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ABSTRACT 
 

 

The Operational Modal Analysis (OMA) represents one of the most used techniques for the 

structural identification in civil engineering. Unfortunately, the NExT hypotheses (Natural 

Excitation Techniques) make the OMA not applicable to a railway vehicle. 

In this context , the present document shows the functional design of a novel device for railway 

diagnostic vehicles, capable to implement the so called “In-Operation Modal Analysis” (based on a 

particular modal partial fraction decomposition of the power spectral densities, or PSD, response 

matrix, specifically dedicated to the case of track-vehicle interaction) for the dynamic 

identification of train modal parameters and rail-head irregularities, which represent one of the 

principal sources of excitation for a railway vehicle. This method allows the indirect 

characterization of statistical properties of rail surface roughness, starting from the output signals 

(e.g., accelerations) acquired on vehicles in working conditions, combined with some knowledge 

about the frequency response functions (FRFs) matrix of the vehicle. Moreover, by exploiting 

homogeneity properties, it is possible to reduce the number of quantities to be estimated for the 

features evaluation of parallel track profiles belonging to the same running surface. Then it is 

allowed to identify specific roughness statistical properties, such as the associated auto-power 

spectral densities (auto-PSDs) and their relevant coherence function. 

This modal structure incorporates train modal parameters and statistical rail-roughness as 

unknowns to be identified by employing data from a simple set-up of accelerometers distributed 

only on some strategical measuring points of the vehicle. 

The aforementioned identification strategy is applied through three different dynamic analytical 

models for train vibrations: a half-train multi-body model with 6 degrees of freedom (2 degrees of 

freedom dedicated to the vertical and pitch motions of the vehicle body and 4 degrees of freedom 

to describe the vertical and pitch motions of each of the two bogies; the wheels are modeled as 

massless and directly in contact with the rail profile), a half-train multi-body model with 10 

degrees of freedom (2 degrees of freedom dedicated to the vertical and pitch motions of the 

vehicle body, 4 degrees of freedom to describe the vertical and pitch motions of each of the two 

bogies and, in conclusion, 4 degrees of freedom for the vertical motions of each wheel of the four 

axles), and a full-train multi-body model consisting of 17 degrees of freedom (where roll motions 

of vehicle body, bogies, and axles are also observed). 

Finally, experimental measurements, recorded over several runs of a properly armed diagnostic 

vehicle, have been processed to prove the incredible potential of this brand-new device. 
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1 INTRODUCTION 

 

In land-vehicles literature, many authors dedicated their work at studying the surfaces where 

these vehicles move on. In railway sector, the rail head irregularities represent one of the principal 

excitation sources in vehicle dynamic. A proper knowledge about this topic is essential for both the 

vehicle design and a correct maintenance of railway infrastructures. 

During the design step, knowing the stress levels beforehand allows you to adjust the vehicle 

dynamic behaviour in order to improve the overall dynamic performances, safety, and passengers’ 
comfort. On the other hand, this could be possible only by monitoring the health state of railway 

infrastructure through a predictive maintenance strategy. 

To pursue this aim, there are already several types of diagnostic systems, like those with optical or 

laser sensors. Unfortunately, all of them share the same narrow “defect”: expensiveness. 
Therefore, the scope of this work is to find a cheaper but equally effective way to reach the same 

result through the vibration-based condition monitoring. This strategy has also the merit of 

keeping a good model robustness even under extreme weather conditions: for example, if the rail 

head surface is covered by a fair amount of snow, the accelerometers layout will not be affected 

while all optical systems will turn out unable to properly measure the wanted track properties. 

With the method described afterwards, by estimating the excitations coming from the wheel rail 

interaction and the subsequent response of the whole vehicle model,  it will be possible to identify 

with an acceptable approximation of every rail head surfaces characteristics and then to classify 

them according to any kind of rail standard. 

To hit this target, both theoretical and experimental results are then analysed. First, three multi-

body models of a train have been implemented, then the records coming from several runs of a 

properly armed diagnostic train have been processed. All the experimental data have been 

recorded through the instrumentation of MerMec S.p.A., member of the Angel Company 

(https://www.mermecgroup.com/ ; https://www.angelcompany.com/). 

Another strength of this vibrational approach, from an industrial point of view, is the possibility to 

create a modular set of products based on how wide the accelerometer layout is. This work 

underlines the different potential that exists between a “poor” accelerometers’ layout (as the one 

usually mounted on a diagnostic vehicle) and an “augmented” one. 

All experimental results have been studied and verified according to the standard EN 13848, parts 

1, 2 and 5 (respectively [18],[19], and [20]). 

Finally, starting from the vehicle’s accelerations, the estimation of the rail head profile has been 

validated through a comparison with the same estimation but made by a different technology, i.e., 

the MerMec’s opto-electronic Track Geometry Measuring System (TGMS). 

 

  

https://www.mermecgroup.com/
https://www.angelcompany.com/
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2 CHARACTERIZATION AND IDENTIFICATION OF THE RAIL HEAD’S RUNNING 
TABLE 

 

The major source of excitation for a train is the one coming from the vehicle interaction with the 

railway infrastructure. Starting from this phenomenon, it is possible to identify two different 

parameters that affect the vehicle’s dynamic behavior: the spatial trend of the rail-road stiffness 

and of the track geometry. The former depends on the general basement configuration and, in a 

more evident way, on the longitudinal sleepers’ pitch (that creates a space-periodic stiffness 

variation in the vehicle support); the latter takes into count all rail-head micro and macro 

irregularities but also the overall geometric configuration of the railway infrastructure (i.e., track 

gauge, longitudinal level, cross level, transverse alignment, switches and so on). 

Focusing on the rail-head irregularities, the properties of the running surface’s roughness could be 
estimated through the “power spectral density” (PSD) statistical function. This method allows to 

create a mathematical model of the rail-head irregularities’ distribution along any wavelength of 
interest and then to classify the rail wear levels setting different frequency-amplitude classes. 

To validate this kind of estimation, the rail profile needs to be considered as a random and 

stationary process, therefore its statistical properties do not depend on the considered track 

length. 
 

2.1 RANDOM SIGNALS THEORY 

 

 

Figure 2.1: Typical time domain realization of a random signal 

 

The system’s response to random excitations is also a random phenomenon. Describing a random 

phenomenon using time functions is not the best approach. Several random phenomena are 

characterized by statistical regularity, that means they have repetitive patterns and can thus be 

described in terms of averages. For these reasons it is preferred to describe stochastic phenomena 

in terms of probability of occurrence rather than in a deterministic way. 

Mainly four statistical functions are used to describe the random signals: 
 

• Root mean square and variance, that provide information about the amplitude of the 

signal; 
 

• Probability distributions, that provide information about the statistical properties of the 

signal’s amplitude;  
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• Correlation functions, that provide information about the statistical properties of the signal 

in the time domain; 

 

• Power spectral density functions, that provide information about the statistical properties 

of the signal in the frequency domain. 

 

2.1.1 STATIONARITY AND ERGODICITY OF A PROCESS 

 

Let us consider n realizations over time of a certain random process 𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡), as 

those shown in the next figure: 

 

 

Figure 2.2: Example of n different time domain realizations of a random signal (adapted from [11]) 

 

Each realization will be different from the others. Therefore, it is not possible to use any of these 

functions over time to predict a future realization. A single function over time 𝑥𝑘(𝑡) is called 

sample function and can be considered a random variable. The set of all possible realizations over 

time constitutes the random (or stochastic) process. In such processes it is possible at first to 

define an average value at a given time 𝑡 = 𝑡1; the so-called overall average is obtained: 

 

 𝜇𝑥(𝑡1) = lim𝑛→+∞ 1𝑛 ∑ 𝑥𝑘(𝑡1).𝑛
𝑘=1  (2.1) 

 

The concept of assembly mean is also present within the definition of auto-correlation function, by 

referring again to Figure 2, can be defined as the mean value of the product of the function at time 𝑡 and at time 𝑡 +  𝜏: 

 

 𝑅𝑥𝑥(𝑡1, 𝑡1 + 𝜏) = lim𝑛→+∞ 1𝑛 ∑ 𝑥𝑘(𝑡1)𝑥𝑘(𝑡1 + 𝜏).𝑛
𝑘=1  (2.2) 
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If the values of 𝜇𝑥(𝑡1) and 𝑅𝑥𝑥(𝑡1, 𝑡1 + 𝜏) depend on the value 𝑡1, then the process will be defined 

as non-stationary. Otherwise, the process can be defined as stationary. Consequently, the average 

value will be time independent, so 𝜇𝑥(𝑡1) = 𝜇𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and the auto-correlation function 

will depend only on the 𝜏 value, so 𝑅𝑥𝑥(𝑡1, 𝑡1 + 𝜏) = 𝑅𝑥𝑥(𝜏). 

Actually, there is a difference between weakly stationary and strongly stationary processes but in 

many practical applications the first one implies the second. It is a class of random processes 

defined as random Gaussian processes. 

In general, for the calculation of assembly means, such as the mean value or the autocorrelation 

function, it is needed to have a large number of sample functions. In some cases, it is possible to 

refer to a single realization k over time, by calculating the average time value and the time domain 

auto-correlation function as follows: 

 

 𝜇𝑥(𝑘) = lim𝑇→+∞ 1𝑇 ∫ 𝑥𝑘(𝑡)𝑑𝑡𝑇
0 ; (2.3) 

 

 𝑅𝑥𝑥(𝑘, 𝜏) = lim𝑇→+∞ 1𝑇 ∫ 𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏)𝑑𝑡𝑇
0 . (2.4) 

 

If the process is stationary and the values of 𝜇𝑥(𝑘) and 𝑅𝑥𝑥(𝑘, 𝜏) are the same for any process 

realization of the process, then the process can be defined as ergodic. 

Consequently, for an ergodic process: 

 

 𝜇𝑥(𝑘) = 𝜇𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; (2.5) 

 

 𝑅𝑥𝑥(𝑘, 𝜏) = 𝑅𝑥𝑥(𝜏). (2.6) 

 

Ergodicity therefore makes it possible to use a single sample function to calculate the means of  a 

given random process. The mean square value of a random variable 𝑥(𝑡) is defined as the 

quantity: 

 

 𝜓2𝑥 = lim𝑇→+∞ 1𝑇 ∫ 𝑥2(𝑡)𝑑𝑡𝑇
0 . (2.7) 

 

The square root of the mean square value is denoted by RMS (root mean square value). 

We have seen how 𝜇𝑥 is constant for an ergodic process. In vibrations it is possible to consider the  

mean value 𝜇𝑥 as the static component of 𝑥(𝑡) and the quantity 𝑥(𝑡) − 𝜇𝑥 as the dynamic 

component. The latter is represented by the variance, defined as follows: 

 

 𝜎2𝑥 = lim𝑇→+∞ 1𝑇 ∫ [𝑥(𝑡) − 𝜇𝑥]2𝑑𝑡𝑇
0 . (2.8) 

 

Its root square value is known as standard deviation. It can be easily proved that:  

 

 𝜎2𝑥 = 𝜓2𝑥 − 𝜇2𝑥. (2.9) 
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2.1.2 PROBABILITY DENSITY FUNCTIONS 

 

It has been shown that in the case of an ergodic random process it is possible to use a single  

assembly function to describe it in terms of averages. The probability density function allows you 

to collect information concerning a random variable in terms of amplitude. 

The expected value (or average value) of a function 𝑥(𝑡) is given by: 

 

 𝐸[𝑥(𝑡)] = 1𝑇 ∫ 𝑥(𝑡)𝑑𝑡𝑇
0 = ∫ 𝑥𝑝(𝑥)𝑑𝑥+∞

−∞ , (2.10) 

 

where 𝑝(𝑥) is the probability density function. In other words, it represents probability 𝑝 (𝑥) 𝑑𝑥 

that a random variable falls within the interval [𝑥 ;  𝑥 + 𝑑𝑥]. Consequently, for a stationary process 

(i.e. time-invariant), we have that 𝐸 [𝑥 (𝑡)] = 𝐸 [𝑥]. 
Similarly, since the root mean square value is the expected value of 𝑥2, we have: 

 

 𝐸[𝑥2] = 1𝑇 ∫ 𝑥2𝑑𝑡𝑇
0 = ∫ 𝑥2𝑝(𝑥)𝑑𝑥+∞

−∞ . (2.11) 

 

The integrals in equations (2.10) and (2.11) are approximated considering that, for a  value of T 

sufficiently large, all values between 0 and T are equally probable and therefore 𝑑𝑡 𝑇⁄ ~𝑝(𝑥)𝑑𝑥. 

According to what we saw in the previous section, the square root of 𝐸[𝑥2] is the RMS. The 

standard deviation σ of 𝑥(𝑡) and the variance 𝜎2 are defined by: 

 

 𝜎2 = 𝐸[𝑥2] − (𝐸[𝑥])2. (2.12) 

 

If the signals are digitally recorded the mean value, the mean square value and the variance can be 

obtained directly from the time history of the random signal 𝑥(𝑡): 

 

 𝐸[𝑥] = lim𝑁→+∞ 1𝑁 ∑𝑥𝑖(𝑡)𝑁
𝑖=1 ; (2.13) 

 

 𝐸[𝑥2] = lim𝑁→+∞ 1𝑁 ∑ 𝑥2𝑖(𝑡)𝑁
𝑖=1 . (2.14) 

 

where N is the number of assemblies. 
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2.1.3 CORRELATION FUNCTIONS 

 

The auto-correlation function for a random signal 𝑥 (𝑡) provides information about the degree of 

dependence of a value of 𝑥 at a time 𝑡 with respect to its assumed value at a time 𝑡 +  𝜏. In 

section 2.1.1 we have seen how for a stationary random signal, the function of autocorrelation 

depends only on 𝜏 and it is independent from the absolute time. 

By expanding the definition given by equation (2.4) we have: 

 

 𝑅𝑥𝑥(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] = lim𝑇→+∞ 1𝑇 ∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡𝑇
0 , (2.15) 

 

where 𝑝 (𝑥) 𝑑𝑥 =  𝑑𝑡 𝑇⁄  has been set, that is, for a sufficiently large value of T, all values of the 

random signal 𝑥 (𝑡) have the same probability of falling within the interval [0;  𝑇]. 
 

 

Figure 2.3:An example of the auto-correlation function (adapted from [14]) 

 

An example of the auto-correlation function is shown in Figure 2.3. It is possible to normalize a 

correlation function through a correlation coefficient, defined as: 

 

 𝜌𝑥𝑥 = 𝐸[(𝑥(𝑡1) − 𝑚𝑥)(𝑥(𝑡2) − 𝑚𝑥)]𝜎𝑥𝜎𝑥 = 𝑅𝑥𝑥(𝜏) − 𝑚𝑥2𝜎𝑥2 , (2.16) 

 

where 𝑚𝑥 is the signal mean value. 

For 𝜏 → 0 => 𝜌𝑥𝑥 → 1, being 𝑅𝑥𝑥(0) = 𝐸[𝑥2] = 𝜎𝑥2 − 𝑚𝑥2. For 𝜏 → ∞ => 𝜌𝑥𝑥 → 0, because 𝑅𝑥𝑥(∞) → 𝑚𝑥2. The auto-correlation function is an even function and assumes its maximum value 

for 𝜏 =  0. 𝑅𝑥𝑥(𝜏) is periodic for periodic signals and decays to 0 for random signals at large 

values of the delay 𝜏. 

Now consider two different stationary random signals 𝑥 (𝑡) and 𝑦 (𝑡). The cross-correlation 

function between the two signals provides information about the similarity between them in 

function of the time shift 𝜏, and it is defined as: 

 

 𝑅𝑥𝑦(𝜏) = 𝐸[𝑥(𝑡)𝑦(𝑡 + 𝜏)] = lim𝑇→+∞ 1𝑇 ∫ 𝑥(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡𝑇
0 . (2.17) 
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Figure 2.4 shows an example of the cross-correlation function. 

 

 

Figure 2.4: An example of the cross-correlation function (adapted from [14]) 

 

For each pair of random and stationary signals, we can define two cross-correlation functions: 

 

 
𝑅𝑥𝑦(𝜏) = 𝐸[𝑥(𝑡)𝑦(𝑡 + 𝜏)], 𝑅𝑦𝑥(𝜏) = 𝐸[𝑦(𝑡)𝑥(𝑡 + 𝜏)]; (2.18) 

 

Moreover, being these processes defined as stationary, it is also true that:  

 

 
𝑅𝑥𝑦(𝜏) = 𝐸[𝑥(𝑡 − 𝜏)𝑦(𝑡)] = 𝑅𝑦𝑥(−𝜏), 𝑅𝑦𝑥(𝜏) = 𝐸[𝑦(𝑡 − 𝜏)𝑥(𝑡)] = 𝑅𝑥𝑦(−𝜏). (2.19) 

 

Differently from the auto-correlation function, because 𝑅𝑥𝑦(𝜏) = 𝑅𝑦𝑥(−𝜏)the cross-correlation 

function is not an even function of 𝜏. 

 

2.1.4 AUTO – POWER SPECTRAL DENSITY 

 

The autocorrelation function provides information about the properties of a random variable in 

the time domain. On the other hand, the PSD (power spectral density function) provides the same 

type of information in the frequency domain. The spectral density function is the Fourier 

transform of the correlation function. Let 𝑥 (𝑡) be the representative assembly function of an 

ergodic random process. Indicating with 𝑋 (𝜔) the Fourier transform of the function 𝑥 (𝑡), we 

have: 

 

 𝑋 (𝜔) = 12𝜋 ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡+∞
−∞ , (2.20) 

and 

 

 𝑥(𝑡) = ∫ 𝑋 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔+∞
−∞ . (2.21) 
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Note that 𝑋 (𝜔) is a complex quantity. 

The classical Fourier analysis introduces the following condition: 

 

 ∫ |𝑥(𝑡)|𝑑𝑡+∞
−∞ < ∞, (2.22) 

 

and so it is valid for any function whose absolute value is integrable and tends to 0 for|𝑡| → ∞. 

Since stationary random signals do not respect this last condition unlike the correlation functions 

(we have seen how the correlation function of a random signal tends to 0 as 𝜏 increases), that’s 
why the latter are used for the Fourier analysis; in this way we have: 

 

 𝑆𝑥𝑥(𝜔) = 12𝜋 ∫ 𝑅𝑥𝑥(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ , (2.23) 

and 

 𝑅𝑥𝑥(𝜏) = ∫ 𝑆𝑥𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞ . (2.24) 

 𝑆𝑥𝑥(𝜔) represent the auto-power spectral density of 𝑥(𝑡). 

One of its most important properties can be underlined setting 𝜏 = 0 in the equation (2.24): 

 

 𝑅𝑥𝑥(𝜏 = 0) = ∫ 𝑆𝑥𝑥(𝜔)𝑑𝜔+∞
−∞ . (2.25) 

 

Considering the definition given by equation (2.15), we obtain: 

 

 𝐸[𝑥2] = 𝑅𝑥𝑥(𝜏 = 0) = ∫ 𝑆𝑥𝑥(𝜔)𝑑𝜔+∞
−∞ . (2.26) 

 

So, as it is shown in the next figure, the mean square value of a random and stationary process can 

be given by the area under the curve of the 𝜔-dependent power spectral density. 

 

 

Figure 2.5: The graphic explanation of the 𝑬[𝒙𝟐] value matching the area under the 𝑺𝒙𝒙(𝝎) curve (adapted from [12]) 

 

It is proved now that 𝑆𝑥𝑥(𝜔)is a real and even function. The complex value of a Fourier transform 

function can be split into real and imaginary part: 

 

 𝑋 (𝜔) = 𝐴 (𝜔) − 𝑖𝐵 (𝜔), (2.27) 
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Applying the same definition to the PSD: 

 

 𝑆𝑥𝑥(𝜔) = 𝐴 (𝜔) − 𝑖𝐵 (𝜔), (2.28) 

where 

 𝐴 (𝜔) = 12𝜋 ∫ 𝑅𝑥𝑥(𝜏) cos(𝜔𝜏) 𝑑𝜏+∞
−∞ , (2.29) 

and 

 𝐵 (𝜔) = 12𝜋 ∫ 𝑅𝑥𝑥(𝜏) sin(𝜔𝜏) 𝑑𝜏+∞
−∞ , (2.30) 

 

Since 𝑅𝑥𝑥(𝜏) is an even function of 𝜏 and 𝑠𝑖𝑛 (𝜔𝜏) is an odd function, their product is an odd 

function and for this reason we have that the integral in (2.30) in the range [ −∞;  0] is exactly 

equal and of opposite sign to its value in the range [ 0;+∞]. Therefore, 𝐵 (𝜔) is null and so the 

PSD is defined as: 

 

 𝑆𝑥𝑥(𝜔) = 𝐴 (𝜔). (2.31) 

 

Moreover, according to (2.29), it is a real and even function of 𝜔, and it is always non-negative. 

 

There are two alternative but equivalent ways to define the same PSD. In figure 2 .6a we have the 

so-called double-sided spectral density function, defined in the interval [ −∞; +∞]. Figure 2.6b 

shows the same PSD in the form of one-sided spectral density function (also called half spectrum), 

defined in the interval [ 0;+∞]. 
 

 

Figure 2.6: Double-sided (a) and one-sided (b) spectral density function (adapted from [12]) 

 

By referring on the previous figure and according to (2.26), which states:  

 

 𝐸[𝑥2] = ∫ 𝑆𝑥(𝜔)𝑑𝜔+∞
−∞ , (2.32) 
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it follows: 

 𝐸[𝑥2] = ∫ 𝑊𝑥(𝑓)𝑑𝑓+∞
0 , (2.33) 

 

where 𝑓 is the frequency in Hz. The band [ 𝜔; 𝜔 + 𝑑𝜔] in 𝑟𝑎𝑑 𝑠⁄  in figure 2.6a corresponds to the 

band [ 𝜔2𝜋 ; 𝜔+𝑑𝜔2𝜋 ] in Hz in figure 2.6b; therefore, because of the hatched areas in the two figures 

must be equal according to (2.32) and (2.33), it follows that: 

 

 2𝑆𝑥(𝜔)𝑑𝜔 = 𝑊𝑥 (𝑓 = 𝜔2𝜋) 𝑑𝜔2𝜋 . (2.34) 

 

In conclusion, the half-spectrum is linked to the continuous-spectrum by the following relations: 

 

 
𝑊𝑥 (𝑓 = 𝜔2𝜋) = 4𝜋𝑆𝑥(𝜔); 𝑊𝑥(𝑓) = 4𝜋𝑆𝑥(𝜔 = 2𝜋𝑓). (2.35) 

 

2.1.5 BROADBAND AND NARROWBAND RANDOM PROCESSES 

 

We have seen how the PSD function provides information about a random process in the 

frequency domain. In particular, the random processes can be divided into random processes with 

a narrowband of frequencies and a broadband of frequencies. In the first case, 𝑆𝑥(𝜔) has 

significant values only for a narrow band of frequencies with the peak-frequency at its centre. In 

the second case 𝑆𝑥(𝜔) assumes significant values for a wider range of frequencies. The two 

extreme cases are: 

• spectrum consisting of two symmetrical delta functions with respect to the ordinate axis, 

corresponding to a sinusoidal assembly function; 

• spectrum consisting of a uniform function, corresponding to an assembly function in which 

all frequencies are equally represented. 

 

 

Figure 2.7: Examples of a narrowband assembly function (a) and a broadband assembly function (b) (adapted from [12]) 
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With reference to figure 2.7b, in the broadband process limit case, when 𝜔1 = 0 and 𝜔2 → ∞, we 

refer to the ideal white noise. Basing on (2.26), the root mean square value of a random process 

consisting of an ideal white noise would be infinite, that is the reason why it is only a theoretical 

concept. 

However, if we consider a broadband noise that extends well beyond the frequencies of interest, 

we can talk about white noise or narrow-band white noise. 

The shape of the autocorrelation function of a white noise can be obtained with simple steps. In 

general, from (2.26) we have that: 

 𝐸[𝑥2] = ∫ 𝑆𝑥(𝜔)𝑑𝜔+∞
−∞ = 2𝑆0(𝜔2 − 𝜔1), 

 

where 𝑆0 is the constant amplitude peak value of 𝑆𝑥(𝜔). From the (2.24) and, because the 𝑆𝑥(𝜔) 

is an even function in 𝜔, it results that: 

 𝑅𝑥(𝜏) = ∫ 𝑆𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞ = ∫ 𝑆𝑥(𝜔) cos(𝜔𝜏) 𝑑𝜔+∞

−∞ = 

 = 2∫ 𝑆0 cos(𝜔𝜏) 𝑑𝜔𝜔2𝜔1 = 

 = 2𝑆0 [1𝜏 sin(𝜔𝜏)]𝜔1
𝜔2 = 

 = 2𝑆0𝜏 (sin(𝜔2𝜏) − sin(𝜔1𝜏)) = 

 = 4𝑆0𝜏 cos [(𝜔1 + 𝜔22 ) 𝜏] ∙ sin [(𝜔2 − 𝜔12 )𝜏]. 
 

Setting now 𝜔1 = 0, we obtain: 

 𝑅𝑥(𝜏) = 4𝑆0𝜏 cos𝜔2𝜏2 sin 𝜔2𝜏2 = 2𝑆0 sin(𝜔2𝜏)𝜏 . 
 

This function is represented in figure 2.8a. Moreover, setting 𝜔2 → ∞ the curve is reduced to a 

single vertical peak with zero width, infinite hight and finite area (that could be easily 

demonstrated to be equal to 2𝜋𝑆0), as shown in figure 2.8b. 

 

 

Figure 2.8: Auto-correlation functions of a generic signal (a) and of a white noise (b) (adapted from [12]) 
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To mathematically describe this behaviour we can use the Dirac delta function 𝛿(𝜏), which is 

defined as null everywhere except in 𝜏 = 0 where it is infinite: 

 ∫ 𝛿(𝜏)𝑑𝜏+∞
−∞ = 1. 

 

To be more generic, the function 𝛿(𝜏 − 𝑇) is null everywhere except in 𝜏 = 𝑇; denoting by 𝑔(𝜏)a 

generic continuous function of 𝜏 we have that: 

 

 ∫ 𝛿(𝜏 − 𝑇)𝑔(𝜏)𝑑𝜏+∞
−∞ = 𝑔(𝜏 = 𝑇). (2.36) 

 

In this way the autocorrelation function for a white, random, and stationary signal with spectral 

density 𝑆0 will be: 

 

 𝑅𝑥(𝜏) = 2𝜋𝑆0𝛿(𝜏), (2.37) 

 

and therefore, as we have seen in figure 2.8b, 𝑅𝑥(𝜏) is null everywhere except in 𝜏 = 0 where it 

assumes an infinite value. The area subtended by 𝑅𝑥(𝜏) is then equal to 2𝜋𝑆0. 

 

2.1.6 POWER SPECTRAL DENSITY OF THE DERIVATIVE OF A PROCESS 

 

Let us assume that we know the PSD 𝑆𝑥(𝜔) of the stationary random process 𝑥(𝑡). Starting from 

this, it is possible to calculate the power spectral density of processes derived from the first, e.g., 

speed (𝑆𝑥̇(𝜔)) and acceleration (𝑆𝑥̈(𝜔)). The assembly autocorrelation function of the process 𝑥(𝑡) can be written as: 

 𝑅𝑥(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] = lim𝑁→+∞ 1𝑁 ∑ 𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏).𝑁
𝑘=1  

 

Differentiating with respect to 𝜏, we have: 

 

 
𝑑𝑅𝑥(𝜏)𝑑𝜏 = lim𝑁→+∞ 1𝑁 ∑ 𝑑𝑑𝜏 [𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏)].𝑁

𝑘=1  (2.38) 

 

Knowing that: 

 𝑑𝑑𝜏 [𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏)] = 𝑥𝑘(𝑡) 𝑑𝑑𝜏 𝑥𝑘(𝑡 + 𝜏) = 

 = 𝑥𝑘(𝑡) 𝑑𝑑(𝑡 + 𝜏) 𝑥𝑘(𝑡 + 𝜏) ∙ 𝑑(𝑡 + 𝜏)𝑑𝜏 = 

 = 𝑥𝑘(𝑡)𝑥̇𝑘(𝑡 + 𝜏); 
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We obtain: 

 

 
𝑑𝑑𝜏 (𝑅𝑥(𝜏)) = 𝐸[𝑥(𝑡)𝑥̇(𝑡 + 𝜏)]. (2.39) 

 

For a stationary process, we know that the assembly means are independent of time t, so:  

 

 
𝑑𝑑𝜏 (𝑅𝑥(𝜏)) = 𝐸[𝑥(𝑡)𝑥̇(𝑡 + 𝜏)] = 𝐸[𝑥(𝑡 − 𝜏)𝑥̇(𝑡)], (2.40) 

 

Differentiating one more time with respect to 𝜏, we have: 

 

 
𝑑2𝑑𝜏2 (𝑅𝑥(𝜏)) = −𝐸[𝑥̇(𝑡 − 𝜏)𝑥̇(𝑡)] = −𝑅𝑥̇(𝜏), (2.41) 

 

where 𝑅𝑥̇(𝜏) is the autocorrelation function of 𝑥̇(𝑡). 

 

The integral in the equation (2.24), 𝑅𝑥(𝜏) = ∫ 𝑆𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞ , 

is defined with respect to𝜔, with 𝜏 kept constant and with the integration limits independent of 𝜏. 

Therefore it is possible to differentiate with respect to 𝜏 inside the integral sign, obtaining: 

 

 
𝑑𝑑𝜏 (𝑅𝑥(𝜏)) = ∫ 𝑖𝜔𝑆𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞

−∞ , (2.42) 

and 

 
𝑑2𝑑𝜏2 (𝑅𝑥(𝜏)) = −∫ 𝜔2𝑆𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞

−∞ . (2.43) 

 

Combining now the equations (2.41) and (2.43), it is possible to express the autocorrelation 

function of the derivative of a process as: 

 

 𝑅𝑥̇(𝜏) = ∫ 𝜔2𝑆𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞ . (2.44) 

 

But it is also true that 𝑅𝑥̇(𝜏) can be identified as the inverse transform of 𝑆𝑥̇(𝜔), so: 

 

 𝑅𝑥̇(𝜏) = ∫ 𝑆𝑥̇(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞ . (2.45) 

 

In conclusion, combining the equation (2.44) and (2.45), we obtain:  

 

 𝑆𝑥̇(𝜔) = 𝜔2𝑆𝑥(𝜔); (2.46) 

 

So the PSD of a process 𝑥̇(𝑡) can be easily obtained by multiplying by 𝜔2 the PSD of the known 𝑥(𝑡). 
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The obtained results allow us to also calculate the following values: 

 

 𝐸[𝑥̇2] = ∫ 𝑆𝑥̇(𝜔)𝑑𝜔+∞
−∞ = ∫ 𝜔2𝑆𝑥(𝜔)𝑑𝜔+∞

−∞ , (2.47) 

and 

 𝐸[𝑥̈2] = ∫ 𝑆𝑥̈(𝜔)𝑑𝜔+∞
−∞ = ∫ 𝜔4𝑆𝑥(𝜔)𝑑𝜔+∞

−∞ . (2.48) 

 

 

2.1.7 CROSS-POWER SPECTRAL DENSITY 

 

For consistency with what we have seen with the auto-power spectral density of a process 𝑥(𝑡), if 

we consider a pair of processes 𝑥(𝑡) and 𝑦(𝑡) we have two cross-correlations (𝑅𝑥𝑦(𝜏) and 𝑅𝑦𝑥(𝜏)) 

and the relative cross-power spectral densities are obtained as follows: 

 

 𝑆𝑥𝑦(𝜔) = 12𝜋 ∫ 𝑅𝑥𝑦(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ , (2.49) 

and 

 𝑆𝑦𝑥(𝜔) = 12𝜋 ∫ 𝑅𝑦𝑥(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ . (2.50) 

 

According to equation (2.19), the cross-correlation functions are linked together. Setting now 𝑅𝑥𝑦(𝜏) = 𝑅𝑦𝑥(−𝜏) in the (2.49), we obtain: 

 𝑆𝑥𝑦(𝜔) = 12𝜋 ∫ 𝑅𝑦𝑥(−𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ , 

Therefore, setting 𝜏′ = −𝜏: 

 

 𝑆𝑥𝑦(𝜔) = 12𝜋 ∫ 𝑅𝑦𝑥(𝜏′)𝑒𝑖𝜔𝜏′(−𝑑𝜏′)+∞
−∞ = 12𝜋 ∫ 𝑅𝑦𝑥(𝜏′)𝑒𝑖𝜔𝜏′𝑑𝜏′−∞

+∞  (2.51) 

 

So it is equal to (2.50) except for the sign of 𝑖𝜔. Now, according to (2.27), we have: 

 𝑆𝑥𝑦(𝜔) = 𝐴(𝜔) − 𝑖𝐵(𝜔), 
and 𝑆𝑦𝑥(𝜔) = 𝐶(𝜔) − 𝑖𝐷(𝜔), 
 

Where 𝐴 (𝜔), 𝐵 (𝜔), 𝐶 (𝜔) and 𝐷 (𝜔) are real function of 𝜔. By comparing the equations (2.49) 

and (2.51) we obtain: 

 𝐴(𝜔) = 𝐶(𝜔) 

and 𝐵(𝜔) = −𝐷(𝜔) 
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since the definite integrals are independent of the integration variables. Consequently 𝑆𝑥𝑦(𝜔) and 𝑆𝑦𝑥(𝜔) are equal except for the opposite sign of the imaginary part. In other words, 𝑆𝑥𝑦(𝜔) is the 

complex conjugate of 𝑆𝑦𝑥(𝜔) and vice versa: 

 

 
𝑆𝑥𝑦(𝜔) = 𝑆𝑦𝑥∗ (𝜔) 𝑆𝑦𝑥(𝜔) = 𝑆𝑥𝑦∗ (𝜔) 

(2.52) 

 

There is an interesting property of the cross-power spectral densities, which concerns the case in 

which the two signals 𝑥(𝑡) and 𝑦(𝑡) (two realizations of random and ergodic processes) are equal 

to each other but out of phase by a certain time 𝑇, that is: 

 𝑦(𝑡 + 𝑇) = 𝑥(𝑡). 
 

Let us also assume that these are white noises, whose auto-correlation function, as we have seen, 

is just the Dirac delta function in zero. By cross-correlating the two signals, it is possible to observe 

what happens in terms of cross-spectral densities. In particular, the Dirac delta function will be out 

of phase with the time T (figure 2.9). 

 

 

Figure 2.9: Cross-correlation functions for out of phase white noises (adapted from [12]) 

 

Starting from (2.49), we can obtain: 

 

 𝑆𝑥𝑦(𝜔) = 12𝜋 ∫ 2𝜋𝑆0𝛿(𝜏 − 𝑇)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ = 𝑆0𝑒−𝑖𝜔𝑇  (2.53) 

 

while from (2.50) we obtain: 

 

 𝑆𝑦𝑥(𝜔) = 12𝜋 ∫ 2𝜋𝑆0𝛿(𝜏 + 𝑇)𝑒−𝑖𝜔𝜏𝑑𝜏+∞
−∞ = 𝑆0𝑒𝑖𝜔𝑇  (2.54) 

 

that is a further confirm of the (2.52). Setting now 𝑆𝑥𝑦(𝜔) = 𝐴 (𝜔) − 𝑖𝐵 (𝜔): 

 𝐴(𝜔) = 𝑆0𝑐𝑜𝑠(𝜔𝑡) 

 𝐵(𝜔) = 𝑆0𝑠𝑖𝑛(𝜔𝑡) 

 

So it is possible to represent the modulus |𝑆𝑥𝑦(𝜔)| and phase 𝜃 = tan−1[𝐵(𝜔) 𝐴(𝜔)⁄ ] as shown 

in the next figure. 
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Figure 2.10: Modulus and phase representation for out of phase white noises cross-PSD (adapted from [12]) 

 

In particular, the trend of phase 𝜃 is represented by a straight line, whose angular coefficient is 

precisely the delay time 𝑇. In the case of a non-white noise, such as the cases analyzed in this PhD 

thesis, also if some relations change slightly, a very similar trend is expected. 

 

 

2.2 RAIL PROFILES CHARACTERIZATION 

 

In the literature there are many approximations that allow to characterize the road profiles by 

means of PSD, that makes it possible to cover a wide range of road types. The ISO 8608:2016 

standard provides a general method for characterizing road surfaces. 

The road profile can be described based on: 

 

• PSD of its vertical displacement; 

• PSD of acceleration, i.e. in terms of speed which the slope of the road surface varies per 

unit of distance travelled. 

 

For the graphic representation of the PSDs it is possible to use a double-logarithmic scale in the 

spatial frequency 𝑛 [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚] (or angular spatial frequency 𝛺 = 2𝜋𝑛 [𝑟𝑎𝑑/𝑚]) or alternatively 

in the temporal frequency 𝑓 [𝐻𝑧] (or angular frequency 𝜔 = 2𝜋𝑓 [𝑟𝑎𝑑/𝑠]). The relationship 

between the PSD of the displacements and that of the accelerations is the following: 

 

 𝐺𝑎𝑐𝑐(𝑛) = (2𝜋𝑛)4𝐺𝑠(𝑛). (2.55) 

 

2.2.1 STANDARD ISO 8608 

 

ISO 8608: 2016 provides the means to roughly characterize specific road profiles in order to 

facilitate their subdivision into general classes, using Fourier analysis. A general classification is 

also provided. 

As previously mentioned, it is possible to measure the roughness of road surfaces using suitable 

measuring instruments. When reporting PSDs of measured surfaces, they should be limited to the 

spatial frequency range permitted by the measuring equipment. In general, as regards the lower 

limit, generally they are not performed below a spatial frequency 𝑛𝑚𝑖𝑛 = 0.01 [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚]; the 

recommended upper limit is instead of 𝑛𝑚𝑎𝑥 = 10 [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚]. 
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The ISO 8608 procedure consists first of all in the estimation of the PSD of the road/track profile; 

to do this, it is possible to use the Welch Periodogram method, which will be better specified later, 

by windowing the signal appropriately (for example with the Hanning window). This method is 

based on the calculation of the FFT (Fast Fourier Transform) of the road profile. The FFT is an 

algorithm that allows to calculate the discrete Fourier transform, therefore in the case in which the 

starting signal is discrete. The windowing operation, as will be seen below, allows to contain the 

so-called leakage phenomenon. 

Because of, if the PSDs are calculated using a constant bandwidth method, in their representation 

in a double logarithmic diagram it is possible to see at high frequencies the fluctuations generated 

by the real power distribution and by the noise present, it is convenient to use a smoothed form 

(smoothed PSD) to represent them, for example considering the assumed value in the following 

value bands: 
 

• Single octave bands, from the lowest frequency measured (except 0) up to a central 

frequency of 0.0312 [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚]; 
• One third of octave bands, from the last octave band up to a central frequency of 

0.25[𝑐𝑦𝑐𝑙𝑒𝑠/𝑚]; 
• For the remaining frequency range, one twelfth of octave bands up to the highest 

frequency measured. 
 

This process is defined as a smoothing process. At this point, a fitting of the smoothed PSD is 

performed. The general formula is the following: 
 

 𝐺𝑑(𝑛) = 𝐺𝑑(𝑛0)(𝑛 𝑛0⁄ )−𝑤 . (2.56) 

 

where 𝐺𝑑(𝑛) indicates the PSD of the vertical displacements (sometimes referred to in the 

literature as the irregularity index𝐶), 𝑛0 = 0.1 [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚] is the spatial reference frequency and 𝑤 = 2 is the exponent of the fitting (in some cases referred to as waviness). Therefore, using this 

procedure it is possible to describe the entire frequency content by means of only two 

parameters: 𝑛0 and 𝑤. According to the value assumed by the parameter 𝐺𝑑(𝑛0), the roughness 

profiles are cataloged as belonging to one of the 8 classes (from A to H) defined in ISO 8608; the 

values of this parameter according to the corresponding class are shown in table 2.1.  
 

 

Table 2.1: Profiles classification according to ISO 8608 [17] 
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The graph of figure 2.11 shows the limits of the different classes. To report the limits of the 

different classes as a function of the temporal frequency, it is possible to use the relation: 

 𝑓 = 2𝜋𝜔 = 𝑛 ∙ 𝑢, 
 

with 𝑢 the constant vehicle speed. In this way it is possible to graphically represent the 

classification for a given speed, as in the graph of figure 2.12, in which the temporal frequencies 

are shown on the abscissas. 

 

 

Figure 2.11: Graphic profiles classification according to ISO 8608 

 

 

Figure 2.12: Graphic profiles classification according to ISO 8608 for a vehicle speed of 20 m/s 
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In the same way, once a class has been set, it is possible to plot the PSDs at different speed values 

in a same graph, as in figure 2.13. 

 

 

Figure 2.13: Class A PSD profiles according to ISO 8608 for different vehicle speed values 

 

There are also other possible formulas to use alternatively to (2.56). One example could be the 

following bi-linear function (figure 2.14 and 2.15): 

 

 𝐺𝑑(𝑛) = { 𝐺𝑑(𝑛0)(2𝜋𝑛)−2,    𝑓𝑜𝑟 𝑛 ≤ 12𝜋𝐺𝑑(𝑛0)(2𝜋𝑛)−1.5,    𝑓𝑜𝑟 𝑛 > 12𝜋 (2.57) 

 

 

Figure 2.14: Bi-linear profiles classification according to ISO 8608 
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Figure 2.15: Bi-linear profiles classification according to ISO 8608 for a vehicle speed of 20 m/s 

 

Finally, another type of classification is that proposed by the United States Federal Rai lroad 

Administrations (FRA), specifically designed for the profiles of railway tracks [8]: 

 

 𝐺𝑑(𝑛) = 𝐴𝑛22(𝑛2 + 𝑛12)𝑛4(𝑛2 + 𝑛22) . (2.58) 

 

The next figures show the graphic representation of the FRA classification:  

 

 

Figure 2.16: Profiles classification according to FRA 
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Figure 2.17: Profiles classification according to FRA for a vehicle speed of 25 m/s 

 

 

2.2.2 SUSSMAN 

 

Among all the approximations seen above, the most suitable for the description of railway profiles 

is certainly (2.58). In this regard, another approximation often used in the case of railway tracks is 

the one developed by Sussman (1974): 

 

 𝐺𝑑(𝑛) = 𝐺𝑑(𝑛0)𝑛2 + 𝑛02. (2.59) 

 

To obtain the subdivision into different classes, the value of 𝐺𝑑(𝑛0) is based on the variance, so 

that for each class its value, therefore the area under the curve according to (2.26), in the range of 

frequency [0.011; 2.83] [𝑐𝑦𝑐𝑙𝑒𝑠/𝑚] is equal to the one calculated for (2.56). Therefore we have: 

 𝜎2 = ∫ 𝐺𝑑(𝑛)𝑑𝑛 =𝑛𝑠𝑢𝑝𝑛𝑖𝑛𝑓 𝐺𝑑(𝑛0) [tan−1 ( 𝑛𝑛0)𝑛0 ]𝑛𝑖𝑛𝑓
𝑛𝑠𝑢𝑝 = 𝐺𝑑(𝑛0) [tan−1 (𝑛𝑠𝑢𝑝𝑛0 )𝑛0 − tan−1 (𝑛𝑖𝑛𝑓𝑛0 )𝑛0 ] 

 

from which: 

 

 
𝐺𝑑(𝑛0) = 𝜎2[tan−1(𝑛𝑠𝑢𝑝𝑛0 )𝑛0 − tan−1(𝑛𝑖𝑛𝑓𝑛0 )𝑛0 ] = 𝑛0 𝜎2[tan−1 (𝑛𝑠𝑢𝑝𝑛0 ) − tan−1 (𝑛𝑖𝑛𝑓𝑛0 )]. (2.60) 
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The values of 𝐺𝑑(𝑛0) obtained from (2.60) for each class are shown in table 2.2: 
 

 

Table 2.2: Profiles classification and 𝑮𝒅(𝒏𝟎) values according to ISO 8608 and Sussman 

 

A comparison between the classifications (2.56) and (2.59) is shown in figure 2.18, where the 

limits for the frequency band 𝑛𝑖𝑛𝑓 and 𝑛𝑠𝑢𝑝 are underlined; in figure 2.19 is shown the 

classification according to (2.59) at a vehicle speed equal to 20 m/s. 
 

 

Figure 2.18: Profiles classifications comparison between ISO 8608 and Sussman 

 

 

Figure 2.19: Graphic profiles classification according to Sussman for a vehicle speed of 20 m/s 
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2.3 SIMULATION OF RAIL PROFILES 

 

To obtain the history of the roughness profile over time, it is possible to start from the discrete 

PSD in the temporal frequency domain. It must be considered, first of all, that land vehicles, and in 

particular railway vehicles, as will be seen in chapter 3, can be schematized with half-train or full-

train models. In the first case, one half (right or left) of the vehicle is considered; therefore for 

each axle only one wheel is considered. In the second case, the vehicle is taken into consideration 

in its entirety. For simplicity, the diagram in figure 2.20 is considered, where 𝐿 is the distance 

between the two axles, 𝐵 the distance between two wheels belonging to the same axis, and 𝑢 the 

forward speed; the wheels are numbered from 1 to 4. In case you want to use a half-car model the 

only points of contact are wheels 1 and 3. The inputs on the two wheels, due to the road (rail) 

roughness, are considered identical (as if they moved on a track), but with the one on wheel 3 

lagging behind the one on wheel 1 for a time value equal to: 

 

 𝜏 = 𝐿𝑢. (2.61) 

 

If, on the other hand, you want to use a full-car model, you must still take into account the time 

lag between the front and rear axles, but in addition it is necessary to consider that the vehicle is 

subject to stresses due to road roughness on both the right and left wheels. These two road 

profiles have a spatial correlation. 

 

 

Figure 2.20: Top view of a 4-wheeled vehicle (adapted from [6]) 

 

 

2.3.1 SIMULATION OF A WHEEL 

 

To obtain the frequency transform of the road/rail profile, it is possible to construct the module 

and phase starting from the expression of the discrete PSD. At that point, it is sufficient to apply 

the inverse Fourier transform to obtain the time history of the profile. 

It is shown that 𝐺𝑑(𝜔) is linked to the assembly mean on 𝑛 repetitions of the product of the 

module of the transform of the process and its conjugate in 𝜔 through the following relationship: 
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 𝐺𝑑(𝜔) = < 𝑌(𝜔)𝑌∗(𝜔) >2𝜋𝛿(0) . (2.62) 

 

where 𝛿(0) is a constant value that is proportional to the observation time of the process.  

In paragraph 2.1 we saw how a road/rail process can be considered as a stationary, Gaussian, and 

ergodic process. In particular, for equations (2.5) and (2.6), we have that a single realization of the 

process is representative of the same. Consequently, the numerator of (2.62) can be written as:  
 < 𝑌(𝜔)𝑌∗(𝜔) >≈ 𝑌(𝜔)𝑌∗(𝜔) = |𝑌(𝜔)|2, 
 

So the (2.62) becomes: 

 𝐺𝑑(𝜔) = |𝑌(𝜔)|22𝜋𝛿(0). (2.63) 

 

So the modulus of the transform is: 
 

 |𝑌(𝜔)| = √𝐺𝑑(𝜔)2𝜋𝛿(0). (2.64) 

 

Once the modulus has been determined, to obtain the transform it is necessary to determine the 

phase, in which the stochasticity of the process is found. To do this, a certain probability density 

function is assumed for the phase, and in particular it is made to vary in the interval [−𝜋; 𝜋] with a 

uniform probability (Figure 2.21). 
 

 

Figure 2.21: Probability density function of the phase, constant in the interval [−𝝅;𝝅] 
 

At this point, once the transform 𝑌(𝜔) has been obtained, it is possible to pass from the frequency 

domain to the time one through the inverse Fourier transform: 
 

 𝑌(𝑡) = ∫ 𝑌(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔+∞
−∞  (2.65) 

 

As already mentioned in subsection 2.2.1, it should be emphasized that the experimental estimate 

of the spectra starting from measured and therefore sampled data does not follow the formal 

mathematical course described; in fact, with the development of the fast Fourier transform (FFT) 

technique, the digital estimates of the spectra can be obtained directly from the histories by 

means of suitable algorithms. We must therefore pay attention to the construction of the 

transform. Since the signal is discretely sampled, it is not possible to think about the entire 

frequency axis, but it is limited to a certain frequency band. By indicating the sampling frequency 

of the signal with 𝑓𝑐 , this can be represented up to the frequency 𝑓𝑚𝑎𝑥 = 𝑓𝑐 2⁄ ; and so: 
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 𝑌(𝑡) = 1𝑓𝑐 ∫ 𝑌(𝜔)𝑒𝑖𝜔𝑡𝑖𝑑𝜔+𝑓𝑐 2⁄
−𝑓𝑐 2⁄  (2.66) 

 

where the subscript 𝑖 indicates the number of time intervals in which the signal has been divided. 

The sampling frequency is the inverse of the sampling interval ∆𝑡, and so we have𝑡𝑖 = 𝑖∆𝑡 = 𝑖 𝑓𝑐⁄ . 

The largest period that can be described in the discrete case is obviously equal to the time of  

observation of the phenomenon 𝑡0 and so the minimum appreciable frequency is𝑓𝑚𝑖𝑛 = 1 𝑡0⁄ . In 

this way it is possible to construct a half spectrum (spectrum of positive frequencies), which goes 

from 𝑓𝑚𝑖𝑛  to 𝑓𝑚𝑎𝑥 . Being in the case of a discrete signal of a real process, also the half spectrum of 

the negative frequencies is translated and considered at positive frequencies. It is shown that 

there is a symmetry between the two spectra, and in particular that the modules of the two half 

spectra are symmetrical with respect to the vertical line passing through 𝑓𝑚𝑎𝑥 , while the phases 

are symmetrical with respect to the point [𝑓𝑚𝑎𝑥, 𝜃(𝑓𝑚𝑎𝑥)]. This also affects the relationship that 

links the PSD to the modulus of the transform (equation (2.62)). In particular, due to the different 

definition of transform of the analytic Fourier transform compared to the discrete one (DFT), in 

which the sampling frequency is present in place of the factor 2𝜋, we have that (2.64) becomes: 
 

 |𝑌(𝜔)| = 𝑓𝑐√𝐺𝑑(𝜔)𝑡0. (2.67) 

 

Figure 2.22 shows the module and phase (a restricted interval of frequencies has been 

represented for the phase to highlight the symmetry) of the transform obtained as just described, 

starting from the PSD of the road according to Sussman Class A. A sampling frequency 𝑓𝑐 =1000 𝐻𝑧, a resolution in frequency ∆𝑓 = 1 ∙ 10−3 𝐻𝑧, and then an observation time of 𝑡0 =1 ∆𝑓⁄ = 1000 𝑠 were used. 
 

 

Figure 2.22: Frequency domain representation of the Transform of a realization of a Sussman Class A profile 

 

In figure 2.23 is represented the same profile realization but in the time domain: 
 

 

Figure 2.23: Time domain representation of a realization of a Sussman Class A profile 
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2.3.2 COMPLETE WHEELSET SIMULATION 

 

Consider the case in figure 2.20. Obviously, any subsequent explanation is also extensible to the 

case of a railway wagon, in which the wheels are double in respect of the full-car case, i.e. 8. 

A model for the simulation of the profile on all the contact points (and therefore the wheels) is 

based on the following assumptions: 

 

• the wheel’s contact area of the front axle and the rear axle of the vehicle are the same and 

the vehicle moves in a straight line with constant speed; 
 

• the statistical properties of the left and right profiles are the same, i.e. they have the same 

PSD. 

 

However, although the left and right wheels are statistically equivalent, the actual profiles are not 

identical. To take into account these differences, which generate noise mainly in terms of roll, a 

coherence function defined as:  
 

 Γ(𝑛) = |𝐺𝐿𝑅(𝑛)|√𝐺𝐿𝐿(𝑛) ∙ 𝐺𝑅𝑅(𝑛), (2.68) 

 

where 𝐺𝐿𝐿(𝑛) and 𝐺𝑅𝑅(𝑛) are respectively the auto-PSD of the left and right profiles, while 𝐺𝐿𝑅(𝑛) 

is the cross-PSD of the two profiles. From studies and measurements carried out on the coherence 

data for different types of road surfaces or railway tracks it emerged that the coherence function, 

included in the interval [0; 1], has higher values at low frequencies and very low values at higher 

frequencies. In particular, if Γ(𝑛) = 0 it means that the left and right profiles are totally 

uncorrelated, while when Γ(𝑛) = 1 they are perfectly correlated. Furthermore, it has been seen 

that for different types of roads the coherence functions are very similar. The fitting model 

proposed by Bogsjö [3] is based on the use of a decreasing exponential function with the 

parameters 𝜇 and depending on the distance 𝐵 between two wheels of the same axle, according 

to the following relationship: 
 

 Γ(𝑛) = 𝑒−𝜇𝐵|𝑛|. (2.69) 

 

Assuming 𝜇 = 3.80 and plotting the results in temporal frequency instead of spatial frequency, we 

obtain the curve shown in figure 2.24: 
 

 

Figure 2.24: Bogsjö coherence function 
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With reference to figure 2.20, the cross-PSD can be written as a product of module and phase; for 

example between wheels 1 and 2 we have: 

 

 𝐺12(𝑓) = |𝐺12(𝑓)|𝑒𝑖𝜑12(𝑓), (2.70) 

 

where 𝜑12(𝑓) is the phase shift between the two wheels. Since wheels 1 and 2 are on the same 

axis, we have that 𝜑12(𝑓) = 0. Therefore: 

 

 𝐺12(𝑓) = |𝐺12(𝑓)| = Γ(𝑓)√𝐺11(𝑓) ∙ 𝐺22(𝑓), (2.71) 

 

But 𝐺11(𝑓) = 𝐺22(𝑓) = 𝐺𝑑(𝑓), so: 

 

 𝐺12(𝑓) = 𝐺𝑑(𝑓) ∙ Γ(𝑓), (2.72) 

 

For the cross-PSD between wheels 1 and 4, a time delay given by (2.61) must be considered, that is  𝜏 = 𝐿 𝑢⁄ . In this case we have: 

 𝐺14(𝑓) = |𝐺14(𝑓)|𝑒𝑖𝜑14(𝑓) = 

 = √𝐺11(𝑓) ∙ 𝐺22(𝑓) ∙ Γ(𝑓) ∙ 𝑒𝑖2𝜋𝑓𝜏14 = (2.73) 

 = 𝐺𝑑(𝑓) ∙ Γ(𝑓) ∙ 𝑒𝑖2𝜋𝑓𝜏; 

 

So it is possible to wright the input matrix as: 

 

 𝐺𝑖𝑛(𝑓) = [  
 𝐺11(𝑓) 𝐺12(𝑓)𝐺21(𝑓) 𝐺22(𝑓) 𝐺13(𝑓) 𝐺14(𝑓)𝐺23(𝑓) 𝐺24(𝑓)𝐺31(𝑓) 𝐺32(𝑓)𝐺41(𝑓) 𝐺42(𝑓) 𝐺33(𝑓) 𝐺34(𝑓)𝐺43(𝑓) 𝐺44(𝑓)]  

 , (2.74) 

 

that becomes: 

 

 𝐺𝑖𝑛(𝑓) = 𝐺𝑑(𝑓) [   
 1              Γ(𝑓)Γ(𝑓)           1 𝑒𝑖2𝜋𝑓𝜏 Γ(𝑓)𝑒𝑖2𝜋𝑓𝜏Γ(𝑓)𝑒𝑖2𝜋𝑓𝜏 𝑒𝑖2𝜋𝑓𝜏𝑒−𝑖2𝜋𝑓𝜏 Γ(𝑓)𝑒−𝑖2𝜋𝑓𝜏Γ(𝑓)𝑒−𝑖2𝜋𝑓𝜏 𝑒−𝑖2𝜋𝑓𝜏 1             Γ(𝑓)Γ(𝑓)             1 ]   

 . (2.75) 

 

About the spectra: 

 

 𝑌2(𝑓) = 𝑌1(𝑓) ∙ Γ(𝑓), (2.76) 

and 

 𝑌4(𝑓) = 𝑌1(𝑓) ∙ Γ(𝑓) ∙ 𝑒−𝑖2𝜋𝑓𝜏14 . (2.77) 
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Applying what we have just seen to a model similar to that of figure 2.20, we obtain: 

 

• for the correlation of the left front wheel and the left rear wheel (figure 2.25), it can be 

seen that the two signals are actually equal over time but out of phase with time 𝜏, 

therefore the method is accurate; 

• for the correlation of the front left wheel and the front right wheel (figure 2.26), it can be 

seen that there is a difference in amplitude between the two signals over time. 

 

Due to the smaller amplitude of the signal over time of the front right wheel compared to the 

front left, there will be a variation of the PSD of the profile between the two same wheels starting 

from the medium-high frequencies (figure 2.27). This difference is attributable to the fact that the 

coherence function, which varies between 0 and 1, assumes values close to 0 at high frequencies. 
 

 

Figure 2.25: Front-Rear time domain comparison 

 

 

Figure 2.26: Left-Right time domain comparison 

  



Page32 / 127 

 

 

Figure 2.27: Standard-Simulated PSD comparison 

 

In other words, the PSD of the rolling profile of one wheel is lower than the PSD of the profile of 

the other wheel on the same axis, which is consistent with the standard PSD characterized with 

one of the methods described in paragraph 2.2. To solve this problem, in the first place, it is 

possible to consider the roughness of the profile divided into a perturbed (𝛿𝑌𝑖(𝑡), where 𝑖 = 𝑙, 𝑟) 

and an unperturbed part (𝑌0(𝑡)). The unperturbed part is assumed to be equivalent for the right 

and left profiles, while the perturbed part of one profile is independent of the other. Secondly, the 

auto-PSDs of the roughness of the profile unperturbed and perturbed are derived through the 

coherence function. Finally, the roughness of the profile is obtained by combining theoretical and 

perturbed roughness [9]. 

Based on what has been said for the two profiles, the historical signals are: 

 𝑌𝑙(𝑡) = 𝑌0(𝑡) + 𝛿𝑌𝑙(𝑡), 
And 𝑌𝑟(𝑡) = 𝑌0(𝑡) + 𝛿𝑌𝑟(𝑡). 
 

The realization over time of the unperturbed component can be obtained as seen in subsection 

2.3.1, being: 

 𝑌0(𝜔) = |𝑌0(𝜔)|𝑒𝑖𝜑(𝜔), 
 

whose Fourier transform is: 

 𝑌0(𝜔) = |𝑌0(𝜔)|𝑒𝑖𝜑(𝜔) = 𝑌𝑑(𝜔)Γ(𝜔). 
 

So the PSD is given by: 

 𝐺0(𝜔) = 𝐺𝑑(𝜔)Γ(𝜔). 
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For the perturbed components it is considered that 𝛿𝑌𝑖(𝑡) (where 𝑖 = 𝑙, 𝑟) is the inverse Fuorier 

transform of the quantity: 

 Δ𝑌𝑖(𝜔) = |Δ𝑌𝑖(𝜔)|𝑒𝑖𝜌𝑖(𝜔), 
 

whose PSD can be written as: 

 

 Δ𝐺𝑖(𝜔) = 𝐺𝑑(𝜔) − 𝐺0(𝜔) = 𝐺𝑑(𝜔) − 𝐺𝑑(𝜔)Γ(𝜔) = 𝐺𝑑(𝜔)(1 − Γ(𝜔)). (2.78) 

 

Therefore, starting from 2.78 using the procedure seen in subsection 2.3.1 it is possible to 

construct the transform of the compensations Δ𝑌𝑙(𝜔) and Δ𝑌𝑟(𝜔) and their realization over time, 

shown in figure 2.28. 

 

 

Figure 2.28: Time domain representation of 𝜹𝒀𝒍(𝒕) and 𝜹𝒀𝒓(𝒕) 
 

In the construction, however, attention must be paid to the fact that the randomly generated 

phases 𝜌𝑖(𝜔) must be uncorrelated with each other and with respect to 𝜑(𝜔). Once the 

compensation is applied it is possible to obtain the PSDs of the left and right profiles. Figures 2.29 

and 2.30 show the module and phase of the auto-PSD and cross-PSD of the two profiles. 

Note how the auto-PSD of the roughness of the left and right profiles are in good agreement with 

the starting PSD. This is also true for cross-PSDs at low frequencies, while at high frequencies there 

is a greater deviation. As previously mentioned, the proposed method assumes that the perturbed 

roughness constructed are independent of each other and independent of the original profile 

roughness. 
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Figure 2.29: Modulus of the PSD of the profile 

 

 

Figure 2.30: Phase of the PSD of the profile 
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In figure 2.31 it is possible to see how the coherence function between the left and right profiles, 

obtained through the definition (2.68), has the same trend as the coherence function specified in 

(2.69). 

 

 

Figure 2.31: Comparison between the estimated and the Bogsjö’s coherence 

 

 

2.4 IDENTIFICATION OF RAIL PROFILES 

 

From a mechanical point of view, the road/rail profile is a boundary condition applied to the 

vehicle's wheels and, at a given speed, represents a dynamic stress for the vehicle-system. The 

estimation of the excitation that acts on a system starting from its response is the so-called inverse 

problem. In this specific case, it is a matter of finding a way to estimate the profile from the 

vehicle's responses. There are several methods in the literature, some of which will be proposed in 

this section.  

 

 

2.4.1 OPERATIONAL MODAL ANALYSIS FOR THE RAIL PROFILES IDENTIFICATION 

 

A method that can be used for solving the inverse problem, falls into the category of Operational 

Modal Analysis (OMA) and it allows to estimate the modal parameters of road/rail vehicle systems 

in working conditions and to indirectly characterize the statistical properties of roughness of the 

rolling profiles of road or railway surfaces and therefore to classify them. 

The Operational Modal Analysis, in general, allows an experimental structural identification under 

the real operating conditions: passing directly from the output data, leading to linearized modal 

models around the most interesting working points and, in the case of controlled systems, 

providing the information necessary for design and verification. All  these characters are necessary 

for the experimental evaluation of vehicle suspension systems. The strength of this technique lies 

in the fact that in most cases only the response data can be measured and the actual loads are not 
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available. Therefore, system identification must be based on output data only. However, some 

problems arise when the operational identification of a vehicle system is performed, substantially 

linked to the nature of the loads induced by the roughness of the profiles on which the vehicle 

itself moves. The forces applied on the wheels, in fact, depending on their location, as already 

discussed in the previous section, are influenced by the temporal and/or spatial correlation, and, 

moreover, they do not adapt to the shape of the white noise sequences. Therefore, the nature of 

these stresses strongly violates the hypotheses on which the formulation of the classical OMA 

modal model is based. The salient points of a method that manages to overcome this obstacle will 

be shown below [4]. Consequently, it is possible to carry out an indirect characterization of the 

roughness of the rolling surface, which can be used to improve comfort and safety.  

Modal parameters are important because they describe the intrinsic dynamic properties of a 

structure. Since these dynamic properties are directly related to mass and stiffness, the modal 

parameters obtained experimentally provide information on these two physical properties of a 

structure. The experimental identification of a linear system with 𝑁 degrees of freedom, subjected 

to stresses, aims to estimate the so-called operative modal parameters: 

 

• Poles of the system 𝜆𝑛; 

 

• Modal vectors 𝜓𝑛; 

 

• Reference operational vectors 𝜑𝑛. 

 

The poles of the system, in particular, allow to obtain information regarding the natural 

frequencies 𝜔𝑛 and the damping ratios 𝜁𝑛 of the system, in fact: 

 

 𝜆𝑛 = (−𝜁𝑛 + 𝑖√1 − 𝜁𝑛2) 𝜔𝑛     𝑤𝑖𝑡ℎ 𝑛 = 1, … , 𝑁 (2.79) 

 

It is possible to extract, in the frequency domain, the modal parameters directly from the output 

auto and cross-spectral densities of the system. At the basis of the OMA there are the NExT 

hypotheses (Natural Excitation Techniques), so that the loads acting on the system must have a 

trend attributable to a sequence of strictly unrelated white noises; the latter hypothesis translates 

into the fact that the PSD matrix of the inputs is devoid of the extra-diagonal elements, that is: 

 

 𝑆𝑖𝑛 = [𝑆1 ⋯ 00 ⋱ 00 ⋯ 𝑆𝑁]. (2.80) 

 

Given these assumptions, it is possible to obtain an expression of the modal model of the PSD of 

the system outputs. In other words, once the PSD of the outputs 𝑆𝑞𝑖𝑞𝑗(𝜔) has been obtained, this 

can be written as a function of the modal parameters as: 

 

 𝑆𝑞𝑘𝑞𝑙(𝜔) = ∑ 𝜑𝑙𝑛𝜓𝑘𝑛𝑖𝜔 − 𝜆𝑛 + 𝜓𝑘𝑛𝜑𝑙𝑛−𝑖𝜔 − 𝜆𝑛
2𝑁
𝑛=1 . (2.81) 
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So it is possible to estimate the modal parameters and compare them with the design ones.  

Equation 2.81 can be rewritten in matrix form as: 
 

 𝑆𝑞(𝜔) = ∑ 𝜑𝑛𝜓𝑛𝑇𝑖𝜔 − 𝜆𝑛 + 𝜓𝑛𝜑𝑛𝑇−𝑖𝜔 − 𝜆𝑛
2𝑁
𝑛=1 . (2.82) 

 

Since power spectral density and correlation function are related by the Fourier transform, it is 

written in an equivalent way: 
 

 𝑅𝑞(𝜏) = ∑ 𝜑𝑛𝜓𝑛𝑇𝑒𝜆𝑛𝜏ℎ(𝜏) + 𝜓𝑛𝜑𝑛𝑇𝑒−𝜆𝑛𝜏ℎ(−𝜏)2𝑁
𝑛=1 , (2.83) 

 

Where 𝑅𝑞(𝜏) is the system output correlation matrix and ℎ(𝜏) is the Heaviside step function. 

This method contemplates the use of a polynomial model before the fitting operation for the 

modal parameters extraction through the modal model. The definition (2.82) can be rewritten as a 

generic ratio between polynomial functions: 
 

 𝑆𝑞(𝜔) = 𝑩(𝝎)𝐴(𝜔), (2.84) 

 

So every matrix element of 𝑆𝑞(𝜔) is a polynomial ratio, where𝐵𝑖𝑗(𝜔) is the polynomial associated 

at each matrix element, while 𝐴(𝜔) is a common denominator among all elements. 

For what concerns the study of rail/road profiles, the input PSD matrix is different with respect to 

the Classical OMA one that we have just seen. Here, as described in section 2.3.2, the extra-

diagonal elements are in general not-null (basing on how they correlate to each other). 

Knowing that a generic input matrix element could be written as:  
 

 𝑆𝑘𝑙(𝜔) = √𝑆𝑘𝑘(𝜔) ∙ 𝑆𝑙𝑙(𝜔) ∙ Γ(𝜔) ∙ 𝑒𝑖𝜔𝜏𝑘𝑙 = 𝑆𝑑(𝜔) ∙ Γ(𝜔) ∙ 𝑒𝑖2𝜔𝜏𝑘𝑙 , (2.85) 

 

So the modal model in (2.82), in the case of correlated inputs, can be rewritten as:  
 

 𝑆𝑞(𝜔) = ∑ 𝜑𝑛(𝜔)𝜓𝑛𝑇𝑖𝜔 − 𝜆𝑛 + 𝜓𝑛𝜑𝑛𝑇(−𝜔)−𝑖𝜔 − 𝜆𝑛
2𝑁
𝑛=1  (2.86) 

 

where 𝜑(𝜔) is an operational vector dependent on the frequency 𝜔, on the coherence function Γ(𝜔), on the time shift 𝜏 and defined as: 
 

 𝜑(𝜔) = 𝑆𝑑(𝜔) [∑ Γm(𝜔)(𝛼𝑛𝑚 + ∑(𝛽𝑛𝑚𝑙𝑒𝑖𝜔𝜏𝑙 + 𝜒𝑛𝑚𝑙𝑒−𝑖𝜔𝜏𝑙)𝑁𝐿
𝑙=1 )𝑁𝑤

𝑚=0 ] (2.87) 

 

where 𝑁𝑤  is the number of coherence functions, coinciding with the number of carriageways 

(Γ0 = 1), 𝑁𝐿  is the number of time lags between the axles and 𝛼, 𝛽 and 𝜒 are operational vectors 

which can be determined by solving a non-linear problem. 
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Equivalent to the case of non-correlated inputs, the polynomial model corresponding to (2.86) is: 
 

 𝑆𝑞(𝜔) = 𝑆𝑑(𝜔)[∑ Γm(𝜔)(𝑩𝒏𝒎(𝜔) + ∑ (𝑪𝒏𝒎𝒍(𝜔)𝑒𝑖𝜔𝜏𝑙 + 𝑫𝒏𝒎𝒍(𝜔)𝑒−𝑖𝜔𝜏𝑙)𝑁𝐿𝑙=1 )𝑁𝑤𝑚=0 ]𝐴(𝜔)  (2.88) 

 

From the polynomial model it is possible to obtain the coefficients of the polynomials 𝐴(𝜔), 𝑩𝒏𝒎(𝜔), 𝑪𝒏𝒎𝒍(𝜔) and 𝑫𝒏𝒎𝒍(𝜔), which can be reworked to obtain the values𝜆𝑛 and 𝜓𝑛 of (2.86). 

The method just described can be used to solve the inverse problem and therefore to estimate 

and characterize the road profile knowing only the vehicle responses or, as in the specific case, the 

modal parameters. 

 

For the analysis of the cases reported in chapter 4, some resulting tools will be exploited for better 

understanding the results. In the first step of the method described for the identification, the 

polynomial model ((2.84) or (2.88)) is exploited to obtain the poles and the modal vectors. To do 

this, polynomials of different degrees can be used. In this sense, the first tool that can be used is 

the stabilization diagram. 

The stabilization diagram allows to monitor the frequency, damping and modal shape estimates as 

a function of the increasing order of the model for each pole. As the order of the model increases, 

as the number of poles increases, an increasing number of modal frequencies are estimated but at 

the same time the estimates of the physical modal parameters tend to stabilize as the template 

reaches the correct order. For modes that are very active in the measured data, the modal 

parameters will stabilize at a very low order model. For modes that have been little excited in the 

measured data, the modal parameters cannot stabilize until a very high model order is chosen. 

However, non-physical (computational) modes will not stabilize at all during this process and can 

be more easily distinguished from the modal parameter data set [1]. 

In this way it is possible to select the physical parameters and select the degree of the polynomial 

model for the minimum squares fitting on the model of equations 2.84 and 2.88. 

To verify the validity of the results obtained in the identification, the comparison between the 

theoretical and estimated modal parameters is fundamental. If in the case of frequencies and 

damping ratios an immediate understanding can be made by calculating the relative error 

between theoretical and estimated parameters, in the case of modal forms the so-called modal 

assurance criterion or simply MAC can be used. The MAC is a scalar constant that relates the 

causal relationship between two modal vectors: 

 

 𝑀𝐴𝐶[(𝜓𝑛1)(𝜓𝑛2)] = |(𝜓𝑛1)𝐻(𝜓𝑛2)|2[(𝜓𝑛1)𝐻(𝜓𝑛1)][(𝜓𝑛2)𝐻(𝜓𝑛2)] (2.89) 

 

which takes values ranging from zero, i.e. no match, to one, which represents maximum 

consistency. In this way, if the modal vectors under consideration actually have a coherent 

relationship, the MAC should approach unity. The COMAC (coordinates modal assurance criterion), 

represents an extension of the MAC and allows to identify which degrees of freedom contribute 

negatively to a low value of MAC. The COMAC is calculated on a set of pairs of modes: 

analytical/analytical, experimental/experimental, or experimental/analytical. The two modal 

vectors in each pair represent the same modal vector, but the set of mode pairs represent all 

modes of interest in a given frequency range. 

For two sets of modes to be compared, there will be a COMAC value calculated for each degree of 

freedom. 
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2.4.2 THE GONZALEZ METHOD 

 

Gonzalez proposes a method [7] for estimating the roughness of road profiles using 

measurements carried out by means of accelerometers on a vehicle. This method is based on the 

fact that vibrations and rolling profile can be related to a linear system through a transfer function: 
 

 𝐻𝑡(𝑛) = 𝑃𝑆𝐷𝑜𝑢𝑡(𝑛)𝑃𝑆𝐷𝑟(𝑛)  (2.90) 

 

where 𝑃𝑆𝐷𝑜𝑢𝑡(𝑛) and 𝑃𝑆𝐷𝑟(𝑛) are the power spectral densities related to the measurements 

made on the vehicle and to the profile. The method consists of a first calibration phase to obtain 

the transfer function 𝐻𝑡(𝑛) by making the vehicle move on an already measured profile. Once the 

transfer function has been obtained, this can be used to classify any other profile of the same 

type, again using equation (2.90). However, it is possible to operate a theoretical approach for 

calibration by applying a theoretical road profile to a vehicle model, generated as described in 

section 2.3. Therefore, the road profile of the chosen ISO class (in general, class 𝑖) is applied to the 

vehicle model, obtaining the PSDs at the output (with one of the methods described in chapter 3), 

that is the response of the vehicle-system. Using (2.90) we calculate the transfer function 𝐻𝑡(𝑛). 

At this point, to verify the effectiveness of the application of the method, a second road profile is 

generated (this time of class 𝑘, with 𝑘 ≠ 𝑖) and the PSD of the outputs of the same model of the 

previous vehicle are calculated. Finally, using the latter and the transfer function obtained in 

calibration, it is possible to extract (again through (2.90)) the PSD of the road profile and compare 

it with that of class 𝑘 used. Figure 2.32 schematically shows what has just been described. 
 

 

Figure 2.32: Application scheme of the Gonzalez method 

 

In chapters 4 and 5 we will see its application to the case of railway vehicles, although it has been 

developed for automotive. In the case of real measurements data, as will be seen, the steps 

performed differ from those of figure 2.32. However, it should be noted that, with respect to the 

OMA, the method proposed by Gonzalez needs the knowledge of the calibration profile, which 

therefore must be measured in other ways. In the analyzes carried out, the theoretical models 

have been stressed with a theoretical profile and the responses were calculated. In the real case, 

the calibration profile was hypothesized, considering a theoretical profile that came as close as 

possible to the real case. 
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2.4.3 STANDARD EN 13848 

 

The European Standard EN 13848, especially in its parts 1, 2 and 5 (respectively [18], [19] and [20]), 

sets the definition and classification of some track geometry parameters and explains the guide 

lines to perform a track geometry based maintenance strategy. 

It is called running table the upper surface of the head of the rail, while with the terms running 

surface it is identified the curved surface defined by the longitudinal displacement of a straight 

line perpendicular to the centre-line of the track and tangential to both running tables. 

 

 

Figure 2.33: Running table and running surface (adapted from [18]) 

 

Define now two track geometry parameters on which we will focus in the next results paragraph: 

 

• Longitudinal Level: the deviation 𝑧𝐼𝐼  in z-direction (vertical) of running table levels on any 

rail from the smoothed vertical position (reference line) expressed in defined wavelength 

ranges; 

 

 

Figure 2.34: Longitudinal Level (adapted from [18]) 
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• Alignment: the deviation 𝑦𝑝 in y-direction (transverse) of the position of point P (refer to 

§6.1.1 of [18]) on any rail from the smoothed lateral position (reference line) expressed in 

defined wavelength range of interest. 

 

 

Figure 2.35: Alignment (adapted from [18]) 

 

Next table summarizes the different wavelength classification. 

 

Range Denomination Longitudinal Level [m] Alignment [m] 𝑫𝟎 1 < 𝜆 ≤ 5 1 < 𝜆 ≤ 5 𝑫𝟏 3 < 𝜆 ≤ 25 3 < 𝜆 ≤ 25 𝑫𝟐 25 < 𝜆 ≤ 70 25 < 𝜆 ≤ 70 𝑫𝟑 70 < 𝜆 ≤ 150 70 < 𝜆 ≤ 200 

Table 2.3: Longitudinal Level and Alignment wavelength classification 

 

To validate the measured data, the standard [19] suggest the evaluation of repeatability and/or 

reproducibility among records through the following parameters:  

 

• Transfer function, evaluated as a ratio between the measured output of two different 

records: 

 

 𝐻 = 𝑌2𝑌1 (2.91) 

 

where 𝑌1 and 𝑌2 are the quantity measured during the runs 1 and 2; 
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• Coherence function, evaluated through the auto-PSD and the cross-PSD of two different 

measures of the same object: 

 

 Γ = |𝑆𝑥𝑦|2𝑆𝑥𝑥 × 𝑆𝑦𝑦 (2.92) 

 

Next table summarizes the transfer function and coherence tolerances for the different 

wavelength ranges: 

 

 
 

 

Table 2.4: Repeatability and Reproducibility tolerance values for measuring campaign validation (adapted from [19]) 
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3 RAILWAY VEHICLES MODELING 

 

In this chapter some models for the study of railway vehicles will be shown and analyzed. Then we 

will proceed to the analysis of how the stress inputs from the road are correlated and how to 

obtain the responses of the dynamic system. 

The main elements of a railway vehicle are the following: 

 

• body (chassis): represents the body of the vehicle; 

 

• secondary suspension: interposed between the bogies and the body frame; 

 

• bogies: they can be equipped with traction motors and are usually two-axled; 

 

• primary suspension: it is the proper suspension of the bogie, the reciprocal movement 

between the axles and the bogie frame is constrained through vertical prismatic guides;  

 

• wheels: they represent the point of contact with the tracks. 

 

The models that will be analyzed are: 

 

• 6 dof (degrees of freedom) half-train model: simplified model in which there are no wheels 

and contact with the rails occurs directly through the primary suspension. To the body and 

the two bogies, each of which is characterized by a mass and a moment of inertia, 2 dof 

each (vertical displacement, or shaking, and pitch) have been associated while for the 4 

contact points only the vertical displacement. Each suspension element consists of a spring 

and damper in parallel; 

 

• 10 dof half-train model: a more complete model than the previous one with respect to 

which the wheels are also present (with their own mass) and the contact points are 

schematized with a spring; 

 

• 17 dof full-train model: it is the most complete model analyzed. To the body and the two 

bogies, 3 dof each one (vertical displacement, pitch and roll) have been associated. The 

wheels are 8 and are modeled as in the previous case. 
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3.1 VEHICLE MODELS 

 

3.1.1 6 DOF HALF-TRAIN MODEL 

 

In figure 3.1 the half-train model at 6 dof is represented while table 3.1 lists its parameters’ values. 
 

 

Figure 3.1: 6 dof Half-train model 

 

Parameter Symbol Value 

Chassis’ mass 𝑚2 32804 [𝑘𝑔] 
Chassis’ inertia (pitch) 𝐽𝑥2 0.67 ∙ 106  [𝑘𝑔𝑚2] 
Bogie’s mass 𝑚1 2363.5 [𝑘𝑔] 
Bogie’s inertia (pitch) 𝐽𝑥1 1026.36 [𝑘𝑔𝑚2] 
Primary suspension’s stiffness 𝑘1 5.56 ∙ 106 [𝑁 𝑚⁄ ] 
Primary suspension’s damping 𝑐1 1.80 ∙ 104  [𝑁𝑠 𝑚⁄ ] 
Secondary suspension’s stiffness 𝑘2 2.20 ∙ 106 [𝑁 𝑚⁄ ] 
Secondary suspension’s damping  𝑐2 4.00 ∙ 104  [𝑁𝑠 𝑚⁄ ] 
Half bogie’s wheelbase 𝐿1 1.25 [𝑚] 
Chassis’ half length 𝐿2 7.00 [𝑚] 

Table 3.1: 6 dof model numerical Parameters 

 

The matrices of the masses (𝑀), stiffness (𝐾), and damping (𝐶) are respectively: 

 

 

𝑀 =
[  
   
𝑚2 0 0 0 0 00 𝐽𝑥2 0 0 0 00 0 𝑚1 0 0 00 0 0 𝐽𝑥1 0 00 0 0 0 𝑚1 00 0 0 0 0 𝐽𝑥1]  
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𝐾 =
[  
   
 2𝑘2 0 −𝑘2 0 −𝑘2 00 2𝑘2𝑙22 𝑘2𝑙2 0 −𝑘2𝑙2 0−𝑘2 𝑘2𝑙2 2𝑘1 + 𝑘2 0 0 00 0 0 2𝑘1𝑙12 0 0−𝑘2 −𝑘2𝑙2 0 0 2𝑘1 + 𝑘2 00 0 0 0 0 2𝑘1𝑙12]  

   
 
 

 

𝐶 =
[  
   
 2𝑐2 0 −𝑐2 0 −𝑐2 00 2𝑐2𝑙22 𝑐2𝑙2 0 −𝑐2𝑙2 0−𝑐2 𝑐2𝑙2 2𝑐1 + 𝑐2 0 0 00 0 0 2𝑐1𝑙12 0 0−𝑐2 −𝑐2𝑙2 0 0 2𝑐1 + 𝑐2 00 0 0 0 0 2𝑐1𝑙12]  

   
 
 

 

Table 3.2 shows the degrees of freedom of the system with the respective index. 

 

Index Degree of Freedom 

1 Chassis’ shaking 

2 Chassis’ pitch 

3 Bogie’s shaking 

4 Bogie’s pitch 

5 Bogie’s shaking 

6 Bogie’s pitch 

Table 3.2: DOF of the model 

 

The modal parameters of the system can be obtained from the eigenvectors of the system. Figure 

3.2 shows the map of the poles of the system (there are poles with double multiplicity).  

 

 

Figure 3.2: Map of the 6 dof model poles 
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Table 3.3 shows the natural frequencies and the damping ratios associated with the relative 

modes, modulus and phase are shown in figure 3.3. Modes 1 and 2 refer to shaking and pitching of 

the body, while Modes 3 and 4 (or 5 and 6) refer to shaking and pitching of the front (or rear) 

bogie. 

 

 

Mode Natural Frequency 𝒇𝒏 [𝑯𝒛] Damping Ratio 𝜻𝒏 

1 1.6839 8.2485 

2 2.6081 12.6280 

3 11.9501 21.8747 

4 11.9503 22.5526 

5 20.7077 21.0611 

6 20.7077 21.0611 

Table 3.3: 6 dof model Modal Parameters 

 

 

 

Figure 3.3: Modulus and Phase of the 6 dof model’s modal vectors 

 

 

3.1.2 10 DOF HALF-TRAIN MODEL 

 

Figure 3.4 shows the 10 dof half-train model, while table 3.4 shows the respective numerical data. 

As anticipated, it can be seen that compared to the previous case there are the masses 𝑚ℎ of the 

wheels, with stiffness 𝑘ℎ and with zero damping coefficient. 
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Figure 3.4: 10 dof Half-train model 

 

Parameter Symbol Value 

Chassis’ mass 𝑚2 32804 [𝑘𝑔] 
Chassis’ inertia (pitch) 𝐽𝑥2 0.67 ∙ 106  [𝑘𝑔𝑚2] 
Bogie’s mass 𝑚1 2363.5 [𝑘𝑔] 
Bogie’s inertia (pitch) 𝐽𝑥1 1026.36 [𝑘𝑔𝑚2] 
Wheel’s mass 𝑚ℎ 1000 [𝑘𝑔] 
Primary suspension’s stiffness 𝑘1 5.56 ∙ 106 [𝑁 𝑚⁄ ] 
Primary suspension’s damping 𝑐1 1.80 ∙ 104  [𝑁𝑠 𝑚⁄ ] 
Secondary suspension’s stiffness 𝑘2 2.20 ∙ 106 [𝑁 𝑚⁄ ] 
Secondary suspension’s damping  𝑐2 4.00 ∙ 104  [𝑁𝑠 𝑚⁄ ] 
Wheel’s stiffness 𝑘ℎ 2.7284 ∙ 109 [𝑁 𝑚⁄ ] 
Wheel’s damping 𝑐ℎ 0 [𝑁𝑠 𝑚⁄ ] 
Half bogie’s wheelbase 𝐿1 1.25 [𝑚] 
Chassis’ half length 𝐿2 7.00 [𝑚] 

Table 3.4: 10 dof model numerical Parameters 

 

The matrices of the masses (𝑀), stiffness (𝐾), and damping (𝐶) are respectively: 
 

𝑀 =
[  
   
   
 𝑚2 0 0 0 0 0 0 0 0 00 𝐽𝑥2 0 0 0 0 0 0 0 00 0 𝑚1 0 0 0 0 0 0 00 0 0 𝐽𝑥1 0 0 0 0 0 00 0 0 0 𝑚1 0 0 0 0 00 0 0 0 0 𝐽𝑥1 0 0 0 00 0 0 0 0 0 𝑚ℎ 0 0 00 0 0 0 0 0 0 𝑚ℎ 0 00 0 0 0 0 0 0 0 𝑚ℎ 00 0 0 0 0 0 0 0 0 𝑚ℎ]  
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𝐾 =
[  
   
   
  2𝑘2 0 −𝑘2 0 −𝑘2 0 0 0 0 00 2𝑘2𝑙22 𝑘2𝑙2 0 −𝑘2𝑙2 0 0 0 0 0−𝑘2 𝑘2𝑙2 2𝑘1 + 𝑘2 0 0 0 −𝑘1 −𝑘1 0 00 0 0 2𝑘1𝑙12 0 0 𝑘1𝑙1 −𝑘1𝑙1 0 0−𝑘2 −𝑘2𝑙2 0 0 2𝑘1 + 𝑘2 0 0 0 −𝑘1 −𝑘10 0 0 0 0 2𝑘1𝑙12 0 0 𝑘1𝑙1 −𝑘1𝑙10 0 −𝑘1 𝑘1𝑙1 0 0 𝑘1 + 𝑘ℎ 0 0 00 0 −𝑘1 −𝑘1𝑙1 0 0 0 𝑘1 + 𝑘ℎ 0 00 0 0 0 −𝑘1 𝑘1𝑙1 0 0 𝑘1 + 𝑘ℎ 00 0 0 0 −𝑘1 −𝑘1𝑙1 0 0 0 𝑘1 + 𝑘ℎ]  

   
   
  
 

 

𝐶 =
[  
   
   
  2𝑐2 0 −𝑐2 0 −𝑐2 0 0 0 0 00 2𝑐2𝑙22 𝑐2𝑙2 0 −𝑐2𝑙2 0 0 0 0 0−𝑐2 𝑐2𝑙2 2𝑐1 + 𝑐2 0 0 0 −𝑐1 −𝑐1 0 00 0 0 2𝑐1𝑙12 0 0 𝑐1𝑙1 −𝑐1𝑙1 0 0−𝑐2 −𝑐2𝑙2 0 0 2𝑐1 + 𝑐2 0 0 0 −𝑐1 −𝑐10 0 0 0 0 2𝑐1𝑙12 0 0 𝑐1𝑙1 −𝑐1𝑙10 0 −𝑐1 𝑐1𝑙1 0 0 𝑐1 0 0 00 0 −𝑐1 −𝑐1𝑙1 0 0 0 𝑐1 0 00 0 0 0 −𝑐1 𝑐1𝑙1 0 0 𝑐1 00 0 0 0 −𝑐1 −𝑐1𝑙1 0 0 0 𝑐1 ]  

   
   
  
 

 

 

Table 3.5 shows the degrees of freedom of the system with the respective index. 

 

 

Index Degree of Freedom Index Degree of Freedom 

1 Chassis’ shaking 6 Bogie’s pitch 

2 Chassis’ pitch 7 Wheel’s shaking 

3 Bogie’s shaking 8 Wheel’s shaking 

4 Bogie’s pitch 9 Wheel’s shaking 

5 Bogie’s shaking 10 Wheel’s shaking 

Table 3.5: DOF of the model 

 

The modal parameters of the system can be obtained from the eigenvectors of the system. Figure 

3.5 shows the map of the poles of the system (there are poles with double multiplicity). Table 3.6 

shows the natural frequencies and the damping ratios associated with the relative modes; 

modulus and phase of the modal vectors are shown in figure 3.6 for chassis and bogies and in 

figure 3.7 for wheels. 
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Figure 3.5: Map of the 10 dof model poles 

 

Mode Natural Frequency 𝒇𝒏 [𝑯𝒛] Damping 

Ratio 𝜻𝒏 

Mode Natural Frequency 𝒇𝒏 [𝑯𝒛] Damping 

Ratio 𝜻𝒏 

1 1.6839 8.2441 6 20.6903 21.0001 

2 2.6081 12.6207 7 263.1113 0.5506 

3 11.9406 21.8537 8 263.1113 0.5506 

4 11.9408 22.5334 9 263.1450 0.5461 

5 20.6903 21.0001 10 263.1450 0.5461 

Table 3.6: 10 dof model Modal Parameters 

 

Figure 3.6: Modulus and Phase of the 10 dof model’s modal vectors for Body and Bogies 

 

 

Figure 3.7: Modulus and Phase of the 10 dof model’s modal vectors for Wheels 
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3.1.3 17 DOF FULL-TRAIN MODEL 

 

Figure 3.8 shows the 17 dof full-train model, while table 3.7 shows the respective numerical data. 

 

 

Figure 3.8: 17 dof full-train model 

 

Parameter Symbol Value 

Chassis’ mass 𝑚2 40000 [𝑘𝑔] 
Chassis’ inertia (pitch) 𝐽𝑥2 2.56 ∙ 106  [𝑘𝑔𝑚2] 
Chassis’ inertia (roll) 𝐽𝑦2 9 ∙ 104 [𝑘𝑔𝑚2] 
Bogie’s mass 𝑚1 2100 [𝑘𝑔] 
Bogie’s inertia (pitch) 𝐽𝑥1 2100 [𝑘𝑔𝑚2] 
Bogie’s inertia (roll) 𝐽𝑦1 1710 [𝑘𝑔𝑚2] 
Wheel’s mass 𝑚ℎ 1950 [𝑘𝑔] 
Primary suspension’s stiffness 𝑘1 6 ∙ 105 [𝑁 𝑚⁄ ] 
Primary suspension’s damping 𝑐1 1 ∙ 104 [𝑁𝑠 𝑚⁄ ] 
Secondary suspension’s stiffness 𝑘2 2.60 ∙ 105 [𝑁 𝑚⁄ ] 
Secondary suspension’s damping  𝑐2 2.00 ∙ 104  [𝑁𝑠 𝑚⁄ ] 
Wheel’s stiffness 𝑘ℎ 2.44535 ∙ 109  [𝑁 𝑚⁄ ] 
Wheel’s damping 𝑐ℎ 0 [𝑁𝑠 𝑚⁄ ] 
Half bogie’s wheelbase 𝐿1 1.28 [𝑚] 
Chassis’ half length 𝐿2 9.00 [𝑚] 
Gauge half length 𝐵1 0.7465 [𝑚] 
Chassis’ half thickness 𝐵2 1.00 [𝑚] 

Table 3.7: 17 dof model numerical Parameters 

 

Appendix A shows the matrices of damping C (A.1) and stiffness K (A.2). 

The matrix of the masses (𝑀) is: 
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𝑀 =

[  
   
   
   
   
   
𝑚2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 𝐽𝑥2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 𝐽𝑦2 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 𝑚1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 𝐽𝑥1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 𝐽𝑦1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 𝑚1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 𝐽𝑥1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 𝐽𝑦1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 𝑚ℎ 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 𝑚ℎ 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 𝑚ℎ 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 𝑚ℎ 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 𝑚ℎ 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑚ℎ 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑚ℎ 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑚ℎ]  

   
   
   
   
   

 

 

Table 3.8 shows the degrees of freedom of the system with the respective index. 
 

Index Degree of Freedom Index Degree of Freedom 

1 Chassis’ shaking 10 1-L Wheel’s shaking 

2 Chassis’ pitch 11 2-L Wheel’s shaking 

3 Chassis’ roll 12 1-R Wheel’s shaking 

4 Bogie’s shaking 13 2-R Wheel’s shaking 

5 Bogie’s pitch 14 3-L Wheel’s shaking 

6 Bogie’s roll 15 4-L Wheel’s shaking 

7 Bogie’s shaking 16 3-R Wheel’s shaking 

8 Bogie’s pitch 17 4-R Wheel’s shaking 

9 Bogie’s roll - - 

Table 3.8: DOF of the model 

 

Figure 3.9 shows the map of the poles of the system (there are poles with double multiplicity).  

Table 3.9 shows the natural frequencies and the damping ratios associated with the relative 

modes; modulus and phase of the modal vectors are shown in figure 3.10, 3.11, 3.12 and 3.13. 
 

 

Figure 3.9: Map of the 17 dof model’s poles 
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Mode Natural Frequency 𝒇𝒏 [𝑯𝒛] Damping Ratio 𝜻𝒏 

1 0.4586 12.8315 

2 0.7351 18.7565 

3 0.8268 21.0855 

4 5.2589 19.8207 

5 5.2642 20.0267 

6 5.9393 38.6299 

7 5.9404 38.7205 

8 6.8865 36.0489 

9 6.8865 36.0489 

10 178.2374 0.2295 

11 178.2374 0.2295 

12 178.2419 0.2293 

13 178.2419 0.2293 

14 178.2440 0.2292 

15 178.2440 0.2292 

16 178.2488 0.2289 

17 178.2488 0.2289 

Table 3.9: 17 dof model Modal Parameters 

 

 

Figure 3.10: Modulus of the 17 dof model’s modal vectors for Body and Bogies 
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Figure 3.11: Phase of the 17 dof model’s modal vectors for Body and Bogies 

 

 

Figure 3.12: Modulus of the 17 dof model’s modal vectors for Wheels 

 

 

Figure 3.13: Phase of the 17 dof model’s modal vectors for Wheels 
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3.2 DYNAMIC PROBLEM: FREQUENCY DOMAIN RESOLUTION 

 

The equation of motion of a n-dof damped system can be written in matrix form such as: 

 

 𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥(𝑡) = 𝐹(𝑡) (3.1) 

 

where 𝑀, 𝐶 and 𝐾 are the mass, damping and stiffness matrices of the system, while 𝐹(𝑡) is the 

applied forces matrix. Moving on to the frequency domain we obtain:  

 

 −𝑀𝜔2𝑿(𝜔) + 𝑗𝜔𝐶𝑿(𝜔) + 𝐾𝑿(𝜔) = 𝑭(𝜔) (3.2) 

 

That can be rewritten as: 

 

 (−𝑀𝜔2 + 𝑗𝜔𝐶 + 𝐾)𝑿(𝜔) = 𝑭(𝜔) (3.3) 

Defining: 

 𝐾𝑑(𝜔) = −𝑀𝜔2 + 𝑗𝜔𝐶 + 𝐾 (3.4) 

 

which represents the dynamic stiffness matrix (or impedance matrix of the system), it is possible 

to obtain the solution of equation (3.2) as: 

 

 𝑿(𝜔) = 𝐾𝑑−1(𝜔)𝑭(𝜔) = 𝐻(𝜔)𝑭(𝜔) (3.5) 

 

where 𝐻(𝜔) = 𝐾𝑑−1(𝜔) is the frequency response matrix of the system. Appendix B describes how 

to proceed to obtain the matrix 𝑭(𝜔) for the three models studied. At this point, the transforms of 

the system outputs are available, as well as the time histories, which can be obtained in the 

discrete case through the IFFT (inverse fast Fourier transform). 

 

3.2.1 SYSTEM’S OUTPUT PSD 

 

There are several ways to obtain PSDs of system response signals. First of all, it is possible to get 

the output auto-PSDs starting from 2.67, that is: 

 

 𝑮𝒙𝒙𝑡ℎ(𝑓) = 1𝑡0 (|𝑿(𝑓)|𝑓𝑐 )2
 (3.6) 

 𝑮𝒙𝒙𝑡ℎ(𝑓)is the system output auto-PSD matrix. It is made up of 𝑛 columns equal to the number of 

dofs of the system considered and a number of rows equal to the number of elements of the 

frequency vector, i.e. (𝑓𝑐 Δ𝑓⁄ ) + 1. 
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3.2.2 RELATIONS BETWEEN INPUT AND OUTPUT 

 

By indicating with 𝒀(𝜔) and 𝑿(𝜔) respectively the Fourier transforms of system’s inputs and 

outputs, (3.5) can be rewritten (incorporating the influence matrices in 𝑯(𝜔), see appendix B) as:  
 

 𝑿(𝜔) = 𝑯(𝜔)𝒀(𝜔) (3.7) 

 

This concept can be extended to the case of continuous signals. The output signal 𝑥(𝑡) can 

therefore be obtained from the inverse Fourier transform of (3.7):  
 

 𝑥(𝑡) = ∫ [ 12𝜋 ∫ 𝑦(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡+∞
−∞ ] 𝑒𝑗𝜔𝑡𝑑𝜔+∞

−∞  (3.8) 

 

The term inside the square brackets is precisely the transform of 𝑦(𝑡), that is 𝒀(𝜔). However, this 

formulation is not widely used as the integral of the inverse Fourier transform in 𝑑𝜔 is not easy to 

solve. Alternatively, the convolution integral technique can be used, which for a continuous 

random signal, assuming that it is formed by a series of small pulses, is:  
 

 𝑥(𝑡) = ∫ 𝑦(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏+∞
−∞  (3.9) 

 

where the impulse occurs at time 𝜏 and the response is evaluated at time t. Equivalently, if 𝜏 is 

defined as the time difference between which an impulse occurs and the moment in which its 

response is calculated, the same relation can be written as: 
 

 𝑥(𝑡) = ∫ ℎ(𝜏)𝑦(𝑡 − 𝜏)𝑑𝜏+∞
−∞  (3.10) 

 

Usually the lower limit of the integral is set to zero as for 𝜏 < 0 we have ℎ(𝜏) = 0, as it is not 

possible to have an output before the impulse occurs. There is an important link between the 

impulse response function ℎ(𝑡) and the frequency response function 𝐻(𝜔). 

Considering an impulsive input signal, 𝑦(𝑡) = 𝛿(𝑡), and the corresponding output signal, 𝑥(𝑡) =ℎ(𝑡), the Fourier transform of the input signal will be: 
 

 𝒀(𝜔) = 12𝜋 ∫ 𝛿(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡+∞
−∞ = 12𝜋 (3.11) 

 

So the Fourier transform of the output is: 
 

 𝑿(𝜔) = 12𝜋 ∫ ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡+∞
−∞  (3.12) 

 

Including (3.11) and (3.12) in (3.7), we obtain: 
 

 𝑯(𝜔) = ∫ ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡+∞
−∞  (3.13) 
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Hence, 𝑯(𝜔) is the Fourier transform of ℎ(𝑡) (up to the factor 1/2𝜋, based on the definition of 

the Fourier transform). 

Now you can get the input-output relationship for a single input single output (SISO) system. 

Considering a random input signal 𝑦(𝑡) and the corresponding output signal 𝑥(𝑡), we have: 

 

 𝑥(𝑡)𝑥(𝑡 + 𝜏) = ∫ ∫ ℎ(𝜉)ℎ(𝜂)𝑦(𝑡 − 𝜉)𝑦(𝑡 + 𝜏 − 𝜂)𝑑𝜉+∞
0 𝑑𝜂+∞

0  (3.14) 

 

And so, for the input-output relationship of the auto-correlation functions, we have: 

 

 𝑅𝑥𝑥(𝜏) = ∫ ∫ ℎ(𝜉)ℎ(𝜂)𝑅𝑥𝑥(𝜏 − 𝜂)𝑑𝜉+∞
0 𝑑𝜂+∞

0  (3.15) 

 

Equivalently, for the cross-correlations we have: 

 

 𝑦(𝑡)𝑥(𝑡 + 𝜏) = ∫ ℎ(𝜂)𝑦(𝑡)𝑦(𝑡 + 𝜏 − 𝜂)𝑑𝜂+∞
0  (3.16) 

and 

 𝑅𝑦𝑥(𝜏) = ∫ ℎ(𝜂)𝑅𝑦𝑦(𝜏 − 𝜂)𝑑𝜂+∞
0  (3.17) 

 

Equations from (3.14) to (3.17) represent the convolution of the input signal with the 

corresponding impulse response function. Applying the Fourier transform to (3.15) and (3.17), we 

obtain: 

 

 𝑆𝑥𝑥(𝜔) = |𝐻(𝜔)|2𝑆𝑦𝑦(𝜔) (3.18) 

and 

 𝑆𝑦𝑥(𝜔) = 𝐻(𝜔)𝑆𝑦𝑦(𝜔) (3.19) 

 

The first of the two equations is a real function and contains information regarding the magnitude 

of the frequency response function. 𝑆𝑦𝑦(𝜔) and 𝑆𝑥𝑥(𝜔) represent the auto-PSDs of the input and 

output signals. The second equation, on the other hand, is a complex function and carries 

information both on the module and on the phase. 

If we want to extend equation (3.18) to the case of a system subjected to random vibrations with 

N inputs, we have: 

 

 𝑆𝑥𝑥(𝜔) = ∑ ∑ 𝐻𝑝∗(𝜔)𝐻𝑞(𝜔)𝑆𝑦𝑝𝑦𝑞(𝜔)𝑁
𝑞=1

𝑁
𝑝=1  (3.20) 

 

where 𝐻𝑝∗(𝜔) is the complex and conjugate of 𝐻𝑞(𝜔). 

In the discrete case, and therefore also for the considered train models, it is possible to obtain a 

matrix relationship that allows to obtain the PSD matrix of the complete outputs starting from the 

PSD of the road profile. In this case, unlike what we saw in subsection 3.2.1, the PSD matrix 

contains both auto-correlation and cross-correlation terms. 
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The relationship is as follows: 
 

 𝐺𝑜𝑢𝑡(𝜔𝑖) = 𝐻(𝜔𝑖)[𝑗𝜔𝑖𝑇1′ + 𝑇2′]𝐺𝑖𝑛(𝜔𝑖)[𝑗𝜔𝑖𝑇1′ + 𝑇2′]𝐻𝐻𝐻(𝜔𝑖) (3.21) 

 

where the matrix 𝐻𝐻(𝜔𝑖) is the Hermitian of 𝐻(𝜔𝑖) of dimension 𝑛𝑑𝑜𝑓 × 𝑛𝑑𝑜𝑓. Matrices 𝑇1′ and 𝑇2′ 
have dimension 𝑛𝑑𝑜𝑓 × 𝑛𝑖𝑛𝑝𝑢𝑡 while the PSD matrix of the inputs 𝐺𝑖𝑛(𝜔𝑖) is an 𝑛𝑖𝑛𝑝𝑢𝑡 × 𝑛𝑖𝑛𝑝𝑢𝑡. 
Finally, the PSD matrix of the outputs 𝐺𝑜𝑢𝑡(𝜔𝑖) is a 𝑛𝑑𝑜𝑓 × 𝑛𝑑𝑜𝑓. The matrices for the different 

models are shown in appendix C. In the construction of the PSD matrix of the inputs, it is necessary 

to take into account what has been seen in subsection 2.3.2 regarding the temporal phase shift 

and the correlation between left and right profile. 
 

 

3.2.3 WELCH PERIODOGRAM AND HALF SPECTRA METHOD 

 

In signal theory, the periodogram is a non-parametric estimate of the spectral density of a 

stationary random signal. It exploits the discrete Fourier transform. For a signal 𝑥(𝑛) sampled with 

a frequency 𝑓𝑐 , denoting by 𝑃(𝑓) the PSD, the periodogram is defined as: 
 

 𝑃(𝑓) = Δ𝑡𝑁 [∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓Δ𝑡𝑛𝑁−1
𝑛=0 ]2 ,     −1 2Δ𝑡⁄ < 𝑓 ≤ 1 2Δ𝑡⁄  (3.22) 

 

where Δ𝑡 is the sampling interval. However the periodogram is not a consistent estimate of the 

PSD. In fact it is shown that by increasing the resolution in frequency, making the number of 

samples 𝑁 tend to infinity, the error of the estimate does not tend to 0. This limit is overcome by 

reducing the resolution in frequency, thus obtaining a reduction in the estimation error, resulting 

in smoother spectra. To do this, so-called modified periodograms are used, one of which is the 

Welch periodogram. It consists in operating an explicit windowing of the signal. In other words, 

the signal made up of 𝑁 samples is divided into 𝐾 parts, usually partially overlapping (overlap, 

usually by 50%). Each part into which the signal is divided is multiplied by a suitable window 

function that joints the edges of each interval to 0. At this point the respective spectra are 

calculated and the estimate is obtained as the average of the𝐾 spectra. 

Among the most used window functions, there are the rectangular window function (3.14) and the 

Hanning window function (3.15). 
 

 

Figure 3.14: Rectangular Windowing function 
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Figure 3.15: Hanning Windowing function 

 

There is also another way to obtain the estimate of the PSD. First of all it is possible to estimate 

the correlation matrix 𝑅𝑖  of the output signals of the system 𝑥(𝑛) as: 

 

 𝑅𝑖 = 1𝑁 ∑ 𝑥(𝑛 + 𝑖)𝑥𝑇(𝑛)𝑁−1
𝑛=1  (3.23) 

 

where 𝑖 indicates the index of the correlation sample (also referring to the time lag). The so-called 

weighted correlogram can be used as an estimate of the non-parametric spectrum, calculated as 

the discrete Fourier transform (DFT) of the weighted estimated correlation matrix in equation 

3.23: 

 

 𝑆𝑥𝑥(𝜔) = ∑ 𝜔𝑛𝑅(𝑛)𝑒−𝑗𝜔𝑛Δ𝑡𝐿
𝑛=−𝐿  (3.24) 

 

where 𝐿 indicates the maximum number of time lags through which the correlation function is 

estimated, while 𝜔𝑛 indicates the used weighting time window. Since negative time-shift 

correlation samples contain redundant information, it is sufficient to consider only positive time 

delays when calculating spectra, leading to so-called half spectra: 

 

 𝑆𝑥𝑥+ (𝜔) = 𝜔0𝑅(0)2 ∑ 𝜔𝑛𝑅(𝑛)𝑒−𝑗𝜔𝑛Δ𝑡𝐿
𝑛=1  (3.25) 

 

The advantage of the correlogram approach is that you can avoid the use of windowing operation. 

This operation through the Hanning function, for example, introduces an error on the damping 

estimates. Therefore, it is possible to apply an exponential window to the correlation functions 

before calculating the DFT, to reduce the effect of dispersion and the influence of higher time 

delays, which have a greater variance. 
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4 IDENTIFICATION THROUGH MODELS’ DATA 

 

To identify the data obtained from the 6 and 10 dof half-train and 17 dof full-train models, we will 

proceed by analyzing some cases, for each of which the results obtained using the OMA method 

will be shown [4]. For each case, some elements of the estimated PSD matrix of the rail profile will 

be shown. The visualization of the results obtained through the OMA will take place by means of:  
 

• stabilization diagram (classic OMA and modified OMA); 
 

• comparison tables between imposed and estimated modal parameters of the model; 
 

• MAC and COMAC charts; 
 

• comparison tables between imposed and estimated profile parameters;  
 

• comparison between the PSDs of the estimated and theoretical profile. 
 

The same cases will be analyzed using the Gonzalez method [7]. We will also see how the results 

vary when background noise is added to the processed signals with a certain ratio between the 

signal strength and the noise power (Signal to Noise Ratio, or SNR) defined as: 
 

 10 ∙ log10 𝜎[𝑌(𝑡)]2𝜎[𝑌𝑛𝑜𝑖𝑠𝑒(𝑡)]2  [𝑑𝐵] (4.1) 

 

 

4.1 CASE 1 

 

The first case analyzed takes into consideration the 6 dof half-train model, with a rail profile 

obtained using the Sussman approximation as input, a vehicle speed of 25 m/s and a sampling 

frequency of 200 Hz. 
 

4.1.1 OMA METHOD 

 

In figure 4.1 are shown some elements of the output PSD matrix obtained through the (3.21). The 

input is a Sussman Class A profile. Note the sawtooth phase trend of the cross-PSD, in particular 

the term (3,5)that correlates the vertical displacements of the two bogies. 

The stabilization diagram obtained applying the classic OMA at the polynomial model (2.84) is 

shown in figure 4.2. Evidently, in the frequency range considered, no poles have been identified. 

The stabilization diagram obtained applying the modified OMA at the polynomial model (2.88) is 

shown in figure 4.3, while figure 4.4 shows a focused detail around 11.95 Hz to better recognize 

two distinct poles that are very close one to another. Each pole is represented through a column 

of letters, that indicates if the pole stabilizes for that polynomial order. The letter 𝑠 denotes that 

the pole stabilizes in terms of frequency, damping ratio and mode shapes, while the letter 𝑜 

denotes a new pole. 

Using the modified OMA in a frequency band up to50 𝐻𝑧we detected 5 poles, differently to the 6 

poles obtained through the theoretical model. This happened due to the superimposition of 

modes 5 and 6, so not easy to be distinguished by the polynomial model. Anyway, all poles 

detected stabilizes starting from orders even lower than 15. 
  



Page60 / 127 

 

 

 

Figure 4.1: Modulus and phase of some elements of the output PSD matrix 

 

 

Figure 4.2: Classic OMA stabilization diagram 
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Figure 4.3: Modified OMA stabilization diagram 

 

 

Figure 4.4: Detail of modified OMA stabilization diagram 
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Table 4.1 shows the natural frequencies and the estimated damping ratios, compared with those 

obtained from the model and an indication of the relative percentage error. The estimated values 

have a very small error compared to the reference values. 

 𝒇𝒓𝒆𝒇 [𝑯𝒛] 𝒇𝒆𝒔𝒕 [𝑯𝒛] 𝒆𝒓𝒓(𝒇) [%] 𝜻𝒓𝒆𝒇 𝜻𝒆𝒔𝒕 𝒆𝒓𝒓(𝜻) [%] 
1.6839 1.6839 1.1416 ∙ 10−6 8.2485 8.2485 2.283 ∙ 10−6 

2.6081 2.6080 2.7127 ∙ 10−5 12.628 12.628 0.0002 

11.9501 11.9497 0.0036 21.8747 21.8749 0.0013 

11.9503 11.9508 0.004 22.5526 22.5527 0.0005 

20.7077 20.7078 0.0003 21.0611 21.0607 0.0015 

Table 4.1: Comparison between model’s and estimated values of natural frequencies and damping ratios 

 

In figure 4.5 it is possible to see the comparison between the system modes of the reference 

model and the estimated ones, also with the help of the MAC and COMAC graphs.  

The MAC assumes values equal to 1 in the terms that relate the estimated modal vectors with the 

corresponding design vector, therefore the coherence is maximum. 

COMAC shows how degree of freedom 4 (front bogie’s pitch) contributes negatively to the 

estimate. This information confirms the problem encountered in the failure to identify a pole. In 

fact, the coincident poles corresponding to modes 5 and 6 refer to the pitches of the two bogies. 

 

 

 

Figure 4.5: Comparison among the model’s and estimated modes, MAC and COMAC 
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Table 4.2 shows the comparison between the parameters of the profile 𝐺𝑑(𝑓0) = 𝐺𝑑(𝑛0) ∙ 𝑢 (with 𝑓0 = 𝑛0 ∙ 𝑢) used in (2.59) and those estimated with the OMA method with indication of the 

relative percentage error. 

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟐. 𝟕𝟗𝟒𝟓 ∙ 𝟏𝟎−𝟓 2.7961 ∙ 10−5 0.05807 2.500 2.500 0.0012 

Table 4.2: Comparison between model’s and estimated profile’s parameters 

 

Finally in figure 4.6 it is possible to see the comparison between the PSD of the theoretical profile 

and the estimated one. In the same graph there is also the output auto-PSD corresponding to 

degree of freedom 5, that is the shaking of one of the bogies, which in the 6 dof model represents 

one of the points of contact with the track. Note how for low frequencies the three curves are 

practically superimposed, while for higher frequencies the output auto-PSD deviates. As will be 

reiterated later, in dealing with the interaction between wheels and profile, the PSD of the output 

signals can often be approximated to the PSD of the profile itself. This is because the stiffness 

value of the wheels of railway vehicles is very high and therefore there is a nearly unitary 

transmissibility of the stresses coming from the profile; this implies a high similarity between the 

input and output PSDs, especially at low frequencies and a greater deviation at higher frequencies. 

This last effect, in the case of the considered 6 dof system, is much more marked because each 

contact point is modeled by means of a spring and damper in parallel. As will be seen in the 

following cases, when the contact point is modeled exclusively with a spring with a high constant 𝑘 

there is a greater similarity even at higher frequencies. 

 

 

Figure 4.6: Comparison among the theoretical and estimated PSD 
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4.1.2 GONZALEZ METHOD 

 

With reference to the diagram of figure 2.32, the method is applied considering a rail profile 

obtained by Sussman approximation of Class A for calibration, and a profile of Class D for 

verification. To obtain the matrix of the transfer function 𝑯𝒕(𝑓) we use the relation: 
 

 𝐻𝑡(𝑓) = 𝑃𝑆𝐷𝑜𝑢𝑡(𝑓)𝑃𝑆𝐷𝑟(𝑓)  (4.2) 

 

For the element (3,5) of figure 4.1 we obtain the transfer function shown in figure 4.7. 
 

 

Figure 4.7: Transfer function 𝑯𝒕of the element (𝟑,𝟓) 

 

In figure 4.8 it is possible to appreciate the comparison between the PSD of the estimated rail 

profile and the theoretical one, as well as with the auto-PSD of the element (5,5). 
 

 

Figure 4.8: Comparison among the theoretical and estimated PSD 
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By means of a non-linear fitting it is possible to estimate the parameters of the profile and 

compare them with those of the Class D profile; this comparison is shown in table 4.3. 

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟏. 𝟕𝟖𝟖𝟓 ∙ 𝟏𝟎−𝟑 1.7885 ∙ 10−3 2.1559 ∙ 10−6 2.500 2.500 9.9713 ∙ 10−7 

Table 4.3: Comparison between model’s and estimated profile’s parameters 

 

From the comparison of the curves and parameters, the estimates obtained show a very small 

error compared to the reference values. 

At this point it is possible to repeat the same procedure, with the addition of background noise 

with 𝑆𝑁𝑅 = 20𝑑𝐵  to the historical output signals (figure 4.9). And through equation (4.2) we 

obtain the matrix 𝑯𝒕(𝑓), of which the element (3, 5) is reported in figure 4.10. 

 

 

Figure 4.9: Time domain representation of the signal and the noise 

 

 

Figure 4.10: Transfer function 𝑯𝒕of the element (𝟑,𝟓) in case study with addiction of background noise 
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In table 4.4 is shown the comparison among the imposed and the estimated profile’s parameters.  

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟏. 𝟕𝟖𝟖𝟓 ∙ 𝟏𝟎−𝟑 1.7887 ∙ 10−3 0.1007 2.500 2.4986 0.0568 

Table 4.4: Comparison between model’s and estimated profile’s parameters 

 

Figure 4.11 highlights the comparison between the PSD of the estimated profile, the theoretical 

one and the auto-PSD of the element (5,5), in the case with background noise. Also in this case, 

despite the added noise, the estimates do not show large deviations from the reference values. 

 

 

Figure 4.11: Comparison among the theoretical and estimated PSD with addiction of background noise 

 

 

4.2 CASE 2 

 

The second case analyzed takes into consideration the 10 dof half-train model, with a rail profile 

obtained using the Sussman approximation as input, a vehicle speed of 15 m/s and a sampling 

frequency of 200 Hz. 

 

4.2.1 OMA METHOD 

 

Figure 4.12 shows some elements of the PSD matrix of the outputs obtained with the relation 

(3.21). A profile obtained by Class B Sussman approximation was used as system input. 
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Figure 4.12: Modulus and phase of some elements of the output PSD matrix 

 

The stabilization diagram obtained using the polynomial model of (2.88) of the modified OMA 

method is shown in figure 4.13. 

 

 

Figure 4.13: Modified OMA stabilization diagram 
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As in the previous case, the poles identified up to 50 Hz are 5, with the third and fourth very close, 

and the model was not able to distinguish those corresponding to the coincident modes 5 and 6. 

All poles stabilize with respect to natural frequencies, damping ratios and modes starting from an 

order of the polynomial model lower than 15. 

Table 4.5 shows the natural frequencies and the estimated damping ratios compared with those 

obtained from the model and an indication of the relative percentage error. 

 𝒇𝒓𝒆𝒇 [𝑯𝒛] 𝒇𝒆𝒔𝒕 [𝑯𝒛] 𝒆𝒓𝒓(𝒇) [%] 𝜻𝒓𝒆𝒇 𝜻𝒆𝒔𝒕 𝒆𝒓𝒓(𝜻) [%] 
1.6835 1.6835 5.7867 ∙ 10−7 8.2441 8.2441 1.4483 ∙ 10−5 

2.6076 2.6076 1.3681 ∙ 10−5 12.6206 12.6207 0.0001 

11.9406 11.9404 0.0011 21.8537 21.8527 0.0044 

11.9408 11.9409 0.0011 22.5334 22.5346 0.0053 

20.6903 20.6903 1.2425 ∙ 10−5 21.0000 21.0000 1.3571 ∙ 10−4 

Table 4.5: Comparison between model’s and estimated values of natural frequencies and damping ratios 

 

In figure 4.14 it is possible to see the comparison between the system modes of the reference 

model and the estimated ones, also with the help of the MAC and COMAC graphs.  

The MAC shows unitary coherence between vector and design modals, except for mode 5, which 

has 𝑀𝐴𝐶 = 0.22 with reference to mode 5 and 𝑀𝐴𝐶 = 0.73 with reference to mode 6; in fact, as 

anticipated, the poles of modes 5 and 6 are coincident and are not distinguished by the 

polynomial model. This is confirmed by the value 𝐶𝑂𝑀𝐴𝐶 = 0 for the pitch degree of freedom of 

the front bogie. 

 

 

Figure 4.14: Comparison among the model’s and estimated modes, MAC and COMAC 
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Table 4.6 shows the comparison between the parameters of the 𝐺𝑑(𝑓0) and 𝑓0 profile used in 

(2.59) and those estimated with the OMA method with indication of the relative percentage error.  

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟐. 𝟕𝟏𝟑𝟓 ∙ 𝟏𝟎−𝟒 2.3943 ∙ 10−4 11.7621 1.500 1.4082 6.1171 

Table 4.6: Comparison between model’s and estimated profile’s parameters 

 

As in the previous case, in figure 4.15 it is possible to see the comparison between the PSD of the 

theoretical profile, the estimated one and the output auto-PSD corresponding to degree of 

freedom 7, i.e. the shaking of the wheel on the front axle. Note how compared to the previous 

case, the three curves are practically superimposed for the whole range of frequencies considered. 

As previously mentioned, since the contact point between the profile and the vehicle is modeled 

by means of a spring with very high stiffness (and in this case without a damper), the 

transmissibility of the stresses is near to one. 

 

Figure 4.15: Comparison among the theoretical and estimated PSD 

 

4.2.2 GONZALEZ METHOD 

 

With reference to the diagram in figure 2.32, the method is applied considering a profile obtained 

by Sussman approximation of class B for calibration, and a profile of class E for verification. By 

exploiting the relation (4.2) it is possible to obtain the matrix of the transfer function 𝑯𝒕(𝑓). For 

the element (9, 10) of figure 4.12 we obtain the transfer function shown in figure 4.16. 
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Figure 4.16: Transfer function 𝑯𝒕of the element (𝟗,𝟏𝟎) 

 

In figure 4.17 it is possible to appreciate the comparison between the PSD of the estimated rail 

profile and the theoretical one, as well as with the auto-PSD of the element (7, 7). 
 

 

Figure 4.17: Comparison among the theoretical and estimated PSD 

 

By means of a non-linear fitting it is possible to estimate the parameters of the profile and 

compare them with those of the Class E profile; this comparison is shown in table 4.7. 

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟒. 𝟑𝟑𝟗𝟓 ∙ 𝟏𝟎−𝟑 4.3395 ∙ 10−3 3.0876 ∙ 10−6 1.500 1.500 2.0551 ∙ 10−6 

Table 4.7: Comparison between model’s and estimated profile’s parameters 
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From the comparison of the curves and parameters, the estimates obtained show a very small 

error compared to the reference values. 

At this point it is possible to repeat the same procedure, with the addition of background noise 

with 𝑆𝑁𝑅 = 20𝑑𝐵  to the historical output signals (figure 4.18). Then, through equation (4.2) we 

obtain the matrix 𝑯𝒕(𝑓), of which the element (9, 10) is reported in figure 4.19. 
 

 

Figure 4.18: Time domain representation of the signal and the noise 

 

 

Figure 4.19: Transfer function 𝑯𝒕 of the element (𝟗,𝟏𝟎) in case study with addiction of background noise 
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Figure 4.20 highlights the comparison between the PSD of the estimated roughness of the profile, 

the theoretical one and the auto-PSD of the element (7, 7), in the case with background noise, 

while in table 4.8 the comparison between parameters of the estimated profile and those of the 

imposed profile. Despite the addition of the noise to the response signals of the system, the 

estimates obtained are consistent with the expected values. 

 

 

Figure 4.20: Comparison among the theoretical and estimated PSD with addiction of background noise 

 

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟒. 𝟑𝟑𝟗𝟓 ∙ 𝟏𝟎−𝟑 4.3206 ∙ 10−3 0.4359 1.500 1.4945 0.3648 

Table 4.8: Comparison between model’s and estimated profile’s parameters 

 

4.3 CASE 3 

 

The third case analyzed takes into consideration the 17 dof full-train model, with a rail profile 

obtained using the Sussman approximation as input, a vehicle speed of 30 m/s and a sampling 

frequency of 200 Hz. 

 

4.3.1 OMA METHOD 

 

Figure 4.21 shows some elements of the PSD matrix of the outputs obtained with the relation 

(3.21). A profile obtained by Class C Sussman approximation was used as system input. 
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Figure 4.21: Modulus and phase of some elements of the output PSD matrix 

 

The stabilization diagram obtained using the polynomial model of (2.88) of the modified OMA 

method is shown in figure 4.22. 

 

 

Figure 4.22: Modified OMA stabilization diagram 
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Notice how in this case, in addition to the letters 𝑠 and 𝑜, the letter 𝑑 is also present in the 

diagram. This indicates that, for that order of the model, the pole stabilizes in terms of damping 

ratio and modal shapes, but not in terms of natural frequency. The identified poles are 8, 

compared to the 9 expected. Also in this case, as confirmed by the MAC and COMAC values, the 

fact that the poles linked to the pitching modes of the bogies are coincident contributes negatively 

to the estimates. 

Table 4.9 shows the natural frequencies and the estimated damping ratios compared with those 

obtained from the model and an indication of the relative percentage error. 

 𝒇𝒓𝒆𝒇 [𝑯𝒛] 𝒇𝒆𝒔𝒕 [𝑯𝒛] 𝒆𝒓𝒓(𝒇) [%] 𝜻𝒓𝒆𝒇 𝜻𝒆𝒔𝒕 𝒆𝒓𝒓(𝜻) [%] 
0.4586 0.4585 0.0205 12.8315 12.8066 0.1936 

0.7351 0.7350 0.0168 18.7565 18.7574 0.0049 

0.8268 0.8269 0.0075 21.0855 21.0742 0.0535 

5.2589 5.2581 0.0157 19.8206 19.8197 0.0048 

5.2642 5.2651 0.0177 20.0267 20.0280 0.0067 

5.9393 5.9087 0.5154 38.6399 38.3517 0.7199 

5.9404 5.9651 0.4160 38.7205 38.7897 01787 

6.8865 6.8859 0.0086 36.0489 36.0636 0.0406 

Table 4.9: Comparison between model’s and estimated values of natural frequencies and damping ratios 

 

In figure 4.23 it is possible to see the comparison between the system modes of the reference 

model and the estimated ones, also with the help of the MAC and COMAC graphs.  

 

 

Figure 4.23: Comparison among the model’s and estimated modes, MAC and COMAC 
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Table 4.10 shows the comparison between the parameters of the 𝐺𝑑(𝑓0) and 𝑓0 profile used in 

(2.59) and those estimated with the OMA method with indication of the relative percentage error.  

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟒. 𝟔𝟑𝟒𝟔 ∙ 𝟏𝟎−𝟒 4.7231 ∙ 10−4 1.9109 3 3.0286 0.9526 

Table 4.10: Comparison between model’s and estimated profile’s parameters 

 

In figure 4.24 it is possible to see the comparison between the PSD of the theoretical railway track, 

the estimated one and the output auto-PSD corresponding to the degree of freedom 10, i.e. the 

shaking of the left front wheel. Also in this case the three curves are practically superimposed for 

the whole range of frequencies considered. 

 

 

Figure 4.24: Comparison among the theoretical and estimated PSD 

 

4.3.2 GONZALEZ METHOD 

 

With reference to the diagram in figure 2.32, the method is applied considering a profile obtained 

by Sussman approximation of class C for calibration, and a profile of class F for verification. By 

exploiting the relation (4.2) it is possible to obtain the matrix of the transfer function 𝑯𝒕(𝑓). For 

the element (16, 17) of figure 4.21 we obtain the transfer function shown in figure 4.25. 
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Figure 4.25: Transfer function 𝑯𝒕of the element (𝟏𝟔, 𝟏𝟕) 

 

In figure 4.26 it is possible to appreciate the comparison between the PSD of the estimated rail 

profile and the theoretical one, as well as with the auto-PSD of the element (16, 16). The three 

curves are almost completely superimposed in the considered frequency range. 
 

 

Figure 4.26: Comparison among the theoretical and estimated PSD 

 

By means of a non-linear fitting it is possible to estimate the parameters of the profile and 

compare them with those of the Class F profile; this comparison is shown in table 4.11. 

 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟐. 𝟗𝟔𝟔𝟏 ∙ 𝟏𝟎−𝟐 2.9661 ∙ 10−2 2.7132 ∙ 10−10 3 3 1.8039 ∙ 10−10 

Table 4.11: Comparison between model’s and estimated profile’s parameters 
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From the comparison of the curves and parameters, the estimates obtained show a very small 

error compared to the reference values. 

At this point it is possible to repeat the same procedure, with the addition of background noise 

with 𝑆𝑁𝑅 = 20𝑑𝐵  to the historical output signals. Then, through equation (4.2) we obtain the 

matrix 𝑯𝒕(𝑓), of which the element (16, 17) is reported in figure 4.27. 

 

 

Figure 4.27: Transfer function 𝑯𝒕of the element (𝟏𝟔, 𝟏𝟕) in the case of study with addiction of background noise 

 

Figure 4.28 highlights the comparison between the PSD of the estimated roughness of the profile, 

the theoretical one and the auto-PSD of the element (16, 16), in the case with background noise, 

while in table 4.12 the comparison between parameters of the estimated profile and those of the 

imposed profile. Despite the addition of the noise to the response signals of the system, the 

estimates obtained are consistent with the expected values. 

 

 

Figure 4.28: Comparison among the theoretical and estimated PSD with addiction of background noise 
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 𝑮𝒅(𝒇𝟎)𝒓𝒆𝒇 𝑮𝒅(𝒇𝟎)𝒆𝒔𝒕 𝒆𝒓𝒓[𝑮𝒅(𝒇𝟎)] [%] 𝒇𝟎𝒓𝒆𝒇 𝒇𝟎𝒆𝒔𝒕 𝒆𝒓𝒓(𝒇𝟎) [%] 𝟐. 𝟗𝟔𝟔𝟏 ∙ 𝟏𝟎−𝟐 2.966 ∙ 10−2 0.0057 3 3.0045 0.1494 

Table 4.12: Comparison between model’s and estimated profile’s parameters 

 

Consider once again the 17 dof full-train model with a rail profile obtained with the FRA 

approximation and with a vehicle forward speed of 25 m/s and a sampling frequency of 200 Hz; 

applying the method considering a class 1 profile for calibration and a class 5 profile for 

verification. 

Repeating the same procedure seen for the previous cases, the estimate of the PSD of the profile 

is obtained. Figure 4.29 shows the comparison between the estimated PSD, the theoretical one 

and the auto-PSD of the element (16, 16). 

 

 

Figure 4.29: Comparison among the theoretical and estimated PSD 
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5 EXPERIMENTAL RESULTS: MERMEC’S DIAGNOSTIC VEHICLE 

 

The wear of the rails is a very important issue in the railway sector; in fact, any profile change 

deeply affects the dynamic characteristics of railway vehicles, their stability and passenger 

comfort, and, in the worst cases, can cause the vehicle to derail. It is therefore of fundamental 

importance to periodically carry out measurement campaigns of the railway infrastructure in order 

to verify its state and integrity. The diagnostic train is a convoy of measurement and vision 

systems that allows to perform a predictive maintenance strategy over the entire railway line. In 

this chapter we will show how to identify the rail profile through an appropriate installation layout 

of accelerometers, reaching out results that are good enough to be considered comparable with 

respect to the optical ones. MerMec S.p.A. is an Italian company specialized in railway inspection 

and diagnostics, railway signaling, asset management software, diagnostic and professional 

services for the railway industry. 

First of all, the measurement system used will be described and then the results of the road profile 

identification, performed through the Gonzalez method [7], will be shown and commented. 

 

5.1 MEASURING SYSTEM DESCRIPTION AND ACQUISITION PARAMETERS 

 

The MerMec accelerometers layout mounted on the diagnostic train employs 12 mono-axial 

accelerometers positioned on the body, bogies and axles as shown in figure 5.1, where the sensors 

that measure vertical accelerations are marked with z while those that measure transversal 

accelerations are marked with y. The mono-axial accelerometers are able to measure 

accelerations along the axis, with a sensitivity range compatible with the stress levels required by 

the application context [18]. 

Thus the number of accelerometers is too low to perform a correct OMA-based vehicle 

identification, we took advantage only of the six accelerometers mounted on the axle boxes for 

most of the further evaluations. 
 

 

Figure 5.1: MerMec diagnostic vehicle’s accelerometers layout 
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The system outputs consist in various data, acquired with a sampling frequency of 2.5 [kHz]. Those 

used for the analysis are the following: 

 

• railway line travelled with indication of the kilometer of the line; 

 

• longitude, latitude, and altitude of the vehicle position for each acquisition;  

 

• vehicle forward speed; 

 

• time of each acquisition; 

 

• accelerometric output signal in Volt [V] and in 𝑚 𝑠2⁄ . 

 

The data have been processed and will be reported below, those concerning six runs, three in one 

direction of travel and three in the opposite direction of the same section of the railway line. 

 

5.2 MEASURING SYSTEM DESCRIPTION AND ACQUISITION PARAMETERS 

 

The first step was to find a way to extract location information and visualize the path of the 

diagnostic train. For this purpose, the MATLAB mapping toolbox was used to process longitude, 

latitude, and altitude data. Furthermore, for each of the runs, it is possible to achieve the history 

over time in terms of speed and output signal. As for the first run, the GPS and historical data are 

shown in figure 5.2. In the map of figure 5.2a there is an indication of the speed, with the latter 

increasing in the passage from cold to warm colours of the route. 

 

 

Figure 5.2: Run 1 – GPS data (a) and historic acceleration and speed signals (b) 

 

Both images also show the intervals (marked with black dots in 5.2a and lines in 5.2b) in which the 

estimates of the PSDs discussed in section 5.3 were obtained. As far as possible, we tried to 

consider intervals in which the speed results constant as much as possible. 

Below there are the GPS data and the histories for the other runs, which are distinguished by the 

indication of the date and time of the start of the acquisition. 
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All (b) images from Figure 5.2 to Figure 5.7 show the axle box accelerations (ABA) measured during 

several runs. It is evident that the accelerometers represented by the green curve shows gain 

problems during the acquisition. This topic will be properly dealt and discussed in §5.5, according 

to the railway standard EN 13848-2 [19]. 

 

 

Figure 5.3: Run 2 – GPS data (a) and historic acceleration and speed signals (b) 

 

 

Figure 5.4: Run 3 – GPS data (a) and historic acceleration and speed signals (b) 

 

 

Figure 5.5: Run 4 – GPS data (a) and historic acceleration and speed signals (b) 
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Figure 5.6: Run 5 – GPS data (a) and historic acceleration and speed signals (b) 

 

 

Figure 5.7: Run 6 – GPS data (a) and historic acceleration and speed signals (b) 

 

From the histories it is possible to note how the speed trend (and consequently also the 

accelerometric output signals) is highly diversified between the different runs. If on one hand this 

allowed a wider analysis considering different situations and driving conditions, on the other hand 

this could affect the comparability between the analyses carried out for the different runs. 

 

5.3 PSD ESTIMATE 

 

The estimate of the PSDs for the different runs was carried out by using the Welch periodogram 

method and the correlogram method through which it is also possible to estimate the half-

spectrum. The following are the estimates of some elements of the PSD matrix, with reference to 

the accelerometric sensors indicated in figure 5.1. In particular, the estimates referring to the 

signals measured by the accelerometers of the body (5.8), of the rear bogie (5.9) and of one of the 

wheels of axle 4 (5.10) are shown. The graphs show the modulus, phase, and unwrap of the phase 

for each estimate. 

It is possible to notice how the half spectrum estimation provides cleaner and less noisy curves 

than those obtained through Welch's modified periodogram, by virtue of what has already been 
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said in subsection 3.2.3. As expected, the highest body peaks occur at low frequencies; for bogies 

they move to higher frequencies; finally for the wheels with frequency bands up to 500/600 Hz. 

These considerations derive from involved masses and stiffnesses such that the modes of vibration 

of the body, bogies and axles affect higher frequencies as one moves to elements with lower 

masses and higher stiffnesses. 

To properly figure out the location of all mentioned accelerometers (e.g., Z*II, Y+42, Z42), please 

rely on the vehicle’s accelerometers layout shown in Figure 5.1. 

 

 

 

Figure 5.8: Body’s PSDs estimate 
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Figure 5.9: Bogie’s PSDs estimate 

 

 

Figure 5.10: Wheel’s PSDs estimate 
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The phase regression line is shown in figure 5.13. To verify this estimate, it is possible to compare 

it with the phase shift obtained from the ratio between the two axles distance 𝑙14 and the vehicle 

speed in the section considered. Since the latter is not constant, the average speed can be 

considered but a certain margin of error must be taken into account between the two estimates.  

 

 

Figure 5.13: Phase linear regression of the Z12 and Z42 cross-PSD 

 

It is interesting to note that from the angular coefficient of the regression line it is also possible to 

obtain another information: the direction of travel of the train; in fact, if the axle on which the 

sensor Z12 is present is in advance of the axle of Z42, the angular coefficient (and therefore the 

phase shift) will be positive. In case of opposite direction of travel, sensor Z42 will be ahead of Z12 

and the angular coefficient (and therefore the phase shift) will have the opposite sign.  

 

 

5.3.2 NON-PARAMETRIC ESTIMATE OF COHERENCE 

 

As we saw for the phase shift between axles, it is possible to exploit the definition of coherence 

between roughness profiles of (2.68) to estimate it from the measured data: 

 

 Γ(𝑓) = |𝐺𝐿𝑅(𝑓)|√𝐺𝐿𝐿(𝑓) ∙ 𝐺𝑅𝑅(𝑓) (5.1) 

 

When dealing with vehicles and interactions with the rolling profile, the auto-PSD of the signals 

coming out of the wheels are approximable to the PSD of the profile himself. This behaviour is 

much more noticeable when studying the case of railway vehicles, since the stiffness value of the 

wheels of such vehicles is much higher than, for example, that of automobiles. This implies an 

almost unitary transmissibility at low frequencies, and consequently a high similarity between the 

input and output PSDs. This aspect has already been highlighted in chapter 4, when the theoretical 

PSD of the track was compared with the estimates made and with the auto-PSD of the wheels. At 
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low frequencies, the curves are almost superimposed, while at high frequencies there is a 

deviation, linked to the modes of vibration that affect the unsuspended masses. Therefore, for the 

estimation of the coherence in the real case through (5.1) it is possible to use the PSD of the 

displacements of the output signals of the wheels (in figure 5.14), instead of the input ones of the 

profile, obtaining in any case some indications on the coherence of the profiles. 

 

 

Figure 5.14: Wheels’ Auto-PSD 

 

Figure 5.15 shows an average of the auto-PSD signals (without the one related to Z12) output from 

the sensors on the wheels, compared with the classification according to FRA. 

 

 

Figure 5.15: Averaged Wheels’ Auto-PSD compared with the FRA profiles 
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Figure 5.16 shows the trends of the coherence between the PSDs of the displacements measured 

by accelerometers placed on opposite wheels. 
 

 

Figure 5.16: Real profiles’ coherence estimate 

 

From the comparison with the coherence estimated through (5.1) in the theoretical case of the 17 

dof model of figure 5.17, we can see a very similar trend at the lowest frequencies and an 

equivalent behaviour in the higher frequency band. The figure also shows the Bogsjö curve 

obtained through (2.69). Note how the curves are superimposable below the frequency of 1 Hz. 
 

 

Figure 5.17: Real profiles’ coherence estimate 
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5.4 INVERSE PROBLEM RESOLUTION THROUGH THE GONZALEZ METHOD 

 

We now proceed to apply Gonzalez's method to the data of the real case. Compared to the 

algorithm of figure 2.32 used for the theoretical models, there are some differences, since the 

output signals are already available and it is not necessary to estimate them either in the 

calibration phase or in the extraction phase. Figure 5.18 shows the pipeline. Approximate profiles 

according to FRA will be used for calibration. 

 

 

Figure 5.18: Application scheme of the Gonzalez method 

 

 

5.4.1 CASE 1 

 

In the first case, run 1 is taken into consideration for calibration and run 2 for verification. Figure 

5.19 compares the GPS data and the histories of speed and signal of the two runs. 

The choice of the profile’s class used for the calibration fell on class 5. Figure 5.20 shows the 

comparison between the average of the PSD of the displacements on the wheels during run 1 and 

the PSD of the class 5 according to FRA. 

For the estimation of PSD, both in calibration and in extraction, the correlogram method on the 

whole spectrum and the one on the half-spectrum were used. Figure 5.21 shows the comparison 

between the element of the matrix 𝑯𝒕(𝑓) corresponding to the auto-PSD of the sensor signal 𝑍11𝑓  estimated with both modes. 

Regarding the rail profile estimated in the case of the correlogram, figure 5.22a shows the 

estimated profile within the FRA classification, while figure 5.22b shows the comparison between 

the estimated profile and the average of auto-PSD of the wheels’ displacements. Figure 5.23, on 

the other hand, shows the estimate obtained in the case of the correlogram on a half-spectrum. 
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Figure 5.19: Runs’ histories comparison 

 

 

Figure 5.20: Comparison between the average wheels’ PSD and the Class 5 FRA profile 
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Figure 5.21: Comparison between the same 𝑯𝒕(𝒇) element, estimated through half and full spectra correlogram 

 

 

 

Figure 5.22: Comparison between the average wheels’ PSD and the Class 5 FRA profile 
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Figure 5.23: Estimate starting from the half-spectrum correlogram’s results 

 

Note now how both estimated profiles have a similar trend to the class 5 profile, in particular in 

the range 1 ÷ 30 𝐻𝑧. 

By exploiting the same transfer function 𝑯𝒕(𝑓) it is possible to proceed with the extraction phase 

taking into consideration another section of run 1 (figure 5.24). 
 

 

Figure 5.24: Runs’ histories comparison 
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The results are reported in figures 5.25 and 5.26. Notice how in this case the estimate has shifted 

towards a higher class, i.e. class 6. 

 

 

 

Figure 5.25: Correlogram estimate 

 

 

Figure 5.26: Estimate starting from the half-spectrum correlogram’s results 
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5.4.2 CASE 2 

 

Now we want to verify the goodness of the results considering the same railway section traveled 

with different speed, using run 2 for calibration and run 4 for verification. Figure 5.19 compares 

the GPS data and the histories of speed and signal of the two runs. Note how, since the speeds 

between the two sections are very different, in order to maintain an equal observation time, the 

two considered sections have different lengths. 

In particular, in run 2 the average speed is about 77 km/h while in run 4 it is about 117 km/h, 

therefore in the observation time 𝑡0 = 180 𝑠 the distance traveled by the train in run 4 is greater 

than in run 2. 

 

 

Figure 5.27: Runs’ histories comparison 

 

Also in this case a profile class 5 was chosen for calibration. Figure 5.28 shows the comparison 

between the element of the matrix 𝑯𝒕(𝑓) corresponding to the auto-PSD of the sensor signal 𝑍11𝑓  estimated with the full-spectrum and half-spectrum correlogram method. 

Regarding the rail profile estimate in the case of the correlogram, figure 5.29a shows the 

estimated profile within the FRA classification, while figure 5.29b shows the comparison between 

the estimated profile and the average of the auto-PSD of the wheel’s displacements. Figure 5.30 

shows the estimate obtained in the case of the correlogram on a half-spectrum. 
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Figure 5.28: Comparison between the same 𝑯𝒕(𝒇) element, estimated through half and full spectra correlogram 

 

 

 

Figure 5.29: Correlogram estimate 
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Figure 5.30: Estimate starting from the half-spectrum correlogram’s results 

 

In this case too, the estimates obtained are quite similar to class 5 profile but certainly less 

accurate than the ones obtained in Case 1, where the forwarding speed was the same in each run. 
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5.5 PROFILE IDENTIFICATION AND LIVE VALIDATION ACCORDING TO EN 13848 

 

The profile identification is now investigated according to EN 13848 ([18], [19], and [20]). 

Since the vehicle accelerometers layout do not allow to correctly perform the OMA method, we 

are going to exploit the low frequency similarity between the profiles’ and the wheels’ 
displacement PSDs. 

Note that the accelerometers mounted on right (or left) wheel of axle 1 and those on right (or left) 

wheel of axle 4 could be considered as two different and independent sensors that measures the 

same rail profile. Consequently, it is not strictly necessary to run multiple times on the same track 

to validate the repeatability of the measuring campaign because this could be performed “live”. 
This characteristic of the railway’s vibration-based condition monitoring is almost unique if 

compared with the common optical measuring systems, because involving the mounting of 

multiple optical boxes and/or laser sensors would have a big impact on the overall cost of the 

installation. 

 

Next figures show the wheels’ PSD represented in the spatial frequency and then in wavelength 
domain, for a run performed at a constant speed. 

 

 

Figure 5.31: Wheels’ displacement PSD in spatial frequency and wavelength domain 

 

Next step consists simply in focus the analysis in the wavelength ranges defined in Table 2.3 of 

section 2.4.3. 
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Figure 5.32: Alignment, D0 and D1 category 
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Figure 5.33: Alignment, D2 and D3 category 
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Figure 5.34: Longitudinal Level, D0 and D1 category 
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Figure 5.35: Longitudinal Level, D2 and D3 category 
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Figure 5.36: Longitudinal Level, D0 and D1 category, Front–Rear Coherence function 
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Figure 5.37: : Longitudinal Level, D2 and D3 category, Front–Rear Coherence function 
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The following table summarizes the RMS value obtained via displacement PSD integration (the 

valued obtained are all lower than the intervention and alert limits indicated in standard [20]), the 

transfer function mean value and the coherence mean value for each wavelength range. 

 

 

 LL – D0 LL – D1 LL – D2 LL – D3 

Z41 – RMS [m] 1.67E-04 1.09E-03 2.00E-03 5.52E-03 

Z42 – RMS [m] 1.60E-04 9.32E-04 1.94E-03 4.89E-03 

Z11 – RMS [m] 1.67E-04 1.08E-03 2.00E-03 5.37E-03 

Z12 – RMS [m] 2.51E-05 2.68E-04 1.20E-03 3.76E-03 

Coherence Z41 – 

Z11 
1.00E+00 1.00E+00 1.00E+00 1.00E+00 

Coherence Z42 – 

Z12 
3.37E-01 3.53E-01 2.21E-01 2.32E-01 

Transfer function 

Z41 – Z11 
1.00 1.00 1.00 1.03 

Transfer function 

Z42 – Z12 
6.39 3.48 1.62 1.30 

Table 5.1: Longitudinal Level measured values 

 

The transfer function and the coherence evaluated for the couple Z41-Z11 have a value near to 1 

for all ranges, so the estimation have been validated. 

Unfortunately, the Z42-Z12 values are far from being acceptable but this is attributable to a 

misfunction of sensor Z12. Its measured values are very different with respect to the other three 

and this is fair also just looking at the PSDs’ wavelength trends in Figure 5.34 and Figure 5.35. 
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Unfortunately, for the alignment it has not been possible to perform the “live” validation of data 
because the actual vehicle’s accelerometers layout counts only two Y sensors on the wheels, both 

on the same axis and so measuring different profiles (right and left ones).  

 

 AL – D0 AL – D1 AL – D2 AL – D3 

Y41 – RMS [m] 4.48E-05 5.48E-04 1.20E-03 6.95E-03 

Y42 – RMS [m] 4.24E-05 5.51E-04 1.24E-03 6.84E-03 

Table 5.2: Alignment measured values 

Note that, even if a correct validation according to [19] is not possible in a single run for the 

alignment, the estimated RMS values of Y41 and Y42 are very similar to each other, and a 

hypothetic transfer function or coherence function evaluated on them would have been 

acceptable. 
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5.6 PROFILE IDENTIFICATION AND COMPARISON WITH THE OPTICAL SYSTEMS 

 

We perform now a profile identification according to EN 13848 ([18],[19], and [20]) and then 

compare the statistical results obtained with the ones evaluated through the MerMec’s opto-

electronic Track Geometry measuring system (from now on, called TGMS). 

The TGMS uses a non-contact optical technology to detect several track geometry parameters, 

such as: track gauge, cross level, twist, alignment, and longitudinal levels. 

 

 

 

Figure 5.38: MerMec’s Track Geometry Measuring System 

 

The Accelerometers / TGMS validation will be carried out comparing the evaluated values of the 

last aforementioned track parameter on the same rail segment. 

 

For the sake of the corporate confidentiality about the TGMS recordings, no GPS values will be 

shown and none of the railway line name will be declared in the next paragraphs. 
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5.6.1 METHODOLOGY 

 

In order to obtain a perfect match between the displacement signals measured by the TGMS and 

the displacements obtained started from the sampled ABAs, all accelerations (that are sampled 

with a constant time frequency) needs to be reconstructed to achieve an equivalent constant 

space sampling frequency, even in non-constant vehicle speed recording conditions. 

Moreover, note that the sampling frequency of the TGMS is lower than the ABA’s one: the first 

takes a sample every 250 mm while the second measures at 2.5 kHz (just to give an idea, for a 

vehicle speed of 100 km/h, this sampling frequency corresponds to about one sample every 11 

mm). This means that the ABA’s data will be strongly sub-sampled during the signal’s 
reconstruction from constant-time sampling to constant-space sampling. 

 

The inertial displacements have been obtained by a double integration (and double detrend, in 

order to compensate any possible sensors’ measuring offsets) of the ABAs in the given frequency 

ranges (i.e., D1 and D2 using a 4th order Butterworth filter), as suggested by the standard [18]. 

 

For this kind of analysis, knowing that the nominal radius of the vehicle’s wheel is equal to 0.452 m 

and that the minimum wavelength inspected is equal to 3 m, no inspection about an identification 

of the running wheel profile has been implemented.  

 

5.6.2 CASE 1 

 

In the first case, we compared the measures made on the same rail length of 1000 m, run at a  

constant vehicle speed of 156 km/h. 

 

 

Figure 5.39: Vehicle speed during acquisition 
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Figure 5.40: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D1 

 

 

Figure 5.41: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D2 

  



Page109 / 127 

 

Next table summarizes the results of the rail head profile evaluation made by both technologies. 

Note that, thus the accelerometer Z12 has to be considered as an outlier, all inertial rail profiles 

have been evaluated exploiting a single sensor per side (i.e., Z41 and Z42, the ABAs of axle 4, 

according to Figure 5.1) so these estimations have been carried out without any redundance. 

 

 Right LL – D1 Left LL – D1 Right LL – D2 Left LL – D2 

ACC – RMS [mm] 0.540 0.536 2.151 2.443 

TGMS – RMS [mm] 0.525 0.529 2.692 2.882 

Transfer function 

ACC / TGMS 
2.8% 1.4% 20.1% 15.3% 

Transfer function 

Tolerances 
±7% ±7% ±10% ±10% 

Table 5.3: Rail head estimation and comparison between Accelerometers (ACC) and Track Geometry (TGMS) - 1 

 

The previous table underlines a great result for what concerns D1 wavelength range of the 

Longitudinal Level estimation but an out of tolerance estimation of the D2 wavelength rage. 

Nevertheless,  Figure 5.41 shows an identical trend of the two measuring systems despite some 

lack in the ABAs gain. This may depend on the absence of a proper ABA’s sensors redundance. 

We are confident that future measuring campaigns, made with a higher number of 

accelerometers, will solve this issue. 
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5.6.3 CASE 2 

 

In the second case, we compared the measures made on the same rail length of 1000 m, run at a 

non-constant vehicle speed, increasing from 69 to 93 km/h. 

 

 

 

 

Figure 5.42: Vehicle speed during acquisition 
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Figure 5.43: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D1 

 

 

Figure 5.44: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D2 
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Next table summarizes the results of the rail head profile evaluation made by both technologies.  

Note that, thus the accelerometer Z12 has to be considered as an outlier, all inertial rail profiles 

have been evaluated exploiting a single sensor per side (i.e., Z41 and Z42, the ABAs of axle 4, 

according to Figure 5.1) so these estimations have been carried out without any redundance. 

 

 Right LL – D1 Left LL – D1 Right LL – D2 Left LL – D2 

ACC – RMS [mm] 1.155 1.098 2.026 1.843 

TGMS – RMS [mm] 0.962 1.055 2.121 2.275 

Transfer function 

ACC / TGMS 
20.0% 4.1% 4.5% 19.0% 

Transfer function 

Tolerances 
±7% ±7% ±10% ±10% 

Table 5.4: Rail head estimation and comparison between Accelerometers (ACC) and Track Geometry (TGMS) - 1 

 

This test case gave us interesting results: the reproducibility tolerances results to be satisfied 

alternatively for wavelength D1 or D2 for both right and left ABA. Even there, a wider amount of 

sensors would probably gave us better information about the accuracy of this inertial track 

geometry estimator, but it is still true that the trends of all curves are extremely similar one to the 

other even in this non-constant vehicle speed recording condition. 
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5.6.4 CASE 3 

 

In the third case, we compared the measures made on the same rail length of 1000 m, run at a 

non-constant vehicle speed, decreasing from 143 to 131 km/h. 

 

 

 

 

Figure 5.45: Vehicle speed during acquisition 
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Figure 5.46: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D1 

 

 

Figure 5.47: Rail profile evaluation – TGMS vs ABA (displacements) – Wavelength range: D2 
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Next table summarizes the results of the rail head profile evaluation made by both technologies.  

Note that, thus the accelerometer Z12 has to be considered as an outlier, all inertial rail profiles 

have been evaluated exploiting a single sensor per side (i.e., Z41 and Z42, the ABAs of axle 4, 

according to Figure 5.1) so these estimations have been carried out without any redundance. 

 

 Right LL – D1 Left LL – D1 Right LL – D2 Left LL – D2 

ACC – RMS [mm] 0.620 0.655 2.000 1.853 

TGMS – RMS [mm] 0.585 0.642 2.167 2.290 

Transfer function 

ACC / TGMS 
5.9% 2.0% 7.7% 19.1% 

Transfer function 

Tolerances 
±7% ±7% ±10% ±10% 

Table 5.5: Rail head estimation and comparison between Accelerometers (ACC) and Track Geometry (TGMS) - 3 

 

This third identification case clarify that the ABAs could be a good estimator of the rail head profile 

for all wavelengths higher than 3 m, without the necessity of identifying the whole vehicle’s FRF, 
but starting from a sufficiently large set of sensors, in order to exploit a proper redundance of 

measures to reduce at minimum the effects of stochastic recording errors. 
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6 CONCLUSIONS 

 

The results obtained in the identification of the roughness profiles through the theoretical models 

and through the experimental analyses, represent a starting point for future developments in this 

research field. 

 

In chapter 4 it is shown how, having a complete knowledge of vehicle dynamics, it is possible to 

carry out different types of analyses that allow to reach more precise results in terms of estimating 

roughness profiles and related parameters. In particular, the modified OMA method (the so called 

In-Operation Modal Analysis or Track-Vehicle Interaction Modal Model [4],[24]) allows to obtain 

excellent results starting from the sole knowledge of the system responses and its geometric and 

mechanical characteristics, all these data are easily obtainable in the cases of real vehicles by 

means of accelerometric measurements and design data. From the analysis of the various model 

cases, it was evident that the estimates of the profiles and related parameters are extremely close 

to those taken as a reference, and this is true as well for the estimated parameters of the model 

itself (vehicle identification). 

 

The in-Operation Modal Analysis effectively represents a tool with enormous potential in this field 

not only for vehicle identification, but also in the identification of roughness profiles at any 

wavelength of interest. However, the analysis of the data on models made it possible to obtain 

also other interesting points from which to start for the analysis of the experimental case. We 

have seen how it is possible to make a non-parametric estimate of the time lags by exploiting only 

information from the system's response cross-PSDs. Another important consideration concerns 

the fact that, at first glance, it is possible to use the auto-PSD of displacements of the 

unsuspended masses to estimate the roughness profiles, in particular for low frequencies (and so 

for high wavelength). In this way it is possible to identify, in a first stage of the analysis, the profile 

category. This consideration also allows a non-parametric estimate of the coherence between the 

auto-PSDs of the displacements of the unsuspended masses which, as we have seen, is indicative 

of the coherence between the PSDs of the profiles. 

 

All results obtained with the theoretical models and subsequent considerations have therefore 

made it possible to obtain useful indications for the real case analysis. The profiles identification 

by using the Gonzalez method, or simply by the auto-PSD of displacements of the unsuspended 

masses, represents only a preliminary stage, which in any case allowed to get good estimates. 

However, this method, compared to OMA, presents the limit of the need to know the profile with 

which the transfer function is calculated, which in the cases studied has only been hypothesized. 

For this reason, applying the OMA method to the real case is the next natural step. For this 

purpose, it is necessary to have a greater amount of data, regarding both the geometry or 

dynamics of the system, and the responses of the system. Moreover, an enrichment of the 

measurement system’s layout with a higher number of sensors than the actual layout available in 

the diagnostic train represents a necessary condition for carrying out this kind of analyses. For 

example, think of the expressions of the operational vector (2.87) and of the modified polynomial 

model (2.88) in which the time lag terms appear, which can be obtained either by knowing the 

forward speed and the geometry of the vehicle, or by mounting accelerometers on all axles  and 

exploiting the non-parametric estimate of the delays. Another key element for future 

developments could be a larger comparison between the accelerometric OMA results and those 

obtained through the optical systems, e.g. the MerMec’s Track Geometry Measuring System, 

along all wavelength ranges, even the rail corrugation or the rail roughness.   
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The conclusions reached can be summarized in the following points:  

 

• the analyses and estimates of the profiles carried out on the model data are adherent to 

those given as input and represent a starting point for the case of real vehicles; 

 

• the Gonzalez method has the limit of having to know the calibration profile, a limit that 

results to be overcome by exploiting the modified OMA method; furthermore, calibration 

depends on the particular speed condition and therefore this operation must be repeated 

for different speed values; 

 

• after a sufficiently high number of system responses measurements, it is possible to 

recreate some typical inertial stress load cycles and exploit them during the design phase 

of any critical instrumentation to be installed on vehicle body, bogie frame or axle box, in 

order to perform a dynamic structural verification using the real input stresses instead of 

the “almost white noises” suggested by the standard [21]; 

 

• with the actual accelerometers layout of the MerMec diagnostic vehicle, it has been 

possible to evaluate with sufficient accuracy (according to the standard [18], [19] and [19]) 

all categories of longitudinal levels and alignment but the results estimated for the 

detection of low wavelength (or high frequency) defect were not acceptable due to the no 

more unitary transmissibility value at high frequencies between the wheel and rail profile. 

Moreover, all longitudinal level estimations made starting from the ABA have been 

validated through a successful comparison with the same results obtained by the 

MerMec’s opto-electronic Track Geometry Measuring System (TGMS); 

 

• for the application of the OMA method to the real case, a greater number of 

accelerometric sensors is required and this represent the most important future step in 

order to complete the study stage of a new diagnostic system. 

 

  



Page118 / 127 

 

7 APPENDICES 

 

7.1 APPENDIX A 

 

The damping and stiffness matrices of the 17 dof full-train model are as follows: 

 

 
  



Page119 / 127 
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7.2 APPENDIX B 

 

The influence matrices of the 6 dof system are shown below: 

 

𝑇1 =
[  
   
0 0 0 0 0 00 0 0 0 0 00 0 𝑐1 𝑐1 0 00 0 𝑐1𝑙1 −𝑐1𝑙1 0 00 0 0 0 𝑐1 𝑐10 0 0 0 𝑐1𝑙1 −𝑐1𝑙1]  

    
 

𝑇2 =
[  
   
0 0 0 0 0 00 0 0 0 0 00 0 𝑘1 𝑘1 0 00 0 𝑘1𝑙1 −𝑘1𝑙1 0 00 0 0 0 𝑘1 𝑘10 0 0 0 𝑘1𝑙1 −𝑘1𝑙1]  

    
 

The force applied to the system is given by the relation: 

 

𝐹(𝜔) = 𝑇1
[  
   

00𝑌1′(𝜔)𝑌2′(𝜔)𝑌3′(𝜔)𝑌4′(𝜔)]  
   + 𝑇2

[  
   

00𝑌1(𝜔)𝑌2(𝜔)𝑌3(𝜔)𝑌4(𝜔)]  
    

 

where the apex indicates that it is the transform of the derivative (the speed) while the subscripts 

(from 1 to 4) indicate the transform of the input signal linked to the contact points indicated in 

figure 3.1 (any out of phase signal is obtained according to what is described in subsection 2.3.2). 

 

For the 10 dof system the T1 matrix is null: 

 

𝑇2 =
[  
   
   
 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 𝑘ℎ 0 0 00 0 0 0 0 0 0 𝑘ℎ 0 00 0 0 0 0 0 0 0 𝑘ℎ 00 0 0 0 0 0 0 0 0 𝑘ℎ]  
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The force matrix applied to the system is given by the relation: 

 

𝐹(𝜔) = 𝑇2

[  
   
   
  000000𝑌1(𝜔)𝑌2(𝜔)𝑌3(𝜔)𝑌4(𝜔)]  

   
   
  
 

 

here the subscripts (from 1 to 4) indicate the transform of the input signal linked to the contact 

points indicated in figure 3.4. 

 

The T1 matrix is null for the 17 dof system too: 

 

𝑇2 =

[  
   
   
   
   
   
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 𝑘ℎ 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 𝑘ℎ 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 𝑘ℎ 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 𝑘ℎ 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 𝑘ℎ 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑘ℎ 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑘ℎ 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑘ℎ]  

   
   
   
   
   

 

 

The force matrix applied to the system is given by the relation: 

 

𝐹(𝜔) = 𝑇2

[  
   
   
   
   
   
 000000000𝑌1𝑠𝑥(𝜔)𝑌2𝑠𝑥(𝜔)𝑌1𝑑𝑥(𝜔)𝑌2𝑑𝑥(𝜔)𝑌3𝑠𝑥(𝜔)𝑌4𝑠𝑥(𝜔)𝑌3𝑑𝑥(𝜔)𝑌4𝑑𝑥(𝜔)]  
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Subscripts and apexes refer to the axles (1 to 4) and profiles (left and right) of figure 3.8. In this 

case, in addition to the time lag, it is also necessary to consider the correlation between left and 

right profile through the coherence function (described in subsection 2.3.2). 

For the three models, the time lags used to obtain the related transforms are defined as follows: 

 𝜏12 = 2𝑙1𝑢  𝜏13 = 2𝑙2𝑢  𝜏14 = 2𝑙2 + 2𝑙1𝑢  𝜏23 = 2𝑙2 − 2𝑙1𝑢  𝜏24 = 2𝑙2𝑢  𝜏34 = 2𝑙1𝑢  
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7.3 APPENDIX C 

 

In subsection 3.2.2 we have seen the relation: 

 𝐺𝑜𝑢𝑡(𝜔𝑖) = 𝐻(𝜔𝑖)[𝑗𝜔𝑖𝑇1′ + 𝑇2′]𝐺𝑖𝑛(𝜔𝑖)[𝑗𝜔𝑖𝑇1′ + 𝑇2′]𝐻𝐻𝐻(𝜔𝑖) 

 

Where the matrices 𝑇1′ and 𝑇2′ for the 6 dof model are: 

 

𝑇1′ =
[  
   

0 0 0 00 0 0 0𝑐1 𝑐1 0 0𝑐1𝑙1 −𝑐1𝑙1 0 00 0 𝑐1 𝑐10 0 𝑐1𝑙1 −𝑐1𝑙1]  
    

 

𝑇2′ =
[  
   

0 0 0 00 0 0 0𝑘1 𝑘1 0 0𝑘1𝑙1 −𝑘1𝑙1 0 00 0 𝑘1 𝑘10 0 𝑘1𝑙1 −𝑘1𝑙1]  
    

 

For the 10 dof model, where 𝑇1′ is null, we have: 

 

𝑇2′ =
[  
   
   
 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0𝑘ℎ 0 0 00 𝑘ℎ 0 00 0 𝑘ℎ 00 0 0 𝑘ℎ ]  

   
   
 
 

 

For the 17 dof model, where 𝑇1′ is null, we have: 

 

𝑇2′ =

[  
   
   
   
   
   
0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0𝑘ℎ 0 0 0 0 0 0 00 𝑘ℎ 0 0 0 0 0 00 0 𝑘ℎ 0 0 0 0 00 0 0 𝑘ℎ 0 0 0 00 0 0 0 𝑘ℎ 0 0 00 0 0 0 0 𝑘ℎ 0 00 0 0 0 0 0 𝑘ℎ 00 0 0 0 0 0 0 𝑘ℎ]  
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Below are the matrices 𝐺𝑖𝑛(𝜔𝑖) for the three models analyzed, constructed with the same 

criterion as in (2.75). 

 

Note that, considering equation (3.21) for each 𝜔𝑖 , the matrices H(𝜔), 𝐺𝑖𝑛(𝜔) and 𝐺𝑜𝑢𝑡(𝜔) are 

actually tensors, in which the third dimension is represented precisely by the number of lines (i.e., 

the spectral resolution) with which the spectra have been discretized. 

 

For 6 and 10 dof systems the matrix is the same: 

 

𝐺𝑖𝑛(𝜔𝑖) = 𝐺𝑑(𝜔𝑖) [ 1 𝑒𝑗𝜔𝑖𝜏12 𝑒𝑗𝜔𝑖𝜏13 𝑒𝑗𝜔𝑖𝜏14𝑒−𝑗𝜔𝑖𝜏12 1 𝑒𝑗𝜔𝑖𝜏23 𝑒𝑗𝜔𝑖𝜏24𝑒−𝑗𝜔𝑖𝜏13 𝑒−𝑗𝜔𝑖𝜏23 1 𝑒𝑗𝜔𝑖𝜏34𝑒−𝑗𝜔𝑖𝜏14 𝑒−𝑗𝜔𝑖𝜏24 𝑒−𝑗𝜔𝑖𝜏34 1 ] 

 

While for the 17 dof system the matrix is the one showed in next page. 
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