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Abstract: An experimental investigation on the accuracy of dynamically determined tensile force
in tie-rods by applying the interferometric radar technique was performed. Tie-rods were used in
historical masonry constructions for absorbing thrusts of arches and vaults, and the radar interferom-
etry may represent a fast and easy non-destructive approach for the tensile force identification in the
occasion of structural assessments. Laboratory dynamic tests on a cable under a known tensile force
show that, provided that a suitable dynamic identification model is used, tensile force evaluations
made stating from interferometric radar measurements were characterized by a very good accuracy
(mean error in the tensile force estimation less than 2%), comparable with evaluations made starting
from accelerometric measurements. In particular, the dynamic identification model considered is
a modified version of a model proposed in the literature. The influence on the accuracy in the
determination of the tensile force of some features of the experimental setup, like, e.g., the employ of
corner reflectors, is discussed.

Keywords: tie-rods; tensile force identification; dynamic identification; radar interferometry; archi-
tectural heritage; masonry constructions; ancient tie-rods; axial force

1. Introduction

The preservation of the architectural heritage is assuming an increasing relevance, not
only for the safeguard of the cultural and historical identity of a country but also for giving
to future generations the possibility of benefit from it, according to ONU Agenda 2030
Sustainable Development Goal 11.

To this aim, an important step is to develop and employ effective and accurate non-
destructive testing (NDT) techniques for determining the relevant structural features of
the examined heritage construction and for characterizing damage and defects. Indeed,
the suitable use of NDT allows for gathering data needed for constructing representative
structural models without inducing damages. This knowledge phase is crucial for avoiding
misjudgments in the assessment and in the design of strengthening works, resulting in the
prevision of insufficient or, vice versa, excessive structural interventions.

For the special but very common case of historical masonry constructions, different
NDT methods are available [1] for different purposes. However, NDT methods usually
provide qualitative results and, in some cases, can be time-expensive or technically complex
or may give unreliable results. For this reason, the research community is involved
in increasing theoretical and experimental efforts on NDT to obtain more reliable and
quantitative results [2] and to make applying NDT methods faster and simpler.

One of the possible applications of NDT for historical masonry constructions is the
assessment of the effectiveness of past or recent strengthening interventions [3,4]. In partic-
ular, a very diffused traditional reinforcing technique is represented by the introduction of
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tie-rods [5]. The latter improve the structural behavior mainly by absorbing the horizontal
thrusts exerted by arches and vaults but also improve the connection between different
masonry elements, yielding a more efficient structural behavior on the occasion of seismic
events [6,7].

Anyway, the effectiveness of tie-rods is basically related to the value of the tensile force
exerted on the connected masonry members, which can vary over time due to phenomena
like steel relaxation, material corrosion damage, differential foundation settlements, sup-
ports spreading, and other causes [8,9]. In these cases, the structural safety level may be
severely reduced. Consequently, for assessing a masonry construction, it is very important
on one hand to develop structural analysis approaches for accurately determining the
thrust exerted by arches and vaults [10,11], and on the other hand to study experimental in
situ NDT techniques for evaluating the actual value of the tensile force in tie-roads. Each
piece of information is required for the evaluation of the structural safety level and for
managing eventual interventions aimed at restoring a suitable value of the tensile force.

Essentially, there are three approaches for experimentally estimating tensile force in
tie-rods: static methods [12,13], dynamic methods [14–18], and a combination of both [19].
In the present study, only dynamic methods are addressed since they are generally more
convenient in terms of time and costs.

The fundamental idea behind dynamic methods is that in a dynamic test, the tensile
force in a tie-rod can be related to its modal parameters, particularly its natural frequencies
and mode shapes. As a consequence, a dynamic approach consists, first, in exciting and
measuring the vibrations of the tie-rod and then in estimating the modal parameters by
using a modal identification technique [20–22].

In the last decade, several research contributions on dynamic approaches for identi-
fying the tensile force in tie-rods have appeared in the literature. Some of them require
the determination of the modal shapes [23–26], eventually by using model updating tech-
niques based on the comparison between experimental and numerical results, the latter
determined by FEM simulations [23,26]. Other approaches use additional masses for per-
turbating the modal frequencies [27]; also, in this case, the identification could be supported
by the comparison with FEM results and optimization methods based on genetic algo-
rithms [28]. A relevant issue deepened in the literature is the influence of the constraints
at the ends of the tie-rod on the dynamic behavior, and in particular, on the frequency
of free vibrations. The more refined methods consider diffuse elastic constraints on the
terminal portions of the tie-rod, represented by the Winkler model [29,30]. The approach
in [31] combines diffuse elastic end constraints with the possibility of having concentrated
masses; moreover, the shear deformability of the tie-rod is taken into account by using a
Timoshenko beam model.

Even though dynamic methods are particularly suitable for the estimation of tensile
force in tie-rods of historic constructions [32], there are still some ways for improvements
of the experimental setup required for vibration measurement. Indeed, the vibrations
of tie-rods are usually measured through accelerometers. The latter are very accurate
instruments, but their installation is time-expensive, technically complex and requires
full access to the tie-rod. These drawbacks can limit the diffusion of dynamic methods in
practical applications.

To overcome these drawbacks, some alternative measuring techniques have been
studied; the first contributions in this direction concerned the similar, but somewhat
different, case of the stay cables. In particular, the goal of contactless measurements of
vibrations of cables has been pursued by using the radar interferometer [33,34], the laser
vibrometer [35], vision-based methods [36]. In [37], regarding the case of tie-rods of historic
construction, acoustic recording by general-purpose microphones has been employed.
Finally, in [38], both the laser vibrometer and the radar interferometer have been used for
determining the first natural frequency of tie-rods belonging to monumental buildings, but
no results in terms of tensile force were reported.
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In this context, the main purpose of the present study is to experimentally evaluate the
effectiveness of an innovative experimental technique, based on the principle of radar inter-
ferometry, for the application represented by the estimation of tensile force in tie-rods. The
radar interferometry allows for remote and quick measurement of structural displacements
and vibrations [39–42] overcoming the need to install a sensor on the structure. These fea-
tures make this technique very appealing; nevertheless, also radar interferometry presents
a major issue that should be considered. Indeed, from interferometric radar data are very
difficult to estimate mode shapes unless special arrangements of the experimental setup are
employed, but in this case, the advantages of the radar interferometry on accelerometric
measurements substantially vanish. On the other hand, the natural frequencies of the first
modes can be identified with good accuracy. Therefore, tensile force identification theories
requiring only the knowledge of natural frequencies as the input data can be applied when
interferometric radar measurements of vibrations of the tie-rod are made.

Thus, to exploit the advantages of the radar interferometry for the estimation of tensile
force in tie-rod, the present paper first considers the choice of an appropriate tensile force
identification theory for reprocessing radar data among the theories available in the litera-
ture (Section 2). In Section 3, the radar interferometry for dynamic structural measurements
is presented. Then, in Section 4, the experimental setup for dynamic laboratory experiments
on a tie-rod under known tensile forces is described. Furthermore, in Section 5.1, a modified
version of the theoretical reference model for tensile force identification is proposed, aimed
at better describing the structural conditions actually realized in the experiments. The
experimental identification of the natural frequencies of a tie-rod is reported in Section 5.2,
where a comparison between accelerometric and interferometric radar evaluations is made.
Finally, in Section 5.3, the computational approach for determining the values of the tensile
force starting from interferometric radar measurements is described. The tensile forces
estimated from dynamic identification are then compared with the actual values.

The obtained results indicate that an accurate estimation of tensile force in tie-rods
through radar interferometry is possible provided that in the experiments, a corner reflector
is installed on the tie-rod, and a suitable tensile force identification theory is employed. In
particular, since the installation of the corner reflector is easier than that of accelerometers,
the proposed approach might be convenient in practical applications.

2. Tensile Force Dynamic Identification in Tie-Rods: Theoretical Approaches

Several vibration-based tensile force identification approaches have been proposed
in the literature, mainly differing in the structural model of the tie-rod and in the modal
parameters required for estimating the tensile force.

In principle, the more advanced is the structural model, the more reliable is the tensile
force value estimated. However, this rule admits exceptions; moreover, not all methods are
suitable for reprocessing dynamic data acquired by interferometric radar measurements.
In particular, since it is generally challenging to identify modal shapes by interferometric
radar measurements acquired in closed spaces like that spanned by tie-rods in historical
buildings, tensile force dynamic identification approaches based on the determination of
modal shapes are not suitable for purposes of the present study.

For the above consideration, a literature review aimed at selecting an appropriate
method for reprocessing interferometric radar data was performed. Particular attention
was devoted to the simplicity of the experimental setup needed.

In general, the structural model considered in most approaches (Figure 1), as well
as in the present paper, is composed of a one-dimensional linear elastic beam element
representing the tie-rod, with elastic translational and rotational restraints at both ends; k1
and k2 are the stiffness of the rotational elastic constraints, and k3 and k4 are the stiffness of
the translational elastic constraints. The tie-rod is characterized by mass per unit length
ρ(x), cross-section A(x), moment of inertia of the cross-section about an axis orthogonal to
the plane of figure J(x), Young’s modulus E(x), shear modulus G(x), in general, all variable
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on the element according to the abscissa x. The length of the element is L, and the tensile
force is represented by N.
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The simplest approach is the natural frequency-based method, developed starting
from the taut string theory [33,35]: the tensile force N can be calculated from the n-th
experimentally measured natural frequency fn by:

N = 4ρL2
(

fn

n

)2
. (1)

This method requires the knowledge of only one natural frequency, and, therefore, it
appears suitable for reprocessing interferometric radar dynamic measurements. However,
it is worth noting that it is based on the assumption that the tie-rod can be assimilated to
a taut string, i.e., that the bending stiffness is negligible compared to the axial stiffness,
and that the influence of the eventual sag is negligible. Consequently, the stiffness of the
rotational springs at the ends is negligible on the tensile force determination: in short,
the tie-rod is considered a simply supported beam with no bending stiffness. This strong
simplification, of course, may yield substantial differences between the actual value of the
tensile force and the value determined by (1).

A more advanced approach using only modal frequencies was proposed by Lago-
marsino and Calderini in [14] expressly for the determination of the tensile force in the
tie-rods of historical constructions. There, the considered structural model employed for
the tie-rod is an Euler–Bernoulli beam subjected to a constant axial tensile force. Moreover,
the beam is assumed to be spring-hinged at both ends with rotational elastic-springs hav-
ing the same flexural stiffness k, i.e., k1 = k2 = k; both the translational constraints at the
extremities are assumed to be perfect (see Figure 1).

By the separation of variables method, the governing partial differential equation
describing the free transverse vibrations of the beam subject to the axial load N can be
separated into two ordinary differential equations. A linear algebraic system can be
obtained imposing the appropriate static and kinematic boundary conditions to the general
solution of one of these two ordinary differential equations. This system has a non-trivial
solution only if the determinant of the coefficient matrix of the system vanishes, that is, if
the following equation is fulfilled:

2kEJ(α2 + β2)[β sin(αL) cosh(βL)− α cos(αL)sinh(βL)] + sin(αL)sinh(βL)·
·[E2 J2(α2 + β2)

2 − k2(α2 − β2)]− 2αβk2[sin(αL) cosh(βL)− 1] = 0,
(2)

where the tensile force appears inside α and β, being:

α =

√√√√ N
2EJ

(√
1 +

4ω2ρEJ
N2 − 1

)
, β =

√√√√ N
2EJ

(√
1 +

4ω2ρEJ
N2 + 1

)
, (3)

with ω the separation variable, representing the circular frequency of the part of the
response function depending on the time.

The method consists of finding the unknown parameters EJ, k and N, which fulfill (2).
Nevertheless, a general closed-form solution does not exist, unlike simple extreme cases.
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Therefore, numerical methods should be employed. To this aim, in [14], the following three
parameters are introduced:

ϕ = 2π2 EJS
NL2 , γ =

kL
EJS

, δ =
EJ
EJS

, (4)

where EJs represents an empirical reference value for the bending stiffness EJ, (2) assumes
the following a-dimensional form:

g(ϕ, γ, δ, ωn
ω ) = sin α sinhβ

[
(α2 + β2)

2 − γ2

δ2 (α
2 − β2)

]
+2 γ

δ (α
2 + β2)(β sin α cosh β− α cos α sinhβ)− 2 γ2

δ2 αβ(cos α cosh β− 1),
(5)

(3) becomes:

α =

√√√√ 1
δϕ

(√
1 + δϕ2

(ωn

ω

)2
− 1

)
, β =

√√√√ 1
δϕ

(√
1 + δϕ2

(ωn

ω

)2
+ 1

)
, (6)

where n = 1, 2, . . . , and ω can be assumed as the exact solution for the first modal frequency
evaluated in the ideal case of a “pinned–pinned beam” with bending stiffness EJs:

ω = π2

√
EJS

ρL4 (7)

(see [14] for details).
In general, the knowledge of three natural frequencies ωn, n = 1, 2, . . . , is necessary

for determining ϕ, γ and δ, related to the unknown parameters EJ, k and N. Specifically,
a system of three nonlinear equations should be solved through numerical techniques.
However, this procedure may be affected by significant instabilities; therefore, in [3], it is
suggested to determine the three unknown parameters through the minimization of an
error function G defined as follows:

G(ϕ, γ, δ) = g2
1 + g2

2 + g2
3, (8)

where gi = g(ϕ, γ, δ, ωi
ω ), i = 1,2,3. Furthermore, in [14], a suitable procedure for minimizing

(8), performed through an international mathematics and statistics library (ISML) routine.
In short, the approach in [14] considers as input data for the tie-rod the length L,

easily measurable in situ, and the density, and require an empirical assumption on the
reference value EJS for the bending stiffness, to be estimated through direct measurements
of the tie-rod’s section and the quality of the steel. Then, it allows for identifying the
tensile force N by experimentally determining three natural frequencies. This can be due to
employing even only one accelerometer; the possibility of determining the tensile force
without any information about mode shapes makes this approach suitable for reprocessing
interferometric radar measurements.

Clearly, some of the simplifying assumptions of the model under examination may
introduce errors on the estimated value of N: indeed, the geometrical and inertial parame-
ters of the cross-section of the tie-rod, along with the density and the elastic moduli, are
considered as constant, and the elastic rotational constraints at the ends are assumed to
have the same stiffness. Finally, shear deformations are neglected. Nevertheless, such as-
sumptions could usually be considered reasonable in the majority of practical applications.
Moreover, the structural model is more representative than that employed in the natural
frequency-based method and thus, in principle, capable of more accurate results.
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3. Microwave Radar Interferometry for Structural Vibration Measurements

The radar interferometer is a coherent radar that allows detecting even small displace-
ments of a target located at a great distance by generating, transmitting and receiving
electromagnetic waves. The interferometric working principle allows measuring displace-
ments by exploiting phase information of the back-reflected signal. The capability of
remotely monitoring displacements of several points of a structure is the main advantage
of this relatively new technology over other existing and well-established measurement
techniques [43–46].

Furthermore, the time sampling of the acquired data makes the radar interferometer
also capable of vibrations measurements. In the dynamic structural field, the most advan-
tageous features of this technology are the possibility of remote, contactless measurements
(in principle, the access to the construction is not needed), the quick and easy installation
(about 15 min); the possibility of operating day and night and in all weather conditions.

Specifically, for the experimental tests described in the following Section, the em-
ployed interferometric radar system is a customized version of the IBIS-FS instrument,
manufactured by IDS GeoRadar (Pisa, Italy) and aimed at remote static and dynamic
monitoring of structures.

The system basically consists of:

1. The radar unit, including the transmitter, the receiver, and the antennas, capable of
generating, emitting, receiving, and processing modulated microwaves of a specified
frequency. In particular, the two antennas on the front side focus the radiated energy
in the form of a beam of a suitable shape during the transmission and collect the echo
signal during the receiving phase. The unit includes the interferometric sensor and
the communication ports.

2. The power module. Two 12-volt batteries provide an independent power supply.
3. The control and recording module. A portable field computer, USB connected to the

radar units, and equipped with the IBIS-FS CONTROLLER custom software, is used
to manage the tests and to monitor and record the acquired data.

4. A sturdy tripod is provided with a movable head allowing the radar beam to be
oriented in any direction.

The accurate detection of differential displacements of the targets included in the cone
of view of the antennas is performed by exploiting the following principles:

1. The stepped frequency–continuous wave (SF–CW) technique [34] allowing for a large
bandwidth even using long-duration microwaves (continuous waves) by linearly
increasing the frequency of successive pulses in discrete steps (stepped frequency).
This principle enables the sensor to detect the displacements of several targets at
different locations, given that they are in the scenario illuminated by the emitted
beams and are spaced more than the spatial resolution of the instrument (0.50 m
for IBIS-FS). An SF–CW radar achieves a large effective bandwidth through a burst
of N electromagnetic pulses (tones), whose frequencies are increased from tone-
to-tone by a constant frequency increment ∆f (see Figure 2, left). By taking the
inverse discrete Fourier transform (IDFT) of the received complex signal sampled at
N discrete frequencies, the response is reconstructed in the time domain of the radar,
obtained the diagram called range profile (Figure 2, right), reporting the received
echo intensity (amplitude) in the function of the distance of the target from the sensor.
Peaks in the range profile diagram represent the locations of targets, reflecting a good
quality signal.

2. The radar interferometry technique: the electromagnetic waves reflected back by
moving targets are characterized by a phase shift ∆ϕ compared to the emitted waves.
This phase information can be exploited to detect differential radial displacements
along the wave propagation direction. Indeed, radial displacements are proportional
to the wave propagation velocity and to the phase shift ∆ϕ, and inversely proportional
to the central frequency of the emitted waves [34].
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The main features of the employed customized IBIS-FS radar interferometer are
collected in Table 1.

Table 1. Radar interferometer: features.

Sampling frequency (Hz) >300
Radio-frequency band (GHz) 17.05–17.35 (Ku-band)

EIRP power (dBm) 26
Modulation Linear frequency modulated continuous wave (LFMCW)

Displacement accuracy (mm) 0.01 ÷ 0.1
Range resolution (m) 0.5
Operating range (m) Up to 1000

Operating temperature (◦C) −20 ◦C to +55 ◦C

About data in Table 1, notice that the maximum allowed value of the sampling
frequency of the standard IBIS-FS device is 200 Hz and that the displacement accuracy mea-
sured as line-of-sight displacement standard deviation depends on the distance between
instrument and target and on the signal-to-noise ratio (SNR) of the received waves.

The interferometric radar technique is still under investigation and development
with the aim of overcoming some relevant drawbacks. First, the maximum accuracy of
displacement measurements, of the order of hundredths of millimeters, can be considered
a good value, but as recalled above, this accuracy is achievable only in the presence of
targets with good reflectivity on the structure and decreases with the distance. Second, as
suggested by Figure 2, right, the observed scenario is detected from the radar interferometer
as divided into discrete ranges (the so-called range bins) along the line-of-sight direction.
As a consequence, the radar interferometer is not able to distinguish two or more reflective
elements located at the same range bin, i.e., at the same radial distance from the instrument,
since they correspond to the same peak in the range profile diagram. Third, the system can
measure only the component of displacements along the line-of-sight direction. The same
three considerations hold for dynamic measurements.

In conclusion, it is possible to say that a radar interferometer could provide high-
precision measurements of the radial component of displacements but without accurate
information about the location of the observed points. This, for example, prevents from
determining e mode shapes of vibrating structures, unless they occur special conditions
like, e.g., in the case of large structures with many well-spaced high reflectivity points:
clearly, this is not the case of tie-rods of historic masonry constructions.

Anyway, to improve the accuracy of measurements also in the presence of targets with
low reflectivity and/or for clearly distinguish measurement points on the structure, some
corner reflectors can be installed. A corner reflector is a pyramidal metallic element with
high reflectivity to electromagnetic waves. Even though this is an effective solution, the
need to access the construction nullifies one of the main advantages of the interferometric
radar technique. On the other hand, the installation of corner reflectors is easier and quicker
than installing accelerometers.
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The cited improvements of the experimental setup, along with the research activities
performed to take advantage of the above recalled appealing features of the interferometric
radar technique, are opening increasing application field for this experimental approach,
also involving application to architectural heritage constructions [45–47].

4. Experimental Setup

The capability of the interferometric radar technique for application to the estimation
of tensile force in tie-rods was tested in an experimental campaign carried out at Laboratory
“M. Salvati” of the Polytechnic University of Bari.

To this aim, a suitable experimental device for applying known tensile forces in rods
and cable was built (Figure 3) to reproduce the working conditions of a tie-rod like that
employed in masonry constructions. In particular, this device consists of a supporting
structure composed of 2 horizontal beams HEA 140 connected by two vertical high stiffness
steel plates; a hydraulic jack and two clamping devices for tensioning the tie-rod; a load cell
for directly measuring the real value of the tensile force applied. It is worth noticing that
the experimental setup was assembled in such a way as to guarantee symmetric constraint
conditions at the two ends of the tie-rod.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. The experimental device for applying known tensile forces to tie-rods. 

Table 2. Geometric inertial and mechanical parameters of the tie-rod. 

L (m) 2.59 
A (cm2) 2.27 
ρ (kg/m) 1.75 
J (cm4) 0.374 

E (MPa) 210,000 
G (MPa) 80,770 

Indeed, to obtain good quality data, the length of the portion of the tie-rod falling 
into a single range bin should be minimized. On the other hand, there is the need to make 
as much as possible parallel the radial direction defined by the axis of radar antennas and 
the direction of transverse displacements of the tie-rod. Therefore, the relative position 
between the radar and the tie-rod was accurately studied before performing the tests and 
set in such a way as to be a right balance between the above two requirements, as de-
scribed by Figure 4 (a). 

Moreover, three uniaxial accelerometers were installed at 1/4, 1/2 and 3/4 of the tie-
rod length (see Figure 3) oriented such that only transverse vibrations in the horizontal 
plane were measured. The featuresof the accelerometers are reported in Table 3. The ac-
quisition and preprocessing of accelerometric data have been performed by a data acqui-
sition system HBM MGCplus. 

Table 3. Accelerometers: features. 

Model FGP FA101 
Sampling frequency (Hz) 2400 

Sensitivity (mV/g) 5000 
Weight w/o cable (g) <25 

Vibrations of the tie-rod were excited by lightly striking it with an impact hammer. 
Notice that the intensity of the impulse was maintained very low to avoid damaging the 
accelerometers, but if only interferometric radar tests are made, it is possible to hit the tie-
rod with much more energy, thus enhancing the amplitude of the vibrations and, there-
fore, the accuracy of the measurements. 

Figure 3. The experimental device for applying known tensile forces to tie-rods.

As the tie-rod, a steel strand with geometric, inertial and mechanical parameters
(equivalent circular cross-section) reported in Table 2 was employed for the experiments. In
particular, three values of the tensile force were applied to the tie-rod: 50, 100 and 150 kN.

Table 2. Geometric inertial and mechanical parameters of the tie-rod.

L (m) 2.59
A (cm2) 2.27

ρ (kg/m) 1.75
J (cm4) 0.374

E (MPa) 210,000
G (MPa) 80,770

For each tensile force level, the vibrations of the steel tie-rod were measured simulta-
neously through both a radar interferometer and some accelerometers.

Specifically, the employed interferometric radar system is the customized version
of the IBIS-FS manufactured by IDS GeoRadar (Pisa, Italy) described in Section 3. The
sampling frequency employed for the tests was 297.62 Hz, the maximum distance between
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the instrument and the tie-rod was 10 m, and the IBIS-ANT5-H12V39 antennas were
employed, having a power gain of 18 dBi, and a beamwidth at −3 dB of 12◦ in the
azimuthal direction and of 39◦ in the elevation direction. This kind of antennas is one of
the most directional available, capable of concentrating the beam at a restricted solid angle.

Indeed, to obtain good quality data, the length of the portion of the tie-rod falling into
a single range bin should be minimized. On the other hand, there is the need to make as
much as possible parallel the radial direction defined by the axis of radar antennas and
the direction of transverse displacements of the tie-rod. Therefore, the relative position
between the radar and the tie-rod was accurately studied before performing the tests and
set in such a way as to be a right balance between the above two requirements, as described
by Figure 4a.
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Moreover, three uniaxial accelerometers were installed at 1/4, 1/2 and 3/4 of the
tie-rod length (see Figure 3) oriented such that only transverse vibrations in the horizontal
plane were measured. The featuresof the accelerometers are reported in Table 3. The
acquisition and preprocessing of accelerometric data have been performed by a data
acquisition system HBM MGCplus.

Table 3. Accelerometers: features.

Model FGP FA101

Sampling frequency (Hz) 2400
Sensitivity (mV/g) 5000

Weight w/o cable (g) <25

Vibrations of the tie-rod were excited by lightly striking it with an impact hammer.
Notice that the intensity of the impulse was maintained very low to avoid damaging
the accelerometers, but if only interferometric radar tests are made, it is possible to hit
the tie-rod with much more energy, thus enhancing the amplitude of the vibrations and,
therefore, the accuracy of the measurements.

A preliminary check clearly showed that interferometric radar data were inconsistent
with the oscillating behavior of the cable put in vibration acquired by the accelerometers.
This inconsistency is ascribable to the facts that the tests were performed in a closed space
(as in practical applications on tie-rods of historic constructions) and that the supporting
structure around the steel tie-rod, highly reflective since the corners of the steel frame,
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reflects signal that overshadows the reflection coming from the tie-rod. As a result, the
radar was mainly measuring parasitic signals. Notice that another possible issue with
interferometric radar measurements is that eventual vibrations of the instrument could
affect the accuracy of the results since the instrument cannot discern between vibrations of
the target structure and vibrations of its support [46]. Anyway, in the presented experiment
it can be excluded the occurrence of this parasite effect since the test was performed in the
indoor environment of the laboratory test hall, and the radar interferometer was firmly
placed on the very stiff laboratory test hall floor.

To solve this problem, a corner reflector was installed on the tie-rod located to the left
of the midpoint of the tie-rod at a distance of 8 cm; in Figure 4a is visible in the foreground
the radar interferometer and in the background the experimental device for tensioning the
tie-rod, housing the tie-rod equipped with the corner reflector. Moreover, the geometrical
sketch in Figure 4b shows that the relative position between the radar interferometer and
the experimental device is such that different sections of the tie-rod fall into different
range bins.

A subsequent test showed that the installation of the corner reflector was effective
for acquiring signals really coming from the vibrating tie-rod by the radar interferometer.
Indeed, at this point, the frequency domain analysis of accelerometric and interferometric
radar data was comparable (see Figure 5, referring to 50 kN applied tensile force). Notice
that interferometric radar and accelerometric data were compared in the frequency domain
because the locations of the corner reflector on the tie-rod were not coincident with the
location of any accelerometer. Moreover, it is worth noting that interferometric radar
data (Figure 5, above) are affected by much more noise compared to accelerometric data
(Figure 5, below).
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5. Estimation of Tensile Force Starting from Vibration Data
5.1. Modified Lagomarsini and Calderini Approach

As discussed in Section 2, a suitable tensile force dynamic identification approach suit-
able for reprocessing interferometric radar data is that by Lagomarsino and Calderini [14].
Anyway, to have representative results, interferometric radar measurements required in-
stalling a corner reflector representing a non-negligible additional mass for the tie-rod, thus
affecting the modal parameters of the tie-rod. In particular, the mass of the corner reflector,
1.5 kg, was about 30% of the mass of the tie-rod. Notice that, on the other hand, the mass of
the accelerometers is negligible compared to the mass of the tie-rod (see Table 2).
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To also consider the additional mass of the corner reflector in the structural model,
the dynamic equations in [14] were expressly modified. First, the corner reflector was
modeled (Figure 6) as a lumped mass located at the point of the tie-rod where it is installed.
Then, the domain representing the beam was divided into two parts at the location of
the lumped mass, and two different form functions describing the spatial variation of
transverse displacement of the beam were introduced (the time dependence, instead, is
described by the same function for the two parts of the beam):{

φ1(x) = C1 sin αx + C2 cos αx + C3 sinhβx + C4 cosh βx 0 ≤ x ≤ l
φ2(x) = C5 sin αx + C6 cos αx + C7 sinhβx + C8 cosh βx l ≤ x ≤ L,

(9)

where l is the distance of the concentered mass from the left end of the beam and C1, . . . , C8
are unknown constants, to be determined by imposing the boundary conditions as in the
original approach, and the continuity conditions in correspondence of the section where
the additional mass of the corner reflector is attached:

φ1(0) = 0
φ1
′′
(0)− γ

L φ1
′(0) = 0

φ2(L) = 0
φ2
′′
(L)− γ

L φ2
′(L) = 0,

(10)

with γ defined in (4), and the continuity conditions:
φ1(l)− φ2(l) = 0
φ1
′(l)− φ2

′(l) = 0
φ1
′′
(l)− φ2

′′
(l) = 0

φ1
′′′
(l)− φ2

′′′
(l) +

(
ω
ω

)2 mπ2

δρL4 φ1(l) = 0,

(11)

with γ and δ defined in (4) and ω defined in (7). For writing (10) and (11), the rotational
inertia of the corner reflector was neglected, considering it as a concentered mass.

Now it becomes possible to write the linear algebraic system determining the 8 unknown
constants C1, . . . , C8. In this case, as for the original method in Section 2, for determining
a non-trivial solution, the coefficient matrix of the system must vanish, yielding to a
characteristic equation similar to (2), here omitted for the sake of brevity. Finally, the
unknown parameters EJ, k and N can be determined by a numerical procedure based on
minimizing the same error function G in (8). Therefore, the problem of the beam supporting
a concentrated mass can be handled with the same numerical solution approach proposed
in [14] by introducing the same parameters described in Section 2.

1 

 

 

Figure 6. Modified structural model with a lumped mass.

5.2. Experimental Identification of Natural Frequencies

For the modal identification process, interferometric radar data were processed by
using the custom IBIS software; in particular, the peak picking method [48] was applied
based on the power density spectrum; therefore, only natural frequencies were estimated.
In Table 4, the first three natural frequencies fr estimated in the presence of the corner
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reflector starting from interferometric radar data are reported for an applied tensile force of
50 KN. For the sake of the comparison, also the first three natural frequencies fa estimated
in the presence of the corner reflector starting from accelerometric data are reported in the
same table. In the latter case, the frequencies were determined by performing frequency
domain decomposition (FDD) [49,50] through a MATLAB routine [51]. Notice that it was
impossible to apply the more accurate FDD approach to interferometric radar data since,
for FDD, information on multiple measurement points is needed, whereas the only usable
information acquired by the radar interferometer is that of the measurement point where
the corner reflector was installed.

Table 4. Natural frequencies are experimentally determined starting from interferometric radar data
(fr) and accelerometric data (fa). Applied tensile force: 50 kN.

Mode Number
50 kN

fr (Hz) fa (Hz) fr–fa/fr (%)

1 26.373 26.367 0.023
2 73.795 73.792 0.004
3 97.024 97.046 0.023

Tables 5 and 6 reported both the first three natural frequencies fr and fa determined
starting from interferometric radar and accelerometric data, for the tie-rod with installed
the corner reflector, and for a known tensile force of 100 kN (Table 5) and 150 kN (Table 6).

Table 5. Natural frequencies experimentally determined starting from interferometric radar data (fr)
and accelerometric data (fa). Applied tensile force: 100 kN.

Mode Number
100 kN

fr (Hz) fa (Hz) fr–fa/fr (%)

1 37.160 37.134 0.070
2 98.214 99.390 1.187
3 126.488 126.866 0.299

Table 6. Natural frequencies experimentally determined starting from interferometric radar data (fr)
and accelerometric data (fa). Applied tensile force: 150 kN.

Mode Number
150 kN

fr (Hz) fa (Hz) fr–fa/fr (%)

1 44.345 44.238 0.242
2 121.726 121.875 0.122
3 - 151.753 -

Tables 4–6 also reported the relative differences between the interferometric radar
and accelerometric determined frequency. It is easily seen that the mean value of the
frequency discrepancy between interferometric radar and accelerometric data is 0.246%,
and its maximum value is 1.187%. This validates the interferometric radar technique
and shows that if referring to tensile force estimation approaches, which require only the
knowledge of natural frequencies, interferometric radar measurements can be considered
equivalent to accelerometric measurements. Of course, this equivalence holds when the
corner reflector is installed. Another comment concerns the impossibility of identifying the
frequency of the third mode from interferometric radar measurements: this is because this
frequency is more than double the employed sampling frequency and thus is inaccessible to
the device. Anyway, in practical applications, the tie-rods installed in historic construction
are usually characterized from lower frequencies compared to that in Table 6, and therefore,
the above-described issue of the radar interferometer does not constitute an actual limit.
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5.3. Estimation of the Tensile Force

Now, starting from the experimentally estimated frequency, it is possible to apply the
modified version of the approach by Lagomarsini and Calderini described in Section 5.1 to
determine the dynamically identified tensile forces to be compared to the known ones to
verify the accuracy of the procedure under investigation.

Calculations were performed through an expressly written MATLAB code; in particu-
lar, the required constrained minimization of the error function (8) was performed by using
the MATLAB function fmincon. The minimization domain was constructed by assigning
as lower limits a bending stiffness EJin f = 0, corresponding to a taut string behavior, and
rotational stiffness of the constraints at the ends of the beam kinf = 0; accordingly, in view of
(1) an upper bound of the tensile force determined by the first natural frequency f 1 is:

Nsup= 4ρL2 f 2
1 . (12)

For the upper limit of the domain, a flexural stiffness increased by 30% over the as-
sumed reference value of the bending stiffness EJs, that is, EJsup = 1.3 EJs, was considered.
Moreover, a rotational stiffness of the constraints at the ends of the beam ksup = 100 EJs

L ,
practically corresponding to a perfectly clamped constraint. In this case, a closed-form
solution for the relationship between the first natural frequency f1 and the tensile force N
is, after some analytical developments:

f1 =

√
N

4ρL2

1 + 2

√
EJsup

NL2 +

(
4 +

π2

2

)EJsup

NL2

. (13)

Solving (13) for determining N, it is possible to determine a lower bound for the tensile
force Nin f . In Table 7, the range variation considered for the tensile force N and for the
parameters γ and δ in (4) is summarized.

Table 7. Ranges for the variables of the minimization problem.

Applied Tensile
Force (kN) Nsup (kN) Ninf (kN) γsup γinf δsup δinf

50 61.4 22.1 100 0 1.3 0
100 116.3 58.7 100 0 1.3 0
150 168.4 97.3 100 0 1.3 0

Notice, in passing, that the column of Table 7 containing the upper bound of the
tensile force Nsup allows for appreciating the error in determining the tensile force coming
from applying the basic natural frequency-based method (considering the first natural
frequency). It is easily seen that this error is quite large, ranging from 12.3% (applied tensile
force 150 kN) to 55.8% (applied tensile force 50 kN).

In what follows, tensile forces estimated starting from interferometric radar deter-
mined frequencies are compared to those estimated starting from accelerometric deter-
mined frequencies.

Figure 7 (left) shows the three-dimensional plot of the objective function G in (8) as a
function of the variables N and γ, for fixed δ = 1; a representation of the values of G in false
color scale in the plane N-γ, also for δ = 1, is represented in Figure 7 (right). In both cases,
the evaluations are based on dynamic data acquired by radar interferometry for applied
tensile force 50 kN. Similarly, starting again from the same experimental data, Figure 8
(left) shows the three-dimensional plot of G as a function of the variables γ and δ, for fixed
N = 50 kN; a representation of the values of G in false color scale in the plane γ-δ, also for
N = 50 kN, is given in Figure 8 (right).

To minimize the objective function G, the same practical tricks discussed in [14] were
adopted. In particular, for fast convergence of the optimization algorithm, a good initial
estimate of the unknown variables, as the starting point for the numerical calculations, is
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needed. These estimates can be determined based on in situ measurements on the tie-rod
and, eventually, by numerical simulations performed by FEM.
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The final results in terms of the estimated tensile force are reported in Table 8. In
particular, for each (known) value of the applied tensile force indicated in the table as Na,
the corresponding value Ne estimated starting from interferometric radar measurements by
applying the modified Lagomarsino and Calderini approach is indicated. The percentage
error between actual and estimated tensile force is also reported: the error is quite low,
with a maximum value of 2.42%, which is a very good result for practical applications.
It is worth noting that in the case of Na = 150 kN, as recalled above, it was not possible
to determine the frequency of the third mode starting from interferometric radar data.
However, since interferometric radar estimated frequencies are practically the same as
those determined from accelerometric data, the minimization of G was performed by
considering as the frequency of the third mode ω3 = 151.753 Hz obtained starting from
accelerometric measurements.
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Table 8. Applied and estimated tensile force, with percentage error.

Applied Tensile Force Na (kN) Estimated Tensile Force Ne (kN) Ne–Na/Na (%)

50 49.45 1.10
100 97.58 2.42
150 146.94 2.04

6. Conclusions

Monitoring tensile force in tie-rods over time is of great importance for the structural
safety of historical masonry constructions. Among the experimental methods available,
the dynamic methods appear as the most suitable. However, dynamic tests may be time-
expensive, technically complex and require full access to the tie-rod. To overcome these
drawbacks, here, the effectiveness of the interferometric radar technique for vibration
measurements was studied by performing laboratory tests on a tie-rod under known
tensile forces.

Indeed, radar interferometry is a quick and easy to install technique allowing for
remote displacement and vibration measurements . Nevertheless, at the present level
of development with radar interferometry is very difficult to determine mode shapes.
As a consequence, this measurement technique should be complemented by a dynamic
identification approach for the tensile force in tie-rod based only on frequency data. In
particular, the approach by Lagomarsino and Calderini in [14] was considered.

Laboratory tests indicated that for obtaining good quality data in interferometric radar
measurements, it was necessary to install a corner reflector on the tie-rod. To take into
account the not-negligible mass of the corner reflector, the theoretical approach in [14] was
accordingly modified.

From the results reported in Section 5.3, the following considerations can be drawn.
First, Tables 4–6 clearly indicate that provided a corner reflector is installed of the

tie-rod, interferometric radar data yield to a determination of the natural frequencies
practically coincident with that evaluated by employing three accelerometers and the more
sophisticated FDD approach. Therefore, the radar interferometer is actually capable of
gathering the vibration data needed for applying tensile force identification approaches
based only on the knowledge of the natural frequency of the tie-rod.

Second, for what concerns the method for determining the tensile force starting from
frequency data, the simple natural frequency-based Method, where the flexural stiffness of
the tie-rod is neglected, leads to too large error for the demands of practical applications
(see Table 7). On the other hand, by employing the modified version of the approach by
Lagomarsino and Calderini, here proposed, very accurate results can be obtained, with
a mean value of the error in the determination of the tensile force of 1.85%, with and a
maximum value 2.42% (see Table 8).

In addition, the obtained results show that the above-recalled dynamic identification
approach for the tensile force is suitable for practical applications.

To this aim, it is worth noting that to date, the sampling frequency of standard radar
interferometers is limited to 200 Hz: this, in view of Nyquist’s theorem [52], obstructs
the possibility of measuring vibration frequencies higher than 100 Hz since the aliasing
phenomena. Anyway, in practical applications, the bending stiffness, the length, and the
tensile force of tie-rods are such that the above-recalled limitation is not relevant (only for
thick tie-rods with high tensile forces such high frequencies are expected).

In conclusion, these considerations suggest that the modified version of the approach
by Lagomarsino and Calderini applied to interferometric radar data acquired in the pres-
ence of a corner reflector installed to the tie-rods leads to accurate and reliable results,
matching the needs of practical applications.

Anyway, the need for the corner reflector in some sense obstructs the advantages of
using radar interferometry since it is necessary to access the tie-rod, even if the installation
of the corner reflector is faster and easier than that of accelerometers and of the required
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wiring. Future development of the present research will concern a real historic structure;
one of the points of attention will be the possibility of obtaining meaningful dynamic
data through the radar interferometer without installing corner reflectors. Indeed, in the
laboratory tests described in this paper, the tie-rod was surrounded by a high reflective
steel frame, whereas in real structures, the reflectivity of the obstacles surrounding the
tie-rod could be much lower. Moreover, limited access to the tie-rod is needed in any case
since it is necessary to excite vibrations by an impact hammer.

Another issue for the approach proposed here may arise from the presence of markedly
different constraint conditions at the ends of the tie-rods. Indeed, the approach in [14]
assumes that the tie-rod can be modeled as a spring-hinged beam with the same flexural
stiffness k of the rotational elastic springs. In these cases, it is necessary to study further
advancements of the dynamic identification approach in [14] or to refer to another dynamic
identification approach based only on frequency data. In addition, the implementation
of the shear deformability in the structural model may be a suitable advancement of the
dynamic identification approach for improving the accuracy in the determination of the
tensile force, especially in some particular conditions. Author Contributions: Conceptualiza-

tion and methodology, A.C., A.F. and M.D.P.; software and validation G.M.; investigation, A.C. and
G.M.; resources, M.D.P.; writing—original draft preparation, D.C.; writing—review and editing, A.F.
All authors have read and agreed to the published version of the manuscript.
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