As such approaches embrace the family of recommendation models leveraging the
collaborative filtering paradigm, and following the naming scheme proposed in state-
of-the-art techniques from the literature, we introduce the term “graph collaborative
filtering” to indicate the novel paradigm adopting graph neural networks for collabora-
tive filtering. In the following, we first describe how we introduced six state-of-the-art
graph collaborative filtering approaches into Elliot, and made it into an out-of-the-box
application at the convenience of researchers and practitioners in the field. After
that, we use this tool to rigorously reproduce the results of such approaches on a
number of popular recommendation datasets. Our analysis helps uncovering unex-
pected insights, especially regarding the possible connection between graph topological
properties and recommendation performance of graph-based recommender systems.
Indeed, we decide to conduct an in-depth study on this aspect, which sheds light on
possible re-interpretations of topological properties of the user-item graph under the
recommendation perspective, thus questioning the current architecture and strategies
in graph collaborative filtering. In the last part of the chapter, the focus is on another
novel evaluation dimension of graph-based recommender systems. By recognizing
a taxonomy categorization of approaches in the literature, according to which node
representation and neighborhood exploration are the core strategy patterns which vary
within the large plethora of solutions proposed so far, we evaluate the graph models’
e�cacy on a number of beyond-accuracy recommendation measures, accounting for

94 Chapter 6 Evaluation of graph-based recommender systems

novelty, diversity, and consumer/provider fairness, using a single and multi-objective
evaluation setting.

6.1 Graph collaborative filtering within Elliot
Despite the outbreak of graph-based recommender systems in both academia and
industry by surpassing traditional CF approaches, limited e�ort has been put into
building unified and comprehensive frameworks to train and evaluate state-of-the-art
models. Among the most noticeable mentions, we may recall RecBole [396, 397], which
implements eight graph recommendation models for general recommendation (e.g.,
NGCF [325], LightGCN [126], DGCF [328], SGL [343], NCL [179], and SimGCL [371]).
Recently, Zhu et al. [409] pave the way to a shared benchmarking pipeline for recommen-
dation (i.e., BARS), and integrate thirteen models from the graph CF literature (besides
some of the aforementioned models, they also reproduce, for instance, PinSage [369],
DisenGCN [199], NGAT4Rec [285], GFCF [278], and UltraGCN [217]).

In this first part of the chapter, we show how to run extensive experimental settings
for six popular graph collaborative filtering models (i.e., NGCF, LightGCN, DGCF,
SGL, UltraGCN and GFCF) that we recently integrated into Elliot [11], our framework
for recommender systems evaluation. Our contributions may be summarized as follows:

• Di�erently from the stable version of Elliot1 which uses TensorFlow as the primary
backend [12], we introduce PyTorch Geometric2 (i.e., one of the most popular
Python libraries for geometric deep learning) as the additional backend to design
graph-based baselines adopting the explicit message-passing schema; at the time of
this publication, only a few other frameworks have started to adopt it [397].

• Given the known reproducibility issues related to some non-deterministic operations
in PyTorch Geometric [272], we implement message-passing with sparse adjacency
matrices [219].

• In contrast to existing similar solutions (i.e., RecBole and BARS), we implement six
state-of-the-art graph baselines by following a novel model categorization [17, 18]
that distinguishes between methods using explicit message aggregation (i.e., NGCF,
LightGCN, DGCF, and SGL) and going beyond the concept of graph convolution
(i.e., UltraGCN and GFCF).
1https://github.com/sisinflab/elliot.
2https://pytorch-geometric.readthedocs.io/en/latest/.

https://github.com/sisinflab/elliot
https://pytorch-geometric.readthedocs.io/en/latest/

6.1 Graph collaborative filtering within Elliot 95

Data
Preparation

Graph Recommendation

!!

"!

""
"#

NGCF
LightGCN
DGCF
SGL

UltraGCN
GFCF

Explicit Implicit

!"

#$

Performance Evaluation

Fig. 6.1 Architecture of Elliot for graph collaborative filtering. We integrate PyTorch
Geometric as backend, categorize graph models into two classes, and dockerize the application.

• As we leverage GPU boost by running PyTorch baselines with CUDA, we prepare a
Docker image3 creating a self-consistent and out-of-the-box experimental environ-
ment that requires minimal third-party libraries installed on the local machine. To
the best of our knowledge, Elliot is the first recommendation framework to o�er
such functionalities.

Codes, datasets, and a video tutorial to install and launch the application are accessible
at a public GitHub repository4.

6.1.1 Proposed application

This section presents our application for graph collaborative filtering in Elliot. First,
we focus on the integration of PyTorch Geometric by addressing its reproducibility
issues. Then, we describe the complete procedure to dockerize our application. Finally,
we outline the steps to easily install and train/evaluate a graph recommender.
PyTorch Geometric in Elliot. Figure 6.1 depicts the overall architecture for our
framework, organized into: (i) data preparation, (ii) recommendation, and (iii) perfor-
mance evaluation. Diving into each of these modules is out of the scope of this paper
(we extensively explained them in previous works [11, 12]). Conversely, our main focus
is on integrating PyTorch Geometric into the existing Elliot environment to build and
run graph recommendation models. It is worth mentioning that, in contrast to other
graph recommendation frameworks, we propose a novel model categorization [17, 18]
where we consider (i) explicit message-passing (e.g., LightGCN) and (ii) the simplifica-
tion of graph convolution (e.g., UltraGCN). In the following, we deepen into graph
convolution for recommendation.

3https://hub.docker.com/r/sisinflabpoliba/demo-graph.
4https://github.com/sisinflab/Graph-Demo.

https://hub.docker.com/r/sisinflabpoliba/demo-graph
https://github.com/sisinflab/Graph-Demo

96 Chapter 6 Evaluation of graph-based recommender systems

Given a user and item embeddings eu and ei, the general formulation for the message-
passing schema after l hops is:

e(l)
u = Ê

1Ó
e(l≠1)

iÕ ,’iÕ œ N (u)
¸ ˚˙ ˝

messages

Ô2
, e(l)

i = Ê
1Ó

e(l≠1)
uÕ ,’uÕ œ N (i)

¸ ˚˙ ˝
messages

Ô2
, (6.1)

where Ê(·) is the message aggregation, while N (u) and N (i) are the sets of 1-hop
neighbor nodes for u and i.
Graph approaches leveraging message-passing (i.e., NGCF, LightGCN, DGCF, and
SGL) inherit the MessagePassing base class [251]. This class provides, among the
others, the functions propagate (which performs both the message and aggregate
operations, defining the generic message and the message aggregation, respectively)
and forward (which generates the outputs). The required input format to the forward
function are the node embeddings at hop l ≠1 (E(l≠1)) and an edge array of dimension
2◊2M (edges), with M as the number of user-item/item-user recorded interactions,
storing indices of users and items with a bidirectional connection.
Such implementation is straightforward, especially because it permits explicitly defining
the custom message formulation for the generic node as done in several works from the
literature (refer again to Equation (6.34)). However, there are known reproducibility
issues [272] related to some operations in PyTorch Geometric since it could behave
non-deterministically (e.g., the scatter function, called by aggregate). To handle it,
we follow one of the most common strategies [272]. That is, we reformulate the single
node message-passing schema from Equation (6.34) into a matrix formulation adopting
sparse adjacency matrices [219]. As an example, let us define the message-passing
formula for LightGCN [126] as:

e(l)
u =

ÿ

iÕœN (u)
e(l≠1)

iÕ , e(l)
i =

ÿ

uÕœN (i)
e(l≠1)

uÕ . (6.2)

We may rewrite it into the following compact expression:

E(l) = AsE(l≠1), (6.3)

where As is the sparse adjacency matrix for the bipartite and undirected user-item
graph. By passing As instead of edges as input to forward, it will trigger the call
of the message_and_aggregate function, which does not make use of the scatter
operation. Unfortunately, this workaround is not always feasible (e.g., DGCF [328]).
Dockerization. As in similar Python frameworks for machine and deep learning (e.g.,
TensorFlow), PyTorch Geometric also supports models’ training and inference with
CUDA technologies for NVIDIA GPUs. Setting up a suitable development environment

6.1 Graph collaborative filtering within Elliot 97

Fig. 6.2 Screenshot of the application start, where user can select the model (e.g., NGCF)
and the dataset (e.g., Gowalla).

where versions compatibility is ensured for CUDA, cuDNN, and other third-party
libraries could be cumbersome in some cases, especially in scenarios where users may
need di�erent installed versions of the same frameworks and libraries on one workstation.
To tackle this challenge, we decide to leverage Docker5 to create a self-consistent and
out-of-the-box environment that provides the necessary libraries already installed in
a proper configuration setting. Quite conveniently, we adopt the Docker container
toolkit provided by NVIDIA6 for the creation of containers equipped with customizable
versions of CUDA and cuDNN.
First, we build a Docker image derived from this NVIDIA image7, which comes
with Ubuntu 20.04, CUDA 11.6.2, and cuDNN 8. Additionally, the custom image
includes other useful Linux packages (e.g., Python 3.8 and pip), a cloned version of
our GitHub repository for this demonstration, and all required Python packages to
run the framework. You may refer to this link for the Dockerfile we use to build
the image. Finally, to pull and run a Docker container from it, we also release the
docker-compose YAML file (accessible at this link). It allows all GPUs on the machine
to be used within the container, creates a bind mount between the results/ folder in
the container and a homonym folder on the host (thus storing files permanently), and
runs the application.

5https://www.docker.com/.
6https://github.com/NVIDIA/nvidia-docker.
7https://dockr.ly/3aWAtWt. The URL has been shortened to save space.

https://github.com/sisinflab/Graph-Demo/blob/main/Dockerfile
https://github.com/sisinflab/Graph-Demo/blob/main/docker-compose.yml
https://www.docker.com/
https://github.com/NVIDIA/nvidia-docker
https://dockr.ly/3aWAtWt

98 Chapter 6 Evaluation of graph-based recommender systems

Installation and running. Thanks to the core functionalities of NVIDIA-powered
Docker containers, the installation requirements needed to run our application are
minimal. You may refer to the o�cial installation guide8.
As for the pre-requisites, ensure you have the proper NVIDIA drivers installed on the
host machine. Then, follow the indicated procedure to install Docker9 and the NVIDIA
Container Toolkit10. If everything works smoothly, you should be able to pull and run
a Docker container with any CUDA and cuDNN versions (you may test the application
by launching a container with the command nvidia-smi which shows a snapshot on
the GPU usage). Finally, Docker Compose needs to be installed on the host machine.
Once everything has been correctly set up, the custom Docker image can be pulled,
and a container can be instantiated from it. To do so, you may use the docker-
compose YAML file we provide in the GitHub repository. When the application
starts (Figure 6.2), the user is asked to insert the model’s name and the dataset, that
is downloaded on-the-fly from the cloud. After that, the selected model is trained,
validated, and tested on the chosen dataset for some hyper-parameter configurations
(see later). You may refer to the o�cial Elliot’s documentation11 and GitHub page for
a comprehensive presentation of the formatting of the results. We also release a video
tutorial for the reader12.

6.2 Reproducing and benchmarking graph-based
recommender systems

In recent years, great e�ort has been devoted in creating GNN-based models that ad-
dress the critical issues of existing models, such as the over-smoothing phenomenon [54]
and scalability issues [369]. These cutting-edge models are taking the world of recom-
mender systems by storm and ushering in a new era of accuracy [185, 217, 248, 278, 348].
Over the past ten years, the application of neural techniques rooted in graph represen-
tation learning, such as graph convolutional networks [158] (GCNs), has introduced a
fresh perspective on traditional collaborative filtering (CF) approaches. Rather than
relying solely on user-item interactions for optimization [128, 160, 258], GCN-based

8https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.
html.

9https://docs.docker.com/engine/install/ubuntu/.
10https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.

html#setting-up-nvidia-container-toolkit.
11https://elliot.readthedocs.io/en/latest/.
12https://www.youtube.com/watch?v=_Bpgf4wnwIU.

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit
https://elliot.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=_Bpgf4wnwIU

6.2 Reproducing and benchmarking graph-based recommender systems 99

methods enable the extraction of both short- and long-distance user preferences toward
items [325]. By incorporating multi-hop relationships into the embeddings of users
and items, these learned profiles yield more precise recommendations, as evidenced in
the literature [126, 217]. Nevertheless, more researchers obtained di�erent accuracy
outcomes in independent experiments and began questioning the graph collaborative
filtering (graph CF) prominence [409].

The original GCN layer employs message-passing techniques to refine the node
representations of users and items through the iterative aggregation of their respec-
tive multi-hop neighbor nodes. While early attempts focused on simple aggregation
methods [32, 369], recent solutions have advanced the field by exploring the inter-
dependencies between nodes and their neighbors [325], designing simplified versions of
the graph convolutional layer [61, 126] and learning multiple nodes’ views [343, 371]
augmented via self-supervised and contrastive learning to improve model accuracy.
Moreover, current trends aim to simplify message-passing formulations [217, 248, 278],
explore other spaces for graph-based recommendation tasks [278, 290, 388], and use
hypergraphs to capture complex user-item dependencies [333, 349]. To filter out noisy
neighbors and uncover hidden preference patterns, a complementary research field
emerged that focuses on learning importance weights through attention mechanisms,
such as those employed in the graph attention network [313] (GAT). While some models
aim to recognize meaningful user-item interactions at a higher level [305, 324], others
disentangle relations on a finer-grained scale [328, 388]. The recent advancements in
GCN-based techniques have opened up new avenues for more accurate and e�ective
recommendation systems.

Reproducibility is the cutting-edge research task in which researchers replicate
experimental results using the same data and methods [31, 79, 80, 296]. In the case of
graph CF, several factors contribute to the lack of reproducibility. Firstly, many graph
CF studies copy previous results found in the literature for the same datasets, which
makes it challenging to compare and reproduce results across di�erent studies. Secondly,
such studies do not provide the implementation of the adopted baselines, which makes
it di�cult to assess the e�ectiveness of di�erent models. Furthermore, graph CF studies
frequently do not provide complete information since they do not always share the
experimental setups, such as hyper-parameter settings and training procedures. This
lack of transparency makes it challenging to reproduce results and verify the validity
of the findings. The lack of reproducibility in graph CF is a significant issue because
it undermines the research’s credibility and hinders the field’s progress. To address
this problem, researchers should strive to provide more detailed descriptions of their

100 Chapter 6 Evaluation of graph-based recommender systems

experimental setups and make their code and datasets publicly available. Additionally,
the research community should work together to establish standard evaluation metrics
and experimental protocols to promote reproducibility and facilitate comparison across
di�erent studies.

To this aim, this part of the chapter reports on a notable reproducibility e�ort to
re-implement and replicate the results of six state-of-the-art (both well-established
and recent) papers on graph collaborative filtering, namely, NGCF [325], DGCF [328],
LightGCN [126], SGL [343], UltraGCN [217], and GFCF [278]. In particular, we
provide an in-depth experimental analysis of the papers, conducting the experiments
from scratch on the three datasets adopted in the original papers: Gowalla [176], Yelp
2018 [126], and Amazon Book [124]. Notably, the investigation extends the previous
works by incorporating state-of-the-art classical collaborative filtering baselines such
as UserKNN [259], ItemKNN [271], RP3— [246], and EASER [289] to correctly position
the graph CF methods in the recommender systems state-of-the-art.

The study’s findings reveal that RP3— ranks as the second-best method with the
Yelp 2018 dataset, indicating that the original papers would have needed a more
comprehensive evaluation. To this end, the evaluation benchmark incorporates two
additional datasets, Allrecipes [102] and BookCrossing [412], which are common in
the recommendation literature but uncommon in the graph CF-specific literature.
However, surprisingly, the rankings significantly di�er on the Allrecipes dataset, and
the mathematical formulation of the graph CF methods is not su�cient to account
for these outcomes. This observation leads to further investigation to comprehend the
experimental results. Examining the dataset topological characteristics shows that the
overall number of users and items and the average user and item degree vary from dataset
to dataset. This observation may indicate the amount of information transmitted
from node to node in the computational graph. According to the mathematical
background, the analysis of the results is then threefold, focusing on the impact of (i)
the coldness/warmness of a user, (ii) the popularity of the enjoyed items, and (iii) the
size of the user neighborhood and the coldness/warmness of the neighbors. The users
are partitioned in quartiles accordingly, and the experiments are re-evaluated to obtain
more fine-grained results that motivate the outcomes for all the considered datasets.

Overall, the study aims to comprehensively answer several research questions,
including:

RQ1. Is the state-of-the-art (i.e., the six most important papers) of graph collaborative
filtering (graph CF) replicable?

6.2 Reproducing and benchmarking graph-based recommender systems 101

RQ2. How does the state-of-art of graph CF position with respect to classic CF
state-of-the-art?

RQ3. How does the state-of-art of graph CF perform on datasets from di�erent domains
and with di�erent topological aspects, not commonly adopted for graph CF
recommendation?

RQ4. What information (or lack of it) impacts the performance of the graph CF
methods across the various datasets?

The following introduces the background and the experiments to answer the outlined
research questions. First, in Section 6.2.1, we present the background technologies
and the reproducibility details to conduct our study. Then, in Section 6.2.2, we report
the reproducibility results, whose insights are complemented by adding novel classic
CF baselines (i.e., Section 6.2.3). Furthermore, an investigation upon graph topology
sheds light on the discrepancies of the graph CF approaches on two introduced datasets
(i.e., Section 6.2.4). By reinterpreting the concept of users’ node degree as information
flow from the multi-hop neighborhoods to the user, we unveil the behavior of the
graph and classic CF. Codes and datasets to reproduce our analysis are available
here: https://github.com/sisinflab/Graph-RSs-Reproducibility.

6.2.1 Background and reproducibility analysis

The current section is aimed to provide the background about selected state-of-the-art
methodologies in graph CF and their reproducibility details as presented in the original
papers. First, the main aspects about graph-based models are introduced to conduct a
chronological analysis of the strategies behind each algorithm. Then, we assess the
experimental settings as reported in the original works by focusing on the chosen
baselines, the datasets involved, and the training-testing protocol adopted in each case.

Graph collaborative filtering

In graph CF, users, items, and their interconnections are viewed as a bipartite and
undirected graph. Let U and I be the sets of users and items in the recommendation
system, respectively. Then, let R œ R|U|◊|I| be the user-item interaction matrix where,
in an implicit feedback scenario, Rui = 1 if user u œ U interacted with item i œ I,
0 otherwise. We build the adjacency matrix A œ R(|U|+|I|)◊(|U|+|I|) indicating the

https://github.com/sisinflab/Graph-RSs-Reproducibility

102 Chapter 6 Evaluation of graph-based recommender systems

bi-directional connections linking users and items in R:

A =
S

U 0 R
R€ 0

T

V . (6.4)

We use the set of users and items, along with the adjacency matrix, to formally define
the user-item bipartite and undirected graph G = {U fiI,A}.

By associating users’ and items’ nodes to embeddings, the vast majority of ap-
proaches iteratively update their representations at di�erent hop distances through the
message-passing schema [42, 111].

For the second part of this chapter, we select and reproduce the results for six widely-
recognized state-of-the-art approaches in graph CF, namely, NGCF [325], DGCF [328],
LightGCN [126], SGL [343], UltraGCN [217], and GFCF [278] (refer to Section 6.2.2).
This selection is motivated by two aspects: (i) such models are adopted as baselines
in recent works from top-tier venues (see the second column in Table 6.8); (ii) their
strategies cover a wide spectrum of techniques in graph CF. To provide a chronological
overview of such techniques, in the following, we report their main aspects:

• NGCF. Neural graph collaborative filtering [325] (NGCF) is among the pioneer
approaches in graph CF. Its message-passing schema works by aggregating the
neighborhood information and the inter-dependencies among the ego and the neigh-
borhood nodes (note that a normalized Laplacian adjacency matrix is used during
the message-passing).

• DGCF. Disentangled graph collaborative filtering [328] (DGCF) assumes that
user-item interactions can be disentangled into independent intents, where each
stands for a specific aspect describing the user’s preference towards the item. The
model learns a set of weighted adjacency matrices refining the user-item importance
related to a specific intent.

• LightGCN. Light graph convolutional network [126] (LightGCN) suggests that a
more light-weight formulation of the graph convolutional layer proposed by Kipf et al.
[158] can lead to superior accuracy performance in the recommendation scenario.
Specifically, the architecture removes feature transformations and non-linearities.

• SGL. Self-supervised graph learning [343] (SGL) is among the first attempts to bring
the lesson-learned from self-supervised [138] and contrastive [153] learning to graph
CF. Built upon a LightGCN-based convolutional layer, the model learns di�erent
views of nodes by performing node/edge dropout and random walk operations on the

6.2 Reproducing and benchmarking graph-based recommender systems 103

graph topology. A self-supervised contrastive loss component is added to encourage
the consistency among di�erent views of the same node and the divergence among
di�erent nodes.

• UltraGCN. Ultra simplification of graph convolutional network [217] (UltraGCN)
addresses some crucial issues in graph CF. Specifically, the authors propose a
novel message-passing schema that mathematically approximates the infinite-layer
propagation through a single (simplified) node update iteration. The adjacency
matrix is normalized through a modified Laplacian formulation that accounts for the
asymmetric weighting of connected nodes in user-user and item-item connections.
Moreover, two loss components are introduced to tackle the over-smoothing e�ect
and learn from the usually-unexplored type of node relationships such as item-item.

• GFCF. Graph filter-based collaborative filtering [278] (GFCF) questions the role
of graph convolutional network into recommendation by leveraging graph signal
processing theory. By showing that several existing approaches in CF may fall
into one unified framework based upon graph convolution, the authors eventually
propose a closed-form algorithm that proves to be a strong baseline against other
trainable and computationally-expensive (graph-based) approaches in CF. Thus,
the method represents the only exception to the message-passing models presented.

Analysis on reported baselines

Table 6.1 reports on the baselines each graph-based approach was tested against in
the original paper. By categorizing them into classic and graph CF we first observe
that, with the only exception of UltraGCN, all graph-based recommendation systems
are generally compared only against 1-2 classical CF solutions (MF [128, 258]- and/or
VAE [177, 200]-based approaches in most cases). However, the recent literature [14, 15,
79, 80, 409] has raised several concerns about usually-untested strong CF baselines,
such as nearest-neighborhood approaches (e.g., UserKNN [259] and ItemKNN [271]),
random-walk techniques (e.g., RP3— [246]), and other autoencoder-based solutions (e.g.,
EASER [289]). Di�erently from the classical CF baselines, we notice that most of the
works compare their proposed approaches against a wide (and shared) range of graph
CF solutions. This is easily explainable given the conceptual and logical similarities
among the graph CF baselines and the proposed approaches. Moreover, besides a
limited subset of graph CF baselines (i.e., HOP-Rec [355] and GRMF [253]), the vast
majority of tested graph algorithms [32, 61, 199, 291, 369] are based upon the graph
convolutional network architecture. Interestingly, we observe that only a subgroup of

104 Chapter 6 Evaluation of graph-based recommender systems

Table 6.1 Analysis of baselines used in each of the selected graph-based models, categorized
into classic and graph CF. A colored tick ‘3’ denotes when one of the baselines is also among
the selected set of graph-based approaches for our study.

Families Baselines

Models
NGCF [325] DGCF [328] LightGCN [126] SGL [343] UltraGCN [217] GFCF [278]

Used as graph CF baseline in (2021 — present)
[47, 56, 139, 290, 335, 358] [96, 179, 216, 329, 331, 388] [182, 254, 343, 349, 370, 371] [103, 216, 335, 349, 363, 395] [92, 113, 190, 237, 408, 409] [17, 18, 185, 247, 347, 409]

Classic CF

MF-BPR [258] 3 3 3

NeuMF [128] 3

CMN [93] 3

MacridVAE [200] 3

Mult-VAE [177] 3 3 3

DNN+SSL [364] 3

ENMF [52] 3

CML [134] 3

DeepWalk [249] 3

LINE [301] 3

Node2Vec [117] 3

NBPO [376] 3

Graph CF

HOP-Rec [355] 3

GC-MC [32] 3 3

PinSage [369] 3

NGCF [325] 3 3 3 3 3

DisenGCN [199] 3

GRMF [253] 3 3

GRMF-Norm [126] 3 3

NIA-GCN [291] 3

LightGCN [126] 3 3 3

DGCF 3

LR-GCCF [61] 3

SCF [398] 3

BGCF [292] 3

LCFN [375] 3

our selected six graph CF approaches (up to a maximum of three approaches if we
consider UltraGCN) is generally compared against the proposed approach. While we
could justify this point with chronological motivations (e.g., DGCF could have not
been tested on SGL, UltraGCN, and GFCF), we deem this to be an important lack in
the existing literature.

Under the above considerations, and di�erently from the previous works, we compare
the accuracy performance of the selected six graph CF approaches against strong CF
techniques (UserKNN, ItemKNN, RP3— and EASER), while providing a complete
evaluation setting which involves all the selected graph methods, where they are put
against one another (refer to Section 6.2.3). To our knowledge, this work is one of the
first attempts [409] to fill this gap.

Analysis on reported datasets

Table 6.2 displays the datasets adopted to train and test the reviewed graph-based
recommender systems, as reported in the original papers. Notably, we recognize a total
of seven recommendation datasets spanning di�erent domains such as social networks
(i.e., Gowalla), points-of-interest (i.e., Yelp 2018), e-commerce (i.e., the Amazon product
categories and Alibaba-iFashion), and movies (i.e., Movielens 1M). It is worth pointing

6.2 Reproducing and benchmarking graph-based recommender systems 105

Table 6.2 Analysis of the datasets adopted in each graph-based approach.
Models Gowalla Yelp 2018 Amazon Book Alibaba-iFashion Movielens 1M Amazon Electronics Amazon CDs
NGCF 3 3 3

DGCF 3 3 3

LightGCN 3 3 3

SGL 3 3 3

UltraGCN 3 3 3 3 3 3

GFCF 3 3 3

out that when we set the ‘3’ for the same dataset on di�erent models, we are stating
that the authors from the original works used the exact same dataset setting, that
is, the original user-item interaction data and splitting/filtering strategies. A deeper
analysis shows that there exists a subset of three datasets (i.e., Gowalla [176], Yelp
2018 [126], and Amazon Book [124]) which is utilized in the majority of graph CF works.
For the sake of reproducibility, we replicate the original results calculated on such
datasets for the six graph CF approaches (although the SGL paper does not provide
results on Gowalla). Given the limited set of shared datasets among all the approaches,
we include novel, never-investigated datasets to assess if their recommendation accuracy
remains consistent on other domains and/or topologies (refer to Section 6.2.4).

Analysis on experimental comparison

As a final analyzed dimension, we discuss the protocol for the experimental comparison
between the baselines and the proposed approach in each selected work. Being the
pioneer model in the domain, the authors from NGCF train all proposed baselines from
scratch. In the DGCF paper, the authors directly report the results of some baselines
which are shared with NGCF and train the other baselines from scratch. In a similar
manner, the authors by LightGCN, SGL, and UltraGCN copy the result values from
the original papers, while the remaining models are trained from scratch. Finally, the
authors in GFCF reproduce LightGCN as the baselines are exactly the same.

With reference to the copy-paste of the baseline results, authors often justify this
practice by claiming that the adopted experimental settings (in terms of dataset
splitting/filtering) are equal to the ones adopted by their (graph) CF baselines. Indeed,
it is also worth mentioning that authors are in some cases shared across the works
under investigation.

To remove all doubts, and di�erently from the mentioned works, we re-implement
all algorithms by carefully following their original codes, and train/evaluate them
through Elliot [11, 210]. Our goal is to provide a fair and repeatable experimental
environment for the selected graph CF approaches, by using the hyper-parameter

106 Chapter 6 Evaluation of graph-based recommender systems

settings as indicated in each paper and/or shared online code to assess to what extent
we can reproduce the original results. The reader may refer to Section 6.2.2 for a whole
description of our settings.

6.2.2 Replication of prior results

This section focuses on how the replication of the experiments from the six state-of-
the-art papers on graph CF stated before has been set up. It starts by defining the
evaluation protocol applied to compare these methods in their respective works. After
that, we present our replication results.

Settings

The experimental setup adopted in the first part of this study is designed primarily
to replicate the results of the models included in this analysis [126, 138, 199, 217,
278, 325]. As mentioned earlier, we use the three most common datasets in this
scenario to show the results of our replicability study. Specifically, we use Gowalla,
Yelp 2018, and Amazon Book as provided in the public repositories of NGCF13 and
LightGCN14. All the proposed models (except SGL) use the same datasets with the
same filtering/splitting. The authors state that they adopt a random split based on
the 80/20 hold-out (i.e., for each user, 80% of the interactions is used to create the
training set, while the remaining 20% constitutes the test set). Thus, each user-item
interaction is treated as positive; all others are considered unfavorable. In addition, the
authors leave 10% of the training as a validation set for tuning the hyper-parameters.
However, this portion of the dataset is not indicated in the papers’ extra material.

The adopted evaluation protocol is shared across all the analyzed papers. The
approach is known as all-unrated-item [288]; for each user, we retain all candidate
items with whom she does not interact with in the training set. To measure the quality
of recommendations, we use the Recall and the nDCG on the top-20 recommendation
lists for each user.

Each work performs its own tuning of the hyper-parameters (the Recall@20 is used
as validation metric), by reporting on the search hyper-parameter spaces. Moreover,
the best configurations on each dataset are usually provided in the respective papers
and/or repositories.

13https://github.com/xiangwang1223/neural_graph_collaborative_filtering.
14https://github.com/kuandeng/LightGCN.

https://github.com/xiangwang1223/neural_graph_collaborative_filtering
https://github.com/kuandeng/LightGCN

6.2 Reproducing and benchmarking graph-based recommender systems 107

Thus, we set the hyper-parameters on each model-dataset as the best ones declared
by the authors. The configuration files to run such experiments is fully available at our
GitHub repository: https://split.to/Graph-Reproducibility. The careful reader would
notice that the results reported in Table 6.3 for NGCF (see the ‘Original’ column)
di�er from those shown in the in-proceedings version [325]. The reason is that the
authors modified and recalculated the results obtained for the model and baselines due
to errors in the pre-processing of the Yelp 2018 dataset and in the calculation of the
nDCG. Thus, for the sake of fair reproducibility, and only in this case, we consider the
results reported in the arXiv (most updated) version of the paper [326].

Results

Table 6.3 compares the results reported by the six papers focused on our study with
those obtained in our implementation (using the tuned parameters specified in each
work, as explained before). The new experiments closely approximate the original
ones, with the most significant performance shift being in the 10≠3 order. There are
no noticeable distinctions in metrics, dataset, or algorithm used.

More specifically, in an algorithm basis, we observe the performance of GFCF is
the best replicated one. This might be due to form algorithm, hence, no perturbations
from random initializations are expected. The rest of the approaches evidence a similar
(high) level of replication, although the shift for NGCF and DGCF rarely achieves
the 10≠4 order for the two metrics in all the datasets. In any case, considering the
random initializations and stochastic learning processes [148], our replication of these
approaches could be considered a success. No significant di�erences were found among
the three datasets. SGL was not originally reported for Gowalla, so it was omitted
from the table as we compared reported results with our implementations using the
same hyper-parameters. In summary, these results confirm that, as discussed before,
even though authors of these papers re-used the performance values from other papers
just by copy-pasting them, this did not hurt the reproducibility of these approaches.
As previously stated, our assumption for this behavior (which is not a safe practice in
general [31]) is that the experiments of the original papers were all comparable because
some authors are shared across contributions, which should guarantee that the settings
and implementations of the algorithms are the same.

https://split.to/Graph-Reproducibility

108 Chapter 6 Evaluation of graph-based recommender systems

Table 6.3 Results of our replicability study on Gowalla, Yelp 2018, and Amazon Book for the
selected state-of-the-art graph-based recommender systems. We calculate the performance
shift between our conducted experiments and the original ones (as reported in their papers).
Note that models have been sorted out according to the chronological order.

Datasets Models Ours Original Performance Shift
Recall nDCG Recall nDCG Recall nDCG

Gowalla

NGCF 0.1556 0.1320 0.1569 0.1327 ≠1.3 ·10≠03 ≠7 ·10≠04

DGCF 0.1736 0.1477 0.1794 0.1521 ≠5.8 ·10≠03 ≠4.4 ·10≠03

LightGCN 0.1826 0.1545 0.1830 0.1554 ≠4 ·10≠04 ≠9 ·10≠04

SGL* — — — — — —
UltraGCN 0.1863 0.1580 0.1862 0.1580 +1 ·10≠04 0
GFCF 0.1849 0.1518 0.1849 0.1518 0 0

Yelp 2018

NGCF 0.0556 0.0452 0.0579 0.0477 ≠2.3 ·10≠03 ≠2.5 ·10≠03

DGCF 0.0621 0.0505 0.0640 0.0522 ≠1.9 ·10≠03 ≠1.7 ·10≠03

LightGCN 0.0629 0.0516 0.0649 0.0530 ≠2 ·10≠03 ≠1.4 ·10≠03

SGL 0.0669 0.0552 0.0675 0.0555 ≠6 ·10≠04 ≠3 ·10≠04

UltraGCN 0.0672 0.0553 0.0683 0.0561 ≠1.1 ·10≠03 ≠8 ·10≠04

GFCF 0.0697 0.0571 0.0697 0.0571 0 0

Amazon Book

NGCF 0.0319 0.0246 0.0337 0.0261 ≠1.8 ·10≠03 ≠1.5 ·10≠03

DGCF 0.0384 0.0295 0.0399 0.0308 ≠1.5 ·10≠03 ≠1.3 ·10≠03

LightGCN 0.0419 0.0323 0.0411 0.0315 +8 ·10≠04 +8 ·10≠04

SGL 0.0474 0.0372 0.0478 0.0379 ≠4 ·10≠04 ≠7 ·10≠04

UltraGCN 0.0688 0.0561 0.0681 0.0556 +7 ·10≠04 +5 ·10≠04

GFCF 0.0710 0.0584 0.0710 0.0584 0 0
*Results are not provided since SGL was not originally trained and tested on Gowalla [343].

6.2.3 Benchmarking graph CF approaches using alternative
baselines

In line with recent reproducibility works (such as [79]) that evidenced certain problems
regarding the choice and optimization of the baselines used for comparison, in this
section we assess how graph CF approaches perform relatively to classical CF baselines.
As in the previous section, we specify first how the experiments are prepared, and the
corresponding results are shown and discussed later.

Settings

We expand our investigation by examining four classic CF models to enhance the
replicability analysis. Specifically, we select four models whose accuracy performance
has rarely been compared with the graph-based CF approaches replicated in this study.
The decision to include UserKNN, ItemKNN, RP3—, and EASER is purposeful. We
refer to [80] and (more recently) [14], which demonstrated the competitiveness of
these baseline models compared to more recent approaches when a shared benchmark
for comparison is employed among all involved methodologies. Furthermore, we also
consider two unpersonalized approaches (i.e., MostPop and Random). The two models
act as benchmarks to assess the e�ectiveness of customized methods compared to a
user-agnostic solution.

6.2 Reproducing and benchmarking graph-based recommender systems 109

For a fair comparison, the configuration delineated herein elucidates how the four
classic CF models are tuned following the exact same training/test splitting reported
in Section 6.2.2 and the same experimental protocol. The only di�erence is that (for
obvious reasons) we need to explore the hyper-parameters of each classic CF model
introduced in the comparison. Similarly to what the authors do in the original graph
CF works, we retain the 10% of the training to generate a validation set, but decide
to explore 20 distinct configurations for each model through the state-of-the-art Tree-
structured Parzen Estimator (TPE) hyper-parameter search [33]. For every model,
the final results correspond to the accuracy measure on the test set by setting the
hyper-parameter configuration providing the best Recall@20 results on the validation
set. The complete configuration files to run the classic CF baselines are provided in
our repository: https://github.com/sisinflab/Graph-RSs-Reproducibility.

Results

Table 6.4 shows the results of the graph CF models (as previously replicated in Table 6.3)
with the additional baselines. First, it is worth noting that, even though none of these
baselines gets the best results in any of the three datasets considered, they achieve the
second-best performance in Yelp 2018 (refer to RP3— with nDCG).

Second, none of the models in the reference family achieve competitive performance.
While this is expected for the Random algorithm, it is an indication that either none
of these datasets evidence a strong popularity bias or (considering the way they were
processed) such bias was removed.

Third, some of the classic CF approaches (such as RP3— and UserkNN in Gowalla,
and RP3— and EASER in Yelp 2018) demonstrate better performance than some of
the state-of-the-art graph CF methods, in particular, they perform better than NGCF,
DGCF, and LightGCN. This result is in line with recent experimental comparisons [15,
19, 79] where these baselines outperform other methods based on matrix factorization
or neural networks. Moreover, to some extent, the fact that some graph CF methods
are outperformed should not be surprising, since, as shown in Table 6.1, none of these
baselines were included in the original papers.

6.2.4 Extending the experimental comparison to new datasets

This section aims to provide a full picture from an experimental point of view on two
new datasets: Allrecipes and BookCrossing. First, we introduce the experimental

https://github.com/sisinflab/Graph-RSs-Reproducibility

110 Chapter 6 Evaluation of graph-based recommender systems

Table 6.4 Graph-based CF solutions tested against unpersonalized (i.e., reference) and
classical CF approaches on Gowalla, Yelp 2018, and Amazon Book. While results for the
graph-based approaches have been directly reported from our reproducibility study (see
above), classical CF recommender systems have been fine-tuned on the two datasets to find
their best configurations. Boldface and underline refer to best and second-to-best values,
respectively.

Families Models Gowalla Yelp 2018 Amazon Book
Recall nDCG Recall nDCG Recall nDCG

Reference MostPop 0.0416 0.0316 0.0125 0.0101 0.0051 0.0044
Random 0.0005 0.0003 0.0005 0.0004 0.0002 0.0002

Classic CF

UserKNN 0.1685 0.1370 0.0630 0.0528 0.0582 0.0477
ItemKNN 0.1409 0.1165 0.0610 0.0507 0.0634 0.0524
RP3— 0.1829 0.1520 0.0671 0.0559 0.0683 0.0565
EASER * 0.1661 0.1384 0.0655 0.0552 0.0710 0.0567

Graph CF

NGCF 0.1556 0.1320 0.0556 0.0452 0.0319 0.0246
DGCF 0.1736 0.1477 0.0621 0.0505 0.0384 0.0295
LightGCN 0.1826 0.1545 0.0629 0.0516 0.0419 0.0323
SGL — — 0.0669 0.0552 0.0474 0.0372
UltraGCN 0.1863 0.1580 0.0672 0.0553 0.0688 0.0561
GFCF 0.1849 0.1518 0.0697 0.0571 0.0710 0.0584

*Results for EASER on Amazon Book are taken from BARS Benchmark [409].

settings followed to obtain the results presented in the following section. Then, we
discuss these results in more detail, aiming to explain the insights derived from them.

Settings

Motivated by the previous results, we further enrich our analysis by investigating
the behavior of all tested models on two datasets that have never been considered in
any previous study involving graph-based approaches for recommendation, namely,
Allrecipes [102] and BookCrossing [412].

Table 6.5 shows some statistics of these datasets, where we purposely decide to
report both the benchmarking datasets for graph CF (i.e., Gowalla, Yelp 2018, and
Amazon Book) and the newly introduced ones. On the one hand, Allrecipes exhibits
quite discordant characteristics compared to the other datasets. Although it has a
comparable density, users are more numerous than items, with a much lower average
user and item node degrees compared to the other standard graph CF datasets. On
the other hand, BookCrossing displays the lowest ratio between the number of users to
items across all datasets, and a much higher density than all the others. In summary,
the newly introduced datasets serve as a foundation to assess the performance in
di�erent (and never-explored) topological settings for graph CF baselines.

To adhere to the experimental setup presented so far, we adopt the all-unrated-
item evaluation protocol, and split the two datasets with a random hold-out solution,

https://openbenchmark.github.io/BarsMatch/leaderboard/amazonbooks_m1.html

6.2 Reproducing and benchmarking graph-based recommender systems 111

Table 6.5 Statistics calculated on the training sets of Gowalla, Yelp 2018, Amazon Book,
Allrecipes, and BookCrossing. We indicate the number of user-item interactions through’
Edges’ while ’Avg. Deg. (U)’ and ’Avg. Deg. (I)’ refer to users’ and items’ average node
degree (i.e., average interaction number).

Statistics Gowalla Yelp 2018 Amazon Book Allrecipes BookCrossing
Users 29,858 31,668 52,643 10,084 6,754
Items 40,981 38,048 91,599 8,407 13,670
Edges 810,128 1,237,259 2,380,730 80,540 234,762
Density 0.0007 0.0010 0.0005 0.0010 0.0025
Avg. Deg. (U) 27.1327 39.0697 45.2241 7.9869 34.7590
Avg. Deg. (I) 19.7684 32.5184 25.9908 9.5801 17.1735

ensuring an 80:20 proportion. Di�erently from the replicability study, we now perform
a TPE-based hyper-parameter tuning for all models, as the best hyper-parameters
for each graph-based approach is not known in advance; for this, we (again) use the
10% portion of the training set as validation set. We run 20 di�erent settings within
the search space provided in the original papers. The models’ best configurations are
selected through the Recall@20 on the validation. As stated for previous settings, we
report all configuration files to run the experiments with the novel datasets in the
GitHub here: https://github.com/sisinflab/Graph-RSs-Reproducibility.

Results

Table 6.6 provides a full comparison between unpersonalized methods, classical CF
approaches, and the graph CF methods under analysis. In line with our previous
section experiments, classic CF methods (in particular, RP3— and EASER) are very
competitive compared to graph CF approaches, even in novel datasets like the ones
included in this analysis. More specifically, the results in BookCrossing are dominated
by these baselines, whereas in Allrecipes, the MostPop technique is the one that stands
out, evidencing a strong popularity bias.

These results highlight that, among the graph CF techniques, those that maintain
their performance in novel domains are UltraGCN (best one in Allrecipes and third
among its type) and LightGCN (second best in both domains). While the nature of
these two datasets is clearly di�erent (as shown in Table 7.10, Allrecipes is smaller and
it contains more users than items, instead of the other way around as in BookCrossing),
the relative performance of the best graph CF methods is competitive. However, for
some of them, the performance drop is significant, reaching an accuracy lower than
that of any other classic CF baseline.

https://github.com/sisinflab/Graph-RSs-Reproducibility

112 Chapter 6 Evaluation of graph-based recommender systems

Table 6.6 Graph-based CF solutions tested against unpersonalized (i.e., reference) and classical
CF approaches on Allrecipes and BookCrossing. Boldface and underline refer to best and
second-to-best values, respectively.

Families Models Allrecipes BookCrossing
Recall nDCG Recall nDCG

Reference MostPop 0.0472 0.0242 0.0352 0.0319
Random 0.0024 0.0010 0.0013 0.0011

Classic CF

UserKNN 0.0339 0.0188 0.0871 0.0769
ItemKNN 0.0326 0.0180 0.0779 0.0739
RP3— 0.0170 0.0089 0.0941 0.0821
EASER 0.0351 0.0192 0.0925 0.0847

Graph CF

NGCF 0.0291 0.0144 0.0670 0.0546
DGCF 0.0448 0.0234 0.0643 0.0543
LightGCN 0.0459 0.0236 0.0803 0.0660
SGL 0.0365 0.0192 0.0716 0.0600
UltraGCN 0.0475 0.0248 0.0800 0.0651
GFCF 0.0101 0.0051 0.0819 0.0712

To bring light into some of these behaviors, the next section discusses in more
detail how the ranking of the graph CF methods changes depending on the dataset,
and hypothesize which dataset characteristics may be tied to these e�ects.

Discussion

To further validate and explain the reasons behind the results reported in Table 6.6, in
the following we perform a twofold analysis. First, we rank all the selected graph-based
recommendation models on all the tested datasets to assess their relative improvement
across all settings and provide another perspective on the results from Table 6.6.
Then, we propose a more nuanced study on the measured accuracy performance by
investigating its (possible) dependence on the specific dataset characteristics, namely,
the node degree as viewed at multiple hops.
Graph-based models’ ranking. In Table 6.7, we rank the six graph CF recommender
systems under analysis according to the calculated Recall@20 and nDCG@20, for both
the original datasets (i.e., Gowalla, Yelp 2018, and Amazon Book) and the novel
datasets we introduced (i.e., Allrecipes and BookCrossing). Moreover, we also indicate
the relative improvement of each model with respect to the worst-performing algorithm
on that dataset.

The trend on the three original datasets is quite steady, with UltraGCN and GFCF
being the two best-performing approaches in almost all cases, and the remaining graph
techniques ranked as in descending chronological order (confirming the findings from
the recent literature). In terms of relative improvements, we observe large performance
di�erences mainly on the Amazon Book setting.

6.2 Reproducing and benchmarking graph-based recommender systems 113

Table 6.7 Graph-based recommender systems, ranked according to their Recall@20 and
nDCG@20 on all the tested datasets. For each model, we also report its relative improvement
with respect to the worst-performing approach on the same dataset (in green).

Metric Gowalla Yelp 2018 Amazon Book Allrecipes BookCrossing

Recall

1. UltraGCN (+19.73%) GFCF (+25.36%) GFCF (+122.57%) UltraGCN (+370.30%) GFCF (+27.37%)
2. GFCF (+18.83%) UltraGCN (+20.86%) UltraGCN (+115.67%) LightGCN (+354.46%) LightGCN (+24.88%)
3. LightGCN (+17.35%) SGL (+20.32%) SGL (+48.59%) DGCF (+343.56%) UltraGCN (+24.42%)
4. DGCF (+11.57%) LightGCN (+13.13%) LightGCN (+31.35%) SGL (+261.39%) SGL (+11.35%)
5. NGCF (—) DGCF (+11.69%) DGCF (+20.38%) NGCF (+188.12%) NGCF (+4.20%)
6. SGL* (—) NGCF (—) NGCF (—) GFCF (—) DGCF (—)

nDCG

1. UltraGCN (+19.70%) GFCF (+26.33%) GFCF (+137.40%) UltraGCN (+386.27%) GFCF (+31.12%)
2. LightGCN (+17.05%) UltraGCN (+22.35%) UltraGCN (+128.05%) LightGCN (+362.75%) LightGCN (+21.55%)
3. GFCF (+15.00%) SGL (+22.12%) SGL (+51.22%) DGCF (+358.82%) UltraGCN (+19.89%)
4. DGCF (+11.89%) LightGCN (+14.16%) LightGCN (+31.30%) SGL (+276.47%) SGL (+10.50%)
5. NGCF (—) DGCF (+11.73%) DGCF (+19.92%) NGCF (+182.35%) NGCF (+0.55%)
6. SGL* (—) NGCF (—) NGCF (—) GFCF (—) DGCF (—)

*SGL is not classifiable on the Gowalla dataset as results were not calculated in the original paper [343].

By focusing on the two additional datasets (i.e., Allrecipes and BookCrossing),
the rankings corroborate some of the previous outcomes, but also introduce novel
and unexpected considerations. While UltraGCN seems to preserve its role of leading
approach in the two scenarios (in BookCrossing it is ranked as third but with minimum
margin to the second one), we notice how GFCF’s performance is very fluctuating, as
it even stands in the last position on Allrecipes with large performance di�erence to
the other models (the same goes for DGCF). Noticeably, LightGCN gets up to the top
of the ranking in both settings, indicating that a careful hyper-parameter tuning could
be beneficial to outperform most of the other approaches, even the ones that should
surpass it according to the literature (such as SGL). As final remarks, NGCF poor
performance is again confirmed in such di�erent dataset settings.
Analysis on the node degree. As already observed in Table 6.5, the average node
degree of users and items represents one of the main aspects discerning each dataset
from the other ones. For this reason, we decide to reason about its possible influence
on the models’ performance. In this respect, instead of limiting our analysis to the sole
definition of node degree (i.e., number of recorded interactions for each user and item),
and given the ability of graph-based approaches to distill the collaborative signal by
stacking multiple layers [325], we propose a novel investigation which reinterprets the
node degree as information flow from neighbor nodes to the user nodes after multiple
hops. Note that we only consider users as the ending nodes of such a flow because
we are interested in assessing how the accuracy recommendation measures (which are
generally calculated user-wise) may be influenced by this aspect.

Before diving into the results and discussion, we provide some useful intuitions and
formulations which may help understand our analysis. With reference to Figure 6.3, we
introduce the definition of information flow at one, two, and three hops. We decide to
limit our focus on the first three explored hops because (i) graph-based recommender

114 Chapter 6 Evaluation of graph-based recommender systems

u1

u2

u3

u4

i1

i2

i3

i4

i5

user item
(a) 1-hop

u1

u2

u3

u4

i1

i2

i3

i4

i5

u1

u2

u3

u4

user item user
(b) 2-hop

u1

u2

u3

u4

i1

i2

i3

i4

i5

u1

u2

u3

u4

i1

i2

i3

i4

i5

useritemuser item
(c) 3-hop

Fig. 6.3 A toy user-item graph where the ego user node (highlighted) receives the information
flow from the (a) 1-, (b) 2-, and (c) 3-hop neighbor nodes (highlighted). Arrows’ direction is
a visual representation of the information flow.

systems built upon the message-passing schema usually tend not to iterate over the
third aggregation layer, and (ii) the investigation of more than three hops would not
be meaningful from a recommendation perspective. As a matter of fact, we interpret
each of the three hops as follows:

• at one hop (Figure 6.3a), users receive the information coming from the items they
interacted with; in other words, this is an indication of the activeness of users on
the platform;

• at two hops (Figure 6.3b), users receive the information of the other users co-
interacting with the same items; in other words, this is an indication of the influence
of items’ popularity on users;

• at three hops (Figure 6.3c), users receive the information coming from the items
interacted by the other users involved in co-interactions; i.e., this is an indication of
the influence of co-interacting users’ activeness on users.

Let us formalize such definitions. The information received by users at one, two,
and three hops is calculated as:

�(1)
U = R1I , �(2)

U = (R § (1UR))1I , �(3)
U = (RR€ §R1I)1I , (6.5)

where �(h)

U œ R|U|◊1 is the vector of the information that all users receive from the
nodes in their h-hop, 1U œ R1◊|U| and 1I œ R|I|◊1 are row and column vectors with 1
repeated |U| and |I| times, respectively, while § is the Hadamard product performed
in broadcast.

In light of the above, the study assesses the accuracy performance of graph-based
recommender systems on user groups considering the information received from the one,

6.2 Reproducing and benchmarking graph-based recommender systems 115

two, and three hops neighborhood. Following other analyses in the literature, we decide
to split users into quartiles according to the information values (i.e., �(h)

U). Thus, we
consider four groups: (i) users whose values are below the 25% of the distribution, (ii)
users whose values are above the 25% and below the 50% of the distribution, (iii) users
whose values are above the 50% and below the 75% of the distribution, and (iv) users
whose values are above the 75% of the distribution.

Figure 6.4 displays the percentage variation in accuracy performance (measured
by nDCG) across quartiles relative to the average value reported in Table 6.6. The
figure illustrates how the quality of recommendation performance fluctuates amongst
di�erent clusters of users. For example, a method indicating a 50% improvement in the
fourth quartile would suggest that users in this cluster, typically more active (1-hop)
or also interested in popular items (2-hop), receive more accurate recommendations
with respect to the average user.

This observation implies that a non-discriminatory recommendation system should
produce no variation across quartiles, with values overlapping the 0% dashed line. The
second necessary preliminary to understand the outcome of the experiments is the
interpretation of the quartiles for the di�erent hops. In the 1-hop, the fourth quartile
pertains to warm users interacting most with the platform, while the first quartile
represents cold users interacting less frequently. In the 2-hop, high values in the fourth
quartile indicate active users who enjoy popular items, resulting in dense subgraphs.
The first quartile, in contrast, consists of less active users interacting with niche items
in less dense subgraphs. The 3-hop, which includes user neighbors, generates the
highest values when active users interact with popular items enjoyed by warm users
(i.e., their neighbors). However, it is essential to note that the plots o�er no insight
into overall accuracy (which is in Table 6.6).

When considering the recommendation performance according to the corresponding
cluster (depicted in Figure 6.4), it is crucial to note that none of them demonstrate
ideal recommendation behavior. Instead, these systems tend to favor warm users or
densely interconnected subgraphs located in the fourth quartile. Despite this trend,
the 1-hop plots for graph Collaborative Filtering (CF) and classic CF methods in
Allrecipes and BookCrossing graphs demonstrate minimal disparities between di�erent
recommendation approaches. Even though they all favor the fourth quartile over the
first one, the coldness/warmness of a user marginally impacts how much the method is
biased toward these types of users. The lone exception to this trend is GFCF, which
exhibits even greater penalization towards the first three quartiles (varying on the
three hops from, approximately, -45% to +115%, and thus exceeding the plots’ upper

116 Chapter 6 Evaluation of graph-based recommender systems

i ii iii iv

-50%

-25%

0%

+25%

+50%

Allrecipes — Graph CF
i ii iii iv

Allrecipes — Classic CF
i ii iii iv

BookCrossing — Graph CF
i ii iii iv

BookCrossing — Classic CF

(a) 1-hop

i ii iii iv

-50%

-25%

0%

+25%

+50%

Allrecipes — Graph CF
i ii iii iv

Allrecipes — Classic CF
i ii iii iv

BookCrossing — Graph CF
i ii iii iv

BookCrossing — Classic CF

(b) 2-hop

i ii iii iv

-50%

-25%

0%

+25%

+50%

Allrecipes — Graph CF
i ii iii iv

Allrecipes — Classic CF
i ii iii iv

BookCrossing — Graph CF
i ii iii iv

BookCrossing — Classic CF

(c) 3-hop

NGCF DGCF LightGCN SGL UltraGCN GFCF
UserKNN ItemKNN RP3— EASER

Fig. 6.4 Percentage variation between the nDCG on user quartiles and the average nDCG
value across all users (indicated as the dashed line), for each model-dataset setting. Rows
refer to user quartiles when considering (a) 1-, (b) 2-, and (c) 3-hop.

bound). As such, this system only provides satisfactory recommendation performance
for users in the fourth quartile.

Regarding the 2-hop, there are several interesting insights to be gained. Firstly,
the recommendation methods exhibit a higher overall slope, favoring the users who
enjoyed popular items over the cold users who enjoyed niche items. While this may
seem like an obvious observation, the plot confirms that user coldness/warmness alone
is not a su�cient indicator of high-quality recommendations. Instead, the 2-hop reveals
that combining user coldness/warmness and item popularity is useful for identifying
such users. A second noteworthy aspect is that the Allrecipes dataset highlights three
distinct behaviors among the graph CF methods. UltraGCN, DGCF, and LightGCN
exhibit similar performance and display less discriminatory behavior across quartiles.

6.3 A topology-aware analysis of graph collaborative filtering 117

It is interesting to note that these models also perform best overall (see Table 6.6). On
the other hand, SGL and NGCF show a higher slope that is comparable to classic CF.

Also, their corresponding performance is similar in Table 6.6. A third observation
concerns GFCF, which performs poorly across all quartiles except for the fourth. Its
behavior is even more accentuated than in the 1-hop analysis. Additionally, NGCF,
SGL, and GFCF are graph CF algorithms performing di�erently according to user
warmness and item popularity. Meanwhile, all algorithms in BookCrossing, and the
classic CF in Allrecipes, exhibit the distribution over the quartiles across methods.

Finally, in the 3-hop, for the BookCrossing dataset, the information pertaining to
neighbors does not contribute significantly to the results, as indicated by the similarity
between the 2- and 3-hop plots. Meanwhile, in Allrecipes, the best models (UltraGCN,
DGCF, and LightGCN) exhibit more consistency in performance across all quartiles,
as demonstrated by a more even distribution of results (less variations across the
quartiles). However, this pattern is not evident in NGCF, SGL, and GFCF, which
exhibit a more disparate range of results across the quartiles.

6.3 A topology-aware analysis of graph collabora-
tive filtering

From an algorithmic perspective, the technical contribution of graph-based recom-
mender systems has been theoretically [278] and empirically [331] investigated to justify
their high-quality recommendations. On the one hand, established approaches such
as LightGCN [126] and DGCF [328] re-adapt the GCN layer to suit the collaborative
filtering schema. Specifically, the former suggests that feature transformations and
non-linearities should be removed since they could negatively impact the recommen-
dation performance; the latter recognizes the importance of updating the user-item
graph structure according to the learned users’ intents towards items. On the other
hand, recent graph-based RSs including UltraGCN [217] and SVD-GCN [248] acknowl-
edge that existing graph-based models may still be a�ected by the over-smoothing
phenomenon and scalability issues. To overcome such problems, they propose to go
beyond the traditional concept of message aggregation at multiple layers by adopting
ad-hoc mathematical proxies of the message-passing. UltraGCN approximates infinite
propagation layers, while SVD-GCN explores the analogies between graph convolution
and SVD. Additionally, both approaches discuss the importance of learning from
user-user and item-item relationships.

118 Chapter 6 Evaluation of graph-based recommender systems

From another perspective, the machine learning literature acknowledges that graph
topology plays a crucial role in GNNs. The authors in [334] recognize how topology
may increase the model’s capacity by distinguishing between two approaches that
influence the (topological) shape of GNNs. The first approach involves stacking
aggregation operations, while the second one utilizes multiple aggregations of operations
to prevent over-smoothing and enhance model capacity. Indeed, the learning ability
of GNNs is a delicate balance between topology and node attributes. While the
graph convolutional layer is gaining momentum due to Laplacian smoothing or low-
pass filtering [342], stacking too many such layers can lead to a loss of expressive
power, causing node representations to become dependent solely on node degree and
connectivity. Two strategies are under debate to alleviate this issue [356]: modifying
the learned representations [159, 394] (e.g., APPNP, GCNII, PairNorm) and modifying
network topology [6, 159, 197, 262, 353] (e.g., DropEdge, GRAND, PPNP, MixHop,
GDN, JKNet). In summary, the inconsistency between network topology and node
content exists at the individual node and network levels. A recent study [280] suggests
revisiting network topology to enhance GCN learning, but this involves revisiting the
network topology thus modifying the underlying method.

In recommendation, some works have demonstrated how classical dataset statistics
may impact the performance of recommendation models [8, 85, 266], for example, data
sparsity within the user-item interaction matrix, the concentration of interactions from
both user and item viewpoints or the ratio of users to items comprising the catalog.
However, we believe that the topological nature of the user-item data (which allows us
to interpret users/items and their interactions as a bipartite and undirected graph)
along with the novel graph CF wave, could require a more careful analysis of additional
(and less shallow) topological measures. By describing the topology of the user-item
graph under the lens of its (multi)-hop connections, we regard it as imperative to
unravel the interdependencies between topology-aware attributes and recommendation
performance to better understand graph CF.

Motivated by the reasons above, we propose a topology-aware analysis of graph
collaborative filtering to find the (possible) dependencies among (topological) data
characteristics and recommendation performance of graph-based recommender systems.
To this end, we first consider three popular datasets (i.e., Yelp2018, Gowalla, and
Amazon-Book) and generate 1,800 synthetic sub-datasets with two common graph
sampling strategies (i.e., node- and edge-dropout). Second, we select eleven classical and
topological characteristics which are loosely correlated with one another and measure

6.3 A topology-aware analysis of graph collaborative filtering 119

them for each of the sampled sub-datasets15. Then, we choose four graph-based RSs,
namely, LightGCN [126], DGCF [328], UltraGCN [217], and SVD-GCN [248], since:
(i) they are recent approaches, (ii) they are used as baselines in several works from the
last years, (iii) they adopt di�erent strategies that well depict most of the models from
the literature. Last, an explanatory framework is trained to identify linear relations
among characteristics and accuracy metrics. Our contributions are:

1. To the best of our knowledge, this is the first analysis of the influence of classical
and topological dataset characteristics on the performance of state-of-the-art
graph-based RSs, with a re-interpretation of the topology-aware characteristics
under the lens of recommender systems.

2. We carefully choose four graph-based RSs that are across-the-board and recently
proposed in the literature and also span an extensive selection of graph strategies.
In an attempt to make the information conveyed by node degree explicitly emerge
from their formulations, we aim to understand how each of them addresses such
a topological aspect in all its facets.

3. We build an explanatory framework to calculate the linear dependencies among
characteristics (the independent variables) and recommendation metrics (the
dependent variables).

4. We validate the proposed framework on its statistical significance and uncover
insights on graph CF under the novel perspective of graph topology. We further
test the e�cacy of the approach with varying settings of graph samplings, shedding
light on the influence of node- and edge-dropout for our explanatory model.

Code and datasets to reproduce all results are available at: https://github.com/
sisinflab/Graph-Characteristics.

6.3.1 Topological characteristics in recommendation data

By viewing the recommendation data as a bipartite and undirected user-item graph,
we describe its topological characteristics [168, 226], which we re-interpret from the
viewpoint of RSs.

15We indicate with classical those recommendation-based measures exploited in other similar
works [8, 85], and with topological those properties of the user-item graph conceptually related to
node degree [168, 226].

https://github.com/sisinflab/Graph-Characteristics
https://github.com/sisinflab/Graph-Characteristics

120 Chapter 6 Evaluation of graph-based recommender systems

Preliminaries

In a recommendation system, we denote with U and I the sets of users and items,
respectively, where |U| = U and |I| = I. Then, we indicate with R œ RU◊I the
interaction matrix collecting user-item interactions in the form of implicit feedback
(i.e., Ru,i = 1 if user u œ U interacted with item i œ I, 0 otherwise). Moreover, let
Nu = {i | Ru,i = 1} and Ni = {u | Ru,i = 1} be the sets of items and users having
an interaction with u and i, respectively. We use R to define the adjacency matrix
A œ R(U+I)◊(U+I) representing the bidirectional interactions between users and items:

A =
S

U 0 R
R€ 0

T

V . (6.6)

On such basis, let G = {U fi I,A} be the user-item bipartite and undirected graph.
Moreover, we connote the user- and item-projected graphs as GU = {U ,AU} and
GI = {I,AI}. Thus, let RU and RI be the user-user and item-item interaction
matrices:

RU = R ·R€, RI = R€ ·R, (6.7)

which indicate the co-occurrences among users and items, respectively. Trivially, the
adjacency matrices AU and AI are:

AU = RU , AI = RI . (6.8)

We use the introduced concepts and notations to describe three topological aspects of
the user-item graph and re-interpret them under the lens of recommender systems.

Node degree

By generalizing the definitions of Nu and Ni, let N (l)
u and N (l)

i be the sets of neighbor-
hood nodes for user u and item i at l distance hops. Thus, the node degrees for u and i

(i.e., ‡u = |N (1)

u | and ‡i = |N (1)

i |) represent the number of item and user nodes directly
connected with u and i, respectively. The average user and item node degrees are:

‡U = 1
U

ÿ

uœU
|N (1)

u |, ‡I = 1
I

ÿ

iœI
|N (1)

i |. (6.9)

RecSys re-interpretation. The node degree in the user-item graph stands for the
number of items (users) interacted by a user (item). This is related to the cold-start

6.3 A topology-aware analysis of graph collaborative filtering 121

issue in recommendation, where cold users denote low activity on the platform, while
cold items are niche products.

Node degree alone still fails to provide a deeper outlook on the user-item graph.
The following topology-aware characteristics, derived from node degree, expand its
formulation to other viewpoints.

Clustering

For each partition in a bipartite graph, it is interesting to recognize clusters of nodes
in terms of how their neighborhoods overlap, independently of the respective sizes.
Let v and w be two nodes from the same partition (e.g., user nodes). Their similarity
is the intersection over union of their neighborhoods [168]. By evaluating the metric
node-wise, we obtain:

“v =
q

wœN (2)
v

“v,w

|N (2)

v |
, with “v,w = |N (1)

v flN (1)

w |
|N (1)

v fiN (1)

w |
, (6.10)

where N (2)

v is the second-order neighborhood set of v. In this case, we leverage the
second-order neighborhood because, in a bipartite graph, nodes from the same partition
are connected at (multiple of) 2 hops. The average clustering coe�cient on U and I is:

“U = 1
U

ÿ

uœU
“u, “I = 1

I

ÿ

iœI
“i. (6.11)

RecSys re-interpretation. High values of the clustering coe�cient indicate that there
exists a substantial number of co-occurrences among nodes from the same partition.
For instance, when considering the user-side formula, the average clustering coe�cient
increases if several users share most of their interacted items. The intuition aligns
with the rationale behind collaborative filtering: two users are likely to show similar
preferences when they interact with the same items.

The clustering coe�cient allows the description of broader portions of the user-item
graph compared to the semantics conveyed by node degree. Indeed, the measure takes
nodes at 2 hops (i.e., user-item-user and item-user-item connections). Nevertheless,
we may want to capture properties for even more extended regions of the graph. For
this reason, we introduce one last topology-aware characteristic that goes beyond the
2-hop distance among nodes.

122 Chapter 6 Evaluation of graph-based recommender systems

Degree assortativity

In real-world graphs, nodes tend to gather when they share similar characteristics.
Such a tendency is measured through the assortativity coe�cient. Depending on the
semantics of “node similarity”, there exist di�erent formulations for assortativity [226].
For the sake of this analysis, we consider the assortativity coe�cient based on the
scalar properties of graph nodes, for instance, their degree. Let D = {d1,d2, . . .} be
the set of unique node degrees in the graph, and let edh,dk

be the fraction of edges
connecting nodes with degrees dh and dk. Then, let qdh

be the probability distribution
to choose a node with degree dh after having selected a node with the same degree (i.e.,
the excess degree distribution). The degree assortativity coe�cient is calculated as:

fl =

q

dh,dk

dhdk(edh,dk
≠ qdh

qdk
)

std2
q

, (6.12)

where stdq is the standard deviation of the distribution q. Note that, for its formulation,
the degree assortativity is similar to a correlation measure (e.g., Pearson correlation).
Following the same rationale of the clustering coe�cient, we are interested in finding
similarity patterns among nodes from the same partition. For this reason, we first
apply the projection of the user-item bipartite graph for both users and items to obtain
the user- (i.e., GU) and item- (i.e., GI) projected graphs. Then, we calculate the degree
assortativity coe�cients for GU and GI , namely, flU and flI .
RecSys re-interpretation. In the recommendation scenario, the degree assortativity
calculated user- and item-wise is a proxy to represent the tendency of users with the
same activity level on the platform and items with the same popularity to gather,
respectively. Since we calculate the degree assortativity on the complete user-user and
item-item co-occurrence graphs, we deem this characteristic to provide a broader view
of the dataset than the clustering coe�cient. For this reason, to give an intuition of
degree assortativity, we borrow the concept of search space traversal depth in search
algorithms theory. That is, we re-interpret degree assortativity in recommendation as a
topology-aware characteristic showing a strong look-ahead nature.

To conclude, we also briefly recall the classical characteristics underlying the
user-item data as presented in [8, 85].

Space size

The space size estimates the number of all possible interactions that might exist among
users and items:

6.3 A topology-aware analysis of graph collaborative filtering 123

’ =
Ô

UI. (6.13)

Shape

The shape of a recommendation dataset is defined as the ratio between the number of
users and items:

fi = U

I
. (6.14)

Density

The density of a recommendation dataset measures the ratio of actual user-item
interactions with respect to all possible interactions that might connect all users and
items:

” = E

UI
, (6.15)

where E = |{(u,i) | Ru,i = 1}| is the number of interactions existing among users and
items in the recommendation data.

Gini coe�cient

The Gini coe�cient is an estimation of the interactions’ concentration for both users
and items. When calculated on U and I, we have:

ŸU =

U≠1q

u=1

Uq

v=u+1

abs(‡u ≠‡v)

U
Uq

u=1

‡u

, ŸI =

I≠1q

i=1

Iq

j=i+1

abs(‡i ≠‡j)

I
Iq

i=1

‡i

, (6.16)

where abs() is the function returning the absolute value.

6.3.2 Topological characteristics in graph collaborative filter-
ing

Since graph-based recommender systems are specifically designed to view the user-
item interaction data as a bipartite and undirected graph, in this section, we seek to
understand how and to what extent such models (explicitly) integrate topological data
characteristics into their formulations. To this aim, we select four popular and recent

124 Chapter 6 Evaluation of graph-based recommender systems

approaches in graph collaborative filtering, namely: LightGCN [126], DGCF [328],
UltraGCN [217], and SVD-GCN [248].

As additional background with respect to Section 6.3.1, we introduce the notations
eu œ Rb and ei œ Rb as the initial embeddings of the nodes for user u and item i,
respectively, where b << U,I. Then, in the case of message-propagation at di�erent
layers, we also introduce the notations e(l)

u and e(l)
i to indicate the updated node

embeddings for user u and item i after l propagation layers, with 0 Æ l Æ L (note that
e(0)

u = eu and e(0)

i = ei).

LightGCN

He et al. [126] propose to lighten the graph convolutional layer presented in Kipf
et al. [158] for the recommendation task. Specifically, their layer removes feature
transformation and non-linearities:

e(l)
u =

ÿ

iÕœN (1)
u

AuiÕe(l≠1)

iÕÔ
‡u‡iÕ

, e(l)
i =

ÿ

uÕœN (1)
i

AiuÕe(l≠1)

uÕÔ
‡i‡uÕ

, (6.17)

where each neighbor contribution is weighted through the corresponding entry in the
normalized Laplacian adjacency matrix to flatten the di�erences among nodes with high
and low degrees. Since AuiÕ = 1, ’iÕ œ N (1)

u (the dual holds for AiuÕ), the contribution
weighting comes only from the denominator.

DGCF

Wang et al. [328] assume that user-item interactions are decomposed into a set of
independent intents, representing the specific aspects users may be interested in when
interacting with items. In this respect, the authors propose to iteratively learn a set of
weighted adjacency matrices {Ã1,Ã2, . . .}, where each of them records the user-item
importance weights based on the specific intent it represents. Then, they introduce a
graph disentangling layer for each weighted adjacency matrix:

e(l)
u,ú =

ÿ

iÕœN (1)
u

ÃuiÕ,úe(l≠1)

iÕ,úÔ
‡u,ú‡iÕ,ú

, e(l)
i,ú =

ÿ

uÕœN (1)
i

ÃiuÕ,úe(l≠1)

uÕ,úÔ
‡i,ú‡uÕ,ú

, (6.18)

where ÃuiÕ,ú and e(l≠1)

iÕ,ú are the learned importance weight of user u on item iÕ and
the embedding of item iÕ for any intent, while ‡u,ú is the corresponding node degree
calculated on Ãú (the same applies for the item side).

6.3 A topology-aware analysis of graph collaborative filtering 125

UltraGCN

Mao et al. [217] recognize three major limitations in GCN-based message-passing for
collaborative filtering, namely, (i) the asymmetric weight assignment to connected
nodes when considering user-user and item-item relationships; (ii) the impossibility to
diversify the importance of each type of relation (i.e., user-item, user-user, item-item)
during the message-passing; (iii) the over-smoothing e�ect when stacking more than 3
layers. To tackle such issues, the authors propose to go beyond the traditional concept
of explicit message-passing, and approximate the infinite-layer message-passing through
the following:

eu =
ÿ

iÕœN (1)
u

AuiÕ
Ô

‡u +1eiÕ

‡u
Ô

‡iÕ +1 , ei =
ÿ

uÕœN (1)
i

AiuÕ
Ô

‡i +1euÕ

‡i
Ô

‡uÕ +1 . (6.19)

Note that the procedure is not repeated for layers l > 1, as the method surpasses
the concept of iterative message-passing. During the optimization, the model first
minimizes a constraint loss that adopts negative sampling to limit the over-smoothing
e�ect:

mineu,ei,ej
≠

ÿ

(u,i)œR+
s

1
‡u

Ô
‡u +1Ô
‡i +1 log(sig(e€

u ·ei)) +

≠
ÿ

(u,j)œR≠
s

1
‡u

Ô
‡u +1

Ò
‡j +1

log(sig(≠e€
u ·ej)),

(6.20)

where R+
s and R≠

s are pairs of positive and negative interactions sampled from the
user-item matrix R, while log() and sig() are the logarithm and sigmoid function.
Then, they also take into account the item-projected graph GI and minimize the
following:

mineu,ej
≠

ÿ

(u,i)œR+
s

ÿ

jœtopk(RI
i,ú)

RI
i,j

‡I
i ≠RI

i,i

ı̂ıÙ‡I
i

‡I
j

log(sig(e€
u ·ej)), (6.21)

where topk() retrieves the top-k values of a matrix row-wise, and ‡I
ú is the node degree

calculated on GI .

SVD-GCN

Peng et al. [248] propose a reformulation of the GCN-based message-passing which
leverages the similarities between graph convolutional layers and singular value de-

126 Chapter 6 Evaluation of graph-based recommender systems

composition (i.e., SVD). Specifically, they rewrite the message-passing introduced
in LightGCN by making two aspects explicitly emerge, namely: (i) even- and odd-
connection message aggregations, and (ii) singular values and vectors obtained by
decomposing the user-item interaction matrix R through SVD. On such basis, the
authors’ assumption is that the traditional graph convolutional layer intrinsically
learns a low-rank representation of the user-item interaction matrix where components
corresponding to larger singular values tend to be enhanced. They reinterpret the
over-smoothing e�ect as an increasing gap between singular values when stacking more
and more layers. The embeddings for users and items are obtained as follows:

eu = puexp(a1⁄) ·W, ei = qiexp(a1⁄) ·W, (6.22)

where: (i) pu and qi are the left and right singular vectors of the normalized user-item
interaction matrix for user u and item i; (ii) exp() is the exponential function; (iii) a1

is a tunable hyper-parameter of the model; (iv) ⁄ is the vector of the largest singular
values of the normalized user-item matrix; (v) W is a trainable matrix to perform
feature transformation. Note that the highest singular value ⁄max and the maximum
node degree max(D) in the user-item interaction matrix are associated by the following
inequality:

⁄max Æ max(D)
max(D)+a2

, (6.23)

where a2 is another tunable hyper-parameter of the model to control the gap among
singular values. Similarly to UltraGCN, the authors recognize the importance of
di�erent types of relationships during the message-passing (i.e., user-item, user-user,
item-item). For this reason, they decide to augment the loss function with other
components addressing also the similarities among node embeddings from the same
partition:

minev,ew,ej
≠

ÿ

(v,w)œ(Rú
s)+

log(sig(e€
v ·ew)) +

≠
ÿ

(v,j)œ(Rú
s)≠

log(sig(≠e€
v ·ej)),

(6.24)

where v, w, and j are nodes from the same partition, and Rú is the interaction matrix
of that partition.

To sum up, Table 6.8 shows how such techniques are widely used as baselines in the
recent literature and indicates which topological characteristics are explicitly involved
in their formulations. We observe that:

6.3 A topology-aware analysis of graph collaborative filtering 127

Table 6.8 Selected models for our study. For each of them, we report year, works using them
as baselines, and which topological characteristics are integrated in the models’ formulations.

Model Year Baseline in (2021-) Topological characteristics
LightGCN [126] 2020 e.g., [182, 254, 343, 349, 371] Node degree used to nor-

malize the adjacency matrix
in the message passing.

DGCF [328] 2020 e.g., [96, 179, 329, 331, 388] Node degree used to nor-
malize the adjacency matrix
in the message passing.

UltraGCN [217] 2021 e.g., [92, 113, 190, 408, 409] Node degree used for nor-
malization in the infinite
layer message passing. The
model also learns from the
item-projected graph.

SVD-GCN [248] 2022 e.g., [145, 392] The formulation for the
node embeddings involves
the largest singular values
of the normalized user-item
interaction matrix, whose
maximum value is related to
the maximum node degree
of the user-item graph. The
model also learns from the
user- and item-projected
graphs.

Observation. The analyzed graph-based recommender systems explicitly utilize the
node degree information during the representation learning phase, each of them in a
di�erent way. However, clustering coe�cient and degree assortativity, which share
similarities with node degree’s semantics, do not seem to have an evident representation
within the models’ formulations. Under this perspective, this analysis will also test what
topological aspects graph-based RSs can (un)intentionally capture during their training.

Indeed, these observations pave the way to a further question: are (topological)
dataset characteristics influencing the recommendation performance of
graph-based recommender systems?

6.3.3 Proposed analysis

To answer such a question, in the following, we present our proposed analysis to
evaluate the impact of classical and topological characteristics on the performance of
graph-based recommender systems. As already done in similar works [8, 85], we decide
to design an explanatory statistical model which finds dependencies between dataset

128 Chapter 6 Evaluation of graph-based recommender systems

characteristics and recommendation performance. In this respect, it becomes imperative
to collect a set of samples (with dataset characteristics and the corresponding models’
recommendation performance) that is large enough to ensure the statistical significance
of the conducted analysis under a certain confidence threshold. Thus, in the following,
we first present the approach to generate an extensive set of sub-datasets from three
popular recommendation datasets, which represent our set of samples. Then, we
specify and justify the design choices for the explanatory model which we adopt in our
analysis to fit the dataset characteristics of the sub-datasets to the recommendation
performance of graph-based recommender systems measured on the same sub-datasets.

Dataset generation

The literature has recently demonstrated that dataset sampling in collaborative
filtering can robustify the training of recommendation models [343], sometimes with
ad-hoc solutions performed end-to-end in the downstream task [64, 266]. In this part
of the chapter, we propose to adopt such strategies for another purpose, namely,
the random generation of synthetic (but meaningful) data to conduct our study. We
adopt a similar approach to other studies that examine how classical characteristics
a�ect the performance of recommendation models [8, 85]. However, we take it a step
further by analyzing these aspects from a topological perspective. For this reason, we
use node- and edge-dropout strategies to generate the sub-datasets, which have gained
recent attention in graph learning literature [281, 343]. Since the goal is to generate
sub-datasets exhibiting maximum topological diversity, we depart from the conventional
method of utilizing a Bernoulli distribution to randomly perturb the adjacency matrix.
Instead, we vary the level of aggressiveness (i.e., dropout rate) that involves sampling
with node- or edge-dropout. Further details about the two distinct graph sampling
strategies and sub-dataset generation are presented in the following paragraphs.
Graph sampling. Given the bipartite user-item graph G, a dropout rate µ, and a
sampling strategy, the algorithm returns the sampled graph Gm. When the sampling
strategy is nodeDropout, the procedure initially calculates the number of nodes to
sample from the graph and uniformly extracts the new set of nodes (i.e., Vm). Then,
the adjacency matrix is masked to obtain a new one with the retained nodes only (i.e.,
Am). Conversely, when the sampling strategy is edgeDropout, the procedure initially
calculates the number of edges to sample from the graph and uniformly extracts the
new set of edges (i.e., Em). Then, the adjacency matrix is masked to obtain a new one
with the retained edges only (i.e., Am) and the corresponding set of nodes (i.e., Vm).
Finally, in both cases, the graph Gm is induced through Vm and Am.

6.3 A topology-aware analysis of graph collaborative filtering 129

Sub-dataset generation. The procedure takes the bipartite user-item graph G and
the number of samples M as inputs. Iterating for M times, each sampled graph Gm

is generated (through the previous algorithm) and added to the set of sub-datasets
(i.e., M). Specifically, during each iteration, a dropout rate µ is uniformly sampled
from the range [0.7,0.9] to ensure the generation of small sub-samples of the original
dataset. Then, either nodeDropout or edgeDropout is chosen at random, thus the
overall procedure is not biased towards one of the sampling strategies (see also Section
6.3.4). Finally, the graph Gm is obtained by performing the selected sampling strategy.

In Algorithm 2 and Algorithm 3 we report the pseudocode to perform graph
sampling and the sub-dataset generation, respectively. Note that uniformN () is the
function that uniformly samples N elements from a set, while uniform() samples only
one element from a set.

Explanatory model

Statistical models can be utilized to elucidate the relationship between a hypothesized
cause of a phenomenon (i.e., independent variables) and its e�ect (measured through
dependent variables). While various potential functions can be used to fit the indepen-
dent variables to the dependent ones, we opt to utilize a linear regression model for two
reasons: (i) to adhere to the same methodology employed in recent studies such as [8,
85], and (ii) to derive explanations on the performance impact of data characteristics
through linear dependencies, which represents the most straightforward and intuitive
strategy. Following this intuition, we formalize a regression model:

y = ‘+ ◊0 +◊cXc. (6.25)

We recall that our goal is to test if the factors related to the data characteristics (i.e., Xc)
can explain the e�ect on the recommendation system’s performance (i.e., y). Therefore,
in Equation 6.25, we denote by ◊c = [◊1, . . . ,◊C] the vector of regression coe�cients
each of whom is associated with the c-th feature (data characteristic considered here),
Xc œ RM◊C the matrix containing the data characteristic values for each sample in
the training set, and y the vector containing the values of the performance measure
associated with all samples in the training set. Moreover, under the assumption of
mean-centered data, ◊0 expresses the expected value of y (i.e., in this case, the expected
recommendation performance). The regression model is trained through Ordinary

130 Chapter 6 Evaluation of graph-based recommender systems

Algorithm 2: Graph sampling
Input: Bipartite user-item graph G, dropout rate µ, graph sampling strategy
sampling .

Output: Sampled graph Gm.
if sampling == nodeDropout then

N = (U + I)ú (1≠µ)
Vm Ω uniformN (U fiI)
Am Ω masknode(A,Vm)

else if sampling == edgeDropout then
N = E ú (1≠µ)
Em Ω uniformN (Euæi)
Am Ω maskedge(A,Em)
Vm Ω induce(Am)

Gm Ω {Vm,Am}
Return Gm.

Algorithm 3: Sub-dataset generation.
Input: Bipartite user-item graph G, number of samples M .
Output: M sampled graphs.
m Ω 1
M = {}
while m Æ M do

µ Ω uniform([0.7,0.9])
sampling Ω uniform({nodeDropout,edgeDropout})
M Ω Mfi sample(G,µ,sampling)
m Ω m+1

end
Return M.

Least Squares (OLS):

(◊ú
0,◊ú

c) = min
◊0,◊c

1
2 Îy ≠ ◊0 ≠◊cXcÎ2

2
. (6.26)

In order to show how the performance of RSs are related to dataset characteristics,
we utilize the basic regression model presented in Equation 6.26 with the aim of
maximizing the R2 coe�cient. This approach allows us to e�ectively motivate the
impact of the ◊c coe�cients on the recommendation system’s e�ectiveness, as outlined
in [104] for any regression model.

6.3 A topology-aware analysis of graph collaborative filtering 131

6.3.4 Results and discussion

This section aims to test the e�ectiveness of our proposed explanatory model. Specif-
ically, we seek to answer the following two research questions: RQ1) What is the
impact of classical and topological characteristics on the performance of graph-based
recommender systems?; RQ2) Is the generation of sub-datasets through node- and
edge-dropout di�erently influencing the explanations of our model?

Experimental setting

We provide here a detailed description of the experimental settings for our proposed
explanatory framework. First, we present the recommendation datasets for this study.
Then, we report on the adopted characteristics, along with details about their (optional)
value rescaling and denomination. Finally, we describe the methodology we follow to
train and evaluate the graph-based recommendation models to foster reproducibility.
Datasets. We use specific versions of Yelp2018 [248], Gowalla [126], and Amazon-
Book [327]. The usage of such datasets is motivated by their popularity in graph
collaborative filtering [113, 126, 179, 217]. Yelp2018 [25] collects data about users and
businesses interactions, Amazon-Book is a sub-category of the Amazon dataset [124],
and Gowalla [72] is a social-based dataset where users share their locations. Note that,
to provide a coherent calculation of the characteristics, we retained only the subset of
nodes and edges for each dataset which induces the widest connected graph. In the
following, we present the calculation of characteristics, to experimentally justify them.
Characteristics calculation. Following the same setting as in [85], we generate
M = 600 sub-datasets from the original ones through the techniques described in
Algorithm 2 and Algorithm 3, resulting in a total of 1,800 synthetic samples. Second,
inspired by similar works [8, 85], we decide to apply the log10-scale to the formulation
of some characteristics to obtain values within comparable order of magnitude, thus
making the training of the explanatory model more stable. In Table 6.9 we provide
a comprehensive outlook on the set of characteristics, where we apply a renaming
scheme for the sake of simple understanding and reference. Furthermore, Table 6.10
displays the statistics of the overall datasets and the aggregated characteristics for the
generated samples. Finally, Figure 6.5 empirically supports the usage of the selected
characteristics, as they appear loosely correlated.
Reproducibility. We perform the random subsampling strategy to split each sub-
dataset into train and test (80% and 20%, respectively). Then, we retain the 10% of
the train as validation for the early stopping to avoid overfitting. To train LightGCN,

132 Chapter 6 Evaluation of graph-based recommender systems

Table 6.9 Selected classical and topological characteristics. We report the full name, the
symbol, whether it is rescaled via log10, and the shorthand adopted.

Type Characteristics Symbol Log10 Shorthand

Classical

Space size ’ X SpaceSizelog

Shape fi X Shapelog

Density ” X Densitylog

Gini user ŸU Gini-U
Gini item ŸI Gini-I

Topological

Average degree user ‡U X AvgDegree-Ulog

Average degree item ‡I X AvgDegree-Ilog

Average clustering coe�cient user “U X AvgClustC-Ulog

Average clustering coe�cient item “I X AvgClustC-Ilog

Degree assortativity user flU Assort-U
Degree assortativity item flI Assort-I

Table 6.10 Dataset overall statistics and characteristic aggregated statistics (minimum and
maximum values, mean, and standard deviation) on the sampled sub-datasets.

Yelp2018 Amazon-Book Gowalla
Overall Statistics

Users: 25,677 Items: 25,815
Interactions: 696,865

Overall Statistics
Users: 70,679 Items: 24,915

Interactions: 846,434

Overall Statistics
Users: 29,858 Items: 40,981

Interactions: 1,027,370
Characteristics Min Max Mean Std Min Max Mean Std Min Max Mean Std
SpaceSizelog 0.256 1.393 1.000 0.379 0.405 1.593 1.176 0.384 0.430 1.541 1.161 0.375
Shapelog 0.019 0.105 0.045 0.014 0.325 0.443 0.407 0.021 -0.149 -0.097 -0.129 0.008
Densitylog -3.699 -2.693 -3.219 0.358 -3.902 -2.896 -3.497 0.365 -3.889 -2.876 -3.380 0.363
Gini-U 0.443 0.508 0.486 0.008 0.384 0.499 0.459 0.023 0.462 0.512 0.491 0.007
Gini-I 0.500 0.609 0.575 0.019 0.518 0.618 0.586 0.018 0.437 0.502 0.478 0.008
AvgDegree-Ulog 0.523 0.926 0.758 0.110 0.318 0.609 0.476 0.077 0.603 1.017 0.846 0.115
AvgDegree-Ilog 0.565 0.955 0.804 0.098 0.682 1.043 0.883 0.096 0.487 0.888 0.717 0.109
AvgClustC-Ulog -1.144 -0.662 -0.947 0.126 -0.757 -0.407 -0.602 0.095 -1.211 -0.741 -1.013 0.122
AvgClustC-Ilog -1.092 -0.652 -0.922 0.105 -1.124 -0.751 -0.967 0.099 -1.080 -0.614 -0.881 0.124
Assort-U -0.051 0.235 0.021 0.035 -0.041 0.533 0.052 0.074 0.042 0.544 0.188 0.071
Assort-I -0.002 0.237 0.067 0.037 0.000 0.842 0.443 0.264 -0.037 0.161 0.021 0.028

DGCF, UltraGCN, and SVD-GCN, we fix their configurations (i.e., hyper-parameters
and patience for the early stopping) to the best values according to the original
papers, since our scope is not to fine-tune them. Finally, following the literature, we
use the Recall@20 calculated on the validation for the early stopping, and evaluate
the models by assessing the same metric on the test set. Codes, datasets, and
configuration files to reproduce all the experiments are available at this link: https:
//github.com/sisinflab/Graph-Characteristics.

Impact of characteristics

We assess the impact of classical and topological characteristics on the accuracy
performance (i.e., Recall@20) of graph-based RSs. Table 6.11 displays the results
for our proposed explanatory model. In the first row (in light gray) we evaluate the

https://github.com/sisinflab/Graph-Characteristics
https://github.com/sisinflab/Graph-Characteristics

6.3 A topology-aware analysis of graph collaborative filtering 133

S
pa

ce
S

iz
e l

og

S
h

ap
e l

og

D
en

si
ty

lo
g

G
in

i-U
G

in
i-I

A
vg

D
eg

re
e-

U
lo

g

A
vg

D
eg

re
e-

I l
og

A
vg

C
lu

st
C

-U
lo

g

A
vg

C
lu

st
C

-I
lo

g

A
ss

or
t-U

A
ss

or
t-I

SpaceSizelog

Shapelog

Densitylog

Gini-U
Gini-I

AvgDegree-Ulog

AvgDegree-Ilog

AvgClustC-Ulog

AvgClustC-Ilog

Assort-U
Assort-I ≠1

≠0.5

0

0.5

1

Fig. 6.5 Pearson correlation of the selected characteristics. Many values in [≠0.5,0.5] indicate
loosely correlated pairs.

goodness of the explanatory model through the R2 and its adjusted version denoted
as adj. R2 [8, 85]. Conversely, the remaining rows show the learned characteristics’
coe�cients (i.e., [◊1, . . . ,◊C] as described in Section 6.3.3, and renamed through a more
human-readable convention). Trivially, coe�cients’ signs and values indicate whether
there exists a (strong) direct/inverse relation between the recommendation metric and
the dataset characteristic. Finally, we assess the statistical significance of the results
(the asterisks alongside each characteristic’s coe�cient, refer to the legend below the
table).

Overall, the adj. R2 is, for the vast majority of settings, above 95%, proving the
ability of the regression model to explain the accuracy recommendation performance
through the measured characteristics. Hereinafter, we further decompose the regression
results by categorizing the characteristics as classical and topological.
Classical dataset characteristics. Previous works [8] have assessed the impact of
classical characteristics on neighbor- and factorization-based recommendation models.
However, a careful search of the relevant literature yields that no study has investigated
whether such characteristics influence graph-based recommender systems likewise. From
a theoretical standpoint, it could be noticed that neighbor- and factorization-based
models have some similarities with graph-based ones, as the latter use a message-passing
schema that aggregates information from the neighborhood and also learn latent factor
representations of users and items.

Nevertheless, and interestingly, Table 6.11 suggests that the factorization component
might be predominant within graph-based recommender systems. If we refer to
the results from [8], we observe that factorization- and graph-based approaches are

134 Chapter 6 Evaluation of graph-based recommender systems

Table 6.11 Results of the explanatory model with the Recall@20 as recommendation metric.
Besides the row in light gray standing for the R2, the other rows refer to the learned
characteristics’ coe�cients (with the statistical significance). Constant (i.e., ◊0) is the
expected value of Recall@20.
Characteristics LightGCN DGCF UltraGCN SVD-GCN

Yelp2018 Gowalla Yelp2018 Gowalla Yelp2018 Gowalla Yelp2018 Gowalla
R2(adj. R2) 0.971(0.971) 0.979(0.978) 0.973(0.973) 0.982(0.981) 0.965(0.964) 0.860(0.858) 0.982(0.981) 0.981(0.981)
Constant 0.100úúú 0.121úúú 0.089úúú 0.107úúú 0.061úúú 0.062úúú 0.116úúú 0.135úúú

SpaceSizelog 0.070úúú 0.192úúú 0.133úúú 0.237úúú ≠0.059úúú 0.318úúú 0.064úúú 0.114úúú

Shapelog ≠0.253ú ≠0.231 ≠0.282úú ≠0.220ú 0.135 ≠0.003 ≠0.193 ≠0.232ú

Densitylog 0.194úúú 0.298úúú 0.243úúú 0.327úúú 0.026ú 0.321úúú 0.203úúú 0.234úúú

Gini-U 0.296úú 0.104 0.074 ≠0.071 ≠0.043 ≠0.931úúú 0.136 0.143
Gini-I 1.362úúú 0.681úúú 1.108úúú 0.560úúú 0.605úúú ≠0.144 1.138úúú 0.748úúú

AvgDegree-Ulog 0.390úúú 0.605úúú 0.518úúú 0.673úúú ≠0.100ú 0.640úúú 0.364úúú 0.464úúú

AvgDegree-Ilog 0.137ú 0.374úúú 0.235úúú 0.453úúú 0.034 0.637úúú 0.171úú 0.231úú

AvgClustC-Ulog 0.613úúú 0.665úúú 0.726úúú 0.783úúú ≠0.077 0.706úúú 0.613úúú 0.496úúú

AvgClustC-Ilog 0.087 0.332ú 0.168 0.373úú 0.062 0.671úú 0.057 0.215
Assort-U 0.094úúú 0.024ú 0.093úúú 0.013 0.123úúú ≠0.019 0.080úúú 0.010
Assort-I ≠0.051 ≠0.031 ≠0.056ú ≠0.055 0.001 ≠0.174úúú ≠0.048ú ≠0.088ú

***p-value Æ 0.001, **p-value Æ 0.01, *p-value Æ 0.05

particularly aligned, considering: (i) the inverse correspondence between the accuracy
performance metric and the Shapelog in almost all settings, meaning that when the
number of users is higher than the number of items in the system, accuracy performance
may decrease; (ii) the direct correspondence between the accuracy performance metric
and Densitylog and Gini-I. As for (ii), the density is historically known as one of the
core problems in recommendation (i.e., data sparsity), so it becomes evident why also
graph-based recommender systems’ performance benefits from denser (i.e., less sparse)
datasets. The Gini index measures the dissimilar distribution of items’ interactions
in the system and could be related to the tendency of RSs to promote popular items
from the catalog. That is, when there exist items that have been experienced more
frequently than others, both graph- and factorization-based RSs may be biased to
popular items, and so their accuracy performance increases. Noteworthy, all such
observations are supported by the statistical significance of the results.
Topological dataset characteristics. Graph-based recommendation systems inter-
pret the user-item interaction data as a bipartite and undirected graph. Consequently,
this study assesses the influence of topological characteristics of the selected recommen-
dation datasets on the accuracy performance.

The most evident outcome is that AvgDegree-Ulog and AvgDegree-Ilog show a
direct correspondence with recommendation accuracy performance in almost all settings.
Indeed, this analytically confirms what we already observed in Section 6.3.2 regarding
the explicit presence of the node degree in the formulations of all the selected graph-
based approaches. In practical terms, when graph-based models are trained on datasets
with several interactions for users and items, they learn accurate users’ preferences since

6.3 A topology-aware analysis of graph collaborative filtering 135

each node receives the contribution of numerous neighbor nodes. It is worth noticing
that, in absolute values, AvgDegree-Ulog is more influential than AvgDegree-Ilog on
the overall performance. Hence, under the same average degree gain, an improvement
in the user average degree is preferable since it would more significantly improve the
overall performance.

As far as clustering coe�cient and degree assortativity are concerned, we assess
how similarities among nodes from the same partition in the graph may impact the
recommendation accuracy performance of models. In terms of AvgClustC-Ulog and
AvgClustC-Ilog, the results prove again a strong direct correspondence in almost all
settings of graph-based models and datasets. Di�erently from the average degree
scenario, the relative importance of the user-side values is much higher than the one of
the item-side for LightGCN and DGCF, while the gap sometimes gets narrower in the
case of UltraGCN and SVD-GCN. This may be because while LightGCN and DGCF
only leverage user-item types of interactions, UltraGCN and (especially) SVD-GCN
also embed the information conveyed in the user- and item-projected graphs in their
formulations, thus flattening the di�erent influence of the user-side characteristics over
the item-side counterpart.

Interestingly, the Assort-U and Assort-I characteristics exhibit a direct and inverse
correspondence to the accuracy metric, respectively. Furthermore, models such as
LightGCN and DGCF have slightly larger coe�cients for both Assort-U and Assort-I
than SVD-GCN. Again, these results have a mathematical justification. Indeed, the
strong lookahead nature of the assortativity measures (refer again to Section 6.3.1)
seems to be captured by the multi-layer message-passing performed by LightGCN
and DGCF. Conversely, in the case of SVD-GCN, they are less influential, probably
because the model acts on the singular values of the adjacency matrix with the e�ect
of limiting the graph convolutional layers’ depth to avoid over-smoothing. However, it
is important to observe that the assortativity results are less statistically-significant
than the others, so we plan to further investigate this aspect in future work. On the
contrary, a di�erent trend can be observed for UltraGCN, where both Assort-U and
Assort-I generally have bigger coe�cients with much more statistically significant
values. Again, this behavior could have a theoretical foundation since the model adopts
the infinite-layer approximation, which (di�erently from SVD-GCN) may capture
long-distance relationships in the user-item graph.
Summary. The analytical and theoretical observations show that: (i) factorization-
based approaches could be the core component of graph-based recommender systems;
(ii) while confirming its influence on the recommendation performance, node degree

136 Chapter 6 Evaluation of graph-based recommender systems

seems not to be a key topological characteristic to distinguish among the di�erent
graph-based models; indeed, the wider perspective provided by clustering coe�cient and
(especially) degree assortativity may help to recognize how the di�erent models address
the topological properties of the graph, even with unexpected outcomes.

Influence of node- and edge-dropout

The current section investigates the influence of the di�erent sampling strategies,
namely, node- and edge-dropout, on the explanatory model. Given the lack of space,
we report an extensive analysis of the largest dataset, Gowalla, by considering the
performance of LightGCN and SVD-GCN.

As generally observed in real-world networks, user-item bipartite graphs follow the
typical trend of scale-free networks [255]. Thus, we introduce the following statement
on the possible influence of node- and edge-dropout on our linear explanatory model:
Statement. In general, the node-dropout strategy drops wider portions of the original
topology than the edge-dropout, so it may negatively impact the significance of the linear
model explanations.

Figure 6.6 displays the relation (i.e., the black points) between the probability
distribution of node degrees in the original graph and their degree values on the Gowalla
dataset. As evident, high-degree nodes are less popular than low-degree ones, and this
resembles the tendency of real-world networks to be scale-free [255]. To be more precise,
the actual degree probability distribution approximates neither the power-law (i.e.,
representing scale-free networks, in green), nor the exponential function (i.e., in red),
but it would be well-approximated by a function in-between. This suggests that the
high-degree nodes are even less frequent than they usually are in scale-free networks.

The figure helps to re-interpret the impact of node- and edge-dropout. While
node-dropout works by removing nodes (and all the edges connected to them), edge-
dropout eliminates edges and the consequently-disconnected nodes. Let us consider
their worst-case scenarios. For node-dropout, it would be to drop many high-degree
nodes from the graph. Whereas, when considering edge-dropout, it would be to drop
all the edges connected to several nodes and thus disconnect them from the graph.

This intuition drove us towards stating that, on averagely, node-dropout has the
potential to drop larger portions of the user-item graph than edge-dropout. Indeed,
this might undermine the goodness of the explanations produced by our explanatory
framework. The assumption further motivates the strategy we adopted to generate the
sub-datasets in RQ1, where we performed both node- and edge-dropout by uniformly

6.3 A topology-aware analysis of graph collaborative filtering 137

101 102 103

10≠5

10≠4

10≠3

10≠2

10≠1

100

d

P
(d

)

Degree frequency
Power-law

Exponential

Fig. 6.6 Node degree probability distribution on Gowalla. The black points (i.e., the real
data) would be approximated by a function in-between the power-law and the exponential.

selecting one of them for each sampled sub-dataset in order not to bias the procedure
towards either node- or edge-dropout (see again Section 6.3.3).

To analytically test the statement, we build four versions of the dataset Xc, each
with varying portions of sub-datasets generated through node and edge dropout,
respectively (refer to Equation 6.25). Specifically, the number of samples in Xc changes
in accordance to:

|Xc| = (1≠–)|Xn
c |+–|Xe

c|, (6.27)

where Xn
c and Xe

c indicate the portion of Xc sampled through node- and edge-dropout,
while – is a parameter to control the number of samples from Xn

c and Xe
c contributing

to the final dataset Xc. We use | · | as a necessary notation abuse to refer to any dataset
size in a simple way. We let – range in {0.0,0.3,0.7,1.0}, where extreme values of –

are used to build the dataset through either node- or edge-dropout; the others combine
the two sampling strategies.

Table 6.12 reports the explanatory model results for the Recall@20 as accuracy
metric at varying – values, along with the average sampling statistics on each setting
of –. In alignment with the above statement, the average sampling statistics show that
node-dropout generally retains smaller portions of the graph than the edge-dropout.
Then, the regression results highlight that the optimal trade-o� between high R2 (adj.
R2) and statistical significance of the learned coe�cients is reached when combining
samples generated through both node- and edge-dropout. On the contrary, the settings
with either node- or edge-dropout do not o�er the conditions for the regression model
to learn meaningful dependencies, with respect to the R2 (adj. R2) and/or statistical
significance. Indeed, in the extreme cases, the characteristic-performance dependencies
are not aligned with the ones observed in RQ1 either on the sign or on the absolute
value of the coe�cients. This justifies the dataset sampling adopted to explore RQ1.

138 Chapter 6 Evaluation of graph-based recommender systems

Table 6.12 Results of the explanatory model on Gowalla (Recall@20) obtained with LightGCN
and SVD-GCN, for di�erent proportions of sub-datasets generated through node- and edge-
dropout. The header reports a graphical intuition of –’s variation and average sampling
statistics.

Node drop Edge drop Node drop Edge drop Node drop Edge drop Node drop Edge drop
Average Sampling Statistics

Users: 5,828 Items: 7,887
Interactions: 45,620

Average Sampling Statistics
Users: 12,744 Items: 17,229

Interactions: 97,785

Average Sampling Statistics
Users: 21,730 Items: 29,316

Interactions: 160,919

Average Sampling Statistics
Users: 28,526 Items: 38,467

Interactions: 209,659
Characteristics LightGCN SVD-GCN LightGCN SVD-GCN LightGCN SVD-GCN LightGCN SVD-GCN
R2(adj. R2) 0.597(0.583) 0.754(0.745) 0.968(0.967) 0.970(0.969) 0.986(0.985) 0.987(0.987) 0.994(0.994) 0.991(0.991)
Constant 0.179úúú 0.193úúú 0.146úúú 0.159úúú 0.098úúú 0.112úúú 0.062úúú 0.077úúú

SpaceSizelog 0.092 0.037 0.143úúú 0.064úú 0.220úúú 0.136úúú ≠0.162úúú ≠0.048
Shapelog ≠0.078 ≠0.118 ≠0.265 ≠0.261ú ≠0.175 ≠0.303 0.084 ≠0.157
Densitylog ≠0.079úú ≠0.090úú 0.261úúú 0.195úúú 0.323úúú 0.251úúú 0.072úú 0.040
Gini-U ≠0.013 0.015 0.184 0.193 0.246 0.224 0.291úúú 0.225ú

Gini-I 0.883úúú 0.884úúú 0.856úúú 0.867úúú 0.911úúú 0.940úúú 0.389úúú 0.387úúú

AvgDegree-Ulog 0.052 0.005 0.536úúú 0.390úúú 0.631úúú 0.539úúú ≠0.132ú 0.070
AvgDegree-Ilog ≠0.026 ≠0.112 0.271úú 0.129 0.456úúú 0.236ú ≠0.048 ≠0.087
AvgClustC-Ulog 0.209 0.168 0.654úúú 0.508úú 0.687úú 0.647úúú ≠0.133 0.016
AvgClustC-Ilog ≠0.141 ≠0.227 0.137 ≠0.007 0.436 0.172 ≠0.145 ≠0.112
Assort-U 0.008 ≠0.001 0.017 0.008 0.013 ≠0.002 0.011 ≠0.003
Assort-I ≠0.022 ≠0.078úú 0.028 ≠0.057 0.059 ≠0.056 0.012 ≠0.037
***p-value Æ 0.001, **p-value Æ 0.01, *p-value Æ 0.05

Table 6.13 Additional results for RQ1 on Amazon-Book. The current table is to be interpreted
the same way as Table 6.11.

Characteristics LightGCN DGCF UltraGCN SVD-GCN
R2(adj. R2) 0.953(0.952) 0.951(0.950) 0.800(0.797) 0.964(0.963)
Constant 0.088úúú 0.079úúú 0.056úúú 0.112úúú

SpaceSizelog 0.456úúú 0.364úúú 0.067 0.433úúú

Shapelog ≠0.668úúú ≠0.598úúú ≠0.215 ≠0.582úúú

Densitylog 0.546úúú 0.453úúú 0.141úú 0.541úúú

Gini-U ≠0.073 ≠0.085 ≠0.350úú ≠0.042
Gini-I 1.302úúú 1.148úúú 0.772úúú 1.306úúú

AvgDegree-Ulog 1.336úúú 1.116úúú 0.316ú 1.265úúú

AvgDegree-Ilog 0.668úúú 0.518úúú 0.101 0.683úúú

AvgClustC-Ulog 1.627úúú 1.307úúú 0.210 1.617úúú

AvgClustC-Ilog 0.431úúú 0.337úúú 0.111 0.354úúú

Assort-U 0.031 0.041ú 0.070úúú 0.028
Assort-I ≠0.010 ≠0.004 0.025úúú ≠0.010ú

***p-value Æ 0.001, **p-value Æ 0.01, *p-value Æ 0.05

Summary. The empirical and analytical evaluation of the explanatory model for
di�erent settings of node- and edge-dropout indicates that their simultaneous combination
to generate the sub-datasets (i.e., the strategy we followed in RQ1) is beneficial to
produce meaningful explanations.

The interested reader may refer to Tables 6.13 and 6.14 for additional results of
RQ1 and RQ2.

6.4 How neighborhood exploration influences nov-
elty and diversity

To mitigate the over-smoothing e�ect, graph-based techniques for collaborative filtering
limit the exploration of neighborhood to three hops [61, 126, 325]. Similar approaches

6.4 How neighborhood exploration influences novelty and diversity 139

Table 6.14 Additional results for RQ2 on DGCF and UltraGCN. The current table is to be
interpreted the same way as Table 6.12.

Node drop Edge drop Node drop Edge drop Node drop Edge drop Node drop Edge drop
Average Sampling Statistics

Users: 5,828 Items: 7,887
Interactions: 45,620

Average Sampling Statistics
Users: 12,744 Items: 17,229

Interactions: 97,785

Average Sampling Statistics
Users: 21,730 Items: 29,316

Interactions: 160,919

Average Sampling Statistics
Users: 28,526 Items: 38,467

Interactions: 209,659
Characteristics DGCF UltraGCN DGCF UltraGCN DGCF DGCF UltraGCN
R2(adj. R2) 0.888(0.884) 0.597(0.583) 0.973(0.972) 0.833(0.827) 0.988(0.988) 0.883(0.879) 0.994(0.994) 0.599(0.584)
Constant 0.162úúú 0.091úúú 0.131úúú 0.074úúú 0.085úúú 0.051úúú 0.051úúú 0.034úúú

SpaceSizelog 0.130úú 0.175ú 0.192úúú 0.358úúú 0.264úúú 0.337úúú ≠0.188úúú 1.644úúú

Shapelog ≠0.109 ≠0.096 ≠0.232ú ≠0.022 ≠0.136 ≠0.029 ≠0.011 1.055úú

Densitylog ≠0.005 0.394úúú 0.294úúú 0.355úúú 0.351úúú 0.340úúú 0.168úúú 0.185
Gini-U ≠0.136 ≠0.824úúú 0.083 ≠0.880úúú 0.130 ≠0.775úú 0.200ú ≠0.961
Gini-I 0.756úúú ≠0.152 0.717úúú ≠0.248 0.668úúú ≠0.333 0.264úú ≠0.732
AvgDegree-Ulog 0.179úú 0.617úúú 0.601úúú 0.723úúú 0.684úúú 0.692úúú ≠0.014 1.302úúú

AvgDegree-Ilog 0.070 0.521úú 0.369úúú 0.702úúú 0.547úúú 0.663úúú ≠0.025 2.356úúú

AvgClustC-Ulog 0.362úúú 0.619úú 0.715úúú 0.641úú 0.706úúú 0.481 0.001 1.099úú

AvgClustC-Ilog ≠0.080 0.412 0.252 0.903úú 0.571úú 0.962úú ≠0.083 2.415úúú

Assort-U ≠0.001 0.001 0.011 0.000 0.001 0.012 0.008 0.064
Assort-I ≠0.050 ≠0.111úú 0.002 ≠0.151úú 0.002 ≠0.086 ≠0.032 ≠0.141
***p-value Æ 0.001, **p-value Æ 0.01, *p-value Æ 0.05

are designed to weight the importance of each neighbor node on its ego node through
attention mechanisms [313], which allows the exploration of even smaller portions of
the neighborhood to reach remarkable results [328].

Conversely, recent works [217, 278] highlight critical limitations in the adoption
of graph convolution to explore users’ and items’ neighborhoods. Starting from
the idea described in [126], they propose alternative reformulations of GCN for the
recommendation task, providing simplified and lighter versions which go beyond the
traditional concept of multi-hop message-passing. By comparing these latter approaches
to the ones described earlier, we might categorize them all into two families, namely,
graph recommendation techniques performing explicit (e.g., [61, 126, 325, 328]) and
implicit (e.g., [217, 278]) message-passing.

Although the literature has widely shown the recommendation accuracy boost of
such models to traditional (i.e., non-graph) CF baselines, their ability to produce novel
and diverse recommendation lists [310, 311] remains poorly investigated. While the
topic of multi-objective recommendation has been addressed only recently by few works
in graph CF [292, 401], modern recommender systems are more and more required to
reach a su�cient trade-o� between accurate and novel/diverse recommendations [167,
287, 360], as a renewed need from both user’s and business’s perspectives [2, 5, 166].

This fourth part of the chapter seeks to understand how and why the neighborhood
exploration strategy and (optionally) depth may influence novelty and diversity rec-
ommendation metrics in graph collaborative filtering. To this aim, we run extensive
experiments by training and evaluating six state-of-the-art graph CF models on three
popular recommendation datasets.

Our contributions are threefold: (i) to the best of our knowledge, no previous work
has evaluated approaches from the two recognized graph recommendation families

140 Chapter 6 Evaluation of graph-based recommender systems

(i.e., explicit and implicit message-passing) on a grid of accuracy/novelty/diversity
recommendation metrics, (ii) to provide a fair comparison, we train all explicit
message-passing models exploring the whole hop range 1-4, which also allows examining
the accuracy/novelty/diversity trade-o� on the neighborhood size, and (iii) we propose
a simple reformulation of the explicit message-passing schema where same-type node
connections (e.g., user-user) and different-type node connections (e.g., user-item)
are formally highlighted, in an e�ort to unveil their influence on the metrics’ trade-o�.

6.4.1 Novelty and diversity in recommendation

User experience is becoming crucial on recommendation platforms [141, 149, 282]
as the suggestion of interesting lists of items satisfies users and entices them to
remain loyal to the platform, thus increasing profits [316]. A good user experience
requires the recommended items to be nontrivial, as diverse as possible, and possibly
unexpected [110, 282]. However, designing dedicated models is particularly challenging
due to the inherent di�culty of evaluating them without a user study. For this reason,
researchers have dedicated a considerable e�ort to the beyond-accuracy dimensions over
the past two decades [276, 311, 379]. While the search for the accuracy/novelty/diversity
trade-o� has gained momentum in recommendation [5, 15, 167, 287, 360], to the best
of our knowledge, only two studies investigate novelty and diversity dimensions in
the field of graph collaborative filtering [292, 401]. They focus on identifying the
accuracy/diversity trade-o� by proposing specific models that could achieve competitive
performance. However, they do not deepen into analyzing the influence of neighborhood
exploration on the highlighted dimensions.
On the contrary, we assess the state-of-the-art, most accurate models for graph recom-
mendation and inspect how they behave on novelty and diversity, exploring the potential
motivations with a focus on their different neighborhood exploration strategies.

6.4.2 Reformulating explicit message-passing

Starting from the novel model classification for graph collaborative filtering outlined
here (i.e., neighborhood exploration approaches leveraging explicit or implicit
message-passing), in this section we propose a simple (but useful) reformulation for
the former family where same- and different-type node interactions (e.g., user-user
and user-item, respectively) are formally highlighted.

6.4 How neighborhood exploration influences novelty and diversity 141

Preliminaries

Let U = {u1,u2, . . . ,uN} and I = {i1, i2, . . . , iM } be the sets of users and items. Starting
from U and I, we consider the bipartite and undirected graph connecting pairs of
nodes (i.e., users and items) with an existing interaction among them. User and item
node features are the embeddings eu œ Rd,’u œ U and ei œ Rd,’i œ I, respectively.

Traditional message-passing

Let u and i be the nodes for the user and the item to update (ego nodes), and let N (u)
and N (i) be the sets of nodes at one hop from u and i, respectively (neighbor nodes).
The schema aggregates the embeddings from the neighborhood (messages) to refine
the ego nodes:

e(1)

u = Ê
3;

e(0)

iÕ ,’iÕ œ N (u)
<4

, e(1)

i = Ê
3;

e(0)

uÕ ,’uÕ œ N (i)
<4

(6.28)

where e(1)

u and e(1)

i are the refined embedding versions of user u and item i after
one hop, Ê(·) is the aggregation function (e.g., the summation), while e(0)

uÕ = euÕ and
e(0)

iÕ = eiÕ . To explore deeper and deeper neighborhoods of the ego nodes, aggregation
is usually iterated. After two hops, the embeddings of user u and item i are:

e(2)

u = Ê
3;

e(1)

iÕ ,’iÕ œ N (u)
<4

, e(2)

i = Ê
3;

e(1)

uÕ ,’uÕ œ N (i)
<4

(6.29)

Thus, the general message-passing formulation after l hops is:

e(l)
u = Ê

3;
e(l≠1)

iÕ ,’iÕ œ N (u)
<4

, e(l)
i = Ê

3;
e(l≠1)

uÕ ,’uÕ œ N (i)
<4

(6.30)

Proposed reformulation

The two-hop node update in Equation (6.29) is further expanded through the one-hop
node update in Equation (6.28):

e(2)

u = Ê
3;

Ê
3;

e(0)

uÕÕ ,’uÕÕ œ N (iÕ)\{u}
¸ ˚˙ ˝

2-hop

<4
,’iÕ œ N (u)
¸ ˚˙ ˝

1-hop

<4

e(2)

i = Ê
3;

Ê
3;

e(0)

iÕÕ ,’iÕÕ œ N (uÕ)\{i}
¸ ˚˙ ˝

2-hop

<4
,’uÕ œ N (i)
¸ ˚˙ ˝

1-hop

<4 (6.31)

where set di�erences are used to avoid node duplicates. After two hops, the node
embeddings of user u and item i get the contributions of those users uÕÕ and items iÕÕ for

142 Chapter 6 Evaluation of graph-based recommender systems

!

"

!!
!"

!#

!$

!%

!&

"!

""

"#

"$

1-hop 2-hop

(a)

!

"

!!

!"

!#
!$

!%

!&

"!

""

"#

"$

1-hop 2-hop 3-hop

"$

"%

"&

"'
!'

!(
!)

(b)
Fig. 6.7 User and item neighborhood exploration after (a) 2 and (b) 3 hops. Contributions
to the ego node update are highlighted through dashed ovals. Edge direction indicates the
message propagation from neighbor to ego nodes.

whom there exists a user-item-user path connecting u with uÕÕ, and an item-user-item
path connecting i with iÕÕ, respectively (Figure 6.7a). Such paths link same-type nodes.
In a similar manner, let us apply the general formula from Equation (6.30) to the
three-hop node update:

e(3)

u = Ê
3;

e(2)

iÕ ,’iÕ œ N (u)
<4

, e(3)

i = Ê
3;

e(2)

uÕ ,’uÕ œ N (i)
<4

(6.32)

which we expand through Equation (6.31):

e(3)

u = Ê
3;

Ê
3;

Ê
3;

e(0)

iÕÕÕ ,’iÕÕÕ œ N (uÕÕ)\{iÕÕ}
¸ ˚˙ ˝

3-hop

<4
,

’uÕÕ œ N (iÕ)\{uÕÕ}
¸ ˚˙ ˝

2-hop

<4
,’iÕ œ N (u)
¸ ˚˙ ˝

1-hop

<4

e(3)

i = Ê
3;

Ê
3;

Ê
3;

e(0)

uÕÕÕ ,’uÕÕÕ œ N (iÕÕ)\{uÕÕ}
¸ ˚˙ ˝

3-hop

<4
,

’iÕÕ œ N (uÕ)\{iÕÕ}
¸ ˚˙ ˝

2-hop

<4
,’uÕ œ N (i)
¸ ˚˙ ˝

1-hop

<4

(6.33)

After three hops, the node embeddings of user u and item i get the contributions of
those items iÕÕÕ and users uÕÕÕ for whom there exists a user-item-user-item path con-
necting u with iÕÕÕ, and an item-user-item-user path connecting i with uÕÕÕ, respectively
(Figure 6.7b). In this case, such paths link different-type nodes.

6.4 How neighborhood exploration influences novelty and diversity 143

This reformulation outlines two neighborhood exploration types, propagating mes-
sages through same- and different-type nodes after an even and an odd number of
hops, respectively. While previous works assess recommendation performance when
indistinctly increasing the hop numbers, we provide a finer evaluation based on the
type of the explored nodes. In the next sections, we will count hops following the
introduced categorization. For example, same-type node explorations after 1 and 2
hops refer to the paths user-item-user and user-item-user-item-user, respectively, while
different-type node explorations after 1 and 2 hops refer to the paths user-item and
user-item-user-item, respectively.

Before deepening into the presentation and discussion of the experiments and results,
it is worth clarifying that what we propose here does not represent a way to recast
GNNs-based recommendation approaches under the relational-GNNs [273] perspective.
Indeed, the GNN architectures considered in recommendation work on graphs with
undirected edges which stand for single-typed links (i.e., “user has interacted with” and
viceversa); thus, when we refer to specific paths such as user-item-user-item, we are
actually considering a multi-hop exploration (consisting of multiple “user has interacted
with” kind of links) of the neighborhood. Bringing this clarification and what has been
said above together, we may state our proposed reformulation has the main and only
purpose to reconsider message-passing in GNNs approaches for recommendation as
a “typed” message-passing, meaning that the message-passing after an even and odd
number of explorations is connecting same- and di�erent-type nodes in the graph,
respectively; however, the most (and only) atomic relation in the graph still remains of
one type (“user has interacted with”).

6.4.3 Experiments and discussion

In the following, we describe datasets, baselines, reproducibility details, evaluation
protocol, and results of our analysis.

Experimental setup

Datasets. We adopt Movielens-1M [121], Amazon Digital Music [218], and Epin-
ions [261]. Following a similar approach to [14], these datasets are binarized by retaining
interactions with a score greater than 3 (Epinions already has an implicit version)
and filtered through the p-core to avoid the cold-start e�ect [124, 125] which is out
of the scope of this analysis. Movielens-1M counts 5,915 users, 2,753 items, and
570,622 interactions, Amazon Digital Music counts 8,328 users, 6,275 items, and 99,400

144 Chapter 6 Evaluation of graph-based recommender systems

interactions, and Epinions counts 14,341 users, 13,145 items, and 269,170 interactions.
All datasets statistics are fully reported in Table 6.15.
Baselines. We evaluate graph recommendation models adopting explicit and
implicit message propagation.
Explicit message-passing

• Neural graph collaborative filtering (NGCF) [325] proposes to refine users’
and items’ collaborative embeddings by using a GCN-like model which explores the
neighborhood and the inter-dependencies among ego and neighbor nodes.

• Light graph convolutional network (LightGCN) [126] lightens and improves
the NGCF architecture by removing the embedding projections and non-linear
activations in each propagation layer.

• Disentangled graph collaborative filtering (DGCF) [328] weights the impor-
tance of neighbor nodes on the ego node by disentangling the intents involved in
each user/item interaction for the sake of explainability.

• Linear residual graph convolutional collaborative filtering (LR-GCCF) [61]
improves the LightGCN approach by introducing a novel residual block in the con-
volutional layer for the user-item preference prediction.

Implicit message-passing

• Ultra simplification of graph convolutional networks (UltraGCN) [217]
introduces additional objective function components to approximate infinite propa-
gation layers and learn useful item-item connections.

• Graph filter based collaborative filtering (GFCF) [278] leverages graph
signal processing to formulate a closed-form user-item preference prediction based
upon the bipartite graph.

Reproducibility. Datasets are split into train/validation/test with the 80/10/10
hold-out. Models are trained by searching the best hyperparameters as in [33] and
setting search spaces according to the original works while fixing the number of epochs
to 400 and batch size to 1024. Our implementation is based upon the Elliot framework
for reproducible recommender systems [11]. To foster the future reproduction of this
analysis, datasets, codes, and configuration files are made accessible16.

16https://github.com/sisinflab/Novelty-Diversity-Graph.

https://github.com/sisinflab/Novelty-Diversity-Graph

6.4 How neighborhood exploration influences novelty and diversity 145

Table 6.15 Statistics of the tested datasets.

Datasets #Users #Items #Interactions Sparsity

Movielens-1M 5,915 2,753 570,622 0.9650
Amazon Digital Music 8,328 6,275 99,400 0.9981

Epinions 14,341 13,145 269,170 0.9986

Evaluation. First, we use the recall (Recall@k) and the normalized discounted
cumulative gain (nDCG@k) to measure the recommendation Accuracy of the baselines.
Then, following [310, 311], we select the expected popularity complement (EPC@k)
and the expected free discovery (EFD@k) as Novelty metrics [311], along with the 1’s
complement of the Gini index (Gini@k) and the Shannon entropy (SE@k) as Diversity
metrics [276]. Both the EPC@k and the EFD@k account for long-tail items and
measure the expected number of recommended unknown and known items, which
are also relevant, respectively. The Gini@k and the SE@k calculate how unequally a
recommender system shows di�erent items to users. We set the Recall@20 as validation
metric to follow the original papers. For each recommendation metric, higher values
stand for better performance.

Results and discussion

This section shows the recommendation performance of the tested baselines from a
general and a finer evaluation of the accuracy/novelty/diversity trade-o�s. All reported
results refer to the top-20 recommendation lists.
Overall recommendation performance. Table 6.16 depicts recommendation per-
formance on accuracy, novelty, and diversity, when comparing explicit to implicit
message-passing graph approaches in their best configuration.

Coherently with the literature, DGCF and LR-GCCF are steadily the best or the
second-to-best models on accuracy (e.g., DGCF reaches the second-to-best Recall
on Amazon Digital Music, while LR-GCCF obtains the best nDCG on Movielens-
1M). Approaches with implicit message aggregation (i.e., UltraGCN and GFCF) still
compete with the other baselines on accuracy (e.g., GFCF is the best model on Amazon
Digital Music for the Recall and the nDCG, and UltraGCN is the best technique on
Epinions for the nDCG).

As for the accuracy/novelty/diversity trade-o�, we see that, independently of the
adoption of message-passing, accurate approaches can also produce novel recommen-
dations (e.g., LR-GCCF and DGCF are the best and second-to-best approaches for
accuracy and novelty on Movielens-1M, and GFCF and UltraGCN provide superior

146 Chapter 6 Evaluation of graph-based recommender systems

Table 6.16 Overall recommendation performance on accuracy, novelty, and diversity metrics for
top-20 recommendation lists, when comparing explicit to implicit message propagation.
Bold and underline stand for best and second-to-best values, respectively.
Models Movielens-1M Amazon Digital Music Epinions

Accuracy Novelty Diversity Accuracy Novelty Diversity Accuracy Novelty Diversity
Recall nDCG EPC EFD Gini SE Recall nDCG EPC EFD Gini SE Recall nDCG EPC EFD Gini SE

MostPop 0.1380 0.1099 0.0473 0.5365 0.0105 5.2156 0.0319 0.0154 0.0029 0.0263 0.0031 4.3832 0.0467 0.0224 0.0054 0.0489 0.0015 4.4358
Random 0.0077 0.0060 0.0036 0.0414 0.9105 11.4085 0.0017 0.0007 0.0002 0.0021 0.8929 12.5890 0.0015 0.0006 0.0002 0.0024 0.8789 13.6486

Explicit message-passing
NGCF 0.2535 0.1985 0.0929 1.0214 0.1479 8.9930 0.1127 0.0606 0.0109 0.1270 0.4130 11.6953 0.0792 0.0394 0.0096 0.1079 0.2107 11.6255
LightGCN 0.2712 0.2167 0.1013 1.1129 0.1465 9.0079 0.1189 0.0628 0.0113 0.1310 0.3148 11.2940 0.0914 0.0466 0.0115 0.1217 0.0759 9.7898
DGCF 0.2791 0.2231 0.1047 1.1490 0.1462 9.0111 0.1264 0.0674 0.0123 0.1400 0.2483 10.8904 0.1046 0.0536 0.0132 0.1407 0.0599 9.6502
LR-GCCF 0.2876 0.2274 0.1056 1.1589 0.1245 8.7438 0.1246 0.0664 0.0119 0.1388 0.4037 11.6542 0.0990 0.0504 0.0124 0.1377 0.1367 10.8977

Implicit message-passing
UltraGCN 0.2540 0.2045 0.0901 0.9921 0.0766 8.0334 0.1256 0.0675 0.0123 0.1382 0.1737 10.0458 0.1041 0.0541 0.0131 0.1397 0.0586 9.0948
GFCF 0.1685 0.1398 0.0583 0.6577 0.0117 5.4064 0.1287 0.0744 0.0137 0.1544 0.2392 10.4923 0.0946 0.0496 0.0115 0.1158 0.0277 7.5926

accuracy performance on Amazon Digital Music and Epinions, respectively, with GFCF
outperforming all other baselines on novelty, and UltraGCN getting slightly lower EPC
and EFD values than DGCF). Unexpectedly, NGCF settles as the approach producing
the most diverse lists of recommended items on all datasets (i.e., see Gini and SE)
but cannot cope with the other baselines in terms of Recall and nDCG (similarly to
Random). Other graph models with explicit message-passing (especially DGCF
and LR-GCCF) are placed in the best accuracy/diversity trade-o� spot, as they are
often the second-to-best approaches on diversity, with limited observable drops in the
accuracy. Contrarily, techniques with implicit message aggregation always show the
lowest diversity.
Observation 1. While the accuracy/novelty trade-o� does not depend on the explic-
it/implicit message-passing, the accuracy/diversity trade-o� is preserved only when
explicitly propagating messages, at the expense of recommendation accuracy drops.
A finer trade-o�s evaluation. Figure 6.8 shows the accuracy/novelty/diversity trade-
o� on Amazon Digital Music by varying the message-passing strategy (i.e., explicit
and implicit) and neighbor exploration depth only for the former case. Specifically,
we use the reformulation from Section 6.4.2 to separate explicit message propagation
results into same- and different-type node explorations at 1/2 hops.

We confirm that, while UltraGCN and GFCF can compete well on the accuracy/nov-
elty trade-o� with the other baselines (whatever the explored number of hops and node
type), the opposite occurs on the accuracy/diversity trade-o�. Indeed, higher accuracy
values for UltraGCN and GFCF are obtained at the expense of significant drops in
their diversity, even compared to message propagation at 1 hop (e.g., DGCF surpasses
them on diversity at the expense of a slightly lower accuracy in the same-node).

As for the influence of same- and different-type node explorations, wider explo-
rations of the neighborhood almost always lead to improved accuracy/novelty and

6.5 Auditing consumer- and provider-fairness 147

1 2 1 2
0.110

0.115

0.120

0.125

0.130

NGCF

R
ec

al
l

0.011

0.012

0.013

0.014

EP
C

1 2 1 2
0.110

0.115

0.120

0.125

0.130

LightGCN

R
ec

al
l

0.011

0.012

0.013

0.014

EP
C

1 2 1 2
0.110

0.115

0.120

0.125

0.130

DGCF

R
ec

al
l

0.010

0.011

0.012

0.013

0.014

EP
C

1 2 1 2

0.120

0.125

LR-GCCF

R
ec

al
l

0.012

0.013

EP
C

(a) Accuracy — Novelty

1 2 1 2
0.110

0.115

0.120

0.125

0.130

NGCF

R
ec

al
l

0.2

0.3

0.4

G
in

i

1 2 1 2
0.110

0.115

0.120

0.125

0.130

LightGCN

R
ec

al
l

0.20

0.25

0.30

G
in

i

1 2 1 2
0.110

0.115

0.120

0.125

0.130

DGCF

R
ec

al
l

0.18

0.20

0.22

0.24

G
in

i

1 2 1 2

0.120

0.125

LR-GCCF

R
ec

al
l

0.2000

0.3000

0.4000

0.5000

G
in

i

(b) Accuracy — Diversity

UltraGCN GFCF

Fig. 6.8 Accuracy/Novelty (a) and Accuracy/Diversity (b) trade-o�s of graph models with
explicit (i.e., filled bar plots) and implicit message-passing (i.e., patterned bar plots)
on Amazon Digital Music for top-20 recommendation lists. As for explicit message-passing,
results are further categorized into different- and same-node type explorations (i.e., the
leftmost and central tabs in each plot, respectively), when varying the number of hops from 1
to 2. Accuracy, novelty, and diversity are assessed through Recall (in teal blue), EPC (in
lime green), and Gini (in melon), respectively. Best viewed in color.

accuracy/diversity performance, independently of the explored node types (apart from
the same-type settings for NGCF on the Recall and LR-GCCF on the Recall and the
EPC). Noticeably, the exploration of 1 hop in the same-type node setting leads to a
better trade-o� in accuracy/novelty/diversity than the exploration of 2 hops in the
different-node setting (e.g., LightGCN increases the Recall and the EPC without a
significant variation of Gini, and DGCF slightly decreases the Recall and the EPC,
but improves Gini).
Observation 2. To confirm observation 1, explicit message propagation (even at 1
hop) can reach a better accuracy/diversity trade-o� than implicit propagation; same-type
node explorations lead to improved accuracy/novelty and accuracy/diversity trade-o�s.

6.5 Auditing consumer- and provider-fairness
The adoption of deep learning (and, often, black-box) approaches to the recommenda-
tion task has raised issues regarding the fairness of recommender systems. The concept
of fairness in recommendation is multifaceted. Specifically, the two core aspects to
categorize recommendation fairness may be summarized as (1) the primary parties
engaged (consumers vs. providers) and (2) the type of benefit provided (exposure vs.

148 Chapter 6 Evaluation of graph-based recommender systems

relevance). Item suppliers are more concerned about exposure fairness than customers
because they want to make their products better known and visible (Provider fairness).
However, from the customer’s perspective, relevance fairness is of utmost importance,
and hence system designers must ensure that exposure of items is equally e�ective
across user groups (Consumer fairness). A recent study highlights that papers on rec-
ommendation fairness concentrated on either C-fairness or P-fairness [224], disregarding
the joint evaluation between C-fairness, P-fairness, and the accuracy.

The various graph CF strategies described above have historically centered on the
enhancement of system accuracy, but, actually, never focused on the recommendation
fairness dimensions. Despite some recent graph-based approaches have specifically been
designed to address C-fairness [99, 172, 252, 315, 319, 345] and P-fairness [37, 213, 215,
292, 395, 401], there is a notable knowledge gap in the literature about the e�ects of the
state-of-the-art graph strategies on the three objectives of C-fairness, P-fairness, and
system accuracy. This study intends to complement the previous research and provide
answers to pending research problems such as how di�erent graph models perform for
the three evaluation objectives. By measuring these dimensions in terms of overall
accuracy, user fairness, and item exposure, we observe these aspects17.
Motivating example. A preliminary comparison of the leading graph and classical
CF models is carried out to provide context for our study. The graph-based models
include LightGCN [126], DGCF [328], LR-GCCF [61], and GFCF [278], which are tested
against two classical CF baselines, namely BPRMF [258] and RP3— [246], on the Baby,
Boys & Girls, and Men datasets from the Amazon catalog [228]. We train each baseline
using a total of 48 unique hyper-parameter settings and select the optimal configuration
for each baseline as the one achieving the highest accuracy on the validation set (as in
the original papers). Overall accuracy, user fairness, and item exposure (as introduced
above) are evaluated. Figure 6.9 displays the performance of the selected baselines on
the three considered recommendation objectives. For better visualization, all values
are scaled between 0 and 1 using min-max normalization, and, when needed, they
are replaced by their 1’s complement to adhere to the “higher numbers are better”
semantics. As a result, in each of the three dimensions, the values lay in [0,1] with
higher values indicating the better. Please, note that such an experimental evaluation
is not the main focus of this analysis but it is the motivating example for the more
extensive analysis we present later. The interested reader may refer to Section 6.5.3

17In the rest, when no confusion arises, we will refer to C-fairness with user fairness, to P-fairness
with item exposure, and to their combination as CP-fairness.

6.5 Auditing consumer- and provider-fairness 149

for a presentation of the full experimental settings to reproduce these results and the
ones reported in the following sections.

First, according to Figure 6.9, graph CF models are significantly more accurate than
the classical CF ones, even if the latter perform far better in terms of item exposure.
Moreover, the displayed trends suggest there is no clear winner on the user fairness
dimension: classical CF models show promising performance, while some graph CF
models do not achieve remarkable results. As a final observation, an underlying trade-o�
between the three evaluation goals seems to exist, and it might be worth investigating
it in-depth. Such outcomes open to a more complete study on how di�erent strategy
patterns recognized in graph CF may a�ect the three recommendation objectives,
which is the scope of this study.
Research questions and contributions. In the remainder, we therefore attempt to
answer the following two research questions (RQs):

RQ1. Given the di�erent graph CF strategies, the raising question is “Can we explain
the variations observed when testing several graph models on overall accuracy, item
exposure, and user fairness separately?” According to a recent benchmark that identifies
some state-of-the-art graph techniques [409], the suggested graph CF taxonomy (Ta-
ble 6.17) extends the set of graph-based models introduced in the motivating example
by examining eight state-of-the-art graph CF baselines through their strategies for
nodes representation and neighborhood exploration. We present a more nuanced view of
prior findings by analyzing the impact of each taxonomy dimension on overall accuracy
and CP-fairness.

RQ2. The demonstrated performance prompts the questions: “How and why nodes
representation and neighborhood exploration algorithms can strike a trade-o� between
overall accuracy, item exposure, and user fairness?” We employ the Pareto optimality
to determine the influence of such dimensions in two-objective scenarios, considering
overall accuracy, item exposure, and user fairness. The Pareto frontier is computed for
three 2-dimensional spaces: accuracy/item exposure, accuracy/user fairness, and item
exposure/user fairness.

6.5.1 A formal taxonomy of graph CF

Updating node representation through message-passing

The representation of users’ and items’ nodes are updated by leveraging the graph
topology from G. In this respect, the message-passing schema has recently gained

150 Chapter 6 Evaluation of graph-based recommender systems

O-Acc

I-Exp

U-Fair

(a) Baby

O-Acc

I-Exp

U-Fair

(b) Boys & Girls

O-Acc

I-Exp

U-Fair

(c) Men

BPRMF RP3— LightGCN DGCF LR-GCCF GFCF
Fig. 6.9 Kiviat diagrams indicating the performance of selected pure and graph CF recom-
menders on overall accuracy (i.e., O-Acc, calculated with the nDCG@20), item exposure
(i.e., I-Exp, calculated with the APLT@20 [3]), and user fairness (U-Fair, calculated with the
UMADrat@20 [81]). Higher means better.

Table 6.17 Categorization of the chosen graph baselines according to the proposed taxonomy.
For each model, we refer to the technical description reported in the original paper and try
to match it with our taxonomy.

Models

Nodes
Representation

Neighborhood
Exploration

Latent
representation Weighting Explored

nodes
Message
passing

low high weighted unweighted same di�erent implicit explicit
GCN-CF* [158] X X X X
GAT-CF* [313] X X X X
NGCF [325] X X X X
LightGCN [126] X X X X
DGCF [328] X X X X
LR-GCCF [61] X X X X X
UltraGCN [217] X X X X
GFCF [278] X X
*The postfix -CF indicates that we re-adapted the original implementations (tailored
for the task of node classification) to the task of personalized recommendation.

attention in the literature. The algorithm works by aggregating the information (i.e.,
the messages) from the neighbor nodes into the ego node, and the process is recursively
performed for multiple hops thus exploring wider neighborhood portions. In general,
the message-passing for l hops is:

e(l)
u = Ê

1Ó
e(l≠1)

iÕ ,’iÕ œ N (u)
Ô2

, (6.34)

where Ê(·) and N (·) are the aggregation function and neighborhood node set, respec-
tively, while l is in 1 Æ l Æ L, where L is a hyper-parameter. Note that the following
statements hold: e(0)

u = eu and e(0)

i = ei. A reworking of Equation (6.34) for l œ {2,3}

6.5 Auditing consumer- and provider-fairness 151

allows same- and di�erent-type node representation emerge [18]:

Same-type
node
representation

Y
]

[
e(2)

u¸˚˙˝
(user)

= Ê
1Ó

Ê
1Ó

e(0)
uÕÕ¸˚˙˝

(user)

,’uÕÕ œ N (iÕ)\{u}
Ô2

,’iÕ œ N (u)
Ô2

Di�erent-type
node
representation

Y
___]

___[

e(3)
u¸˚˙˝

(user)

= Ê
1Ó

Ê
1Ó

Ê
1Ó

e(0)
iÕÕÕ¸˚˙˝

(item)

,’iÕÕÕ œ N (uÕÕ)\{iÕÕ}
Ô2

,

’uÕÕ œ N (iÕ)\{uÕÕ}
Ô2

,’iÕ œ N (u)
Ô2

.

(6.35)

To better clarify the extent of Equation (6.35), after an even and an odd number
of explored hops, ego node updates leverage by design same- and di�erent-type node
connections, i.e., user-user/item-item and user-item/item-user as evident from Equa-
tion (6.35). While the existing literature does not always consider the two scenarios as
distinct, we underline the importance of investigating the influence of di�erent node-
node connections explored during the message-passing. In light of the above, we will
count the number of explored hops as follows: e(2l)

ú ,’l œ {1,2, . . . , L
2
} as obtained through

l same-type node connections (denoted as same-l), and e(2l≠1)

ú ,’l œ {1,2, . . . , L
2
} as

obtained through l di�erent-type node connections (denoted as di�erent-l). In the
following, we introduce the graph convolutional network (GCN) and its CF applications.

The baseline: graph convolutional network (GCN). The standard graph con-
volutional network from Kipf et al. [158] performs feature transformation, message
aggregation, application of a one-layer neural network, element-wise addition, and
ReLU activation, respectively. Let us consider W(l) œ Rdl≠1◊dl and b(l) œ Rdl as the
weight matrix and the bias for the l-th explored hop. Message-passing for user u is:

e(l)
u = ReLU

Q

a
ÿ

iÕœN (u)

1
W(l)e(l≠1)

iÕ +b(l)
2

R

b . (6.36)

GCN for collaborative filtering. Inspired by the GCN message-passing approach,
the authors from Wang et al. [325] propose neural graph collaborative filtering (NGCF).
At each hop exploration, the model aggregates the neighborhood information and
the inter-dependencies among the ego and the neighborhood nodes. Formally, the
aggregation could be formulated as follows:

e(l)
u = LeakyReLU

Q

a
ÿ

iÕœN (u)

1
W(l)

neigh
e(l≠1)

iÕ +W(l)
inter

1
e(l≠1)

iÕ §e(l≠1)
u

2
+b(l)

2
R

b , (6.37)

where LeakyReLU is the activation function, W(l)
neigh

œ Rdl≠1◊dl and W(l)
inter

œ Rdl≠1◊dl

are the neighborhood and inter-dependencies weight matrices, respectively, while § is
the Hadamard product.

152 Chapter 6 Evaluation of graph-based recommender systems

He et al. [126] propose a light convolutional network, namely LightGCN, with the
rationale to simplify the message-passing schema from GCN and NGCF by dropping
feature transformations (i.e., the weight matrices and biases) and the non-linearity
applied after the message aggregation. Specifically, they implement:

e(l)
u =

ÿ

iÕœN (u)
e(l≠1)

iÕ . (6.38)

The variation shows superior accuracy to the state-of-the-art. A slightly di�erent
solution [61] can outperform LightGCN regarding the accuracy level.

6.5.2 Weighting the importance of graph edges

The message-passing schema is inherently designed to aggregate into the ego node
all messages coming from its neighborhood. Nevertheless, the binary nature of the
user-item feedback (i.e., 0/1) would suggest that not all recorded user-item interactions
necessarily hide the same importance to the nodes they involve.

In general, let a
(l)
y≠æx be the importance of the neighbor node y on its ego node

x after l explored hops. We re-write the formulation of the message-passing after l

explored hops (presented in Equation (6.34)) as:

e(l)
u = Ê

1Ó
a(l)

iÕ≠æue(l≠1)
iÕ ,’iÕ œ N (u)

Ô2
. (6.39)

The baseline: graph attention network (GAT). Attention mechanisms have
reached considerable success in the GCN-related literature to weight the contribution of
neighbor messages before aggregation. The original study [313] proposes the following
message-passing formulation:

e(l)
u =

ÿ

iÕœN (u)

1
a(l)

iÕ≠æuW(l)
neighe(l≠1)

iÕ +b(l)
2

=
ÿ

iÕœN (u)

1
–

1
e(l≠1)

iÕ ,e(l≠1)
u

2
W(l)

neighe(l≠1)
iÕ +b(l)

2
,

(6.40)

where –(·) is the importance function depending on the lastly-calculated embeddings
of the neighbor and the ego nodes, e.g., a

(l)
iÕ≠æu = –

3
e(l≠1)

iÕ ,e(l≠1)

u

4
.

GAT for collaborative filtering. The authors from Wang et al. [328] design a
message-passing schema that calculates the importance of neighborhood nodes for ego
nodes by disentangling the intents underlying each user-item interaction. Similarly
to He et al. [126] and Chen et al. [61], they therefore propose the following embedding

6.5 Auditing consumer- and provider-fairness 153

update formulation:

e(l)
u =

ÿ

iÕœN (u)
a(l)

iÕ≠æue(l≠1)
iÕ

=
ÿ

iÕœN (u)
–

1
e(l≠1)

iÕ ,e(l≠1)
u ,K,T

2
e(l≠1)

iÕ ,
(6.41)

where – (·,K,T) is the importance function of the lastly-calculated embeddings from
the neighbor and the ego nodes, e.g., a

(l)
iÕ≠æu = –

3
e(l≠1)

iÕ ,e(l≠1)

u ,K,T
4

, K is the total
number of intents, and T is the total number of routing iterations to repeat the
disentangling procedure.

Going beyond message-passing

The recent graph learning literature [54, 405] has outlined the phenomenon of over-
smoothing, that leads node representations to become more similar as more hops are
explored. The issue is generally tackled by limiting the neighborhood exploration to
(maximum) three hops, and to two hops when attention mechanisms are introduced.
However, the idea of improving accuracy by restricting the number of explored neigh-
borhoods is counter-intuitive and “conflicts” with the rationale behind collaborative
filtering [19]. This awareness led works such as Mao et al. [217] and Shen et al. [278] to
surpass and simplify the traditional concept of message-passing. UltraGCN [217] adopts
negative sampling to contrast over-smoothing and additional objective terms to (i)
approximate the infinite neighborhood exploration and (ii) mine relevant “unexpected”
node-node interactions such as the item-item ones. Conversely, GFCF [278] translates
the graph-based recommendation task into the graph signal processing domain to obtain
a closed-form formulation for approximating the infinite neighborhood exploration.
Given that such recent strategies do not explicitly perform the message-passing schema
as presented above, in the remaining sections, we will adopt the terms explicit and
implicit message-passing as shorthands to denote the two model families, respectively.

A taxonomy of graph CF approaches

We propose (see Table 6.17) a taxonomy to classify the state-of-the-art graph models.
The taxonomy considers the recurrent strategy patterns as emerged by conducting
an in-depth review and analyzing the di�erent graph CF approaches.

154 Chapter 6 Evaluation of graph-based recommender systems

• Node representation indicates the representation strategy to model users’ and
items’ nodes. It involves the dimensionality of node embeddings, and the possibility
of weighting the neighbor node contributions.

• Neighborhood exploration refers to the procedure for exploring the multi-hop
neighborhoods of each node to update the node latent representation. It involves
the type of node-node connections which are explored, and the message-passing
schema (i.e., explicit or implicit as previously defined).

In the next two sections, we will assess the performance of the graph CF models
from the taxonomy in Table 6.17. Thus, we consider GCN-CF [158], GAT-CF [313],
NGCF [325], LightGCN [126], DGCF [328], LR-GCCF [61], UltraGCN [217], and
GFCF [278] for a total of eight graph CF solutions.

6.5.3 Experimental settings and protocols

Datasets. As a pre-processing stage, for each dataset, we randomly sample 60k
interactions and drop users and items with less than five interactions to avoid the
cold-start e�ect [124, 125]. The final dataset statistics are: (1) Baby has 5,842 users,
7,925 items, 35,475 interactions; (2) Boys & Girls has 3,042 users, 12,912 items, 35,762
interactions; (3) Men has 3,909 users, 27,656 items, 51,519 interactions.
Reproducibility. Datasets are split using the 70/10/20 train/validation/test hold-out
strategy. Baselines are trained through grid search (48 explored configurations), with
a batch size of 256 and 400 epochs. Datasets and codes (implemented with Elliot [11])
are available at: https://github.com/sisinflab/ECIR2023-Graph-CF.
Evaluation. As for the overall accuracy, we use the recall (Recall@k) and the
normalized discounted cumulative gain (nDCG@k). Concerning the item exposure, we
focus on: (1) item novelty [310, 311] through the expected free discovery (EFD@k)
measuring the expected portion of relevantly-recommended items that have already
been seen by the users; (2) item diversity [276] with the 1’s complement of the Gini
index (Gini@k), a statistical dispersion measure which estimates how a model suggests
heterogeneous items to users; (3) the average percentage of items from the long-tail
(APLT@k) which are recommended in users’ lists [3] to calculate recommendation’s bias
towards popular items. User fairness indicates how equally each user group receives
accurate recommendations. Users are split into quartiles based on the number of items
they interacted with. We then measure UMADrat@k and the UMADrank@k [81], where
the former stands for the average deviation in the predicted ratings among users groups,
while the latter represents the average deviation in the recommendation accuracy

https://github.com/sisinflab/ECIR2023-Graph-CF

6.5 Auditing consumer- and provider-fairness 155

(calculated in terms of nDCG@k) among users groups. The best hyper-parameter
configurations are found by considering Recall@20 on the validation.

6.5.4 Taxonomy-aware evaluation

This section aims to answer RQ1 (“Can we explain the variations observed when
testing several graph models on overall accuracy, item exposure, and user fairness
separately?”) by showing how the proposed taxonomy of graph strategies can explain
the recommendation evaluation on CP-Fairness and overall accuracy. We experiment
with 48 hyper-parameter configurations to investigate various combinations of graph
CF techniques for message-passing, explored nodes, edge weighting, and latent repre-
sentations. Results refer to the Amazon Men dataset and top-20 lists (Table 6.18).
Please note that we report the best metric result for each <dimension, value> pair
(the corresponding best graph recommendation model is displayed below each metric
result) to ease the interpretation of results and provide meaningful insights.

• Message-passing. We investigate the two widely-recognized message-passing
strategies: implicit and explicit. The most obvious pattern indicates that both sets
have almost the same number of top-performing models in each of the evaluation
criteria. Explicit graph approaches perform better on item exposure, where they
outperform implicit techniques (i.e., on Gini and APLT) two out of three times by
a significant margin. On the one hand, this tendency may be due to the absence of
a direct message (information) propagating along the user-item graph in implicit
techniques, which prevents the user node from exploring vast item segments. On the
other hand, it appears that models from both families perform similarly on accuracy
and user fairness, indicating that there is no obvious reason to favor implicit over
explicit or vice versa.

• Explored nodes. Here, we examine four methods to explore nodes (adopting the
message-passing re-formulation from Equation (6.35)): same and di�erent, with 1
and 2 hops. Similarly to the trend found for the message-passing dimension, the
results demonstrate that the two primary categories (same and di�erent) are nearly
equally performing across all measurements, with same-2 and di�erent-1 being the
prominent ones. In detail, the di�erent-1 exploration outperforms the same-2 on
the overall accuracy level (GFCF is the leading model here). Conversely, same-2
is the best strategy for item exposure (with LR-GCCF and GAT-CF leading). As
observed for the message-passing, user fairness does not give a reason to choose

156 Chapter 6 Evaluation of graph-based recommender systems

Table 6.18 Best metric results (and corresponding graph CF model) for each <dimension,
value> pair, on the Amazon Men dataset for top-20 lists. Bold is used to indicate the best
result in the pairs having a two-valued dimension, while † is used only for the “explored
nodes” dimension to indicate also the best results on same and di�erent. The symbols

¯̀
and`̆

indicate whether better stands for high or low values. We use “rank” and “rat” as the
UMADrank@k and UMADrat@k.
Dimensions Values Overall Accuracy Item Exposure User Fairness

Recall
¯̀
` nDCG

¯̀
` EFD

¯̀
` Gini

¯̀
` APLT

¯̀
` rank

`̀
˘ rat

`̀
˘

Message
passing

implicit 0.1222
(GFCF)

0.0911
(GFCF)

0.2615
(GFCF)

0.2871
(UltraGCN)

0.1808
(UltraGCN)

0.0123
(UltraGCN)

0.0022
(UltraGCN)

explicit 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0169
(LightGCN)

Explored
nodes

same-1 0.1221†

(LR-GCCF)
0.0884†

(LR-GCCF)
0.2500†

(LR-GCCF)
0.4377

(LR-GCCF)
0.3433

(GAT-CF)
0.0002†

(DGCF)

0.0022†

(UltraGCN)

same-2 0.1184
(LightGCN)

0.0841
(LightGCN)

0.2380
(LightGCN)

0.5090†

(LR-GCCF)

0.3823†

(GAT-CF)

0.0002†

(DGCF)

0.0209
(NGCF)

di�erent-1 0.1222†

(GFCF)

0.0911†

(GFCF)

0.2615†

(GFCF)

0.4093
(NGCF)

0.3424
(GAT-CF)

0.0002†

(DGCF)

0.0022†

(UltraGCN)

di�erent-2 0.1210
(DGCF)

0.0850
(DGCF)

0.2407
(LightGCN)

0.4934†

(LR-GCCF)
0.3438†

(LR-GCCF)
0.0002†

(DGCF)

0.0388
(LightGCN)

Weighting weighted 0.1210
(DGCF)

0.0857
(DGCF)

0.2428
(DGCF)

0.3240
(DGCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0301
(DGCF)

unweighted 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3438
(LR-GCCF)

0.0101
(GCN-CF)

0.0169
(LightGCN)

Latent
representations

emb-64 0.1193
(LR-GCCF)

0.0871
(LR-GCCF)

0.2479
(LR-GCCF)

0.5090
(LR-GCCF)

0.3627
(GAT-CF)

0.0002
(DGCF)

0.0054
(UltraGCN)

emb-128 0.1221
(LR-GCCF)

0.0883
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3644
(GAT-CF)

0.0002
(DGCF)

0.0111
(UltraGCN)

emb-256 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2532
(LR-GCCF)

0.5038
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0022
(UltraGCN)

between same and di�erent. The exploration of 1 hop in same and di�erent settings
is the preferable technique, even if 2 hops connections lead to a better item exposure.

• Weighted. This study examines weighted and unweighted graph CF techniques.
Di�erently from above, we observe that unweighted solutions provide the best
performance on almost all CP-fairness metrics, with LR-GCCF steadily being the
superior approach. The only trend deviation refers to GAT-CF (i.e., a weighted
method) surpassing unweighted solutions on the APLT level, that is, recommending
items from the long-tail. The behavior is likely attributable to the design of weighted
techniques, which can investigate farther neighbors of the ego node (observe the
performance of GAT-CF on the same-2 dimension), leading user profiles to match
distant (and possibly niche) products in the catalog. On the contrary, it is interesting
to notice how the other two metrics accounting for item exposure (i.e., EFD as item

6.5 Auditing consumer- and provider-fairness 157

novelty measure and Gini as item diversity measure) seem to privilege unweighted
graph techniques (i.e., LR-GCCF). The observed behaviors di�er as the three metrics
provide completely di�erent perspectives of the item exposure, and thus they are
uncorrelated.

• Latent representations. We compare the performance of graph CF techniques
adopting latent representations with 64, 128, and 256 features, respectively. It is
worth noticing that higher-dimensional latent representations (i.e., 128 and 256)
result in better performance on all measurements. Specifically, it appears that the
128 dimension is the turning point after which the trend becomes stable (i.e., the
metric values for 128 and 256 are frequently comparable). This may be an important
insight since the majority of research works in recent literature tend to employ
64 -embedded representations of nodes without exploring further dimensionalities
(see Table 6.17 as a reference).

6.5.5 Trade-o� analysis

This section analyses how the graph CF baselines balance the trade-o� among accuracy,
item exposure, and user fairness, and aims to answer RQ2 (“How and why nodes
representation and neighborhood exploration algorithms can strike a trade-o� between
overall accuracy, item exposure, and user fairness?”). Due to space constraints, we
report the results only for the Amazon Men dataset. The negative Pearson correlation
values for accuracy/item exposure (nDCG/APLT) and accuracy/user fairness (nD-
CG/UMADrank) suggest that a trade-o� may be necessary, and desirable. In addition,
the same correlation metric indicates the necessity of a trade-o� for item exposure/user
fairness (APLT/UMADrank). Among the strategy patterns identified in the proposed
taxonomy (see Table 6.17), we select the most important architectural dimensions,
message-passing and weighting of graph edges, to conduct this study. In detail, the
analysis studies three combined categories: (1) models with implicit message-passing
(denoted as implicit); (2) models with explicit message-passing and neighborhood
weighting (denoted as explicit/weighted); (3) models with explicit message-passing
without neighborhood weighting (denoted as explicit/unweighted). For each analyzed
trade-o�, we select the Pareto optimal solutions18 of the baselines laying on the model-
specific Pareto frontier [243]. Figure 6.10 plots graph models Pareto frontiers in the
common objective function spaces related to the considered trade-o�s. The careful

18A solution is Pareto optimal if no other solution can improve an objective without hurting the
other one.

158 Chapter 6 Evaluation of graph-based recommender systems

reader may notice the di�erent axis’ scales across the graphics due to the metric values.
The colors of Pareto optimal solutions are model-specific, while the line style is used to
distinguish the categories: dotted lines for implicit, dash-dot lines for explicit/weighted,
and dashed lines for explicit/unweighted.

• Accuracy/Item Exposure. Figure 6.10a shows that the explicit/weighted models
exhibit a trade-o�, as they maximize either nDCG (i.e., DGCF) or APLT (i.e., GAT-
CF), but not both. This is expected since DGCF is designed as a version of GAT-CF
with improved accuracy. It is worth mentioning that DGCF’s trade-o� is reached
at the expense of item exposure. In contrast to these models, explicit/unweighted
baselines show a balanced trade-o� because they do not prioritize accuracy or
item exposure exclusively. In detail, LR-GCCF provides the best performance in
terms of nDCG and APLT simultaneously. From a visual inspection, LR-GCCF’s
Pareto frontier dominates those of the other explicit/unweighted models. Conversely,
GCN-CF exhibits the worst trade-o� because it is neither ideal for nDCG nor APLT.
As for the implicit models, they appear to prioritize precision over the provision
of long-tail items. Under this lens, the latest (i.e., implicit) approaches seem to
increase accuracy, even if this is to the detriment of the niche items exposure.

• Accuracy/User Fairness. To ease the interpretation of Figure 6.10b, we recall
that UMADrank (used to measure User Fairness) measures to what extent the
model ranking performance di�ers among the user groups (partitioned based on
their activity on the platform). Figure 6.10b shows that, for GAT-CF and GCN-CF,
the poor performance in terms of nDCG is associated with high variability in terms
of user fairness. In fact, for these two models, the UMADrank value indicates
high variability across user groups. Something di�erent emerges for models such
as NGCF, LightGCN, LR-GCF, and GFCF. These models, GFCF in particular,
exhibit valuable recommendation accuracy with better stability in terms of ranking
performance across the di�erent user groups. As a consequence, the Pareto frontiers
associated with these models dominate the others. In detail, GFCF is the best-
performing one regarding this trade-o�. Conversely, UltraGCN and DCGF do not
show consistent behavior demonstrating a strong sensitivity to the chosen hyper-
parameters set. In this setting, no graph CF strategy emerges as the absolute winner.
Specifically, every graph CF strategy is not enough to guarantee adequate fairness
among di�erent user groups. Then, the positive results are associated with particular
configurations of some models and are lost when the hyper-parameter set changes.

6.5 Auditing consumer- and provider-fairness 159

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1

0.2

0.3

0.4

≠≠ænDCG

A
PL

T
≠≠

≠≠
æ implicit

explicit/weighted

explicit/unweighted

(a) Overall Accuracy/Item Exposure

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00

0.01

0.02

0.03

≠≠ænDCG

U
M

A
D

ra
nk

Ω
≠≠

implicit

explicit/weighted

explicit/unweighted

(b) Overall Accuracy/User Fairness

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00

0.01

0.02

0.03

≠≠æAPLT

U
M

A
D

ra
nk

Ω
≠≠

implicit

explicit/weighted

explicit/unweighted

(c) Item Exposure/User Fairness

GCN-CF GAT-CF NGCF LightGCN
DGCF LR-GCCF UltraGCN GFCF

Fig. 6.10 Overall Accuracy/Item Exposure, Overall Accuracy/User Fairness, and Item Expo-
sure/User Fairness trade-o�s on Amazon Men, assessed through nDCG/APLT, nDCG/U-
MADrank, and APLT/UMADrank, respectively. Each point depicts a model hyper-parameter
configuration set belonging to the corresponding Pareto frontier. Colors refer to a particular
baseline, while lines styles discern their technical strategies based on the proposed taxonomy.
Arrows indicates the optimization direction for each metric on x and y axes.

160 Chapter 6 Evaluation of graph-based recommender systems

• Item Exposure/User Fairness. The trade-o� indicates to what extent graph
CF models can treat final users fairly and recommend items from the long tail.
In Figure 6.10c, it is possible to identify two groups of baselines: the models that
show poor performance in terms of item exposure (UltraGCN, DGCF, GCN-CF,
and GFCF) and the models that exhibit an acceptable exposure for long-tail items
(LightGCN, NGCF, LR-GCCF, and GAT-CF). In detail, a cluster of models that
belong to the explicit/unweighted category stands out in this second group. Not
only are these models able to recommend niche items, but also they are stable
(among the user groups) in terms of accuracy. On the contrary, although GAT-CF
lies close to the utopia point19, it exhibits greater variability regarding the accuracy
metric. Indeed, comparing Figure 6.10c with Figure 6.10a, GAT-CF demonstrates
to achieve adequate user fairness, but its performance is still very poor in terms
of accuracy. To summarize, even if a system designer could be more interested in
promoting models solely guaranteeing the best value for APLT (provider Fairness),
the explicit/unweighted strategies can generally ensure a satisfactory (for Consumers
and providers) trade-o� between user fairness and item exposure.

6.6 Summary
This chapter tailored the experimental and evaluation paradigms introduced in the
previous chapters to the state-of-the-art strategies and techniques for graph-based
recommendation, also defined under the paradigm of graph collaborative filtering.
Similarly to the previous chapter, we proposed a framework for the reproducibility and
evaluation of graph-based recommender systems built upon Elliot, later used to replicate
the results of such models. Indeed, the reproducibility analysis uncovered interesting
and unexpected findings regarding the possible influence of dataset characteristics on
the performance of graph-based recommender systems. Thus, we decided to extend the
investigation by considering some of the main topological properties of the user-item
graph in terms of clustering coe�cient and degree assortativity (conceptually linked to
node degree). Results showed how such dependences are strongly evident in graph-
based recommendation, and their latent-factor component may be the one component
influencing recommendation performance the most. Indeed, this helped re-interpreting
the graph collaborative filtering strategies under another perspective which might
drive the designing and implementation of novel such approaches according to graph
topological characteristics of each dataset. Finally, we studied how and to what extent

19The point that simultaneously minimizes (maximizes) all the metrics.

6.6 Summary 161

existing strategies adopted for each step of the recommendation pipeline in graph-based
recommendation may influence the performance in terms of novelty, diversity, and
consumer/provider fairness. Moreover, the proposed analysis was conducted in a
single- and multi-objective settings. Observed results outlined that user-user and item-
item message-passing explorations may improve accuracy/diversity/novelty trade-o�;
additionally, the outcomes on the consumer/provider fairness raised concerns about
the e�ective application of recent approaches in graph collaborative (e.g., implicit
message-passing techniques).

The current chapter helped providing the necessary background notions in terms of
state-of-the-art, models’ formulations, and (novel) performance evaluations regarding
graph-based recommendation systems. Under such bases, and supported by the findings
in the multimedia recommendation scenario previously considered, we present the final
outcomes of this thesis. Thus, in the next chapter, we bring together the lessons-learned
in multimedia recommendation and graph-based recommendation by studying and
proposing novel approaches in graph-based recommender systems leveraging multimodal
information.

Chapter 7

Graph-based recommendation
exploiting multimodal information

This chapter seeks to combine the lessons-learned from multimodal-aware and graph-
based recommendation with the proposal of a novel approach. Following the same
experimental and evaluation paradigms already adopted in the previous chapters of the
thesis, we first benchmark state-of-the-art (graph-based) models leveraging multimodal
content on di�erent recommendation dimensions with respect to the literature, namely,
novelty, diversity, and popularity bias, along with various multimodality settings.
Finally, by discussing the existing limitations in the way multimodality is generally
handled in graph-based recommendation approaches, a new solution leveraging reviews
on edges for graph-based recommendation is proposed and tested against state-of-the-
art recommendation techniques leveraging reviews. Results demonstrate the e�cacy of
the introduced solution, which seems to be also able to limit the negative e�ects of
known issues in graph learning, namely, the over-smoothing e�ect.

7.1 Novelty and diversity in multimodal-aware rec-
ommendation

Despite the indisputable success of multimodal-aware recommender systems as rec-
ognized in the recent literature, mainly thanks to their recommendation accuracy
improvements to the existing baselines, some performance evaluation concerns still
raise. Indeed, as most of these methods follow similar strategy patterns with few
variations on the main theme, it can be challenging to unveil which technique is actu-
ally providing the most impactful contribution to the recommendation performance.

164 Chapter 7 Graph-based recommendation exploiting multimodal information

Additionally, most of such approaches are trained and evaluated under di�erent im-
plementations, which come with their own data splitting/sampling, hyper-parameter
searching, and evaluation protocols.

To address such an evaluation gap in the literature, the first part of this chapter
aims to provide the first extensive benchmarking setting for the multimodal-aware
recommendation. Specifically, our contributions are threefold:

• We provide a unified framework to benchmark five state-of-the-art multimodal-aware
recommender systems (i.e., VBPR [125], MMGCN [339], MGAT [305], GRCN [338],
and LATTICE [382]) on three popular recommendation datasets from the Amazon
catalog [218] (i.e., O�ce, Toys, and Clothing).

• We run extensive hyper-parameter explorations to fine-tune all tested models under
the same settings for a fair comparison. While confirming some findings from the
existing literature, results also show how careful hyper-parameter tuning can make
even shallow approaches (e.g., VBPR) quite competitive against more complex and
recent ones (e.g., GRCN).

• In addition to assessing recommendation accuracy, we complement the evaluation
through an analysis of the novelty [310, 311] and diversity [276] of the produced
lists of recommendation. To the best of our knowledge, this is the first attempt to
perform this analysis in the domain of multimodal-aware recommendation.

To foster the reproducibility of our benchmark, we share the code and datasets
adopted in this work: https://github.com/sisinflab/MultiModal-Eval.

7.1.1 Novelty and diversity in recommendation

User experience plays a crucial role in recommendation platforms, as highlighted
by several academic studies [141, 149, 282]. Such works emphasize that suggesting
interesting lists of items satisfies users and encourages them to remain loyal to the
platform, ultimately leading to increased profits [316]. To ensure a good user experience,
the recommended items must be nontrivial, diverse, possibly unexpected [110, 282],
fair [75, 77], and explainable [76, 77]. However, designing dedicated models for
recommendation systems presents significant challenges, mainly because evaluating
them requires conducting user studies.

Consequently, researchers have invested substantial e�ort in exploring beyond-
accuracy dimensions within the field of recommendation systems over the past two

https://github.com/sisinflab/MultiModal-Eval

7.1 Novelty and diversity in multimodal-aware recommendation 165

decades [276, 311, 379]. These dimensions refer to aspects beyond the traditional
accuracy metric, aiming to improve the overall user experience.

While user experience has been a crucial aspect when evaluating multimodal-aware
intelligent systems [147, 250, 390] for years, in recommendation it has gained attention
only recently [35, 71]. As for multimodal-aware recommendation, most of the research
e�orts have focused on emphasizing the advantages of multimodal recommendation
models in addressing the cold start user problem [125, 236, 242]. However, to the best
of our knowledge, there is a lack of recent scientific literature that explicitly considers
the impact of multimodality on user experience in terms of novelty and diversity of
the produced recommendations. To this end, our analysis stands first and foremost as
an attempt to bridge such an evaluation gap.

7.1.2 Proposed analysis

This section describes our proposed analysis for multimodal-aware recommendation.
First, we report on the adopted datasets, along with details about the extraction of
multimodal features. Then, we introduce and formalize the set of evaluation metrics
accounting for accuracy, novelty, and diversity of recommendation. Finally, we outline
the details about reproducibility for our work, by providing information about dataset
splitting and filtering strategies, and the hyper-parameter search.

Datasets

In our study, we conduct extended experiments on three popular review datasets from
the Amazon catalog [218] to better generalize the insight derived from our analysis.
The categories are: O�ce Products (O�ce), (b) Toys & Games (Toys), and (c)
Clothing, Shoes & Jewelry (Clothing). Each dataset consists of both visual and
textual modalities, where the former are made available by McAuley et al. [218].
Thus, in our analysis, we utilize the already pre-extracted 4,096-dimensional visual
features which are publicly available1. For the textual modality, by following [382],
we aggregate the item’s title, descriptions, categories, and brand, thereby generating
textual embeddings. In this regard, we leverage sentence transformers [257, 382],
acquiring 1,024-dimensional sentence embeddings. Additional dataset information can
be found in Table 7.7.

1https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

166 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.1 Statistics of the tested datasets.

Datasets |U| |I| |R| Sparsity (%)
O�ce 4,905 2,420 53,258 99.5513
Toys 19,412 11,924 167,597 99.9276
Clothing 39,387 23,033 278,677 99.9693

Evaluation metrics

Di�erently from the existing literature on multimodal-aware recommendation, we take
into account metrics measuring the accuracy (Recall, nDCG, Precision), along with
the novelty (EFD) and diversity (Gini and iCov) of recommendation.

Reproducibility

To ensure reproducibility, we provide detailed information about the dataset prepro-
cessing and splitting, models’ tuning and evaluation.

The datasets have been filtered following the p-core strategy with p = 5. Then, we
split the dataset with 80%/20% train-test hold-out strategy. For the hyper-parameter
tuning phase, we remove the 50% of the test set and use it to validate the results on
Recall@20. For all models, we fix the maximum number of epochs to 200 and select the
model weights according to the epoch providing the best results on the validation set.

The complete set of hyper-parameters is reported in Table 7.2. The code for the
entire pipeline (which is implemented in Elliot [11]) can be found at this link https:
//github.com/sisinflab/MultiModal-Eval.

7.1.3 Results and discussion

In this section, we seek to answer the following research questions (i.e., RQs):

RQ1. What is the accuracy performance of multimodal-aware recommender systems
and is it aligned with the findings from the existing literature? We investigate
the recommendation performance in terms of accuracy (i.e., Recall, nDCG, and
Precision).

RQ2. What is the recommendation performance of such models in terms of novelty and
diversity of the produced lists of recommendation? We unveil important insights
in terms of novelty and diversity of recommendation (i.e., iCov, Gini, and EFD).

https://github.com/sisinflab/MultiModal-Eval
https://github.com/sisinflab/MultiModal-Eval

7.1 Novelty and diversity in multimodal-aware recommendation 167

Table 7.2 Set of explored and fixed hyper-parameters for our study.
Models Hyper-parameters Values

All
epochs 200

batch_size 1024
seed 123

VBPR lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
factors 64

comb_mod concat
l_w {1e-5, 1e-2}

MMGCN

lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
num_layers 3

factors 64
factors_multimod (256, None)

aggregation mean
concatenation False

has_id True
latent_factors 64

l_w {1e-2, 1e-5}

MGAT
lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}

num_layers 2
factors 64

factors_multimod (256, 100)

GRCN

lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
num_layers 2

num_routings 3
factors 64

factors_multimod 128
aggregation add

weight_mode confid
fusion_mode concat

LATTICE

lr {1e-2, 5e-3, 1e-3, 5e-4, 1e-4}
n_layers 1

n_ui_layers 2
top_k 20

l_m 0.7
factors_multim 64

Accuracy performance

The results of the accuracy metrics analysis is reported in Table 7.3. As a general
remark, we notice how the results are quite standard across the di�erent datasets.

Overall, LATTICE is the best model, showing its superior performance across all
the datasets and the metrics, while VBPR is the second-to-best model. Surprisingly,
complex and recent approaches such as MMGCN, MGAT, and GRCN do not outperform
a shallow and classic model such as VBPR. Conversely, LATTICE’s results are aligned
with the findings from the literature.

From a dataset-wise analysis, the highest metrics-performance variation between
LATTICE and VBPR is observable for Toys and Clothing while it is limited in O�ce.
Indeed, we should point out that Toys and Clothing have three times and four times
the interactions of O�ce, respectively, but they are much sparser. This highlights

168 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.3 Accuracy results of the tested baselines when considering the top-10, top-20, and
top-50 recommendation lists. Boldface and underline stand for best and second-to-best
results on each dataset/metric pair, respectively.

Datasets Models k = 10 k = 20 k = 50
Recall nDCG Prec Recall nDCG Prec Recall nDCG Prec

O�ce

VBPR 0.0652 0.0419 0.0164 0.1025 0.0533 0.0133 0.1774 0.0721 0.0095
MMGCN 0.0455 0.0300 0.0124 0.0798 0.0405 0.0109 0.1575 0.0598 0.0084
MGAT 0.0427 0.0277 0.0119 0.0745 0.0377 0.0102 0.1450 0.0552 0.0079
GRCN 0.0393 0.0253 0.0118 0.0667 0.0339 0.0099 0.1250 0.0488 0.0075
LATTICE 0.0664 0.0449 0.0173 0.1029 0.0566 0.0137 0.1780 0.0751 0.0096

Toys

VBPR 0.0710 0.0458 0.0131 0.1006 0.0545 0.0096 0.1523 0.0667 0.0061
MMGCN 0.0256 0.0150 0.0052 0.0426 0.0200 0.0044 0.0785 0.0285 0.0033
MGAT 0.0375 0.0230 0.0072 0.0595 0.0294 0.0059 0.1039 0.0398 0.0043
GRCN 0.0554 0.0354 0.0108 0.0831 0.0436 0.0083 0.1355 0.0559 0.0056
LATTICE 0.0805 0.0512 0.0148 0.1165 0.0617 0.0110 0.1771 0.0759 0.0069

Clothing

VBPR 0.0339 0.0181 0.0034 0.0529 0.0229 0.0027 0.0847 0.0292 0.0017
MMGCN 0.0227 0.0119 0.0023 0.0348 0.0150 0.0018 0.0609 0.0201 0.0012
MGAT 0.0244 0.0127 0.0025 0.0384 0.0162 0.0019 0.0699 0.0225 0.0014
GRCN 0.0319 0.0164 0.0032 0.0496 0.0209 0.0025 0.0858 0.0281 0.0017
LATTICE 0.0502 0.0275 0.0051 0.0744 0.0336 0.0038 0.1186 0.0425 0.0024

how LATTICE manages to recommend more accurate items despite the high dataset
sparsity.

From a metric-wise analysis, LATTICE, compared to VBPR, correctly predicts
relevant items (i.e., high Recall) with a higher probability to be in a top positions of
the recommendation lists (i.e., nDCG). The same trend is not observable in the Recal-
l/Precision metric pair, but this is explainable considering that the latter formulation
is normalized as the number of recommended items increases. Thus, it can result in a
lower performance variation between LATTICE and VBPR at the increase of k.

From a model-wise analysis, we notice how MMGCN has better performance on
Toys while showing the lowest performance at the increase of interactions number and
sparsity. GRCN has an opposite trend compared to MMGCN, boosting its performance
with highly sparse data. MGAT performs in the middle of MMGCN and GRCN with
no remarkable note.
Summary. Accuracy results demonstrate that, with the only exception of LATTICE
(whose trend is almost aligned with the existing literature) all other approaches’ perfor-
mance is heavily influenced by the hyper-parameter exploration and dataset characteris-
tics. Indeed, even shallow models (e.g., VBPR) show competitive accuracy measures
compared to more recent and complex solutions (e.g., MMGCN, GRCN).

7.2 Multimodality and items’ popularity bias 169

Novelty/diversity performance

Table 7.4 summarizes the results of the novelty and diversity metrics analysis. Overall,
we observe that some trends are quite aligned with findings from the accuracy evaluation,
but also that some other ones show deviations which we carefully describe and explain.

On the one hand, in terms of recommendation novelty (i.e., EFD), we can see that
LATTICE is the best model, with VBPR being the second-to-best approach in each
dataset and for di�erent settings of k. Indeed, this is a further demonstration on how
accuracy and novelty of recommendation may be highly correlated [14, 17, 18], also in
multimodal-aware recommendation.

On the other hand, when considering the diversity (i.e., Gini) and coverage (i.e.,
iCov) metrics, we notice some trends deviation to the accuracy performance. Specifically,
we see how GRCN is the best model in all settings. This suggests that this approach
may be (un)purposely giving up on the accuracy to promote a wider set of items from
the catalog, with a corresponding positive e�ect on the system serendipity. Indeed,
while its accuracy performance is not the best one, its diversity and coverage metrics
outperform all other models almost on every dataset, even reaching 100% of covered
items at k = 50. A much more impressive trend is recognizable for Gini, which is
higher than the second-to-best model. On a dataset level, it is worth pointing out that,
even with more sparse datasets, the GRCN constantly reaches a high iCov and Gini
measures. The second-to-best model in terms of diversity is VBPR. Notwithstanding
its high accuracy, VBPR settles once again as a compelling model.
Summary. While novelty results are almost aligned with the accuracy trends observed
in RQ1, the diversity/coverage measures depict a di�erent scenario. In this respect,
GRCN seems to be the approach providing the most diversified item recommendations
but at the expense of the accuracy, while VBPR manages to reach a more balanced
performance among all metrics.

7.2 Multimodality and items’ popularity bias
The vast majority of multimodal-aware recommender systems (MRSs) are generally
based upon the famous matrix factorization with bayesian personalized ranking (MF-
BPR) recommendation model. On the one hand, matrix factorization [160] (MF) is a
latent-factor approach that maps users and items in the recommendation system to
embeddings in the latent space and is trained to reconstruct the user-item interaction
matrix via the dot product of the respective factors. On the other hand, bayesian
personalized ranking [258] (BPR) is an optimization schema that drives from the

170 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.4 Novelty and diversity results of the tested baselines when considering the top-
10, top-20, and top-50 recommendation lists. Boldface and underline stand for best and
second-to-best results on each dataset/metric pair, respectively.

Datasets Models k = 10 k = 20 k = 50
EFD Gini iCov (%) EFD Gini iCov (%) EFD Gini iCov (%)

O�ce

VBPR 0.1753 0.3634 93.83 0.1479 0.396 10.23 0.1115 0.4413 99.59
MMGCN 0.1140 0.0128 3.07 0.1027 0.0231 4.64 0.0845 0.0546 10.23
MGAT 0.1079 0.0132 5.14 0.0963 0.0241 8.12 0.0792 0.0575 17.23
GRCN 0.1215 0.4587 99.01 0.1051 0.4892 99.79 0.0829 0.5286 100
LATTICE 0.1827 0.2128 87.86 0.1513 0.2652 95.90 0.1125 0.3414 99.30

Toys

VBPR 0.1948 0.2645 84.90 0.1527 0.3011 92.82 0.1051 0.3585 97.85
MMGCN 0.0648 0.0989 37.87 0.0570 0.1450 52.51 0.0455 0.2296 72.88
MGAT 0.0929 0.1036 40.95 0.0796 0.1439 55.71 0.0612 0.2183 76.24
GRCN 0.1604 0.3954 92.66 0.1298 0.4329 97.73 0.0932 0.4864 99.73
LATTICE 0.2090 0.1656 73.80 0.1665 0.2026 86.58 0.1151 0.2662 95.94

Clothing

VBPR 0.0502 0.2437 83.40 0.0413 0.2791 92.33 0.0291 0.3344 98.00
MMGCN 0.0292 0.0136 7.58 0.0240 0.0236 12.44 0.0182 0.0493 23.34
MGAT 0.0315 0.0201 11.05 0.0263 0.0326 17.36 0.0205 0.0622 30.90
GRCN 0.0481 0.3990 93.37 0.0397 0.4368 97.77 0.0293 0.4929 99.73
LATTICE 0.0738 0.1022 58.49 0.0589 0.1384 76.20 0.0413 0.2037 93.23

assumption that, for each user, the predicted score of positive (i.e., interacted) and
negative (i.e., non-interacted) items should diverge. Given its simple implementation
and e�cacy, MFBPR has long constituted the backbone of recommendation algorithms
in CF [126, 128, 216], not only for multimodal recommendation.

Nevertheless, recommender systems (such as MFBPR) may be a�ected by popularity
bias [3, 26, 39, 141] (Figure 7.1), as they tend to boost the recommendation of the
items from the short-head (i.e., the popular ones) at the expense of the items from
the long-tail (i.e., the niche ones). Tackling popularity bias in recommendation has
primarily followed four directions [58]: (i) regularization techniques [3, 68, 150], (ii)
adversarial learning [163], (iii) causal graphs [322, 387, 402], and (iv) other item
re-ranking approaches [1, 4].

Despite the growing interest in popularity bias [17, 75] and potential solutions to
address it, to date, very limited e�ort has been put into investigating how multimodal
side information in MRSs could amplify the negative e�ects of popularity
bias. To the best of our knowledge, three recent works discussed the concept of bias
in multimodal-aware recommendation. First, Liu et al. [192] take into account the bias
towards a single modality in multimodal recommendation, and propose a solution based
upon causal inference and counterfactual reasoning; however, the definition they provide
about bias is conceptually di�erent from the one of popularity bias. Then, Kowald
et al. [162] consider popularity bias in the case of multimedia recommendation datasets
(e.g., MovieLens); however, they do not support their findings by testing recommender

7.2 Multimodality and items’ popularity bias 171

0 500 1,000 1,500 2,000 2,500
0

20

40

60

80

100

120

items

po
pu

la
rit

y

short-head
long-tail

Fig. 7.1 Short-head and long-tail items from the O�ce dataset in the Amazon catalog.

systems leveraging multimodal features as items’ side information. Last, Malitesta
et al. [206] investigate how novelty and diversity metrics are influenced in multimodal
recommendation, but without an analysis on the impact of each single modality.

Driven from the assumptions above, and di�erently from the related literature, we
propose one of the first analyses on how multimodal-aware recommender systems may
amplify popularity bias in the produced recommendation lists. To this aim, we select
four established and recent multimodal-aware recommender systems from the literature
(i.e., VBPR [125], MMGCN [339], GRCN [338], and LATTICE [382]) and train them
on three categories of the Amazon recommendation dataset [218] (i.e., O�ce, Toys,
and Clothing). Then, we evaluate the performance of the models by assessing metrics
accounting for recommendation accuracy and popularity bias (the latter is measured
through the diversity of recommendation lists and the percentage of retrieved items
from the long-tail). Finally, to tailor our investigation, we focus on the separate impact
of each multimodal side information (i.e., visual or textual) on popularity bias. To
conduct this further study, we train the selected recommender systems when integrating
either the visual or the textual modality as items’ side information, and study the
performance on single metrics and across pairs of metrics.

We seek to answer: RQ1. How do multimodal-aware recommendation models be-
have in terms of accuracy, diversity, and popularity bias? RQ2. What is the influence
of each modality (i.e., visual, textual, multimodal) on such performance measures?
Results widely show that the integration of a single modality (with respect to the mul-
timodal setting) is capable of amplifying the negative e�ects of popularity bias, paving
the way to additional, more formal investigations on multimodal recommendation. We
release the code at: https://github.com/sisinflab/MultiMod-Popularity-Bias.

https://github.com/sisinflab/MultiMod-Popularity-Bias

172 Chapter 7 Graph-based recommendation exploiting multimodal information

7.2.1 Popularity bias in recommendation

In recommendation, popularity bias refers to the system’s tendency to favor popular
items (i.e., short-head) at the expense of less popular ones (i.e., long-tail) [3, 26, 39, 43,
141]. For instance, Jannach et al. [141] conduct a comprehensive algorithmic comparison
across multiple datasets; their findings indicate that existing recommendation methods
tend to concentrate mainly on a small fraction of the available item spectrum. More
recently, Abdollahpouri et al. [4] delve into this issue using the well-known MovieLens
1M dataset and reveal that over 80% of all ratings are attributed to popular items;
their main focus lies in finding ways to strike a balance between ranking accuracy and
the coverage of long-tail items.

On such basis, the literature currently recognizes four main research directions [58]
to address popularity bias in recommendation, namely: (i) regularization techniques [3,
68, 150], (ii) adversarial learning [163], (iii) causal graphs [322, 387, 402], and (iv) other
approaches such as item re-ranking [1, 4].

In multimodal recommendation, only a few recent works discuss popularity bias, but
with specific definitions [192] and neglecting the impact of multimodal features [162],
or on other evaluation metrics [206]. Conversely, our analysis assesses how prone
multimodal-aware recommender systems are to push items belonging to the short-head
and how the di�erent modalities a�ect the tendency to amplify the popularity bias.

7.2.2 Factorization models leveraging multimodal information

This section provides useful background notions for our proposed experimental analysis.
We present the formulations of four state-of-the-art multimodal-aware recommender
systems (MRSs): VBPR [125], MMGCN [339], GRCN [338], and LATTICE [382].
Before diving into their approaches, we introduce some additional formalism.

Besides eu and ei, hereafter referred to as collaborative user and item embeddings,
we also introduce fu and fi as the multimodal embeddings for user u and item i.
Moreover, we indicate M as the set of available modalities (e.g., visual, textual, audio),
and we use m as embedding’s apex to denote that the embedding refers to the m œ M
modality (e.g., fm

i stands for the m-th multimodal embedding of item i).

VBPR

Visual-bayesian personalized ranking [125] (dubbed as VBPR) adopts visual features
extracted from product images as items’ side information in MFBPR. The authors
introduce, along with user and item collaborative embeddings, additional visual user

7.2 Multimodality and items’ popularity bias 173

and item embeddings, where the latter is obtained as the activation of the penultimate
layer from a pre-trained convolutional neural network. Then, the collaborative and
visual embeddings are used to measure a collaborative- and visual-aware prediction for
the interaction score and are eventually summed to obtain the final prediction score.
In this work, we follow [382] and adapt VBPR to multimodality by concatenating the
visual and textual item features to generate a unique multimodal representation:

x̂ui = e€
u ei + f€

u t(fi) with fi = Î
mœM

fm
i , (7.1)

where t is a projection function such that the latent dimensions of the multimodal user
and item embeddings match.

MMGCN

One of the first approaches leveraging the representational power of graph convolutional
networks (GCNs) with multimodal content is multimodal graph convolution network for
recommendation [339] (dubbed as MMGCN). By designing one GCN for each modality,
the model learns the di�erent preferences users have towards each representation of
the items. Finally, to fuse all multimodal representations into one for both users and
items embeddings, the authors adopt the element-wise addition, and the predicted
interaction score is calculated via the dot product:

x̂ui = f€
u fi with fu =

ÿ

mœM
c(eu,g(fm

u), t(fm
u ,eu)), (7.2)

where c and g are a combination and GCN-based functions. We report only the
user-side formulation for the sake of space.

GRCN

Similarly to MMGCN, graph-refined convolutional network for multimedia recommen-
dation [338] (dubbed as GRCN) utilizes a GCN-architecture to update user and item
embeddings. Specifically, the adjacency matrix entries are refined by pruning the
noisy user-item interactions according to the preference of users toward each item’s
modality. Collaborative and multimodal versions of the user and item embeddings are
eventually combined through concatenation to estimate the interaction score via their

174 Chapter 7 Graph-based recommendation exploiting multimodal information

dot product:

x̂ui = f€
u fi with fu = g(eu, fm

u ,’m œ M) ||
Q

a Î
mœM

t(fm
u)

R

b . (7.3)

Again, we report only the user-wise formulation for lack of space.

LATTICE

Latent structure mining method for multimodal recommendation [382] (dubbed as
LATTICE) performs graph structure learning on multiple modality-aware item-item
graphs (one for each modality). The obtained adjacency matrices are aggregated
through weighted element-wise addition, and the final adjacency matrix is exploited
to perform graph convolution to update the representation of the collaborative item
embeddings. Then, this updated version is added to the initial collaborative item
embedding. Finally, the dot product between the collaborative user and (updated)
item embeddings predicts the interaction score:

x̂ui = e€
u fi with fi = ei + g(ei, fm

i ,’m œ M)
||g(ei, fm

i ,’m œ M)||2
, (7.4)

where g is a LightGCN [126] architecture performing graph structure learning.

7.2.3 Proposed analysis

In this section, we present the details to conduct our analysis. Initially, we report on the
used datasets, describing the methodologies employed for extracting multimodal fea-
tures. Subsequently, we introduce and formally define the evaluation metrics employed,
encompassing accuracy, diversity, and popularity bias. Finally, we provide a thorough
summary of the reproducibility information for our study, detailing the methods used
for dataset splitting and filtering as well as the strategy for hyperparameter search.

Datasets

The multimodal recommender systems have been tested on three popular [66, 155, 382,
407] datasets from the Amazon catalog [218]: O�ce Products (O�ce), (b) Toys &
Games (Toys), and (c) Clothing, Shoes & Jewelry (Clothing). The multimodal datasets
provide both images and descriptions for each available item. Specifically, we utilize the

7.2 Multimodality and items’ popularity bias 175

pre-extracted 4,096-dimensional visual features [82] which are made publicly available2.
For the textual modality, we follow the existing literature [382], which aggregates the
item’s title, descriptions, categories, and brand, thereby generating textual embeddings
by leveraging sentence transformers [256]. The generated features are 1,024-dimensional
embeddings. Additional dataset information can be found in Table 7.7.

Evaluation metrics

In the proposed study, we refer to various metrics that may bring out additional
insights which have not been investigated yet in multimodal recommendation. Indeed,
we do not solely rely on accuracy metrics (i.e., Recall and nDCG) but also on diversity
(i.e., iCov) and popularity bias (i.e., APLT) metrics. An ideal recommender system
should increase all the metrics listed above according to the principle “higher is better”
to boost accuracy and diversity while reducing the popularity bias of the produced
recommendations. Nevertheless, with the current work, we try to unveil whether and
why multimodal-aware recommender systems are a�ected by popularity bias. Thus, in
the following, we will take into account those settings in which accuracy is high, while
diversity and popularity bias are low (according to the metrics definitions).

Reproducibility

We investigate the models’ behavior in three di�erent settings: (i) visual modality, in
which we employ only visual features, (ii) textual modality, in which we employ only
textual features, and (iii) multimodal, where both modalities are combined.

In the first step, we evaluate the models in the multimodal setting which is the same
setting as the original one for each tested approach. Then, we focused on quantifying the
singular modality influence on the multimodal scenario in terms of accuracy, diversity,
and popularity bias. Furthermore, to ensure the reproducibility of our work, in the
following, we provide comprehensive details regarding the preprocessing and splitting
of the datasets, as well as the tuning and evaluation of the models.

The datasets are filtered using the p-core strategy, where we set p to 5. Subsequently,
we employ an 80%/20% train-test hold-out strategy to split the dataset. During the
hyper-parameter tuning phase, we further divide the test set by removing 50% of its
instances for the validation, specifically evaluating the results using the Recall@20
metric (as in the original work). In terms of models’ training, we set the maximum

2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

176 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.5 Statistics of the tested datasets.

Datasets |U| |I| |R| Sparsity (%)
O�ce 4,905 2,420 53,258 99.5513
Toys 19,412 11,924 167,597 99.9276
Clothing 39,387 23,033 278,677 99.9693

number of epochs to 200 and select the model weights based on the epoch that yields
the best performance on the validation set.

The code is implemented in Elliot [11]. Note that the explored hyper-parameter
values are not entirely aligned with the ones in the original papers and codes. Indeed,
we want to tune the selected baselines on an extensive, shared set of hyper-parameter
values across all models for the sake of fair comparison.

7.2.4 Results and discussion

In this section, we answer the following research questions (RQs):

RQ1. How do the selected multimodal-aware recommendation models behave in terms
of accuracy, diversity, and popularity bias? We investigate the recommendation
performance in terms of accuracy (i.e., Recall, nDCG), diversity (i.e., iCov), and
popularity bias (i.e., APLT). Note that, for the sake of completeness, we also
report the performance of a recommender system generating recommendations
in a random manner (i.e., Random) or based upon the most popular items in
the catalog (i.e., MostPop); then, we train and evaluate MFBPR, that is the
building model of the other multimodal baselines. We regard the performance of
Random, MostPop, and MFBPR as a reference for the other multimodal-aware
recommender systems we want to analyze.

RQ2. What is the influence of each modality setting (i.e., visual, textual, multimodal)
on such performance measures? We take a step further by analyzing how each
modality (i.e., visual, textual, and multimodal) influences accuracy, diversity,
and popularity bias; the evaluation is conducted both on the single metric and
across pairs of metrics.

Recommendation accuracy, diversity, and popularity bias

The results of the accuracy, diversity, and popularity bias metrics are reported in Ta-
ble 7.6. The measured values refer to top@10, top@20, and top@50 recommendation

7.2 Multimodality and items’ popularity bias 177

lists. In the following, we discuss the obtained results considering the three metrics
families separately.
Accuracy. Overall, LATTICE is the top-performing model, in alignment with the
recent literature [382]. Indeed, its ability to learn more refined items’ embeddings
based upon the multimodal item-item similarities may positively impact the accuracy
performance. Conversely, VBPR’s outstanding performance to the other multimodal
approaches comes as quite a surprise, considering that more complex and recent models
leveraging GNNs (such as MMGCN and GRCN) do not outperform it.

Considering the performance on a dataset level, the most significant variation in
metrics between LATTICE and VBPR is observed on Toys and Clothing, while the
di�erence is reduced on O�ce. Notably, Toys and Clothing store three and four times
more interactions than O�ce, respectively, but they are much sparser. This emphasizes
LATTICE’s ability to recommend more accurate items despite the higher dataset
sparsity. Assessing the other models’ performance, MMGCN works exceptionally well
on Toys but shows the lowest performance as the number of interactions and sparsity
increase. GRCN, in contrast, excels with highly sparse data, exhibiting an opposite
trend to MMGCN.

From a metric-wise analysis, LATTICE outperforms VBPR in correctly predicting
relevant items (high Recall) that are more likely to appear at the top of the recommen-
dation lists (nDCG). However, the same trend is not as evident on the Recall, partly
due to its normalization w.r.t. the k recommended items, which can lead to a smaller
di�erence between LATTICE and VBPR as k increases.
Diversity. As far as recommendation diversity (i.e., iCov) is concerned, the worst-
performing model is MMGCN, since its iCov is, in any case, negatively out of scale
compared to the other models. For instance, when taking into account O�ce, MMGCN’s
iCov is slightly better than MostPop (whose item diversity is, by construction, the
lowest) demonstrating a restricted ability to engage diverse items in the recommendation
lists. Unexpectedly, the second-worst model is LATTICE, even if its performance is
still more balanced to the other approaches than MMGCN’s one. Indeed, we observe
that while MMGCN is a�ected by poor accuracy due to the lack of item diversity,
LATTICE can deal with both accuracy and diversity.

As an opposite (but noteworthy) trend, we underline that VBPR and GRCN
are generally capable of recommending a wider portion of items than MMGCN and
LATTICE, independently on the selected top-k. Overall, their iCov values are quite
comparable to the ones of Random, which should provide (by definition) the highest

178 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.6 Results in terms of recommendation accuracy (Recall, nDCG), diversity (iCov) and
popularity bias (APLT). For accuracy metrics, ø means better performance, while ¿ means
less diversity and more popularity bias. We remind that, while iCov and APLT metrics
would generally adhere to the principle of “higher is better” (ø) for an ideal recommender
system, in this work we consider the opposite as we want to emphasize which models are
performing worst in terms of diversity and popularity bias.
Datasets Models top@10 top@20 top@50

Recallø nDCGø iCov¿ APLT¿ Recallø nDCGø iCov¿ APLT¿ Recallø nDCGø iCov¿ APLT¿

O�ce

Random 0.0034 0.0020 2,414 0.5950 0.0079 0.0034 2,414 0.5948 0.0220 0.0068 2,414 0.5924
MostPop 0.0302 0.0208 20 0.0000 0.0533 0.0282 32 0.0000 0.1143 0.0439 66 0.0000
MFBPR 0.0602 0.0389 2,268 0.2294 0.0955 0.0500 2,357 0.2379 0.1657 0.0677 2,398 0.2513
VBPR 0.0652 0.0419 2,265 0.2321 0.1025 0.0533 2,354 0.2375 0.1774 0.0721 2,404 0.2469
MMGCN 0.0455 0.0300 74 0.0016 0.0798 0.0405 112 0.0078 0.1575 0.0598 247 0.0205
GRCN 0.0393 0.0253 2,390 0.3438 0.0667 0.0339 2,409 0.3469 0.1250 0.0488 2,414 0.3548
LATTICE 0.0664 0.0449 2,121 0.1752 0.1029 0.0566 2,315 0.2039 0.1780 0.0751 2,397 0.2413

Toys

Random 0.0011 0.0006 11,879 0.4894 0.0021 0.0008 11,879 0.4896 0.0051 0.0015 11,879 0.4902
MostPop 0.0130 0.0075 13 0.0000 0.0229 0.0104 24 0.0000 0.0451 0.0156 56 0.0000
MFBPR 0.0641 0.0403 10,016 0.1167 0.0903 0.0481 10,944 0.1268 0.1394 0.0596 11,544 0.1460
VBPR 0.0710 0.0458 10,085 0.1064 0.1006 0.0545 11,026 0.1180 0.1523 0.0667 11,624 0.1400
MMGCN 0.0256 0.0150 4,499 0.0961 0.0426 0.0200 6,238 0.1058 0.0785 0.0285 8,657 0.1263
GRCN 0.0554 0.0354 11,007 0.2368 0.0831 0.0436 11,609 0.2482 0.1355 0.0559 11,847 0.2679
LATTICE 0.0805 0.0512 8,767 0.0546 0.1165 0.0617 10,285 0.0684 0.1771 0.0759 11,397 0.0950

Clothing

Random 0.0004 0.0002 23,016 0.4487 0.0010 0.0003 23,016 0.4478 0.0024 0.0006 23,016 0.4482
MostPop 0.0089 0.0046 13 0.0000 0.0157 0.0063 24 0.0000 0.0322 0.0095 56 0.0000
MFBPR 0.0303 0.0156 18,414 0.0729 0.0459 0.0195 20,582 0.0824 0.0734 0.0249 22,171 0.1017
VBPR 0.0339 0.0181 19,195 0.0809 0.0529 0.0229 21,251 0.0915 0.0847 0.0292 22,555 0.1112
MMGCN 0.0227 0.0119 1,744 0.0044 0.0348 0.0150 2,864 0.0066 0.0609 0.0201 5,373 0.0121
GRCN 0.0319 0.0164 21,490 0.2358 0.0496 0.0209 22,503 0.2459 0.0858 0.0281 22,954 0.2631
LATTICE 0.0502 0.0275 13,463 0.0134 0.0744 0.0336 17,538 0.0207 0.1186 0.0425 21,458 0.0385

item coverage from the catalog. We intend to further investigate (and justify) this
aspect by assessing the e�ects of popularity bias.
Popularity bias. In terms of popularity bias (i.e., APLT), the worst and second-worst
models are once again MMGCN and LATTICE (the former on O�ce and Clothing,
while the latter on Toys). As already discussed, it makes sense to conceptually bind
iCov and APLT. When assessing MMGCN’s performance on O�ce, it becomes clear
how the model is recommending only a few items (see again the iCov) while achieving
good results in terms of accuracy; this demonstrates how the user-item interactions
from O�ce may likely be biased towards popular items, and the phenomenon is even
amplified due to the dataset small size. The same does not hold on Clothing where
MMGCN, usually prone to popularity bias, gets also really low performance in terms
of accuracy. Conversely, LATTICE can recommend popular items thus pushing its
accuracy performance without amplifying the popularity bias phenomenon as much
as MMGCN does. Indeed, even if LATTICE’s iCov is the second-worst across all the
datasets, the metric is always close to the best models in terms of diversity.

Finally, VBPR and GRCN confirm their ability (already observed on the diversity
measure) to tackle also popularity bias in all experimental settings. Particularly, while
we recognize that VBPR performance is slightly increased with respect to MFBPR

7.2 Multimodality and items’ popularity bias 179

in terms of iCov and APLT (the two approaches are almost similar), GRCN results
are quite remarkable. It might be the case that its graph edges pruning technique
(driven by multimodal signals) is reducing the influence of noisy user-item interactions
(i.e., redundant edges which might involve popular items), thus helping to diversify the
recommendations by considering also several long-tail items.
Summary. In a standard multimodal setting, LATTICE stands out for its accuracy
performance and ability to handle dataset sparsity, but at the detriment of amplifying
popularity bias; MMGCN struggles with diversity, exhibits strong popularity bias, and
sacrifices accuracy in certain scenarios; VBPR and GRCN, in different manners, better
manage all the metrics by finding the right compromise among them.

Modalities influence on recommendation performance

While the previous section has answered how multimodal recommender systems perform
in terms of accuracy, diversity, and popularity bias when leveraging the full modalities,
in the following, we discuss the influence of each single modality on the performance.
We consider two evaluation dimensions where modalities influence is assessed (i) on
accuracy, diversity, and popularity bias separately, and (ii) on pairs of metrics to
investigate their joint variations.
Modalities influence on the single metric. Figure 7.2 displays the influence
of each modality calculated as percentage variation with respect to the multimodal
baseline, on the top@20 recommendation lists. We select the Recall (Figure 7.2a), iCov
(Figure 7.2b), and APLT (Figure 7.2c) for accuracy, diversity, and popularity bias.

As regards the accuracy performance (Figure 7.2a), we notice how the trend is not
consistent across all the datasets and models. Particularly, when considering O�ce,
we observe that only VBPR and LATTICE fully exploit multimodality (indeed, their
performance decreases when the modalities are injected separately); on an opposite
level, on MMGCN, the visual modality slightly improves the multimodal setting, while
the textual modality even worsens it; then, GRCN achieves better performance on
both the visual and textual modalities, suggesting that this approach may not take
advantage of the multimodal configuration. On the Toys dataset, the only textual
setting generally improves the performance, bringing important information to the
model learning interaction. The model benefiting from the single modality the most is
MMGCN, which has an improvement of at least 20% on both visual and textual. For
the remaining models, the trend is quite stable with the textual and visual modalities
improving and reducing the performance, respectively. Finally, we observe that Clothing
is the only dataset showing consistent trends. Indeed, the visual modality reduces

180 Chapter 7 Graph-based recommendation exploiting multimodal information

VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

O�ce
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Toys
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Clothing

(a) Recall

VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

O�ce
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Toys
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Clothing

(b) iCov

VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

O�ce
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Toys
VBPR MMGCN GRCN LATTICE

-20%

-10%

0%

+10%

+20%

Clothing

(c) APLT

visual textual

Fig. 7.2 Percentage variation on the (a) Recall, (b) iCov, and (c) APLT when training the
multimodal recommender systems with either visual or textual modalities. The 0% line
stands for the reference performance provided by the multimodal version of the model. All
results refer to the top@20 recommendation lists.

the Recall while the textual increases it (with the only exception of VBPR whose
percentage variation is negligible).

Di�erently from the accuracy analysis, we recognize a quasi-stable trend in the
performance variation measured for the diversity metric (Figure 7.2b). Considering
the O�ce dataset, each modality’s contribution is generally irrelevant except for

7.2 Multimodality and items’ popularity bias 181

MMGCN, for which the visual modality slightly improves the coverage across the whole
recommendation list, while the textual one worsens the performance by a large margin.
Assessing the trend on Toys, both the modalities decrease the coverage performance
of the model when injected separately in the recommendation pipeline; remarkably,
MMGCN is once again the model a�ected by the single modality presence the most,
but this time the coverage performance widely deteriorates because of both the visual
and textual modalities. Finally, on Clothing, both modalities lower the model’s item
coverage, with specific reference to the visual modality.

As the last part of our analysis, we take into account each modality’s contribution
to the popularity bias dimension (Figure 7.2c). Starting from O�ce, we notice how
both modalities are prone to enforce popularity bias if injected singularly, with the only
exception of LATTICE whose textual modality limits the popularity bias (the APLT
increases); this is interesting as we remind that LATTICE is the second-worst model
in terms of popularity bias, but using only the textual modality reduces its accuracy
performance and the influence of popular items in the recommendation list. When
it comes to the Toys dataset, every single modality enforces the popularity bias of
MMGCN and GRCN; for VBPR, the visual and textual modalities amplify and reduce
the bias, respectively, while for LATTICE both the visual and textual modalities limit
the popularity bias. Finally, on Clothing, both the modalities show to increase the
popularity bias of the model (but the textual one on VBPR and LATTICE).
Modalities cross-influence on metrics pairs. To conclude, we discuss the cross-
influence of each modality setting (i.e., visual, textual, and multimodal) on pairs of
metrics. In this respect, we decide to display (Figure 7.3) the joint trend of (a) accuracy
and popularity bias (i.e., Recall vs. APLT), (b) accuracy and diversity (i.e., Recall vs.
iCov), and (c) diversity and popularity bias (i.e., iCov vs. APLT). We only report the
results on Clothing for top@20 recommendations.

In detail, VBPR and MMGCN are the models being a�ected by each specific
modality the least, since the performance measures assessed on visual and textual
are generally aligned with the multimodal reference. Regarding LATTICE, we notice
that the textual modality has a major accuracy influence with respect to popularity
bias and diversity. Indeed, the textual modality improves the Recall without having
a relevant e�ect in terms of iCov and APLT; conversely, the visual modality reduces
the accuracy by jointly worsening the diversity and the popularity bias. Finally, when
considering GRCN, we observe that the multimodal setting reduces the popularity bias
without a�ecting the accuracy and diversity.

182 Chapter 7 Graph-based recommendation exploiting multimodal information

0.03 0.04 0.05 0.06 0.07 0.08

0.00

0.05

0.10

0.15

0.20

0.25

Recall

A
P

LT

(a)

0.03 0.04 0.05 0.06 0.07 0.08

5 000

10 000

15 000

20 000

Recall

iC
ov

(b)

5 000 10 000 15 000 20 000

0.00

0.05

0.10

0.15

0.20

0.25

iCov

A
P

LT

(c)
VBPR MMGCN GRCN LATTICE

multimodal visual textual

Fig. 7.3 Performance analysis on Clothing when comparing (a) Recall vs. APLT, (b) Recall
vs. iCov, and (c) iCov vs. APLT for di�erent modality settings involving the multimodal,
visual, and textual modalities. Metrics are on top@20.

Summary. In a single modality setting, the textual one improves the accuracy, while
both modalities negatively affect the diversity and reinforce the popularity bias. When
evaluating the modalities’ influence across metrics pairs, the textual modality has a
significant influence on accuracy but minimal effects on diversity and popularity bias;
conversely, the visual modality reduces accuracy and jointly worsens the popularity bias
and diversity.

7.3 A comprehensive benchmarking within Elliot
After a separate evaluation of multimodal-aware recommender systems under accuracy,
novelty, diversity, and popularity bias measures, we devote this section of the chapter
to a comprehensive analysis across all recommendation metrics, with an extensive set of
datasets and models. Specifically, we benchmark six state-of-the-art multimedia recom-
mendation approaches (i.e., VBPR [125], MMGCN [339], GRCN [338], LATTICE [382],
BM3 [407], and FREEDOM [406]). In the following, we report on the datasets we
used, the technical aspects of the multimodal-aware recommender systems involved,
the evaluation metrics we adopted (spanning both accuracy and beyond-accuracy
recommendation metrics), the reproducibility details of our framework, and the results
of the benchmarking analysis.

7.3 A comprehensive benchmarking within Elliot 183

Table 7.7 Statistics of the tested datasets.

Datasets |U| |I| |R| Sparsity (%)
O�ce 4,905 2,420 53,258 99.55%
Toys 19,412 11,924 167,597 99.93%
Beauty 22,363 12,101 198,502 99.93%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 278,677 99.97%

7.3.1 Datasets

For the benchmarking, we use five popular [66, 155, 382, 407] datasets which collect
the purchase history from five product categories of the Amazon catalog [124, 218],
namely, O�ce Products (i.e., O�ce), Toys & Games (i.e., Toys), All Beauty (i.e.,
Beauty), Sports & Outdoors (i.e., Sports), and Clothing Shoes & Jewelry (i.e., Clothing).
Besides containing the records of user-product interactions with timestamps and other
metadata, such datasets come with the visual features extracted from the product
images, stored as 4,096-dimensional embeddings which are publicly available at the
same URL of the datasets3. Conversely, in terms of textual modality, we adopt the same
procedure indicated in [382], and concatenate the item’s title, descriptions, categories,
and brand, to extract the 1,024-dimensional textual embeddings through sentence
transformers [256]. Overall dataset information can be found in Table 7.7.

7.3.2 Multimedia recommender systems

We decide to benchmark the results of six state-of-the-art multimedia recommender
systems, namely, VBPR [125], MMGCN [339], GRCN [338], LATTICE [382], BM3 [407],
and FREEDOM [406]. Such approaches represent a group of techniques that are widely
recognized in the related literature as strong baselines in multimedia recommendation
exploiting multimodality, as well as recently proposed solutions at top-tier conferences
(Table 7.8). In the following, we only focus on BM3 and FREEDOM, as the other
multimodal-aware recommendation systems have been widely presented in previous
sections of this chapter. Note that, by adding BM3 and FREEDOM to the set
of benchmarked baselines, we provide an extensive analysis on five state-of-the-art
graph-based approaches leveraging multimodal content.

3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

184 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.8 An overview on the selected multimedia recommender systems, along with their
publication venue and year, and a non-exhaustive set of papers where they are used as
baselines.

Models Year Venue Baseline in
VBPR [125] 2016 AAAI [66, 69, 181, 187, 305, 382]
MMGCN [339] 2019 MM [293, 320, 336, 337, 380, 407]
GRCN [338] 2020 MM [170, 186, 187, 336, 382, 407]
LATTICE [382] 2021 MM [155, 223, 336, 383, 407]
BM3 [407] 2023 WWW [180, 372, 404]
FREEDOM [406] 2023 MM [404]

BM3

Bootstrapped multimodal model [407], indicated as BM3, proposes a self-supervised
multimodal technique for recommendation. Di�erent from previous approaches using
computationally expensive augmentations, BM3 leverages dropout as a simple operation
for generating contrastive views of the same embeddings. In detail, the loss function
consists of three components, where a reconstruction loss minimizes the similarity
between the contrastive views of user and item embeddings, while an inter- and intra-
modality alignment loss works to minimize the distance between the contrastive views
generated for the same or di�erent modalities.

FREEDOM

The authors from [406] demonstrate that freezing the item-item multimodal similarity
graph (derived from LATTICE) and denoising the user-item graph can lead to improved
recommendation performance (the proposed model is named FREEDOM). As for the
denoising operation of the user-item graph, the authors propose a degree-sensitive edge
pruning to remove noisy edges from the user-item adjacency matrix. Moreover, and
di�erently from LATTICE, the model optimizes a double BPR-like loss function, where
the first component of the loss integrates a multimodal-enhanced representation of the
item embedding, while the second component explicitly leverages the item projected
multimodal features.

7.3.3 Evaluation metrics

To conduct the benchmarking analysis, we measure the recommendation performance
through accuracy and beyond-accuracy metrics. For the recommendation accuracy,
we consider the Recall@k and the nDCG@k; for the novelty [311] and diversity [295],

7.3 A comprehensive benchmarking within Elliot 185

we measure the EFD@k and the Gini@k, respectively; for the popularity bias [3], we
calculate the APTL@k; finally, as a general index of how recommendations cover the
entire catalog of products, we adopt the iCov@k.

7.3.4 Reproducibility

First, we pre-process the datasets following the 5-core filtering on users and items to
remove cold-start users and items as done in [382]. Second, we split them according to
the 80:20 hold-out strategy for the training and test sets, where the former and the
latter contain the 80% and the 20% of interactions recorded for each user, respectively.
Then, we decide to train the recommendation models so that the number of epochs
(i.e., 200) and the batch size (i.e., 1024) are the same for all of them to ensure fair
comparison. As for the other models’ hyper-parameters, we follow a grid search
strategy with 10 explorations comprising both the learning rate and the regularization
coe�cients and fix the remaining (model-specific) hyper-parameters to the best values
according to the original papers and/or codes. Finally, to select the best configuration
for each model and dataset, we remove the 50% of the test set for the validation set
(following again [382]), and select the hyper-parameter setting providing the highest
Recall@20 value on the validation data measured for a specific epoch (maximum
200 epochs). To foster the reproducibility of the proposed benchmarks, we provide
the codes, datasets, and configuration files to replicate our results at: https://github.
com/sisinflab/Formal-MultiMod-Rec, where we integrated the selected multimedia
recommender systems into Elliot [11].

7.3.5 Benchmarking results

Table 7.9 reports on the results of the extensive benchmarking analysis we conduct on
the selected datasets and state-of-the-art multimedia recommendation systems. The
calculated metrics involve both accuracy (i.e., Recall and nDCG) and beyond-accuracy
(i.e., EFD, Gini, APLT, and iCov) measures when considering top@10 and top@20
recommendation lists. Based on how we defined all the recommendation metrics, higher
values indicate better performance.

In terms of accuracy performance, we observe that one of LATTICE, BM3, and
FREEDOM is steadily among the two best recommendation models, which is something
that also emerges from the related literature. This holds across all datasets and top@k
under analysis. Nevertheless, we notice an interesting trend when considering VBPR.
Indeed, we observe how this model is quite always among the top-3 recommendation

https://github.com/sisinflab/Formal-MultiMod-Rec
https://github.com/sisinflab/Formal-MultiMod-Rec

186 Chapter 7 Graph-based recommendation exploiting multimodal information

techniques despite being one of the shallowest approaches compared to other more
recent and complex models. As already stated in recent works [206, 207], this finding
demonstrates how even a not-so-deep, but still careful hyper-parameter exploration
(such as the one we performed) may help uncover unexpected results with respect to
what described in the literature.

However, the most surprising behavior involves the analysis of the beyond-
accuracy performance. While several works depict the most recent approaches in
multimedia recommendation (i.e., LATTICE, BM3, and FREEDOM) as dominating
the accuracy level, the same does not hold for other metrics accounting for novelty,
diversity, and popularity bias. Indeed, the only observable trend in this setting is
that GRCN and VBPR steadily settle as best-performing algorithms. Particularly, it
is worth pointing out how both approaches can strike a su�cient trade-o� between
accuracy and beyond-accuracy measures, where VBPR can even reach quite high
performance on beyond-accuracy without giving up on accuracy that much. Once
again, such observations corroborate what has recently been pointed out in similar
works [206, 207], by extending the analysis to additional datasets and multimedia
recommendation systems.

7.4 Leveraging textual review content on graph
edges for recommendation

The message-passing pattern, as used in graph-based recommendation, may still present
some limitations despite being successful. An argument could be made that not all
user-item interactions (i.e., graph edges) have the same relative importance. To clarify
this, consider the motivating scenario in Figure 7.4, where we depict a subset of users
and items from a real-world e-commerce platform (i.e., the Amazon catalog) and
enrich their interactions with ratings and reviews. Both user u1 and u2 interacted
with item i1, thus inferring that they might share similar interests and preferences.
However, careful analysis of the corresponding reviews reveals that their opinions
about item i1 are opposite (the expressed ratings are 5 and 2, respectively). Following
a similar reasoning schema, users u1 and u3 have both interacted with item i2 but their
comments, while being generally similar (the item is rated 3 and 5, respectively), show
slight shades of disagreement (i.e., u1 is not completely satisfied with the belt size).
As the message-passing pattern works by indiscriminately aggregating the neighbor
nodes at multiple hops, the node representation of u1 is ultimately influenced by the

7.4 Leveraging textual review content on graph edges for recommendation 187

Table 7.9 Benchmarking results on selected datasets and state-of-the-art multimedia recom-
mender systems. The reported values refer to accuracy and beyond-accuracy recommendation
metrics, on top@10 and top@20 recommendation lists. For each metric-dataset pair, boldface
and underline indicate best and second-to-best values.

Datasets Models
top@10 top@20

Accuracy Beyond-accuracy Accuracy Beyond-accuracy
Recall nDCG EFD Gini APLT iCov Recall nDCG EFD Gini APLT iCov

O�ce

VBPR 0.0652 0.0419 0.1753 0.3634 0.2321 93.83% 0.1025 0.0533 0.1479 0.3960 0.2375 97.51%
MMGCN 0.0455 0.0300 0.1140 0.0128 0.0016 3.07% 0.0798 0.0405 0.1027 0.0231 0.0078 4.64%
GRCN 0.0393 0.0253 0.1215 0.4587 0.3438 99.01% 0.0667 0.0339 0.1051 0.4892 0.3469 99.79%
LATTICE 0.0664 0.0449 0.1827 0.2128 0.1752 87.86% 0.1029 0.0566 0.1513 0.2652 0.2039 95.90%
BM3 0.0701 0.0460 0.1837 0.1407 0.1427 77.13% 0.1081 0.0583 0.1550 0.1900 0.1715 91.55%
FREEDOM 0.0560 0.0365 0.1493 0.1922 0.1875 79.12% 0.0884 0.0469 0.1282 0.2439 0.2080 90.64%

Toys

VBPR 0.0710 0.0458 0.1948 0.2645 0.1064 84.90% 0.1006 0.0545 0.1527 0.3011 0.1180 92.82%
MMGCN 0.0256 0.0150 0.0648 0.0989 0.0961 37.87% 0.0426 0.0200 0.0570 0.1450 0.1058 52.51%
GRCN 0.0554 0.0354 0.1604 0.3954 0.2368 92.66% 0.0831 0.0436 0.1298 0.4329 0.2482 97.73%
LATTICE 0.0805 0.0512 0.2090 0.1656 0.0546 73.80% 0.1165 0.0617 0.1665 0.2026 0.0684 86.58%
BM3 0.0613 0.0393 0.1582 0.0776 0.0486 56.23% 0.0901 0.0478 0.1270 0.1154 0.0658 73.50%
FREEDOM 0.0870 0.0548 0.2284 0.1474 0.0756 62.09% 0.1249 0.0660 0.1820 0.2007 0.0951 78.42%

Beauty

VBPR 0.0760 0.0483 0.2119 0.2076 0.0833 83.06% 0.1102 0.0586 0.1700 0.2376 0.0915 91.41%
MMGCN 0.0496 0.0294 0.1300 0.0252 0.0282 13.75% 0.0772 0.0379 0.1105 0.0423 0.0345 21.37%
GRCN 0.0575 0.0370 0.1817 0.3823 0.2497 94.59% 0.0892 0.0466 0.1498 0.4178 0.2608 98.56%
LATTICE 0.0867 0.0544 0.2272 0.1153 0.0386 65.82% 0.1259 0.0661 0.1830 0.1558 0.0511 81.60%
BM3 0.0713 0.0443 0.1831 0.0245 0.0179 32.31% 0.1051 0.0545 0.1490 0.0414 0.0228 48.75%
FREEDOM 0.0864 0.0539 0.2279 0.0921 0.0486 55.89% 0.1286 0.0666 0.1868 0.1359 0.0653 72.96%

Sports

VBPR 0.0450 0.0281 0.1167 0.1501 0.0497 75.77% 0.0677 0.0349 0.0949 0.1722 0.0552 86.54%
MMGCN 0.0342 0.0207 0.0791 0.0095 0.0046 5.10% 0.0551 0.0269 0.0678 0.0168 0.0065 8.39%
GRCN 0.0330 0.0202 0.0885 0.3087 0.2190 91.28% 0.0523 0.0259 0.0746 0.3386 0.2273 97.09%
LATTICE 0.0610 0.0372 0.1465 0.0573 0.0129 48.44% 0.0898 0.0456 0.1185 0.0802 0.0185 64.90%
BM3 0.0548 0.0349 0.1372 0.0776 0.0283 59.13% 0.0825 0.0430 0.1118 0.1120 0.0385 76.75%
FREEDOM 0.0603 0.0375 0.1494 0.0621 0.0319 48.37% 0.0911 0.0465 0.1219 0.0926 0.0442 65.81%

Clothing

VBPR 0.0339 0.0181 0.0502 0.2437 0.0809 83.40% 0.0529 0.0229 0.0413 0.2791 0.0915 92.33%
MMGCN 0.0227 0.0119 0.0292 0.0136 0.0044 7.58% 0.0348 0.0150 0.0240 0.0236 0.0066 12.44%
GRCN 0.0319 0.0164 0.0481 0.3990 0.2358 93.37% 0.0496 0.0209 0.0397 0.4368 0.2459 97.77%
LATTICE 0.0502 0.0275 0.0738 0.1022 0.0134 58.49% 0.0744 0.0336 0.0589 0.1384 0.0207 76.20%
BM3 0.0418 0.0226 0.0596 0.1348 0.0319 72.88% 0.0633 0.0281 0.0486 0.1825 0.0449 88.65%
FREEDOM 0.0547 0.0294 0.0805 0.1509 0.0600 65.54% 0.0822 0.0363 0.0652 0.2078 0.0843 81.91%

representations of both u2 and u3 after two propagation hops. In the long term, such
behavior may lead to what we could define as a node representation error.

Weighting the importance of neighborhood while aggregating the incoming mes-
sages into the ego node is among the prominent solutions to the abovementioned
issue. Following the same direction path in [313], other popular and recent works in
recommendation such as [328, 330, 351, 384] leverage attention mechanisms (i.e., a
neural network) to perform the weighting procedure. Even if these models have widely
demonstrated to provide superior accuracy recommendation performance, they are still
a�ected by oversmoothing, the phenomenon according to which node embedded rep-
resentations tend to get closer and closer in the latent space after multiple propagation
hops, thus flattening the existing di�erences in the neighborhood [54, 405]. For this
reason, attention-based approaches usually propagate messages for only one or two
hops, but this does not help access wider portions of the user-item graph.

188 Chapter 7 Graph-based recommendation exploiting multimodal information

In this respect, we believe attention-based techniques generally disregard other
potential sources of information (e.g., users’ generated reviews) whose contribution
may positively impact the neighborhood weighting process. Opinions and comments
about interacted items constitute the basis on which like-minded users gather on
online platforms, as they promote the discovery of novel and diverse items from
the catalog. In the last part of this chapter, we first formally define the problem
of nodes’ representation error in graph collaborative filtering. After that, we show
how existing weighting techniques (such as attention mechanisms) may alleviate the
described issue at the expense of limiting the hop exploration depth to reduce the e�ect
of oversmoothing. Thus, to address such drawback, we propose a lighter-weighting
procedure that exploits the informative content extracted from reviews (i.e., opinions
and comments about interacted items) to enhance graph edge representation. Such
edge-enriched features are eventually used to derive the similarity between the ego
node and its neighbors, which we re-interpret as the importance of the neighbor node
on the ego node. Our proposed weighting procedure is applied to a GCN acting as
the correction to another traditional (but error-a�ected) GCN. We call our solution
EGCF, which stands for Edge Graph Collaborative Filtering.

After formalizing the theoretical basis for EGCF and its rationale, we assess its
e�cacy on three popular product categories from the Amazon catalog [228]. Given
their similar intuitions and rationale to EGCF, we compare the method with four
families of CF-based recommendation, i.e., traditional, review-based [62, 286], and
graph-based approaches (both leveraging attention mechanisms and not). We seek to
answer these research questions about our proposed approach:

• RQ1. Can the correction to the node error representation help EGCF produce
more accurate recommendations than state-of-the-art baselines?

• RQ2. Considering the high impact that novel and diverse recommendation lists
may have on both users and companies, how e�ective is EGCF when evaluated
on beyond-accuracy metrics, given its strategy for neighborhood exploration?

• RQ3. What is the e�ect of changing the hop exploration number on recom-
mendation performance, and how can we justify such behaviors for the adopted
architecture?

The extensive experimental evaluation shows that the correction to the node
representation error and the possibility of propagating messages across multiple hops
permits EGCF to outperform state-of-the-art baselines on accuracy and beyond-

7.4 Leveraging textual review content on graph edges for recommendation 189

"Very comfortable. They
also wear well for an
active lifestyle. Love
them."

"Nothing really wrong
with the belt just wider
and thicker than I like.
Good quality."

"They were too
narrow and hurt my
feet so I returned
them."

"Great belt, nice color
and holding up very
well"

!!

!"

!#

"!

""

Fig. 7.4 A subset of users, items, and reviews users wrote about items, along with the
expressed ratings (in the range 1-5). Despite being connected to the same items, users u1-u2,
and users u1-u3 do not share similar opinions about the interacted items.

accuracy metrics. Finally, the study on the hop propagation number proves the
soundness of our proposed architectural configuration.

7.4.1 Review-based recommendation

Reviews convey a rich source of information to access users’ multi-faceted opinions about
interacted items. For this reason, several existing works propose to extract valuable
knowledge from them to produce better-tailored recommendations [62, 286]. Among the
pioneer works, Wang et al. [318] adopt a stacked denoising autoencoder to approximate
the user-item rating matrix starting from textual reviews, Almahairi et al. [9] introduce
two neural network-based approaches built upon bag-of-words and recurrent neural
networks, and Kim et al. [154] present convolutional matrix factorization (ConvMF),
where a convolutional neural network is merged with probabilistic MF to learn the
context of review documents.

Reviews are textual documents composed of words, which may further be grouped
into sentences. To exploit such hierarchical structure, Zheng et al. [399] design a
convolutional neural network on top of a factorization machine prediction model to
extract from review’s words a unique embedded representation for users and items.
The adoption of attention mechanisms may help refine each review component’s
importance on the recommendation profile of users and items. In this respect, Liu et al.
[183] improve the previous approach by weighting the importance of convolutionally-
embedded reviews for both users and items for the sake of explanation. Similarly, Lu
et al. [196] learn users’ and items’ attention features by exploring di�erent review
components such as words, sentences, and topics via a GRU-based network, while Liu
et al. [183] (based upon the solution described in [184]) augment users’ and items’
collaborative latent factors through features extracted from their generated ratings
and reviews. Wang et al. [323] leverage common review properties (e.g., how helpful
the reviews were for other users) to assess its importance on users and items.

190 Chapter 7 Graph-based recommendation exploiting multimodal information

Only recently, very few works have injected the informative content of reviews into
graph-based networks for recommendation. Wu et al. [340] propose a model named
reviews meet graphs (RMG), a multi-view framework that learns users’ and items’
representation by considering the word- and sentence-level of reviews and exploring two
hops of the user-item graphs to access also user-user and item-item relations. Gao et al.
[101] present a three-structured architecture that catches the short- and long-term user
preferences and item features, along with the collaborative information encoded in the
bipartite user-item graph. Shi et al. [279] introduce a dual GCN model, where one
extracts and propagates review aspects, and the other reuses the aspect for the graph.

Despite addressing recommendation through di�erent strategies, the presented
algorithms generally work by grouping reviews on both users and items profiles but,
in fact, limiting the exploration of users and items neighbors at one hop (i.e., the
nearest neighborhood). Conversely, our proposed approach exploits reviews as edge side
information to describe user-item interactions and propagate their informative content
at multiple hops to overcome theoretical issues in the way graph-based recommender
systems are usually designed (see later).

7.4.2 Methodology

The section presents and motivates our proposed method, Edge Graph Collaborative
Filtering (EGCF). We highlight a potentially critical issue in the message-passing
schema for graph-based recommendation. Even if weighting the importance of each
neighbor node may alleviate the problem, we discuss the insights and propose an
enhanced application of the importance weighting.

Notation and preliminaries

Inspired by popular approaches [158], current graph-based recommender systems refine
users’ and items’ node embeddings by exploring their multi-hop interconnections
represented in the graph. Let u and i be the nodes for a user and an item to be
updated (i.e., the ego nodes), and let N (u) and N (i) be the sets of nodes at one hop
from u and i, respectively (i.e., their neighborhood). The ego node embeddings eu and
ei are updated by aggregating their neighborhoods (i.e., messages):

e(1)

u = Ê ({ei,’i œ N (u)})

e(1)

i = Ê ({eu,’u œ N (i)})
(7.5)

7.4 Leveraging textual review content on graph edges for recommendation 191

where e(1)

u and e(1)

i are the refined embedding versions of user u and item i after one
hop, while Ê(·) indicates the aggregation function. This message-passing pattern may
be iterated L times, thus exploring wider and wider neighborhoods of the ego nodes.
After two hops, the refined embeddings of user u and item i are:

e(2)

u = Ê
3;

e(1)

i ,’i œ N (u)
<4

e(2)

i = Ê
1Ó

e(1)

u ,’u œ N (i)
Ô2 (7.6)

A limitation in the message-passing

The user formulation in Equation (7.6) can be expanded through Equation (7.5):

e(2)

u = Ê
1Ó

Ê
1Ó

euÕ ,’uÕ œ N (i)\{u}
Ô2

,’i œ N (u)
Ô2

(7.7)

What emerges is that, by propagating messages at two hops, the node embedding of
user u is eventually refined through the contributions from other users who interacted
with the same items as u. In other words, after two hops, each user profile is
influenced by the profiles of other users who rated the same items.

Indeed, this assumption is aligned with the rationale behind collaborative filtering,
i.e., similar users are likely to interact with the same items. However, not all user-item
interactions (i.e., graph edges) may be equally important to the users and items involved.
Thus, indiscriminately aggregating neighbor node embeddings into the ego node could,
after multiple hops, harm the node updating process by bringing all contributions from
the neighborhood, even the noisy ones. We interpret this as a node representation
error, propagating with the exploration hops in the graph.

For this reason, contributions coming from each neighbor node are usually weighted
before aggregating them into the ego nodes, modifying the presented formula:

e(2)

u = Ê
3

–
(2)

iæu

;
Ê

3;
–

(1)

uÕæieuÕ ,

’uÕ œ N (i)\{u}
<4

,’i œ N (u)
<4 (7.8)

where –
(l)
jæk stands for the importance that the neighbor node j has on the ego node k

after l hops. These weights are generally calculated by means of attention mechanisms,
and depend on the embeddings of the neighbor and the ego nodes they refer to, e.g.,

192 Chapter 7 Graph-based recommendation exploiting multimodal information

–
(l)
jæk = Ï

3
e(l≠1)

j ,e(l≠1)

k

4
, where Ï(·, ·) is a neural network:

e(2)

u = Ê
3

(⇤)
˙ ˝¸ ˚

Ï
3

e(1)

i ,e(1)

u

4;
Ê

3; (—)
˙ ˝¸ ˚
Ï(euÕ ,ei)euÕ ,

’uÕ œ N (i)\{u}
<4

,’i œ N (u)
<4

(7.9)

that is, e(2)

u depends on (⇤) the importance each neighbor item node i has on the ego
user node u after one hop, and (—) the importance all users interacting with the same
items as u have on their items. Note that (⇤) may be further expanded:

Ï
3

e(1)

i ,e(1)

u

4
= Ï

3
Ê

3;
–

(1)

uÕæieuÕ ,’uÕ œ N (i)\{u}
<4

,

Ê
3;

–
(1)

iÕæueiÕ ,’iÕ œ N (u)\{i}
<44

= Ï
3

Ê
3;

Ï(euÕ ,ei)euÕ ,’uÕ œ N (i)\{u}
<4

,

Ê
3;

Ï(eiÕ ,eu)eiÕ ,’iÕ œ N (u)\{i}
<44

(7.10)

When merging Equation (7.9) and Equation (7.10):

e(2)

u = Ê
3

(⇤)˙ ˝¸ ˚
Ï(euÕ ,ei)

(—)˙ ˝¸ ˚
Ï(eiÕ ,eu)

˙ ˝¸ ˚

Ï
3

e(1)

i ,e(1)

u

4;
Ê

3; (⇤)
˙ ˝¸ ˚
Ï(euÕ ,ei)euÕ ,

’uÕ œ N (i)\{u}
<4

,’i œ N (u)
<4

(7.11)

The node embedding for user u after two hops depends on (⇤) the importance of all
users interacting with the same items as u on those items, and (—) the importance of
all items interacted by u on user u. In other words, weighting the importance of each
neighbor node on the ego node before the aggregation allows, after two propagation
hops, to calculate to what extent each user profile is influenced by the profiles
of the other users who rated the same items. Without loss of generality, a
similar consideration could be made after a number of hops greater than two.

7.4 Leveraging textual review content on graph edges for recommendation 193

Enhancing neighborhood weighting through reviews

As known, graph-based models in machine learning are a�ected by oversmoothing [54,
405]. This phenomenon leads node embeddings, after multiple propagation hops,
to become closer and closer in their representation in the latent space, eventually
flattening their existing di�erences. As this behavior would profoundly weaken models’
performance, exploration of the neighborhood generally tends to be constrained to
very few hops (e.g., a maximum of two hops in attention-based weighting). However,
in recommendation scenarios, limiting the exploration of the user-item
bipartite graph may represent an inconsistency to the idea of collaborative
filtering, where users are connected to share preferences and tastes for similar items.

Under this assumption, we believe the neighborhood weighting process could be
further enhanced by exploiting other sources of information that are not usually
taken into account. In the majority of popular online platforms for e-commerce (e.g.,
Amazon), reviews are fundamental tools to share opinions and comments about
interacted items, as they convey the multi-faceted aspects that drove a user to interact
with an item. Leveraging such side information on the connections existing among
users and items in the bipartite graph (i.e., graph edges) can improve the learning of
the importance weights by reducing the oversmoothing e�ect because each user/item
node embedding is conditioned on the opinion conveyed by the review.

Let Wui = {w1,w2, . . . ,wR} be the set of R words that compose the review written
by user u about item i. After an initial tokenization step, the sets of tokens for Wui

is defined as Tui = {t1, t2, . . . , tT }. Tokens are mapped to word embeddings, which are
injected into an opinion-based model pretrained to predict the rating expressed by the
user through specific terms in the review. While the output model carries the single
information about the predicted review score, the activation of a hidden layer would
unveil a richer source of textual features (i.e., an embedding) which drove the opinion-
based model to predict that score. High-level features extracted from pretrained deep
learning models can boost the recommendation performance of recommender systems
leveraging items’ side information (e.g., visual-based recommender systems [83, 125]).
We deem these textual features to deserve a pivotal role in this weighting process.

Let rui œ Rf be the textual embedding extracted from the review of user u about
item i through the pretrained opinion-based model. First, we project rui œ Rf to the
same latent space as eu œ Rd and ei œ Rd with a one-layer neural network:

pui = LeakyReLU(Wrui +b) (7.12)

194 Chapter 7 Graph-based recommendation exploiting multimodal information

where pui œ Rd is the projected review embedding, while W œ Rf◊d and b œ Rd

are the projection matrix and the bias, respectively. We seek to retain only those
textual features of review rui which can be significant to later calculate the
interdependence between this embedding and user/item ones.

Then, we propose to enhance the neighborhood weighting procedure at hop l by
conditioning the importance weights also on the projected embedding of the review
connecting user u and item i. For instance, the importance of the neighbor item node
i on the ego user node u after l hops is calculated as:

–
(l)
iæu = Ï

3
e(l≠1)

i ,e(l≠1)

u ,pui

4
(7.13)

Note that, since pui cannot increase the impact of the oversmoothing e�ect
(because it is not dependent on the hop l), its usage in the importance
weight formula becomes even more beneficial. Let us focus on the weighting
function Ï(·, ·, ·). Many approaches from the literature propose to leverage attention
mechanisms, usually implemented as a neural network trained in the downstream task
to predict the importance of the neighbor node on the ego node. In our solution, we
opt for a simplified and lightweight formulation that seeks to calculate the similarity
between the neighbor and the ego nodes, conditioned on the opinion embedding
of the review connecting them. Specifically:

–
(l)
iæu = cos

3
e(l≠1)

i §pui,e(l≠1)

u §pui

4
(7.14)

where § is the element-wise multiplication, and cos(·, ·) is the cosine similarity. Note
that we suppress negative similarities to zero as such weights are usually non-negative.
Multiplying both node embeddings by the review opinion embedding provides the
interplay between each node feature and the opinion features, thus producing a
modified version of the node representation that conveys a richer source of
information. No trainable projection weight is learned in the presented formulation
since the contribution of the review embedding is meaningful enough.

A double message-passing schema

The proposed neighborhood weighting procedure can help correct the representation
error generated in the traditional message-passing schema. However, the idea is not to
completely replace it, as several recent works from the literature have demonstrated
its e�cacy, especially in producing accurate recommendations [126]. The proposed

7.4 Leveraging textual review content on graph edges for recommendation 195

approach involves a double message-passing schema, where two graph models are
trained to refine their own user/item node representations. While the first one
aggregates the contributions coming from the neighbor nodes into the ego nodes by
weighting the neighborhood importance on the ego node statically, the second one
aggregates the neighborhood’s messages which are also weighted through the opinion
embeddings from reviews.

We define the two graph convolutional networks as GCNe (error-a�ected) and GCNc

(correction) and assign the node embeddings eú to GCNe, and the node embeddings cú

to GCNc. As for the aggregation function, in both cases, we sum the weighted messages
coming from the neighbor nodes. As such, the update of the user node embedding u

after l hops is calculated as:

e(l)
u =

ÿ

iœN (u)

–iæue(l≠1)

i =
ÿ

iœN (u)

e(l≠1)

iÒ
|N (u)|

Ò
|N (i)|

c(l)
u =

ÿ

iœN (u)

–iæu–
(l)
iæuc(l≠1)

i =

=
ÿ

iœN (u)

cos
3

e(l≠1)

i §pui,e(l≠1)

u §pui

4

Ò
|N (u)|

Ò
|N (i)|

c(l≠1)

i

(7.15)

Note that –iæu is static and only depends on the topology of the bipartite graph,
while –

(l)
iæu varies along with the exploration hop and depends on the embeddings of

ego/neighbor nodes, and the opinion review embedding. After L propagation hops,
the final embedding representation is obtained as:

eu =
Lÿ

l=0

1
1+ l

e(l)
u , ei =

Lÿ

l=0

1
1+ l

e(l)
i

cu =
Lÿ

l=0

1
1+ l

c(l)
u , ci =

Lÿ

l=0

1
1+ l

c(l)
i

(7.16)

where we apply the scaling factor 1/(1 + l) to further alleviate the oversmoothing
problem. A schematic overview of the node refining algorithm proposed for EGCF is
displayed in Figure 7.5.

Given the learned error-a�ected and correction embeddings from above, EGCF
predicts if a user u may interact with item i through the following formulation:

R̂ui = e€
u ei¸ ˚˙ ˝

error-a�ected

+ c€
u ci¸ ˚˙ ˝

correction

(7.17)

196 Chapter 7 Graph-based recommendation exploiting multimodal information

!"#! !"#"

!!(#)

!%!
(#&')

!%"
(#&')

!%#
(#&')

!%
(#)

!!!
(#&')

!!#
(#&')

!!"
(#&')

Opinion-based
model

"!%
#!%

!!→#

(a) (b)

!
!+1
!+2
!+3

$!(#)

$%!
(#&')

$%"
(#&')

$%#
(#&')

$%
(#)

$!!
(#&')

$!#
(#&')

$!"
(#&')

!(%)!→#
!
!+1
!+2
!+3

Fig. 7.5 Overview of the node refining algorithm proposed for EGCF. A statically-weighted
GCN network a�ected by node representation error (a) is corrected through another GCN
network (b), where an opinion-based embedding is extracted from each review as edge side
information to weight the importance of the neighbor nodes on their ego nodes.

Thus, we apply the error correction to the user/item embedding representation only
when predicting the user/item interaction. We optimize EGCF with the state-of-the-art
Bayesian Personalized Ranking. (BPR) [258].

7.4.3 Experiments and discussion

Experimental setup

Datasets. We use three popular [66, 332] datasets from Amazon’s Baby, Boys & Girls,
and Men categories [228] which contain historical user-item interactions and reviews.
We retain only interactions with non-empty reviews, then keep the 20k and 10k most
popular items for Baby and Boys & Girls/Men, respectively. Finally, we apply the 5-
and 15-core on items and users on Baby/Boys & Girls and Men, respectively. Statistics
are in Table 7.10.
Baselines. We compare our approach with eight state-of-the-art models spanning
several families: (i) traditional CF (BPRMF [258] and MultiVAE [177]); (ii) review-
based CF (ConvMF [154] and RMG [340]); (iii) graph-based CF (NGCF [325] and
LightGCN [126]); (iv) graph-based CF with attention (GAT [313] and DGCF [328]).
Reproducibility. We adopt the temporal leave-one-out to split the datasets, where
the last two recorded interactions are included in the validation and test. We tune
hyper-parameters with [33] and follow the baselines papers, and fix the batch size
to 256 and epochs to 400. As for EGCF, we extract review embeddings through a

7.4 Leveraging textual review content on graph edges for recommendation 197

Table 7.10 Statistics of the tested datasets.

Datasets #Users #Items #Interactions Density
Average

interactions
per user

Baby 4,669 5,435 29,214 0.00115 6.3
Boys & Girls 8,806 4,165 57,928 0.00158 6.6

Men 3,218 7,605 60,299 0.00246 18.7

popular pre-trained model4. Datasets and codes are publicly available5. All models
are implemented in Elliot [11].
Evaluation protocol. We measure the model accuracy by adopting the recall
(Recall@k), the normalized discounted cumulative gain (nDCG@k), and the average
recall (AR) [126, 328]. Additionally, considering the influence of novel and diverse
recommendation lists [310, 311] on both user’s and business’s interests, we also assess
beyond-accuracy metrics such as the expected popularity complement (EPC@k) and
the expected free discovery (EFD@k), along with indices measuring concentration and
coverage, i.e., the 1’s complement of the Gini (Gini@k), the Shannon entropy (SE@k),
and the item coverage (iCov@k). Specifically, the EPC@k and the EFD@k refer to
long-tail items and stand for the expected number of recommended unknown items
which are also relevant, and the expected number of recommended known items which
are also relevant, respectively. Furthermore, the Gini@k and the SE@k are used to
assess items’ distributional inequality, i.e., how unequally a recommender system shows
di�erent items to users, and the iCov@k quantifies the number of items that the model
recommends. For all metrics, higher values mean better performance.

Results and discussion

Recommendation accuracy. Table 7.11 reports the results for accuracy measures on
the top-10 recommendation lists. Surprisingly, the sole introduction of reviews does not
seem to produce a consistent accuracy boost. For instance, the strongest review-based
method (i.e., RMG) surpasses BPRMF only for the nDCG and the AR on Baby (i.e.,
0.0911 vs. 0.0785 and 0.1059 vs. 0.0980, respectively). Contrarily, adopting a graph
model can increase the accuracy to traditional CF. When comparing LightGCN with
MultiVAE, which obtain the best performance in their respective recommendation
families, we observe that the former improves, on Baby, the Recall of 7% and the AR

4Please refer to our GitHub repository.
5https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering.

https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering

198 Chapter 7 Graph-based recommendation exploiting multimodal information

of 9%. However, the observed di�erence even reverts on Men for the nDCG and the
AR. The application of attention mechanisms to weight the importance of neighbor
nodes is rewarded in Baby and Boys & Girls, where GAT always outperforms NGCF,
reaching reARkable results such as the Recall on Baby (i.e., 0.1595 vs. 0.1411) and
the AR on Boys & Girls (i.e., 0.1846 vs. 0.1783). Disentangling users’ intents on
interacted items (i.e., DGCF) produces even more accurate recommendations to NGCF
on all datasets. Nevertheless, LightGCN always performs better than DGCF apart
from very few cases (i.e., nDCG and AR on Men), even though DGCF’s calculated
accuracy values do not substantially di�er from LightGCN’s ones (e.g., see the AR on
Baby). Noticeably, the proposed model (i.e., EGCF) outperforms the other baselines
under all settings and datasets, with near 100% statistical hypothesis tests (i.e., paired
t-test) showing that the results significantly di�er. This finding further motivates
the goodness of the solution. While we observe a substantial accuracy improvement
in traditional and review-based approaches (e.g., +12% to MultiVAE for the AR on
Boys & Girls and +53% to RMG for the Recall on Baby), introducing an additional
GCN-like network guided by users’ reviews is even more beneficial to correct the
representation error observable in unweighted graph approaches. Particularly, results
show that such correction may lead to small accuracy improvements in some cases
(e.g., see the Recall on Boys & Girls when correcting LightGCN) but also larger ones
in other cases (e.g., see the nDCG on Men when correcting LightGCN). Such outcomes
suggest that while keeping the error-affected contribution in the final prediction formula
is useful to preserve the superior performance of graph-based models to traditional and
review-based approaches, the introduced correction term is useful to gain even more
accurate preference predictions than unweighted graph architectures.
Recommendation novelty and diversity. We also assess how novel and di-
verse recommendation lists are. The two novelty metrics in Table 7.12 (i.e., the
EPC@kandtheEFD@k, left side) are discussed with concentration and coverage indices
(i.e., the Gini@k,theSE@k, and the iCov@k, right side) as in an ideal recommender
system, a loosely concentrated and large set of recommended items should equally
span di�erent ranges of popularity. As previously observed, EGCF is again the best or
second-to-best technique. While NGCF is not as capable as LightGCN of proposing
long-tail items on Boys & Girls (e.g., 0.2510 vs. 0.3012 for the EFD), the former
surpasses the latter for the concentration indices on the same dataset (e.g., 10.5595
vs. 10.1586 for the SE). Since NGCF adopts an ego-neighbor interaction component,
the concentration of explored and recommended near items gets loose. Moreover,
neighborhood weighting leads to recommend items from the long tail (e.g., comparing

7.4 Leveraging textual review content on graph edges for recommendation 199

Table 7.11 Accuracy metrics, i.e., Recall, nDCG, and AR, for top-10 lists. Best value is in
bold, while second-to-best is underlined.

Models Baby Boys & Girls Men
Recall nDCG AR Recall nDCG AR Recall nDCG AR

MostPop 0.0940 0.0520 0.0627 0.1195 0.0647 0.0776 0.0702 0.0590 0.0672
BPRMF 0.1377 0.0785 0.0980 0.1821 0.1446 0.1666 0.1662 0.1314 0.1527
MultiVAE 0.1768 0.1262 0.1455 0.2224 0.1695 0.1990 0.2091 0.1656 0.1898
ConvMF 0.1230 0.0647 0.0800 0.1146 0.0831 0.0972 0.0838 0.0524 0.0584
RMG 0.1272 0.0911 0.1059 0.1512 0.1065 0.1325 0.1067 0.0727 0.0867
NGCF 0.1411 0.0916 0.1092 0.2006 0.1523 0.1783 0.1969 0.1461 0.1722
LightGCN 0.1892 0.1362 0.1590 0.2305 0.1743 0.2054 0.2124 0.1605 0.1882
GAT 0.1595 0.1051 0.1233 0.2069 0.1573 0.1846 0.1695 0.1254 0.1476
DGCF 0.1874 0.1352 0.1558 0.2249 0.1716 0.2023 0.2070 0.1554 0.1823
EGCF 0.1944* 0.1402* 0.1623* 0.2325 0.1792* 0.2089* 0.2195* 0.1703* 0.1988*
*statistically significant di�erences (p-value Æ 0.05).

GAT with NGCF, we observe a +17% for the EFD on Baby). However, such a finding
is not consistent with the trend recognized for the concentration and coverage indices
(e.g., when comparing LightGCN with DGCF, we notice 0.1304 vs. 0.2051 for the
Gini on Men), as the neighborhood weighting procedure comes at the expense of a
limited hop exploration, not allowing such models to explore wider catalog portions.
Conversely, injecting user-generated reviews brings new informative content (e.g., RMG
recommends a broader and less concentrated range of items from the catalog than
DGCF on the Baby dataset). Finally, weighting the neighborhood importance and
exploring long-distant user-item interactions through reviews-enriched content (i.e.,
EGCF) allows to retrieve larger portions of heterogeneous items (e.g., EGCF outper-
forms LightGCN for the Gini by +63% on Baby and DGCF for the SE by +7% on
Boys & Girls), without retaining less popular items from the long-tail (observing the
same models, +3% for the EPC on Baby and +6% for the EFD on Boys & Girls).
Such outcomes demonstrate that the content enrichment brought by the extracted review
features (injected into the representation error correction) allows to explore user-item
interactions at multiple hops, leading to more heterogeneous recommendation lists which
also include items from the long-tail.
E�ect of hop exploration number. Figure 7.6 displays, for EGCF, the Recall@k

and EFD@k performance variation on top-10 recommendation lists when exploring
a number of hops in the range 1-4, where even numbers stand for same node type
connections (e.g., user-user), while odd numbers refer to opposite node type connections
(i.e., user-item). As evident from the histograms of Baby and Boys & Girls, the Recall@k

consistently increases from 1 to 4 hops (this is why we adopt four hop explorations

200 Chapter 7 Graph-based recommendation exploiting multimodal information

Table 7.12 Calculated novelty metrics, i.e., EPC and EFD, on the left side, and diversity
indices, i.e., Gini, SE, and iCov, on the right side, for top-10 lists. Best value is in bold,
while second-to-best is underlined.

Models Baby Boys & Girls Men
EPC EFD EPC EFD EPC EFD

MostPop 0.0108 0.0728 0.0135 0.0913 0.0112 0.0904
BPRMF 0.0164 0.1153 0.0306 0.2282 0.0259 0.2167
MultiVAE 0.0268 0.2088 0.0360 0.2874 0.0333 0.2912
ConvMF 0.0135 0.0930 0.0174 0.1219 0.0102 0.0857
RMG 0.0193 0.1488 0.0226 0.1787 0.0144 0.1226
NGCF 0.0194 0.1463 0.0323 0.2510 0.0292 0.2531
LightGCN 0.0289 0.2271 0.0371 0.3012 0.0323 0.2856
GAT 0.0223 0.1708 0.0334 0.2616 0.0248 0.2106
DGCF 0.0287 0.2228 0.0365 0.2945 0.0311 0.2734
EGCF 0.0298* 0.2359* 0.0382* 0.3120* 0.0343* 0.3066*
*statistically significant di�erences (p-value Æ 0.05)

Models Baby Boys & Girls Men
Gini SE iCov Gini SE iCov Gini SE iCov

MostPop 0.0018 3.5313 18 0.0023 3.5724 18 0.0015 3.9332 32
BPRMF 0.0019 3.7819 40 0.0031 4.0921 203 0.0037 5.2991 192
MultiVAE 0.2139 9.9160 4,143 0.2671 10.2463 3,824 0.1085 9.8988 3,014
ConvMF 0.0018 3.5933 18 0.0030 3.9745 220 0.0029 4.6783 265
RMG 0.1059 9.4892 2,130 0.1567 9.7193 2,538 0.1146 10.0344 2,549
NGCF 0.0948 8.8700 2,641 0.3031 10.5595 3,668 0.1749 10.7116 3,651
LightGCN 0.1405 9.3105 3,417 0.2398 10.1586 3,647 0.2051 10.8815 4,384
GAT 0.1370 9.2024 3,102 0.2496 10.2821 3,449 0.1235 9.7802 3,530
DGCF 0.0673 8.3193 2,325 0.1800 9.7617 3,208 0.1304 10.2011 3,378
EGCF 0.2294 9.8535 4,490 0.3037 10.4545 4,030 0.2208 10.8876 4,920
Statistical significance is not reported since it is calculated only on user level.

1 2 3 4

0.191

0.192

0.193

0.194

R
ec

al
l

1 2 3 4

0.250

0.300

0.350

EF
D

(a) Baby
1 2 3 4

0.226

0.228

0.230

0.232

R
ec

al
l

1 2 3 4

0.304
0.306
0.308
0.310
0.312

EF
D

(b) Boys & Girls
1 2 3 4

0.217

0.218

0.219

R
ec

al
l

1 2 3 4
0.302

0.304

0.306

EF
D

(c) Men
Fig. 7.6 Recommendation performance of EGCF, i.e., Recall@k (histogram bars in teal blue)
and EFD@k (histogram bars in lime green), on top-10 recommendation lists, when varying
the number of explored hops from 1 to 4.

for EGCF on those datasets). The same trend is not observable for Men, where two
explored hops seem to provide the highest accuracy boost, motivating the adoption of
2 hop explorations for EGCF on the same dataset. Such behavior could be due to the
average number of users’ interacted items in Men (approximately 19, see Table 7.10).
The node refining probably does not require a broad exploration of its neighborhood.
As for the EFD@k, the Baby and the Men datasets seem to agree on two exploration
hops to produce the most diverse item lists of recommendations because they leverage
(as previously recalled) user-user and item-item interconnections (and similarities). The
trend is also aligned with the Boys & Girls dataset, where user-user and item-item links
are exploited even at a higher depth (i.e., four exploration hops). The emerged insights
shed light on two main contributions: (i) with the modified neighborhood weighting
process, which makes use of reviews to enhance the informative content carried by
user-item interactions, EGCF is less limited in the hop exploration, thus providing
more accurate recommendations, and (ii) user-user and item-item connections are the
keystones on which building more diverse item recommendation lists.

7.5 Summary 201

7.5 Summary
Bringing the lessons-learned from the previous chapters of this thesis, in this chapter,
multimodal-aware and graph-based recommender systems were exploited to leverage
multimodal information on graph neural networks for recommendation. By exploiting
the same experimental and evaluation paradigms already introduced, an initial explo-
ration of the performance of (graph-based) recommender systems using multimodal
content was conducted on an extensive set of beyond-accuracy metrics measuring the
novelty and diversity of recommendation lists, along with the possible amplification
of the negative e�ects of popularity bias due to the presence of each modality. In
this respect, a benchmarking framework for multimodal-aware recommendation was
integrated into Elliot to foster the future reproducibility of the performed analysis. In
terms of accuracy, the observed results demonstrated how a careful hyper-parameter
exploration can lead shallow multimodal approaches (e.g., VBPR) to be competitive
to more recent solutions; on the contrary, other recent techniques such as LATTICE
show to be consistently outperforming the other baselines (as reported in the related
literature). When measuring novelty, diversity, and popularity bias in recommendation,
GRCN appeared to be a strong baseline for the diversification of the recommendation
lists, but VBPR was the solution reaching the most balanced trade-o�. A finer-grained
evaluation when separately injecting visual and textual modalities showed how such
settings can improve the accuracy but negatively impact the diversity and popularity
bias; moreover, a complementary investigation regarding the modalities’ influence on
metrics pairs outlined that the textual modality has a considerable impact on accuracy
but little e�ect on diversity and popularity bias, whereas the visual modality reduces
accuracy while exacerbating popularity bias and limiting the diversity. Conclusively, a
new recommendation technique named Edge Graph Collaborative Filtering (ECGF)
was designed and implemented. Indeed, by discussing how existing similar solutions are
not e�ectively exploiting (multimodal) features on graph edges in recommendation, we
decided to adopt textual features extracted from users’ generated reviews as meaningful
attributes of graph edges. Specifically, EGCF mitigated the initial issues outlined in
the beginning of the thesis; as a positive side e�ect, EGCF showed the potential to
address other algorithmical problems regarding, for instance, over-smoothing in graph
neural networks. Results on a number of datasets from the Amazon catalogue, against
state-of-the-art review-based recommender systems, confirmed the goodness of the
proposed approach on numerous evaluation dimensions considering beyond-accuracy
performance and the e�ect of layer exploration during the message passing.

202 Chapter 7 Graph-based recommendation exploiting multimodal information

The current chapter concludes the presentation of results for this thesis. The next
chapter will provide key summarizations of the main presented findings from this
thesis.

Chapter 8

Conclusion

In the beginning of this thesis work, we outlined two of the most debated open research
challenges in personalized recommendation, namely: (i) the inexplicable nature of
users’ preferences, especially when they are expressed in the form of implicit feedback;
(ii) the e�ective exploitation of the collaborative signal in collaborative filtering-based
recommender systems. Recent recommendation approaches leveraging multimodal deep
learning and graph neural networks have shown the potential to address, in a di�erent
manner, either the (i) or (ii) issues. Bulding on these two research directions, we decided
to provide our contributions to study, formalize, analyze, and address such macro-
challenges along with their intrinsic micro-challenges. Indeed, the previous four chapters
widely presented the main outcomes of this thesis, showing the research contributions
of the Ph.D. candidate, Daniele Malitesta; the aim of this thesis was to eventually
combine the lessons-learned in multimodal-aware and graph-based recommendation
to build novel recommendation approaches leveraging the representational power of
graph and multimodal learning.

While the outcomes of this thesis were clearly reported in the final “Summary”
section of each chapter, in the following, we decide to summarize in a more cohesive
manner the key contributions to provide the “bigger picture” behind our work.

Multimodal-aware recommendation. To begin with, Chapter 4 raised the urge to
re-formulate the task of multimedia recommendation under the lens of multimodal deep
learning. By recognizing the recurrent strategy patterns from the existing literature, the
goal was to design a unified formal multimodal schema for multimedia recommendation.
The schema was later conceptually validated on specific tasks and scenarios involving
multimedia recommendation, opening to further research questions regarding: (i)

204 Chapter 8 Conclusion

missing modalities in multimodal recommendation, (ii) pre-trained feature extractors,
and (iii) modalities representation.

Then, in Chapter 5, we formally evaluated and provided solutions to the (ii) and
(iii) issues, leaving (i) as future work. Specifically, the discussion was tailored to the
single scenario of visually-aware recommender systems. Starting from the proposal
of a unified framework for the extraction of multimodal features in recommendation,
named Ducho, and an extension especially aimed to the reproducibility of visual-
based recommender systems, namely, V-Elliot, the two were eventually exploited to
benchmark the performance of visually-aware recommender systems with di�erent
state-of-the-art convolutional neural network approaches to extract visual features.
The evaluation challenges raised from such an analysis were addressed by considering
two scenarios and tasks in visually-aware recommendation: fashion recommendation
and adversarial attacks/defenses against visually-aware recommender systems. As for
the former, a novel approach was proposed with the objective to disentangle the users’
preferences at the granularity of content-style properties of fashion items, outperforming
other recommendation baselines in the literature on a number of recommendation
accuracy and beyond-accuracy metrics. As for the latter, an in-depth study on the
e�ects of adversarially-attacked product images for visual-based recommendation, along
with defensive countermeasures, demonstrated how visual attacks may be perceived by
the human customer on e-commerce platforms.

Graph-based recommendation. With Chapter 6, we put our focus on the second
main topic of this thesis work, namely, graph-based recommender systems. Indeed,
the chapter was devoted to a formal introduction and evaluation of strategies and
techniques for this family of recommendation algorithms. Similarly to what was
done for visually-aware recommendation, the chapter begun with the proposal of a
framework, built as an extension of Elliot, for the reproducibile and rigorous evaluation
of state-of-the-art graph-based recommender systems. The framework was used as a
useful tool to perform a comprehensive reproducibility analysis on recommendation
systems using graph neural networks, by underlining interesting findings regarding
the possible influence of dataset characteristics (in the form of node degree) on the
performance of such models. The analysis was extended to topological properties of the
user-item bipartite and undirected graphs; this confirmed the strong influence of such
dataset characteristics on recommendation performance, and unveiled how the latent-
factor strategy may be the dominating component of any graph-based recommender
system, providing a novel perspective on graph collaborative filtering. Finally, by
recognizing node representation and neighborhood exploration as the core strategies

205

underlying any graph-based recommender system, we decided to explore them on
accuracy and beyond-accuracy metrics, in single- and multi-objective experimental
settings. Results underlined that user-user and item-item message-passing explorations
may be beneficial to meet accuracy/beyond-accuracy trade-o�s, while we also noticed
how implicit message-passing in recent approaches could be harmful to the consumer-
provider fairness scenario.

Graph-based recommendation leveraging multimodal information. Finally,
in Chapter 7, multimodal-aware and graph-based recommendation were eventually
combined into a unique recommendation framework. First, an investigating analysis
of the accuracy/beyond-accuracy performance of graph-based approaches leveraging
multimodal information was conducted through an extensive benchmark in Elliot.
Results demonstrated that, di�erenlty from what stated in the literature, careful hyper-
parameter explorations can bring some shallow multimodal approaches (e.g., VBPR)
to be competitive with recent solutions; moreover, finer-grained evaluations proved the
negative e�ects on performance of the considered modalities when injected separately.
On such bases, a novel approach named Edge Graph Collaborative Filtering (ECGF)
was proposed. Through the exploitation of textual features of users’ generated reviews
on graph edges (something that is rarely seen in the related literature) the model was
capable of outperforming existing solutions on accuracy and beyond-accuracy metrics,
while tackling other algorithmic problems regarding, for instance, over-smoothing in
graph neural networks.

Towards future work. As a final statement, we believe the proposed thesis represents
just the beginning of a longer and increasingly-interesting research path. Despite the
numerous conducted analyses and proposals presented in this work, other research
questions and open challenges naturally aroused. That is why we intentionally decided
not to report the possible future work of the thesis in this chapter. Indeed, several
initial research directions and ideas have been formalized and tested over the last few
months before the submission of the thesis; their preliminary outcomes will be presented
in the next (and last) chapter, following the same thematic structure provided in this
chapter. As a disclaimer, we want to state that it is likely most of these ideas will not
be working when further explored and investigated. However, if even the 1% of those
should provide at least interesting insights, that would be consider as a true success.

Chapter 9

Future directions

This last chapter outlines ideas and/or initial experimental analyses that have been
conducted over the last few months before (and during) the writing of the thesis. To
better organize the narrative, we decide to group the following paragraphs into three
main sections, which are aligned with the three main research paths of this thesis:
(i) multimodal-aware recommendation, (ii) graph-based recommendation, and (iii)
graph-based recommendation leveraging multimodal information.

9.1 Multimodal-aware recommendation

9.1.1 Domain-specific multimodal features

Given the limitations imposed by the adoption of pre-trained multimodal features (see
again Section 4.5.2), we wish to underline the benefits of domain-specific features in the
multimodal schema we have outlined. Extracting such high-level features from input
data would entail injecting meaningful and task-aware informative content into the
recommendation system, thereby better-profiling items and users on the platform to
generate more tailored recommendations. Domain-specific features should necessitate
domain-specific extraction models, which may have been previously trained and opti-
mized on similar tasks to the one we are pursuing. Regarding fashion recommendation,
for instance, we recall the work by [105], a pre-trained architecture for the comprehen-
sive visual analysis of clothing photos. Another example is the food recommendation
system proposed by [357], which analyzes food-related photos.

Furthermore, in the field of audio and text understanding and classification, Choi
et al. [73] construct a deep model based on convolutional recurrent neural networks for

208 Chapter 9 Future directions

music tagging by taking into account songs’ local features and temporal characteristics,
whereas the work in [30] tackles sentiment analysis in user-generated tweets.

9.1.2 Multimodality on user-item interactions

Multimodality is the most intuitive approach to describe the nature of items in
multimedia recommendation [86, 87], but this does not hold for the users’ profile.

First, from a technical point of view, profiling each user through multimodal features
(e.g., her voice, her visual appearance) would require sophisticated technologies that
users’ digital devices could not necessarily support (e.g., smartphones). Second, from
a practical point of view, it is likely that users would not be disposed to share such
personal data on online platforms, primarily for privacy concerns. Despite the raised
critical aspects, a few examples from the literature [305, 339] propose to model the user
profile in such a way that her preferences toward each multimodal aspect of items are
made explicit and learned during model’s training. However, these systems rely solely
on the multimodal profiles of the items, disregarding alternative information sources.
Product reviews, which express opinions and comments about items that have been
clicked, watched, or purchased, could be a valuable tool for revealing users’ nuanced
preferences toward each item in the recommendation system.

Existing review-based approaches [323, 399] work by integrating reviews as the
textual modality to represent items. However, we believe that a more logical and
e�ective way to integrate reviews would be to view them as a medium to represent
user preference over items, thereby providing additional and complementary preference
scores in addition to numeric ratings or implicit feedback that are typically used
to compute recommendations. Such reasoning may be easily generalized to include
user-generated data regarding interacting things (such as images or videos of delivered
products), which we can characterize as multimodal feedback (see Figure 9.1). When
compared to numerical feedback, which tends to be atomic (single-faceted), multimodal
feedback could be considered as composite, revealing nuance and the user’s multi-faceted
opinion of the products [19].

9.1.3 Fine-grained multimodal features

Multimodality is a way to e�ectively profile the multi-faceted aspects of items and
users’ preference (e.g., I bought this smartphone because its technical description is
quite exhaustive and its display amazes me; I like this song since I love the music and
the lyrics). Nevertheless, analyzing and learning users’ tastes at modalities’ granularity

9.1 Multimodal-aware recommendation 209

USER

INTERACTED
ITEMS

MULTIMODAL
FEEDBACK

ONLINE
PLATFORM

textual
reviews

product
photos

video
reviews

Fig. 9.1 An example of how users generate and upload multimodal feedback about interacted
items (e.g., textual reviews, product photos, or even video reviews) on online platforms. Such
user-item sources of information may be suitably exploited to better profile user’ preferences.

might not be enough to uncover all aspects underlying every user-item interaction.
In contexts where modalities bring a great source of heterogeneous information, a
finer-grained feature processing could help better unveil hidden facets. For instance,
when it comes to the recommendation of fashion items (e.g., dresses, shoes, jewelry),
user attention may be captivated by specific item visual characteristics, such as colors,
shapes, and particular patterns and motifs [83]. Similarly, a song involves several
features [178] (i.e., pitch, rhythm, and dynamics), which could di�erently influence users’
attitudes towards it. Uncovering and understanding details at this finer granularity
should be one of the main directions toward the novel recommendation approaches of
multimedia products and services.

9.1.4 An extensive evaluation of multimedia recommender
systems

To date, very limited e�ort has been put into the extensive evaluation of multimedia
recommender systems. The principal reason is that, apart from some recent frame-
works [269, 404] which integrate multimedia recommender systems into their pipelines,
each novel multimedia recommender system introduces its own implementation of the
proposed approach with di�erent dataset pre-processing solutions, sampling strate-
gies, and evaluation protocols. Indeed, this may undermine the fair comparison of
multimedia recommender systems, which cannot benefit from shared and unified train-
ing and evaluation frameworks to run rigorous and reproducible experiments as in
other recommendation domains and scenarios [11, 397]. To this end, we plan to start
from the initial benchmarking analysis we proposed in this work to further assess the
reproducibility of the tested baselines. On such basis, the next steps would be to
evaluate the recommendation performance under more comprehensive experimental
settings involving, for instance, (i) a larger plethora of pre-trained deep learning models

210 Chapter 9 Future directions

for the extraction of multimodal features; (ii) other multimodal datasets involving
all modalities (as our framework o�ers the possibility to inject visual, textual, and
audio features); (iii) a more careful evaluation of such models under beyond-accuracy
recommendation metrics [206, 207].

9.2 Graph-based recommendation

9.2.1 Topological properties in graph collaborative filtering

With reference to the work presented in [209], we plan to extend the proposed analysis
to assess the impact of topological dataset characteristics on other recommendation
metrics accounting for the novelty and diversity of the produced recommendation lists,
and potential biases and fairness issues in recommendation; this investigation may
be conducted by utilizing ad-hoc graph recommender systems specifically designed
to optimize such objectives. Furthermore, we intend to directly create the synthetic
user-item graphs from scratch with graph generator techniques which may resemble
real-world recommendation data but with desired topological properties. Finally, we
seek to investigate the impact of other topological aspects of the user-item graph on the
performance of graph-based recommender systems, such as the presence of user, item,
and user-item communities and their inter dependencies, as this direction is poorly
explored in the related literature so far.

9.2.2 Bridging recommendation and link prediction

Item recommendation (the task of predicting if a user may interact with new items from
the catalogue in a recommendation system) and link prediction (the task of identifying
missing links in a knowledge graph) have long been regarded as distinct problems. As
future research direction, we seek to show that the item recommendation problem
can be seen as an instance of the link prediction problem, where entities in the graph
represent users and items, and the task consists in predicting missing instances of the
relation type interactsWith. To this aim, we start by systematically benchmarking
some factorisation-based link prediction models on recommendation tasks against
graph-based recommendation approaches, showing that predictive accuracy of the
former is better than or competitive with most of the selected recommendation models.

Before providing the initial experimental results we obtained so far, we briefly
introduce the formalization for popular factorization-based link prediction approaches.
Then, we select three of them in our analysis, namely, DistMult [354], CP [132], and

9.2 Graph-based recommendation 211

ComplEx [308]. Note that this preliminary work has been conducted (and is still going
further) during Daniele Malitesta’s internship at the University of Edinburgh under
the supervision of Dr. Pasquale Minervini.

Preliminaries

A Knowledge Graph G ™ E ◊R◊E contains a set of subject-predicate-object Ès,p,oÍ
triples, where each triple represents a relationship of type p œ R between the subject
s œ E and the object o œ E of the triple. Here, E and R denote the set of all entities and
relation types, respectively. However, many real-world knowledge graphs are largely
incomplete [89, 90, 97, 229] – link prediction focuses of the problem of identifying
missing links in (possibly very large) knowledge graphs.

More formally, given an incomplete graph G≠ µ G, where G denotes a complete
graph, the task consists of identifying the triples Ès,p,oÍ triples such that Ès,p,oÍ ”œ G≠

and Ès,p,oÍ œ G.

Neural link predictors

A neural link predictor di�erentiable model where entities in E and relation types in R
are represented in a continuous embedding space, and the likelihood of a link between
two entities is a function of their representations.

More formally, neural link predictors are defined by a parametric scoring function
„◊ : E ◊ R ◊ E ‘æ R, with parameters ◊ that, given a triple Ès,p,oÍ, produces the
likelihood that entities s and o are related by the relationship p.

Scoring functions

Neural link prediction models can be characterised by their scoring function „◊. For
example, in TransE [40], the score of a triple Ès,p,oÍ is given by

„TransE

◊ (s,p,o) = ≠Îs+p≠oÎ
2
, (9.1)

where s,p,o œ Rk denote the embedding representations of s, p, and o, respectively. In
DistMult [354], the scoring function is defined as follows:

„DistMult

◊ (s,p,o) = Ès,p,oÍ =
kÿ

i=1

sipioi, (9.2)

212 Chapter 9 Future directions

where È · , · , · Í denotes the tri-linear dot product. Canonical Tensor Decomposition [CP,
132] is similar to DistMult, with the di�erence that each entity x has two representations,
xs œ Rk and xo œ Rk, depending on whether it is being used as a subject or object:

„CP

◊ (s,p,o) = Èss,p,ooÍ. (9.3)

In RESCAL [230], the scoring function is a bilinear model given by:

„RESCAL

◊ (s,p,o) = s€Po, (9.4)

where s,o œ Rk is the embedding representation of s and p, and P œ Rk◊k is the
representation of p. Note that DistMult is equivalent to RESCAL if P is constrained to
be diagonal. Another variation of this model is ComplEx [308], where the embedding
representations of s, p, and o are complex vectors – i.e. s,p,o œ Ck – and the scoring
function is given by:

„ComplEx

◊ (s,p,o) = Ÿ(Ès,p,oÍ), (9.5)

where Ÿ(x) represents the real part of x, and x denotes the complex conjugate of x.
In TuckER [27], the scoring function is defined as follows:

„TuckER

◊ (s,p,o) = W ◊1 s◊2 p◊3 o, (9.6)

where W œ Rks◊kp◊ko is a three-way tensor of parameters, and s œ Rks , p œ Rkp ,
and o œ Rko are the embedding representations of s, p, and o. For the moment, we
mainly focus on DistMult, CP, and ComplEx due to their e�ectiveness on several link
prediction benchmarks [140, 265].

Training objectives

Another dimension for characterising neural link predictors is their training objective.
Early neural link prediction models such as RESCAL and CP were trained to minimise
the reconstruction error of the whole adjacency tensor [161, 231, 314].

To scale to larger Knowledge Graphs, subsequent approaches such as Bordes et al.
[40] and Yang et al. [354] simplified the training objective by using negative sampling:
for each training triple, a corruption process generates a batch of negative examples by
corrupting the subject and object of the triple, and the model is trained by increasing
the score of the training triple while decreasing the score of its corruptions. More
formally, the loss is given by L(G) = q

Ès,p,oÍ ¸(s,p,o) with:

9.2 Graph-based recommendation 213

¸(s,p,o) =
ÿ

Èŝ,p,ôÍœN (s,p,o)

[“ ≠„(s,p,o)+„(ŝ,p, ô)]
+

, (9.7)

where N (s,p,o) = {Èŝ,p,oÍ | s ”= ŝ}fi{Ès,p, ôÍ | o ”= ô} denotes the set of triples obtained
by corrupting the training triple Ès,p,oÍ.

This approach was later extended by Dettmers et al. [90] where, given a subject s

and a predicate p, the task of predicting the correct objects is cast as a |E|-dimensional
multi-label classification task, where each label corresponds to a distinct object and
multiple labels can be assigned to the (s,p) pair. This training objective is referred to
as KvsAll by Ru�nelli et al. [265] and can be formalised as L(G) = q

e1œE
q

pœR ¸(e1,p),
with:

¸(e1,p) =
ÿ

e2œE
BCE(e2,p,e1)+BCE(e1,p,e2), (9.8)

with BCE(s,p,o) = ≠(y logp+(1≠y) log(1≠p)), p = ‡(„(s,p,o)), and y = [Ès,p,oÍ œ G].
Another extension was proposed by Lacroix et al. [165] where, given a subject s

and an object p, the task of predicting the correct object o in the training triple is cast
as a |E|-dimensional multi-class classification task, where each class corresponds to a
distinct object and only one class can be assigned to the (s,p) pair; this is referred to
as 1vsAll by Ru�nelli et al. [265], and defined as L(G) = q

Ès,p,oÍ ¸s(s,p,o)+ ¸o(s,p,o),
with:

¸s(s,p,o) =≠„(s,p,o)+ log
S

U
ÿ

ŝ

exp(„(ŝ,p,o))
T

V ,

¸o(s,p,o) =≠„(s,p,o)+ log
S

U
ÿ

ô

exp(„(s,p, ô))
T

V .

(9.9)

Regularisers

As noted by Bordes et al. [40], imposing regularisation terms on the learned entity
and relation representations prevents the training process from trivially optimising the
training objective by increasing the embedding norms. Early works such as Bordes
et al. [40, 41], Glorot et al. [112], and Jenatton et al. [143] proposed constraining the
embedding norms. More recently, Trouillon et al. [308] and Yang et al. [354] proposed
adding a L2 regularisation term on entity and relation representations to the training
objective. Lastly, Lacroix et al. [165] observed systematic improvements by replacing
the L2 norm with a nuclear tensor 3-norm.

214 Chapter 9 Future directions

Item recommendation as link prediction

Note that item recommendation models can be cast as a particular case of link prediction
in Knowledge Graphs.

More specifically, user-item score predictors fl◊ : U ◊I ‘æ R can be seen as learning
a ranking between missing triples in a Knowledge Graph G, where the set of entities
corresponds to the union of the sets of users and items E = U fiI, the set of relations
corresponds to a single relation R = {interactsWith}, and the graph G to complete is
given by the observable interactions between users and items:

G = {Èu, interactsWith, iÍ | xui = 1}. (9.10)

This enables the o�-the-shelf application of state-of-the-art neural link prediction
methods to the item recommendation problem.

Initial experimental results

Initial experiments were conducted to test the e�cacy of state-of-the-art link prediction
approaches (i.e., CP, DistMult, and ComplEx) when trained and tested for the task of
item recommendation, on the Yelp-2018 dataset already used for other publications
presented in this thesis [20, 210]. In this respect, the link prediction models were
compared against popular graph-based recommendation systems, whose results have
been directly picked from the above publications as the experimental settings were
exactly the same.

While graph-based recommender systems were tuned and evaluated through the
framework Elliot, the link prediction models were tuned and evaluated with the popular
framework LibKGE for knowledge graph embeddings [264]. However, as the latter is
designed to address the task of link prediction which, as stated, is a generalization
of the recommendation task, modifications were needed to make the link prediction
results comparable to those of item recommendation. Apart from a re-casting of the
recommendation dataset into a knowledge graph one (users and items are entities
connected through one single interaction type, interactsWith), the calculation of the
Recall@k metric was added to LibKGE, as its formulation in recommender systems is
di�erent from those utilized in link prediction-alike tasks. As for the nDCG, LibKGE
was modified in a way the recommendation lists for each user were stored after the
training of each model. Thus, Elliot was eventually exploited to calculate the nDCG@k.

In terms of evaluation paradigm, we used the exact same train/test splitting adopted
for the training and test of the graph-based recommender systems. However, in order

9.2 Graph-based recommendation 215

Table 9.1 Results of state-of-the-art item recommendation and link prediction models trained
and evaluated for the task of recommendation. The metrics are Recall@20 and nDCG@20,
and the selected dataset is Yelp-2018.
Performance Item Recommendation Link Prediction

UserkNN ItemkNN NGCF DGCF LightGCN SGL UltraGCN GFCF CP DistMult ComplEx
Recall 0.0630(5) 0.0610 0.0556 0.0621 0.0629 0.0669(3) 0.0672(2) 0.0697(1) 0.0367 0.0465 0.0662(4)
nDCG 0.0528(5) 0.0507 0.0452 0.0505 0.0516 0.0552(3) 0.0553(2) 0.0571(1) 0.0293 0.0375 0.0539(4)

to perform hyperparameter tuning of the link prediction approaches, we retained the
10% of the training set as validation set, and used the Recall@20 as validation metric.
Three di�erent validation splittings were involved to provide an as much as possible
generalization of the validation set. Regarding the explored hyperparameters, and
similarly to what done in [264], we tested three training strategies (i.e., 1vsAll, KvsAll,
and negative sampling), two losses (i.e., BCE and KL), two batch sizes (i.e., 1024
and 2048), two optimizers (i.e., Adam and Adagrad), four learning rates (i.e., 0.0001,
0.001, 0.01, 0.1), two regularizers (i.e., N3, LP), and six regularization weights (i.e.,
1e-06, 1e-05, 1e-04, 1e-03, 1e-02, 1e-01). The embedding size was kept fixed at 64 to
be consistent with the settings followed for the graph-based recommender systems.

On Yelp-2018, the results (i.e., Table 9.1) show that link prediction approaches are
quite competitive with respect to graph-based recommender systems on the task of
recommendation, especially ComplEx. Indeed, the latter model is always in the top-5
performing models in the results, outperforming powerful and recent approaches in the
recommendation literature, such as NGCF, DGCF, and LightGCN. As already stated,
the results are quite preliminary, and more careful experiments and analyses should be
taken into consideration. At the moment, we are running additional experiments on
other recommendation datasets and other recommendation models, trying to explore
larger hyperparameter spaces to uncover possible relations between specific parameter
values and improved results provided by the link prediction models (as done in [264]).

9.2.3 How powerful is adjacency normalization for recommen-
dation?

As outlined in the background section regarding graph neural networks (Chapter 3),
the normalization of the adjacency matrix has been proven to be quite beneficial for the
training of graph neural networks, also when it comes to graph-based recommendation:

Asym = D≠ 1
2 AD≠ 1

2 . (9.11)

216 Chapter 9 Future directions

However, driven by the observed dependencies between topological properties (especially
degree assortativity) and recommendation performance, one natural question arises:
“how useful and powerful is adjacency normalization in recommendation?”.

The question makes even more sense if considering the frequency of co-occurrences
of degree pairs in the user-item interaction graph. Specifically, if we re-formulate the
symmetric adjacency normalization at node-level instead of graph-level, we have (e.g.,
in the case of LightGCN):

e(l+1)

u =
ÿ

iœNu

e(l)
iÒ

|Nu||Ni|
, (9.12)

where we have the co-occurrence of degree |Nu| and |Ni| in the same message-passing
formulation for nodes u and i.

By observing the frequency of co-occurrencies of node degrees along with the contour
plot for the symmetric adjacency normalization on two recommendation datasets (i.e.,
Allrecipes and Gowalla), it becomes evident how the latter does not evidently vary in
the trend, while the former is highly dataset-dependent. This preliminary intuition
may pave the way to a re-formulation of the adjacency normalization, which could be
aware of advances topological properties of the dataset it is applied on.

9.3 Graph-based recommendation leveraging mul-
timodal information

9.3.1 Exploiting reviews on user-user and item-item graphs

Recent works [382] propose to use multimodal content data (e.g., product images
and descriptions) to build the item-item similarity graph, which has been shown
to enhance the information carried by the user-item interaction graph. Exploiting
the sole multimodal profile of items could fail to measure their similarities from the
collaborative filtering perspective. There exist other sources of information (e.g.,
users’ generated reviews) that can suitably model items similarity according to users’
actual opinions about them. We propose to exploit high-level features extracted from
reviews to infer item-item, but also user-user similarities, in the collaborative filtering
spirit: (i) users interacting with the same items may share similar preferences; (ii)
items viewed by the same users may be similar from users’ perspectives.

9.3 Graph-based recommendation leveraging multimodal information 217

The proposed framework

The proposed framework mainly builds on the preprocessing of review features to
build the user-user (U-U) and item-item (I-I) graphs. Once the two graphs have been
initialized, they can be integrated seamlessly into any recommendation backbone based
upon the learning of user and item embeddings.

Building the U-U and I-I graphs: basic intuitions

We report the basic intuitions about the U-U graph (the same applies to the I-I graph).
User u1 and user u2 might share similar preferences if: (BI1) their interacted item sets
have elements in common (i.e., co-occurrences); (BI2) the polarity of the opinions they
expressed about them is aligned. In this respect, we observe some problems and/or
limitations in the current intuitions, namely: is it safe to infer that two users are similar
if they only co-interacted with very few items? What does it mean to state that the
polarity of the opinions expressed is aligned?

Building the U-U and I-I graphs: advanced intuitions

We come up with more advanced intuitions. Two users u1 and u2 might share similar
preferences if: (AI1) their clustering coe�cient (intersection over union/max/min)
is close to 1; (AI2) the number of co-interacted items over the average number of
co-interacted items is close to 1.

Introducing review features

Previous works [62, 286] have shown that reviews can convey the multi-faceted opinions
that user have on products they interacted with. This is more than a simple rating
value. For this reason, we: (i) extract high-level features from reviews through pre-
trained sentiment analysis deep neural networks; (ii) measure the similarity (cosine
similarity) among reviews that u1 and u2 have written about the same items; (iii)
sum such similarities across all co-interacted items for u1 and u2; (iv) weight such a
value according to the clustering coe�cient (intersection over union/max/min), or the
number of interacted items over the average number of co-interacted items.

Ablation study and sparsification

To actually demonstrate the rationale of our proposed approach, we also decide to test
the framework on other weighting settings: no weight with sum of cosine similarities

218 Chapter 9 Future directions

among review features; same weighting procedures as above but with ratings (encoded
through binary notation) instead of review features; no weight with sum of cosine
similarities among ratings (encoded through binary notation) instead of review features.
As observed by previous works [382], the obtained user-user similarity matrix could be
too much dense. We apply knn-based sparsification (top-k is set from 10 to 100 with
10 as step).

Framework training

Once the U-U and I-I similarity graphs are built, we freeze them during the framework
training. Given a backbone (e.g., matrix factorization), we perform the following step
(for each batch): (i) propagate user and item similarity embeddings on the U-U and
I-I graphs (LightGCN layer for the message passing); (ii) aggregate such embeddings
on the usual collaborative ones through a weighted sum (alpha and beta coe�cients
as hyper-parameters to perform such a weighted sum on user and item, respectively);
(iii) predict the user-item score on the batch according to the backbone.

9.3.2 A feature propagation approach for missing modalities

As already discussed in the open challenges from Chapter 4, the unavailability of
modalities in multimodal-aware recommendation represents one of the most debated
issues in the current literature. However, to the best of our knowledge, very few and
domain-specific solutions [317] have been proposed in the literature so far.

Given that most of the recent approaches in multimodal-aware recommendation are
built upon graph neural network architectures, we take into account the recent work
by Rossi et al. [263]. In the paper, the authors propose a simple but e�ective approach
to deal with missing node features in graph representation learning by proposing a
feature propagation approach as preliminary phase before the actual training of the
model for the downstream task. Let us suppose to be addressing a classical task
involving graph neural networks, for instance, node classification; then, let us assume
that a certain percentage of the node features are missing from the original graphs.
The authors’ intuition is to run a preliminary multi-step feature propagation procedure
to approximate the missing node features through:

E(l+1) = AE(l), (9.13)

where, for the sake of simplicity, we indicate the features for all nodes as E, and the
adjacency matrix as A. Repeating the feature propagation for a certain number of steps

9.3 Graph-based recommendation leveraging multimodal information 219

allows to obtain an approximated representation for the missing features (the existing
ones are not modified after the complete feature propagation), reaching comparable if
superior performance to the ones obtained by other similar existing strategies.

Inspired by the same strategy, we decide to apply feature propagation in the
recommendation setting where some multimodal features of items may be missing.
Limiting the analysis to a two-modalities setting (e.g., visual and textual) two cases
may occur: (i) a percentage p of features is missing from both the modalities, (ii) a
percentage p1 and a percentage p2 are missing from the visual and textual modalities.
Note that, to apply the feature propagation approach, we should first cast the solution
proposed in [263] to the recommendation scenario, which involves a bipartite and
undirected graph. As the feature propagation approach has been specifically tailored
to monopartite graphs, we first propose to obtain the projected item-item graph from
the user-item one. Then, feature propagation may be applied for a certain number of
iterative steps.

We performed some preliminary experiments by considering the model proposed
in [336] (called MMSSL) on the Amazon Baby dataset. For simplicity, we limit our
investigation to the case in which an equal percentage of missing features is missing for
both modalities. Note that having a p% of missing modalities on both modalities means
to have p% random items from the catalogue whose visual and textual modalities
are missing. Results against shallow feature replacement approaches (e.g., put all
missing features to zero, consider the mean of the existing features, and put the missing
feature at random) show some interesting insights (see Figure 9.3). Indeed, the feature
propagation approach seems to perform slightly better (in some cases much better)
than the other baselines, paving the way to more nuanced analyses and experiments.

220 Chapter 9 Future directions

(a) Allrecipes

(b) Gowalla

Fig. 9.2 Contour plot of the symmetric adjacency normalization (left-side in each subfigure)
alongside the node degree co-occurrence (right-side in each subfigure) for (a) Allrecipes and
(b) Gowalla datasets.

9.3 Graph-based recommendation leveraging multimodal information 221

10% 30% 50% 70% 90%

0.075

0.080

0.085

0.090

% missing items

R
ec

al
l@

20

(a) 1 layer

10% 30% 50% 70% 90%

0.075

0.080

0.085

0.090

% missing item

R
ec

al
l@

20

(b) 2 layer

10% 30% 50% 70% 90%

0.075

0.080

0.085

0.090

% missing item

R
ec

al
l@

20

(c) 3 layer

10% 30% 50% 70% 90%

0.075

0.080

0.085

0.090

% missing item

R
ec

al
l@

20

(d) 4 layer

zeros mean random feat_prop

Fig. 9.3 Feature propagation applied for varying percentages of items with missing modalities
for the MMSSL model trained on Amazon Baby.

Bibliography

[1] Himan Abdollahpouri. “Popularity Bias in Ranking and Recommendation.” In:
AIES. ACM, 2019, pp. 529–530.

[2] Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar
Jannach, Toshihiro Kamishima, Jan Krasnodebski, and Luiz Augusto Pizzato.
“Multistakeholder recommendation: Survey and research directions.” In: User
Model. User Adapt. Interact. 30.1 (2020), pp. 127–158.

[3] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. “Controlling
Popularity Bias in Learning-to-Rank Recommendation.” In: RecSys. ACM, 2017,
pp. 42–46.

[4] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. “Managing
Popularity Bias in Recommender Systems with Personalized Re-Ranking.”
In: FLAIRS. AAAI Press, 2019, pp. 413–418.

[5] Himan Abdollahpouri, Mehdi Elahi, Masoud Mansoury, Shaghayegh Sahebi,
Zahra Nazari, Allison Chaney, and Babak Loni. “MORS 2021: 1st Workshop on
Multi-Objective Recommender Systems.” In: RecSys. ACM, 2021, pp. 787–788.

[6] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina
Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. “MixHop:
Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood
Mixing.” In: ICML. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, pp. 21–29.

[7] Gediminas Adomavicius and Alexander Tuzhilin. “Toward the Next Genera-
tion of Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions.” In: IEEE Trans. Knowl. Data Eng. 17.6 (2005), pp. 734–749.

[8] Gediminas Adomavicius and Jingjing Zhang. “Impact of data characteristics
on recommender systems performance.” In: ACM Trans. Manag. Inf. Syst. 3.1
(2012), 3:1–3:17.

[9] Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and Aaron C. Courville.
“Learning Distributed Representations from Reviews for Collaborative Filtering.”
In: RecSys. ACM, 2015, pp. 147–154.

[10] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta,
Felice Antonio Merra, Claudio Pomo, Francesco M. Donini, Eugenio Di Sciascio,
and Tommaso Di Noia. “The Challenging Reproducibility Task in Recommender
Systems Research between Traditional and Deep Learning Models.” In: SEBD.
Vol. 3194. CEUR Workshop Proceedings. CEUR-WS.org, 2022, pp. 514–521.

224 Bibliography

[11] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta,
Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di
Noia. “Elliot: A Comprehensive and Rigorous Framework for Reproducible
Recommender Systems Evaluation.” In: SIGIR. ACM, 2021, pp. 2405–2414.

[12] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta,
Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di
Noia. “V-Elliot: Design, Evaluate and Tune Visual Recommender Systems.” In:
RecSys. ACM, 2021, pp. 768–771.

[13] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta,
Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Eugenio Di
Sciascio, and Tommaso Di Noia. “How to Perform Reproducible Experiments in
the ELLIOT Recommendation Framework: Data Processing, Model Selection,
and Performance Evaluation.” In: IIR. Vol. 2947. CEUR Workshop Proceedings.
CEUR-WS.org, 2021.

[14] Vito Walter Anelli, Alejandro Bellogín, Tommaso Di Noia, Dietmar Jannach,
and Claudio Pomo. “Top-N Recommendation Algorithms: A Quest for the
State-of-the-Art.” In: UMAP. ACM, 2022, pp. 121–131.

[15] Vito Walter Anelli, Alejandro Bellogín, Tommaso Di Noia, and Claudio Pomo.
“Reenvisioning the comparison between Neural Collaborative Filtering and
Matrix Factorization.” In: RecSys. ACM, 2021, pp. 521–529.

[16] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta,
and Felice Antonio Merra. “A Study of Defensive Methods to Protect Visual
Recommendation Against Adversarial Manipulation of Images.” In: SIGIR.
ACM, 2021, pp. 1094–1103.

[17] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta,
Vincenzo Paparella, and Claudio Pomo. “Auditing Consumer- and Producer-
Fairness in Graph Collaborative Filtering.” In: ECIR (1). Vol. 13980. Lecture
Notes in Computer Science. Springer, 2023, pp. 33–48.

[18] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio,
Antonio Ferrara, Daniele Malitesta, and Claudio Pomo. “How Neighborhood
Exploration influences Novelty and Diversity in Graph Collaborative Filtering.”
In: MORS@RecSys. Vol. 3268. CEUR Workshop Proceedings. CEUR-WS.org,
2022.

[19] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio,
Antonio Ferrara, Daniele Malitesta, and Claudio Pomo. “Reshaping Graph Rec-
ommendation with Edge Graph Collaborative Filtering and Customer Reviews.”
In: DL4SR@CIKM. Vol. 3317. CEUR Workshop Proceedings. CEUR-WS.org,
2022.

[20] Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro Bellogín, Eu-
genio Di Sciascio, and Tommaso Di Noia. “Challenging the Myth of Graph
Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis.” In:
RecSys. ACM, 2023, pp. 350–361.

Bibliography 225

[21] Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio
Merra. “Assessing Perceptual and Recommendation Mutation of Adversarially-
Poisoned Visual Recommenders (short paper).” In: DP@AI*IA. Vol. 2776. CEUR
Workshop Proceedings. CEUR-WS.org, 2020, pp. 49–56.

[22] Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Daniele Malitesta,
and Felice Antonio Merra. “Adversarial Attacks against Visual Recommendation:
an Investigation on the Influence of Items’ Popularity.” In: OHARS@RecSys.
Vol. 3012. CEUR Workshop Proceedings. CEUR-WS.org, 2021, pp. 33–44.

[23] Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone,
and Joseph Trotta. “How to Make Latent Factors Interpretable by Feeding
Factorization Machines with Knowledge Graphs.” In: ISWC (1). Vol. 11778.
Lecture Notes in Computer Science. Springer, 2019, pp. 38–56.

[24] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A Simple but Tough-to-Beat
Baseline for Sentence Embeddings.” In: ICLR (Poster). OpenReview.net, 2017.

[25] Nabiha Asghar. “Yelp Dataset Challenge: Review Rating Prediction.” In: CoRR
abs/1605.05362 (2016).

[26] Ricardo Baeza-Yates. “Bias in Search and Recommender Systems.” In: RecSys.
ACM, 2020, p. 2.

[27] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. “TuckER: Tensor
Factorization for Knowledge Graph Completion.” In: EMNLP/IJCNLP. 2019.

[28] Tadas Baltrusaitis, Chaitanya Ahuja, and Louis Philippe Morency. “Multimodal
Machine Learning: A Survey and Taxonomy.” In: IEEE Trans. Pattern Anal.
Mach. Intell. 41.2 (2019), pp. 423–443.

[29] Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. “Chal-
lenges and applications in multimodal machine learning.” In: The Handbook of
Multimodal-Multisensor Interfaces, Volume 2 (2). Association for Computing
Machinery, 2018, pp. 17–48.

[30] Francesco Barbieri, José Camacho-Collados, Luis Espinosa Anke, and Leonardo
Neves. “TweetEval: Unified Benchmark and Comparative Evaluation for Tweet
Classification.” In: EMNLP (Findings). Vol. EMNLP 2020. Findings of ACL.
Association for Computational Linguistics, 2020, pp. 1644–1650.

[31] Alejandro Bellogín and Alan Said. “Improving accountability in recommender
systems research through reproducibility.” In: User Model. User Adapt. Interact.
31.5 (2021), pp. 941–977.

[32] Rianne van den Berg, Thomas N. Kipf, and Max Welling. “Graph Convolutional
Matrix Completion.” In: CoRR abs/1706.02263 (2017).

[33] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms
for Hyper-Parameter Optimization.” In: NIPS. 2011, pp. 2546–2554.

[34] Gaurav Bhatnagar, Q. M. Jonathan Wu, and Zheng Liu. “Directive Contrast
Based Multimodal Medical Image Fusion in NSCT Domain.” In: IEEE Trans.
Multim. 15.5 (2013), pp. 1014–1024.

226 Bibliography

[35] Federico Bianchi, Patrick John Chia, Ciro Greco, Claudio Pomo, Gabriel de
Souza P. Moreira, Davide Eynard, Fahd Husain, and Jacopo Tagliabue. “EvalRS
2023. Well-Rounded Recommender Systems For Real-World Deployments.” In:
CoRR abs/2304.07145 (2023).

[36] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion Attacks against
Machine Learning at Test Time.” In: ECML-PKDD 2013. 2013.

[37] Georgios Boltsis and Evaggelia Pitoura. “Bias disparity in graph-based collabo-
rative filtering recommenders.” In: SAC. ACM, 2022, pp. 1403–1409.

[38] Ludovico Boratto, Salvatore Carta, Gianni Fenu, and Roberto Saia. “Semantics-
aware content-based recommender systems: Design and architecture guidelines.”
In: Neurocomputing 254 (2017), pp. 79–85.

[39] Ludovico Boratto, Gianni Fenu, and Mirko Marras. “Connecting user and item
perspectives in popularity debiasing for collaborative recommendation.” In: Inf.
Process. Manag. 58.1 (2021), p. 102387.

[40] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. “Translating Embeddings for Modeling Multi-relational
Data.” In: NIPS. 2013, pp. 2787–2795.

[41] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. “Learning
Structured Embeddings of Knowledge Bases.” In: AAAI. AAAI Press, 2011.

[42] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. “Ge-
ometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.” In:
CoRR abs/2104.13478 (2021).

[43] Erik Brynjolfsson, Yu Je�rey Hu, and Michael D Smith. “From niches to riches:
Anatomy of the long tail.” In: Sloan management review 47.4 (2006), pp. 67–71.

[44] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
“nuScenes: A Multimodal Dataset for Autonomous Driving.” In: CVPR. Com-
puter Vision Foundation / IEEE, 2020, pp. 11618–11628.

[45] Desheng Cai, Shengsheng Qian, Quan Fang, and Changsheng Xu. “Heteroge-
neous Hierarchical Feature Aggregation Network for Personalized Micro-Video
Recommendation.” In: IEEE Trans. Multim. 24 (2022), pp. 805–818.

[46] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. “LightGCL: Simple
Yet E�ective Graph Contrastive Learning for Recommendation.” In: ICLR.
OpenReview.net, 2023.

[47] Jiangxia Cao, Xixun Lin, Shu Guo, Luchen Liu, Tingwen Liu, and Bin Wang.
“Bipartite Graph Embedding via Mutual Information Maximization.” In: WSDM.
ACM, 2021, pp. 635–643.

[48] Nicholas Carlini and David A. Wagner. “Defensive Distillation is Not Robust to
Adversarial Examples.” In: CoRR 2016 (2016).

[49] Nicholas Carlini and David A. Wagner. “Adversarial Examples Are Not Easily
Detected: Bypassing Ten Detection Methods.” In: AISec@CCS 2017. 2017.

Bibliography 227

[50] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of
Neural Networks.” In: SP 2017. 2017.

[51] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-
phy. “Machine Learning on Graphs: A Model and Comprehensive Taxonomy.”
In: J. Mach. Learn. Res. 23 (2022), 89:1–89:64.

[52] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma.
“E�cient Neural Matrix Factorization without Sampling for Recommendation.”
In: ACM Trans. Inf. Syst. 38.2 (2020), 14:1–14:28.

[53] Dapeng Chen, Min Wang, Haobin Chen, Lin Wu, Jing Qin, and Wei Peng. “Cross-
Modal Retrieval with Heterogeneous Graph Embedding.” In: ACM Multimedia.
ACM, 2022, pp. 3291–3300.

[54] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. “Measuring and
Relieving the Over-Smoothing Problem for Graph Neural Networks from the
Topological View.” In: AAAI. AAAI Press, 2020, pp. 3438–3445.

[55] Feiyu Chen, Junjie Wang, Yinwei Wei, Hai-Tao Zheng, and Jie Shao. “Breaking
Isolation: Multimodal Graph Fusion for Multimedia Recommendation by Edge-
wise Modulation.” In: ACM Multimedia. ACM, 2022, pp. 385–394.

[56] Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng
Zhang. “Graph Collaborative Reasoning.” In: WSDM. ACM, 2022, pp. 75–84.

[57] Huiyuan Chen and Jing Li. “Neural Tensor Model for Learning Multi-Aspect
Factors in Recommender Systems.” In: IJCAI. ijcai.org, 2020, pp. 2449–2455.

[58] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. “Bias and Debias in Recommender System: A Survey and Future Directions.”
In: ACM Trans. Inf. Syst. 41.3 (2023), 67:1–67:39.

[59] Jingjing Chen, Chong-Wah Ngo, Fuli Feng, and Tat-Seng Chua. “Deep Under-
standing of Cooking Procedure for Cross-modal Recipe Retrieval.” In: ACM
Multimedia. ACM, 2018, pp. 1020–1028.

[60] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. “Attentive Collaborative Filtering: Multimedia Recommendation
with Item- and Component-Level Attention.” In: SIGIR. ACM, 2017, pp. 335–
344.

[61] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. “Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach.” In: AAAI. AAAI Press, 2020, pp. 27–34.

[62] Li Chen, Guanliang Chen, and Feng Wang. “Recommender systems based on
user reviews: the state of the art.” In: User Model. User-Adapt. Interact. (2015).

[63] Tao Chen, Xiangnan He, and Min-Yen Kan. “Context-aware Image Tweet
Modelling and Recommendation.” In: ACM Multimedia. ACM, 2016, pp. 1018–
1027.

[64] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. “On Sampling Strategies for
Neural Network-based Collaborative Filtering.” In: KDD. ACM, 2017, pp. 767–
776.

228 Bibliography

[65] Wen Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng Guo, Fei Sun, Chao Li,
Andreas Pfadler, Huan Zhao, and Binqiang Zhao. “POG: Personalized Outfit
Generation for Fashion Recommendation at Alibaba iFashion.” In: KDD. ACM,
2019.

[66] Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng
Qin, and Hongyuan Zha. “Personalized Fashion Recommendation with Vi-
sual Explanations based on Multimodal Attention Network: Towards Visually
Explainable Recommendation.” In: SIGIR. ACM, 2019, pp. 765–774.

[67] Xusong Chen, Dong Liu, Zhiwei Xiong, and Zheng-Jun Zha. “Learning and
Fusing Multiple User Interest Representations for Micro-Video and Movie
Recommendations.” In: IEEE Trans. Multim. 23 (2021), pp. 484–496.

[68] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and
Hongbo Deng. “ESAM: Discriminative Domain Adaptation with Non-Displayed
Items to Improve Long-Tail Performance.” In: SIGIR. ACM, 2020, pp. 579–588.

[69] Zhiyong Cheng, Xiaojun Chang, Lei Zhu, Rose Catherine Kanjirathinkal, and
Mohan S. Kankanhalli. “MMALFM: Explainable Recommendation by Leverag-
ing Reviews and Images.” In: ACM Trans. Inf. Syst. 37.2 (2019), 16:1–16:28.

[70] Zhiyong Cheng, Jialie Shen, and Steven C. H. Hoi. “On E�ective Personalized
Music Retrieval by Exploring Online User Behaviors.” In: SIGIR. ACM, 2016,
pp. 125–134.

[71] Patrick John Chia, Jacopo Tagliabue, Federico Bianchi, Chloe He, and Brian Ko.
“Beyond NDCG: Behavioral Testing of Recommender Systems with RecList.”
In: WWW (Companion Volume). ACM, 2022, pp. 99–104.

[72] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. “Friendship and mobility: user
movement in location-based social networks.” In: KDD. ACM, 2011, pp. 1082–
1090.

[73] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun Cho. “Con-
volutional recurrent neural networks for music classification.” In: ICASSP. IEEE,
2017, pp. 2392–2396.

[74] Xiaoya Chong, Qing Li, Howard Leung, Qianhui Men, and Xianjin Chao. “Hi-
erarchical Visual-aware Minimax Ranking Based on Co-purchase Data for
Personalized Recommendation.” In: WWW. ACM / IW3C2, 2020, pp. 2563–
2569.

[75] Giandomenico Cornacchia, Vito Walter Anelli, Giovanni Maria Biancofiore,
Fedelucio Narducci, Claudio Pomo, Azzurra Ragone, and Eugenio Di Sciascio.
“Auditing fairness under unawareness through counterfactual reasoning.” In: Inf.
Process. Manag. 60.2 (2023), p. 103224.

[76] Giandomenico Cornacchia, Francesco M. Donini, Fedelucio Narducci, Claudio
Pomo, and Azzurra Ragone. “Explanation in Multi-Stakeholder Recommenda-
tion for Enterprise Decision Support Systems.” In: CAiSE Workshops. Vol. 423.
Lecture Notes in Business Information Processing. Springer, 2021, pp. 39–47.

Bibliography 229

[77] Giandomenico Cornacchia, Fedelucio Narducci, and Azzurra Ragone. “A Gen-
eral Model for Fair and Explainable Recommendation in the Loan Domain
(Short paper).” In: KaRS/ComplexRec@RecSys. Vol. 2960. CEUR Workshop
Proceedings. CEUR-WS.org, 2021.

[78] Qiang Cui, Shu Wu, Qiang Liu, Wen Zhong, and Liang Wang. “MV-RNN: A
Multi-View Recurrent Neural Network for Sequential Recommendation.” In:
IEEE Trans. Knowl. Data Eng. 32.2 (2020), pp. 317–331.

[79] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jan-
nach. “A Troubling Analysis of Reproducibility and Progress in Recommender
Systems Research.” In: ACM Trans. Inf. Syst. 39.2 (2021), 20:1–20:49.

[80] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are we
really making much progress? A worrying analysis of recent neural recommen-
dation approaches.” In: RecSys. ACM, 2019, pp. 101–109.

[81] Yashar Deldjoo, Vito Walter Anelli, Hamed Zamani, Alejandro Bellogín, and
Tommaso Di Noia. “A flexible framework for evaluating user and item fairness
in recommender systems.” In: User Model. User Adapt. Interact. 31.3 (2021),
pp. 457–511.

[82] Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio
Merra. “A Study on the Relative Importance of Convolutional Neural Networks
in Visually-Aware Recommender Systems.” In: CVPR Workshops. Computer
Vision Foundation / IEEE, 2021, pp. 3961–3967.

[83] Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio Merra.
“Leveraging Content-Style Item Representation for Visual Recommendation.”
In: ECIR (2). Vol. 13186. Lecture Notes in Computer Science. Springer, 2022,
pp. 84–92.

[84] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. “A Survey
on Adversarial Recommender Systems: From Attack/Defense Strategies to
Generative Adversarial Networks.” In: ACM Comput. Surv. 54.2 (2021), 35:1–
35:38.

[85] Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, and Felice Antonio
Merra. “How Dataset Characteristics A�ect the Robustness of Collaborative
Recommendation Models.” In: SIGIR. ACM, 2020, pp. 951–960.

[86] Yashar Deldjoo, Markus Schedl, Paolo Cremonesi, and Gabriella Pasi. “Recom-
mender Systems Leveraging Multimedia Content.” In: ACM Comput. Surv. 53.5
(2020), 106:1–106:38.

[87] Yashar Deldjoo, Markus Schedl, Balasz Hidasi, Xiangnan He, and Yinwei
Wei. “Multimedia Recommender Systems: Algorithms and Challenges.” In:
Recommender Systems Handbook. Springer US, 2022.

[88] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. “ImageNet:
A large-scale hierarchical image database.” In: CVPR. IEEE Computer Society,
2009, pp. 248–255.

[89] Marie Destandau and Jean-Daniel Fekete. “The missing path: Analysing incom-
pleteness in knowledge graphs.” In: Inf. Vis. 20.1 (2021), pp. 66–82.

230 Bibliography

[90] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
“Convolutional 2D Knowledge Graph Embeddings.” In: AAAI. AAAI Press,
2018, pp. 1811–1818.

[91] Xue Dong, Xuemeng Song, Fuli Feng, Peiguang Jing, Xin-Shun Xu, and Liqiang
Nie. “Personalized Capsule Wardrobe Creation with Garment and User Model-
ing.” In: ACM Multimedia. ACM, 2019, pp. 302–310.

[92] Xiaoyu Du, Zike Wu, Fuli Feng, Xiangnan He, and Jinhui Tang. “Invariant
Representation Learning for Multimedia Recommendation.” In: ACM Multimedia.
ACM, 2022, pp. 619–628.

[93] Travis Ebesu, Bin Shen, and Yi Fang. “Collaborative Memory Network for
Recommendation Systems.” In: SIGIR. ACM, 2018, pp. 515–524.

[94] Michael D. Ekstrand, John Riedl, and Joseph A. Konstan. “Collaborative
Filtering Recommender Systems.” In: Found. Trends Hum. Comput. Interact.
4.2 (2011), pp. 175–243.

[95] David Elsweiler, Christoph Trattner, and Morgan Harvey. “Exploiting Food
Choice Biases for Healthier Recipe Recommendation.” In: SIGIR. ACM, 2017,
pp. 575–584.

[96] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li.
“Graph Trend Filtering Networks for Recommendation.” In: SIGIR. ACM, 2022,
pp. 112–121.

[97] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
“Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO.”
In: Semantic Web 9.1 (2018), pp. 77–129.

[98] Andrea Ferracani, Daniele Pezzatini, Marco Bertini, Saverio Meucci, and Al-
berto Del Bimbo. “A System for Video Recommendation using Visual Saliency,
Crowdsourced and Automatic Annotations.” In: ACM Multimedia. ACM, 2015.

[99] Zuohui Fu et al. “Fairness-Aware Explainable Recommendation over Knowledge
Graphs.” In: SIGIR. ACM, 2020, pp. 69–78.

[100] Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. “A Survey on Deep Learning
for Multimodal Data Fusion.” In: Neural Comput. 32.5 (2020), pp. 829–864.

[101] Jingyue Gao, Yang Lin, Yasha Wang, Xiting Wang, Zhao Yang, Yuanduo He,
and Xu Chu. “Set-Sequence-Graph: A Multi-View Approach Towards Exploiting
Reviews for Recommendation.” In: CIKM. ACM, 2020, pp. 395–404.

[102] Xiaoyan Gao, Fuli Feng, Xiangnan He, Heyan Huang, Xinyu Guan, Chong
Feng, Zhaoyan Ming, and Tat-Seng Chua. “Hierarchical Attention Network for
Visually-Aware Food Recommendation.” In: IEEE Trans. Multim. 22.6 (2020).

[103] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and
Baihua Zheng. “Self-Guided Learning to Denoise for Robust Recommendation.”
In: SIGIR. ACM, 2022, pp. 1412–1422.

[104] James Gareth, Witten Daniela, Hastie Trevor, and Tibshirani Robert. An
introduction to statistical learning: with applications in R. Spinger, 2013.

Bibliography 231

[105] Yuying Ge, Ruimao Zhang, Xiaogang Wang, Xiaoou Tang, and Ping Luo.
“DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmen-
tation and Re-Identification of Clothing Images.” In: CVPR. Computer Vision
Foundation / IEEE, 2019, pp. 5337–5345.

[106] Francesco Gelli, Tiberio Uricchio, Xiangnan He, Alberto Del Bimbo, and Tat-
Seng Chua. “Learning Visual Elements of Images for Discovery of Brand Posts.”
In: ACM Trans. Multim. Comput. Commun. Appl. 16.2 (2020), 56:1–56:21.

[107] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and
Giovanni Semeraro. “Semantics-Aware Content-Based Recommender Systems.”
In: Recommender Systems Handbook. Springer, 2015, pp. 119–159.

[108] Marco de Gemmis, Pasquale Lops, and Marco Polignano. “Recommender Sys-
tems, Basics of.” In: Encyclopedia of Social Network Analysis and Mining. 2nd
Ed. Springer, 2018.

[109] Mariana-Iuliana Georgescu, Radu Tudor Ionescu, Andreea-Iuliana Miron, Oli-
vian Savencu, Nicolae-Catalin Ristea, Nicolae Verga, and Fahad Shahbaz Khan.
“Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes for
Medical Image Super-Resolution.” In: WACV. IEEE, 2023, pp. 2194–2204.

[110] Alireza Gharahighehi and Celine Vens. “Diversification in session-based news
recommender systems.” In: Pers. Ubiquitous Comput. 27.1 (2023), pp. 5–15.

[111] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. “Neural Message Passing for Quantum Chemistry.” In: ICML.
Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1263–
1272.

[112] Xavier Glorot, Antoine Bordes, Jason Weston, and Yoshua Bengio. “A Semantic
Matching Energy Function for Learning with Multi-relational Data.” In: ICLR
(Workshop Poster). 2013.

[113] Kaiqi Gong, Xiao Song, Senzhang Wang, Songsong Liu, and Yong Li. “ITSM-
GCN: Informative Training Sample Mining for Graph Convolutional Network-
based Collaborative Filtering.” In: CIKM. ACM, 2022, pp. 614–623.

[114] Alexey Kurakand Ian J. Goodfellow and Samy Bengio. “Adversarial examples
the physical world.” In: ICLR 2017. 2017.

[115] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples.” In: ICLR (Poster). 2015.

[116] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
Vol. 385. Studies in Computational Intelligence. Springer, 2012.

[117] Aditya Grover and Jure Leskovec. “node2vec: Scalable Feature Learning for
Networks.” In: KDD. ACM, 2016, pp. 855–864.

[118] Asela Gunawardana and Guy Shani. “Evaluating Recommender Systems.” In:
Recommender Systems Handbook. Ed. by Francesco Ricci, Lior Rokach, and
Bracha Shapira. Springer, 2015, pp. 265–308. doi: 10.1007/978-1-4899-7637-
6_8.

[119] William L. Hamilton. Graph Representation Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2020.

232 Bibliography

[120] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. “Learning
Fashion Compatibility with Bidirectional LSTMs.” In: ACM Multimedia. ACM,
2017.

[121] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: History
and Context.” In: ACM Trans. Interact. Intell. Syst. 5.4 (2016), 19:1–19:19.

[122] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” In: CVPR. IEEE Computer Society, 2016,
pp. 770–778.

[123] Ruining He, Chunbin Lin, Jianguo Wang, and Julian J. McAuley. “Sherlock:
Sparse Hierarchical Embeddings for Visually-Aware One-Class Collaborative
Filtering.” In: IJCAI. IJCAI/AAAI Press, 2016, pp. 3740–3746.

[124] Ruining He and Julian J. McAuley. “Ups and Downs: Modeling the Visual
Evolution of Fashion Trends with One-Class Collaborative Filtering.” In: WWW.
ACM, 2016, pp. 507–517.

[125] Ruining He and Julian J. McAuley. “VBPR: Visual Bayesian Personalized
Ranking from Implicit Feedback.” In: AAAI. AAAI Press, 2016, pp. 144–150.

[126] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. “LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation.” In: SIGIR. ACM, 2020, pp. 639–648.

[127] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. “Adversarial Per-
sonalized Ranking for Recommendation.” In: SIGIR 2018. 2018.

[128] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. “Neural Collaborative Filtering.” In: WWW. ACM, 2017, pp. 173–182.

[129] Haithem Hermessi, Olfa Mourali, and Ezzeddine Zagrouba. “Multimodal medical
image fusion review: Theoretical background and recent advances.” In: Signal
Process. 183 (2021), p. 108036.

[130] Shawn Hershey et al. “CNN architectures for large-scale audio classification.”
In: ICASSP. IEEE, 2017, pp. 131–135.

[131] Geo�rey E. Hinton, Oriol Vinyals, and Je�rey Dean. “Distilling the Knowledge
in a Neural Network.” In: CoRR abs/1503.02531 (2015).

[132] F. L. Hitchcock. “The expression of a tensor or a polyadic as a sum of products.”
In: J. Math. Phys 6.1 (1927), pp. 164–189.

[133] Min Hou, Le Wu, Enhong Chen, Zhi Li, Vincent W. Zheng, and Qi Liu. “Explain-
able Fashion Recommendation: A Semantic Attribute Region Guided Approach.”
In: IJCAI. ijcai.org, 2019, pp. 4681–4688.

[134] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge J. Belongie,
and Deborah Estrin. “Collaborative Metric Learning.” In: WWW. ACM, 2017,
pp. 193–201.

[135] Peng Hu, Liangli Zhen, Dezhong Peng, and Pei Liu. “Scalable Deep Multimodal
Learning for Cross-Modal Retrieval.” In: SIGIR. ACM, 2019, pp. 635–644.

[136] Xuming Hu, Zhijiang Guo, Zhiyang Teng, Irwin King, and Philip S. Yu. “Multi-
modal Relation Extraction with Cross-Modal Retrieval and Synthesis.” In: ACL
(2). Association for Computational Linguistics, 2023, pp. 303–311.

Bibliography 233

[137] Yang Hu, Xi Yi, and Larry S. Davis. “Collaborative Fashion Recommendation:
A Functional Tensor Factorization Approach.” In: ACM Multimedia. 2015.

[138] Chao Huang, Lianghao Xia, Xiang Wang, Xiangnan He, and Dawei Yin. “Self-
Supervised Learning for Recommendation.” In: CIKM. ACM, 2022, pp. 5136–
5139.

[139] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. “MixGCF: An Improved Training Method for Graph Neural
Network-based Recommender Systems.” In: KDD. ACM, 2021, pp. 665–674.

[140] Prachi Jain, Sushant Rathi, Mausam, and Soumen Chakrabarti. “Knowledge
Base Completion: Baseline strikes back (Again).” In: ArXiv abs/2005.00804
(2020).

[141] Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac.
“What recommenders recommend: an analysis of recommendation biases and
possible countermeasures.” In: User Model. User Adapt. Interact. 25.5 (2015),
pp. 427–491.

[142] Shatha Jaradat, Nima Dokoohaki, Humberto Jesús Corona Pampín, and Reza
Shirvany. “Second Workshop on Recommender Systems in Fashion - fashionXrec-
sys2020.” In: RecSys. ACM, 2020, pp. 632–634.

[143] Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski.
“A latent factor model for highly multi-relational data.” In: NIPS. 2012, pp. 3176–
3184.

[144] Xiaowei Jia, Aosen Wang, Xiaoyi Li, Guangxu Xun, Wenyao Xu, and Aidong
Zhang. “Multi-modal learning for video recommendation based on mobile ap-
plication usage.” In: IEEE BigData. IEEE Computer Society, 2015, pp. 837–
842.

[145] Yiqiao Jin, Yeon-Chang Lee, Kartik Sharma, Meng Ye, Karan Sikka, Ajay
Divakaran, and Srijan Kumar. “Predicting Information Pathways Across Online
Communities.” In: CoRR abs/2306.02259 (2023).

[146] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for Real-
Time Style Transfer and Super-Resolution.” In: ECCV 2016. 2016.

[147] Kristiina Jokinen and Topi Hurtig. “User expectations and real experience on a
multimodal interactive system.” In: INTERSPEECH. ISCA, 2006.

[148] Keller Jordan. “Calibrated Chaos: Variance Between Runs of Neural Network
Training is Harmless and Inevitable.” In: CoRR abs/2304.01910 (2023).

[149] Marius Kaminskas and Derek Bridge. “Diversity, Serendipity, Novelty, and
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives
in Recommender Systems.” In: ACM Trans. Interact. Intell. Syst. 7.1 (2017),
2:1–2:42.

[150] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. “Cor-
recting Popularity Bias by Enhancing Recommendation Neutrality.” In: RecSys
Posters. Vol. 1247. CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[151] Wang-Cheng Kang, Chen Fang, Zhaowen Wang, and Julian J. McAuley. “Visually-
Aware Fashion Recommendation and Design with Generative Image Models.”
In: ICDM. IEEE Computer Society, 2017, pp. 207–216.

234 Bibliography

[152] Atsushi Kawasaki and Akihito Seki. “Multimodal Trajectory Predictions for
Autonomous Driving without a Detailed Prior Map.” In: WACV. IEEE, 2021,
pp. 3722–3731.

[153] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. “Supervised Con-
trastive Learning.” In: NeurIPS. 2020.

[154] Dong Hyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
“Convolutional Matrix Factorization for Document Context-Aware Recommen-
dation.” In: RecSys. ACM, 2016, pp. 233–240.

[155] Taeri Kim, Yeon-Chang Lee, Kijung Shin, and Sang-Wook Kim. “MARIO:
Modality-Aware Attention and Modality-Preserving Decoders for Multimedia
Recommendation.” In: CIKM. ACM, 2022, pp. 993–1002.

[156] Yoon Kim. “Convolutional Neural Networks for Sentence Classification.” In:
EMNLP. ACL, 2014, pp. 1746–1751.

[157] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.” In: ICLR 2015. 2015.

[158] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks.” In: ICLR (Poster). OpenReview.net, 2017.

[159] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. “Predict
then Propagate: Graph Neural Networks meet Personalized PageRank.” In:
ICLR (Poster). OpenReview.net, 2019.

[160] Yehuda Koren, Robert M. Bell, and Chris Volinsky. “Matrix Factorization
Techniques for Recommender Systems.” In: Computer 42.8 (2009), pp. 30–37.

[161] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. “Ten-
sorLy: Tensor Learning in Python.” In: J. Mach. Learn. Res. 20 (2019), 26:1–
26:6.

[162] Dominik Kowald and Emanuel Lacic. “Popularity Bias in Collaborative Filtering-
Based Multimedia Recommender Systems.” In: BIAS. Vol. 1610. Communica-
tions in Computer and Information Science. Springer, 2022, pp. 1–11.

[163] Adit Krishnan, Ashish Sharma, Aravind Sankar, and Hari Sundaram. “An
Adversarial Approach to Improve Long-Tail Performance in Neural Collaborative
Filtering.” In: CIKM. ACM, 2018, pp. 1491–1494.

[164] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.” In: NIPS. 2012, pp. 1106–
1114.

[165] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. “Canonical Tensor
Decomposition for Knowledge Base Completion.” In: ICML. Vol. 80. Proceedings
of Machine Learning Research. PMLR, 2018, pp. 2869–2878.

[166] Mounia Lalmas. “Personalising and Diversifying the Listening Experience.” In:
ICTIR. ACM, 2020, p. 3.

Bibliography 235

[167] Alfonso Landin, Javier Parapar, and Álvaro Barreiro. “Novel and Diverse Rec-
ommendations by Leveraging Linear Models with User and Item Embeddings.”
In: ECIR (2). Vol. 12036. Lecture Notes in Computer Science. Springer, 2020,
pp. 215–222.

[168] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. “Basic notions
for the analysis of large two-mode networks.” In: Soc. Networks 30.1 (2008),
pp. 31–48.

[169] Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. “Multimodal
Prompting with Missing Modalities for Visual Recognition.” In: CVPR. IEEE,
2023, pp. 14943–14952.

[170] Fei Lei, Zhongqi Cao, Yuning Yang, Yibo Ding, and Cong Zhang. “Learning
the User’s Deeper Preferences for Multi-modal Recommendation Systems.” In:
ACM Trans. Multim. Comput. Commun. Appl. 19.3s (2023), 138:1–138:18.

[171] Zhenfeng Lei, Anwar Ul Haq, Adnan Zeb, Md Suzauddola, and Defu Zhang.
“Is the suggested food your desired?: Multi-modal recipe recommendation with
demand-based knowledge graph.” In: Expert Syst. Appl. 186 (2021), p. 115708.

[172] Cheng-Te Li, Cheng Hsu, and Yang Zhang. “FairSR: Fairness-aware Sequen-
tial Recommendation through Multi-Task Learning with Preference Graph
Embeddings.” In: ACM Trans. Intell. Syst. Technol. 13.1 (2022), 16:1–16:21.

[173] Jiang Li, Xiaoping Wang, Guoqing Lv, and Zhigang Zeng. “GraphMFT: A
graph network based multimodal fusion technique for emotion recognition in
conversation.” In: Neurocomputing 550 (2023), p. 126427.

[174] Jiao Li, Xing Xu, Wei Yu, Fumin Shen, Zuo Cao, Kai Zuo, and Heng Tao Shen.
“Hybrid Fusion with Intra- and Cross-Modality Attention for Image-Recipe
Retrieval.” In: SIGIR. ACM, 2021, pp. 244–254.

[175] Zhan Li, Jinye Peng, Guohua Geng, Xiaojiang Chen, and Pan-Pan Zheng.
“Video recommendation based on multi-modal information and multiple kernel.”
In: Multim. Tools Appl. 74.13 (2015), pp. 4599–4616.

[176] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. “Modeling
User Exposure in Recommendation.” In: WWW. ACM, 2016, pp. 951–961.

[177] Dawen Liang, Rahul G. Krishnan, Matthew D. Ho�man, and Tony Jebara.
“Variational Autoencoders for Collaborative Filtering.” In: WWW. ACM, 2018,
pp. 689–698.

[178] Hongru Liang, Wenqiang Lei, Paul Yaozhu Chan, Zhenglu Yang, Maosong Sun,
and Tat-Seng Chua. “PiRhDy: Learning Pitch-, Rhythm-, and Dynamics-aware
Embeddings for Symbolic Music.” In: ACM Multimedia. ACM, 2020, pp. 574–
582.

[179] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. “Improving
Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learn-
ing.” In: WWW. ACM, 2022, pp. 2320–2329.

[180] Fan Liu, Huilin Chen, Zhiyong Cheng, Liqiang Nie, and Mohan S. Kankanhalli.
“Semantic-Guided Feature Distillation for Multimodal Recommendation.” In:
CoRR abs/2308.03113 (2023).

236 Bibliography

[181] Fan Liu, Zhiyong Cheng, Changchang Sun, Yinglong Wang, Liqiang Nie, and
Mohan S. Kankanhalli. “User Diverse Preference Modeling by Multimodal
Attentive Metric Learning.” In: ACM Multimedia. ACM, 2019, pp. 1526–1534.

[182] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. “Interest-aware
Message-Passing GCN for Recommendation.” In: WWW. ACM / IW3C2, 2021,
pp. 1296–1305.

[183] Hongtao Liu, Yian Wang, Qiyao Peng, Fangzhao Wu, Lin Gan, Lin Pan, and
Pengfei Jiao. “Hybrid neural recommendation with joint deep representation
learning of ratings and reviews.” In: Neurocomputing 374 (2020), pp. 77–85.

[184] Hongtao Liu, Fangzhao Wu, Wenjun Wang, Xianchen Wang, Pengfei Jiao,
Chuhan Wu, and Xing Xie. “NRPA: Neural Recommendation with Personalized
Attention.” In: SIGIR. ACM, 2019, pp. 1233–1236.

[185] Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang, and
Ning Gu. “Personalized Graph Signal Processing for Collaborative Filtering.”
In: CoRR abs/2302.02113 (2023).

[186] Kang Liu, Feng Xue, Dan Guo, Peijie Sun, Shengsheng Qian, and Richang
Hong. “Multimodal Graph Contrastive Learning for Multimedia-Based Rec-
ommendation.” In: IEEE Transactions on Multimedia (2023), pp. 1–13. doi:
10.1109/TMM.2023.3251108.

[187] Kang Liu, Feng Xue, Dan Guo, Le Wu, Shujie Li, and Richang Hong. “MEGCF:
Multimodal Entity Graph Collaborative Filtering for Personalized Recommen-
dation.” In: ACM Trans. Inf. Syst. 41.2 (2023), 30:1–30:27.

[188] Qiang Liu, Shu Wu, and Liang Wang. “DeepStyle: Learning User Preferences
for Visual Recommendation.” In: SIGIR. ACM, 2017, pp. 841–844.

[189] Qidong Liu, Jiaxi Hu, Yutian Xiao, Jingtong Gao, and Xiangyu Zhao. “Multi-
modal Recommender Systems: A Survey.” In: CoRR abs/2302.03883 (2023).

[190] Siwei Liu, Iadh Ounis, and Craig Macdonald. “An MLP-based Algorithm
for E�cient Contrastive Graph Recommendations.” In: SIGIR. ACM, 2022,
pp. 2431–2436.

[191] Wei Liu, Olga Russakovsky, Jia Deng, Fei-Fei Li, and Alex Berg. ImageNet
Large Scale Visual Recognition Challenge 2015. http://www.image-net.org/
challenges/LSVRC/2015/. Accessed: 2021-03-13.

[192] Xiaohao Liu, Zhulin Tao, Jiahong Shao, Lifang Yang, and Xianglin Huang.
“EliMRec: Eliminating Single-modal Bias in Multimedia Recommendation.” In:
ACM Multimedia. ACM, 2022, pp. 687–695.

[193] Yong Liu, Susen Yang, Chenyi Lei, Guoxin Wang, Haihong Tang, Juyong
Zhang, Aixin Sun, and Chunyan Miao. “Pre-training Graph Transformer with
Multimodal Side Information for Recommendation.” In: ACM Multimedia. ACM,
2021, pp. 2853–2861.

[194] Zhuang Liu, Yunpu Ma, Matthias Schubert, Yuanxin Ouyang, and Zhang Xiong.
“Multi-Modal Contrastive Pre-training for Recommendation.” In: ICMR. ACM,
2022, pp. 99–108.

https://doi.org/10.1109/TMM.2023.3251108
http://www.image-net.org/challenges/LSVRC/2015/
http://www.image-net.org/challenges/LSVRC/2015/

Bibliography 237

[195] Zhuoran Liu and Martha A. Larson. “Adversarial Item Promotion: Vulnerabil-
ities at the Core of Top-N Recommenders that Use Images to Address Cold
Start.” In: CoRR abs/2006.01888 (2020). arXiv: 2006.01888.

[196] Yichao Lu, Ruihai Dong, and Barry Smyth. “Coevolutionary Recommendation
Model: Mutual Learning between Ratings and Reviews.” In: WWW. ACM, 2018,
pp. 773–782.

[197] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. “Break the
Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks.” In: NeurIPS.
2019, pp. 10943–10953.

[198] Fengmao Lv, Xiang Chen, Yanyong Huang, Lixin Duan, and Guosheng Lin.
“Progressive Modality Reinforcement for Human Multimodal Emotion Recog-
nition From Unaligned Multimodal Sequences.” In: CVPR. Computer Vision
Foundation / IEEE, 2021, pp. 2554–2562.

[199] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. “Disentangled
Graph Convolutional Networks.” In: ICML. Vol. 97. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 4212–4221.

[200] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. “Learn-
ing Disentangled Representations for Recommendation.” In: NeurIPS. 2019,
pp. 5712–5723.

[201] Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. “Are
Multimodal Transformers Robust to Missing Modality?” In: CVPR. IEEE, 2022,
pp. 18156–18165.

[202] Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng.
“SMIL: Multimodal Learning with Severely Missing Modality.” In: AAAI. AAAI
Press, 2021, pp. 2302–2310.

[203] Yao Ma, Shilin Zhao, Weixiao Wang, Yaoman Li, and Irwin King. “Multimodality
in meta-learning: A comprehensive survey.” In: Knowl. Based Syst. 250 (2022),
p. 108976.

[204] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial
Attacks.” In: ICLR 2018. 2018.

[205] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Felice Anto-
nio Merra, Tommaso Di Noia, and Eugenio Di Sciascio. “Formalizing Mul-
timedia Recommendation through Multimodal Deep Learning.” In: CoRR
abs/2309.05273 (2023).

[206] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, and Tommaso
Di Noia. “Disentangling the Performance Puzzle of Multimodal-aware Recom-
mender Systems.” In: EvalRS@KDD. Vol. 3450. CEUR Workshop Proceedings.
CEUR-WS.org, 2023.

[207] Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, and Tommaso Di
Noia. “On Popularity Bias of Multimodal-Aware Recommender Systems: A
Modalities-Driven Analysis.” In: MMIR@MM. ACM, 2023, pp. 59–68.

https://arxiv.org/abs/2006.01888

238 Bibliography

[208] Daniele Malitesta, Giuseppe Gassi, Claudio Pomo, and Tommaso Di Noia.
“Ducho: A Unified Framework for the Extraction of Multimodal Features in
Recommendation.” In: ACM Multimedia. ACM, 2023, pp. 9668–9671.

[209] Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria
Mancino, Eugenio Di Sciascio, and Tommaso Di Noia. “A Topology-aware
Analysis of Graph Collaborative Filtering.” In: CoRR abs/2308.10778 (2023).

[210] Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia, and
Antonio Ferrara. “An Out-of-the-Box Application for Reproducible Graph
Collaborative Filtering extending the Elliot Framework.” In: UMAP (Adjunct
Publication). ACM, 2023, pp. 12–15.

[211] Daniele Malitesta, Claudio Pomo, and Tommaso Di Noia. “Graph Neural
Networks for Recommendation: Reproducibility, Graph Topology, and Node
Representation.” In: CoRR abs/2310.11270 (2023).

[212] Alberto Carlo Maria Mancino, Antonio Ferrara, Salvatore Bufi, Daniele Malitesta,
Tommaso Di Noia, and Eugenio Di Sciascio. “KGTORe: Tailored Recommenda-
tions through Knowledge-aware GNN Models.” In: RecSys. ACM, 2023, pp. 576–
587.

[213] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher,
and Robin Burke. “FairMatch: A Graph-based Approach for Improving Aggre-
gate Diversity in Recommender Systems.” In: UMAP. ACM, 2020, pp. 154–
162.

[214] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher,
and Robin Burke. “Feedback Loop and Bias Amplification in Recommender
Systems.” In: CIKM. ACM, 2020, pp. 2145–2148.

[215] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher,
and Robin Burke. “A Graph-Based Approach for Mitigating Multi-Sided Ex-
posure Bias in Recommender Systems.” In: ACM Trans. Inf. Syst. 40.2 (2022),
32:1–32:31.

[216] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. “SimpleX: A Simple and Strong Baseline for Collaborative
Filtering.” In: CIKM. ACM, 2021, pp. 1243–1252.

[217] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang
He. “UltraGCN: Ultra Simplification of Graph Convolutional Networks for
Recommendation.” In: CIKM. ACM, 2021, pp. 1253–1262.

[218] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
“Image-Based Recommendations on Styles and Substitutes.” In: SIGIR. ACM,
2015, pp. 43–52.

[219] . PyTorch Geometric Documentation. MEMORY-EFFICIENT AGGREGA-
TIONS. https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_
tensor.html. Accessed online on 15-05-2023. 2022.

[220] Felice Antonio Merra, Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta,
and Alberto Carlo Maria Mancino. “Denoise to Protect: A Method to Robustify
Visual Recommenders from Adversaries.” In: SIGIR. ACM, 2023, pp. 1924–1928.

https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

Bibliography 239

[221] Tomás Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. “E�cient Estimation
of Word Representations in Vector Space.” In: ICLR (Workshop Poster). 2013.

[222] Weiqing Min, Shuqiang Jiang, and Ramesh C. Jain. “Food Recommendation:
Framework, Existing Solutions, and Challenges.” In: IEEE Trans. Multim. 22.10
(2020), pp. 2659–2671.

[223] Zongshen Mu, Yueting Zhuang, Jie Tan, Jun Xiao, and Siliang Tang. “Learn-
ing Hybrid Behavior Patterns for Multimedia Recommendation.” In: ACM
Multimedia. ACM, 2022, pp. 376–384.

[224] Mohammadmehdi Naghiaei, Hossein A. Rahmani, and Yashar Deldjoo. “CPFair:
Personalized Consumer and Producer Fairness Re-ranking for Recommender
Systems.” In: SIGIR. ACM, 2022, pp. 770–779.

[225] Vinod Nair and Geo�rey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines.” In: ICML. Omnipress, 2010, pp. 807–814.

[226] M. E. J. Newman. “Mixing patterns in networks.” In: Phys. Rev. E 67 (2 Feb.
2003), p. 026126. doi: 10.1103/PhysRevE.67.026126.

[227] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y. Ng. “Multimodal Deep Learning.” In: ICML. Omnipress, 2011,
pp. 689–696.

[228] Jianmo Ni, Jiacheng Li, and Julian J. McAuley. “Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects.” In: EMNLP/IJC-
NLP (1). Association for Computational Linguistics, 2019, pp. 188–197.

[229] M. Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A Review
of Relational Machine Learning for Knowledge Graphs.” In: Proceedings of the
IEEE 104 (2016), pp. 11–33.

[230] M. Nickel, Volker Tresp, and H. Kriegel. “A Three-Way Model for Collective
Learning on Multi-Relational Data.” In: ICML. 2011.

[231] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way Model
for Collective Learning on Multi-Relational Data.” In: ICML. Omnipress, 2011,
pp. 809–816.

[232] Weizhi Nie, Anan Liu, Xiaorong Zhu, and Yuting Su. “Quality models for venue
recommendation in location-based social network.” In: Multim. Tools Appl. 75.20
(2016), pp. 12521–12534.

[233] Xia Ning, Christian Desrosiers, and George Karypis. “A Comprehensive Survey
of Neighborhood-Based Recommendation Methods.” In: Recommender Systems
Handbook. Springer, 2015, pp. 37–76.

[234] Wei Niu, James Caverlee, and Haokai Lu. “Neural Personalized Ranking for
Image Recommendation.” In: WSDM. ACM, 2018, pp. 423–431.

[235] Tommaso Di Noia, Daniele Malitesta, and Felice Antonio Merra. “TAaMR:
Targeted Adversarial Attack against Multimedia Recommender Systems.” In:
DSN Workshops. IEEE, 2020, pp. 1–8.

[236] Sergio Oramas, Oriol Nieto, Mohamed Sordo, and Xavier Serra. “A Deep Multi-
modal Approach for Cold-start Music Recommendation.” In: DLRS@RecSys.
ACM, 2017, pp. 32–37.

https://doi.org/10.1103/PhysRevE.67.026126

240 Bibliography

[237] Yi Ouyang, Peng Wu, and Li Pan. “Asymmetrical Context-aware Modulation
for Collaborative Filtering Recommendation.” In: CIKM. ACM, 2022, pp. 1595–
1604.

[238] Charles Packer, Julian J. McAuley, and Arnau Ramisa. “Visually-Aware Person-
alized Recommendation using Interpretable Image Representations.” In: CoRR
abs/1806.09820 (2018).

[239] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. “PinnerSage: Multi-Modal User Embedding Framework for
Recommendations at Pinterest.” In: KDD. ACM, 2020, pp. 2311–2320.

[240] Dario Di Palma, Vito Walter Anelli, Daniele Malitesta, Vincenzo Paparella,
Claudio Pomo, Yashar Deldjoo, and Tommaso Di Noia. “Examining Fairness in
Graph-Based Collaborative Filtering: A Consumer and Producer Perspective.”
In: IIR. Vol. 3448. CEUR Workshop Proceedings. CEUR-WS.org, 2023, pp. 79–
84.

[241] Xichen Pan, Peiyu Chen, Yichen Gong, Helong Zhou, Xinbing Wang, and
Zhouhan Lin. “Leveraging Unimodal Self-Supervised Learning for Multimodal
Audio-Visual Speech Recognition.” In: ACL (1). Association for Computational
Linguistics, 2022, pp. 4491–4503.

[242] Xingyu Pan, Yushuo Chen, Changxin Tian, Zihan Lin, Jinpeng Wang, He Hu,
and Wayne Xin Zhao. “Multimodal Meta-Learning for Cold-Start Sequential
Recommendation.” In: CIKM. ACM, 2022, pp. 3421–3430.

[243] Vincenzo Paparella. “Pursuing Optimal Trade-O� Solutions in Multi-Objective
Recommender Systems.” In: RecSys. ACM, 2022, pp. 727–729.

[244] Georgios Paraskevopoulos, Srinivas Parthasarathy, Aparna Khare, and Shiva
Sundaram. “Multimodal and Multiresolution Speech Recognition with Trans-
formers.” In: ACL. Association for Computational Linguistics, 2020, pp. 2381–
2387.

[245] Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, Patricio Cerda-Mardini,
and Felipe del-Rio. “VisRec: A Hands-on Tutorial on Deep Learning for Visual
Recommender Systems.” In: IUI Companion. ACM, 2021, pp. 5–6.

[246] Bibek Paudel, Fabian Christo�el, Chris Newell, and Abraham Bernstein. “Up-
datable, Accurate, Diverse, and Scalable Recommendations for Interactive
Applications.” In: ACM Trans. Interact. Intell. Syst. 7.1 (2017), 1:1–1:34.

[247] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. “Less is More: Reweight-
ing Important Spectral Graph Features for Recommendation.” In: SIGIR. ACM,
2022, pp. 1273–1282.

[248] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. “SVD-GCN: A Sim-
plified Graph Convolution Paradigm for Recommendation.” In: CIKM. ACM,
2022, pp. 1625–1634.

[249] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: online learning
of social representations.” In: KDD. ACM, 2014, pp. 701–710.

[250] Anne-Flore Nicole Marie Perrin, He Xu, Eleni Kroupi, Martin Rerábek, and
Touradj Ebrahimi. “Multimodal Dataset for Assessment of Quality of Experience
in Immersive Multimedia.” In: ACM Multimedia. ACM, 2015, pp. 1007–1010.

Bibliography 241

[251] . PyTorch Geometric Documentation. Creating Message Passing Networks.
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html.
Accessed online on 15-05-2023. 2022.

[252] Tahleen A. Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang.
“Fairwalk: Towards Fair Graph Embedding.” In: IJCAI. ijcai.org, 2019, pp. 3289–
3295.

[253] Nikhil Rao, Hsiang-Fu Yu, Pradeep Ravikumar, and Inderjit S. Dhillon. “Collab-
orative Filtering with Graph Information: Consistency and Scalable Methods.”
In: NIPS. 2015, pp. 2107–2115.

[254] Xuan Rao, Lisi Chen, Yong Liu, Shuo Shang, Bin Yao, and Peng Han. “Graph-
Flashback Network for Next Location Recommendation.” In: KDD. ACM, 2022,
pp. 1463–1471.

[255] Erzsébet Ravasz and Albert-László Barabási. “Hierarchical organization in
complex networks.” In: Phys. Rev. E 67 (2 Feb. 2003), p. 026112. doi: 10.1103/
PhysRevE.67.026112.

[256] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks.” In: EMNLP/IJCNLP (1). Association for
Computational Linguistics, 2019, pp. 3980–3990.

[257] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks.” In: Conference on Empirical Methods in Natural
Language Processing. 2019.

[258] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. “BPR: Bayesian Personalized Ranking from Implicit Feedback.” In:
UAI. 2009.

[259] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. “GroupLens: An Open Architecture for Collaborative Filtering of Net-
news.” In: CSCW. ACM, 1994, pp. 175–186.

[260] Francesco Ricci, Lior Rokach, and Bracha Shapira, eds. Recommender Systems
Handbook. Springer, 2015.

[261] Matthew Richardson, Rakesh Agrawal, and Pedro M. Domingos. “Trust Manage-
ment for the Semantic Web.” In: ISWC. Vol. 2870. Lecture Notes in Computer
Science. Springer, 2003, pp. 351–368.

[262] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. “DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification.” In: ICLR.
OpenReview.net, 2020.

[263] Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain,
Xiaowen Dong, and Michael M. Bronstein. “On the Unreasonable E�ectiveness
of Feature Propagation in Learning on Graphs With Missing Node Features.” In:
LoG. Vol. 198. Proceedings of Machine Learning Research. PMLR, 2022, p. 11.

[264] D. Ru�nelli, Samuel Broscheit, and Rainer Gemulla. “You CAN Teach an Old
Dog New Tricks! On Training Knowledge Graph Embeddings.” In: ICLR. 2020.

[265] Daniel Ru�nelli, Samuel Broscheit, and Rainer Gemulla. “You CAN Teach an
Old Dog New Tricks! On Training Knowledge Graph Embeddings.” In: ICLR.
OpenReview.net, 2020.

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://doi.org/10.1103/PhysRevE.67.026112
https://doi.org/10.1103/PhysRevE.67.026112

242 Bibliography

[266] Noveen Sachdeva, Carole-Jean Wu, and Julian J. McAuley. “On Sampling
Collaborative Filtering Datasets.” In: WSDM. ACM, 2022, pp. 842–850.

[267] Alan Said and Alejandro Bellogín. “Comparative recommender system eval-
uation: benchmarking recommendation frameworks.” In: RecSys. ACM, 2014,
pp. 129–136.

[268] Alan Said and Alejandro Bellogín. “Rival: a toolkit to foster reproducibility in
recommender system evaluation.” In: RecSys. ACM, 2014, pp. 371–372.

[269] Aghiles Salah, Quoc-Tuan Truong, and Hady W. Lauw. “Cornac: A Comparative
Framework for Multimodal Recommender Systems.” In: J. Mach. Learn. Res.
21 (2020), 95:1–95:5.

[270] Lei Sang, Min Xu, Shengsheng Qian, Matt Martin, Peter Li, and Xindong Wu.
“Context-Dependent Propagating-Based Video Recommendation in Multimodal
Heterogeneous Information Networks.” In: IEEE Trans. Multim. 23 (2021),
pp. 2019–2032.

[271] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl.
“Item-based collaborative filtering recommendation algorithms.” In: WWW.
ACM, 2001, pp. 285–295.

[272] . GitHub. PyG Team. PyTorch_Geometric. Issues. How to make scatter (Just
CUDA) results repeatable. https://github.com/pyg-team/pytorch_geometric/
issues/2788. Accessed online on 15-05-2023. 2021.

[273] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. “Modeling Relational Data with Graph
Convolutional Networks.” In: ESWC. Vol. 10843. Lecture Notes in Computer
Science. Springer, 2018, pp. 593–607.

[274] Mete Sertkan, Julia Neidhardt, and Hannes Werthner. “PicTouRe - A Picture-
Based Tourism Recommender.” In: RecSys. ACM, 2020, pp. 597–599.

[275] Ali Shafahi, Mahyar Najibi, AmGhiasi, Zheng Xu, John P. Dickerson, Christoph
Studer, Larry S. Davis, GavTaylor, and Tom Goldstein. “Adversarial training
for free!” In: NeurIPS 2019. 2019.

[276] Guy Shani and Asela Gunawardana. “Evaluating Recommendation Systems.”
In: Recommender Systems Handbook. Springer, 2011, pp. 257–297.

[277] Tiancheng Shen, Jia Jia, Yan Li, Hanjie Wang, and Bo Chen. “Enhancing
Music Recommendation with Social Media Content: an Attentive Multimodal
Autoencoder Approach.” In: IJCNN. IEEE, 2020, pp. 1–8.

[278] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief,
and Dongsheng Li. “How Powerful is Graph Convolution for Recommendation?”
In: CIKM. ACM, 2021, pp. 1619–1629.

[279] Liye Shi, Wen Wu, Wenxin Hu, Jie Zhou, Jiayi Chen, Wei Zheng, and Liang
He. “DualGCN: An Aspect-Aware Dual Graph Convolutional Network for
review-based recommender.” In: Knowl. Based Syst. 242 (2022), p. 108359.

[280] Min Shi, Yufei Tang, and Xingquan Zhu. “Topology and Content Co-Alignment
Graph Convolutional Learning.” In: IEEE Trans. Neural Networks Learn. Syst.
33.12 (2022), pp. 7899–7907.

https://github.com/pyg-team/pytorch_geometric/issues/2788
https://github.com/pyg-team/pytorch_geometric/issues/2788

Bibliography 243

[281] Juan Shu, Bowei Xi, Yu Li, Fan Wu, Charles A. Kamhoua, and Jianzhu Ma.
“Understanding Dropout for Graph Neural Networks.” In: WWW (Companion
Volume). ACM, 2022, pp. 1128–1138.

[282] Thiago Silveira, Min Zhang, Xiao Lin, Yiqun Liu, and Shaoping Ma. “How good
your recommender system is? A survey on evaluations in recommendation.” In:
Int. J. Mach. Learn. Cybern. 10.5 (2019), pp. 813–831.

[283] Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun.
“Neuroaesthetics in fashion: Modeling the perception of fashionability.” In:
CVPR. IEEE Computer Society, 2015, pp. 869–877.

[284] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition.” In: ICLR. 2015.

[285] Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, and Peng Jiang. “NGAT4Rec:
Neighbor-Aware Graph Attention Network For Recommendation.” In: CoRR
abs/2010.12256 (2020).

[286] Mehdi Srifi, Ahmed Oussous, Ayoub Ait Lahcen, and Salma Mouline. “Rec-
ommender Systems Based on Collaborative Filtering Using Review Texts - A
Survey.” In: Inf. 11.6 (2020), p. 317.

[287] Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, and
Kleomenis Katevas. “Choosing the Best of Both Worlds: Diverse and Novel Rec-
ommendations through Multi-Objective Reinforcement Learning.” In: WSDM.
ACM, 2022, pp. 957–965.

[288] Harald Steck. “Evaluation of recommendations: rating-prediction and ranking.”
In: RecSys. ACM, 2013, pp. 213–220.

[289] Harald Steck. “Embarrassingly Shallow Autoencoders for Sparse Data.” In:
WWW. ACM, 2019, pp. 3251–3257.

[290] Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs.
“HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering.”
In: WWW. ACM / IW3C2, 2021, pp. 593–601.

[291] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang
He, Chen Ma, and Mark Coates. “Neighbor Interaction Aware Graph Con-
volution Networks for Recommendation.” In: SIGIR. ACM, 2020, pp. 1289–
1298.

[292] Jianing Sun et al. “A Framework for Recommending Accurate and Diverse
Items Using Bayesian Graph Convolutional Neural Networks.” In: KDD. ACM,
2020, pp. 2030–2039.

[293] Rui Sun, Xuezhi Cao, Yan Zhao, Junchen Wan, Kun Zhou, Fuzheng Zhang,
Zhongyuan Wang, and Kai Zheng. “Multi-modal Knowledge Graphs for Recom-
mender Systems.” In: CIKM. ACM, 2020, pp. 1405–1414.

[294] Wangbin Sun, Fei Ma, Yang Li, Shao-Lun Huang, Shiguang Ni, and Lin Zhang.
“Semi-Supervised Multimodal Image Translation for Missing Modality Imputa-
tion.” In: ICASSP. IEEE, 2021, pp. 4320–4324.

[295] Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and Patrick Shafto. “Debiasing
the Human-Recommender System Feedback Loop in Collaborative Filtering.”
In: WWW (Companion Volume). ACM, 2019, pp. 645–651.

244 Bibliography

[296] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong
Geng. “Are We Evaluating Rigorously? Benchmarking Recommendation for
Reproducible Evaluation and Fair Comparison.” In: RecSys. ACM, 2020, pp. 23–
32.

[297] Anirudh Sundar and Larry Heck. “Multimodal Conversational AI: A Survey of
Datasets and Approaches.” In: ConvAI@ACL. Association for Computational
Linguistics, 2022, pp. 131–147.

[298] Christian Szegedy, Vincent Vanhoucke, Sergey Io�e, Jonathon Shlens, and
Zbigniew Wojna. “Rethinking the Inception Architecture for Computer Vision.”
In: CVPR. IEEE Computer Society, 2016, pp. 2818–2826.

[299] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing properties of neural
networks.” In: ICLR. 2014.

[300] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. “A Survey on Deep Transfer Learning.” In: ICANN (3). Vol. 11141.
Lecture Notes in Computer Science. Springer, 2018, pp. 270–279.

[301] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
“LINE: Large-scale Information Network Embedding.” In: WWW. ACM, 2015,
pp. 1067–1077.

[302] Jinhui Tang, Xiaoyu Du, Xiangnan He, Fajie Yuan, Qi Tian, and Tat-Seng Chua.
“Adversarial Training Towards Robust Multimedia Recommender System.” In:
IEEE Trans. Knowl. Data Eng. 32.5 (2020), pp. 855–867.

[303] Wei Tang, Fazhi He, Yu Liu, and Yansong Duan. “MATR: Multimodal Medical
Image Fusion via Multiscale Adaptive Transformer.” In: IEEE Trans. Image
Process. 31 (2022), pp. 5134–5149.

[304] Pongsate Tangseng and Takayuki Okatani. “Toward Explainable Fashion Rec-
ommendation.” In: WACV. IEEE, 2020, pp. 2142–2151.

[305] Zhulin Tao, Yinwei Wei, Xiang Wang, Xiangnan He, Xianglin Huang, and
Tat-Seng Chua. “MGAT: Multimodal Graph Attention Network for Recommen-
dation.” In: Inf. Process. Manag. 57.5 (2020), p. 102277.

[306] Nahed Tawfik, Heba A. Elnemr, Mahmoud Fakhr, Moawad I. Dessouky, and
Fathi E. Abd El-Samie. “Survey study of multimodality medical image fusion
methods.” In: Multim. Tools Appl. 80.4 (2021), pp. 6369–6396.

[307] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao.
“Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.”
In: SIGIR. ACM, 2022, pp. 122–132.

[308] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. “Complex Embeddings for Simple Link Prediction.” In: ICML. Vol. 48.
JMLR Workshop and Conference Proceedings. JMLR.org, 2016, pp. 2071–2080.

[309] Quoc-Tuan Truong, Aghiles Salah, and Hady W. Lauw. “Multi-Modal Rec-
ommender Systems: Hands-On Exploration.” In: RecSys. ACM, 2021, pp. 834–
837.

Bibliography 245

[310] Saúl Vargas. “Novelty and diversity enhancement and evaluation in recommender
systems and information retrieval.” In: SIGIR. ACM, 2014, p. 1281.

[311] Saul Vargas and Pablo Castells. “Rank and relevance in novelty and diversity
metrics for recommender systems.” In: RecSys. ACM, 2011, pp. 109–116.

[312] Kunal Vaswani, Yudhik Agrawal, and Vinoo Alluri. “Multimodal Fusion Based
Attentive Networks for Sequential Music Recommendation.” In: BigMM. IEEE,
2021, pp. 25–32.

[313] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. “Graph Attention Networks.” In: ICLR (Poster).
OpenReview.net, 2018.

[314] Nico Vervliet, Otto Debals, and Lieven De Lathauwer. “Tensorlab 3.0 - Numerical
optimization strategies for large-scale constrained and coupled matrix/tensor
factorization.” In: ACSSC. IEEE, 2016, pp. 1733–1738.

[315] Michael Matthias Voit and Heiko Paulheim. “Bias in Knowledge Graphs - An
Empirical Study with Movie Recommendation and Di�erent Language Editions
of DBpedia.” In: LDK. Vol. 93. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 14:1–14:13.

[316] Sanne Vrijenhoek, Mesut Kaya, Nadia Metoui, Judith Möller, Daan Odijk, and
Natali Helberger. “Recommenders with a Mission: Assessing Diversity in News
Recommendations.” In: CHIIR. ACM, 2021, pp. 173–183.

[317] Cheng Wang, Mathias Niepert, and Hui Li. “LRMM: Learning to Recommend
with Missing Modalities.” In: EMNLP. Association for Computational Linguis-
tics, 2018.

[318] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. “Collaborative Deep Learning
for Recommender Systems.” In: KDD. ACM, 2015, pp. 1235–1244.

[319] Nan Wang, Lu Lin, Jundong Li, and Hongning Wang. “Unbiased Graph Em-
bedding with Biased Graph Observations.” In: WWW. ACM, 2022, pp. 1423–
1433.

[320] Qifan Wang, Yinwei Wei, Jianhua Yin, Jianlong Wu, Xuemeng Song, and Liqiang
Nie. “DualGNN: Dual Graph Neural Network for Multimedia Recommendation.”
In: IEEE Trans. Multim. 25 (2023), pp. 1074–1084.

[321] Wenjie Wang, Ling-Yu Duan, Hao Jiang, Peiguang Jing, Xuemeng Song, and
Liqiang Nie. “Market2Dish: Health-aware Food Recommendation.” In: ACM
Trans. Multim. Comput. Commun. Appl. 17.1 (2021), 33:1–33:19.

[322] Wenjie Wang, Fuli Feng, Xiangnan He, Xiang Wang, and Tat-Seng Chua.
“Deconfounded Recommendation for Alleviating Bias Amplification.” In: KDD.
ACM, 2021, pp. 1717–1725.

[323] Xi Wang, Iadh Ounis, and Craig Macdonald. “Leveraging Review Properties for
E�ective Recommendation.” In: WWW. ACM / IW3C2, 2021, pp. 2209–2219.

[324] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. “KGAT:
Knowledge Graph Attention Network for Recommendation.” In: KDD. ACM,
2019, pp. 950–958.

246 Bibliography

[325] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. “Neural
Graph Collaborative Filtering.” In: SIGIR. ACM, 2019, pp. 165–174.

[326] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. “Neural
Graph Collaborative Filtering.” In: CoRR abs/1905.08108 (2019).

[327] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. “Learning Intents behind Interactions with
Knowledge Graph for Recommendation.” In: WWW. ACM / IW3C2, 2021,
pp. 878–887.

[328] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng
Chua. “Disentangled Graph Collaborative Filtering.” In: SIGIR. ACM, 2020,
pp. 1001–1010.

[329] Xiangmeng Wang, Qian Li, Dianer Yu, Peng Cui, Zhichao Wang, and Guan-
dong Xu. “Causal Disentanglement for Semantics-Aware Intent Learning in
Recommendation.” In: CoRR abs/2202.02576 (2022).

[330] Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, and Ming
Zhang. “DisenHAN: Disentangled Heterogeneous Graph Attention Network for
Recommendation.” In: CIKM. ACM, 2020, pp. 1605–1614.

[331] Zhenyi Wang, Huan Zhao, and Chuan Shi. “Profiling the Design Space for
Graph Neural Networks based Collaborative Filtering.” In: WSDM. ACM, 2022,
pp. 1109–1119.

[332] Zhidan Wang, Wenwen Ye, Xu Chen, Wenqiang Zhang, Zhenlei Wang, Lixin
Zou, and Weidong Liu. “Generative Session-based Recommendation.” In: WWW.
ACM, 2022, pp. 2227–2235.

[333] Chunyu Wei, Jian Liang, Bing Bai, and Di Liu. “Dynamic Hypergraph Learning
for Collaborative Filtering.” In: CIKM. ACM, 2022, pp. 2108–2117.

[334] Lanning Wei, Huan Zhao, and Zhiqiang He. “Designing the Topology of Graph
Neural Networks: A Novel Feature Fusion Perspective.” In: WWW. ACM, 2022,
pp. 1381–1391.

[335] Wei Wei, Chao Huang, Lianghao Xia, Yong Xu, Jiashu Zhao, and Dawei Yin.
“Contrastive Meta Learning with Behavior Multiplicity for Recommendation.”
In: WSDM. ACM, 2022, pp. 1120–1128.

[336] Wei Wei, Chao Huang, Lianghao Xia, and Chuxu Zhang. “Multi-Modal Self-
Supervised Learning for Recommendation.” In: WWW. ACM, 2023, pp. 790–
800.

[337] Yinwei Wei, Xiang Wang, Xiangnan He, Liqiang Nie, Yong Rui, and Tat-Seng
Chua. “Hierarchical User Intent Graph Network for Multimedia Recommenda-
tion.” In: IEEE Trans. Multim. 24 (2022), pp. 2701–2712.

[338] Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, and Tat-Seng Chua.
“Graph-Refined Convolutional Network for Multimedia Recommendation with
Implicit Feedback.” In: ACM Multimedia. ACM, 2020, pp. 3541–3549.

[339] Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and
Tat-Seng Chua. “MMGCN: Multi-modal Graph Convolution Network for Per-
sonalized Recommendation of Micro-video.” In: ACM Multimedia. ACM, 2019,
pp. 1437–1445.

Bibliography 247

[340] Chuhan Wu, Fangzhao Wu, Tao Qi, Suyu Ge, Yongfeng Huang, and Xing Xie.
“Reviews Meet Graphs: Enhancing User and Item Representations for Recom-
mendation with Hierarchical Attentive Graph Neural Network.” In: EMNLP/I-
JCNLP (1). Association for Computational Linguistics, 2019, pp. 4883–4892.

[341] Chuhan Wu, Fangzhao Wu, Tao Qi, Chao Zhang, Yongfeng Huang, and Tong
Xu. “MM-Rec: Visiolinguistic Model Empowered Multimodal News Recommen-
dation.” In: SIGIR. ACM, 2022, pp. 2560–2564.

[342] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. “Simplifying Graph Convolutional Networks.” In: ICML.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 6861–
6871.

[343] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. “Self-supervised Graph Learning for Recommendation.” In: SIGIR.
ACM, 2021, pp. 726–735.

[344] Le Wu, Lei Chen, Richang Hong, Yanjie Fu, Xing Xie, and Meng Wang. “A
Hierarchical Attention Model for Social Contextual Image Recommendation.”
In: IEEE Trans. Knowl. Data Eng. 32.10 (2020), pp. 1854–1867.

[345] Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, and Meng
Wang. “Learning Fair Representations for Recommendation: A Graph-based
Perspective.” In: WWW. ACM / IW3C2, 2021, pp. 2198–2208.

[346] Qianqian Wu, Pengpeng Zhao, and Zhiming Cui. “Visual and Textual Jointly
Enhanced Interpretable Fashion Recommendation.” In: IEEE Access (2020).

[347] Jiafeng Xia, Dongsheng Li, Hansu Gu, Jiahao Liu, Tun Lu, and Ning Gu. “FIRE:
Fast Incremental Recommendation with Graph Signal Processing.” In: WWW.
ACM, 2022, pp. 2360–2369.

[348] Lianghao Xia, Chao Huang, Jiao Shi, and Yong Xu. “Graph-less Collaborative
Filtering.” In: CoRR abs/2303.08537 (2023).

[349] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy X.
Huang. “Hypergraph Contrastive Collaborative Filtering.” In: SIGIR. ACM,
2022, pp. 70–79.

[350] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M.
López. “Multimodal End-to-End Autonomous Driving.” In: IEEE Trans. Intell.
Transp. Syst. 23.1 (2022), pp. 537–547.

[351] Yongquan Xie, Zhengru Li, Tian Qin, Finn Tseng, Johannes Kristinsson, Shiqi
Qiu, and Yi Lu Murphey. “Personalized Session-Based Recommendation Using
Graph Attention Networks.” In: IJCNN. IEEE, 2021, pp. 1–8.

[352] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How Powerful
are Graph Neural Networks?” In: ICLR. OpenReview.net, 2019.

[353] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka. “Representation Learning on Graphs with Jumping Knowl-
edge Networks.” In: ICML. Vol. 80. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 5449–5458.

248 Bibliography

[354] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. “Embed-
ding Entities and Relations for Learning and Inference in Knowledge Bases.” In:
ICLR (Poster). 2015.

[355] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai.
“HOP-rec: high-order proximity for implicit recommendation.” In: RecSys. ACM,
2018, pp. 140–144.

[356] Liang Yang, Wenmiao Zhou, Weihang Peng, Bingxin Niu, Junhua Gu, Chuan
Wang, Xiaochun Cao, and Dongxiao He. “Graph Neural Networks Beyond
Compromise Between Attribute and Topology.” In: WWW. ACM, 2022, pp. 1127–
1135.

[357] Longqi Yang, Cheng-Kang Hsieh, Hongjian Yang, John P. Pollak, Nicola Dell,
Serge J. Belongie, Curtis Cole, and Deborah Estrin. “Yum-Me: A Personalized
Nutrient-Based Meal Recommender System.” In: ACM Trans. Inf. Syst. 36.1
(2017), 7:1–7:31.

[358] Menglin Yang, Min Zhou, Jiahong Liu, Defu Lian, and Irwin King. “HRCF:
Enhancing Collaborative Filtering via Hyperbolic Geometric Regularization.”
In: WWW. ACM, 2022, pp. 2462–2471.

[359] Qi Yang, Gaosheng Wu, Yuhua Li, Ruixuan Li, Xiwu Gu, Huicai Deng, and
Junzhuang Wu. “AMNN: Attention-Based Multimodal Neural Network Model
for Hashtag Recommendation.” In: IEEE Trans. Comput. Soc. Syst. 7.3 (2020),
pp. 768–779.

[360] Wenzhuo Yang, Jia Li, Chenxi Li, Latrice Barnett, Markus Anderle, Simo
Arajärvi, Harshavardhan Utharavalli, Caiming Xiong, and Steven C. H. Hoi.
“On the Diversity and Explainability of Recommender Systems: A Practical
Framework for Enterprise App Recommendation.” In: CIKM. ACM, 2021,
pp. 4302–4311.

[361] Xun Yang, Xiaoyu Du, and Meng Wang. “Learning to Match on Graph for
Fashion Compatibility Modeling.” In: AAAI. AAAI Press, 2020, pp. 287–294.

[362] Xun Yang, Xiangnan He, Xiang Wang, Yunshan Ma, Fuli Feng, Meng Wang,
and Tat-Seng Chua. “Interpretable Fashion Matching with Rich Attributes.” In:
SIGIR. ACM, 2019, pp. 775–784.

[363] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. “Knowledge Graph
Contrastive Learning for Recommendation.” In: SIGIR. ACM, 2022, pp. 1434–
1443.

[364] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix X. Yu, Aditya Krishna
Menon, Lichan Hong, Ed H. Chi, Steve Tjoa, Jieqi Kang, and Evan Ettinger.
“Self-supervised Learning for Deep Models in Recommendations.” In: CoRR
abs/2007.12865 (2020).

[365] Jing Yi and Zhenzhong Chen. “Multi-Modal Variational Graph Auto-Encoder
for Recommendation Systems.” In: IEEE Trans. Multim. 24 (2022), pp. 1067–
1079.

[366] Zixuan Yi, Xi Wang, Iadh Ounis, and Craig MacDonald. “Multi-modal Graph
Contrastive Learning for Micro-video Recommendation.” In: SIGIR. ACM, 2022,
pp. 1807–1811.

Bibliography 249

[367] Ruiping Yin, Kan Li, Jie Lu, and Guangquan Zhang. “Enhancing Fashion
Recommendation with Visual Compatibility Relationship.” In: WWW. ACM,
2019.

[368] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and En-
hong Chen. “A Survey on Multimodal Large Language Models.” In: CoRR
abs/2306.13549 (2023).

[369] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. “Graph Convolutional Neural Networks for Web-Scale
Recommender Systems.” In: KDD. ACM, 2018, pp. 974–983.

[370] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet
Hung, and Xiangliang Zhang. “Self-Supervised Multi-Channel Hypergraph
Convolutional Network for Social Recommendation.” In: WWW. ACM / IW3C2,
2021, pp. 413–424.

[371] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. “Are Graph Augmentations Necessary?: Simple Graph Contrastive
Learning for Recommendation.” In: SIGIR. ACM, 2022, pp. 1294–1303.

[372] Penghang Yu, Zhiyi Tan, Guanming Lu, and Bing-Kun Bao. “Multi-View
Graph Convolutional Network for Multimedia Recommendation.” In: CoRR
abs/2308.03588 (2023).

[373] Tong Yu, Yilin Shen, Ruiyi Zhang, Xiangyu Zeng, and Hongxia Jin. “Vision-
Language Recommendation via Attribute Augmented Multimodal Reinforce-
ment Learning.” In: ACM Multimedia. ACM, 2019, pp. 39–47.

[374] Wenhui Yu, Xiangnan He, Jian Pei, Xu Chen, Li Xiong, Jinfei Liu, and Zheng
Qin. “Visually-aware Recommendation with Aesthetic Features.” In: CoRR
abs/1905.02009 (2019).

[375] Wenhui Yu and Zheng Qin. “Graph Convolutional Network for Recommendation
with Low-pass Collaborative Filters.” In: ICML. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 10936–10945.

[376] Wenhui Yu and Zheng Qin. “Sampler Design for Implicit Feedback Data by
Noisy-label Robust Learning.” In: SIGIR. ACM, 2020, pp. 861–870.

[377] Xuzheng Yu, Tian Gan, Yinwei Wei, Zhiyong Cheng, and Liqiang Nie. “Per-
sonalized Item Recommendation for Second-hand Trading Platform.” In: ACM
Multimedia. ACM, 2020, pp. 3478–3486.

[378] Jiandian Zeng, Tianyi Liu, and Jiantao Zhou. “Tag-assisted Multimodal Sen-
timent Analysis under Uncertain Missing Modalities.” In: SIGIR. ACM, 2022,
pp. 1545–1554.

[379] ChengXiang Zhai, William W. Cohen, and John D. La�erty. “Beyond inde-
pendent relevance: methods and evaluation metrics for subtopic retrieval.” In:
SIGIR. ACM, 2003, pp. 10–17.

[380] Huijing Zhan, Jie Lin, Kenan Emir Ak, Boxin Shi, Ling-Yu Duan, and Alex C.
Kot. “A3-FKG: Attentive Attribute-Aware Fashion Knowledge Graph for Outfit
Preference Prediction.” In: IEEE Trans. Multim. 24 (2022), pp. 819–831.

250 Bibliography

[381] Chaohe Zhang, Xu Chu, Liantao Ma, Yinghao Zhu, Yasha Wang, Jiangtao Wang,
and Junfeng Zhao. “M3Care: Learning with Missing Modalities in Multimodal
Healthcare Data.” In: KDD. ACM, 2022, pp. 2418–2428.

[382] Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, and Liang
Wang. “Mining Latent Structures for Multimedia Recommendation.” In: ACM
Multimedia. ACM, 2021, pp. 3872–3880.

[383] Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Mengqi Zhang, Shu Wu, and Liang
Wang. “Latent Structures Mining with Contrastive Modality Fusion for Multi-
media Recommendation.” In: CoRR abs/2111.00678 (2021).

[384] Mengfei Zhang, Cheng Guo, Jiaqi Jin, Mao Pan, and Jinyun Fang. “Sequential
Recommendation with Context-Aware Collaborative Graph Attention Net-
works.” In: IJCNN. IEEE, 2021, pp. 1–8.

[385] Qi Zhang, Jiawen Wang, Haoran Huang, Xuanjing Huang, and Yeyun Gong.
“Hashtag Recommendation for Multimodal Microblog Using Co-Attention Net-
work.” In: IJCAI. ijcai.org, 2017, pp. 3420–3426.

[386] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
“The Unreasonable E�ectiveness of Deep Features as a Perceptual Metric.” In:
CVPR 2018. 2018.

[387] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. “Causal Intervention for Leveraging Popularity
Bias in Recommendation.” In: SIGIR. ACM, 2021, pp. 11–20.

[388] Yiding Zhang, Chaozhuo Li, Xing Xie, Xiao Wang, Chuan Shi, Yuming Liu,
Hao Sun, Liangjie Zhang, Weiwei Deng, and Qi Zhang. “Geometric Disentangled
Collaborative Filtering.” In: SIGIR. ACM, 2022, pp. 80–90.

[389] Yin Zhang, Ziwei Zhu, Yun He, and James Caverlee. “Content-Collaborative
Disentanglement Representation Learning for Enhanced Recommendation.” In:
RecSys. ACM, 2020, pp. 43–52.

[390] Yiqiao Zhang and Hao Tan. “E�ects of Multimodal Warning Types on Driver’s
Task Performance, Physiological Data and User Experience.” In: HCI (12).
Vol. 12773. Lecture Notes in Computer Science. Springer, 2021, pp. 304–315.

[391] Yongfeng Zhang and Xu Chen. “Explainable Recommendation: A Survey and
New Perspectives.” In: Found. Trends Inf. Retr. 14.1 (2020), pp. 1–101.

[392] Yuting Zhang, Yiqing Wu, Ran Le, Yongchun Zhu, Fuzhen Zhuang, Ruidong
Han, Xiang Li, Wei Lin, Zhulin An, and Yongjun Xu. “Modeling Dual Period-
Varying Preferences for Takeaway Recommendation.” In: CoRR abs/2306.04370
(2023).

[393] Ziqi Zhang, Zeyu Li, Kun Wei, Siduo Pan, and Cheng Deng. “A survey on
multimodal-guided visual content synthesis.” In: Neurocomputing 497 (2022),
pp. 110–128.

[394] Lingxiao Zhao and Leman Akoglu. “PairNorm: Tackling Oversmoothing in
GNNs.” In: ICLR. OpenReview.net, 2020.

Bibliography 251

[395] Minghao Zhao, Le Wu, Yile Liang, Lei Chen, Jian Zhang, Qilin Deng, Kai Wang,
Xudong Shen, Tangjie Lv, and Runze Wu. “Investigating Accuracy-Novelty
Performance for Graph-based Collaborative Filtering.” In: SIGIR. ACM, 2022,
pp. 50–59.

[396] Wayne Xin Zhao et al. “RecBole: Towards a Unified, Comprehensive and E�cient
Framework for Recommendation Algorithms.” In: CIKM. ACM, 2021, pp. 4653–
4664.

[397] Wayne Xin Zhao et al. “RecBole 2.0: Towards a More Up-to-Date Recommen-
dation Library.” In: CIKM. ACM, 2022, pp. 4722–4726.

[398] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. “Spectral
collaborative filtering.” In: RecSys. ACM, 2018, pp. 311–319.

[399] Lei Zheng, Vahid Noroozi, and Philip S. Yu. “Joint Deep Modeling of Users and
Items Using Reviews for Recommendation.” In: WSDM. ACM, 2017, pp. 425–
434.

[400] Tianyue Zheng, Ang Li, Zhe Chen, Hongbo Wang, and Jun Luo. “AutoFed:
Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous
Driving.” In: MobiCom. ACM, 2023, 15:1–15:15.

[401] Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and Yong Li. “DGCN: Diversified
Recommendation with Graph Convolutional Networks.” In: WWW. ACM /
IW3C2, 2021, pp. 401–412.

[402] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin.
“Disentangling User Interest and Conformity for Recommendation with Causal
Embedding.” In: WWW. ACM / IW3C2, 2021, pp. 2980–2991.

[403] Bolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. “Learning Deep Features for Scene Recognition using Places Database.”
In: NIPS. 2014, pp. 487–495.

[404] Hongyu Zhou, Xin Zhou, Zhiwei Zeng, Lingzi Zhang, and Zhiqi Shen. “A Compre-
hensive Survey on Multimodal Recommender Systems: Taxonomy, Evaluation,
and Future Directions.” In: CoRR abs/2302.04473 (2023).

[405] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu.
“Towards Deeper Graph Neural Networks with Di�erentiable Group Normaliza-
tion.” In: NeurIPS. 2020.

[406] Xin Zhou and Zhiqi Shen. “A Tale of Two Graphs: Freezing and Denoising
Graph Structures for Multimodal Recommendation.” In: CoRR abs/2211.06924
(2022).

[407] Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang,
Yuan You, and Feijun Jiang. “Bootstrap Latent Representations for Multi-modal
Recommendation.” In: WWW. ACM, 2023, pp. 845–854.

[408] Yuchen Zhou, Yanan Cao, Yanmin Shang, Chuan Zhou, Shirui Pan, Zheng Lin,
and Qian Li. “Explainable Hyperbolic Temporal Point Process for User-Item
Interaction Sequence Generation.” In: ACM Trans. Inf. Syst. 41.4 (2023), 83:1–
83:26.

252 Bibliography

[409] Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi
Xiao, and Rui Zhang. “BARS: Towards Open Benchmarking for Recommender
Systems.” In: SIGIR. ACM, 2022, pp. 2912–2923.

[410] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu,
Carl Yang, and Shu Wu. “A Survey on Graph Structure Learning: Progress and
Opportunities.” In: CoRR abs/2103.03036 (2022).

[411] Ziwei Zhu, Jianling Wang, and James Caverlee. “Measuring and Mitigating Item
Under-Recommendation Bias in Personalized Ranking Systems.” In: SIGIR.
ACM, 2020, pp. 449–458.

[412] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
“Improving recommendation lists through topic diversification.” In: WWW.
ACM, 2005, pp. 22–32.

[413] Qin Zou, Zheng Zhang, Qian Wang, Qingquan Li, Long Chen, and Song Wang.
“Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational
Study.” In: CoRR abs/1608.07444 (2016).

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis Statement
	1.2 Research Contributions
	1.2.1 Chapter 4: Formalizing multimedia recommendation
	1.2.2 Chapter 5: Leveraging the visual modality in multimedia recommendation
	1.2.3 Chapter 6: Evaluation of graph-based recommender systems
	1.2.4 Chapter 7: Graph-based recommendation exploiting multimodal information

	1.3 Bibliographical Notes

	2 Background on recommender systems
	2.1 Preliminaries
	2.1.1 Rating prediction
	2.1.2 Top-k recommendation

	2.2 Taxonomy of recommender systems
	2.2.1 Collaborative filtering approaches
	2.2.2 Content-based approaches
	2.2.3 Hybrid approaches

	2.3 The recommendation pipeline
	2.3.1 Recommendation input
	2.3.2 Optimization and negative sampling
	2.3.3 Evaluation

	3 Background on graph neural networks
	3.1 Basic notions about graphs
	3.1.1 Definition of graph
	3.1.2 Adjacency matrix
	3.1.3 Node features

	3.2 The message passing algorithm
	3.2.1 Message aggregation
	3.2.2 Node embedding update
	3.2.3 Layer combination
	3.2.4 Matrix format and self-loops

	3.3 Popular graph neural network architectures
	3.3.1 Graph convolutional network
	3.3.2 Graph attention network
	3.3.3 Graph isomorphism network

	3.4 Tasks in graph representation learning
	3.4.1 Node classification
	3.4.2 Link prediction
	3.4.3 Graph structure learning

	4 Formalizing multimedia recommendation
	4.1 Motivations
	4.2 Literature review
	4.2.1 Which modalities?
	4.2.2 How to process modalities?
	4.2.3 When to fuse modalities?
	4.2.4 Similar works

	4.3 A formal multimodal schema for multimedia recommendation
	4.3.1 Classical recommendation task
	4.3.2 Multimodal input data
	4.3.3 Multimodal feature processing
	4.3.4 Multimodal feature fusion
	4.3.5 Multimodal recommendation task

	4.4 Conceptual validation of the schema
	4.4.1 Case 1: micro-video recommendation
	4.4.2 Case 2: food recommendation
	4.4.3 Case 3: outfit fashion compatibility
	4.4.4 Case 4: artist and song recommendation

	4.5 Technical challenges
	4.5.1 Missing modalities in the input data
	4.5.2 Pre-trained feature extractors
	4.5.3 Modalities representation
	4.5.4 Multimodal-aware fusion and optimization

	4.6 Summary

	5 Leveraging the visual modality in multimedia recommendation
	5.1 Ducho: an extractor for multimodal features
	5.1.1 Architecture
	5.1.2 Extraction pipeline
	5.1.3 Ducho as Docker application
	5.1.4 Demonstrations

	5.2 Reproducing and evaluating visually-aware recommender systems
	5.2.1 V-Elliot: the visual recommendation framework
	5.2.2 Execution of an experimental flow
	5.2.3 The impact of pre-trained feature extractors

	5.3 Content-style item representation for visually-aware recommendation
	5.3.1 Method
	5.3.2 Experiments
	5.3.3 Results

	5.4 Adversarial attacks and defenses in visually-aware recommendation
	5.4.1 The threat model
	5.4.2 Experiments

	5.5 Summary

	6 Evaluation of graph-based recommender systems
	6.1 Graph collaborative filtering within Elliot
	6.1.1 Proposed application

	6.2 Reproducing and benchmarking graph-based recommender systems
	6.2.1 Background and reproducibility analysis
	6.2.2 Replication of prior results
	6.2.3 Benchmarking graph CF approaches using alternative baselines
	6.2.4 Extending the experimental comparison to new datasets

	6.3 A topology-aware analysis of graph collaborative filtering
	6.3.1 Topological characteristics in recommendation data
	6.3.2 Topological characteristics in graph collaborative filtering
	6.3.3 Proposed analysis
	6.3.4 Results and discussion

	6.4 How neighborhood exploration influences novelty and diversity
	6.4.1 Novelty and diversity in recommendation
	6.4.2 Reformulating explicit message-passing
	6.4.3 Experiments and discussion

	6.5 Auditing consumer- and provider-fairness
	6.5.1 A formal taxonomy of graph CF
	6.5.2 Weighting the importance of graph edges
	6.5.3 Experimental settings and protocols
	6.5.4 Taxonomy-aware evaluation
	6.5.5 Trade-off analysis

	6.6 Summary

	7 Graph-based recommendation exploiting multimodal information
	7.1 Novelty and diversity in multimodal-aware recommendation
	7.1.1 Novelty and diversity in recommendation
	7.1.2 Proposed analysis
	7.1.3 Results and discussion

	7.2 Multimodality and items' popularity bias
	7.2.1 Popularity bias in recommendation
	7.2.2 Factorization models leveraging multimodal information
	7.2.3 Proposed analysis
	7.2.4 Results and discussion

	7.3 A comprehensive benchmarking within Elliot
	7.3.1 Datasets
	7.3.2 Multimedia recommender systems
	7.3.3 Evaluation metrics
	7.3.4 Reproducibility
	7.3.5 Benchmarking results

	7.4 Leveraging textual review content on graph edges for recommendation
	7.4.1 Review-based recommendation
	7.4.2 Methodology
	7.4.3 Experiments and discussion

	7.5 Summary

	8 Conclusion
	9 Future directions
	9.1 Multimodal-aware recommendation
	9.1.1 Domain-specific multimodal features
	9.1.2 Multimodality on user-item interactions
	9.1.3 Fine-grained multimodal features
	9.1.4 An extensive evaluation of multimedia recommender systems

	9.2 Graph-based recommendation
	9.2.1 Topological properties in graph collaborative filtering
	9.2.2 Bridging recommendation and link prediction
	9.2.3 How powerful is adjacency normalization for recommendation?

	9.3 Graph-based recommendation leveraging multimodal information
	9.3.1 Exploiting reviews on user-user and item-item graphs
	9.3.2 A feature propagation approach for missing modalities

