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Abstract— This paper presents a district energy management 

strategy devoted to monitor and control the district power 

consumption in a twofold human centered perspective: 

respecting the user’s comfort preferences and minimizing the 

power consumption and costs. The presented District Energy 

Management System forwards the power profile determined the 

day-ahead to each Building Energy Management System that in 

turn minimizes its power consumption and costs (based on 

rewards and penalties) of the next day by respecting the comfort 

preferences. Successively, the power is redistributed among the 

district buildings in order to minimize the penalties and by 

applying two approaches: a centralized approach for public 

buildings and a distributed methodology for private buildings. 

Such optimization problems are formalized by defining some 

Linear Programming problems: two case studies are solved to 

show the applicability of the proposed management strategies.  

 
Note to Practitioners— This paper is motivated by the necessity 

of optimizing the energy distribution in districts of smart 

buildings in order to guarantee the user comfort and, on the same 

time, to limit wastes and costs. For this purpose, both municipal 

managers and private administrators aim at optimizing the 

building consumptions on the basis of the weather forecast. This 

paper presents a hierarchical management strategy that can be 

applied by the energy district managers on the basis of the day- 

ahead energy market. The main modules of the proposed 

management system are based on Linear Programming models 

that are used in centralized (for public buildings) and distributed 

(for residential buildings) approaches.  

Future research aims at considering the impact of alternative 

and distributed energy sources and at taking into account the 

visual and air-quality comfort. 

 
Index Terms—Building Management Systems, Energy 

Management, Optimization, Day-Ahead Energy Market. 
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I. INTRODUCTION 

In recent years, smart and green building management has 

become one of the main challenges for automation and 

building construction.  

Besides the utilization of renewable energy resources, the 

necessity to guarantee both high level comfort and power 

efficiency can be satisfied by adopting new suitable control 

and management systems. In a smart district context, each 

building of the district requires high-energy efficiency to 

reduce energy consumption but, on the other hand, the 

satisfaction of the indoor environment comfort needs more 

energy usage [1], [2].  

The comfort of the building environment depends generally 

on three factors: thermal comfort, visual comfort and air-

quality comfort. Since the major building energy consumption 

comes from the heating/cooling systems, it is relevant to 

optimize the Heating Ventilation and Air-Conditioning 

(HVAC) system utilization [1]. On the other side, the need to 

reduce the demand peaks of the utility grid and the energy cost 

for the customers led to the necessity of saving buildings 

energy consumption [3]. To reach the objectives of comfort 

maximization, cost and consumption minimization, the district 

(building network) has to be managed for purchasing energy 

into the Day-Ahead Energy Market and for optimal balancing 

the real-time energy consumptions [4]-[7]. The Day-Ahead 

Energy Market is a short-term market in which energy prices 

are computed for the next 24 hours on the basis of energy 

generations and storages, demand bidding and scheduled 

bilateral transactions [8]-[15]. In this context, the power offers 

are the result of a two-side auction where both producers and 

consumers submit their energy bids (curves of energy price 

and quantity), by generating significant energy data flows to 

be appropriately treated [16], [17]. The producers submit 

supply bids while the consumers submit demand bids by 

means of a load aggregator. The load aggregator purchases 

energy for consumers network at more competitive prices than 

a customer can obtain by work individually [4], [5], [16]. On 

the basis of the submitted curves, the Independent System 

Operator (ISO) determines a Market Clearing Price that is the 

equilibrium price obtained by the intersection of the offer and 

demand curves and that fixes the day-ahead price of energy. 

Moreover, once the day-ahead market is closed, the load 

aggregator operates in real-time to balance the misplacement 

between the forecasted bids and the actual ones [4], [7], [11], 

[12]. For these reasons, it is relevant to coordinate the 
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consumers, both public and private, that belong to the energy 

district by means of a district manager. In particular, the 

district manager, like a load aggregator, the day-ahead 

forecasts the power to be assigned to the buildings. On the 

basis of the forecasted profiles, the district manager aims at 

minimizing the energy consumptions in real-time by 

guaranteeing the comfort and minimizing the costs due to 

possible misplacement between day-ahead and real-time 

markets.  

This paper focuses on the district energy manager 

operations that are performed in real-time on the basis of the 

day-ahead negotiations and the thermal comfort satisfaction. 

The district energy management problem is approached in a 

twofold human centered perspective. First, the power assigned 

to each building for the HVAC system is optimized in order to 

guarantee the user’s thermal comfort and satisfaction. Second, 

energy wastes and costs are minimized for public and private 

users. To this aim, once the day-ahead negotiation establishes 

the energy costs and profiles of the district, we optimally 

balance the power consumption by considering both penalties 

and rewards in real-time. 

In order to deal with such a district management problem, 

we consider the hierarchical architecture of the district energy 

management that is proposed in [18] and composed of three 

levels: the District Energy Management System (DEMS), the 

Building Energy Management Systems (BEMSs) and the 

home/office level.  

The DEMS operates as a load aggregator and energy 

manager for the district, collects the data about the energy that 

is consumed by each building and forwards the power profile 

for the next day to each BEMS, on the basis of the day-ahead 

negotiation. At the beginning of the next day, each BEMS of 

the district optimizes its power consumption and cost on the 

basis of the received DEMS power profile and by respecting 

the comfort preferences.  

Two different cases are considered: i) a centralized 

approach for public buildings that are centrally managed by a 

single public authority; ii) a distributed approach for private 

residential buildings that have to minimize the own energy 

consumption and costs by pairwise negotiations. Hence, two 

different approaches for public and private buildings are 

presented to satisfy the different management objectives: 

public buildings are managed by a public authority in a 

centralized way; private buildings are autonomously managed 

by private users.  

Hence, the considered optimization problems are 

formalized by defining three Linear Programming (LP) 

problems: the LP problem solved by the BEMS to optimize 

the power profiles on the basis of the comfort satisfaction and 

the outdoor temperatures; the LP problem solved by the 

DEMS to balance the power among the public buildings; the 

LP problem solved by the BEMS of the private buildings that 

pairwise minimize the total power costs. 

We note that the proposed approach exploits the 

possibilities of the building automation in order to satisfy the 

user requirements and satisfaction: the temperature can be 

remotely monitored in real time and the energy consumption 

can be adapted to obtain the desired performances. 

In order to show the applicability of the proposed approach 

two case studies are solved in the two different cases: the 

centralized management for public buildings and the 

distributed management for residential buildings. 

The paper is organized as follows. Section II provides the 

literature review. Section III presents the district energy 

management architecture and Section IV specifies the BEMS 

optimization problems. Moreover, Section V presents the 

centralized and distributed approaches for the costs 

redistribution. Sections VI and VII discuss the case studies for 

the public and private buildings, respectively. Finally, Section 

VIII summarizes the conclusions and the future works. 

II. LITERATURE REVIEW 

In the related literature a large number of contributions 

deals with the optimization of the HVAC energy usage to 

guarantee the comfort. In particular, some authors address the 

problem of controlling the heating ventilating and air 

conditioning system with the purpose of achieving the desired 

thermal comfort and minimizing the energy spent to comply 

with it. In this context, Ferreira et al. [19] present a predictive 

control implemented by radial basis function. Moreover, a 

neural network identifies such a function by a multi-objective 

genetic algorithm and a branch and bound optimization 

method to save energy for an HVAC system. Ari et al. [20] 

propose an intelligent modeling approach to individual 

thermal comfort and energy optimization problem, which aims 

at minimizing energy consumption and improving thermal 

environmental conditions for human occupancy, based on 

fuzzy logic control. Moreover, Du et al. [21] present an 

appliance commitment algorithm that schedules 

thermostatically controlled household loads based on 

consumption forecasts. Users’ comfort settings are considered 

to meet optimization objectives such as minimum payment or 

maximum comfort from a single user point of view.  

In addition, in Yang et al. [22] a control strategy is 

proposed to control the HVAC system for maintaining 

building’s indoor environment. The control strategy is based 

on swarm intelligence technique and it determines the amount 

of energy dispatched to each equipment in the HVAC system. 

Nguyen et al. [23] develop a home strategy management 

solution that minimizes the electricity cost and guarantees the 

user comfort in terms of preferred home temperature. 

Moreover, Guo et al. [24] review thermal comfort based 

control strategies for commercial buildings with HVAC 

system. They present the advantages of using better system 

operations, technologies and control algorithms to HVAC 

systems that can be operated in an energy saving mode as well 

as provide a favorable environment to occupants. In the same 

context, Sun et al. [25] present a novel formulation capturing 

key interactions of the heating, cooling, lighting, shading and 

ventilation systems to minimize the total daily energy cost. To 

obtain effective integrated strategies in a timely manner, the 

authors develop a methodology that combines stochastic 

dynamic programming and rollout technique within the price-

based coordination framework. 

Furthermore, some contributions deal with the problem of 

maintaining HVAC systems in good conditions through early 

fault detection [26], [27]. In particular, Sun et al. [27] present 

a model-based and data driven method for robust system level 

fault detection with potential for large-scale implementation. 
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However, the control strategies and the fault detection 

methods focus on the home or building energy management 

and do not consider the complex energy management of sets 

of buildings connected in a district. 

In addition, in the related literature some authors face the 

problem of the energy management in the day-ahead energy 

market context [28]-[31]. For instance, Moradzadeh et al. [28] 

present a decentralized optimization of residential energy 

demand to reduce the cost both for utility and customers by 

satisfying the customer preferences. A two-stage pricing is 

proposed to manage the uncertainty of the residential demand. 

Moreover, Kumaraguruparan et al. [29] consider dynamic 

residential pricing to promote a more efficient use of energy 

for residential customers. They introduce the multiple 

knapsack problem to ensure optimal scheduling of appliances. 

Furthermore, Karami et al. [30] adopt a scheduling algorithm 

for the optimal day-ahead management of distributed energy 

resources. In particular, combined heat and power plant and 

energy storage systems are considered in a smart home for the 

minimization of electricity fee. In Atzeni et al. [31] the home 

energy managers can interact each other to minimize the 

electricity costs by using cooperative and distributed 

strategies. 

Other contributions face the problem of the building 

management in the real-time context. Several existing works 

have studied neighborhoodwise collaborative energy 

management, though different models and optimization goals 

are considered [6], [32]. In [33] a heuristic algorithm is 

proposed for scheduling the load of customers in a 

neighborhood and in [34] and [35], distributed energy 

scheduling algorithms, based on game-theoretic approaches, 

were proposed. In particular, the papers of Chang et al. [6], [7] 

propose a coordinated home energy management architecture 

composed by home energy units that communicate each other 

in order to balance the neighborhood demand and supply. 

Moreover, the authors propose a novel model to represent 

interruptible appliances such as Plug-in Hybrid Electric 

Vehicle (PHEV) and adopt a decentralized approach to allow 

optimal real-time appliances scheduling for each unit. 

Furthermore, Alizadeh et al. [36] propose a methodology to 

allow the ISO to use time-deferrable loads as a resource to 

minimize costs, shave the peaks of demand and control the 

electricity prices.  

Summing up, the analyzed literature proposes different 

techniques, models and methodologies to solve the home 

energy management problem, mainly referring to deferrable 

loads such as PHEV and Energy Storage System.  

The new contribution of this paper is presenting a novel 

strategy devoted to the real time management of the power 

assignment and consumption. We enlighten that the proposed 

strategy is placed at an intermediate decision level with 

respect to the main contributions presented in the related 

literature: after the day-ahead energy market that provides the 

inputs of the proposed management strategy; before the 

HVAC system control that uses the parameters in output of the 

proposed procedure to maintain the indoor comfort. 

Furthermore, with respect to the contributions about the 

energy management real-time coordination, the proposed 

strategy exhibits three advantages: i) considering both public 

and private building networks; ii) solving in real time efficient 

optimization problems (LP problems) both in centralized and 

distributed approaches; iii) simultaneously satisfying the 

requirements of thermal comforts by minimizing the power 

consumption and costs.  

III. DISTRICT ENERGY MANAGEMENT ARCHITECTURE 

In this section we present the three levels hierarchical 

architecture for the management of the district energy 

network. In particular, the levels of the management structure 

are shown in Fig. 1: the district, the building, and the 

office/home levels. 

The District Energy Management System (DEMS) monitors 

the buildings energy consumption and interacts with every 

Building Energy Management System (BEMS) to optimize the 

use of energy and maximize the user’s comfort. To this aim, 

the DEMS receives the building power consumption from the 

BEMSs and stores it in the database module. Then, the DEMS 

negotiates the power costs at the day-ahead market and sends 

the power profile of the next day to each BEMS that has to 

respect the received energy target. 

A smart metering system allows the two-way 

communication between the BEMS and the measurement and 

actuation system. The last level of the management 

architecture is constituted of sensors and actuator devices that 

receive commands from the BEMS in order to control the 

electric loads. 

In the following we describe in detail the district control 

strategy performed thank to the interaction among the BEMSs, 

the DEMS and the external environment. 

 

BEMS(i) 

District Network level

Lights

Water 

heater

HVAC

PEV

DEMS

BEMS(1) . . . . . . . . . . BEMS(n) 

Building level

Office/home level

 

Figure 1.  The district energy management architecture. 

A. District Management Strategy  

In this section we describe the conceptual structure of the 

district control strategy and the connections among DEMS, 

BEMS and home measurement and actuation systems both in 

public and in residential buildings. 

Typically, the DEMS is composed of three modules: a data 

base module, an energy module and an optimization module 

(see Fig. 2). 
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Figure 2.  The district management structure. 
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Figure 3.  The UML activities diagram of the district management system. 

 

Moreover, in order to give a description of the district 

management system activities and actions and in particular 

how the DEMS modules interact with the BEMS and the 

office/home devices, we use the Unified Modeling Language 

(UML) activity diagram shown in Fig. 3. Indeed, the UML 

activity diagram is a graphic and textual modeling language 

intended to understand and describe systems from behavioral 

viewpoints [37]. In particular, the use of the swim lanes in the 

activity diagrams allows easily showing, which part of the 

system is responsible in each phase of the activities. Fig. 3 

shows that the district management system activities start 

when the data base of the DEMS receives information about 

the weather forecasts, the power consumption and production 

(the renewable energy, the energy storage, etc.) from each 

building. Hence, the DEMS collects the data about the energy 

consumed by each building and determines an historical 

database to foresee the future consumption and production. 

Moreover, the DEMS energy module communicates with the 

data base module, determines for each building the necessary 

power profile and negotiates it within the energy market. 

This paper specifies the optimization modules of the BEMS 

and the DEMS devoted to determine the power profile of each 

building. More precisely, referring to Fig. 3 we solve the three 

problems relative to the three activities appearing in the lanes 

labeled “Optimization module” in the UML activity diagram: 

“Building power profiles optimization”, “Power and cost 

redistribution” and “Power and cost negotiation”.  

In particular, the “Building power profiles optimization” 

module receives from the DEMS the power profile and 

optimizes its power consumption in order to minimize the 

costs on the basis of the specific building comfort necessities. 

Moreover, if a building saves energy with respect to the power 

amount forecasted by the DEMS, then it receives some 

rewards. On the contrary, penalties are assigned to the 

buildings that consume more energy. In addition, different 

electricity prices at different daily time slots are considered. 

At this point, we present two different procedures for public 

and residential buildings, respectively. 

The public buildings send the power consumptions to the 

DEMS that re-calculates the buildings power profiles by 

minimizing the total district costs. To this aim the DEMS 

includes also the “Power and cost redistribution” module that 

updates the values of the building energy powers in order to 

balance the provided energy with the different buildings 

requests. Fig. 2 shows the scheme of the district control 

strategy for public buildings and the information exchanged 

among them. 

Moreover, we consider the possibility of applying a 

distributed management strategy to the residential buildings 

that could prefer to decide and bargain autonomously the 

power costs. To this aim, we present a distributed “Power and 

cost negotiation” module: pairs of buildings may negotiate 

power and costs in order to reach a common decision. We 

enlighten that in this case the energy cost optimization is 

performed by the BEMS only. 

Finally, the BEMS control unit applies the appropriate 

commands to the home/office actuators.  

IV. BEMS OPTIMIZATION MODULE SPECIFICATION 

This section specifies the optimization problem that is 

solved by the buildings belonging to a district described by the 

set 𝐵 = {𝑏1, … , 𝑏𝐾}  of 𝐾 buildings. In this paper we deal with 

the heating demand by pointing out that the cooling problem 

can be solved with few changes in a similar way. 

Since the public buildings have the common interest of 

reducing their overall energy costs, they can use a centralized 

energy management. On the contrary, the residential building 

manager needs to optimize the power consumption of each 

building in a decentralized approach. 

We assume that the day is divided in 𝑁 time slots. The 

DEMS provides the district power profile 𝑃(𝑡) (for 𝑡 =
1,… , 𝑁) that is forecasted to satisfy the heating demand of the 

next day, and distribute it to the BEMSs. At this point two 

cases are considered:  

1) public buildings: the DEMS initially assigns the same 

power profile 𝑃𝐷(𝑡) for 𝑡 = 1,… , 𝑁 to each public 

building. 

2) residential buildings: the DEMS initially assigns to 

each building a suitable power profile 𝑃𝐷(𝑡) on the 

basis of the historical data about its consumptions. 

Note that the initial assignment could be the same for all the 

public buildings since the public manager will reduce the 

overall costs by the successive DEMS centralized 
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optimization. On the contrary, the DEMS has to assign to each 

residential building its own power profile so that the BEMS 

will autonomously negotiate the energy for the cost reduction. 

Hence, in the next subsections we consider the following 

three optimization problems.  

First, the DEMS optimizes the power profiles of the 

buildings (public and residential) in order to minimize the 

costs on the basis of the specific building comfort necessities. 

To this aim rewards and penalties are assigned to the BEMS 

that respectively saves power or consumes more energy with 

respect to the power amount forecasted by the DEMS. 

Second, considering the public buildings, the DEMS solves 

a second optimization problem and modifies the power 

profiles by minimizing the penalties obtained by the BEMSs 

and reducing the rewards received by other buildings.  

On the other hand, the BEMSs of the residential buildings 

solve local optimization problems with neighbor buildings in 

order to autonomously negotiate powers and costs and reach a 

common decision. 

 

A. BEMS optimization problem 

Each day the BEMSs of the district (public and residential 

buildings) receive from the DEMS 𝑁 values of the forecasted 

outdoor temperature 𝑇𝑜𝑢𝑡(𝑡)  (for 𝑡 = 1,… , 𝑁) and the thermal 

power 𝑃𝐷(𝑡)  (for 𝑡 = 1,… , 𝑁). 
Each BEMS knows the value of the initial indoor 

temperature 𝑇𝑖𝑛(0) = 𝑇𝑠𝑡𝑎𝑟𝑡   and determines for each time slot 

the indoor temperature 𝑇𝑖𝑛(𝑡) (for 𝑡 = 1,… , 𝑁) that guarantees 

the thermal comfort. Moreover, the BEMS has to calculate the 

power 𝑃𝐵(𝑡)  (for 𝑡 = 1,… , 𝑁) necessary to obtain the 

requested temperature 𝑇𝑖𝑛(𝑡) ≥ 𝑇set (for 𝑡 = 1,… , 𝑁). Note 

that the temperature 𝑇set is the set point chosen by the building 

manager on the basis of the standard thermal comfort indices, 

according to the ASHRAE standard thermal sensation scale 

[38], [39]. Moreover, 𝑇𝑖𝑛(𝑡) can be major than 𝑇set in order to 

compensate the time slots in which the power 𝑃𝐷(𝑡) is not 

sufficient to satisfy the condition 𝑇𝑖𝑛(𝑡) ≥ 𝑇set, by exploiting 

the thermal gradient. This approach guarantees the thermal 

comfort at each time slot. 

In this paper we refer to the Predicted Mean Vote (PMV) 

index and the Predicted Percentage of Dissatisfied (PPD) 

index that can be obtained from the PMV. In particular, the 

PMV predicts the thermal sensation for the human body on the 

basis of in-door temperature, mean radiant temperature, air 

velocity and air humidity, while the PPD provides information 

on the thermal discomfort or dissatisfaction [39]. 

Typical values of PMV and PPD are −0.5 ≤ 𝑃𝑀𝑉 ≤ +0.5 

and 𝑃𝑃𝐷 ≤ 10% [40], respectively. 

The main objective of the BEMS optimization module is 

minimizing the cost of the power that will be consumed by the 

building during the next day, guaranteeing the customer 

comfort. 

The following formula determines the evolution of the 

indoor temperature 𝑇𝑖𝑛(𝑡) at each time 𝑡 on the basis of the 

outdoor temperature 𝑇𝑜𝑢𝑡(𝑡) and the thermal power 𝑃𝐵(𝑡) [41]: 

 

𝑇𝑖𝑛(𝑡) = 𝑇𝑖𝑛(𝑡 − 1) + 𝛼(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡 − 1)) + 𝛽𝑃𝐵(𝑡), for 𝑡 =
1,… ,𝑁.                                                                                               (1) 
                    

where α and β are parameters that specify the thermal 

characteristic and the environment: β > 0 refers to the heating 

mode, β < 0 refers to the cooling mode. Moreover, the term 

𝛼(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡 − 1)) of (1) models the heat transfer and 

𝛽𝑃𝐵(𝑡) models the thermal efficiency of the system.  

The decision variables of the BEMS optimization module 

are the powers 𝑃𝐵(𝑡) for 𝑡 = 1,… , 𝑁. 

In order to formulize the optimization problem, we 

introduce vector 𝜽 ∈ ℝ𝑁 that is defined as follows:  

 

𝜃(𝑡) = 𝑃𝐵(𝑡) − 𝑃𝐷(𝑡), for 𝑡 = 1,… , 𝑁.                                   (2)
           

Furthermore, recalling that the electricity supply has different 

prices at different daily time slots, we introduce the following 

vectors 𝒂 ∈ ℝ𝑁, 𝒃 ∈ ℝ𝑁 and 𝒄 ∈ ℝ𝑁, whose corresponding 

elements are defined as follows: 𝑎(𝑡) for 𝑡 = 1,… , 𝑁 is the 

power cost factor (in €/kWh) and represents the 𝑃𝐵(𝑡) price; 

𝑏(𝑡) for 𝑡 = 1,… , 𝑁 is the penalty cost factor (in €/kWh) that 

penalizes the building for exceeding 𝑃𝐷(𝑡) at time 𝑡 (𝜃(𝑡) >
0); 𝑐(𝑡) for 𝑡 = 1,… , 𝑁 is the reward cost factor (in €/kWh) 

that rewards the building that saves energy by respecting the 

comfort (𝜃(𝑡) < 0) at time 𝑡.  
Let us assume 𝑏(𝑡) ≥ 𝑐(𝑡) for 𝑡 = 1,… , 𝑁: i.e., the penalty 

factors 𝑏(𝑡) are equal or greater than the reward factors 𝑐(𝑡) at 

each time step 𝑡.  
The optimization objective aims at minimizing the sum of 

three costs: 𝑎(𝑡)𝑃𝐵(𝑡) (€) that represents the cost of the 

thermal power at time 𝑡, 𝑏(𝑡)𝜃(𝑡) (€) (when 𝜃(𝑡) > 0) that is 

the penalty cost for exceeding the DEMS power threshold, and 

𝑐(𝑡)𝜃(𝑡) (€) (when 𝜃(𝑡) ≤  0 – a negative cost) that quantifies 

the reward cost for the power savings.   

Now, the following Linear Programming (LP) problem is 

defined as:  

LP1 

min∑[𝑎(𝑡)𝑃𝐵(𝑡) + 𝑐(𝑡)𝜃(𝑡) + 𝑦(𝑡)(𝑏(𝑡) − 𝑐(𝑡)

𝑁

𝑡=1

)]      (3𝑎) 

s.t. 

{
 
 

 
 
𝑇𝑖𝑛(0) = 𝑇𝑠𝑡𝑎𝑟𝑡                                                                                                    (3𝑏)

𝑇𝑖𝑛(𝑡) − (1 − 𝛼)𝑇𝑖𝑛(𝑡 − 1) − 𝛽𝑃𝐵(𝑡) ≥ 𝛼𝑇𝑜𝑢𝑡(𝑡), 𝑡 = 1, . . , 𝑁        (3𝑐)

𝑇𝑖𝑛(𝑡) ≥ 𝑇𝑠𝑒𝑡  for  𝑡 = 1, … , 𝑁                                                                        (3𝑑)

𝑦(𝑡) ≥ 𝜃(𝑡) , 𝑦(𝑡) ≥ 0, for 𝑡 = 1, … , 𝑁                                                     (3𝑒)

𝑃𝐵(𝑡) ≥ 0, 𝑇𝑖𝑛(𝑡)  ≥ 0 , for 𝑡 = 1, … , 𝑁                                                     (3𝑓)

 

where the non negative vector 𝒚 ∈ ℝ𝑁 is an auxiliary variable. 

Since 𝑏(𝑡) ≥ 𝑐(𝑡) and the objective function (3a) has to be 

minimized, constraints (3e) imply at optimality the following 

conditions: 

𝑦(𝑡) = 𝜃(𝑡) if 𝜃(𝑡) > 0, for 𝑡 = 1,… , 𝑁,    

𝑦(𝑡) = 0       if 𝜃(𝑡) ≤ 0, for 𝑡 = 1,… , 𝑁.  

Moreover, constraint (3b) assigns the initial temperature 

value and constraints (3c) determine the indoor temperatures 

according to (1). The set-point 𝑇𝑠𝑒𝑡  is imposed as the lower 

bound for 𝑇𝑖𝑛(𝑡) for 𝑡 = 1,… , 𝑁 by constraint (3d). 

Hence, when 𝜃(𝑡) > 0 (i.e. the building power exceeds 

𝑃𝐷(𝑡) at time 𝑡 the objective function is 
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min∑ [𝑎(𝑡)𝑃𝐵(𝑡) + 𝑏(𝑡)𝜃(𝑡)
𝑁
𝑡=1 ] and the objective is 

minimizing the sum of power and penalty costs. On the 

contrary, at time 𝑡, when 𝜃(𝑡) ≤ 0, the objective function is 

min∑ [𝑎(𝑡)𝑃𝐵(𝑡) + 𝑐(𝑡)𝜃(𝑡)
𝑁
𝑡=1 ] and the objective is 

minimizing the difference of power and reward costs. 

Finally, we remark that the assumption 𝑏(𝑡) ≥ 𝑐(𝑡) for 𝑡 =
1,… , 𝑁 is not really restrictive: the case 𝑏(𝑡) < 𝑐(𝑡) can be 

managed as well with obvious modifications of the 

optimization problem formulation. Hence, for the sake of the 

simplicity, we assume in the sequel of the paper 𝑏(𝑡) ≥ 𝑐(𝑡). 

V. BALANCING OF PENALTIES AND REWARDS 

A. Centralized Optimization Problem for Public Buildings 

The DEMS receives from the K district BEMSs the 

solutions of the K LP1 problems (3 a-f): the optimum values 

of the powers 𝑃𝐵
𝑖 (𝑡)   for 𝑡 = 1,… , 𝑁 and the vectors 𝜽𝒊 ∈ ℝ𝑁 

(with 𝜃𝑖(𝑡) = 𝑃𝐵
𝑖 (𝑡) − 𝑃𝐷

𝑖 (𝑡) for 𝑡 = 1,… , 𝑁) associated with 

each building 𝑏𝑖 ∈ 𝐵.  

At this point, the DEMS aims at minimizing the penalties 

obtained by the BEMSs by possibly reducing the rewards 

received by some buildings. To this aim, the DEMS can 

reduce or increase the power 𝑃𝐷
𝑖 (𝑡) = 𝑃𝐷(𝑡), that it has 

initially assigned to 𝑏𝑖 ∈ 𝐵, on the basis of the values 𝑃𝐵
𝑖 (𝑡) 

optimized by the BEMS of 𝑏𝑖. Hence, the DEMS determines a 

common value 𝜃𝑛(𝑡) = 𝑃𝐵
𝑖 (𝑡) − 𝑃𝐷_𝑜𝑝𝑡

𝑖 (𝑡)  for all the public 

buildings 𝑏𝑖 ∈ 𝐵  for each time 𝑡 = 1,… , 𝑁, where 𝑃𝐷_𝑜𝑝𝑡
𝑖 (𝑡) 

is the new power that the DEMS has to assign to the BEMS at 

time 𝑡. 
The following LP problem minimizes the total cost of the 

district power by balancing the penalties with the rewards 

assigned to the buildings.  

 

𝐿𝑃2 

min∑[𝑐(𝑡)𝜃𝑛(𝑡) + 𝑦(𝑡)(𝑏(𝑡) − 𝑐(𝑡))

𝑁

𝑡=1

]                             (4𝑎) 

s.t. 

{
  
 

  
 

                                                                            

𝐾𝜃𝑛(𝑡) =  ∑𝜃𝑖(𝑡)

𝐾

𝑖=1

 , ∀𝑡 = 1,… , 𝑁                                    (4𝑏)

                             
𝑦(𝑡) ≥ 𝜃𝑛(𝑡) , for 𝑡 = 1,… , 𝑁                                              (4𝑐)

 𝑦(𝑡) ≥ 0 , for 𝑡 = 1,… , 𝑁                                                      (4𝑑) 
                                                                                      

 

The objective function (4a) minimizes the total penalties 

and maximizes the total rewards of the K BEMSs in the N 

time slots.  

The constraints (4b) impose that the sum of the total power 

penalties and rewards remains constant for each 𝑡 = 1,… , 𝑁. 

Hence, constraint (4b) guarantees that the penalties and 

rewards are equal for all the buildings in the district. 

The non-negative vector 𝒚 ∈ ℝ𝑁 is an auxiliary variable 

that by constraints (4c-d) implies at the optimality the 

following conditions: 

 

𝑦(𝑡) = 𝜃𝑛(𝑡) if 𝜃𝑛(𝑡)  > 0,  
𝑦(𝑡) = 0         if 𝜃𝑛(𝑡)  ≤ 0.  
 

Note that the LP2 problem can be decomposed in N 

independent LP problems. 

Then, on the basis of the LP2 solution, the energy module 

of the DEMS modifies the values of the powers 𝑃𝐷
𝑖 (𝑡) 

assigned to the BEMSs and determines the new power 

𝑃𝐷_𝑜𝑝𝑡
𝑖 (𝑡) according to the following relation:  

 

𝑃𝐷𝑜𝑝𝑡
𝑖  (𝑡) = 𝑃𝐷

𝑖 (𝑡) + 𝜃𝑖(𝑡) − 𝜃𝑛
∗(𝑡), for 𝑖 = 1,… , 𝐾, 𝑡 =

1,… , 𝑁,                                                                                             (5) 

where 𝜃𝑛
∗(𝑡) is the optimal solution of LP2. 

The DEMS adjusts the values of the power assigned to each 

building 𝑏𝑖 ∈ 𝐵, by adding the gap between 𝜃𝑖(𝑡) and 𝜃𝑛
∗(𝑡) 

for 𝑡 = 1,… , 𝑁. 

 

B. Distributed Optimization Problem for Residential Buildings 

In this section we consider a district composed by a set 𝐵 =
{𝑏1, … , 𝑏𝐾}  of K residential buildings. After the power 

optimization and the determination of penalties and/or 

rewards, each residential building can bargain with the other 

buildings the cost reduction. 

To this purpose, each BEMS selects a subset of buildings 

with which it intends to perform the energy negotiation. Then 

the communication among the BEMS is described by an 

indirect and connected graph 𝐺𝑐 = (𝐵, 𝐸)  where 𝐵 indicates 

the set of nodes (the buildings) and 𝐸 is the set of edges. If 

edge 𝑒𝑖𝑗 ∈ 𝐸 then building 𝑏𝑖 ∈ 𝐵 can communicate with 

building 𝑏𝑗 ∈ 𝐵. 

We denote by 𝐶𝐵𝑖 ⊆ 𝐵 the set of buildings with which 𝑏𝑖 

can communicate, i.e., 𝐶𝐵𝑖 = {𝑏𝑗 ∈ 𝐵 ∶  𝑒𝑖𝑗 ∈ 𝐸} . We denote 

by 𝜃𝑖(𝑡) = 𝑃𝐵
𝑖 (𝑡) − 𝑃𝐷

𝑖 (𝑡) for 𝑡 = 1,… , 𝑁 the elements of 

vector 𝜽𝒊 ∈ ℝ𝑁 associated with 𝑏𝑖 ∈ 𝐵 and by 𝜽𝒏
𝒊 ∈ ℝ𝑁, the 

new vector of elements 𝜃𝑛
𝑖 (𝑡) for 𝑡 = 1,… , 𝑁 obtained after 

the negotiation. 

In order to distinguish between the powers that enjoy 

rewards and the powers that have penalties, the following 

variables are defined for 𝑡 = 1,… , 𝑁: 

 

𝑥𝑖(𝑡) = 𝜃𝑖(𝑡) if 𝜃𝑖(𝑡) > 0 else 𝑥𝑖(𝑡) = 0 

𝑧𝑖(𝑡) = −𝜃𝑖(𝑡) if 𝜃𝑖(𝑡) ≤ 0 else 𝑧𝑖(𝑡) = 0 

𝑥𝑛
𝑖 (𝑡) = 𝜃𝑛

𝑖 (𝑡) if 𝜃𝑛
𝑖 (𝑡) > 0 else 𝑥𝑛

𝑖 (𝑡) = 0 

𝑧𝑛
𝑖 (𝑡) = −𝜃𝑛

𝑖 (𝑡) if 𝜃𝑛
𝑖 (𝑡) ≤ 0  else 𝑧𝑛

𝑖 (𝑡) = 0. 

 

Hence, 𝑏(𝑡)𝑥𝑖(𝑡) are the penalty costs and 𝑐(𝑡)𝑧𝑖(𝑡) are the  

reward costs. 

Now, each building 𝑏𝑖 ∈ 𝐵 performs a negotiation with a 

building 𝑏𝑗 ∈ 𝐶𝐵𝑖  chosen at random. The objective of the 

negotiation is minimizing the total costs of the two buildings 

𝑏𝑖 , 𝑏𝑗 ∈ 𝐵 involved in the optimization. However, since the 

two residential buildings want to keep their earning, each 

BEMS agrees to divest a reward at one time slot if it can 

receive the same value of the reward at a different time slot.  

The new elements 𝜃𝑛
𝑖 (𝑡) and 𝜃𝑛

𝑗
(𝑡) for 𝑡 = 1,… , 𝑁 are 

obtained by 𝑏𝑖 and 𝑏𝑗 by solving the following LP problem: 
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𝐿𝑃3 

min∑[𝑏(𝑡)(𝑥𝑛
𝑖 (𝑡) + 𝑥𝑛

𝑗
(𝑡)) − 𝑐(𝑡)(𝑧𝑛

𝑖 (𝑡) + 𝑧𝑛
𝑗
(𝑡))

𝑁

𝑡=1

]    (6𝑎) 

s.t.

 

{
 
 
 
 
 

 
 
 
 
 

                                                                            

𝑥𝑛
𝑗 (𝑡) − 𝑧𝑛

𝑖 (𝑡) = 𝑥𝑗(𝑡) − 𝑧𝑖(𝑡), for 𝑡 = 1, … , 𝑁                                        (6𝑏)

𝑥𝑛
𝑖 (𝑡) − 𝑧𝑛

𝑗 (𝑡) = 𝑥𝑖(𝑡) − 𝑧𝑗(𝑡), for 𝑡 = 1, … , 𝑁                                        (6𝑐)

∑ 𝑏(𝑡)(𝑥𝑛
𝑗 (𝑡) − 𝑥𝑗(𝑡)) − 𝑐(𝑡)(𝑧𝑛

𝑗 (𝑡) − 𝑧𝑗(𝑡)) =𝑁
𝑡=1                                          

= ∑ 𝑏(𝑡)(𝑥𝑛
𝑖 (𝑡) − 𝑥𝑖(𝑡)) − 𝑐(𝑡)(𝑧𝑛

𝑖 (𝑡) − 𝑧𝑖(𝑡))𝑁
𝑡=1                                (6𝑑)

𝑥𝑛
𝑖 (𝑡) ≤ 𝑥𝑖(𝑡), for 𝑡 = 1, … , 𝑁                                                                        (6𝑒)

𝑥𝑛
𝑗 (𝑡) ≤ 𝑥𝑗(𝑡), for 𝑡 = 1, … , 𝑁                                                                        (6𝑓)

𝑧𝑛
𝑖 (𝑡) ≤ 𝑧𝑖(𝑡), for 𝑡 = 1, … , 𝑁                                                                        (6𝑔)

𝑧𝑛
𝑗 (𝑡) ≤ 𝑧𝑗(𝑡), for 𝑡 = 1, … , 𝑁                                                                        (6ℎ)

𝑥𝑛
𝑖 (𝑡), 𝑧𝑛

𝑖 (𝑡), 𝑥𝑛
𝑗 (𝑡), 𝑧𝑛

𝑗 ≥ 0 ,   for 𝑡 = 1, … , 𝑁                                               (6𝑖)

 

 

The objective function (6a) minimizes the total costs of 

buildings 𝑏𝑖 , 𝑏𝑗 ∈ 𝐵 involved in the optimization. 

The constraints (6b) impose that the gap between the total 

penalties of 𝑏𝑗 and the total rewards of 𝑏𝑖  does not change for 

𝑡 = 1,… , 𝑁 after the optimization. Analogously, (6c) imposes 

that the gap between the total penalties of 𝑏𝑖 and the total 

rewards of 𝑏𝑗  remains the same for 𝑡 = 1,… , 𝑁. Moreover, the 

constraint (6d) imposes that the gap between the total costs of 

𝑏𝑖  and 𝑏𝑗  does not change after the optimization. The 

constraints (6e-6f) and (6g-6h) impose that penalties and 

rewards, respectively, of 𝑏𝑖 and 𝑏𝑗 do not increase after the 

negotiation. Hence, constraints (6b-6h) guarantee the fairness 

of penalties and rewards. Note that constraint (6d) imposes 

that the reduction of power cost between two private 

users is always the same during the negotiation. 

Obviously, such a constraint is not necessary for public 

buildings where the common objective is the 

minimization of the total power cost of the buildings in 

the district.  

The following result proves that each building would not 

improve the power costs if negotiating a second time with the 

same building. 

 

Proposition 1: Let us consider a set 𝐵 = {𝑏1, … , 𝑏𝐾}  of 𝐾 

residential buildings. If a pair of buildings negotiates the 

power rewards and penalties by solving a LP3 problem, then a 

second negotiation among them does not modify their rewards 

and penalties. 

 

Proof: Let us assume that the buildings 𝑏𝑖 , 𝑏𝑗 ∈ 𝐵 optimize 

their power costs by solving the LP3 problem. After the 

execution of the LP3 problem, one of the two buildings cannot 

exchange further rewards with the other one. Then one of the 

two buildings (say 𝑏𝑖) is in one of the following conditions: i) 

𝑧𝑛
𝑖 (𝑡) = 0 for 𝑡 = 1,… , 𝑁, i.e., all the rewards of 𝑏𝑖 are equal 

to zero; ii) there exists at least a time instant 𝑡̅ such that 

𝑧𝑛
𝑖 (𝑡̅) > 0, and the penalty at the same time of building 𝑏𝑗 is 

equal to zero, i.e. 𝑥𝑛
𝑗(𝑡̅) = 0. 

Now, let us assume that the two buildings 𝑏𝑖 and 𝑏𝑗 are 

chosen at random a second time and optimize again their costs 

by solving LP3. The rewards 𝑧𝑛
𝑖 (𝑡) cannot be increased 

because the constraints (6g-6h) impose that rewards of 𝑏𝑖 and 

𝑏𝑗 do not increase after the negotiation. On the other hand, the 

penalties 𝑥𝑛
𝑗(𝑡̅) cannot increase because of constraints (6e-6f). 

This proves that the second negotiation between 𝑏𝑖 and 𝑏𝑗 does 

not modify their rewards and penalties.        ∎ 

The following procedure is applied for the distributed 

optimization: the idea is that each building has to negotiate the 

power costs with all its neighbors one and only one time. 

 

Algorithm 1: 

Step 1.  Set 𝐴𝐵 = 𝐵, 𝐴𝐶𝐵𝑖 = 𝐶𝐵𝑖  for 𝑖 = 1,… , 𝐾 

Step 2.  Select at random 𝑏𝑖 ∈ 𝐴𝐵 

Step 3.  Select at random 𝑏𝑗 ∈ 𝐴𝐶𝐵𝑖 . 

Step 4. Negotiation between pairs of buildings 

Solve LP3. 

Step 5. Updating of the sets 𝐴𝐵, 𝐴𝐶𝐵𝑖 and 𝐴𝐶𝐵𝑗 

Set 𝐴𝐶𝐵𝑖  = 𝐴𝐶𝐵𝑖  − {𝑗}, 𝐴𝐶𝐵𝑗 = 𝐴𝐶𝐵𝑗 − {𝑖} 

if 𝐴𝐶𝐵𝑗 = ∅ then set 𝐴𝐵 = 𝐴𝐵 − {𝑗} 

Step 6. If 𝐴𝐶𝐵𝑖  ≠ ∅ then go to Step 3  

else set 𝐴𝐵 =  𝐴𝐵 − {𝑖} 
Step 7. If 𝐴𝐵 ≠ ∅ then go to Step 2. 

Step 8. End  

 

A random building 𝑏𝑖 ∈ 𝐵 begins the negotiation with a 

neighbor building 𝑏𝑗 ∈ 𝐶𝐵𝑖  chosen at random. At step 5 the 

auxiliary sets 𝐴𝐵, 𝐴𝐶𝐵𝑖 and 𝐴𝐶𝐵𝑗 are updated: 𝑏𝑗 is deleted 

from 𝐴𝐶𝐵𝑖 and 𝑏𝑖 is deleted from 𝐴𝐶𝐵𝑗 because only one 

negotiation between 𝑏𝑖 and 𝑏𝑗 is allowed. Moreover, 𝑏𝑖 selects 

at random a neighbor building till the set 𝐴𝐶𝐵𝑖 is empty. If 

𝐴𝐶𝐵𝑖 is empty then 𝑏𝑖 can not negotiate with any other 

building and it is cancelled from the set 𝐴𝐵.  

The procedure goes to an end when each building has 

negotiated with all the neighbors for only one time (i.e., the set 

𝐴𝐵 is empty). Hence, a number of 
𝐾(𝐾−1)

2
 LP3 problem 

solutions between pairs of neighbor buildings are necessary. 

Finally, each building sends the new profiles of penalties 

and rewards to the DEMS that determines the new power 

𝑃𝐷_𝑜𝑝𝑡
𝑖 (𝑡) according to equation (5). 

VI. CASE STUDY FOR PUBLIC BUILDINGS 

In this section a real case study is presented to show the 

effectiveness of the DEMS and BEMS optimization modules 

for public buildings. To this purpose, we consider a district 

composed by 𝐾 = 10 public buildings of Bari, a town of the 

South of Italy.  

In order to collect data for the parameters identification, two 

temperature sensors are installed for inside and outside 

measurements, respectively. Moreover, we measure the 

HVAC heating power consumptions. The experiment to 

determine 𝛼 and 𝛽 parameters of equation (1) is performed 

according to the following procedure: 

1. we collect a set of H indoor and outdoor 
temperatures and power measures; 
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2. on the basis of the collected measures, we identify 
the parameters 𝛼 and 𝛽 by minimizing the 
following function according to the least squares 
method:   

∑[𝑇𝑖𝑛(𝑡) − (𝑇𝑖𝑛(𝑡 − 1) + 𝛼(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡 − 1)) + 𝛽𝑃𝐵(𝑡))]
2

𝐻

𝑡=1

 

The experiment results are summarized in Table I. 

TABLE I.   

PARAMETERS 𝛼, 𝛽 AND INITIAL TEMPERATURE OF THE BUILDINGS 

Building 𝜶 𝜷 𝑻𝒊𝒏(𝟎)[°C] 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

0.120 
0.125 

0.110 

0.134 
0.120 

0.130 

0.100 
0.117 

0.128 

0.122 

1 × 10−3 

9 × 10−4 

9.5 × 10−4 

1.2 × 10−3 

8.5 × 10−4 

8.8 × 10−4 

9.8 × 10−4 

7 × 10−4 

7.5 × 10−4 

1.2 × 10−3 

17.0 

17.5 

16.5 
17.0 

18.0 

17.5 

18.0 

17.0 

18.0 
17.0 

 

A. Power optimization performed by the BEMSs 

The heating mode of the HVAC system is considered. We 

choose 𝑇𝑠𝑒𝑡 = 20°𝐶 as comfort set-point that corresponds to 

𝑃𝑀𝑉 = −0.5 and 𝑃𝑃𝐷 = 10%. In addition, the vectors 𝒂, 𝒃 

and 𝒄 are set as follows: 𝑎(𝑡) = 8 × 10−3, 𝑏(𝑡) = 7 × 10−3 

and 𝑐(𝑡) = 1 × 10−3 for 𝑡 = 1,… , 𝑁.  

In the considered case study we compute 𝑁 = 15 time slots, 

i.e, we study a period of 15 hours (from 6 a.m. till 9 p.m. of a 

winter day). 

For the sake of brevity, we discuss and depict the responses 

of three buildings that represent three different conditions with 

diverse values of 𝛼 and 𝛽: 𝑏1, 𝑏4 and 𝑏8. Fig. 4 shows the 

profile proposed by the DEMS and the profiles obtained by 

the LP1 problem solution of 𝑏1, 𝑏4 and 𝑏8. Note that the 

power profile of 𝑏4 does not exceed the DEMS threshold: the 

𝑏4 power is sufficient to satisfy the thermal comfort thanks to 

the thermal efficiency of its HVAC system and the good initial 

temperature value. Moreover, Fig. 5 shows the cumulative 

increase of penalties and rewards during the day. Then no 

penalty is applied during the day to 𝑏4 that receives only 

rewards as Fig. 5 shows. On the contrary, 𝑏1 receives both 

rewards and penalties while 𝑏8 suffers penalties for most of 

the day. Thus, the HVAC system of 𝑏8 results to be 

inefficient: the initial condition does not allow satisfying the 

thermal comfort and suffers high penalties.  

Fig. 5 points out that 𝑏8 is the most penalized building 

(74.73 €/day) and receives very few rewards (0.43 €/day). On 

the contrary, 𝑏1 receives a reward of 3.24 €/day and a penalty 

of 13.73 €/day and 𝑏4 receives the highest amount of rewards 

(6.89 €/day) and no penalty. 

 

 

Figure 4.  The optimized thermal power profiles of buildings 𝑏1, 𝑏4 and 𝑏8.  

 

 

Figure 5.  Cumulative reward and penalty profiles of buildings 𝑏1, 𝑏4 and 𝑏8. 

In addition, Fig. 6 shows the effectiveness of comfort 

satisfaction of 𝑏1 by comparing the indoor temperature, the 

PMV and the PPD that are obtained by the optimization with 

the considered set points. We point out that in some situations 

in which the DEMS power is not sufficient to satisfy the 

comfort, the optimization module tends to slightly increase the 

indoor temperature over the set point in order to increase the 

PMV and decrease the PPD to satisfy the set-points at each 

time slot.  

 

Figure 6.  Tin, PMV and PPD of 𝑏1 obtained by the optimization. 
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Figure 7.  Rewards and penalties comparison after BEMS and DEMS 

optimization. 

B. Power and cost redistribution for public buildings 

The BEMSs send the resulting values of rewards and 

penalties to the DEMS optimization module that solves the 

LP2 problem. Fig. 7 shows the LP2 solutions by considering 

again 𝑏1, 𝑏4 and 𝑏8. In particular, the penalties of 𝑏1 and 𝑏4 

increase and the rewards decrease in order to reduce the 

district total cost. On the contrary, the 𝑏8 penalties decrease.  

Fig. 8 compares the new DEMS power profile 𝑃𝐷_𝑜𝑝𝑡
𝑖  with 

𝑃𝐷
𝑖   and 𝑃𝐵

𝑖   of 𝑏1, 𝑏4 and 𝑏8. We remark that at time 𝑡 = 1 the 

value of 𝑃𝐷
4  is reduced by the DEMS because it loses the 

reward. 

 

 
 

 

Figure 8.  Comparison of the initial DEMS power profile, the new DEMS  

profile, and the BEMS profile. 

 

TABLE II.  

BEMS OPTIMIZATION RESULTS 

Building 
Penalty 
[€/day] 

Reward 
-[€/day] 

Cost 
[€/day]  

1 
2 

3 
4 

5 

6 
7 

8 

9 
10 

13,73 

20,81 
27,18 

0,00 

29,90 
21,31 

22,35 

74,73 
71,63 

0,00 

3,24 

2,38 
2,14 

6,89 

1,98 
2,43 

2,63 

0,43 
0,18 

5,73 

10,49 

18,43 
25,04 

-6,89 

27,92 
18,88 

19,72 

74,3 
71,45 

-5,73 

Total[€] 281,65 28,02 253,63 
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TABLE III.  

DEMS OPTIMIZATION RESULTS 

Building 
Penalty 

[€/day] 

Reward 

-[€/day] 

Cost 

[€/day]  

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

26,07 

26,07 

26,07 
26,07 

26,07 

26,07 
26,07 

26,07 

26,07 
26,07 

2,50 

2,50 

2,50 
2,50 

2,50 

2,50 
2,50 

2,50 

2,50 
2,50 

23,57 

23,57 

23,57 
23,57 

23,57 

23,57 
23,57 

23,57 

23,57 
23,57 

Total [€] 260,65 25,02 235,63 

 

On the contrary, at time 𝑡 = 1 the value of 𝑃𝐷_𝑜𝑝𝑡
8  of 𝑏8 is 

greater than the corresponding value of 𝑃𝐷
8, because it takes 

advantage from the reduction of the rewards of other BEMSs.  

Tables II and III summarize for each building the power 

costs that BEMSs and DEMS forecast for the next day, before 

and after the DEMS optimization, respectively. More 

precisely, the first and second columns of Tables III and IV 

report the sum of the penalty costs (∑ 𝑏(𝑡)𝜃𝑖15
𝑡=0 (𝑡), 𝜃𝑖 > 0) 

and the reward costs (∑ 𝑐(𝑡)𝜃𝑖15
𝑡=0 (𝑡)) of 𝑏𝑖, for 𝑖 = 1…𝐾. 

Moreover, the last columns of Tables III and IV reports the 

costs (difference between penalties and rewards) after BEMS 

and DEMS optimization, respectively. The final result is that 

the total cost is reduced of 10% thanks to penalties and 

rewards compensation. 

We solve the LP1 and LP2 problems by a standard solver, 

i.e., GNU Linear Programming Kit [42] by using an Intel-Core 

i7-4770 CPU at 3.40 GHz, with 16GB RAM. The performed 

tests are solved in few seconds. 

VII. CASE STUDY FOR RESIDENTIAL BUILDINGS 

In this section a real case study is presented to show the 

effectiveness of the BEMS optimization module applied to a 

district B composed by 𝐾 = 5 residential buildings of Bari 

(Italy).  

We repeat the experiments described in Section IV to 

identify the parameters 𝛼, 𝛽 and the initial temperature. The 

results are summarized in Table IV. 

TABLE IV.  

PARAMETERS 𝛼, 𝛽 AND INITIAL TEMPERATURE OF THE BEMSS 

Building 𝜶 𝜷 𝑻𝒊𝒏(𝟎)[°C] 

1 

2 
3 

4 

5 

0.270 

0.250 
0.275 

0.258 

0.264 

1 × 10−3 

1.2 × 10−3 

1 × 10−3 

1.3 × 10−3 

1 × 10−3 

17.5 
18.0 

18.5 

18.5 
18.0 

 

A. Power optimization performed by the BEMSs 

The heating mode of the HVAC system is considered. The 

temperature set-point 𝑇𝑠𝑒𝑡, and the vectors 𝒂, 𝒃 and 𝒄 are set as 

in Section V.A, for each building. Moreover, we consider 𝑁 =
15 time slots, i.e, we study a period of 15 hours (from 6 a.m. 

till 9 p.m. of a winter day).  

 

 

 

 

 

 

Figure 9.  The optimized thermal power profiles of each building 𝑏𝑖 ∈ 𝐵. 
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Figure 10.  Cumulative reward and penalty profiles for the five BEMSs. 

 

 

Figure 11.  Tin, PMV and PPD of 𝑏5. 

Fig. 9 shows the power profile proposed by the DEMS and 

the profiles obtained by the LP1 problem solution of each 

building bi ∈ B.  

Fig. 10 shows the cumulative increase of penalties and 

rewards obtained from the LP1 problem solutions performed 

by each bi ∈ B. In this situation all the BEMSs receive both 

rewards and penalties during the day: b3 is the most penalized 

building (9.63 €/day) and receives the highest reward (2.85 

€/day); b1 obtains 7.57 €/day of penalty and 1 €/day of 

reward; b2 receives 5.08 €/day of penalty and 0.93 €/day of 

reward; b4 obtains 4.14 €/day of penalty and 1 €/day of 

reward and b5 receives 6.83 €/day of penalty and 1.35 €/day 

of reward.  

In addition, Fig. 11 shows the effectiveness of the comfort 

satisfaction of b5 by comparing the indoor temperature, the 

PMV and the PPD that are obtained by the optimization with 

the considered set points. 

 

B. Power and cost redistribution by the distributed approach 

In this section we show the effectiveness of the application 

of the distributed approach for the cost redistribution 

performed by the set 𝐵 = {𝑏1, … , 𝑏5}  of residential buildings.  

Each BEMS selects a subset of buildings with which it 

intends to perform the cost negotiation. In the presented 

scenario, the communication among the BEMSs is described 

by the indirect and connected graph  𝐺𝑐 = (𝐵, 𝐸)  shown in 

Fig. 12. According to 𝐺𝑐, the following subsets are 

defined: 𝐶𝐵1 = {2,3,5}, 𝐶𝐵2 = {1,3}, 𝐶𝐵3 = {1,2,4}, 𝐶𝐵4 =
{3,5}, 𝐶𝐵5 = {1,4}.  

 

 

Figure 12.  The indirect and connected graph Gc 

In the following we describe the main steps of Algorithm 1 

performed during the first negotiation. 

At Step 2 𝑏3 is selected at random and at Step 3 𝑏1 ∈ 𝐶𝐵3 

is selected at random. Then LP3 is solved by 𝑏3 and 𝑏1. The 

results are shown in Table VI. 

 

TABLE V. 

BEMS OPTIMIZATION RESULTS FOR 𝑏3 AND 𝑏1 

Power optimization 

 b3 b1 

Time [h] 
Penalties 

[W/h] 
Rewards 

[W/h] 
Penalties 

[W/h] 
Rewards 

[W/h] 

1 70 0 540 0 

2 313 0 0 155 

3 230 0 0 236 

4 0 525 0 90 

5 0 300 0 160 

6 0 400 0 360 

7 0 537 0 0 

8 0 725 0 0 

9 0 0 0 0 

10 0 0 152 0 

11 0 0 145 0 

12 313 0 0 0 

13 450 0 0 0 

14 0 250 0 0 

15 0 113 244 0 

Total W/h 1375 2850 1081 1001 

 

 

Table V shows the LP1 problem results performed by the 

BEMS optimization modules of 𝑏3 and 𝑏1. Table VI shows the 

results of LP3 problem performed by 𝑏3 and 𝑏1. In particular, 

the first column indicates the times (starting from 𝑡 = 1), the 

second and third columns report penalties and rewards of 𝑏3 

respectively, and the last columns report penalties and rewards 

of 𝑏1. Comparing Table V and VI, we remark that two power 

exchanges of 113 W occur at 𝑡 = 2 and 𝑡 = 15. Let us remark 

that no other equal power exchanges are possible between the 

considered pair at other time instants 𝑡. The total savings after 

the negotiation is 0,68 € both for 𝑏3 and 𝑏1 and are computed 

as follows: 

 

𝑏(𝑥𝑛
1(2) − 𝑥1(2)) − 𝑐(𝑧𝑛

1(2) − 𝑧1(2)) = 

= 𝑏(𝑥𝑛
3(15) − 𝑥3(15)) − 𝑐(𝑧𝑛

3(15) − 𝑧3(15))=0,68 €. 
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TABLE VI.  

NEGOTIATION RESULTS OF 𝑏3AND 𝑏1 

Power negotiation results at the first step 

 b3 b1 

Time [h] 
Penalties 

[W/h] 

Rewards 

[W/h] 

Penalties 

[W/h] 

Rewards 

[W/h] 

1 70 0 540 0 

2 200 0 0 42 

3 230 0 0 236 

4 0 525 0 90 

5 0 300 0 160 

6 0 400 0 360 

7 0 537 0 0 

8 0 725 0 0 

9 0 0 0 0 

10 0 0 152 0 

11 0 0 145 0 

12 313 0 0 0 

13 450 0 0 0 

14 0 250 0 0 

15 0 0 131 0 

Total W/h 1262 2737 968 888 

 

TABLE VII.  

RESULTS OF THE DISTRICT NEGOTIATION  

Cost negotiation results 

 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 

Penalties 

[€/day] 7,57 5,08 

 

9,63 4,14 8,82 

Rewards 
-[€/day] 1,00 0,93 

 
2,74 1,00 2,51 

Cost 

[€/day] 6,57 4,15 

 

6,89 3,14 6,31 

Savings: 

[€/day] 0,99 0,88 

 

1,50 0,12 0,31 

%Saving 
[%/day] 15% 21% 

 

27% 12% 6% 

 

Applying Algorithm 1, building 𝑏3 solves LP3 with the 

remaining neighbors 𝑏2 and 𝑏4. When 𝑏3 finishes the 

negotiation, building b4 is selected at random and executes the 

negotiation with b5. Successively, building b2 negotiates with 

the b1. Finally, b1 is selected and negotiates with b5. Then, all 

the possible pairs of buildings are considered and the 

negotiation goes to an end. Table VII shows the final results: 

rows 1 and 2 report the total penalties (sum of penalty for 𝑡 =
1…𝑁) and the total rewards of the day (sum of reward for 𝑡 =
1…𝑁), respectively. The difference between total penalties 

and total rewards are reported in row 3. Moreover, rows 4 and 

5 indicate the total savings of the day in € and in percentage 

(%) for each BEMS, respectively. The results show that the 

residential buildings are able to bargain autonomously the 

costs and the penalties obtained in the first optimization and 

each building can save the energy cost with advantages for all 

of them. 

 

VIII. CONCLUSION 

This paper deals with the building network management 

problem on the basis of the Day-Ahead Market concept and a 

hierarchical architecture of the district energy management. In 

particular, the district energy management optimizes the 

district power distribution by taking into account two human 

objectives: guaranteeing the human thermal comfort and 

minimizing wastes and costs. To this aim, a day-ahead 

negotiation establishes the energy cost and profile of the 

district by adopting both power penalties and rewards.  

More precisely, the District Energy Management System 

(DEMS) provides the power profile to each Building Energy 

Management System (BEMS) on the basis of the day-ahead 

energy market negotiation. Each BEMS of the district solves a 

Linear Programming (LP) problem and determines its power 

consumption and cost for the next day. Successively, the 

power profiles are optimized by proposing two different 

strategies: a centralized approach is applied to public buildings 

and a distributed and autonomous negotiation is applied to 

residential buildings. Two case studies show the efficiency of 

the presented strategies in the two different scenarios. 

In the future research the district energy management 

system will consider also the impact of the alternative energy 

sources. Moreover, other factors of the building environment 

comfort will be studied, such as the visual and air-quality 

comfort. 
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