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A B S T R A C T

Shui et al. (2020) have recently shown that applying high-frequency vibrations, we can increase the mean
adhesion between viscoelastic solids. This is due to the fact that oscillating contact area leads to an effect
of increased apparent surface energy during the retraction phase which can be described by the well known
empirical Gent and Schultz law (GS). However, Shui et al solution surprisingly appears not to depend on
GS constants, which would imply perhaps no amplification. Yi et al. (2024) have made similar experiments,
and proposed a simpler fitting model, which seems to work however with widely different GS constant when
changing the sphere radius. Here, we solve the JKR dynamic adhesion problem for a sphere oscillating on
a substrate by imposing an harmonic oscillation of the contact area, which permits to obtain a very simple
solution by simply averaging the resulting cycle of indentation. We find that the solution is close to a JKR form
for the mean indentation vs mean force, which we find in a simple approximation. Although there is saturation
in the amplification when the contact radius shrinks to zero and the problem becomes that of impacts at large
amplitudes of vibrations, experiments show that other saturations occurs first, presently unclear. We discuss
also the influence of resonances. We find reasonable agreement with experiments conducted on PDMS.
. Introduction

The adhesive behavior of soft materials like polymers and silicones
s attracting interest in the engineering community particularly for the
pplication in the field of soft robotics (Laschi and Cianchetti, 2014;
anchez et al., 2023), wearable robots (Proietti et al., 2023), grasping
echnologies (Giordano et al., 2024), reversible adhesives (Kroner et al.,
010), bio-mechanics (Li et al., 2019), tactile perception (Felicetti et al.,
022). Soft (complaint) materials are inherently safe for humans to
nteract with and this has pushed the research in the field, envisioning
 world where robots could collaborate and interact with humans
n daily bases. Interaction with humans requires soft end-effectors
apable of manipulating and grasping everyday life objects, by means of
ontrolling the force exerted by the manipulator itself without the risk
o cause damage. This has led to several strategies, e.g. electro-adhesive
ads (Mastrangelo et al., 2023) or mechanochromic polymers able to
hange color when a critical stress is achieved (Giordano et al., 2024).
here still remains the difficulty of regulating the adhesion force in a
ay that is fast and efficient, ideally along a wide range of tackiness.

Dynamic adhesion has been suggested as a new mechanism to
ontrol the adhesive force and hence manipulation objects as possibly
seful in many applications, like space technology, flexible electronics,
obotics, and bio-integrated devices. Shui et al. (2020) have demon-
trated a robust and predictable method using a viscoelastic PDMS

∗ Corresponding author at: Politecnico di BARI. DMMM department., Viale Gentile 182, 70126 Bari, Italy.
E-mail address: Mciava@poliba.it (M. Ciavarella).

substrate attached to a rigid object (a glass sphere) finding an apparent
adhesion enhancement of 77 times for a certain optimal amplitude
of vibration and a weakening effect for larger amplitudes. One of
the interesting features is that the switching timescale is fast and
comparable to that of geckos (15 ms), and that the adhesion switching
remains unaffected for more than 2 × 107 vibrations without degra-
dation. To understand the method, it is crucial to understand the role
of different parameters, including size, actuation amplitude/frequency,
surface roughness, and material properties, and this relies so far mainly
on experimental evidence, since a predictive model is lacking.

The possibility to model the mechanism relies on the dependence
of the work of adhesion on peeling velocity. Gent-Schultz (GS in the
following, 1972) noticed that the surface adhesion (which is 𝑤0 in
adiabatic reversible conditions) can increase with crack speed in peel-
ing, and Greenwood (2004) demonstrated that it decreases in healing,
leading to the very non linear law

𝑤 (𝑡) = 𝑤0

(

1 + 𝐶
(

−
⋅
𝑎 (𝑡)

)𝑛)
for

⋅
𝑎 (𝑡) < 0 (1)

= 𝑤0∕
(

1 + 𝐶
⋅
𝑎 (𝑡)𝑛

)

for
⋅
𝑎 (𝑡) > 0 (2)

where 𝐶 , 𝑛 are found empirically but seem rather independent on the
system’s geometry if we believe Maugis–Barquins’s experiments on flat
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Fig. 1. The Shui et al. (2020) experiment and reference systems.

punch, sphere and peeling (Maugis and Barquins, 1978). We can also
write 𝐶 = 1∕𝑣𝑛0 to obtain a reference speed 𝑣0 which corresponds to
amplification 2.

In Shui et al. (2020)’s setup (described in Fig. 1), a base with a
viscoelastic carpet is oscillating and puts in vibration a rigid sphere
which in turn is pulled by a force via a rubber band spring.

Shui et al. (2020) derive an extension of the well known JKR system
of equations (Johnson et al., 1971) for the adhesive quasi-static contact
of a sphere, which is (𝐹 > 0 when compressive)
𝐾 𝑎 (𝑡)
2

(

3𝛿 (𝑡) −
𝑎 (𝑡)2

𝑅

)

+ 𝑚
⋅⋅
𝛿 (𝑡) + 𝑐

⋅
𝛿 (𝑡) = 𝐹 (𝑡) (3)

3𝐾
8𝜋 𝑎 (𝑡)

(

𝛿 (𝑡) −
𝑎 (𝑡)2

𝑅

)2

= 𝑤
( ⋅
𝑎 (𝑡)

)

(4)

where 𝐾 is an elastic constant of the viscoelastic carpet (in relaxed
conditions, or anyway at a frequency corresponding to the indentation
frequency), 𝑎 is contact area radius, 𝐹 is contact force and 𝛿 the contact
indentation, i.e. the remote approach between the base and the sphere.
Finally, 𝑅 is sphere radius, 𝑚 is the sphere mass, and the work of
adhesion GS is described by the GS law above ((1),(2)). However, in
the process of solution, Shui et al. (2020) find a final equation which
gives the mean force as function of the base oscillation amplitude 𝑋𝑏
and frequency 𝜔 which does not seem to depend on the GS constant as
(their Eq. (3)) (subscript ‘‘m’’ indicates mean value)

𝐹𝑚 = 𝐾
𝑎3𝑚
𝑅

−
√

6𝜋 𝑤0𝐾 𝑎3𝑚 − 3
2

𝑚𝜔2𝑋𝑏𝐾 𝑎𝑚
√

(

3𝐾 𝑎𝑚∕2 − 𝑚𝜔2
)2 + 𝑐2𝜔2

(5)

which could be plotted parametrically varying 𝑎𝑚 to find the pull-off
(minimum) load. We find this result surprising, since there must be
dependence on the GS constants, as indeed we shall find in the present
paper.1

On the other hand, Shui et al. (2020) experimental results suggest
that pull-off amplification is maximum for a certain base oscillation

1 Shui et al. (https://www.researchgate.net/publication/386115815) have
recently clarified that their damping factor 𝑐 really should be considered to
depend on the GS constants, because it is a system’s parameter which should
be measured. However, their predicted pull-off (Eq.16 of Supplementary Info)

𝐹𝑚,𝑝𝑜 = −𝑚𝜔2𝑋𝑏

√

1 + 𝑚𝜔2

𝑐2
(6)

which can fit anything except the values of pull off less than that obtained for
infinite 𝑐 which is

2
𝐹𝑚,𝑝𝑜 = −𝑚𝜔 𝑋𝑏 (7)

2 
(of about 40 μm in their typical range) and then decays, and they
suggested that this is due to a saturation in the GS law deviating from
the power law form and perhaps decaying with speed at large speeds.
The amplification has also a frequency dependence in that it seems to
be saturated for even very small base oscillation if frequency is around
400 Hz, suggesting this is a possible resonance of the system.

Yi et al. (2024) obtain with a similar setup similar experimental
results, except for some details: the amplification seems one order of
magnitude smaller despite on similar material, and they seem to find
a weakening effect of adhesion at very small base oscillations. They
propose a very simple model in which the Hertzian load is superposed
on an adhesive assumed as

𝐹𝑎𝑑 ℎ = 𝑤
( ⋅
𝑎 (𝑡)

) 𝑑 𝜋 𝑎2
𝑑 𝛿 (8)

where various approximations are made namely using Hertz equations
(namely 𝑎 =

√

𝑅𝛿) to relate 𝑎 with 𝛿 = 𝛿𝑚 + 𝛿𝐴 sin (𝜔𝑡) gives 𝑑 𝑎
𝑑 𝑡 =

𝑑 𝑎
𝑑 𝛿

𝑑 𝛿
𝑑 𝑡 =

√

𝑅
2

𝛿𝐴 cos(𝜔𝑡)
√

𝛿𝑚+𝛿𝐴 sin(𝜔𝑡)
and then plugging this into the GS equations

above ((1),(2)). It is assumed 𝛿𝑚 = 𝛿𝐴 so that there is no real search for
the pull-off condition, and the resulting force is integrated in time to
find the mean value. However, it is evident from the results that the GS
constant which fits the results vary widely when changing the sphere
radius of small amounts and appear also outside the common range
where 𝑛 < 1, which suggests the solution is a fit, but the GS constants
are not the true constants which must be unique for a given interface.

An alternative solution is therefore proposed here, stemming form
the fact that the strong non linearity and difficulty in relating the
contact area oscillation with the work of adhesion variations and the
indentation oscillations can be simplified if one starts with an ‘‘virtual’’
input of the contact area variation. We then find an exact solution
by simply numerically obtain the cycle of oscillation of indentation
via one of the JKR dynamic equations, and the mean force from the
average of the other JKR equation. This permits to reveal the relation
between mean force and mean contact area, which leads to pull-off
when the force is minimum. We find that the shape of the force-area
curve continues to resemble a JKR shape, and we find an approximate
solution guided by some reasonable estimate on mean and amplitude of
the indentation cycle: we find however that the resulting ‘‘dynamic JKR
curve’’ needs a corrective factor on the product 𝜔𝛿𝐴, which we tested
with extensive variation of parameters on the GS law since we dispose
of the exact numerical solution, and then we show detailed results of
the exact and the approximate solution for a set of constants relative to
some experiments which we briefly described on our own setup very
similar to the Shui et al. (2020) one. In the next step, we observe that
outside from resonance, the indentation oscillation is coincident with
the base amplification oscillation.

2. The oscillating contact area

Since most of the trouble in solving the problem come from the GS
law in the contact radius velocity, we assume the area is an harmonic
oscillation

𝑎 (𝑡) = 𝑎𝑚 + 𝑎𝐴 sin (𝜔𝑡) (9)

where generally 𝑎𝐴 ≪ 𝑎𝑚. To attempt to model the case when contact
is lost and there are impacts (which result in a more complicated
problem), we also consider the case where 𝑎𝐴 > 𝑎𝑚, in which case we
take a truncated oscillation when 𝑎 (𝑡) ≥ 0. In the cases when 𝑎 (𝑡) = 0
the contact force is obviously zero and 𝛿 (𝑡) is not predicted by the
contact equations, but perhaps forced externally.

We are neglecting the slow unloading rate in the contact which may
affect results, but which will be harder to take into account since it will
make the problem non periodic.

It turns out in our case we find pull-off is indeed much less than this limit,
showing their method is flawed.

https://www.researchgate.net/publication/386115815
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Fig. 2. Examples of cycles of exact indentation 𝛿 as for sinusoidal oscillation of area
or frequency 𝜔 = 2𝜋 × 200 r ad∕s where system parameters are 𝐾 = 9.33 MPa, 𝑅 =
51 mm, 𝑤0 = 240 mJ∕m2 , 𝐶 = (1∕0.0445)𝑛 [(mm∕s)−𝑛]; 𝑛 = 0.531. Black, red, blue, green
curves correspond to 𝑎𝑚 = 33, 500, 1000, 1500 μm while 𝑎𝐴 =1 mm in all cases. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

2.1. Exact solution for 𝛿

We find for a given cycle of contact area variation (hence for a
riplet 𝜔, 𝑎𝑚, 𝑎𝐴), from GS law above ((1), (2)), the instantaneous work
f adhesion, and hence from (4) we find the cycle of 𝛿 (𝑡) exactly in

the steady state. An example of this cycle is reported in Fig. 2 , for
various conditions, namely black, red, blue, green curves correspond
to 𝑎𝑚 = 33, 500, 1000, 1500 μm while 𝑎𝐴 = 1 mm in all cases. Hence,
black and red curves are extreme cases where we have a large interval
when the indentation is set to zero according to the contact Eq. (4),
while blue and green curves are cases where contact is never lost. All
system’s parameters are defined in Fig. 2 legend, and correspond to
xperimental parameters in our system, as we shall describe later.

We notice that maxima and minima of indentation oscillation occur
near 𝜋∕2 and 𝜋, respectively, in cases where contact is not lost and
mplitude of area oscillation is not large. This will be the basis of
n estimate which we describe in the next paragraph, which leads to
 JKR solution, which we then correct empirically to have a simple
pproximate solution to have a ready-to-use formula as an alternative
o the exact methodology we are describing.

After obtaining the exact cycle of 𝛿 (𝑡), we can average the result
and obtain the mean value 𝛿𝑚. We can use the second of the JKR
governing Eqs. (3), to get the force. Indeed, the average force for any
𝑎𝐴 results in cancellation of all the dynamics terms since there is no

ean velocity nor mean acceleration. For small 𝑎𝐴 < 𝑎𝑚, we could get
n approximation as

𝐹𝑚
(

𝜔, 𝑎𝑚, 𝑎𝐴
)

=
𝐾 𝑎𝑚
2

(

3𝛿𝑚
(

𝜔, 𝑎𝑚, 𝑎𝐴
)

−
𝑎2𝑚
𝑅

)

(10)

but we do not resort to this and compute numerically the mean force
s the corresponding 𝐹𝑚

(

𝜔, 𝑎𝑚, 𝑎𝐴
)

from the full (3) and for each fixed
𝜔, 𝑎𝐴 for example, we obtain the resulting curve for 𝐹𝑚

(

𝑎𝑚
)

from which
it is easy to find the minimum corresponding to pull-off. We record
also the area where pull-off is found as 𝑎𝑚,𝑝𝑜. Notice that when we
impose in the harmonic formula (9) with 𝑎𝐴 > 𝑎𝑚, we compute 𝑎𝑚 a
osteriori for the non harmonic imposed cycle with 𝑎 (𝑡) ≥ 0. Similarly,
uring instants in which 𝑎 (𝑡) = 0, we consider 𝛿 (𝑡) = 0 as this leads
o zero contact force during these instants, and hence the results are
onsistent to the averaging leading to the main result of Eq. (10). These
etails about possible loss of contact and impact however are not going
o be relevant for our simulations, since they occur outside the range
bserved.
3 
2.2. Estimate for 𝛿 and a JKR approximate result

We have seen that under the assumption 𝑎𝐴 ≪ 𝑎𝑚 the peak
indentation 𝛿 occurs when the contact area is largest and the minimum
indentation when the contact area is the mean value. We have obvi-
ously 𝑎𝜋∕2 = 𝑎𝑚 + 𝑎𝐴 and 𝑎𝜋 = 𝑎𝑚 and we write the instantaneous work
of adhesion in these time instants

𝑤𝜋∕2 = 𝑤0 (11)

𝑤𝜋 = 𝑤0
(

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛) (12)

Using one of the JKR equations (Johnson et al., 1971) for 𝛿 (𝑡),
namely (4)

𝛿 (𝑡) =
𝑎 (𝑡)2

𝑅
−
√

8𝜋
3𝐾

(

𝑎𝑚 + 𝑎𝐴 sin (𝜔𝑡)
)

𝑤 (𝑡) (13)

we get

𝛿𝜋∕2 =

(

𝑎𝑚 + 𝑎𝐴
)2

𝑅
−
√

8𝜋
3𝐾

𝑎𝑚𝑤0 (14)

𝛿𝜋 =
𝑎2𝑚
𝑅

−
√

8𝜋
3𝐾

𝑎𝑚𝑤0
(

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛) (15)

Hence, a (very crude) estimate of the mean indentation and of the
mplitude for 𝑎𝐴 < 𝑎𝑚

𝛿𝑚 =
𝛿𝜋∕2 + 𝛿𝜋

2
=

𝑎2𝑚
𝑅

− 1
2

(
√

8𝜋
3𝐾

𝑎𝑚𝑤0
(

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛) +

√

8𝜋
3𝐾

𝑎𝑚𝑤0

)

(16)

𝐴 =
𝛿𝜋∕2 − 𝛿𝜋

2
=

𝑎𝑚𝑎𝐴
𝑅

+ 1
2

(
√

8𝜋
3𝐾

𝑎𝑚𝑤0
(

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛) +

√

8𝜋
3𝐾

𝑎𝑚𝑤0

)

(17)

Now we can use the second of the JKR governing Eqs. (3), in the
veraged approximate from Eq. (10), to get the mean force using our

approximate result for 𝛿𝑚, (16), obtaining exactly a JKR solution for
the mean quantities

𝐹𝑚 = 𝐾 𝑎𝑚
(

𝑎2𝑚
𝑅

− 3
√

2𝜋
3𝐾

𝑤𝑒𝑓 𝑓 𝑎𝑚
)

(18)

where

𝑤𝑒𝑓 𝑓 =
𝑤0
4

(
√

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛 + 1

)2
(19)

The minimum of this follows the JKR pull-off contact radius

𝑎𝑚𝑝𝑜 =
(

3𝜋 𝑅2

2𝐾
𝑤𝑒𝑓 𝑓

)1∕3
(20)

and therefore results in a minimum at pull-off which is

𝐹𝑚,𝑝𝑜 = −3
2
𝜋 𝑅𝑤𝑒𝑓 𝑓 = −3

2
𝜋 𝑅𝑤0

4

(
√

1 + 𝐶
(

𝑎𝐴𝜔
)𝑛 + 1

)2
(21)

Notice that this solution leads to the classical JKR solution for no
amplitude i.e. no oscillation. We can also rewrite 𝛿𝑚, 𝛿𝐴 in terms of

𝑒𝑓 𝑓
𝛿𝑚 =

𝑎2𝑚
𝑅

−
√

8𝜋
3𝐾

𝑎𝑚𝑤𝑒𝑓 𝑓 (22)

𝛿𝐴 =
𝑎𝑚𝑎𝐴
𝑅

+
√

8𝜋
3𝐾

𝑎𝑚𝑤𝑒𝑓 𝑓 (23)

It turns out that this solution needs an empirical corrective factor
𝛽 in reducing the speed for the effective work of adhesion to be a
reasonable approximation, namely

𝑤𝑒𝑓 𝑓 ,𝑐 𝑜𝑟𝑟 =
𝑤0
4

⎛

⎜

⎜

√

1 + 𝐶
(

𝑎𝐴𝜔
𝛽

)𝑛
+ 1

⎞

⎟

⎟

2

(24)

⎝ ⎠
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where we found 𝛽 ≈ 2.5. Fig. 3(a) shows some results for the mean force
s mean indentation curves obtained exactly (solid black, blue, red

correspond to 𝑎𝐴 = 250, 500, 750 μm), for frequency 𝜔 = 2𝜋 × 400 r ad∕s
for system parameters as Fig. 2, and dashed line is our approximate
solution (18) with corrected effective work of adhesion (24) with 𝛽 =
2.5. As it is clear, for very large amplitudes of the area oscillation
(consider that the mean value is around 2 mm in most cases near pull-
off), there is significant deviation from our JKR approximate result,
but otherwise it is a reasonable and useful approximation. The optimal
corrective factor 𝛽 was found by minimizing the error of effective work
f adhesion (more precisely, the pull-off value obtained from the full
lgorithm we described vs the approximate result (24)) across a large
ange of possible 𝑛 parameters (𝑛 = 0.1 − 0.9) and ratio of velocities
max∕𝑣0 where 𝑣max is the peak velocity of contact area oscillation, and
0 the other GS constant. Indeed, Fig. 3(b) shows the ratio of the exact

vs approximate amplification of pull-off over a wide range of 𝑣max∕𝑣0
panning all decades from zero to 𝑣max∕𝑣0 = 100, and 𝑛 coefficients (𝑛 =
.1, 0.3, 0.5, 0.7, 0.9 for black, red, blue, black dashed and red dashed
urves, respectively). As it can be seen the error becomes significant
nly for very large velocities, where in general the physical problem
how saturation before the solution becomes inaccurate anyway.

The mean contact area radius at pull off 𝑎𝑚𝑝𝑜 as function of the
amplitude of oscillation of contact radius 𝑎𝐴 is plotted next in Fig. 4.
Here, solid black, blue, red correspond to the exact results for frequency
= 2𝜋× 200, 2𝜋× 300, 2𝜋× 400 r ad∕s for system parameters as Fig. 2, and

ashed line is our approximate solution (20) with corrected effective
work of adhesion (24) with 𝛽 = 2.5. As it can be seen, the approximation
for the highly non linear curve is effective, but in numerical results
here are some more complex trends, like the crossing between the
lack and the blue curve and the decaying trend results at very large
scillations. The discrete nature of the exact results stems from the
umerical discretization.

Next, we plot in Fig. 5 the mean contact indentation at pull-off,
as a function of amplitude of oscillation of contact radius 𝑎𝐴. Here,
solid black, blue, red correspond to the exact results for frequency
𝜔 = 2𝜋 × 200, 2𝜋 × 300, 2𝜋 × 400 r ad∕s for system parameters as Fig. 2,
and dashed line is our approximate solution obtained from the JKR
urve with corrected effective work of adhesion (24) with 𝛽 = 2.5 at
ean contact radius at pull-off as per (20). As it can be seen, the mean

ontact indentation is negative (meaning the contact operates pulling
he two surfaces apart) and the value remains relatively small. The
pproximation is reasonably good again, with deviations for the largest
mplitudes of 𝑎𝐴. The reason this deviation will not affect much results
s that in Eq. (10) the value of 𝛿𝑚 does not affect much results, which

are close to assuming 𝛿𝑚 = 0 anyway.
In the next figure, Fig. 6, we plot the amplitude of oscillating

ndentation at pull-off, obtained numerically by estimating the first
armonic amplitude, namely considering

𝛿𝑐 =
1
𝜋 ∫

2𝜋

0
𝛿 (𝜏) cos (𝜏) 𝑑 𝜏 (25)

𝛿𝑠 =
1
𝜋 ∫

2𝜋

0
𝛿 (𝜏) sin (𝜏) 𝑑 𝜏 (26)

𝐴 =
√

𝛿2𝑐 + 𝛿2𝑠 (27)

and dashed lines permit the comparison with our approximate solution
(23) with (20) with corrected effective work of adhesion (24) with

= 2.5. Once again, the comparison is satisfactory, considering it is
 simple estimate.

We finally move to the quantity of most direct interest, namely,
the amplification of pull-off, which we plot in Fig. 7 as a function of
he amplitude of oscillation of contact radius 𝑎𝐴. Solid black, blue, red

correspond to frequency 𝜔 = 2𝜋× 200, 2𝜋× 300, 2𝜋× 400 r ad∕s for system
parameters as Fig. 2, and dashed line is our approximate solution (21)

ith corrected effective work of adhesion (24) with 𝛽 = 2.5.
4 
Fig. 3. (a) The mean force mean indentation curve obtained exactly (solid black, blue,
red correspond to 𝑎𝐴 = 3∕10, 3∕5, 9∕10 mm), for frequency 𝜔 = 2𝜋× 400 r ad∕s for system
parameters as Fig. 2, and dashed line is our approximate solution (18) with corrected
effective work of adhesion (24) with 𝛽 = 2.5. (b) Exact over approximate amplification
f pull-off (ratio of pull-off value obtained from the full algorithm we described over
he approximate result obtained with (24)) over a wide range of 𝑣max∕𝑣0 spanning all

decades from zero to 𝑣max∕𝑣0 = 100, and 𝑛 coefficients (𝑛 = 0.1, 0.3, 0.5, 0.7, 0.9 for black,
ed, blue, black dashed and red dashed curves, respectively). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

Finally, we provide in Fig. 8 a comparison between amplitude and
mean oscillation of indentation at pull off for the usual 3 frequencies,
namely exact theory (discrete data points) and our approximate theory.

3. Experimental testing

PDMS samples were prepared using the commercial elastomer Dow
ylgard 184, with a base to curing agent volume ratio of 10:1. The
ibrations-regulated adhesion tests were carried out on the customized
est rig whose schematics was illustrated in Fig. 1. The PDMS sample
attached to a glass slide), was placed in the middle of a PMMA
ransparent beam with a rectangular cross section and a thickness of 1

cm. The setup is similar to that in Shui et al. (2020). Real-time images
of the contact area were recorded with a high-resolution camera placed
nder the beam, to extract results for the Gent-Schulz constants under
onotonic tests. The loading rate was set to 100 μm/s. At a certain

alue of preload, a dwell time of 60 s is allowed for stress relaxation.
ubsequently, the electrodynamics shakers were manually driven to
esired amplitude (by adjusting the amplifier’s gain), followed by an
dditional 60 s dwell time. The sample was then unloaded at 5 μm/s.

The quasi static adhesion tests were performed on the same test rig,
but with a rigid link between the load cell and the indenter. Loading
and unloading velocities were set to 0.1 μm/s, with 60 s dwell time in
between.
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Fig. 4. The mean contact area radius at pull off 𝑎𝑚𝑝𝑜 as function of the amplitude
of oscillation of contact radius 𝑎𝐴. Solid black, blue, red correspond to frequency

= 2𝜋 × 200, 2𝜋 × 300, 2𝜋 × 400 r ad∕s for system parameters as Fig. 2, and dashed
line is our approximate solution (20) with corrected effective work of adhesion (24)

ith 𝛽 = 2.5. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 5. The mean contact area radius at pull off 𝛿𝑚𝑝𝑜 as function of the amplitude
f oscillation of contact radius 𝑎𝐴. Solid black, blue, red correspond to frequency
= 2𝜋 × 200, 2𝜋 × 300, 2𝜋 × 400 r ad∕s for system parameters as Fig. 2, and dashed line

s our approximate solution (22) with (20) with corrected effective work of adhesion
24) with 𝛽 = 2.5. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Static (i.e. without vibration) tests were performed to characterize
the mechanical response of the PDMS samples (thickness 3 mm). The
crack velocity (𝑣 = −𝑑 𝑎∕𝑑 𝑡) in the proximity of pull-off was also
measured and correlated to the effective work of adhesion through an
empirical Gent-Schultz power law (Gent and Schultz, 1972) (Eq. (1))
where 𝑤0 = 236 mJ/m2 is the quasi-static work of adhesion (found
xperimentally), and the work of adhesion 𝑤 was calculated as follows
Ciavarella, 2021)

𝑤 =

(

𝐹𝐻 − 𝐹
)2

6𝜋 𝑅𝐹𝐻
(28)
5 
Fig. 6. The amplitude of oscillation of the contact indentation 𝛿𝐴𝑝𝑜 at pull-off as a
function of the amplitude of oscillation of contact radius 𝑎𝐴. Solid black, blue, red
correspond to frequency 𝜔 = 2𝜋 × 200, 2𝜋 × 300, 2𝜋 × 400 r ad∕s for system parameters
s Fig. 2, and dashed line is our approximate solution (23) with (20) with corrected

effective work of adhesion (24) with 𝛽 = 2.5. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The amplification of pull-off 𝐹𝑚𝑝𝑜∕𝐹 0 where 𝐹 0 = −3∕2𝜋 𝑅𝑤0 is pull-off in
quasi-static conditions, as a function of the amplitude of oscillation of contact radius
𝑎𝐴. Solid black, blue, red correspond to frequency 𝜔 = 2𝜋 × 200, 2𝜋 × 300, 2𝜋 × 400 r ad∕s
for system parameters as Fig. 2, and dashed line is our approximate solution (21)
with corrected effective work of adhesion (24) with 𝛽 = 2.5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

We found 𝑣0 = 0.0445 mm∕s and 𝑛 = 0.531, which gives the constants
sed in all the Figures of the present paper. More details about the
xperiments, and also many more comparison with an alternative full

numerical solution of the full dynamic problem are given in Tricarico
et al. (2024) where the reader is redirected for more information.

The comparison between experimental amplification and the theory
(Fig. 9) (exact and approximate) is relatively satisfactorily, since the
results don’t depend much on frequency, except at large oscillations.
The ‘‘exact’’ theory seems to predict a saturation and perhaps a decay
of pull-off but at much larger amplification (of about 𝐹𝑚𝑝𝑜∕𝐹 0 = 32,
not shown in the scale, for the smaller frequency), so that another
mechanism of saturation is needed to explain the experimental results
deviating from the present solution using the power law GS law. Unfor-
tunately the GS experiments were not possible at very large retraction
velocities, so that it is not possible to suggest if the saturation is due to
saturation in the GS law.
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Fig. 8. Amplitude vs mean oscillation of indentation at pull off for the usual 3
frequencies, namely exact theory (discrete data points) and our approximate theory.
Black, blue, red markers or lines correspond to frequency 𝜔 = 2𝜋 × 200, 2𝜋 × 300, 2𝜋 ×
400 r ad∕s for system parameters as Fig. 2. Corrected effective work of adhesion (24)

ith 𝛽 = 2.5. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 9. Experimental results of the dynamic adhesion tests amplification of pull-off load
𝐹𝑚𝑝𝑜∕𝐹 0, compared with the ‘‘exact’’ theory’’ with solid lines (with a dynamic modulus
stimated as 𝐾 = 9. 3 MPa, slightly higher than the relaxed one of 4 MPa): black, blue,
ed correspond to frequency 𝜔 = 2𝜋× 200, 2𝜋× 300, 2𝜋× 400 r ad∕s for system parameters

as all figures in this paper. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

According to our estimate (24), an amplification of pull-off of the
rder of experiments corresponds to

𝑣 = 𝑎𝐴𝜔 = 2.5
(
(

480.5 − 1)2 − 1
1∕0.04450.531

)1∕0.531

= 86 mm∕s (29)

which is just way outside our measured range.

4. Discussion: dynamic effects

The results of the experimental tests we described in the previous
aragraph do not depend much on the resonances of the system, since
hey are relative to 200,300,400 Hz, which are much higher than
he resonances in our experimental system. In these conditions, the
ontact indentation oscillation corresponds to the base oscillation. To
6 
understand this, we write the full equations for the system in Fig. 1, to
include also the effect of the holding spring. The dynamic equilibrium
equation at time 𝑡 of the spherical indenter reads

𝑚
⋅⋅
𝑥𝑠 + 𝑐

⋅
𝑥𝑠 + 𝑘(𝑥𝑠 − 𝑥𝑘) = −𝐹 + 𝑚𝑔 (30)

where a dot superposed means differentiation with respect to time,
.e.

⋅
𝑥 = 𝑑 𝑥∕𝑑 𝑡, 𝑐 is a small damping coefficient, 𝐹 is the force that

he substrate applies to the indenter that is considered positive when
ompressive and 𝑔 = 9.807 m∕s2 is the gravitational acceleration.

The excitation is physically applied through an imposed harmonic
ibration of the substrate base which we can assume without loss of

generality to be sinusoidal

𝑥𝑏 = 𝑋𝑏𝑠 sin (𝜔𝑡) (31)

We assume here that this vibration, applied to the substrate bottom
(see Fig. 1), leads to an harmonic indentation

𝛿 = 𝑥 + 𝑥𝑏 = 𝑥 +𝑋𝑏𝑠 sin (𝜔𝑡) (32)

In turn, we have already obtained that the contact force resulting
rom the indentation 𝛿 is also harmonic and can be written for 𝑎𝐴 ≪ 𝑎𝑚
looking at Eq. (3)) as (we write 𝐹𝑠 for 𝐹𝐴𝑠 and 𝛿𝑠 for 𝛿𝐴𝑠 to simplify
otation)

𝐹 = 𝐹𝑚 + 𝐹𝑠 sin (𝜔𝑡) + 𝐹𝑐 cos (𝜔𝑡)

= 𝐹𝑚 + 3
2
𝐾 𝑎𝑚

(

𝛿𝑠 sin (𝜔𝑡) − 𝛿𝑐 cos (𝜔𝑡)
)

(33)

Therefore, the equation of motion for the sphere in terms of contact
indentation is
𝑚
⋅⋅
𝛿 + 𝑐

⋅
𝛿 + 𝑘𝛿 = −𝑚𝜔2𝑋𝑏𝑠 sin (𝜔𝑡) + 𝑐 𝜔 (

𝑋𝑏𝑠 cos (𝜔𝑡)
)

+ 𝑘𝑋𝑏𝑠 sin (𝜔𝑡) −
3
2
𝐾 𝑎𝑚

(

𝛿𝑠 sin (𝜔𝑡) + 𝛿𝑐 cos (𝜔𝑡)
)

(34)

Further

𝛿 = 𝛿𝑠 sin (𝜔𝑡) + 𝛿𝑐 cos (𝜔𝑡) (35)

so equaling the cosine terms in (34)

𝛿𝑐 = − 𝑋𝑏𝑠𝑐 𝜔 + 𝑐 𝜔𝛿𝑠
𝑘 + 3

2𝐾 𝑎𝑚 − 𝑚𝜔2
(36)

and from equaling the sin terms in (34)

𝛿𝑠
𝑋𝑏𝑠

=

(

𝑘 − 𝑚𝜔2)
(

𝑘 + 3
2𝐾 𝑎𝑚 − 𝑚𝜔2

)

− (𝜔𝑐)2
(

𝑘 + 3
2𝐾 𝑎𝑚 − 𝑚𝜔2

) (
𝑘 + 3

2𝐾 𝑎𝑚 − 𝑚𝜔2
)

+ (𝜔𝑐)2
(37)

so that

−
𝛿𝑐
𝑋𝑏𝑠

= 𝑐 𝜔
𝑘 + 3

2𝐾 𝑎𝑚 − 𝑚𝜔2

⎛

⎜

⎜

⎜

⎝

2𝑘 + 3
2𝐾 𝑎𝑚 − 2𝑚𝜔2

𝑘 + 3
2𝐾 𝑎𝑚 − 𝑚𝜔2 + (𝜔𝑐)2

𝑘+ 3
2𝐾 𝑎𝑚−𝑚𝜔2

⎞

⎟

⎟

⎟

⎠

(38)

Far from resonance there is small effect of damping, and we obtain the
implified result
𝛿𝑠
𝑋𝑏𝑠

= 𝑘 − 𝑚𝜔2

𝑘 + 3
2𝐾 𝑎𝑚 − 𝑚𝜔2

(39)

which shows the amplitude of contact oscillation differs from the
oscillation imposed to the base because of the effect of contact stiffness.

Hence, collecting results from the contact mechanics study (23), we
have that near the resonance (which corresponds to the stiffness of the
arallel between the contact stiffness and the spring stiffness), for a

given applied oscillation 𝑋𝑏, there will be a large contact indentation
scillation 𝛿𝐴, and this will give large amplification, unless the oscilla-
ion becomes so large as to reduce adhesion again. This is the case for
he experiments in Shui et al. (2020). In our experiments we reported

in the previous paragraph at 200, 300, 400 Hz, 𝑋𝑏 is no different from
𝛿 (only few % difference).
𝐴
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Conclusions

We have provided a simple numerical method to solve the dynamic
ontact JKR adhesive problem under oscillating conditions, stemming
rom an harmonic oscillation of the contact radius, which requires no
olution of non linear equations or differential non linear equations.
iven an assumption of small oscillations and a simplified estimate
f the mean and amplitude of contact indentation, we have found an
mplified JKR equation: this requires a corrective factor to produce rea-
onably accurate results with respect to the ‘‘exact’’ theory, which we

have tested extensively to be about 𝛽 = 2.5. The value of the analytical
approximate result is however obvious as it permits identification of the
main parameters ruling the problem at small oscillations of indentation.
We find in experiments that there is a saturation mechanism for the
amplification at large oscillations which is not captured by the simple
model with the simple Gent-Schulz power law for work of adhesion:
perhaps there needs to be a decay after a maximum. The exact and
approximate theories have been compared with experiments recently
conducted on the system in our lab, in the limit of large frequencies far
from the system resonance, finding satisfactory agreement. We have
pointed out limitations in the previous models of the problem in the
literature.
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