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ABSTRACT

The Operational Modal Analysis (OMA) represents one of the most used techniques for the
structural identification in civil engineering. Unfortunately, the NEXT hypotheses (Natural
Excitation Techniques) make the OMA not applicable to a railway vehicle.

In this context , the present document shows the functional design of a novel device for railway
diagnostic vehicles, capable to implement the so called “In-Operation Modal Analysis” (based on a
particular modal partial fraction decomposition of the power spectral densities, or PSD, response
matrix, specifically dedicated to the case of track-vehicle interaction) for the dynamic
identification of train modal parameters and rail-head irregularities, which represent one of the
principal sources of excitation for a railway vehicle. This method allows the indirect
characterization of statistical properties of rail surface roughness, starting from the output signals
(e.g., accelerations) acquired on vehicles in working conditions, combined with some knowledge
about the frequency response functions (FRFs) matrix of the vehicle. Moreover, by exploiting
homogeneity properties, it is possible to reduce the number of quantities to be estimated for the
features evaluation of parallel track profiles belonging to the same running surface. Then it is
allowed to identify specific roughness statistical properties, such as the associated auto-power
spectral densities (auto-PSDs) and their relevant coherence function.

This modal structure incorporates train modal parameters and statistical rail-roughness as
unknowns to be identified by employing data from a simple set-up of accelerometers distributed
only on some strategical measuring points of the vehicle.

The aforementioned identification strategy is applied through three different dynamic analytical
models for train vibrations: a half-train multi-body model with 6 degrees of freedom (2 degrees of
freedom dedicated to the vertical and pitch motions of the vehicle body and 4 degrees of freedom
to describe the vertical and pitch motions of each of the two bogies; the wheels are modeled as
massless and directly in contact with the rail profile), a half-train multi-body model with 10
degrees of freedom (2 degrees of freedom dedicated to the vertical and pitch motions of the
vehicle body, 4 degrees of freedom to describe the vertical and pitch motions of each of the two
bogies and, in conclusion, 4 degrees of freedom for the vertical motions of each wheel of the four
axles), and a full-train multi-body model consisting of 17 degrees of freedom (where roll motions
of vehicle body, bogies, and axles are also observed).

Finally, experimental measurements, recorded over several runs of a properly armed diagnostic
vehicle, have been processed to prove the incredible potential of this brand-new device.
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1 INTRODUCTION

In land-vehicles literature, many authors dedicated their work at studying the surfaces where
these vehicles move on. In railway sector, the rail head irregularities represent one of the principal
excitation sources in vehicle dynamic. A proper knowledge about this topic is essential for both the
vehicle design and a correct maintenance of railway infrastructures.

During the design step, knowing the stress levels beforehand allows you to adjust the vehicle
dynamic behaviour in order to improve the overall dynamic performances, safety, and passengers’
comfort. On the other hand, this could be possible only by monitoring the health state of railway
infrastructure through a predictive maintenance strategy.

To pursue this aim, there are already several types of diagnostic systems, like those with optical or
laser sensors. Unfortunately, all of them share the same narrow “defect”: expensiveness.
Therefore, the scope of this work is to find a cheaper but equally effective way to reach the same
result through the vibration-based condition monitoring. This strategy has also the merit of
keeping a good model robustness even under extreme weather conditions: for example, if the rail
head surface is covered by a fair amount of snow, the accelerometers layout will not be affected
while all optical systems will turn out unable to properly measure the wanted track properties.
With the method described afterwards, by estimating the excitations coming from the wheel rail
interaction and the subsequent response of the whole vehicle model, it will be possible to identify
with an acceptable approximation of every rail head surfaces characteristics and then to classify
them according to any kind of rail standard.

To hit this target, both theoretical and experimental results are then analysed. First, three multi-
body models of a train have been implemented, then the records coming from several runs of a
properly armed diagnostic train have been processed. All the experimental data have been
recorded through the instrumentation of MerMec S.p.A., member of the Angel Company
(https://www.mermecgroup.com/ ; https://www.angelcompany.com/).

Another strength of this vibrational approach, from an industrial point of view, is the possibility to
create a modular set of products based on how wide the accelerometer layout is. This work
underlines the different potential that exists between a “poor” accelerometers’ layout (as the one
usually mounted on a diagnostic vehicle) and an “augmented” one.

All experimental results have been studied and verified according to the standard EN 13848, parts
1,2 and 5 (respectively [18],[19], and [20]).

Finally, starting from the vehicle’s accelerations, the estimation of the rail head profile has been
validated through a comparison with the same estimation but made by a different technology, i.e.,
the MerMec’s opto-electronic Track Geometry Measuring System (TGMS).
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2 CHARACTERIZATION AND IDENTIFICATION OF THE RAIL HEAD’S RUNNING
TABLE

The major source of excitation for a train is the one coming from the vehicle interaction with the
railway infrastructure. Starting from this phenomenon, it is possible to identify two different
parameters that affect the vehicle’s dynamic behavior: the spatial trend of the rail-road stiffness
and of the track geometry. The former depends on the general basement configuration and, in a
more evident way, on the longitudinal sleepers’ pitch (that creates a space-periodic stiffness
variation in the vehicle support); the latter takes into count all rail-head micro and macro
irregularities but also the overall geometric configuration of the railway infrastructure (i.e., track
gauge, longitudinal level, cross level, transverse alignment, switches and so on).

Focusing on the rail-head irregularities, the properties of the running surface’s roughness could be
estimated through the “power spectral density” (PSD) statistical function. This method allows to
create a mathematical model of the rail-head irregularities’ distribution along any wavelength of
interest and then to classify the rail wear levels setting different frequency-amplitude classes.

To validate this kind of estimation, the rail profile needs to be considered as a random and
stationary process, therefore its statistical properties do not depend on the considered track
length.

2.1 RANDOM SIGNALS THEORY
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Figure 2.1: Typical time domain realization of a random signal

The system’s response to random excitations is also a random phenomenon. Describing a random
phenomenon using time functions is not the best approach. Several random phenomena are
characterized by statistical regularity, that means they have repetitive patterns and can thus be
described in terms of averages. For these reasons it is preferred to describe stochastic phenomena
in terms of probability of occurrence rather than in a deterministic way.
Mainly four statistical functions are used to describe the random signals:

e Root mean square and variance, that provide information about the amplitude of the
signal;

e Probability distributions, that provide information about the statistical properties of the
signal’s amplitude;
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e Correlation functions, that provide information about the statistical properties of the signal
in the time domain;

e Power spectral density functions, that provide information about the statistical properties
of the signal in the frequency domain.

2.1.1 STATIONARITY AND ERGODICITY OF A PROCESS

Let us consider n realizations over time of a certain random process x;(t), x,(t), ..., x,(t), as
those shown in the next figure:

Figure 2.2: Example of n different time domain realizations of a random signal (adapted from [11])

Each realization will be different from the others. Therefore, it is not possible to use any of these
functions over time to predict a future realization. A single function over time x;(t) is called
sample function and can be considered a random variable. The set of all possible realizations over
time constitutes the random (or stochastic) process. In such processes it is possible at first to
define an average value at a given time t = t;; the so-called overall average is obtained:

n
o1
o) = lim =" (6. @1)
k=1

The concept of assembly mean is also present within the definition of auto-correlation function, by
referring again to Figure 2, can be defined as the mean value of the product of the function at time
tandattimet + T

n
1
Ry (t,t; + 1) = nlirfmﬁz X (t)xp (1 + T). (2.2)
k=1
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If the values of u,(t;) and R, (t;,t; + 7) depend on the value t;, then the process will be defined
as non-stationary. Otherwise, the process can be defined as stationary. Consequently, the average
value will be time independent, so u,(t;) = i, = constant, and the auto-correlation function
will depend only on the T value, s0 Ry, (t1,t; + 7) = Ry, (7).

Actually, there is a difference between weakly stationary and strongly stationary processes but in
many practical applications the first one implies the second. It is a class of random processes
defined as random Gaussian processes.

In general, for the calculation of assembly means, such as the mean value or the autocorrelation
function, it is needed to have a large number of sample functions. In some cases, it is possible to
refer to a single realization k over time, by calculating the average time value and the time domain
auto-correlation function as follows:

1T
i) = lim fo xi (£)dt (2.3)
1 T
R, (k)= lim — f 2 (O (¢ + D). 2.4)
T+ T 0

If the process is stationary and the values of u, (k) and R,,(k,T) are the same for any process
realization of the process, then the process can be defined as ergodic.
Consequently, for an ergodic process:

Uy (k) = p, = constant; (2.5)

Rxx(k: 7) = Ry (7). (2.6)

Ergodicity therefore makes it possible to use a single sample function to calculate the means of a
given random process. The mean square value of a random variable x(t) is defined as the
quantity:

T
P2 = lim 1 x2(t)dt. (2.7)

To4o0 T 0

The square root of the mean square value is denoted by RMS (root mean square value).

We have seen how p, is constant for an ergodic process. In vibrations it is possible to consider the
mean value u, as the static component of x(t) and the quantity x(t) — u, as the dynamic
component. The latter is represented by the variance, defined as follows:

1 T
0%, = lim = | [x(t) — u,]?dt. (2.8)

T-+o T J,
Its root square value is known as standard deviation. It can be easily proved that:
2 _— 2 2
0% =Y, —p°,. (2.9)
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2.1.2 PROBABILITY DENSITY FUNCTIONS

It has been shown that in the case of an ergodic random process it is possible to use a single
assembly function to describe it in terms of averages. The probability density function allows you
to collect information concerning a random variable in terms of amplitude.

The expected value (or average value) of a function x(t) is given by:

T +00

x(t)dt =j xp(x)dx, (2.10)

—00

B0 = 1 [

0

where p(x) is the probability density function. In other words, it represents probability p (x) dx
that a random variable falls within the interval [x ; x + dx]. Consequently, for a stationary process
(i.e. time-invariant), we have that E [x (t)] = E [x].

Similarly, since the root mean square value is the expected value of x2, we have:

1 T +o00

E[x?] = ?f x2dt = j x?p(x)dx. (2.11)
0 —00

The integrals in equations (2.10) and (2.11) are approximated considering that, for a value of T

sufficiently large, all values between 0 and T are equally probable and therefore dt/T ~p(x)dx.

According to what we saw in the previous section, the square root of E[x?] is the RMS. The

standard deviation o of x(t) and the variance ¢ are defined by:

o? = E[x?] — (E[x])% (2.12)

If the signals are digitally recorded the mean value, the mean square value and the variance can be
obtained directly from the time history of the random signal x(t):

N
_ 1
E[x] = NILTOON ' x;(t); (2.13)
=1
N
E[x?] = lim 12 x2,(6) (2.14)
N—>+00N L i . .
1=

where N is the number of assemblies.
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2.1.3 CORRELATION FUNCTIONS

The auto-correlation function for a random signal x (t) provides information about the degree of
dependence of a value of x at a time t with respect to its assumed value at a time t + 7. In
section 2.1.1 we have seen how for a stationary random signal, the function of autocorrelation
depends only on T and it is independent from the absolute time.

By expanding the definition given by equation (2.4) we have:

Ry (t) = E[x(Dx(t +D)] = lim % f e (Ox(t + D, (2.15)
T—+o0 0

where p (x) dx = dt/T has been set, that is, for a sufficiently large value of T, all values of the
random signal x (t) have the same probability of falling within the interval [0; T].

e e
2N _ LN m,
X/ VAR
0 ~ Time delay,t

2
i T

Figure 2.3:An example of the auto-correlation function (adapted from [14])

An example of the auto-correlation function is shown in Figure 2.3. It is possible to normalize a
correlation function through a correlation coefficient, defined as:

_ E[(x(t)) —my)(x(t) —my)]  Ry(7) — mnzc

D - —= (2.16)
Oy Oy 07

where m, is the signal mean value.

For T > 0=>p,, > 1, being R,,(0) = E[x?] = 62 —m2. For T > o =>p,, - 0, because
R, () - mZ. The auto-correlation function is an even function and assumes its maximum value
for T = 0. R,,(7) is periodic for periodic signals and decays to O for random signals at large
values of the delay .

Now consider two different stationary random signals x (t) and y (t). The cross-correlation
function between the two signals provides information about the similarity between them in
function of the time shift 7, and it is defined as:

T
Ryy (@) = Elx(©)y(t + )] = lim % f *(D)y(t + D)dt. (2.17)
T-+o0 0
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Figure 2.4 shows an example of the cross-correlation function.
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Figure 2.4: An example of the cross-correlation function (adapted from [14])

For each pair of random and stationary signals, we can define two cross-correlation functions:

ny(T) = E[x(0)y(t + )],

2.18
Rye(0) = Ely(0)x(t + D; (218)
Moreover, being these processes defined as stationary, it is also true that:
Ryy () = E[x(t — D)y (0)] = Ry (—7), 2.19)

Ryx () = E[Y(t - Dx(t)] = ny(_T)-

Differently from the auto-correlation function, because Ry, () = Ry, (—1)the cross-correlation
function is not an even function of 1.

2.1.4 AUTO - POWER SPECTRAL DENSITY

The autocorrelation function provides information about the properties of a random variable in
the time domain. On the other hand, the PSD (power spectral density function) provides the same
type of information in the frequency domain. The spectral density function is the Fourier
transform of the correlation function. Let x (t) be the representative assembly function of an
ergodic random process. Indicating with X (w) the Fourier transform of the function x (t), we
have:

— 1 e —iwt
X (w) = ﬂf_w x(t)e dt, (2.20)
and
+o00
x(t) = f X (w)etdw. (2.21)
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Note that X (w) is a complex quantity.
The classical Fourier analysis introduces the following condition:

+00
[ h@ae<e, (2.22)

and so it is valid for any function whose absolute value is integrable and tends to 0 for|t| — oo.
Since stationary random signals do not respect this last condition unlike the correlation functions
(we have seen how the correlation function of a random signal tends to 0 as t increases), that’s
why the latter are used for the Fourier analysis; in this way we have:

1 [+ .
Sex(w) = E.f R, (T)e ""dT, (2.23)
and
+00 _
R, (T) =f Sex(W)e' dw. (2.24)

S..x(w) represent the auto-power spectral density of x(t).
One of its most important properties can be underlined setting T = 0 in the equation (2.24):

R, (r=0) = f s (@)dw, (2.25)

Considering the definition given by equation (2.15), we obtain:

+oo

E[x?] =R, (r=0) = j Sex(@)dw. (2.26)

—00

So, as itis shown in the next figure, the mean square value of a random and stationary process can
be given by the area under the curve of the w-dependent power spectral density.

Figure 2.5: The graphic explanation of the E[x?] value matching the area under the S, (w) curve (adapted from [12])

It is proved now that S, (w)is a real and even function. The complex value of a Fourier transform
function can be split into real and imaginary part:

X (@) = A (w) — iB (), (2.27)

Pagell/ 127



Applying the same definition to the PSD:

Sex(w) = A (w) — iB (w), (2.28)
where
1 [+
A(w) = E,f R, (7) cos(wr) dr, (2.29)
and -
1 [+
B (w) = Ef R, (1) sin(w7) dr, (2.30)

Since R, () is an even function of T and sin (wt) is an odd function, their product is an odd
function and for this reason we have that the integral in (2.30) in the range [ —oo; 0] is exactly
equal and of opposite sign to its value in the range [ 0; +]. Therefore, B (w) is null and so the
PSD is defined as:

Sex(@) = A (w). (2.31)

Moreover, according to (2.29), it is a real and even function of w, and it is always non-negative.

There are two alternative but equivalent ways to define the same PSD. In figure 2 .6a we have the
so-called double-sided spectral density function, defined in the interval [ —oo; +o0]. Figure 2.6b
shows the same PSD in the form of one-sided spectral density function (also called half spectrum),
defined in the interval [ 0; +o0].

dw 1)
A "E; ‘:m'.'

hSCRNOON
S

e
e

Ly

o o e, b e e R Pl
R

%

i

-t~ 0 o e e T

e
§
]
-1

(a) (b)

Figure 2.6: Double-sided (a) and one-sided (b) spectral density function (adapted from [12])

By referring on the previous figure and according to (2.26), which states:

E[x?] = f s (w)dw, (2.32)
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it follows:

+00
Ell= [ wndf, (2:33)
0
where f is the frequency in Hz. The band [ w; w + dw] in rad /s in figure 2.6a corresponds to the
band [%; w+zw] in Hz in figure 2.6b; therefore, because of the hatched areas in the two figures

must be equal according to (2.32) and (2.33), it follows that:

25, (w)dw = W, (F = )42, (2.34)
x X (f 21'[) 2n

In conclusion, the half-spectrum is linked to the continuous-spectrum by the following relations:
Wy (f = o) = 4nS, (w);

21
Wy (f) = 4nSy(w = 2mf).

(2.35)

2.1.5 BROADBAND AND NARROWBAND RANDOM PROCESSES

We have seen how the PSD function provides information about a random process in the
frequency domain. In particular, the random processes can be divided into random processes with
a narrowband of frequencies and a broadband of frequencies. In the first case, S,(w) has
significant values only for a narrow band of frequencies with the peak-frequency at its centre. In
the second case S,(w) assumes significant values for a wider range of frequencies. The two
extreme cases are:
e spectrum consisting of two symmetrical delta functions with respect to the ordinate axis,
corresponding to a sinusoidal assembly function;
e spectrum consisting of a uniform function, corresponding to an assembly function in which
all frequencies are equally represented.

g thy Cig
{a) Storico di una funziene d'essieme di un processo a banda stretia
x(t)
8, (w)
t
=)
~ilg =ty Gy L]
(b) Storice di una funzione d’assieme di un processo a banda larga

Figure 2.7: Examples of a narrowband assembly function (a) and a broadband assembly function (b) (adapted from [12])
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With reference to figure 2.7b, in the broadband process limit case, when w; = 0 and w, — o0, we
refer to the ideal white noise. Basing on (2.26), the root mean square value of a random process
consisting of an ideal white noise would be infinite, that is the reason why it is only a theoretical

concept.

However, if we consider a broadband noise that extends well beyond the frequencies of interest,
we can talk about white noise or narrow-band white noise.

The shape of the autocorrelation function of a white noise can be obtained with simple steps. In
general, from (2.26) we have that:

E[x?] = f+005x(0))d0) = 25¢(w; — wy),

where S, is the constant amplitude peak value of S, (w). From the (2.24) and, because the S, (w)
is an even function in w, it results that:

R,(r) = ]+m5x(w)eiwfdw = j+005x(a)) cos(wt) dw =

—00 —00

(8))
= Zf S cos(wt) dw =
w1
1 w2
=25, [— sin(wr)] =
T o,

25, .
= T(sm(a)zr) — sin(w;7)) =

(22 (2252

Setting now w; = 0, we obtain:

4S W, T  W,T sin(w,7)
R,.(7) = % cos——sin —— = 28, 22
T

This function is represented in figure 2.8a. Moreover, setting w, — oo the curve is reduced to a
single vertical peak with zero width, infinite hight and finite area (that could be easily
demonstrated to be equal to 271S,), as shown in figure 2.8b.

R {t)=2n5,8(x)
k()

28504

(a) (b)
Figure 2.8: Auto-correlation functions of a generic signal (a) and of a white noise (b) (adapted from [12])
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To mathematically describe this behaviour we can use the Dirac delta function §(t), which is
defined as null everywhere except in T = 0 where it is infinite:

+o0

6(t)dr = 1.

—00

To be more generic, the function §(t — T) is null everywhere except in T = T; denoting by g(7)a
generic continuous function of T we have that:

f+006(1' —Tg()dr=g(x=T). (2.36)

In this way the autocorrelation function for a white, random, and stationary signal with spectral
density Sy will be:

R, (1) = 2mSy6 (1), (2.37)

and therefore, as we have seen in figure 2.8b, R, () is null everywhere except in 7 = 0 where it
assumes an infinite value. The area subtended by R, (7) is then equal to 27S,,.

2.1.6 POWER SPECTRAL DENSITY OF THE DERIVATIVE OF A PROCESS

Let us assume that we know the PSD S, (w) of the stationary random process x(t). Starting from
this, it is possible to calculate the power spectral density of processes derived from the first, e.g.,
speed (S;(w)) and acceleration (S;(w)). The assembly autocorrelation function of the process
x(t) can be written as:

R,(7) = E[x(D)x(t + )] = N_l)rllooﬁkzzlxk(t)xk(t +1).

Differentiating with respect to 7, we have:

dR,
d‘fr) - NLTOONZ dt [x, (O)x;(t + T)]. (2.38)
Knowing that:
d
e [, (Ox(t+17)] = xk(t) xk(t +1) =
" d d(t+1)
B TR L

= x ()% (t + 7);
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We obtain:
d .
— (R:(D) = Elx(03(c + 1)) (2:39)
For a stationary process, we know that the assembly means are independent of time t, so:
d . .
i (Rx(r)) = E[x(t)x(t+ 1)] = E[x(t — 1)x(t)], (2.40)

Differentiating one more time with respect to 7, we have:

2
j?(Rx(T)) = —E[i(t - D2(0)] = —R:(0), (2.41)

where R;(7) is the autocorrelation function of x(t).

The integral in the equation (2.24),
+0oo
R, (1) = f Sy(w)edw,

is defined with respect tow, with T kept constant and with the integration limits independent of .
Therefore it is possible to differentiate with respect to t inside the integral sign, obtaining:

%(Rx(r)) = f_:inx(w)ei“’wa, (2.42)

and

d? oo ;
F(Rx(f)) =T f w?Sy(w)e  dw. (2.43)

Combining now the equations (2.41) and (2.43), it is possible to express the autocorrelation
function of the derivative of a process as:

+00
R;(1) = j w?S, (w)e' dw. (2.44)
But it is also true that R;(7) can be identified as the inverse transform of S;(w), so:
+oo .
R;(t) = f Sy(w)e*Tdw. (2.45)
In conclusion, combining the equation (2.44) and (2.45), we obtain:
Si(w) = w?S,(w); (2.46)

So the PSD of a process x(t) can be easily obtained by multiplying by w? the PSD of the known
x(t).
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The obtained results allow us to also calculate the following values:

E[x?] = f+005,-c(w)dw = f+oow25x(a))dw, (2.47)
and - -
+o00 +oco

E[#?] = f Se(@)dw = j 0*S,(0)dow. (2.48)

2.1.7 CROSS-POWER SPECTRAL DENSITY

For consistency with what we have seen with the auto-power spectral density of a process x(t), if
we consider a pair of processes x(t) and y(t) we have two cross-correlations (R, (t) and Ry, (7))
and the relative cross-power spectral densities are obtained as follows:

1 (*t® ;
Sxy(a)) = E_f_ ny(T)e_ledT, (249)
and
1 (@ )
Sya(@) = o j_ R, ()e 7. (2.50)

According to equation (2.19), the cross-correlation functions are linked together. Setting now
R,y (1) = Ry, (—1) in the (2.49), we obtain:

1 (t*® )
Sxy(w) = %f Ryx(_T)e_ledT;

Therefore, setting T’ = —1:

1 + 00 ) , 1 —00 ) ,
Sey(@) = E,[ Ry, (t')e'" (—dt') = E.[ Ry (t")e' " dt’ (2.51)
—oo +00

So it is equal to (2.50) except for the sign of iw. Now, according to (2.27), we have:

Sxy(w) = A(w) - iB(w):
and
Syx(w) = C(w) — iD (w),

Where A (w), B (w), C (w) and D (w) are real function of w. By comparing the equations (2.49)
and (2.51) we obtain:

Alw) = C(w)

and
B(w) = —D(w)
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since the definite integrals are independent of the integration variables. Consequently Sxy(w) and
Syx(w) are equal except for the opposite sign of the imaginary part. In other words, Sxy(w) is the
complex conjugate of S, (w) and vice versa:

Sev(w) =55, (w
xy( ) {x( ) (2.52)
Syx(a)) = Sxy(w)
There is an interesting property of the cross-power spectral densities, which concerns the case in
which the two signals x(t) and y(t) (two realizations of random and ergodic processes) are equal
to each other but out of phase by a certain time T, that is:

y(t+T)=x(t).

Let us also assume that these are white noises, whose auto-correlation function, as we have seen,
is just the Dirac delta function in zero. By cross-correlating the two signals, it is possible to observe
what happens in terms of cross-spectral densities. In particular, the Dirac delta function will be out
of phase with the time T (figure 2.9).

Rey (v} R, ()
area area
2n8, 2n8y
0 T 4 = 0 T

Figure 2.9: Cross-correlation functions for out of phase white noises (adapted from [12])
Starting from (2.49), we can obtain:
1 (t® . .
Syy(w) = Z_J- 21Se8(t — T)e ' @%dr = Sye~ T (2.53)
TJ
while from (2.50) we obtain:
1 . .
Syx(w) = E,f 21Se8(T + T)e ' @Pdr = Syet®T (2.54)

that is a further confirm of the (2.52). Setting now S, (w) = A (w) — iB (w):
A(w) = Sycos(wt)
B(w) = Sysin(wt)
So it is possible to represent the modulus |Sxy(a))| and phase 8 = tan"![B(w)/A(w)] as shown

in the next figure.
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B=tan" %EJ]
15, ()] = A2 (@)+B%(w)

Sﬂ 0 L]

0 o
Figure 2.10: Modulus and phase representation for out of phase white noises cross-PSD (adapted from [12])

In particular, the trend of phase 8 is represented by a straight line, whose angular coefficient is
precisely the delay time T. In the case of a non-white noise, such as the cases analyzed in this PhD
thesis, also if some relations change slightly, a very similar trend is expected.

2.2 RAIL PROFILES CHARACTERIZATION

In the literature there are many approximations that allow to characterize the road profiles by
means of PSD, that makes it possible to cover a wide range of road types. The ISO 8608:2016
standard provides a general method for characterizing road surfaces.

The road profile can be described based on:

e PSD of its vertical displacement;
e PSD of acceleration, i.e. in terms of speed which the slope of the road surface varies per
unit of distance travelled.

For the graphic representation of the PSDs it is possible to use a double-logarithmic scale in the
spatial frequency n [cycles/m] (or angular spatial frequency 2 = 2nn [rad /m]) or alternatively
in the temporal frequency f [Hz] (or angular frequency w = 2nf [rad/s]). The relationship
between the PSD of the displacements and that of the accelerations is the following:

Gaec(n) = (27Tn)4Gs(n)- (2.55)

2.2.1 STANDARD ISO 8608

ISO 8608: 2016 provides the means to roughly characterize specific road profiles in order to
facilitate their subdivision into general classes, using Fourier analysis. A general classification is
also provided.

As previously mentioned, it is possible to measure the roughness of road surfaces using suitable
measuring instruments. When reporting PSDs of measured surfaces, they should be limited to the
spatial frequency range permitted by the measuring equipment. In general, as regards the lower
limit, generally they are not performed below a spatial frequency n,,;;, = 0.01 [cycles/m]; the
recommended upper limit is instead of n,,,, = 10 [cycles /m].
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The I1SO 8608 procedure consists first of all in the estimation of the PSD of the road/track profile;
to do this, it is possible to use the Welch Periodogram method, which will be better specified later,
by windowing the signal appropriately (for example with the Hanning window). This method is
based on the calculation of the FFT (Fast Fourier Transform) of the road profile. The FFT is an
algorithm that allows to calculate the discrete Fourier transform, therefore in the case in which the
starting signal is discrete. The windowing operation, as will be seen below, allows to contain the
so-called leakage phenomenon.

Because of, if the PSDs are calculated using a constant bandwidth method, in their representation
in a double logarithmic diagram it is possible to see at high frequencies the fluctuations generated
by the real power distribution and by the noise present, it is convenient to use a smoothed form

(smoothed PSD) to represent them, for example considering the assumed value in the following
value bands:

e Single octave bands, from the lowest frequency measured (except 0) up to a central
frequency of 0.0312 [cycles /m];

e One third of octave bands, from the last octave band up to a central frequency of
0.25[cycles /m];

e For the remaining frequency range, one twelfth of octave bands up to the highest
frequency measured.

This process is defined as a smoothing process. At this point, a fitting of the smoothed PSD is
performed. The general formula is the following:

Gy(n) = Ga(ng)(n/ny)™". (2.56)

where G;(n) indicates the PSD of the vertical displacements (sometimes referred to in the
literature as the irregularity indexC), ny = 0.1 [cycles /m] is the spatial reference frequency and
w = 2 is the exponent of the fitting (in some cases referred to as waviness). Therefore, using this
procedure it is possible to describe the entire frequency content by means of only two
parameters: ny and w. According to the value assumed by the parameter G;(ny), the roughness
profiles are cataloged as belonging to one of the 8 classes (from A to H) defined in ISO 8608; the
values of this parameter according to the corresponding class are shown in table 2.1.

Roughness Level

Class
Lower Limit Geometric Mean Upper Limit
Ga(no)
10~5m?
A 16 32
B 32 64 128
C 128 256 512
D 512 1024 2048
E 2048 4004 8192
F 8102 16384 32768
G 32768 65536 131072
H 131072 262144

Table 2.1: Profiles classification according to 1SO 8608 [17]

Page20/ 127



The graph of figure 2.11 shows the limits of the different classes. To report the limits of the
different classes as a function of the temporal frequency, it is possible to use the relation:

f=2nrw=n-u,
with u the constant vehicle speed. In this way it is possible to graphically represent the

classification for a given speed, as in the graph of figure 2.12, in which the temporal frequencies
are shown on the abscissas.

GEmMoOOmE>|

102 10! 10° 10’
n (cychesm)

Figure 2.11: Graphic profiles classification according to ISO 8608
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Figure 2.12: Graphic profiles classification according to ISO 8608 for a vehicle speed of 20 m/s
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In the same way, once a class has been set, it is possible to plot the PSDs at different speed values
in a same graph, as in figure 2.13.

Class A at differsnt velocities (m/s)
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Figure 2.13: Class A PSD profiles according to ISO 8608 for different vehicle speed values

There are also other possible formulas to use alternatively to (2.56). One example could be the
following bi-linear function (figure 2.14 and 2.15):

Ga(ng)(2mn)~2, forn < L
Ga(n) = °n (2.57)
Gy(ng)(2mn)~1>, forn >—

2n
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Figure 2.14: Bi-linear profiles classification according to 1SO 8608
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Figure 2.15: Bi-linear profiles classification according to 1SO 8608 for a vehicle speed of 20 m/s

Finally, another type of classification is that proposed by the United States Federal Railroad

Administrations (FRA), specifically designed for the profiles of railway tracks [8]:

An3(n? + n?)

Ga(n) = n*(n2+n?)’

The next figures show the graphic representation of the FRA classification:

FRA Classification
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Figure 2.16: Profiles classification according to FRA

(2.58)
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Figure 2.17: Profiles classification according to FRA for a vehicle speed of 25 m/s

2.2.2 SUSSMAN

Among all the approximations seen above, the most suitable for the description of railway profiles
is certainly (2.58). In this regard, another approximation often used in the case of railway tracks is
the one developed by Sussman (1974):

(2.59)

To obtain the subdivision into different classes, the value of G,;(n,) is based on the variance, so
that for each class its value, therefore the area under the curve according to (2.26), in the range of
frequency [0.011; 2.83] [cycles /m] is equal to the one calculated for (2.56). Therefore we have:

o @[ () o (29
0-2 = f Gd(n)dn = Gd(no) 0 = Gd(nO) 0 0
ninf 0 nO no
Ninf
from which:

6. (1) o? o2

d nO = — L ing = nO - — ]

i (5) e (GO [tant (B2) - tant ()] (2.60)
o ng
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The values of G;(ny) obtained from (2.60) for each class are shown in table 2.2:

Class ~ RMS ISO (mm) RMS Sussman (mm)  Gg(no)

A 4.2735 4.2737 0.0013
B 8.5469 8.5474 0.0051
C 17.0938 17.0948 0.0204
D 34.1876 34.1896 0.0814
E 68.3753 68.3792 0.03256
F 136.7505 136.7583 1.3025
G 273.5010 273.5166 5.2098
H 547.0021 547.0333 20.8392

Table 2.2: Profiles classification and G ,;(n,) values according to 1SO 8608 and Sussman

A comparison between the classifications (2.56) and (2.59) is shown in figure 2.18, where the
limits for the frequency band n;,r and ng,, are underlined; in figure 2.19 is shown the
classification according to (2.59) at a vehicle speed equal to 20 m/s.

n [eysles/m)

Figure 2.18: Profiles classifications comparison between ISO 8608 and Sussman
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Figure 2.19: Graphic profiles classification according to Sussman for a vehicle speed of 20 m/s
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2.3 SIMULATION OF RAIL PROFILES

To obtain the history of the roughness profile over time, it is possible to start from the discrete
PSD in the temporal frequency domain. It must be considered, first of all, that land vehicles, and in
particular railway vehicles, as will be seen in chapter 3, can be schematized with half-train or full-
train models. In the first case, one half (right or left) of the vehicle is considered; therefore for
each axle only one wheel is considered. In the second case, the vehicle is taken into consideration
in its entirety. For simplicity, the diagram in figure 2.20 is considered, where L is the distance
between the two axles, B the distance between two wheels belonging to the same axis, and u the
forward speed; the wheels are numbered from 1 to 4. In case you want to use a half-car model the
only points of contact are wheels 1 and 3. The inputs on the two wheels, due to the road (rail)
roughness, are considered identical (as if they moved on a track), but with the one on wheel 3
lagging behind the one on wheel 1 for a time value equal to:

= (2.61)

L
»
If, on the other hand, you want to use a full-car model, you must still take into account the time
lag between the front and rear axles, but in addition it is necessary to consider that the vehicle is
subject to stresses due to road roughness on both the right and left wheels. These two road
profiles have a spatial correlation.

Figure 2.20: Top view of a 4-wheeled vehicle (adapted from [6])

2.3.1 SIMULATION OF A WHEEL

To obtain the frequency transform of the road/rail profile, it is possible to construct the module
and phase starting from the expression of the discrete PSD. At that point, it is sufficient to apply
the inverse Fourier transform to obtain the time history of the profile.

It is shown that G;(w) is linked to the assembly mean on n repetitions of the product of the
module of the transform of the process and its conjugate in w through the following relationship:
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<Y(w)Y*(w) >
Galw) = ——— Ol (2.62)

where §(0) is a constant value that is proportional to the observation time of the process.

In paragraph 2.1 we saw how a road/rail process can be considered as a stationary, Gaussian, and
ergodic process. In particular, for equations (2.5) and (2.6), we have that a single realization of the
process is representative of the same. Consequently, the numerator of (2.62) can be written as:

<Y(w)Y*(w) >~ Y(w)Y*(w) = Y ()%
So the (2.62) becomes:
Y (w)]?

Gd(w) = W(O) (2.63)

So the modulus of the transform is:

Y (w)| =/ G4(w)2m5(0). (2.64)

Once the modulus has been determined, to obtain the transform it is necessary to determine the
phase, in which the stochasticity of the process is found. To do this, a certain probability density
function is assumed for the phase, and in particular it is made to vary in the interval [—m; ] with a
uniform probability (Figure 2.21).

pix)

- ] ]

Figure 2.21: Probability density function of the phase, constant in the interval [—1; 7]

At this point, once the transform Y (w) has been obtained, it is possible to pass from the frequency
domain to the time one through the inverse Fourier transform:

Y(t) = f_+wY(w)eindw (2.65)

As already mentioned in subsection 2.2.1, it should be emphasized that the experimental estimate
of the spectra starting from measured and therefore sampled data does not follow the formal
mathematical course described; in fact, with the development of the fast Fourier transform (FFT)
technique, the digital estimates of the spectra can be obtained directly from the histories by
means of suitable algorithms. We must therefore pay attention to the construction of the
transform. Since the signal is discretely sampled, it is not possible to think about the entire
frequency axis, but it is limited to a certain frequency band. By indicating the sampling frequency
of the signal with £, this can be represented up to the frequency f,qx = f-/2; and so:
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1 (tfe/2 ,
Y(t) = —f Y(w)e®tidw (2.66)
fed=g.r2

where the subscript i indicates the number of time intervals in which the signal has been divided.
The sampling frequency is the inverse of the sampling interval At, and so we havet; = iAt = i/f,.
The largest period that can be described in the discrete case is obviously equal to the time of
observation of the phenomenon t, and so the minimum appreciable frequency isf,i, = 1/t,. In
this way it is possible to construct a half spectrum (spectrum of positive frequencies), which goes
from fi,in tO fimax- Being in the case of a discrete signal of a real process, also the half spectrum of
the negative frequencies is translated and considered at positive frequencies. It is shown that
there is a symmetry between the two spectra, and in particular that the modules of the two half
spectra are symmetrical with respect to the vertical line passing through f,,,., While the phases
are symmetrical with respect to the point [fax @ (finax)]- This also affects the relationship that
links the PSD to the modulus of the transform (equation (2.62)). In particular, due to the different
definition of transform of the analytic Fourier transform compared to the discrete one (DFT), in
which the sampling frequency is present in place of the factor 2w, we have that (2.64) becomes:

Y ()| = fe/ Ga(w)ty. (2.67)

Figure 2.22 shows the module and phase (a restricted interval of frequencies has been
represented for the phase to highlight the symmetry) of the transform obtained as just described,
starting from the PSD of the road according to Sussman Class A. A sampling frequency f. =
1000 Hz, a resolution in frequency Af = 1-1073 Hz, and then an observation time of t, =
1/Af = 1000 s were used.

(a) Transform Modulus (b) Transform Phase

Figure 2.22: Frequency domain representation of the Transform of a realization of a Sussman Class A profile

In figure 2.23 is represented the same profile realization but in the time domain:

o 100 200 300 400 500 600 700 80D 800 1000
tis]

Figure 2.23: Time domain representation of a realization of a Sussman Class A profile
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2.3.2 COMPLETE WHEELSET SIMULATION

Consider the case in figure 2.20. Obviously, any subsequent explanation is also extensible to the
case of a railway wagon, in which the wheels are double in respect of the full-car case, i.e. 8.

A model for the simulation of the profile on all the contact points (and therefore the wheels) is
based on the following assumptions:

e the wheel’s contact area of the front axle and the rear axle of the vehicle are the same and
the vehicle moves in a straight line with constant speed,;

e the statistical properties of the left and right profiles are the same, i.e. they have the same
PSD.

However, although the left and right wheels are statistically equivalent, the actual profiles are not
identical. To take into account these differences, which generate noise mainly in terms of roll, a
coherence function defined as:

_ |GLr(n)|
\/GLL (n) - Ggg (n)'

where G;;(n) and Ggg(n) are respectively the auto-PSD of the left and right profiles, while Gz (n)
is the cross-PSD of the two profiles. From studies and measurements carried out on the coherence
data for different types of road surfaces or railway tracks it emerged that the coherence function,
included in the interval [0; 1], has higher values at low frequencies and very low values at higher
frequencies. In particular, if T'(n) = 0 it means that the left and right profiles are totally
uncorrelated, while when I'(n) = 1 they are perfectly correlated. Furthermore, it has been seen
that for different types of roads the coherence functions are very similar. The fitting model
proposed by Bogsjo [3] is based on the use of a decreasing exponential function with the
parameters u and depending on the distance B between two wheels of the same axle, according
to the following relationship:

Ir'(n)

(2.68)

['(n) = e *BInl, (2.69)

Assuming u = 3.80 and plotting the results in temporal frequency instead of spatial frequency, we
obtain the curve shown in figure 2.24:

T [Hz)

Figure 2.24: Bogsjo coherence function
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With reference to figure 2.20, the cross-PSD can be written as a product of module and phase; for
example between wheels 1 and 2 we have:

G12(f) = 1G12(f) et Pz, (2.70)

where @1,(f) is the phase shift between the two wheels. Since wheels 1 and 2 are on the same
axis, we have that ¢,,(f) = 0. Therefore:

G12(f) = 1G12()| = T(HVG11(f) - Go2(f), (2.71)
But G11(f) = Go2(f) = G4(f), so

G12(f) = Ga(f) - T(f), (2.72)

For the cross-PSD between wheels 1 and 4, a time delay given by (2.61) must be considered, that is
T = L/u. In this case we have:

Gia(f) =G (P)lei®e) =
= \/Gll(f) ' Gzz(f) ' F(f) . eiZ”fTM = (2.73)
= Gd(f) . F(f) . elZTL’f‘L".

So it is possible to wright the input matrix as:

Gll(f) 612 (f) Gl3(f) Gl4(f)
GZl(f) GZZ(f) GZ3(f) 624(f)

D=6, 630 Gl G| @74)
Ga1(f)  Gaa(f)  Gaz(f)  Gaa(f)
that becomes:
1 r'(f) el2nft [(f)ei2nf
r 1 i2nfzT i2nfT
Gin(f) = Ga(f) e_fz?ﬁ F(f)e-i2nst F(f)i eF(f) (2.75)
I_F(f)e—iZEf‘r e—i27'rf‘r [‘(f) 1
About the spectra:
() =1 (f)-T(), (2.76)
and
Y,(f) = Y, (f) - T(f) - e~2mf7ua, 2.77)
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Applying what we have just seen to a model similar to that of figure 2.20, we obtain:

e for the correlation of the left front wheel and the left rear wheel (figure 2.25), it can be
seen that the two signals are actually equal over time but out of phase with time T,
therefore the method is accurate;

o for the correlation of the front left wheel and the front right wheel (figure 2.26), it can be
seen that there is a difference in amplitude between the two signals over time.

Due to the smaller amplitude of the signal over time of the front right wheel compared to the
front left, there will be a variation of the PSD of the profile between the two same wheels starting
from the medium-high frequencies (figure 2.27). This difference is attributable to the fact that the
coherence function, which varies between 0 and 1, assumes values close to 0 at high frequencies.
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Figure 2.25: Front-Rear time domain comparison
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Figure 2.26: Left-Right time domain comparison
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Figure 2.27: Standard-Simulated PSD comparison

In other words, the PSD of the rolling profile of one wheel is lower than the PSD of the profile of
the other wheel on the same axis, which is consistent with the standard PSD characterized with
one of the methods described in paragraph 2.2. To solve this problem, in the first place, it is
possible to consider the roughness of the profile divided into a perturbed (6Y;(t), where i = [,1)
and an unperturbed part (Y;(t)). The unperturbed part is assumed to be equivalent for the right
and left profiles, while the perturbed part of one profile is independent of the other. Secondly, the
auto-PSDs of the roughness of the profile unperturbed and perturbed are derived through the
coherence function. Finally, the roughness of the profile is obtained by combining theoretical and
perturbed roughness [9].

Based on what has been said for the two profiles, the historical signals are:

Y, (8) = Yo(6) + 8V, (2),
And
Y. (t) = Yo(t) + 6Y,-().

The realization over time of the unperturbed component can be obtained as seen in subsection
2.3.1, being:

Yo(w) = [Yp(w)]e™ (),
whose Fourier transform is:
Yo(w