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EXTENDED ABSTRACT (eng) 

This research investigates a set of data-driven methods for characterising coastal aq-

uifers under data scarcity using available short hydrogeological time series and chem-

ical surveys. Correlation between groundwater levels and climate indexes and time se-

ries analyses, with particular attention to the autocorrelation and cross-correlation func-

tions, wavelet analyses and seasonal and trend decomposition, are extensively ana-

lysed using precipitation and groundwater level recordings to define the hydrodynamic 

mechanism of an aquifer system in response to climate factors. These methods rely 

on the hypothesis that the aquifer system is considered as a filter that modifies, retains, 

or attenuates the input signal, i.e., precipitation, into an output signal, such as spring 

discharge, groundwater level, river flow rate or other physical or chemical parameters. 

They can provide valuable insights into various aspects, encompassing the nature of 

the aquifer, the influence of climatic conditions, and significant abstractions. 

Multivariate statistical analysis is instead a valuable approach handling multiple geo-

chemical and physical parameters to reveal spatial and temporal variations in ground-

water quality, identify key hydrochemical processes, and assess how they change over 

time. Together with the Hydrogeochemical Facies Evolution-Diagram, these techniques 

allow to explore the salinisation process at the case study. Through Geostatistic, in-

stead, the salinisation process and nitrate pollution are investigated in space and com-

pared in time, allowing the identification of the areas more vulnerable.  

A part of the Thesis is dedicated to a comprehensive assessment of climate change 

projections and bias-correction techniques, employing historical and regional climate 

data, to discuss the potential impacts of weather projections on a coastal aquifer.  



The Thesis focuses on the complex coastal karst aquifer of Salento in Southern Italy, 

which presents numerous challenges, including geomorphological complexity, regional 

size, limited surface water resources, and significant water withdrawals for various hu-

man activities. The primary objective of this research is to investigate the hydrodynamic 

mechanism of such aquifer and discuss the potential problematics to which ground-

water resources are exposed due to climate change and human pressure. The scope 

is to raise awareness among water utilities and political stakeholders in actuating miti-

gative actions and restrictions on the use of groundwater and exploring alternative 

measures to supply water demand. The study encourages for the establishment and 

consistent implementation of a comprehensive and strategic monitoring plan encom-

passing groundwater levels, water quality parameters, and other relevant variables 

aimed at ensuring the long-term sustainability and availability of groundwater resources 

for current and future generations. 

keywords 

Groundwater, Coastal aquifer, Data-scarcity, Time series analyses, Salinisation, Nitrate 

pollution, Climate change 



EXTENDED ABSTRACT (ita) 

Nella presente tesi è stata analizzata una serie di metodologie per caratterizzare gli ac-

quiferi costieri in condizioni di scarsità di dati utilizzando brevi serie temporali idrogeo-

logiche disponibili e rilevamenti chimici. Al fine di esaminare la dinamica delle acque 

sotterranee e la loro risposta alle precipitazioni, vengono ampiamente analizzate le cor-

relazioni tra i livelli delle acque sotterranee e gli indici climatici, nonché le analisi delle 

serie temporali, con particolare attenzione alle funzioni di autocorrelazione e cross-cor-

relazione, alle analisi wavelet e alla decomposizione stagionale e di tendenza, utiliz-

zando registrazioni di precipitazioni e livelli. Questi metodi si basano sull’ipotesi che il 

sistema acquifero venga considerato come un filtro che modifica, trattiene o attenua il 

segnale in ingresso, cioè le precipitazioni, in un segnale in uscita, come la portata sor-

gentizia, il livello delle acque sotterranee, la portata dei fiumi o altri parametri fisici o 

chimici. Essi possono fornire preziose intuizioni su vari aspetti, compresi la natura 

dell’acquifero, l’influenza delle condizioni climatiche e i significativi prelievi.  

L’analisi statistica multivariata rappresenta invece un approccio prezioso per gestire 

molteplici parametri geochimici e fisici al fine di rivelare variazioni spaziali e temporali 

nella qualità delle acque sotterranee, identificare processi idrochimici chiave e valutare 

come essi cambiano nel tempo. Insieme al Diagramma di Evoluzione delle Facies Idro-

geochimiche, queste tecniche consentono di esplorare il processo di salinizzazione ne-

gli acquiferi costieri. Tramite l’impiego di tecniche geostatistiche, il processo di saliniz-

zazione o di inquinamento (da nitrati per esempio) può essere analizzato spazialmente 

e comparato temporalmente con l’obiettivo di identificare le aree maggiormente vulne-

rabili. 



Una parte significativa della tesi è dedicata all’esame delle proiezioni riguardanti i cam-

biamenti climatici e alle strategie di correzione dei potenziali bias nei modelli climatici, 

facendo ricorso alle serie storiche dei dati climatici e ai modelli climatici regionali al fine 

di discutere in che misura le previsioni meteorologiche potrebbero influenzare un ac-

quifero costiero. 

L’acquifero carsico costiero del Salento, ubicato nel Sud Italia, rappresenta il caso stu-

dio di tale ricerca in quanto presenta molteplici sfide, tra cui la complessità geomorfo-

logica, le considerevoli dimensioni regionali, la limitata disponibilità di risorse idriche 

superficiali e il notevole utilizzo delle risorse idriche per svariate attività umane. Il prin-

cipale obiettivo della presente ricerca è di comprendere il meccanismo idrodinamico di 

tale acquifero e di discutere le possibili problematiche a cui le risorse idriche sotterranee 

potrebbero essere esposte a causa dei cambiamenti climatici e delle attività antropiche. 

Si pone inoltre l’obiettivo di sensibilizzare le entità gestionali delle risorse idriche e gli 

attori politici a intraprendere azioni mitigative e restrizioni sull’uso delle acque sotterra-

nee, esplorando altresì misure alternative per soddisfare la domanda idrica. Lo studio 

promuove l’istituzione e l’attuazione coerente di un piano di monitoraggio completo e 

strategico che includa la misura in continuo dei livelli dell’acqua sotterranea, dei para-

metri relativi alla qualità e di altre variabili rilevanti, al fine di garantire la sostenibilità e 

la disponibilità a lungo termine delle risorse idriche per le generazioni attuali e future. 

keywords 

Acque sotterranee, Acquiferi costieri, Data-scarcity, Analisi delle serie temporali, Sali-

nizzazione, Inquinamento da nitrati, Cambiamenti climatici 
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INTRODUCTION 

Freshwater is a vital resource for sustaining life and economic development. 

However, it is scarce on Earth, being less than three per cent, while the remaining 97 

per cent is saline (National Geographic, 2023). Furthermore, only a limited portion of 

this freshwater is easily accessible, as a significant part is either trapped in glaciers or 

located beneath the Earth’s surface as groundwater. In this context, groundwater is of 

utmost importance for human welfare and development, constituting approximately 97 

per cent of the world’s freshwater resources and serving as the primary source of water 

for drinking, irrigation, and industrial purposes (Ravenscroft & Lytton, 2022), especially 

in arid and semi-arid regions. It also plays an essential role in the hydrological cycle 

and is indispensable for the sustainability of various dependent aquatic and terrestrial 

ecosystems.  

In many parts of the world, where the combination of geology, topography, and climate 

creates conditions that render the use of surface water resources unfeasible (techni-

cally and/or financially), groundwater is often the only option to cover the water de-

mand. However, groundwater extraction may create numerous adverse effects, such 

as water table decline, land subsidence following the dewatering of phreatic aquifer, 

and water pollution. Climate change and the growing global population contribute to 

groundwater quality and quantity degradation, leading to potentially irreversible impacts 

(UNESCO, 2022). Groundwater overexploitation has become more severe in many ar-

eas since the beginning of the 21st century, resulting in a substantial reduction of 

groundwater reserves (Caretta et al., 2022). Extensive research conducted by Bagheri-

Gavkosh et al. (2021) involving 290 case studies across 41 countries demonstrated 

that groundwater extraction contributes to land subsidence by approximately 59.75%. 

Furthermore, groundwater worldwide contains chemical species exceeding the World 

Health Organization (2012) quality standards for drinking and irrigation water limits (Al-

gieri et al., 2022), with nitrate pollution being the most prevalent form of groundwater 

contamination globally (Arumi et al., 2009). 
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Hence, globally, groundwater resources present significant issues regarding their qual-

ity and quantity status that may result from geogenic factors, but most of the time are 

the impacts of anthropogenic activities often exacerbated by climate change effects. 

These impacts are even more severe and challenging in coastal aquifers where fresh-

water floats on saltwater due to their different fluid density. Under a decrease in water 

levels, the transition zone between fresh and saltwater expands, thus reducing the thick-

ness of freshwater with a concurrent increase in salt content. Depending on the aquifer 

scale, groundwater recovery can take a very long time, and its quality may remain 

compromised considering the permanence of human pressures (Alfio et al., 2020). A 

slight amount of saltwater is sufficient to contaminate a fresh groundwater supply. Only 

a 3%–4% addition of salinity can make a freshwater supply unsuitable for drinking water 

and even irrigation (Morris et al. 2003). Besides seawater intrusion, groundwater sali-

nisation may also locally or regionally occur because of geogenic sources or anthro-

pogenic factors.  

The delicate balance and susceptibility to human activities and environmental changes 

in coastal aquifers are crucial to control and mitigate the risk of saltwater contamination 

of water resources (Baena-Ruiz et al., 2020). The combination of global warming and 

the population increase will exacerbate groundwater issues in many regions across the 

Mediterranean. These areas are expected to experience higher temperatures and re-

duced precipitation patterns, leading to increased evapotranspiration rates, more fre-

quent and severe droughts, and increased risk of flooding events (IPCC, 2014; Giorgi 

& Lionello, 2008). Sordo-Ward et al. (2019) have indicated that water scarcity issues 

are poised to intensify in several southern European basins, including countries such 

as Portugal, Spain, France, Switzerland, Italy, Greece, Northern Macedonia, Bulgaria, 

and Turkey. Pardo-Iguzquiza et al. (2019) have investigated the influence of climate 

change on the recharge of a karst aquifer in the Sierra de las Nieves (southern Spain), 

estimating a potential reduction on average recharge by approximately 53% under the 

extreme RCP8.5 scenario in 2071-2100. Mediterranean climatic conditions and land-

scape create favourable agricultural production and tourism conditions, which thrive. 

However, the region also faces numerous environmental and socio-economic 
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challenges relating to surface water scarcity, groundwater pollution due to human ac-

tivities, including salinisation, whose effects on groundwater status should worsen un-

der climate change (Aureli et al., 2008; Nikolaidis et al., 2014).  

The enormous societal and ecological importance of coastal aquifers, along with the 

impactful effects of climate change, should direct political efforts towards taking seri-

ous measures for monitoring and managing groundwater resources. Their associated 

risk is high, as the three factors generally considered for risk assessment are simulta-

neously significant: (i) Hazard is high because it refers to human pressures and climate 

change, which are both continuously increasing; (ii) Vulnerability is also severe, con-

sidering that the quantitative and qualitative depletion of groundwater is by now in con-

stant progress in various regions worldwide; (iii) Exposed Value, associated with the 

economic, social, and environmental damage, is also significant in the highly urbanised 

coastal regions. 

Identifying the effective groundwater monitoring and management strategy requires a 

deep understanding of the system and its cause-effect relationships with environmental 

and human pressures (Jiao & Post, 2019). Management practices in coastal aquifers 

strive to reduce the overexploitation of freshwater to prevent seawater intrusion and 

mitigate the impacts on groundwater-dependent ecosystems (Werner et al., 2011). 

Knowledge that leads to setting up appropriate management practices, requires sys-

tematic measurements of parameters related to the relevant hydrological processes, 

which often lack or are spatially (and temporally) inadequate. The Fifth Assessment 

Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) argued that the 

lack of long observational time series prevents evaluating climate change impacts on 

groundwater quantity and quality (Jiménez Cisneros et al., 2014). Despite the signifi-

cant advancement since AR5, nowadays, AR6 still claims that the spatial and temporal 

coverage of groundwater monitoring networks, pumping rates, and recharge data con-

strain a practical impact assessment on groundwater (Douville et al., 2021). While hy-

drological time series (i.e., precipitation and temperature data) are available for ex-

tended periods, hydrogeological datasets like groundwater levels (GWLs) or chemical 

analyses often lack or present fragmented recordings. Under data scarcity, setting up 



Maria Rosaria Alfio | XXXVI cycle 

4 

a comprehensive numerical model of a groundwater system (i.e., groundwater flow, 

pollution transport, salinisation transition zone propagation) can be challenging, espe-

cially if the system dynamic is poorly known. Nonetheless, data scarcity often affects 

regions where groundwater is crucial in sustaining ecosystems and human activities 

and is particularly susceptible to hydro-climatic hazards and human-induced pres-

sures. Consequently, exploring alternative approaches based on available information 

becomes imperative and vital. 

To ensure sustainable groundwater resources management and develop appropriate 

adaptation and mitigation strategies, it is firstly essential to properly understand the 

response of groundwater flow systems to meteorological and anthropogenic pressures. 

This Thesis explores a series of methodologies for the quantitative and qualitative char-

acterisation of coastal aquifers, aiming at providing a suitable toolbox for assisting pol-

icymakers and water utilities in efficiently monitoring and managing groundwater re-

sources under data scarcity. This integrated approach has been developed and tested 

on the coastal karst aquifer of Salento (Apulia, Southern Italy), which can be considered 

a benchmark for all discussed topics related to coastal aquifers, human pressures, and 

climate change impacts. Salento currently relies on groundwater for drinking and irri-

gation purposes due to a karst geological structure that prevents the existence of sur-

face water bodies. Its complex geological and hydrogeological characteristics and the 

limited availability of hydrogeological data hinder a deep understanding of the recharge 

process, more so the development of a comprehensive numerical model. Moreover, its 

geographic location and geomorphological features make it sensitive to climatic haz-

ards exacerbated by increasingly intense and frequent drought events and rising tem-

peratures. 

The Thesis is organised as in the following: 

1. Hydrogeological characterisation

Firstly, with reference to the Salento study area, the direct correlations between mete-

orological indices based on precipitation and temperature time series and available 

GWL recordings were established to investigate the aquifer response (Balacco et al., 

2022a). To account for the propagation time from climate stimuli to the response of the 
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aquifer system, D’Oria et al. (2023) considered different cumulated periods to calculate 

meteorological indices and temporal shifts (lags) between time series. Despite the 

complexity of the study area, a potential linear relationship and locally variable lags 

between climate indices and GWLs were found for the Salento aquifer, as also demon-

strated worldwide by several studies (Bloomfield & Marchant, 2013; Secci et al., 2021; 

Babre et al., 2022; Ndehedehe et al., 2023; Aydin-Kandemir & Erlat, 2023).  

Considering these findings, Time Series (Balacco et al., 2022b) and Wavelet Analyses 

confirmed these preliminary results. These methods rely on the principle of represent-

ing an aquifer system as a filter where precipitation (input signal) infiltrates through the 

soil and percolates to the saturated zone of the aquifer, generating a change in the 

groundwater level (output signal) with a site-specific lag that can be interpreted as a 

transfer function (Delbart et al., 2014). However, groundwater fluctuations depend on 

multiple drivers (Shapoori et al., 2015). Time series and wavelet analysis can lead to 

inaccurate interpretations because additional seasonal or inter-annual, long, and ran-

dom components influence the same fluctuations. Lafare et al. (2016) suggested com-

bining time series decomposition techniques to avoid erroneous assessments of the 

behaviour of the aquifer and its characteristics. In the scientific literature, Seasonal and 

Trend decomposition using Loess (STL) technique was widely applied for different 

goals, including to account for the meteorological and geological heterogeneity impacts 

(Colyer et al., 2022), to detect GWL and salinity spatio-temporal dynamic patterns (Fan 

et al., 2023), to correlate GWL with rainfall and abstractions (Niranjannaik et al., 2022), 

and to investigate memory effect and response times between superficial and deep 

aquifers (Duy et al., 2021). Results of these alternative approaches suggest their effec-

tiveness and general applicability to other regions where at least groundwater level, 

precipitation, and temperature time series are available. They are effective tools for hy-

drogeological characterisation and references for groundwater management. 

2. Qualitative assessment 

Regarding the qualitative characterisation of the study area, Parisi et al. (2023) selected 

a few statistical and hydrogeochemical methodologies like Multivariate Statistical Anal-

yses (i.e., Hierarchical Cluster Analysis and Factor Analysis) and Hydrochemical Facies 
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Evolution-Diagram (HFE-D) requiring only discrete measurements in time and space. 

Referring to the study area, MVSA and HFE-D led to outline the study of the spatio-

temporal evolution of the salinisation process through chemical analyses belonging to 

two Regional Monitoring Projects, Tiziano (2007-2011) and Maggiore (2015-2018). 

While HFE exclusively focuses on groundwater salinisation processes, MVSA can gen-

erally outline the significant processes occurring in an aquifer and identify the most 

affected areas. Balacco et al. (2023) implemented the Indicator Kriging (IK) method to 

evaluate the spatio-temporal evolution of nitrate pollution and detect the more vulnera-

ble areas. 

3. Future climatic projections 

After completing the quantitative and qualitative characterisation of the study area, pro-

jected precipitation and temperature have been used to assess the potential climate 

change for the near to medium-term (2031-2060) and distant (2071-2100) future (Alfio 

et al., 2023). To this aim, an ensemble of twelve Regional Climate Models (RCMs) 

driven by several General Circulation Models (GCMs) was initially adapted to the local 

climatic variability using eight bias-correction (BC) methods at daily time steps. A per-

formance analysis was then carried out, comparing the bias-corrected simulated data 

with observations during the reference period (1971-2005) for each BC method. Sub-

sequently, future patterns were estimated based on the most effective BC precipitation 

and temperature data methods. Results showed a general decrease in rainfall of about 

6% and an increase in temperature of 2°C at the end of this century, compared to the 

historical period (1971-2005). 

This research aims to develop an understanding of the evolution of the coastal aquifer 

to increase institutional and societal awareness of the risk to which water resources 

are being exposed, and design a feasible groundwater management tool of general in-

terest. It is worth noting that the implemented approaches are of wide-ranging applica-

bility and suitable under data scarcity as they successfully worked in a high geomor-

phological and structural complexity, regional size, surface water scarcity, and signifi-

cant but unknown water withdrawals for human activities. 
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1. THE SALENTO AQUIFER 

 

1.1 General characteristics of the study area 

 Salento aquifer locates in the homonymous Peninsula covering the southern 

part of the Apulia Region in Southern Italy. The Adriatic Sea limits the peninsula to the 

northeast, the Ionian Sea to the southwest, and the Murgia territory to the northwest. 

Its hydrogeological limits roughly coincide with the administrative borders of Lecce 

province, covering 2,799 km
2

 with a coastline of 281 km (Fig. 1). This territory is mainly 

flat, with the highest altitude of around 200 meters AMSL. The climate is Mediterranean, 

characterised by mild and moderately rainy winters and hot and dry summers. Due to 

its flat geography and proximity to the sea, it is often quite windy. Temperatures in 

Salento are significantly influenced by the mitigating presence of the Ionian and Adriatic 

Seas, whose winds blowing on both sides establish distinct weather conditions. As 

already mentioned, winters are generally mild, although occasional cold periods can 

occur when winds blow in from the nearby Balkan Peninsula. Conversely, summers are 

typically pleasant because of a refreshing breeze from the north. However, there are 

times when the Sirocco wind blows in from Africa, resulting in scorching days with 

temperatures surpassing 40 °C. 

Starting from the 1960s, the population began growing with a concurrent economic 

development mainly based on tourism, agriculture, and small family‐size manufacturing 

activities. Data from Corine Land Cover 2018 (https://land.copernicus.eu/pan-euro-

pean/corine-land-cover/clc2018?tab=download) show that agricultural activities oc-

cupy 82.81% of the total area of the province. However, in recent years, the area dedi-

cated to agriculture, as well as that occupied by permanent meadows, pastures, and 

woods, has experienced a gradual decrease due to the economic transformation and 

urban development of the entire province.  

Significant and enduring characteristics of Salento territory are the scarcity of surface 

water and hydraulic disorders, and persistent drought periods, which have occurred 

over time due to human practices and implemented policies. These environmental 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
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challenges have influenced the type of settlement, agricultural practices, the overall 

landscape, urban development, and the living conditions of the local population for cen-

turies. 

 

Fig. 1 - Location of the Salento Peninsula and delimitation of the study area. 

1.1.1 Geological setting of the study area 

The Salento peninsula is part of the Apulian carbonate platform, consisting of 

several litho-stratigraphic units of carbonate rocks from the Jurassic and Cretaceous 

periods, spatially distributed in variable order and thickness, ranging from approxi-

mately 3 to 5 kilometres (De Filippis et al., 2019). The geological basement comprises 

Cretaceous limestone and dolomitic limestone, which prominently outcrop in extensive 

areas. The covers include Miocene to Pleistocene silty or sandy clay, sand, and calcar-

enite (Ciaranfi et al., 1988). Fig. 2 shows the Reference Geological Map (RCM) for the 

Salento area provided by recent studies conducted during the MEDSAL project 
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(www.medsal.net). Table 1 synthesizes the features of the Local Geological Formations 

(LGF), which description is detailed as follows:  

• SAL_GF1: a well-stratified succession of irregular and discontinuous alternation of 

greyish-white limestones, dolomite limestones, and grey-black dolomites, with 

subordinate intercalations of large layers full of Rudist fossils constitutes the unit. 

The upper part consists of layers and banks of fine-grained limestone (pack-

stone/grainstone) white or light havana coloured, usually characterised by the con-

stant presence of numerous colonial types coral clusters. Usually, this layer has a 

cavernous appearance, with cavities filled with lithified glauconitic mud with a lam-

inar structure. 

• SAL_GF2: this unit is constituted by a well-stratified succession of micritic lime-

stones and calcirudite stones, and locally by macrofossiliferous oolitic biosparites 

with variable diagenesis, white or light grey, subordinately havana or purple. The 

macrofossiliferous content consists of marine shellfish of medium and small size 

belonging mainly to lamellibranchs (Cardium, Tapes) and gastropods (Cerithium), 

with shells of brachiopods, echinoid skeletons, bryozoans, and annelids of internal 

and shallow neritic environment.  

• SAL_GF3: this unit is composed by yellow limestones, sometimes greenish due to 

the presence of Glauconite, which is either massive or with signs of bank stratifi-

cation, rich in pelagic foraminifera (Globigerina and Orbulina). Biomicrites with me-

dium and fine grain, semi-diagenized or incoherent, with thin, irregular, and discon-

tinuous stratiform calcarenite intercalations represent the dominant lithofacies.  

• SAL_GF4: massive compact grey-blue marly-silty clay, somewhere rich in macro- 

and microfossils constitute this unit. The sedimentation environment corresponds 

to a deep neritic seabed. 

• SAL_GF5: this unit is composed of a set of clastic covers, referring to different and 

short sedimentary phases consequent to the repeated variations in sea level since 

the middle Pleistocene, owing to discontinuous and differentiated regional uplift as-

sociated with the contemporary glacial eustasy. The lithofacies (mainly calcare-

nitic) are constituted by terrigenous components of the coastal environment (from 

https://politecnicobari-my.sharepoint.com/personal/mariarosaria_alfio_poliba_it/Documents/Maria%20Rosaria/DOTTORATO/DOTTORATO/TESI/FORMAT/CAPITOLI/Unione/REVISIONI/FINALE_REVISORI%20ESTERNI/www.medsal.net
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subtidal-intertidal to emerged beach) of a limited thickness (max 30 meters) with 

sub-horizontal orientation. They lay on abrasion platforms dislocated towards the 

coast at progressively decreasing elevations between 100 m and 1 m AMSL, often 

with the interposition of continental deposits. 

• SAL_GF6: the dominant lithotype of the unit is composed of yellowish-grey calcar-

enites with coarse to fine grain size, scarcely macrofossiliferous, arranged in dis-

continuous layers with a centimetric and planar laminar structure, generally parallel 

to the stratification. On the top part, there are dune deposits constituted by inco-

herent yellowish-grey sands. This unit includes terrigenous deposits resulting from 

both chemical (karstic processes) and physical (erosive processes due to water 

flow processes) meteoric degradation, progressively accumulated in endoreic and 

exoreic depressions of various amplitude and shape. Deposits of a more detrital 

composition from medium to coarse grain size cover the bottom of episodically 

active endorheic basins and temporary water stream valleys engraved on the planes 

constituted by Plio-Pleistocene deposits. 

Table 1 - Geology of the Salento aquifer (source: MEDSAL Project, report D.2.3) 

MEDSAL 

Code 

LGF Age Description 

SAL_GF1 Limestone Upper Cretaceous - Palaeocene 

Layers and banks of variously frac-

tured and karstified limestones 

SAL_GF2 Calcarenites Miocene - Lower Pliocene 

Greyish yellow and organogeneous 

marly calcarenites 

SAL_GF3 Calcarenites 

Upper Pliocene - Lower Pleisto-

cene 

Calcareous sands from weakly to 

tightly cemented 

SAL_GF4 Clays 

Upper Pliocene - Lower Pleisto-

cene 

Silty or sandy clays 

SAL_GF5 Calcarenites Upper Pleistocene - Holocene 

Soft and weakly cemented calcare-

nites 

SAL_GF6 Sands and Clays Holocene Sands, sandy clays and red silts 
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Fig. 2 - Reference Geological Map of Salento aquifer with traces of geological sections. The legend details 

are in Table 1. 

The individual geological formations found in the stratigraphic columns of a few wells 

located in the Salento area were grouped into the following formational units consider-

ing the paleogeographical-geodynamic aspects (Fig. 3): 

• Apulian Platform and Units of the Apulia Foreland (SAL_GF1 and SAL_GF2); 

• Apennine-Dinaric Foredeep (SAL_GF3 and SAL_GF4); 

• Marine Terrace Deposits (SAL_GF5 and SAL_GF6). 

The first group is constituted by the sedimentary units that document the evolution of 

the Apulian Platform and the formations connected to the main phases of the Apennine-

Dinaric tectogenesis. The second group includes the terrigenous units referable to the 

late tectonic phases of Upper Pliocene and Lower Pleistocene, responsible for the fore-

deep evolution and filling. The last groups refer to the sedimentary units generated by 

the repeated changes in sea level, which were caused by the polyphasic uplift of the 

entire system constituted by the Apennine belt, the Foredeep, and the Foreland, as well 
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as by the concomitant glacial eustasy, started in the middle Pleistocene and still in 

progress.  

Two geological-cross sections were considered. The geological-cross section no. 1 

shows to the West the most recent lithotype units (SAL_GF5 and SAL_GF6), which are 

directly in transgression on the cretaceous carbonate basement (SAL_GF1). In the cen-

tral part, Pleistocene clays of high thickness fill a tectonic depression overlaying the 

Pliocene facies (SAL_GF3). A horst and graben structure lowers the carbonate base-

ment top towards the Adriatic Sea eastwards. All terms of the Salento stratigraphy ap-

pear in this part of the geological-cross section. The geological-cross section no. 2, 

located further south of cross section no. 1, shows in the central part a vast tectonic 

depression. Within this tectonic depression, the geological layers that constitute the 

complete Salento stratigraphy exhibit their maximum thicknesses. 

The basement exhibits structural variations, with Horst and Graben separated by EW 

dextral and sinistral strike-slip faults and NW-SE sub-vertical normal faults (Gambini & 

Tozzi, 1996). The fault system, represented in Fig. 2, causes compartmentalisation of 

the aquifer at the regional scale, leading groundwater to flow by exhibiting conduit, 

conduit-barrier, or barrier behaviour from place to place (Fidelibus & Pulido-Bosch, 

2019).  
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Fig. 3 - Schematic stratigraphic column and representative geological cross-sections (traces in Fig. 2). 

1.1.2 Geomorphology and surface hydrogeology of the study area 

The geomorphology of the Salento area is characterised by several features that 

reflect, in the landscape forms, the lithological matrix of the system and its tectonic-

structural structure, as well as the cyclicity and spatial overlapping of the action of 

morphodynamic agents (Fig. 4). Even though the climatic conditions of the area have 

allowed the modelling action of both physical and chemical agents, the areal distribution 
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and number of the morphotypes currently recognisable in the territory suggest the prev-

alence and/or concomitance on certain areas and in particular geological periods of 

one or the other agent. The scarce relief energy characterising nearly the entire study 

area (except its south-west portion where the tectonic reliefs (Horst) reach maximum 

altitudes around 200 m AMSL) and the absence of extensive hydrographic networks, 

mean that the morphotypes of the physical gravity or erosive processes attributable to 

water action concentrate almost exclusively along with the coastal areas. Along the 

Adriatic coastal strip, mainly made up of high and rocky coasts, morphologies are fre-

quent due to gravitational collapse phenomena (Bruno & Zezza, 1992). The Ionian coast 

is characterised by an alternating succession of low rocky cliffs with small islands, and 

rocks lined up a short distance from the shore, interspersed with extensive sandy 

shores bordered by dune belts with reclaimed marshes behind. The most characteristic 

morphotypes of rocky coastlines are depressions generated by the gravity collapse 

(sinkhole) of coastal cavities of tectonic-karst origin. Marine terraces and/or the paleo 

coastlines are other morphologies well represented in the Salento territory, both on the 

Adriatic and Ionian sides. These are determined by the erosive action of wave motion, 

give evidence not only of the cyclical glacio-eustatic oscillations especially during the 

Quaternary period but also of the uplifts and downturns undergone by the earth’s crust 

as a result of tectonic deformation.  

About the carbonated nature of the rocks existent in the territory, both outcropping and 

covered, the morphotypes due to the morphodynamic action of chemical agents (com-

monly known as karstification) are widespread. The Salento area displays a variety of 

distinctive karst features, including karst plains, fracture zones, dolines, sinkholes, and 

sub-horizontal karst levels, forming a system of discontinuities that significantly influ-

ence the hydraulic conductivity of the area. Karstic caves and submarine springs rep-

resent the subsurface karst morphologies and are almost exclusively located along the 

coast, close to or below sea level. The presence of this interconnected karst system 

results in a high degree of anisotropy and regional-scale permeability.  

Ephemeral stream networks, usually dried, drain the karst surface during heavy and 

intense precipitation, causing flash floods. They drain exoreic basins outflowing along 
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the Adriatic and Ionian Sea coasts. On the contrary, hundreds of endorheic basins, 

which cover more than 40% of the study area, contribute to the aquifer recharge and 

cause-focused pollution transport processes. The behaviour of the endorheic basins in 

the Salento area depends on the magnitude and type of rainfall events. If the volume of 

internal runoff from precipitation exceeds the capacity of the endorheic basins, excess 

water flows out, feeding the network of exoreic basins. The intricate recharge and mass 

transport processes of the region reflect this complex water movement and redistribu-

tion behaviour. However, understanding of these processes is still limited and not fully 

understood, leaving some aspects of the hydrologic dynamics in the Salento area un-

clear. 

 

Fig. 4 - Geomorphological features of the Salento study area. 
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1.1.3 Hydrogeology of the study area 

The primary groundwater body of the Salento study area is represented by the 

karst aquifer (also named “deep” aquifer) hosted in the Mesozoic carbonate rocks and 

bordered by the sea. It represents the main water resource for the Salento territory due 

to the karst nature of this environment that prevents the development of consistent 

surface water bodies. Groundwater also circulates in the Miocene and Plio-Pleistocene 

deposits, constituting modest shallow aquifers (Cotecchia, 1977). 

The deep aquifer is a coastal aquifer, and the groundwater flow system is regional. 

Groundwater flows in predominantly phreatic conditions under hydraulic heads of the 

order of 3 m AMSL and hydraulic gradients of the order of a few tenths per thousand. 

The highest groundwater levels are located at the NW and SE sectors of the peninsula. 

Groundwater locally may be found in confined conditions since the presence of micritic 

carbonate levels of low permeability, or when the carbonate basement is below the 

mean sea level and covered by barely permeable Miocene and, somewhere, Plio-Pleis-

tocene sediments. Fig. 5 shows the water level map of the Salento aquifer, defined at 

a regional scale by the Apulian government and published in Piano di Tutela delle acque 

(Water Protection Plan, 2009). 

Freshwater floats on saltwater of marine origin as a lens of around 120 m maximum 

thickness at the highest hydraulic heads on the peninsula; the salt content varies be-

tween 0.2 and 0.5 g/L (Fidelibus & Pulido-Bosch, 2019). Groundwater discharges oc-

cur through coastal springs (sub‐aerial and submarine, concentrated and diffuse), with 

Total Dissolved Solids (TDS) varying between 3.5 and 20 g/L.  
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Fig. 5 - Water level map for the Salento aquifer (Water Protection Plan, 2009). 

As a whole, the Salento aquifer represents a complex system that combines the com-

plexity of a tectonically controlled karst with that of a coastal aquifer. The aquifer is, 

therefore, highly vulnerable to salinisation because of the structure of this system, 

where discontinuities and karst forms are routes of fast and deep intrusion of seawater 

and saltwater (Fidelibus & Pulido-Bosch, 2019). In Salento, droughts may easily prop-

agate their effects to the coastal aquifer, deteriorating the groundwater qualitative and 

quantitative status and causing cascade crises (Parisi et al., 2018). Climate change 

currently threatens these issues, leading to increased groundwater exploitation as in 

other areas typified by a high level of urbanisation and low natural availability of water 

resources (Alsumaiei, 2020). Therefore, the knowledge and interpretation of the key 

mechanisms that control the hydrodynamic evolution of the aquifer systems are vital 

for the sustainable management of groundwater resources and urban development 

(Kong et al., 2021). 
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1.2 Meteorological data 

1.2.1 Precipitation and temperature time series 

Precipitation (Pr), minimum (Tmin), and maximum (Tmax) air temperature data for 

the Salento study area were provided by the Civil Protection Service of the Apulian 

Government. Meteorological stations automatically record data at an hourly interval. 

After validation, they are published in the Bulletins of Civil Protection daily (source: 

https://protezionecivile.puglia.it/centro-funzionale-decentrato/). They report the amount 

of rain (mm) and the average minimum and maximum air temperature (°C) measured 

in 24 hours. Registrations are available with some gaps from the fifties of the past 

century; a few meteorological stations were recently installed. Fig. 6 shows the loca-

tions of the twenty-one rain gauge stations, of which nineteen also measure the mini-

mum and maximum air temperature. Their main characteristics are listed in Table A1.  

 

Fig. 6 - Location of meteorological gauge stations. 

https://protezionecivile.puglia.it/centro-funzionale-decentrato/
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1.3 Hydrogeological data 

1.3.1 Groundwater levels 

The first efforts of groundwater monitoring of the Salento aquifer date back to 

the sixties when a net of 13 deep observation wells was drilled and purposely equipped 

for the control of seawater intrusion (Cotecchia, 2017; Tadolini & Tulipano, 1979). 

From 1970 up to 1986, researchers at Bari University regularly performed temperature 

and electrical conductivity logs. Monitoring went along with a few time gaps until 1994 

when the first official groundwater network was established under the responsibility of 

the Apulian Regional Government. The Ente Irrigazione Project was carried out from 

the end of 1994 to early 1997 on a total of 127 wells (in static condition) distributed in 

the whole Apulian territory; multi-parameter logs and groundwater level measurements 

were sampled quarterly by bailers at different depths. Afterwards, the monitoring was 

interrupted for 11 years, starting again in 2007 with the establishment of a more com-

plex network (Tiziano Project). Apart from several monitoring wells aimed at controlling 

superficial aquifers, the deep aquifers were monitored through the previous 127 wells 

in static condition with the addition of 262 private wells equipped with pumps. Sampling 

surveys (and water level/multi-parameter logs in the dedicated monitoring wells) were 

conducted with a bi-annual frequency from July 2007 to December 2011. Furthermore, 

sensors were installed in most wells for water level and/or multi-parameter continuous 

monitoring with data registered every hour. In the framework of the Tiziano Project, 28 

wells were equipped with groundwater level monitoring sensors; administrative incon-

veniences and technical equipment and personnel changes caused some time gaps in 

the water level registrations. Therefore, only 11 out of 28 groundwater level recordings 

were used in this research for their continuity. The monitoring stopped again for five 

years. From 2015 to 2018, a new groundwater monitoring phase started on an updated 

net (Maggiore Project), including groundwater sampling, multi-parameter logging, and 

water level measurements carried out with bi-yearly frequency. 

In conclusion, from 1995 to the present, the monitoring surveys were discontinuous, 

with significant time gaps and many changes at each new phase in the number of 

monitoring points, type of wells used, and monitoring frequency. Tiziano Project 
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constitutes the unique groundwater monitoring of the Apulian Region with a consistent 

hydrogeological dataset, i.e., groundwater levels, electrical conductivity, and multi-pa-

rameter time series. 

Fig. 7 illustrates the monitoring well locations in the Tiziano Project over the Salento 

area, along with the wells selected for the current research on the basis of the con-

sistency of available hydrogeological data. Their main characteristics are summarised 

in the Annex section (Table A2). 

 

Fig. 7 - Tiziano Project’s monitoring net over the Salento territory with the indication of the selected wells. 

Fig. 8 shows the daily hydrographs of the 11 selected wells over the available hydro-

logical years. The evolution of groundwater levels indicates a smooth seasonal change 

between recharge and recession periods (Cai & Ofterdinger 2016). During the summer 

dry season, water levels occasionally decline, which may be attributed to excessive 

abstractions to satisfy drinking and irrigation demand. 
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Fig. 8 - Daily hydrograph of the selected eleven monitoring wells. 

1.3.2 Chemical analyses for the salinisation process assessment 

The groundwater chemical analyses considered for this research refer to seven 

monitoring survey campaigns (Tiziano Project) from 2007 to 2011 and six surveys 

(Maggiore Project) from 2016 to 2018. These chemical analyses were processed 

through various statistical methodologies to investigate the salinisation process. The 

monitoring program of the Tiziano Project was carried out with a bi-annual frequency, 

with sampling at the end of each wet season (April-June) and at the end of each dry 

season (September-October). 449 samples were collected from 204 static and 245 

pumping wells and analysed for numerous physical and chemical parameters. The final 

dataset includes 268 groundwater samples collected from not repeated wells (106 

static and 162 pumping) over the seven sampling periods (three wet and four dry sea-

sons). Fig. 9 illustrates the location of the considered wells. 
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Fig. 9 - Groundwater quality monitoring network of the Tiziano Project. The numerical tag refers to the 

code of each sampling point. 

Selection of the dataset to be used was based on the following criteria that were to be 

cumulatively met: (i) the shallowest measurement is considered for wells with sam-

plings at various depths; (ii) monitoring wells should be located within the extent of the 

Salento aquifer; (iii) no or minimal missing/non-numerical values should occur; (iv) 

charge balance error should be less than 10%. 

Likewise, the Maggiore Project had a bi-annual frequency with sampling referring to 

the end of each wet and dry season. The six monitoring surveys concerning the Salento 

aquifer comprise 290 groundwater samples (collected from 22 static and 35 pumping 

wells). The final dataset, applying the same set of multi-criteria pre-screening, includes 

groundwater samples collected from 31 monitoring wells (12 static and 19 pumping 

wells) with repeated sampling in the six sampling periods (three wet and three dry sea-

sons) (Fig. 10). 
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Fig. 10 - Chemical groundwater monitoring network of Maggiore Project. 

1.3.3 Chemical analyses for the nitrate pollution assessment 

The dataset used for the nitrate pollution assessment originates from a regional 

database, which includes chemical analyses conducted over the last 25 years on static 

and pumping wells belonging to regional monitoring networks and provincial consortia. 

Unfortunately, the monitoring protocols differ between the networks in sampling fre-

quency, techniques and instruments, water sample storage, transport, and laboratory 

procedures. Aware of the non-homogeneity of the data and because of the three-di-

mensional vulnerability of the study area, this dataset was used in an alternative ap-

proach aiming to assess the qualitative evolution of nitrate pollution.  

The dataset comprises 13,575 groundwater samples analysed for nitrate concentra-

tions (NO3

-

) from pumping and static wells measured from 1995 to 2021. It is organized 

into two periods (1995-2006 and 2007-2021) to account for the potential variability of 

nitrate pollution over time (Fig. 11).  
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Fig. 11 - Location in the study area of sampling points with nitrate analyses related to 1995-2006 (left-

hand side) and 2007-2011 (right-hand side) periods. 

Table 2 summarises the main statistics of nitrate concentrations related to the two se-

lected periods. Data show a significant increase in NO3

-

 concentrations over time for 

both pumping and static wells. Since the first period, the maximum value has been 

significantly higher than the Maximum Admissible Concentration (MAC) of 50 mg/L, 

set by the 2000/60/EC European Water Framework Directive for water intended for hu-

man consumption. The minimum values are close to zero in both cases. 

Table 2 - Main statistics of NO3

-
 concentrations. Data are reported in mg/L. 

Pumping well 1995-2006 2007-2021 Static well 1995-2006 2007-2021 

N° of wells 251 231 N° of wells 26 26 
Mean 26.0 30.9 Mean 9.4 17.3 
Min 2.6 1.6 Min 0.5 0.06 
Max 109 192 Max 56.5 130 
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2. MISSING VALUES FILLING-IN METHODS 

 

2.1 Missing values in weather data 

The availability of complete and accurate precipitation and temperature data is 

crucial for conducting reliable analyses (Sattari et al., 2017; Armanuos et al., 2020). 

However, it is not unusual to encounter issues with incomplete data, which can impact 

the quality and accuracy of successive analyses.  

Gaps in time series may depend on several factors (Lotsi et al., 2017), i.e., malfunc-

tioning instruments, maintenance of meteorological stations or human errors in manual 

measurement (Beaulieu et al., 2007). In the scientific literature, missing data in time 

series are often categorised into very limited and extensive or consecutive gaps (Aieb 

et al., 2019). When the gaps are minimal, they can be excluded from the dataset to 

simplify the analysis (Song et al., 2008). In the second case, various methods for im-

puting missing values were developed (Li et al., 2007). The effectiveness of these im-

putation methods can vary depending on several aspects, including the percentage of 

missing values, the mechanism of data loss, the variables under consideration, and 

their respective correlations. Specifically, Little & Rubin (1987) identified three catego-

ries of missing data: Missing Completely at Random (MCAR), Missing at Random 

(MAR) and Missing Not at Random (MNAR). 

In the first case, the missing values occur randomly and do not depend on the values 

of the variable with missing data or any other variables in the dataset. In mathematical 

term, it is expressed: 

𝑃(𝑟|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔) = 𝑃(𝑟) (1) 

where 𝑋𝑜𝑏𝑠 is the observed data, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 the missing one and (𝑟) is the distribution 

condition of missing values. 

In the second case, the missingness is related to other observed variables in the da-

taset, but not directly to the missing values; thus, the observed data can predict or 

explain the probability of missingness. 
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𝑃(𝑟|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔) = 𝑃(𝑟|𝑋𝑜𝑏𝑠) (2) 

The last case is the most challenging because the probability of having missing values 

depends on the variable in question. Since the missingness is related to the unobserved 

data, simply modelling the observed data may not be sufficient to impute or estimate 

the missing values accurately. 

𝑃(𝑟|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔) = 𝑃(𝑟|𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔) (3) 

Researchers have explored different imputation techniques to address this issue, such 

as interpolation (Simolo et al., 2009), regression-based approaches (Duarte et al., 

2022), and machine learning algorithms (Sattari et al., 2020). 

Furthermore, two imputation approaches exist: (i) single imputation, when a single 

plausible value replaces the missing value, and (ii) multiple imputations, when a set of 

reasonable values is generated and combined. 

To address missing data in the time series of precipitation and air temperature at 

Salento’s meteorological stations, we selected and assessed five imputation methods 

from 1960 to 2005. The evaluation of each algorithm performance relied on metrics 

such as Pearson’s coefficient (R), Nash-Sutcliffe Efficiency (NSE), and Similarity Index 

(SI), calculated between observed and estimated time series. To facilitate this evalua-

tion, we identified a data recording period without missing values that applied to all 

stations. For precipitation, the test period ranges from 01/01/1971 to 31/12/1976, 

while for temperature, it covers the period from 01/01/2000 to 31/12/2022. Succes-

sively, a rate of 10% of data was randomly assumed to be missing since the highest 

missing value percentage found in the dataset was less than 7% (Table 3). 

Hereafter, target and reference stations refer to meteorological stations with missing 

values and those selected to estimate them, respectively. 
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Table 3 - Missing values percentages over the historical period 1960-2005 (1971-2005 for SAL-MS6 

and SAL-MS14). 

Code Name 
Precipitation 

(%) 

Max Air 

Temperature (%) 

Min Air 

Temperature (%) 

SAL_MS1 
S. Pietro 

Vernotico 
0.00 2.87 3.06 

SAL_MS2 Novoli 0.80 - - 

SAL_MS3 Lecce 0.18 2.52 2.92 

SAL_MS4 
Masseria 

Monteruga 
4.15 - - 

SAL_MS5 Copertino 2.15 - - 

SAL_MS6 Melendugno 1.85 - - 

SAL_MS8 Nardò 0.91 2.20 2.58 

SAL_MS10 Otranto 0.00 3.93 4.08 

SAL_MS11 Galatina 1.49 - - 

SAL_MS12 Maglie 0.00 3.06 3.07 

SAL_MS13 
Minervino di 

Lecce 
0.36 7.48 7.91 

SAL_MS14 Collepasso 6.95 - - 

SAL_MS15 Gallipoli 0.00 1.80 2.01 

SAL_MS16 
Vignacas-

trisi 
0.84 4.36 4.73 

SAL_MS17 Taviano 0.91 0.55 0.93 

SAL_MS18 Ruffano 0.36 - - 

SAL_MS20 Presicce 0.18 3.91 4.27 

SAL_MS21 
S. Maria di 

Leuca 
0.98 0.32 0.44 

 

Gaps in each target station were then filled by selecting a set of reference stations close 

to those affected by missing values according to climatic and physical behaviour. In 

fact, being a peninsula facing the Adriatic Sea on one side and the Ionian Sea on the 

other, the weather conditions are not influenced solely by altitude, as is generally the 



Maria Rosaria Alfio | XXXVI cycle 

 28 

case inland, but also by other factors such as proximity to the sea. The temperatures 

in Salento are significantly influenced by the mitigating presence of the Ionian and Adri-

atic Seas, whose winds blowing on both sides establish distinct weather conditions. 

Consequently, the selection of reference stations for each target station relied on four 

criteria to be cumulatively met:  

(i) Pearson’s correlation coefficient R greater than 0.70,  

(ii) distance between them less than 20 Km,  

(iii) altitude difference of less than 80 m 

(iv) exposure to the same sea (Adriatic or Ionian).  

A convergence threshold was also set. In this case, the criterion for determining con-

vergence is based on the difference between two consecutive steps. Specifically, the 

algorithm continues iterating until the difference between the results of two successive 

steps is less than 0.01. This difference is measured in millimetres for precipitation data 

and Celsius degrees for temperature data. By setting this convergence criterion, the 

algorithm ensures that the imputation process continues until a certain level of accuracy 

is achieved. Once the difference between two consecutive steps falls below the speci-

fied threshold, the metrics were calculated between observed (O) and estimated (E) 

data over the specified time interval. Depending on the number of iterations completed 

and the metrics coefficients, the more appropriate filling-in method for the case study 

was selected for precipitation and temperature, respectively. Fig. 12 shows a summary 

of the adopted procedure. 
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Fig. 12 - Filling-in missing values procedure. 

2.2 Filling-in methods and adopted metrics 

The following paragraphs briefly describe the five imputation methods and the 

three metrics adopted. 

2.2.1 Mean Substitution 

The Mean Substitution method (MS) is the most straightforward imputation 

method. It replaces the daily missing value at the target station with the corresponding 

mean of the values recorded in the selected reference stations. Ben Aissia et al. (2017) 

suggested that the MS technique effectively applies when missing values are less than 

10%. The estimation of missing data is achieved by calculating the arithmetic average 

of the observations from the selected reference stations, as shown below: 

𝐸𝑖 =
∑ 𝑂𝑖

𝑁
𝑖=1

𝑁
 (4) 

where 𝐸𝑖 is the estimated value of the missing data, 𝑂𝑖 is the observation at i
th

 nearest 

weather station, and 𝑁 is the number of the closest stations. 
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2.2.2 Thiessen polygons 

The Thiessen polygons (TH) is a commonly used method in hydrology. It as-

sumes a weight factor for each meteorological station in proportion to the area it rep-

resents. It assumes that meteorological parameters are constant in each Thiessen pol-

ygon and match the reference station measurement. Here, missing values correspond 

to the values from the polygon of the reference station in which the target station oc-

curs. The Thiessen polygons are defined by excluding the target meteorological station. 

2.2.3 Inverse Distance Weighting 

In the Inverse Distance Weighting (IDW) method, missing values at the target 

station correspond to a weighted average of the data at the reference stations. The 

weighting parameters inversely depend on the spatial distances from the target station. 

This method is appropriate for highly correlated data. The estimated missing value is 

given by: 

𝐸𝑖 =
∑ (𝑂𝑖/𝑑𝑖)𝑛

𝑖=1

∑ (1/𝑑𝑖)𝑛
𝑖=1

 (5) 

where 𝑑𝑖 is the distance between target and predictor stations.  

2.2.4 Multiple Imputation by Chained Equations 

Multiple Imputation by Chained Equations (MICE) is an advanced method which 

accounts for multiple sets of plausible imputed values through a prediction model built 

on already available data in the reference stations (Zhang, 2016). It is based on the 

MAR assumption. 

According to van Buuren & Groothuis-Oudshoorn (2011), this procedure consists of 

three main steps. The first step is to replace missing data at the target station with 

values drawn from a distribution fitted to the reference time series. The second step is 

the esteem and pool (following Rubin, 1987) of the linear regression parameters of 

each group of the imputed dataset. The third involves the evaluation of the final linear 

regression parameters with which missing values are calculated. This study employed 
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two MICE approaches: Predictive Mean Matching (MICE_pmm, Aguilera et al., 2020) 

and Random Forest (MICE_rf, Jing et al., 2022). 

MICE_pmm works by first estimating k set of plausible values using a predictive model, 

typically a regression model, between each imputation and observation 

𝐼𝑖(𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 , 𝑋𝑜𝑏𝑠). The predicted values are then matched to observed values from the 

dataset, preserving the distributional characteristics of the observed data and obtaining 

k different estimation results. Matching predicted values to observed values generates 

imputations consistent with the existing data, producing more realistic and accurate 

results than other imputation techniques. Finally, the set of imputed values is combined 

according to Rubin (1987): 

𝐸𝑖 =
∑ 𝐼𝑖(𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 , 𝑋𝑜𝑏𝑠) 𝑘

𝑖=1

𝑘
 (6) 

MICE_rf is a non-parametric imputation technique based on the principle of random 

forest. It works iteratively, continuously updating the variably imputed matrix and eval-

uating its performance between iterations. The algorithm stops when the difference be-

tween two successive imputation results reaches a set threshold or the maximum num-

ber of iterations the user specified. The multiple sets of estimated values are then com-

bined.  

2.3 Metric coefficients 

The metric coefficients used to analyse and evaluate the performance of each 

filling-in missing value method are briefly described below. In the following E is the 

estimated value, O is the observed value for the target station, and n represents the 

length of the considered time series.  

2.3.1 Pearson’s correlation coefficient 

The Pearson correlation coefficient (1896) is a parametric method for measur-

ing the linear dependence between two series. It ranges between −1 (inverse relation-

ship, i.e., when one variable increases, the other decreases) and +1 (direct 
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relationship, i.e., both variables move in the same direction). A value of zero indicates 

the absence of correlation. The Pearson’s correlation coefficient is expressed as: 

𝑅 =
∑ (𝑂𝑖 − �̅�)(𝐸𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑂𝑖 − �̅�)2(𝐸𝑖 − �̅�)2𝑛
𝑖=1

 
(7) 

2.3.2 Nash-Sutcliffe Efficiency 

The efficiency value NSE (1970) ranges from -∞ to 1. A positive efficiency of 

up to 1 indicates higher accuracy in the model predictions. An efficiency value of 0 

indicates that the model predictions are as accurate as simply using the mean of the 

observed data. Conversely, when the metric is less than zero (NSE < 0), it implies that 

the estimated mean is a less accurate predictor than the mean of the observed data. 

The NSE is calculated as follows: 

𝑁𝑆𝐸 = 1 −
(𝐸 − �̅�)2

(𝑂 − �̅�)2
 (8) 

2.3.3 Similarity Index 

The Similarity index indicates the percentage of agreement between the esti-

mated and observed values. This metric ranges between 0 and 1 to denote absent to 

perfect agreement, respectively (Willmott, 1981). The SI formula is given by: 

𝑆𝐼 =
∑ (𝐸 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑂𝑖 − �̅�| + |𝐸𝑖 − �̅�|)2𝑛
𝑖=1

 (9) 
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3. DATA-DRIVEN METHODS FOR QUANTITATIVE 

CHARACTERISATION  

 

3.1 Correlation indices  

Drought is a complex natural phenomenon that affects society and its environ-

ment in many ways (Loukas et al., 2003). In the scientific literature, it is common to 

distinguish it into four categories (Van Loon et al., 2012; Chang et al. 2018; Wanders 

at al.,2010): (i) meteorological drought, which refers to a lack of precipitation in a large 

area and over a long period of time; (ii) soil moisture drought (also called agricultural 

drought), which relates to a deficiency of soil moisture, usually in the root zone; (iii) 

hydrological drought, associated to negative anomalies in surface and sub-surface wa-

ter; (iv) socio-economic drought, linked to the failure of water resources systems to 

meet water demands and consequent ecological or health-related impacts. When these 

typologies coincide in a specific area, they could generate groundwater drought, i.e., 

lack of groundwater expressed in terms of recharge, storage, or heads over a particular 

period (Van Loon, 2015). Human activities also play a significant role in influencing the 

occurrence of this natural hazard. Climate change can lead to an increased demand for 

water, which, in turn, drives aquifer mining for agricultural or industrial purposes, ulti-

mately depleting groundwater resources. Land use changes can alter evapotranspira-

tion patterns, depriving aquifers of sufficient recharge during dry periods. 

To evaluate the potential impacts of climate change on future water resources availa-

bility, it is crucial to understand the hydrological response of aquifers to climate varia-

bility and specifically to drought periods. This aspect is particularly significant for arid 

and semi-arid regions, such as the Mediterranean area (Green et al., 2011), where 

reduction of future precipitation and increased evapotranspiration may easily lead to 

critical water shortages in several regions (Lionello & Scarascia, 2018).  

A comprehensive understanding of how aquifers respond to external conditions is cru-

cial for evaluating the potential impact of climate changes on groundwater recharge, 
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storage, and overall availability. Furthermore, it can aid water utilities and policymakers 

in formulating the most appropriate management strategies and mitigation measures. 

Numerous indices have been set up to investigate various aspects of drought, including 

its duration, timing, severity, and spatial extent. These indices help in interpreting the 

principal hydrological drought processes and their impacts. The selection of a specific 

index depends on various factors, with the availability of extensive meteorological time 

series being a critical issue. Several studies correlate these meteorological indices with 

groundwater levels to investigate aquifer hydrodynamics. Bloomfield & Marchant 

(2013) introduced the Standardized Groundwater Level Index (SGI) to characterise 

groundwater droughts. They discovered a correlation between the SGI and the Stand-

ardised Precipitation Index (SPI), with the strongest correlation observed during a site-

specific period of precipitation accumulation. Babre et al. (2022) examined the relation-

ship between the SGI and various meteorological and hydrological drought indices in 

the Baltic region. The findings indicated that meteorological drought indices, such as 

the SPI, Standardised Precipitation and Evapotranspiration Index (SPEI), and Recon-

naissance Drought Index (RDI), exhibited the most significant correlation with ground-

water conditions. Ndehedehe et al. (2023) conducted a global assessment of spatial 

correlations between SPEI and GWLs. Their study revealed positive and negative cor-

relations worldwide, with a predominance of positive values at the 12-month aggrega-

tion scale, indicating the potential impact of climate change on groundwater. Negative 

correlations, on the other hand, may result from extensive water extraction or complex 

geological conditions and aridity, indicating a delayed response. Secci et al. (2021) 

investigated the correlation between SGI, SPI and SPEI to infer the effects of climate 

change on groundwater in Tuscany. Using the relationships between groundwater and 

meteorological indices established in the historical period, they projected future SGI 

values using climate variables provided by an ensemble of Regional Climate Models 

(RCMs) under different emission scenarios.  

The correlations between hydrological and hydrogeological time series were adopted, 

assuming the existence of a potential correlation between meteorological indices and 

groundwater level. Specifically, meteorological drought indicators were used as input 
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signals, while groundwater levels were used as output. SPI and SPEI have been se-

lected among all the drought indices because of their simple computation based on 

precipitation and temperature time series. Considering at least 30 years of precipitation 

and temperature data, SPI and SPEI allow for identifying the frequency and intensity of 

wet and dry periods.  

Pearson’s, Spearman’s and Kendall’s correlation coefficients were selected since they 

are the most used indicators of monotone association, with the latter two usually sug-

gested for non-normally distributed data. These three correlation coefficients can be 

described as the differently weighted mean values of the same concordance factors. 

Chon (2010) investigated the intrinsic ability of Pearson’s, Spearman’s, and Kendall’s 

correlation coefficients to affect the statistical power of tests for monotone association 

in continuous data. The superiority of Pearson’s correlation stems from the fact that it 

better reflects the degree of concordance and discordance of pairs of observations for 

some types of distributions. On the other hand, it is largely sensitive to outliers, espe-

cially for large sample sizes with a higher probability of datasets with outliers.  

The following paragraphs briefly describe Spearman’s and Kendall’s correlation coeffi-

cients and meteorological indices used in this study. See 2.3.1 for Pearson’s correla-

tion coefficient. 

3.1.1 Kendall’s tau correlation coefficient  

The Kendall’s correlation coefficient (1938) is a nonparametric indicator for 

evaluating the strength and direction of association between two variables measured 

on at least an ordinal scale. It is the nonparametric alternative to Pearson’s and Spear-

man correlation coefficients. This coefficient requires examining two assumptions be-

fore its use: (i) the variables should be measured in an ordinal or continuous scale, and 

(ii) it is suitable that the two variables follow a monotonic relationship.  

For the presence of ties, the 𝜏𝐵 statistic was calculated (Agresti, 2012). It ranges from 

−1 (negative association) to +1 (positive association) with a value of zero indicating 

the absence of association. The Kendall 𝜏𝐵 coefficient is defined as: 
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𝜏𝐵 =
𝑛𝑐 − 𝑛𝑑

√(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)
 (10) 

𝑛0 = 𝑛(𝑛 − 1)/2 (11) 

𝑛1 = ∑ 𝑡𝑖(𝑡𝑖 − 1)/2
𝑖

 (12) 

𝑛2 = ∑ 𝑢𝑗(𝑢𝑗 − 1)/2
𝑖

 (13) 

in which 𝑛𝑐  and 𝑛𝑑  are the number of concordant and discordant pairs, respectively, 𝑡𝑖  

is the number of tied values in the i
th 

group of ties for the first quantity, and 𝑢𝑗  is the 

number of tied values in the j
th 

group of ties for the second quantity.  

Kendall 𝜏𝐵 coefficient was calculated using the package DescTools of R-Studio soft-

ware (R Core Team, 2019) 

3.1.2 Spearman’s rank-order correlation coefficient 

Spearman’s rank-order correlation coefficient (1904) is a nonparametric indi-

cator of the statistical dependence between the rankings of two variables. It permits to 

define if a monotonic function can represent the relationship between the two variables. 

The mathematical structure of the Spearman coefficient is defined as the Pearson one 

substituting the values of the two variables with their ranks (Myers & Well, 2013). Thus, 

the Spearman coefficient assesses monotonic relationships (whether linear or not). The 

sign of the estimated indicator defines the direction of association between the inde-

pendent and the dependent variables: the positive coefficient indicates that both varia-

bles increase. In contrast, the negative value indicates that the dependent variable in-

creases when the independent one decreases. A Spearman coefficient of zero denotes 

no tendency between the two variables. Its magnitude ranges from -1 to +1.  

Spearman rank correlation coefficient was calculated using stats package of R-Studio 

software (R Core Team, 2019). 

3.1.3 Meteorological indices 

The SPI (McKee et al., 1993) and SPEI (Vicente-Serrano et al., 2010; Beguería 

et al., 2013) are meteorological drought indices developed to characterise wetness or 
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dryness conditions. The first is computed using monthly precipitation as input data, 

while the second uses monthly accumulated climatic water balance anomalies, defined 

as the difference between precipitation and potential evapotranspiration (PET). 

They are normalised indices representing the probability of occurrence of precipitation 

and water balance anomalies compared with the ones over the long reference period 

for climate. Positive SPI or SPEI denote wet conditions, whereas negative values refer 

to dry conditions (Table 4).  

Table 4 - SPI’s drought category according to Mckee et al. (1993). 

SPI Value Drought Category 

SPI > 0  no drought 

0 ≥ SPI > −1  minor drought 

−1.0 ≥ SPI > −1.5  moderate drought 

−1.5 ≥ SPI > −2 severe drought 

SPI ≤ −2 extreme drought 

 

The indices can be evaluated at different time scales, ranging from 1 to 48 months. 

Thus, their interpretations depend on the time scales selected (Khan et al., 2008). The 

1 to 6-months indicates short-term conditions: it reflects seasonal variations of precip-

itation and soil-moisture, defining agricultural drought. The 9- to 12-months shows 

long-term conditions in precipitation patterns, highlighting hydrological and even 

groundwater drought. Finally, the 48-months account for socio-economic impacts 

(Potop et al., 2014).  

The calculation of the SPI and SPEI indices requires three steps. The cumulated pre-

cipitation and water balance anomalies at different time scales are computed, fitted to 

an appropriate probability distribution, and then transformed into a standard normal 

distribution. To consider the zero precipitation, a piecewise probability distribution was 

used: 

𝑝(𝑥) = {

𝑝0 + (1 − 𝑝0)𝐺(𝑥, 𝛾); 𝑥 > 0

𝑝0 =
𝑛𝑝=0 + 1

2(𝑛 + 1)
; 𝑥 = 0

 (14) 
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where 𝑝 is the probability distribution, 𝑝0 is the zero-precipitation probability, 𝑛𝑝=0 is 

the number of zero precipitation in the whole time series, 𝐺(𝑥, 𝛾) is the Gamma distri-

bution with 𝛾 parameters, and 𝑥 is a precipitation element. Finally, the inverse normal 

cumulative distribution function (with mean zero and variance one) yields the time se-

ries of SPI values.  

Regarding the SPEI, the potential evapotranspiration, i.e., the amount of evaporation 

and transpiration that would occur if a sufficient water source was available, can be 

calculated with three approaches: (i) the Thornthwaite method (Thornthwaite, 1948), 

(ii) the Hargreaves method (Hargreaves, 1994), and (iii) the Penman–Monteith method 

(Allen et al., 1998). The first method is the simplest because it only needs monthly 

mean temperature values and the site’s latitude. The second one computes monthly 

reference evapotranspiration (ET0) of grass crops and requires the site minimum and 

maximum temperature values and latitude. The last method is considered the most 

accurate but most complex and data demanding by far, compared to the previous two 

methods, because it calculates ET0 of a hypothetical reference crop, based on mini-

mum and maximum temperature values and time series of monthly mean daily external 

radiation, monthly mean daily wind speed at 2 m height, monthly mean daily bright 

sunshine hours and monthly mean cloud cover in percentage. The Food and Agriculture 

Organization of the United Nations (FAO) and the American Society of Civil Engineers 

(ASCE) advised the use of the Penman–Monteith formulation (Walter et al., 2000; 

Droogers & Allen, 2002). Even with the known limits of accuracy, the Thornthwaite 

method was adopted to estimate the monthly PET due to the limited requirements and, 

in parallel, the lack of the input data required by the more advanced Penman-Monteith 

formulation. 
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3.2 Seasonal and trend decomposition 

Time series data on groundwater level fluctuation can provide valuable insights 

into various aspects, including the nature of the aquifer, the influence of climatic con-

ditions, and significant abstractions. The analysis of such data often requires more ad-

vanced methods to discern the impact of inter-annual, annual, and short-term varia-

tions. Nevertheless, time series decomposition is a valid technique for disentangling 

different factors within a time series. The technical literature features numerous studies 

applying Seasonal and Trend decomposition using the Loess (STL) procedure to ana-

lyse groundwater patterns and dynamics. Lafare et al. (2016) employed the STL tech-

nique to assess daily groundwater responses in the Eden Valley, UK. Colyer et al. 

(2022) investigated the influence of meteorological and geological heterogeneity on the 

same aquifer. In another study, Fan et al. (2023) utilised STL for monitoring groundwa-

ter dynamics and employed spatial interpolation to detect spatio-temporal patterns of 

groundwater level and salinity in the Yellow River Delta. Niranjannaik et al. (2022) ap-

plied STL to correlate GWL patterns with rainfall and groundwater abstraction variability 

for the Betwa River in India. Moreover, Duy et al. (2021) explored GWL trends, memory 

effects in alluvial aquifers, and response times between surface water and groundwater 

in the Vietnamese Mekong Delta. 

STL is a flexible and reliable approach for decomposing time series data. It offers sev-

eral advantages when dealing with monthly and quarterly data with various forms of 

seasonality. Furthermore, it effectively handles changes in both the seasonal compo-

nent rate and the trend cycle’s smoothness. It also addresses outliers effectively to 

avoid influencing the trend or seasonal component (Hyndman & Athanasopoulos, 

2018). This statistical technique helps isolate different information in the time series, 

i.e., it decomposes it into three constituent parts: seasonality, trend, and residual. In 

this way, it is possible to identify distinct contributions, which are conversely undetect-

able using the whole time series because the individual information overlaps. As a com-

ponent, seasonality represents regular and predictable patterns that recur at fixed inter-

vals. For instance, it identifies wet and dry periods in the context of rainfall patterns. 

The trend component provides a general direction of the overall data, indicating whether 
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there is an upward or downward trend. Lastly, the residual part, often called noise, 

captures the random fluctuations of the background signal. These unpredictable varia-

tions depend on local conditions over time. In the case of rainfall patterns, the residual 

component can highlight significant and extreme wet or dry events. 

On the other hand, Loess is a technique that uses locally weighted regression to fit a 

smooth curve through points in a sequence. This method is beneficial for estimating 

nonlinear relationships (Cleveland et al., 1990). 

The advantages of STL include its simplicity, speed of computation, robustness of re-

sults, flexibility, and excellent data visual analytics. It is widely used in many sectors, 

including natural and environmental science (Lafare et al., 2016; Xia et al., 2019, Ni-

ranjannaik et al., 2022).  

The STL method can be classified as an additive approach for decomposing the time 

series according to the following formula: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (15) 

where 𝑌𝑡 is the GWL, 𝑇𝑡  is the trend, 𝑆𝑡 is the seasonal, and 𝑅𝑡 is the remainder com-

ponent. 

However, it is necessary that the acquisition interval of the dataset to be decomposed 

with STL is constant and that any missing data are filled with linear interpolation. 

Following the methodology of Lafare et al. (2016) and Colyer et al. (2022) , the results 

of the STL analysis can also be investigated using the ratio of the variance of each 

component to the variance of the original GWL: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (16) 

The closer the variance ratio of a component approaches 1, the more influential the 

same component is in the studied time series.  
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3.3 Time series analyses 

Examining a karst aquifer on a regional scale poses significant difficulties due 

to its considerable variety and heterogeneity. The term “karst aquifer” encompasses a 

broad range of limestone formations, varying from less developed and dispersed flow 

aquifers to highly concentrated and channelised flow aquifers. Although many karst 

aquifers typically display a blend of these flow types, accurately evaluating the degree 

of karstification within a particular aquifer and discerning the importance of each flow 

component constitutes a challenging task. In the field of hydrology, a commonly em-

ployed approach for this purpose is time series analysis. Among the various tech-

niques, correlation and spectral analyses are frequently applied as they are straightfor-

ward to implement and yield valuable insights into the behavior of an aquifer. The fun-

damental premise underlying both correlation and spectral analyses is rooted in a sys-

tem-based approach, wherein statistical functions are employed to establish relation-

ships between input factors and resultant outcomes. Mangin (1984) was the first to 

investigate input-output relationships in the karst system and provide a classification 

based on time series analyses. Specifically, the karst aquifer is viewed as a filter that 

modifies, retains, or attenuates the input signal,  represented by the precipitation, into 

an output signal (Larocque et al., 1998), as the spring discharge (Benavente & Bosch, 

1985, Larocque et al., 1998; Angelini, 1997; Amraoui et al., 2003; Fiorillo & Doglioni, 

2010; An et al., 2019), the groundwater level (Imagawa et al., 2013; Delbart et al., 

2014; Cai & Ofterdinger, 2016, Chiaudani et al., 2017), the river flow rate (Bailly-Comte 

et al., 2008, Chiaudani et al., 2017) or other physical or chemical parameters charac-

terising the aquifer (Bailly-Comte et al., 2011). The extent to which the input signal is 

transformed provides valuable information about the flow dynamics within the system. 

Time series studies involves both univariate and bivariate analysis in the time and fre-

quency domains (Pulido-Bosch, 2021). 

3.3.1 Time Domain Analysis 

The Autocorrelation Function (ACF) analyses the existence of a linear tendency 

of successive values of a single series, giving a measure about the memory effect that 

the previous values of a time series exert on subsequent data (Chiaudani et al., 2017). 
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In general terms, ACF estimates the time necessary to forget the initial conditions of 

each time series (Larocque et al. 1998; Box et al., 2013; Chiaudani et al., 2017): 

𝐴𝐶𝐹(𝑘) =
𝐶(𝑘)

𝐶(0)
 (17) 

𝐶(𝑘) =
1

𝑛
∑(𝑥𝑡 − �̅�)(𝑥𝑡+𝑘 − �̅�)

𝑛−𝑘

𝑡=1

 (18) 

where 𝑘 is the time lag (from 𝑘 = 0 to m), 𝑚 is the cutting point, 𝑛 is the length of the 

time series 𝑥𝑡, and �̅� represents its mean, 𝐶(0) is the covariance at value 0 and 𝐶(𝑘) 

is the covariance at value 𝑘. Mangin (1984) indicates an 𝑚 value less than 𝑛 /3, not 

based on theoretical concepts but on his empirical research carried out to define the 

best possible estimate for truncation of 𝑚. He verified that correlograms were skewed 

for a truncation point between 𝑛 /3 and 𝑛 /2.  

The shape of the correlogram provides useful information on a karst system; a gentle 

slope shows the resilience of the aquifer in terms of infiltration time and/or major 

groundwater storage. In contrast, a steep slope highlights a more rapid flow through 

the aquifer or a poor storage capacity (Padilla & Pulido-Bosch, 1995; Panagopoulos & 

Lambrakis, 2006; Duvert et al., 2015; Chiaudani et al., 2017). The time required before 

the ACF reaches a value of 0.2 is known as memory effect (Mangin, 1984). For a ran-

dom variable, the ACF decreases quickly and reaches zero for very short time lags 

(Delbart et al., 2016); instead, a slow decrease shows an idle nature of the karst, char-

acterised by large storage (Sağir et al., 2020).  

The Cross-Correlation Function (CCF) is useful to understand the impulse re-

sponse of the karst system to the recharge process since rainfall events are normally 

known as a random process. Defining the two discretised chronological series of length 

𝑛,  𝑥𝑡, and 𝑦𝑡 so that the first causes the second, the CCF with a truncation point 𝑚 (𝑘 

= 0, 1, 2, … 𝑚) is not symmetrical. 

𝐶𝐶𝐹(𝑘) =
𝐶𝑥𝑦(𝑘)

√𝐶𝑥
2(0)𝐶𝑌

2(0)
 , 𝑘 > 0 (19) 



Data-driven methods for qualitative and quantitative characterisation of coastal aquifers 

 43 

𝐶𝑥𝑦(𝑘) =
1

𝑛
∑(𝑥𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)

𝑛−𝑘

𝑡=1

 (20) 

𝐶𝐶𝐹(𝑘) =
𝐶𝑦𝑥(𝑘)

√𝐶𝑥
2(0)𝐶𝑌

2(0)
 , 𝑘 < 0 (21) 

𝐶𝑦𝑥(𝑘) =
1

𝑛
∑(𝑦𝑡 − �̅�)

𝑛−𝑘

𝑡=1

(𝑥𝑡+𝑘 − �̅�) (22) 

where 𝐶𝑥𝑦(𝑘) is the covariance between input and output, and 𝐶𝑥(0) and 𝐶𝑦(0) are 

their respective standard deviations. A significant correlation between input and output 

time-series at 95% confidence interval is reached when the CCF exhibits a correlation 

coefficient greater than the standard error 2/𝑛0.5

 (Diggle, 1990, Lee et al., 2006, Cai et 

al., 2016). 

The CCF indicates a random process with an impulse response: when the CCF shows 

a maximum for 𝑘 >0 it suggests an impact of the input signal on the output signal; on 

the contrary (for 𝑘 <0), the output influences the input (Larocque et al., 1998). The 

delay calculated from a time lag equal to 0, to a time lag corresponding to the maximum 

value of CCF represents the transfer velocity of the aquifer, which is known as response 

time (Cai et al., 2016). 

3.3.2 Frequency Domain Analysis 

Spectral analysis allows to break down the total variance of a variable based on 

the frequency of the events that compose it and therefore to highlight its structure. The 

spectral approach compared to the correlation approach is twofold; it expresses in the 

frequency domain what the correlogram reflects in the time domain. Mangin (1984) 

pointed out that the analysis of a phenomenon in the frequency domain can often facil-

itate its interpretation. The spectral analysis allows detecting the randomness of a time 

series since the absence of peaks of the spectral density function characterises a purely 

random phenomenon for characteristic frequencies. In the frequency domain, we could 

obtain different functions to characterise aquifer behaviour, particularly with complex 

systems where the quick flow superimposes on the baseflow. A short sign of the 
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primary expressions used for conducting the univariate and bivariate analyses in the 

frequency domain is presented in the following, based on a few studies (Padilla & Pu-

lido-Bosch, 1995, Laroque et al., 1998, Panagopoulos & Lambrakis, 2006). 

Since the long-term trend of each time series must be eliminated to satisfy the assump-

tion of stationarity, a linear detrending was applied (Molénat et al., 1999).  

The spectral density function is the ACF in the frequency domain through a 

Fourier transformation:  

𝑆(𝑓) =
1

2𝜋
[1 + 2 ∑ 𝐴𝐶𝐹 cos(2𝜋𝑓𝑘)

𝑚

𝑘=1

] (23) 

The above expression is known as raw spectral estimate (Chow, 1969) because it is 

not a consistent evaluation of the spectral density (Molénat et al., 1999). Thus, a 

smoothing procedure is performed to determine the smoothed spectral estimate 

(Chow, 1969). This procedure permits to give more importance to the periodogram 

ordinates in correspondence to the interested frequencies, and progressively less 

weight to the periodogram ordinates at increased frequencies (Chatfield & Xing, 2013). 

The Daniell or “rectangular” window (Priestley, 1981, Molénat et al., 1999) was applied 

as smoothing procedure. The spectral density allows defining the duration of the im-

pulse response of the system (Larocque et al, 1998) in terms of regulation time, which 

is a measure of the inertia of the system; it gives a sign of the length of the impulse 

response of the system. Differently from the memory effect, it is less sensitive both to 

the sampling interval of the time series and the correlation between distant precipitation 

events (Zhang, 2013). It is expressed as the period corresponding to the half of the 

maximum spectral intensity as frequency goes to zero (Meng et al., 2021): 

𝑇𝑟 =
𝑆(𝑓 = 0)

2
 (24) 

The Cross–Spectral Density Function 𝑆𝑥𝑦(𝑓)  coincides with the Fourier trans-

formation of the CCF and, due to its asymmetry, it is necessary to express it using the 

complex expression: 
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𝑆𝑥𝑦(𝑓)  = |𝛼𝑥𝑦(𝑓)|𝑒𝑥𝑝[−𝑖𝜙𝑥𝑦(𝑓)] (25) 

where 𝛼𝑥𝑦(𝑓) represents the Cross-Amplitude Function (CAF) and 𝜙𝑥𝑦(𝑓) the Phase 

Function (PHF).  

The CAF indicates the duration of the impulse response function and the filtering 

of the periodic components of input data, enabling the characterisation of the modulat-

ing effect of the aquifer in the short, medium, and long term. It provides a decomposi-

tion of the total covariance between input and output, as a function of frequency, and 

indicates how the system transforms the input function.  

The PHF estimates the phase shift or mean delay between input and output 

signals for different frequencies (Meng et al., 2021). It generally varies in the interval -

π to π. According to Padilla and Pulido-Bosch (1995) the average delay over the range 

of considered frequencies is equal to 𝑑 = 𝐴/2𝜋 where 𝐴 is the slope of the regression 

line on the points of the PHF. It indicates the mean delay between precipitation and GWL 

response.  

From the spectral density functions of the input and output signals and the CAF, 

two other useful expressions could be obtained, the Coherency (COF) and the Gain 

(GAF) Functions that are formulated as follows: 

𝐶𝑂𝐹 =
(𝛼𝑥𝑦(𝑓))2

𝑆𝑥(𝑓)𝑆𝑦(𝑓)
 

(26) 

𝐺𝐴𝐹 =
𝛼𝑥𝑦(𝑓)

√𝑆𝑥(𝑓)
 

(27) 

𝐶𝑂𝐹 indicates whether certain variations in the output signal can be attributed to the 

input one. A loss of coherency at lower frequencies indicates a scarcely karstified aq-

uifer where baseflow dominates, whereas a high 𝐶𝑂𝐹 also to greater frequencies, de-

notes a highly karstified system. 𝐺𝐴𝐹 identifies the type of flow and expresses the 

amplification/attenuation of the input signal: the frequency associated to (i) 𝐺𝐴𝐹 = 1 

represents the duration of baseflow, (ii) 𝐺𝐴𝐹 = 0.4 indicates the duration of quick 

flow, and (iii) 0.4 < 𝐺𝐴𝐹 < 1 characterises an intermediate flow. 
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3.4 Wavelet Analysis 

The Fourier transform decomposes a signal into sine waves of different fre-

quencies, filtering certain information that can be discerned in the time domain. When 

examining the Fourier transform of a time series, it becomes impossible to pinpoint the 

exact moment when a specific event occurred. Many natural phenomena, especially 

meteorological events, exhibit non-stationary signals. Non-stationary characteristics 

such as drifts, trends, or abrupt changes often contain the most crucial aspects of a 

time series, and Fourier analysis fails to accentuate them. In contrast, the wavelet 

method offers an intriguing alternative by preserving both time and frequency infor-

mation during the transformation. Wavelet analysis entails the use of variable-sized re-

gions or windows, enabling the utilisation of longer time intervals to extract more infor-

mation about low-frequency content and shorter periods to scrutinize high-frequency 

components. One notable advantage of wavelet analysis lies in its capacity for localized 

examination, concentrating on specific segments of an extended signal and effectively 

identifying even the tiniest discontinuities that might otherwise remain elusive. This sta-

tistical method decomposes the signal into various iterations of the mother wavelet, 

which are shifted and scaled. The objective is to advance or retard the mother wavelet 

in time while stretching or compressing it, thereby identifying the precise duration for 

each frequency window (Holman et al., 2011). Wavelets can be distinguished into Dis-

crete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT). In contrast 

to DWT, which uses a discrete subset of all possible values, the latter is the sum of the 

signal multiplied by the shifted and scaled version of the wavelet function over the entire 

time interval. 

The wavelet function 𝜓0(𝜂) located in both time and frequency domains, presents a 

zero mean (Farge 1992, Percival & Walden 2000, Grinsted et al., 2004). Technical 

literature reports several mother wavelets. The well-known Morlet wavelet was used in 

the following because it assures a good balance between time and frequency localisa-

tion (Grinsted et al., 2004; Holman et al., 2001). 

𝜓0(𝜂) = 𝜋−1/4𝑒−𝑖𝜔0𝜂𝑒−
1
2

𝜂2
 (28) 



Data-driven methods for qualitative and quantitative characterisation of coastal aquifers 

 47 

where 𝜔0 is the dimensionless frequency and  is the dimensionless time. 

CWT is a suitable method to identify anomalies in the signal. However, sometimes it is 

likewise remarkable to overlap two different signals for identifying similarities. Consid-

ering a time series (𝑥𝑛, 𝑛=1, …, 𝑁) with the uniform time steps 𝛿t, CWT is defined 

as the convolution of xn with a scaled and translated mother wavelet of 𝜓0(𝜂) (Torrence 

& Compo, 1998; Grinsted et al., 2004): 

𝑊𝑛
𝑋(𝑠) = √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0

∗  [(𝑛′ − 𝑛)
𝛿𝑡

𝑠
]𝑁

𝑛′=0
  (29) 

where √
𝛿𝑡

𝑠
 is the normalisation factor and the asterisk represents the complex conju-

gate. The complex part of 𝑊𝑛
𝑋(𝑠) is the local phase and |𝑊𝑛

𝑋(𝑠)|2
 is the wavelet 

power. However, CWT presents artefacts at the edges because the wavelet is not en-

tirely localised in time. Since these are time series of finite length, errors will occur at 

the beginning and end of the wavelet power spectrum. An approach is to fill the time 

series’ tails with zeroes before applying the wavelet transform and remove them after-

wards (Meyers et al. 1993). This restriction on the width of the wavelet leads to a cut-

off of the coefficients at the ends of the scalogram, usually represented with a black 

line delimiting the Cone of Influence (COI). Values outside the COI are not used for 

calculating the average spectrum because they may be unreliable due to the stated 

reasons. The COI is defined as the area in which the wavelet power caused by an edge 

discontinuity has fallen to e
-2

 times the edge value (Torrence and Compo, 1998; Grin-

sted et al., 2004). 

Considering two times series X and Y, the Cross Wavelet Transform (XWT) counts for 

two CWTs, estimating their common power and relative phase in the time-frequency 

domain. It can be expressed as: 

𝑊𝑋𝑌(𝑠) = 𝑊𝑋(𝑠) ∙ 𝑊𝑌∗(𝑠) (30) 

in which the asterisk is the complex conjugate. Further, the cross-wavelet power is 

defined as |𝑊 𝑋𝑌| while the complex argument is the locale relative phase between X 

and Y. 
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Wavelet Coherence (WTC) is the correlation coefficient in frequency and time domains 

that quantify the relationship between two-time series (Cazelles et al., 2008) in the time 

and frequency domains and can be estimated as: 

𝑅𝑛
2(𝑠) =

|𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))|2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|2 ∙ 𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|2)
 (31) 

in which 𝑆 is the smoothing operator (Torrence and Compo, 1998; Grinsted et al., 

2004). 𝑅𝑛
2(𝑠) ranges between 0 and 1; the closer the value is to 1, the stronger the 

correlation between the two-time series (Liu et al., 2018). 
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4. DATA-DRIVEN METHODS FOR QUALITATIVE  

CHARACTERISATION 

 

4.1 Multivariate statistical analysis 

Multivariate statistical analysis (MVSA) is a valuable approach that offers a 

means to manage multiple geochemical and physical parameters, treating them as var-

iables, and grouping water samples with similar characteristics into distinct clusters 

(Güler et al., 2002; Ghesquière et al., 2015; Machiwal et al., 2018). This method has 

the potential to reveal spatial and temporal variations in groundwater quality, identify 

key hydrochemical processes, and assess how they change over time, as evidenced 

by various studies (Güler et al., 2002; Papatheodorou et al., 2007; Pacheco Castro et 

al., 2018; Bahrami et al., 2020; Prusty & Farooq, 2020). Among the different multivar-

iate techniques, the Hierarchical Cluster Analysis (HCA) and the Factor Analysis (FA) 

were selected to recognise the spatial and temporal dynamics of groundwater salinisa-

tion in the Salento aquifer. Prior to applying these methods, it is crucial to conduct 

preliminary investigations to ensure the quality and reliability of the datasets. Therefore, 

after selecting chemical analyses (sampling survey periods and validation of related 

groundwater analyses) and compiling the dataset, the MVSA techniques were applied 

to the compiled dataset. The Q-mode HCA was used to cluster water samples based 

on the similarities of their parameters, identifying groups of samples that share similar 

characteristics. R-mode FA was applied to analyse the chemical analyses of water 

samples, allowing the identification of the underlying factors which can reveal the key 

chemical processes affecting groundwater. In the following, the steps involved in the 

statistical analyses are briefly described. 

4.1.1 Preliminary investigation 

The water chemistry dataset goes through data screening using predetermined 

criteria. One such condition involved excluding water samples that did not meet a spec-

ified Charge Balance Error (CBE). CBE is a standard measure to judge the validity and 
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quality of water analyses by evaluating that the total sum of all the positive charges 

(cations) must equal the total sum of all negative charges (anions): 

𝐶𝐵𝐸 =
∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 − |∑ 𝑎𝑛𝑖𝑜𝑛𝑠|

∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + |∑ 𝑎𝑛𝑖𝑜𝑛𝑠|
∗ 100 (32) 

Acceptable water analyses usually have 𝐶𝐵𝐸 less than ±5%. Considering that the 

chemical dataset collected for the study area comprised numerous samples with high 

salinity, water samples with a 𝐶𝐵𝐸 inside the range of ±10% were considered for fur-

ther evaluation (as recommended in Güler et al., 2002). Furthermore, groundwater 

samples were organised into different surveys to compare water quality over time. One 

approach excludes wells not sampled in all the surveys, thus ensuring meaningful com-

parisons between different periods. In cases where available data are limited or sam-

pling surveys do not precisely align in time, one can consider using all accessible anal-

yses, provided that the distribution of wells remains consistent relative to the extent of 

the study area. The water chemistry dataset was then examined regarding values below 

the detection limit and missing data values since such datasets are improper for MVSA 

applications (Farnham et al., 2002). To replace concentration values recorded as “less 

than”, the technique suggested by Sanford et al. (1993) recommends multiplying by 

0.55 the lower detection limit of the instrument. Parameters for which the database had 

over 15% of non-numerical and missing values were excluded.  

In the second step, the statistical distribution of parameters was checked using the 

Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1948). Typically, MVSA re-

quires the normalisation and standardisation of parameters under investigation (Alther, 

1979; Romesburg, 1984; Reimann & Filzmoser, 2000). Therefore, for parameters ex-

hibiting a non-normal distribution, we applied the Box-Cox transformation method (Box 

& Cox, 1964, 1982). In cases where a parameter remained non-normally distributed 

even after the Box-Cox transformation, excluding it from subsequent statistical analyses 

was recommended. However, recent studies applying MVSA for the geochemical char-

acterisation of groundwater do not provide detailed specifications regarding the nor-

malisation of the investigated variable but instead focus on its standardisation (Arumu-

gam et al., 2023; Karangoda & Nanayakkara, 2023; Solano et al., 2023). Thus, in the 
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final step, all parameters were standardised (by calculating their standard z-scores) to 

ensure that each parameter was weighted equally (Johnson & Wichern, 1992). The 

standardised values of the final parameters to be analysed represent the input dataset 

for MVSA. 

4.1.2 Q-mode Hierarchical Cluster Analysis 

The Q-Mode HCA is a statistical technique used to identify and group objects 

or samples based on their similarity or dissimilarity. Various distance metrics can be 

used depending on the nature of the data and the research question. (i.e., Euclidean 

distance, Manhattan distance, or correlation distance). It can be either agglomerative 

(bottom-up) or divisive (top-down). In the first case, clustering starts with each object 

as an individual cluster and successively merges the closest groups until a single set 

remains. Divisive clustering begins with all objects in one group and recursively splits 

clusters into smaller ones until each object forms its group. This technique results in a 

dendrogram (Davis, 1986), a tree-like diagram that illustrates the hierarchical relation-

ships among the samples. The height or distance on the dendrogram indicates the dis-

similarity between clusters, and a horizontal line (a.k.a. phenon line) drawn across the 

dendrogram branches identifies the number of groups. In Q-mode HCA, Ward’s method 

(Ward, 1963) was used as the linkage scheme to assess the similarities among mem-

bers of water groups, while the Euclidean metric was selected to account for distance. 

The obtained clusters were interpreted and analysed by means of boxplots representing 

the major anions and cations for each group, as well as maps associated with each 

monitoring survey. These maps visually displayed the identified water clusters using 

distinct symbols. 

4.1.3 R-mode Factor Analysis 

R-mode FA is a statistical technique used to establish the correlation structure 

among the observed (original) variables and to extract unobserved (latent) variables 

named factors (Dalton & Upchurch, 1978; Basilevsky, 1994). It aims to identify fewer 

unobserved factors that can explain the relationships among a set of observed varia-

bles. 
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The sampling adequacy test of Kaiser-Meyer-Olkin (KMO) was applied to determine the 

suitability of the compiled database for FA application (Kaiser, 1974, 1981). KMO val-

ues are considered acceptable if higher than 0.5, whereas values close to unity define 

the best FA application related to the dataset. The number of factors summarising the 

key processes related to the dataset was selected according to the “Explained variance 

criterion”. In this case, an orthogonal varimax rotation was applied to maximise the 

loading related to one factor and minimise the loading related to the others (Davis, 

1986). Then, the factor loading matrix was examined to define variable-factor associa-

tions and describe the hydrogeochemical process associated with each latent factor, 

where the higher the factor loading (close to ±1), the stronger the influence of variables 

on the respective factor. Conversely, factor loadings close to zero identify a weak cor-

relation between the variables and factors. The maps displaying the spatial distribution 

of the factor scores (FSs), which are related to the intensity of the process underlying 

each factor (Dalton & Upchurch, 1978), help to understand the spatial evolution of the 

identified factors. 

 

  



Data-driven methods for qualitative and quantitative characterisation of coastal aquifers 

 53 

4.2 Hydrogeochemical Facies Evolution-Diagram 

The HFE-D proposed by Giménez-Forcada (2010, 2014) allows exploring the 

hydrogeochemical variations that occur over time by groundwater freshening and sali-

nisation processes (available at https://hidrologia.usal.es/HFE-D.htm). The diagram in-

cludes four main “heteropic” facies (NaHCO3, NaCl, CaHCO3, and CaCl), which are de-

fined by coupling sodium or calcium and chloride or bicarbonate percentages when 

higher than 50 % (Fig. 13). Furthermore, it includes mix facies in which the named ion 

is higher than any other ion, but is less than 50 % (Giménez-Forcada, 2010, 2014; 

Giménez-Forcada & Sánchez San Román, 2015). The abscissae of the HFE-D sepa-

rately mark the percentages of Na
+

 and Ca
2+

, aiming to recognise heteropic hydro-

chemical facies (HFs - as NaHCO3 and CaCl) and mix facies that occur in coastal aqui-

fers under the effects of base-exchange reactions triggered by mixing of fresh- and salt-

waters. The percentage of chloride in the ordinate tracks groundwater salinisation, while 

the percentage of bicarbonate or sulphate (depending on the dominant anion in fresh-

water) typifies the HFs typical of groundwater recharge.  

The Conservative (or non-reactive) Mixing Line (CML), built with a freshwater end-

member and a saltwater water end-member (usually seawater), separates (i) the fresh-

ening phases and facies, which are located to the left above the CML, and (ii) the intru-

sion phases and facies, which are to the right under the CML. The position of the CML 

in the HFE-D is crucial for the water sample classification. In this work, since the 

groundwater salinisation is primarily due to saltwater upconing caused by intense 

groundwater exploitation (Tadolini et al., 1982; Tulipano & Fidelibus, 2002), the con-

centrations of the major ions of the saltwater end-member were defined as the average 

of chemical analyses associated with saltwater samples collected in past monitoring 

programs (1986) in deep wells reaching saltwater beneath freshwater in the study area 

(Fidelibus et al., 2011 – data is available from the MEDSAL Observatory at https://med-

sal.eu/observatory/ and reported in Table 5). Regarding the freshwater end-member, 

the HFE-D model automatically selects the chemical composition of the freshest 

groundwater collected during the analysed sampling surveys. 

https://medsal.eu/observatory/
https://medsal.eu/observatory/
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Table 5 - Saltwater end-member chemical parameters set for CML definition expressed in mg/L. 

  Ca
2+

 Mg
2+

 Na
+
 K

+
 HCO3

–
 SO4

2-
 Cl

–
 

Seawater 712 1,090 11,805 391 138 3,577 20,000 

 

Different sub-stages related to freshwater and intrusion phases can be identified in ac-

cordance with the chemical composition of sampled waters. Both freshening sub-

stages (from the beginning to the end of the freshening process are f1, f2, f3, f4 and 

FW) and the intrusion sub-stages (from the beginning to the end of the intrusion pro-

cess are i1, i2, i3, i4 and SW) help to identify the salinisation dynamics of groundwater 

samples (Giménez-Forcada, 2014, 2019). The HFs distribution was finally plotted for 

each survey to determine the temporal evolution of the salinisation process. These 

maps follow the methodological approach proposed by Giménez-Forcada (2010, 2014, 

2019). 

 

Fig. 13 - Hydrogeochemical Facies Evolution-Diagram (HFE-D) proposed by Giménez-Forcada (2010, 

2014). 



Data-driven methods for qualitative and quantitative characterisation of coastal aquifers 

 55 

4.3 Geostatistic 

Geostatistics is a branch of applied statistics recognised as a helpful tool for 

the spatial analysis of countless variables for more than 50 years (Matheron, 1963). It 

is commonly used in geology, environmental science, mining, hydrology, agriculture, 

and more, where observed points have geographic coordinates or are otherwise related 

to space.  

Among the geostatistical interpolation methods, the Kriging technique, which originated 

in mining geology (Krige, 1951), differs from more straightforward techniques (i.e., 

Inverse Distance Weighted Interpolation or Linear Regression) by considering spatial 

correlations between empirical observation points to interpolate values in the spatial 

field. Furthermore, Kriging provides estimates of uncertainty for each interpolated value. 

The primary goal is to examine the data’s spatial patterns and variability, making pre-

dictions and estimates at unsampled locations and considering the spatial correlation 

of data values. Therefore, data points close to each other are more likely to have similar 

values than distant points apart.  

Assuming that data are part of a realisation of an intrinsic random function, Kriging can 

be conceptualised as a two-step procedure: firstly, it involves determining the spatial 

covariance structure of the sampled points by fitting a variogram γ(h). Subsequently, 

the derived weights from this covariance structure are utilised to interpolate values for 

unsampled points or blocks across the entire spatial field. 

The variogram is a graphical representation showing how the variance between data 

points changes with distance or lag, providing information about the spatial structure 

of data. The “experimental” variogram plots observed values, while the “theoretical” 

variogram is the distributional model that best fits the data. 

Three parameters are essential components of the variogram model (Fig. 14): 

1. Nugget represents the discontinuity in the variogram at the origin (lag distance 

equals zero). It reflects the variance of the data at very short distances, typically at 

the scale of measurement error or sampling error. 

2. Sill defines the upper limit of uncertainty when making predictions at unsampled 

locations, i.e., the variance of the data as the lag distance increases. 
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3. Range measures the spatial continuity beyond which the spatial autocorrelation be-

comes negligible. It is crucial to determine the influence of a data point as distance 

increases. A short range indicates that nearby points strongly influence each other, 

while an extended range means a smoother variation over longer distances. 

 

Fig. 14 - Experimental variogram and its main parameters. 

After computing the experimental variogram directly from the data, it is possible to fit a 

theoretical function from those available in the scientific literature. Some of the most 

widely used theoretical variograms are shown in Fig. 15 and summarised in Table 6.  

 

Fig. 15 - Example of theoretical variograms. 
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Table 6 - Theoretical variogram functions. 

Model Function γ(h) Parameters 

Nugget {
𝐶0,    ℎ > 0
0,    ℎ = 0

 𝐶0 > 0 

Linear 𝜃 ∙ ℎ 𝜃 > 0 

Power 𝜃 ∙ ℎ𝑠
 𝜃 > 0, 2 >  𝑠 > 0 

Spherical {
(

3ℎ

2𝛼
−

1ℎ3

2𝛼3
) 𝜎2, 0 ≤ ℎ ≤ 𝛼 

𝜎2,                       ℎ > 𝛼

 𝜎2 > 0, 𝛼 > 0 

Exponential 𝜎2 (1 − exp (−
ℎ

𝑙
)) 𝜎2 > 0, 𝑙 > 0 

Gaussian 𝜎2 (1 − exp (−
ℎ2

𝐿2
)) 𝜎2 > 0, 𝐿 > 0 

 

The two main assumptions for Kriging to provide the best linear unbiased prediction 

are (i) stationarity and (ii) isotropy. Stationarity considers that the joint probability dis-

tribution remains constant. Consequently, the same variogram model is valid and ap-

plicable throughout the entire study domain, since parameters like the overall mean of 

the values, range and sill of the variogram do not exhibit spatial variations. Isotropy 

assumes uniformity in all directions, although it is possible to consider anisotropy by 

fitting variograms in different directions. 

Several Kriging techniques include Ordinary Kriging (OK), Simple Kriging (SK), Univer-

sal Kriging (UK), Indicator Kriging (IK) and more. In general, the accuracy of these 

interpolation methods depends on the number of sample points and their spatial distri-

bution. Moreover, it is reasonably sensitive to the selected variogram since its param-

eters are user-defined. In the environmental field, the stationarity hypothesis can be 

challenging. In the following paragraphs, OK and IK are briefly described. 

4.3.1 Ordinary Kriging 

Ordinary Kriging (OK) is the most widely used spatial prediction method. It is 

used to estimate a value in an unobserved point 𝑥0 of a region based on 𝑛 spatial 

neighbourhood observations, assuming that the mean and variance of the values are 

constant across the spatial field.  
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The predicted value 𝑍∗(𝑥0) is expressed as: 

𝑍∗(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 (33) 

where 𝜆𝑖 is the weighting coefficient calculated on the 𝑛 positions within the neighbour-

hood points. The optimal selection of 𝜆𝑖 should minimize the bias between the predicted 

𝑍∗(𝑥) and the real (unknown) value 𝑍(𝑥). 

The weighting coefficients are selected based on the requirements of (i) unbiasedness, 

i.e., the expected value of the estimation error 𝑍∗(𝑥0) − 𝑍(𝑥0) must be zero, and (ii) 

the best or minimum variance estimation, i.e., the expected value of the square error 

must be as small as possible. These conditions result in a system of 𝑛 + 1 linear equa-

tions with 𝑛 + 1 unknowns, notorious as the Kriging system: 

− ∑ 𝜆𝑗𝛾(𝑋𝑖 − 𝑋𝑗) + 𝜈 = −𝛾(𝑋𝑖 − 𝑋0), 𝑖 = 1, 2, … , 𝑛

𝑛

𝑗=1

 

(34) 

= ∑ 𝜆𝑗

𝑛

𝑗=1

= 1 

where 𝜈 is a Lagrange multiplier. The mean square error of estimation is given by the 

formula: 

𝜎2
0 = 𝐸[(𝑍∗(𝑋0) − 𝑍(𝑋0))2] = −𝜈 + ∑ 𝜆𝑗𝛾(𝑋𝑖 − 𝑋𝑗)

𝑛

𝑗=1

 (35) 

In the global neighbourhood approach, all observations are included. In contrast, the 

local neighbourhood approach comprises only a subset of known points, set by the 

user as (i) a fixed number of observations closest to the point 𝑋0, (ii) all observations 

within a specific radius or (iii) a combination of these strategies. 

This research used OK to spatially plot the outcomes obtained from FA and HFE meth-

ods in each survey and compare them in time. 
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4.3.2 Indicator Kriging 

Traditional geostatistical methods may provide a misleading depiction of the 

phenomenon under study when dealing with variables with high variability like nitrates. 

In the case of asymmetric distributions and the presence of outliers, classical geosta-

tistical techniques become less reliable for predicting values at unknown locations 

within the spatial domain.  

To overcome this issue and prevent overestimation or underestimation, a more sophis-

ticated approach is required for selecting the mean of the values, as suggested by 

Glacken & Blackney (1998). In these cases, using a representation of the phenomenon 

based on the probability of exceeding fixed thresholds is more beneficial. To this end, 

one of the most suitable methods is the Indicator Kriging (IK) introduced by Journel 

(1983). It is a spatial interpolation technique to estimate a variable’s conditional cumu-

lative distribution function at an unsampled location. Unlike SK and OK, IK stands out 

as a nonparametric method. It employs new indicator variables to generate predictions 

instead of utilising the estimated variable’s actual values. 

Thresholds are established based on the distribution of the data and initial statistical 

analysis. These limits are then used to construct the cumulative distribution function. 

IK converts the original data into binary form through a binary transformation: one if the 

value exceeds the threshold and zero if it does not. Once obtained the binary conver-

sion, the procedure aligns with that of OK, including the subsequent definition of the 

variogram. The prediction made by IK is interpreted as the probability of exceeding the 

threshold value at an unknown point. This is an estimate of the proportion of values in 

the vicinity of a point that is higher than the indicator or threshold value. The essence 

of the IK method is the definition of an indicator function 𝑖(𝑥; 𝑧𝑘) which can respec-

tively assume the 1 or 0 value depending on the set threshold 𝑧𝑘: 

𝑖(𝑥; 𝑧𝑘) = {
1 𝑖𝑓 𝑧(𝑥) ≤ 𝑧𝑘

0 𝑖𝑓 𝑧(𝑥) > 𝑧𝑘
 (36) 

IK does not estimate the indicator variable but provides a method for least-squares 

estimation of the cumulative distribution function at the threshold 𝑧𝑘: 
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𝐼(𝑥0; 𝑧𝑘) = 𝐸{𝑥0; 𝑧𝑘|(𝑛)} (37) 

where (𝑛) represents the proximity of other values at the point 𝑥0. Due to the way the 

random indicator function 𝐼(𝑥; 𝑧) is constructed, the expected value of 𝐼(𝑥; 𝑧) corre-

sponds to the cumulative distribution function of the random function 𝑧𝑥. In fact: 

𝐸 [𝐼(𝑥; 𝑧)] = 1 ∗ 𝑃𝑟𝑜𝑏{𝑍(𝑥) ≤ 𝑧} + 0 ∗ 𝑃𝑟𝑜𝑏{𝑍(𝑥) > 𝑧}  (38) 

𝐸 [𝐼(𝑥; 𝑧)] = 𝑃𝑟𝑜𝑏{𝑍(𝑥) ≤ 𝑧} = 𝐹(𝑧) (39) 

Therefore, the estimation of the indicator variable at threshold z becomes: 

𝐼(𝑥0;𝑧𝑘) = 𝐸{𝑥0; 𝑧𝑘|(𝑛)} = 𝑃𝑟𝑜𝑏{𝑍(𝑥0) ≤ 𝑧|(𝑛)}  (40) 

𝐼(𝑥0;𝑧𝑘) = ∑ 𝑤(𝑥𝑖; 𝑧)𝐼(𝑥𝑖; 𝑧) + [1 − ∑ 𝑤(𝑥𝑖; 𝑧)

𝑛

𝑖=1

]

𝑛

𝑖=1

𝐹(𝑧) 
(41) 

in this case, the 𝑤(𝑥𝑖; 𝑧) are the weights assigned to the threshold z. 

IK was applied to a regional database consisting of chemical analyses conducted over 

the past 25 years, with measurements ranging from 1995 to 2021 on static and pump-

ing wells included in regional monitoring networks and consortia. The laboratory anal-

yses were carried out by the Regional Agency for Environmental Prevention and Pro-

tection (ARPA, https://www.arpa.puglia.it/), and details of the analytical procedures can 

be found at https://www.arpa.puglia.it/pagina3128_qualit.html. 

Unfortunately, the measurements in the dataset vary in terms of sampling frequency, 

techniques and instruments, water sample storage, transport, and laboratory protocols. 

Recognizing the non-uniformity of the data and considering the three-dimensional vul-

nerability of the study area, we employed the collected dataset to assess the qualitative 

changes in nitrate pollution in both space and time within the Salento aquifer. The set 

thresholds follow the 2000/60/EC and 2006/118/EC European Water and Groundwater 

Framework Directives, respectively, and are 20 (good quality), 40 (intermediate qual-

ity), and 50 mg L
-1

 (poor quality), as widely used in the scientific literature (Chica-Olmo 

et al., 2014; Piccini et al., 2012). 

https://www.arpa.puglia.it/
https://www.arpa.puglia.it/pagina3128_qualit.html
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5. CLIMATE CHANGE MODELS 

  

5.1 Climate Models and uncertainty related to BC methods 

Climate Change Models, also known as Earth System Models, are computer-

based tools used to simulate and project future climate conditions. These models are 

based on complex mathematical equations representing the physical, chemical, and 

biological processes within the Earth’s climate system. They were developed by incor-

porating various components of the Earth’s system, including the atmosphere, oceans, 

land surface, ice, and vegetation. These components are represented as grids or cells, 

with equations describing how they interact and exchange energy, momentum, and 

mass with each other. There are different types of climate models, including Earth Sys-

tem Models (ESMs), General Circulation Models (GCMs), and Regional Climate Models 

(RCMs).  

ESMs are more comprehensive models that integrate the physical components of the 

climate system and biogeochemical cycles, such as carbon and nitrogen cycles, cap-

turing interactions between the atmosphere, oceans, land surface, and ecosystems and 

providing a complete representation of the Earth system. 

GCMs are large-scale models that simulate the Earth’s climate system globally. They 

are designed to simulate past climate conditions, understand current climate pro-

cesses, and project future scenarios under different greenhouse gas emission scenar-

ios on a global scale. However, they are often affected by uncertainty predominantly 

due to low resolutions (approximately 100–250 Km) that inevitably lack regional details 

(Randall et al., 2007). To this end, several downscaling methods have been developed 

to transform the large-scale information of GCMs to finer scales (25-50 Km), resulting 

in Regional Climate Models (RCMs) (Teutschbein & Seibert, 2012; Maraun, 2016).  

RCMs are particularly useful for studying climate change impacts at a regional scale, 

assessing regional climate variability, and providing more detailed information for cli-

mate adaptation and decision-making at the local level. Notwithstanding, RCMs show 

several limitations (Christensen et al., 1998, Teutschbein & Seibert, 2012, Varis et al., 
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2004) since, depending on the study area, they could provide inaccurate seasonal pre-

cipitation patterns, overestimate wet days, or incorrectly yield extreme temperatures.  

For this purpose, many bias-correction (BC) methods were developed to overcome the 

significant bias in RCMs. They can adapt RCMs to local observations regarding mean 

and variance (scaling methods) or distribution probabilities. However, using BC meth-

ods may introduce uncertainty in climate risk assessments due to the potential for var-

ious algorithms to yield varying impact results (Iizumi et al., 2017). Further uncertainty 

may be introduced by the accuracy of observation data (Kim et al., 2015) and the his-

torical period used as a reference (Chen et al., 2015; Gampe et al., 2019). Noto et al. 

(2023b) argued that the intricate sequence of modelling procedures, i.e., emission sce-

narios, climate models, downscaling and/or bias-correction techniques, and hydrolog-

ical models, involves a certain level of uncertainty that spreads throughout the entire 

process, resulting in divergent and occasionally unexpected outcomes. 

Through uncertainty analysis, Senatore et al. (2022) demonstrated in a catchment lo-

cated in Southern Italy that the primary source of uncertainty is introduced by GCMs, 

followed by RCMs and applied BC methods. Thus, an ensemble of RCM simulations 

and field observation data may be considered together with different bias correction 

methods to simultaneously evaluate the uncertainties of each simulated dataset and the 

performance of every technique (Fantini et al., 2018). This suggestion is particularly 

relevant when the hydrological variables are used to investigate future impacts in areas 

highly vulnerable to climate change, such as the Mediterranean basin (IPCC, 2014; 

Giorgi & Lionello, 2008). 

Climate models need to be representative of the local climatic conditions; therefore, 

they are evaluated and validated using historical climate data to ensure they accurately 

reproduce observed climate patterns. Once validated, they are used to project future 

climate scenarios under different greenhouse gas emission scenarios, providing valu-

able insights into the potential impacts of climate change on various sectors, ecosys-

tems, and regions. To discuss the future hydrological impacts of climate change on the 

Salento aquifer, simulated daily precipitation and minimum and maximum temperature 
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data were selected from an ensemble of different RCMs belonging to the EURO-

CORDEX domain (Jacob et al., 2014).  

Several BC methods were applied at daily time steps to improve the RCMs’ simulations 

in terms of local climate variability representation, and their performance was evaluated 

by comparing results with monthly and annual precipitation and temperature (minimum 

and maximum) observations in the historical period (1971-2005). After selecting two-

time windows for near to medium (2031-2060) and distant (2071-2100) future, trend 

analyses were performed on monthly and annual time steps, comparing the projected 

with the corresponding precipitation and temperature data of 1971-2005.  

For this purpose, two different approaches may be adopted to analyse the performance 

of BC methods in future climate scenarios. In climatology, the projected bias-corrected 

data over a future period are usually compared to the original incorrect simulations as 

the main focus is to investigate how BC algorithms influence historical and projected 

climate data (Dieng et al., 2022); in contrast, from a hydrogeological impact assess-

ment point of view, these are typically compared with historical observations (Pfeifer et 

al., 2015; Arampatzis et al., 2018; Sperna Weiland et al., 2021). Finally, the potential 

climate change in precipitation and temperature over the study area were qualitatively 

discussed. 

5.1.1 Climate projections 

The CORDEX (Coordinated Regional Climate Downscaling Experiment) is a 

global initiative to enhance regional climate change understanding and its impacts 

worldwide. It involves different continents, including Africa, Asia, Europe, the Americas, 

and the Middle East. Specifically, the EURO-CORDEX domain used in this research is 

the regional climate modelling initiative focusing on the European region. For this initi-

ative, several GCMs, resulting from the CMIP5 project (Coupled Model Intercomparison 

Phase 5; Taylor et al., 2012) were dynamically downscaled and provided with a reso-

lution of 0.11°. Despite CMIP6 having significantly advanced the assessment of climate 

change impacts by integrating RCP scenarios with Shared Socioeconomic Pathways 

(SSPs), i.e. climate change scenarios of projected socioeconomic global changes, its 

database has not yet made regional simulations publicly available. The progress in 
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producing such data shows that out of a total of 420 datasets, only 32 have been 

completed. 

The selected ensemble of 12 RCMs from CMIP5 project is listed in Table 7, in which 

each model is renamed with an acronym comprising two letters referring to the GCM 

name and two to the RCM name. They have been commonly applied in climate change 

impact assessments in the Mediterranean region. Furthermore, this selection repre-

sents a sufficiently varied range of RCM and GCM combinations, as it encompasses 7 

RCMs driven by 4 distinct GCMs. 

Table 7 - List and acronyms of used GCM-RCM combinations. 

RCM GCM Model acronym 

ALADIN53
1R

 CNRM-CERFACS-CNRM-CM5
1G

 AL_CN 

CCLM4-8-17
2R

 

CNRM-CERFACS-CNRM-CM5 CC_CN 

ICHEC-EC-EARTH
2G

 CC_IC 

MPI-M-MPI-ESM-LR
3G

 CC_MP 

HIRHAM5
3R

 ICHEC-EC-EARTH HI_IC 

RACMO22
4R

 ICHEC-EC-EARTH RA_IC 

RCA4
5R

 

CNRM-CERFACS-CNRM-CM5 RC_CN 

ICHEC-EC-EARTH RC_IC 

IPSL-IPSL-CM5A-MR
4G

 RC_IP 

MPI-M-MPI-ESM-LR RC_MP 

REMO2009
6R

 MPI-M-MPI-ESM-LR RE_MP 

WRF331F
7R

 IPSL-IPSL-CM5A-MR WF_IP 

1R
 Colin et al. 2010, Herrmann et al., 2011; 

2R
 Rockel et al., 2008; 

3R
 Christensen 

et al., 1998; 
4R

 van Meijgaard et al., 2008; 
5R

 Samuelsson et al., 2011, Kupiainen 

et al., 2011; 
6R

 Jacob et al., 2012; 
7R

 Skamarock et al., 2008; 
1G

 Voldoire et al., 

2013; 
2G

 Hazeleger et al., 2010; 
3G

 Giorgetta et al., 2013; 
4G

 Dufresne et al., 2013. 

Only the RCP4.5 intermediate scenario for 1960-2005 and 2006-2100 was considered, 

as it refers to a stabilisation scenario assuming the invocation of climate policies to 

limit emissions and radiative forcing (Thomson et al., 2011). The more plausible out-

comes are reflected by RCP4.5 considering the current (and, to a certain degree, 

pledged) policies (Hausfather & Peters, 2020). In contrast, RCP8.5 is a high emissions 

scenario, representative of the wide range of non-climate policy scenarios (van Vuuren 

et al., 2011). 
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5.1.2 Historical dataset 

The Civil Protection Service of the Apulia Government provided daily historical 

climate observations, as described in 1.2.1. Specifically, 19 precipitation and 11 tem-

perature stations were selected due to their consistent time series with less than 7% 

missing values. The reference period ranges from 1960 to 2005 (except SAL_MS6 and 

SAL_MS14, which date from 1971 to 2005).  

Fig. 16 illustrates the spatial distribution of the selected meteorological stations in the 

study area. Before applying BC techniques, precipitation and temperature datasets were 

subjected to the iterative procedure of missing values infilling, as described in Chapter 

2. 

 

Fig. 16 - Meteorological station selected over the study area. 
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5.2 Bias-correction methods 

Eight BC methods were applied at daily time steps, and their results were as-

sessed on monthly and annual time steps, using the daily observations for the period 

1971-2005 (Table 8). 

The BC methods are generally distinguished into (i) scaling and (ii) distribution adjust-

ment techniques. Examples of scaling methods among those selected in this study are 

the Linear Scaling method (LS), the Local Intensity scaling of precipitation (LOCI), the 

Power Transformation of Precipitation (PTR), and the Variance scaling of temperature 

(VAR). In contrast, Empirical Quantile Mapping (EQM), Parametric Quantile Mapping 

(PQM), Generalised Quantile Mapping (GPQM), Detrended Quantile Matching (DQM), 

and Quantile Delta Mapping (QDM) belong to the second category. While scaling meth-

ods account for the bias in the mean and/or variance, the quantile mapping BC methods 

commonly correct bias between simulated and observed data equating cumulative dis-

tribution functions (CDFs) of both datasets. 

BC methods were applied using the well-developed and tested climate4R (Iturbide et 

al., 2019) and downscaleR (Marsh et al., 2018) libraries for R software. The correction 

factor for daily data in all methods is based on a sliding window (Smitha et al., 2018), 

referring to 31 days. The sliding window approach consists of selecting a minimum of 

100 rainy day values for each year in the reference period, ensuring enough data points 

for generating probability distribution plots. These chosen rainy day values were then 

utilised in various bias correction methods to compute the daily correction factors. 

Table 8 - Lists and acronyms of the implemented BC methods. 

BC methods Method acronym Variables 

Empirical Quantile Mapping EQM Pr, Tmax, Tmin 

Linear Scaling LS Pr, Tmax, Tmin 

Parametric Quantile Mapping PQM Pr, Tmax, Tmin 

Generalised Quantile Mapping GPQM Pr, Tmax, Tmin 

Local intensity scaling LOCI Pr 

Power transformation of precipitation PTR Pr 

Detrended quantile matching DQM Pr, Tmax, Tmin 

Quantile delta mapping QDM Pr, Tmax, Tmin 

Variance scaling of temperature VAR Tmax, Tmin 
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5.2.1 Linear Scaling (LS) 

The LS method consists of scaling simulated data with a multiplicative or addi-

tive factor calculated as the difference/ratio between the observed and the simulated 

mean in the reference period (Lender & Buishand, 2007). The multiplicative factor is 

typically used with variables with a lower bound (e.g., precipitation or wind speed), 

while the additive is preferably applicable to unbounded variables (e.g., temperature): 

𝑃𝐵𝐶,𝑚,𝑑 = 𝑃𝑟𝑎𝑤,𝑚,𝑑 ×
�̅�𝑜𝑏𝑠,𝑚

�̅�𝑟𝑎𝑤,𝑚
 (42) 

𝑇𝐵𝐶,𝑚,𝑑 = 𝑇𝑟𝑎𝑤,𝑚,𝑑 × (�̅�𝑜𝑏𝑠,𝑚 − �̅�𝑟𝑎𝑤,𝑚) (43) 

Where 𝑃𝐵𝐶,𝑚,𝑑 and 𝑇𝐵𝐶,𝑚,𝑑 are the bias-corrected precipitation and temperature on the 

dth day of 𝑚th

 month, 𝑃𝑟𝑎𝑤,𝑚,𝑑 and 𝑇𝑟𝑎𝑤,𝑚,𝑑 are the raw precipitation and temperature 

on the dth day of 𝑚th

 month.  �̅�𝑜𝑏𝑠,𝑚 and �̅�𝑜𝑏𝑠,𝑚 and �̅�𝑟𝑎𝑤,𝑚 and �̅�𝑟𝑎𝑤,𝑚 represent the 

mean values of observed and simulated precipitation and temperature at a given month 

𝑚. 

5.2.2 Local Intensity scaling of precipitation (LOCI) 

The LOCI technique (Schmidli et al., 2006) is an improvement of the LS ap-

proach because it involves the adjustment of the mean as well as both wet day fre-

quencies and intensities of rainfall time series, by setting a common precipitation 

threshold for all considered stations (𝑃𝑡ℎ𝑟𝑒𝑠= 0.20 mm for the Salento case study) 

such that the number of simulated days exceeding this threshold matches the number 

of observed days. The bias-corrected daily precipitation values are calculated as fol-

lows: 

𝑃𝐵𝐶,𝑚,𝑑 = {

0, 𝑖𝑓 𝑃𝑟𝑎𝑤,𝑚,𝑑 < 𝑃𝑡ℎ𝑟𝑒𝑠

𝑃𝑟𝑎𝑤,𝑚,𝑑 ×
(�̅�𝑜𝑏𝑠,𝑚|𝑃𝑜𝑏𝑠,𝑚,𝑑 > 𝑃𝑡ℎ𝑟𝑒𝑠)

(�̅�𝑟𝑎𝑤,𝑚|𝑃𝑟𝑎𝑤,𝑚,𝑑 > 𝑃𝑡ℎ𝑟𝑒𝑠)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (44) 



Maria Rosaria Alfio | XXXVI cycle 

 68 

5.2.3 Power Transformation of Precipitation (PTR) 

The PTR introduced by Leander & Buishand (2007) uses an exponential func-

tion permitting changes in the mean and the variance of the dataset. It is designed only 

for precipitation data due to the power function applied. 

Firstly, the optimal exponent bm for the 𝑚th

 month is determined as the function that 

minimises Eq. 45. Then, the corrected precipitation series are obtained based on Eq. 

46. 

𝑓(𝑏𝑚) =
𝜎(𝑃𝑜𝑏𝑠,𝑚)

�̅�𝑜𝑏𝑠,𝑚
−

𝜎(𝑃𝑟𝑎𝑤,𝑚
𝑏𝑚 )

�̅�𝑟𝑎𝑤,𝑚
𝑏𝑚

 (45) 

𝑃𝐵𝐶,𝑚,𝑑 = 𝑃𝑟𝑎𝑤,𝑚,𝑑 ×
�̅�𝑜𝑏𝑠,𝑚

�̅�𝑟𝑎𝑤,𝑚
𝑏𝑚

 (46) 

where 𝜎(. ) indicates the standard deviation operator.  

5.2.4 Variance scaling of temperature (VAR) 

The VAR is the complementary approach of PTR for temperature data. It adjusts 

the mean and variance of normally distributed variables (Chen et al., 2011a, Chen et 

al., 2011b). Temperature is typically corrected using VAR method with Eq. 47. 

𝑇𝐵𝐶,𝑚,𝑑 = (𝑇𝑟𝑎𝑤,𝑚,𝑑 − �̅�𝑟𝑎𝑤,𝑚) ×
𝜎(𝑇𝑜𝑏𝑠,𝑚)

𝜎(𝑇𝑟𝑎𝑤,𝑚)
+ �̅�𝑜𝑏𝑠,𝑚 (47) 

5.2.5 Empirical Quantile Mapping (EQM) 

The EQM method fits the CDF of simulated data to that of the observations, 

effectively correcting bias in the mean, standard deviation, and quantiles. This tech-

nique also adjusts the overestimation of wet or dry day frequency (defined as days with 

precipitation above or below 𝑃𝑡ℎ𝑟𝑒𝑠 in the observation dataset) following Themeßl et al. 

(2012) and Wilcke et al. (2013). The correction using EQM can be expressed in terms 

of the empirical cumulative distribution function (ecdf) and its inverse (ecdf
-1

): 
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𝑃𝐵𝐶,𝑚,𝑑 = 𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤,𝑚(𝑃𝑟𝑎𝑤,𝑚,𝑑)) (48) 

𝑇𝐵𝐶,𝑚,𝑑 = 𝑒𝑐𝑑𝑓𝑜𝑏𝑠,𝑚
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤,𝑚(𝑇𝑟𝑎𝑤,𝑚,𝑑)) (49) 

5.2.6 Parametric Quantile Mapping (PQM) 

The PQM algorithm uses a theoretical distribution calibrated over the training 

period. Usually, the Gamma distribution applies to precipitation (Piani et al., 2009), 

while the Gaussian distribution is appropriate for temperature data (Collados-Lara et al., 

2018). As for EQM, the overestimation of wet or dry day frequency is assumed con-

sidering the above-cited 𝑃𝑡ℎ𝑟𝑒𝑠. 

𝑃𝐵𝐶,𝑚,𝑑 = 𝐹𝐺
−1(𝐹𝐺(𝑃𝑟𝑎𝑤,𝑚,𝑑|𝛼𝑟𝑎𝑤,𝑚, 𝛽𝑟𝑎𝑤,𝑚)|𝛼𝑜𝑏𝑠,𝑚, 𝛽𝑜𝑏𝑠,𝑚) (50) 

𝑇𝐵𝐶,𝑚,𝑑 = 𝐹𝑁
−1(𝐹𝑁(𝑇𝑟𝑎𝑤,𝑚,𝑑|𝜇𝑟𝑎𝑤,𝑚, 𝜎𝑟𝑎𝑤,𝑚)|𝜇𝑜𝑏𝑠,𝑚, 𝜎𝑜𝑏𝑠,𝑚) (51) 

where 𝐹𝐺(. ) and 𝐹𝐺
−1(. ) are the Gamma CDF and its inverse,  𝐹𝑁(. ) and 𝐹𝑁

−1(. ) 

are the Gaussian CDF and its inverse. 𝛼𝑟𝑎𝑤,𝑚 and 𝛽𝑟𝑎𝑤,𝑚 are the fitted Gamma pa-

rameters for the raw precipitation at a given month m, and 𝛼𝑜𝑏𝑠,𝑚 and 𝛽𝑜𝑏𝑠,𝑚 are those 

for observation. μ𝑟𝑎𝑤,𝑚 and 𝜎𝑟𝑎𝑤,𝑚 are the fitted Gaussian parameters for the raw 

precipitation at a given month m, and 𝜇𝑜𝑏𝑠,𝑚 and 𝜎𝑜𝑏𝑠,𝑚 are those for observations. 

5.2.7 Generalised Quantile Mapping (GPQM) 

Gutjahr & Heinemann (2013) proposed the GPQM technique, which uses two 

theoretical distributions, i.e., the Gamma distribution to values under the threshold given 

by the 95
th

 percentile and a general Pareto distribution to values above the threshold. 

This threshold is the 95
th

 percentile of the observed and predicted wet-day distribution. 

For temperature data, the general Pareto distribution relates to values below the 5
th

 per-

centile and the Normal distribution to the rest of the values. The wet-day frequency 

adjustment is also considered. This method aimed to adjust the extreme and non-ex-

treme values separately. 
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5.2.8 Detrended Quantile Matching (DQM) 

The DQM algorithm applies the EQM to the detrended series and then reapplies 

the mean trend to the bias-adjusted series. It preserves the long-term mean signal in a 

climate change context. More details and differences between QDM and DQM are ex-

plicitly provided by Cannon et al. (2015). 

5.2.9 Quantile Delta Mapping (QDM) 

The QDM method (Cannon et al. 2015) preserves the change signal in the sim-

ulated quantiles of variables considering a bias-corrected value term obtained from the 

observations dataset and the relative change term (delta) obtained from the simulated 

data. Therefore, model projections are firstly detrended per quantile, and quantile map-

ping is applied to correct systematic distributional biases compared to the observa-

tions. Secondly, the removed projected trends are restored to the bias-corrected quan-

tiles.  
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5.3 BC Performance evaluation 

The performance of the raw and bias-corrected climate model simulations was 

evaluated for each method on a monthly and annual basis by comparing bias-corrected 

simulated data with the corresponding precipitation and temperature historical obser-

vation from 1971 to 2005. Taylor diagrams (Taylor, 2001) were used to analyse and 

compare the results of each BC method since they incorporate correlation coefficient, 

root mean square difference and standard deviation into a single graph. 

The adopted metrics are Root Mean Square error (RMSE), Spearman correlation coef-

ficient (RHO), Nash-Sutcliffe efficiency (NSE), and Percent bias error (BIAS). 

𝑅𝑀𝑆𝐸 = √
∑(𝑆𝑖 − 𝑂𝑖)2

𝑁
 (52) 

𝑅𝐻𝑂 =
𝑐𝑜𝑣(𝑅(𝑂)𝑅(𝑆))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)
 (53) 

𝑁𝑆𝐸 = 1 −
(𝑆 − 𝑂)2

(𝑂 − �̅�)2
 (54) 

𝑃𝐵𝐼𝐴𝑆 = 100 ∗
1

𝑁
∑(𝑆𝑖 − 𝑂) (55) 

where 𝑆𝑖 indicates the 𝑖th

 simulated raw data, 𝑂𝑖 the corresponding 𝑖th

 historical obser-

vation, 𝑅(𝑂) 𝑅(𝑆) their ranks and 𝑁 the length of the time series. 

Choosing the most effective BC method is challenging because different statistical met-

rics may lead to inconsistent results (Gado et al., 2021). In this framework, the com-

promise programming proposed by Zeleny (1973) was applied to determine the most 

effective BC methods and evaluate the future scenario. It consists of measuring the 

distance of each method from the ideal value of the selected metrics and opting for the 

minimum one as the best method. The distance 𝐿𝑐𝑝 is estimated as follows: 
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𝐿𝑐𝑝 = [∑ |𝑓𝑗 − 𝑓∗
𝑗
|

𝑝
𝐽

𝑗=1

]

1
𝑝

 (56) 

where J is the number of the metrics used, 𝑓𝑗 is the normalised value of metric 𝑗 ob-

tained for a given method and 𝑓∗
𝑗 is the ideal value of the metric; p represents the 

maximal deviation and is equal to 1 for linear and 2 for Euclidean distance measure. In 

this study, a linear scale is used. 

To evaluate the effect of the selected methods on future projections, the mean annual 

amount and the change signal were calculated for each RCM in the two 30-years peri-

ods from the observed reference. Specifically, the climate change signal refers to the 

percentage difference between future raw and bias-corrected RCMs output for precip-

itation, and deviations for temperature, from the reference period. 
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6. RESULTS AND DISCUSSION 

 

6.1 Missing values production 

Gaps or missing values within meteorological datasets continue to pose a re-

curring challenge, and their accurate filling presents a formidable task, especially when 

the available meteorological stations are limited compared to the size of the geograph-

ical regions under consideration (Aguilera et al., 2020).  

In the Salento case study context, five different approaches were employed to impute 

missing values within the hydrological time series dataset. Their performance was as-

sessed based on criteria such as the number of iterations required to reach predefined 

threshold values during two consecutive stages of data filling, as well as crucial metrics 

including R, NSE, and SI. After a preliminary analysis of the precipitation and tempera-

ture datasets to determine the extent of missing values, it was observed that the pro-

portion of missing data points was relatively low, with precipitation reaching a maxi-

mum of 7% and temperature having a maximum of 5% missing values. Once selecting 

a period without missing data, the iterative procedure was tested for all methods and 

variables. The methodologies were applied to daily values in the reference period and 

monthly evaluated on the monthly records. 

In the case of precipitation, characterised by its random nature, the estimated daily 

values exhibited variations compared to the observed ones, particularly on days with 

higher precipitation levels. However, when assessing the data on a monthly aggregation 

scale, the results were notably accurate, a conclusion further corroborated by the ro-

bustness of the acquired metrics. Fig. 17 illustrates the monthly comparison between 

the observed and estimated amount of precipitation and the maximum and minimum 

temperatures for each data interpolation method used during the reference period for 

the Lecce meteorological station, indicatively. 
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Fig. 17 - Monthly precipitation (left-hand side column), maximum (middle side column) and minimum 

(right-hand side column) temperature comparison between observed and estimated values obtained with 

the five selected infilling methods. The reference period for precipitation is 1971-1976, while for temper-

ature is 2000-2002. 
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It is worth noting that all methods demonstrated satisfactory performance in filling in 

missing data, as evidenced by the substantial R and SI coefficients computed, in addi-

tion to the yielded NSE coefficients (Fig. 18). Furthermore, the number of iterations 

required to reach the convergence threshold of 0.01 mm for precipitation and 0.01°C 

for temperature was notably minimal, particularly for temperature. However, specific 

methods, such as Thiessen and IDW, in the case of rainfall, necessitated more steps 

to achieve convergence. Based on a comprehensive assessment that considered both 

the metrics and the number of iterations needed to reach convergence, the MICE_pmm 

method was chosen for imputing missing data in the precipitation daily time series. In 

contrast, the MS method was selected for the temperature daily time series. 

 

 

Fig. 18 - Number of iteration boxplots and final R, NSE, and SI coefficients for each filling method referring 

to Pr (top side), Tmax (middle side) and Tmin (bottom side), respectively. 

The satisfactory outcomes observed can likely be related to the careful pre-screening 

employed when selecting the predictor stations. This process involved criteria such as 

a higher correlation coefficient, a reasonable distance, elevation difference, and shared 

proximity to the same sea compared to the station containing missing values. 



Maria Rosaria Alfio | XXXVI cycle 

 76 

Consequently, the criteria for selecting reference stations in this study can serve as a 

valuable reference for imputing precipitation and air temperature data in regions with 

similar hydroclimatic conditions. 

In the scientific literature, MICE has proven to be a suitable method for addressing 

missing hydrological data. For instance, Turrado et al. (2014) obtained excellent results 

in estimating daily solar radiation in the Galicia catchment (Spain), outperforming other 

methods like Ordinary Kriging. Wesonga (2015) applied this technique to handle an 

incomplete time series of wind speed registered at the Entebbe International Airport 

(Uganda). Abdullah et al. (2020) conducted a study on extreme temperature and rainfall 

events in Bangladesh, using the MICE technique and implementing the predictive mean 

matching algorithm to fill in missing daily values with promising results. In the case of 

temperature, the low percentage of missing values in the initial dataset and the non-

random nature allow less sophisticated methods to obtain reasonable results.  

While recognizing the importance of assessing data-filling techniques in terms of their 

capability to capture average values over time and their proficiency in managing ex-

treme events, it is worth noting that the analysis of extreme events has received limited 

attention. The primary emphasis was comprehending larger-scale future trends at the 

monthly and annual levels. Furthermore, it is essential to acknowledge that a substantial 

volume of data is typically necessary to analyse extreme events precisely. In this case, 

the timeframe used for evaluating the filling-in method performance (1971-1976 for 

precipitation and 2000-2002 for temperature) is insufficient for extreme events assess-

ment. 
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6.2 Correlation between GWL and meteorological indicators 

The characterisation of the hydrodynamic mechanism of an aquifer system and 

the knowledge of groundwater response to climate change are paramount for strategic 

water resources planning. However, the absence of complete and enduring monitoring 

of groundwater levels prevents the application of some methodologies, which require 

long time series.  

Analysing climate indices to describe the groundwater level variation is a possible ap-

proach under data scarcity. In a study by Balacco et al. (2022a), the response of the 

Salento aquifer to precipitation variability was evaluated through correlations between 

SPI and SPEI and groundwater levels (GWLs) for nine monitoring wells, covering the 

period from July 2007 to December 2011. Three different correlation factors were em-

ployed in this analysis. To provide a comprehensive climatic description of the study 

area and to obtain data for comparison within the specified time frame for GWL anal-

yses, the two climate indices ranging from 6 to 48 months were initially calculated. 

This calculation was done using monthly precipitation data and monthly average air 

temperatures from 1951 to 2020. Subsequently, these indices were coupled with the 

nearest rainfall station (Table 9). Five rain gauge stations (Copertino, Galatina, Lecce, 

Maglie, and Ruffano) were identified as potential candidates based on the available 

monitoring wells. The effectiveness of this approach was subjected to further validation 

through an examination of the spatial distribution of correlation coefficients between 

GWLs and SPI and SPEI time series. This analysis revealed that, overall, most of the 

GWLs exhibited a positive correlation with the majority of meteorological stations in the 

Salento region. 

Fig. 19 exclusively presents SPI and SPEI data for the Lecce station for brevity. Like-

wise, SPI and SPEI time series also show minor differences for the other stations. No-

tably, the severity of drought events reflected by the SPI tended to be more pronounced 

than that indicated by the SPEI (Pei et al., 2020). As the accumulation period for SPI 

and SPEI lengthened, drought events became more prolonged over time and occurred 

less frequently. In other words, dry events at shorter intervals in SPI and SPEI-6 months 
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tended to combine into a single extended event when transitioning to a higher accumu-

lation period. 

Table 9 - Wells and associated weather stations. 

Well 
Weather  

stations 

Available Monitoring  

Period 

LE_19/II S Copertino Jun 2007–Dec 2011 

LE_12/IIIS Lecce Jun 2007–Dec 2011 

LE_NC4 Copertino Jun 2007–Dec 2011 

LE_LS21LE Ruffano Oct 2007–Dec 2011 

LE_PS24LE Ruffano Jun 2007–Dec 2011 

LE_PS17LE Galatina Jun 2007–Dec 2011 

LE_4/II S Lecce Jun 2007–Dec 2011 

LE_1/LR Copertino Jun 2007–Dec 2011 

LE_2/BS Maglie Jun 2007–Dec 2011 

 

The time series data obtained from all the rain gauge stations corroborate the findings 

of Alfio et al. (2020), particularly concerning the occurrence of an extreme drought in 

the late 1990s and a series of moderate to severe droughts, with a few instances of 

extreme droughts, in the 2000s. Notably, when examining the SPI and SPEI data for 

Lecce, there is evidence of an extreme drought from 2016 to 2020. In contrast, the 

data from the other rain gauge stations reveal dry events ranging from moderate to 

severe during the same time frame. 

These recent patterns of prolonged dry conditions are alarming, as they can potentially 

impact groundwater levels significantly. Such impacts can affect the quality and quan-

tity characteristics of an aquifer, posing a substantial threat to its overall status. This 

calls for attention to the urgency of addressing and mitigating the consequences of 

these dry patterns on the regional groundwater resources. 
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Fig. 19 - Temporal evolution of SPI and SPEI, respectively at the representative time scales of (a, b) 6-

months, (c, d) 12-months, (e, f) 24-months for the Lecce rain gauge station from 1951 to 2020. The 

year marks are centred on the 1st of July of each year. 

The relationships between SPIs/SPEIs from 6- to 48-months and GWLs were evaluated 

through Pearson’s, Kendall’s, and Spearman’s correlation coefficients. Results high-

light a statistically significant positive correlation with different time scales for each 

monitoring well. Fig. 20 and Fig. 21 illustrate the resulting correlation coefficient curves. 

Notably, all curves exhibit a consistent pattern for both SPI and SPEI: they initially in-

crease until reaching the peak of correlation, after which they gradually decline to no 

longer statistically significant values. Pearson’s and Spearman’s coefficients show 

similar trends, whereas Kendall’s coefficients are consistently lower. At any given time 

scale, the maximum correlation values calculated for the nine monitoring wells ex-

ceeded 0.60 for Pearson’s and Spearman’s methods. Some wells, such as 

LE_LS21LE, LE_4/IIS, and LE_2/BS, reached a correlation peak of approximately 0.85 

for both SPI and SPEI. 
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Furthermore, different responses were detected with respect to the time scales of SPI 

and SPEI. All wells showed the highest correlation between 16 to 23 months except for 

well LE_NC4, which exhibited the correlation peak at nine months. All three methodol-

ogies adopted recognise these distinct response patterns. Additionally, no significant 

differences were found in the correlation between GWLs and SPEI compared to those 

obtained with SPI. In fact, the same range of maximum correlation and time responses 

could be identified for SPEI. 

The observation of a long-time scale response in the Salento aquifer suggests that, 

despite its complexity, the aquifer tends to linearly react to variations in precipitation 

and temperature over the long term. This behaviour is analogous to that of a low-pass 

filter, characterised by significant transmissivity and storage capacity inertia, as dis-

cussed in earlier research (Molénat et al., 1999; Imagawa et al., 2013). 

 

 

Fig. 20 - Correlation coefficients between GWLs and the corresponding SPI from 6- to 48-months cal-

culated with Pearson’s (green lines), Kendall’s (blue lines), and Spearman’s (purple lines) methods. 
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Fig. 21 - Correlation coefficients between GWLs and the corresponding SPEI from 6- to 48-months 

calculated with Pearson’s (green lines), Kendall’s (blue lines), and Spearman’s (purple lines) methods. 

Given the observed extended response between groundwater levels (GWLs) and cli-

matic indices in most cases, a representative time scale of 18 months was chosen for 

analysis. The exception was LE_NC4 well, with a more representative time scale of nine 

months. Consequently, scatter plots were generated to illustrate the relationships be-

tween GWLs and the corresponding SPI at the selected time scale (18 months for all 

monitoring wells, except nine months for LE-NC4), as shown in Fig. 22.  

The linear regression models fitted to these datasets yielded relatively low R-squared 

values. This indicates that the data points are somewhat dispersed, particularly in cases 

where SPI values are positive. However, the trends in GWLs consistently align with dry 

periods, resulting in decreasing groundwater levels. This observation holds signifi-

cance, especially from a management perspective, as the primary focus often revolves 

around predicting groundwater droughts. Forecasting the aquifer response to a period 

of meteorological drought is vital for identifying priorities in terms of water resource 

utilization and allocation. 
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Fig. 22 - Scatterplots and R-squared between GWLs and the corresponding SPI for the more correlated 

time scale (18 months for all monitoring wells except 9-months for LE-NC4). 

The study of the relationship between GWLs and meteorological indicators was im-

proved with D’Oria et al. (2023) extending the dataset (the initial water level dataset 

was completed using sporadic data, mainly collected during spring and autumn, from 

2013 to 2018) and introducing various time delays (or lags) between meteorological 

drivers (SPIs and SPEIs) and GWLs. The linear regression models were also applied 

considering a subset of the data collected during late winter-early spring (specifically 

in February, March, and April). The selection of this subset is motivated by the reduced 

impact of anthropogenic influences on groundwater conditions during this period. 
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Notably, irrigation withdrawals, which play a significant role in the area, are low during 

this time, thus providing a more reliable representation of natural groundwater dynam-

ics. Having identified the time windows and lag times that exhibited the highest corre-

lation between SPIs and groundwater levels (GWLs) or between SPEIs and GWLs, a 

linear regression model was constructed for each well. This approach assumes that 

the observed linear relationships detected in the historical data will remain consistent 

in the future. Based on these models, projections for GWLs were generated for the 

short-, medium-, and long-term. To accomplish this, SPIs and SPEIs were calculated 

using precipitation and temperature data sourced from an ensemble of 17 climate mod-

els as part of the EURO-CORDEX initiative (https://www.eurocordex.net, accessed on 

June 29, 2023). The data covered the period from 1976 to 2095 and were subjected 

to bias-correction at a monthly scale using a linear-scaling approach (as described by 

D’Oria et al., 2018). Two Representative Concentration Pathways were taken into con-

sideration: the intermediate scenario (RCP4.5) and the most severe scenario (RCP8.5). 

The same correction factors that were employed during the historical period were ap-

plied to rectify bias in the scenario period.  

Fig. 23 shows the results of the correlation analysis using SPIs and SPEIs, respectively. 

The findings highlight that the accumulation periods in meteorological indices showing 

the highest correlations are specific to each well. Considering a lag-time can enhance 

the correlation, leading to improved alignment between meteorological indices and 

groundwater levels. 

Compared to Balacco et al. (2022a), analysing the subset generally improves the max-

imum correlations (excluding well LE_LR). This can be attributed to the reduced influ-

ence of anthropogenic factors during these months (February-April), resulting in a more 

reliable representation of natural groundwater dynamics. Except for well LE_LR, all 

wells demonstrate a maximum correlation occurring between 15 and 22 months, ac-

companied by Pearson correlation coefficients exceeding 0.7, indicating a strong cor-

relation. The lag-times range from 0 to 3 months, indicating a delay between meteoro-

logical input and the aquifer response for some wells.  

https://www.eurocordex.net/
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Fig. 23 - Heat maps of the Pearson correlation coefficients between GWLs and SPIs (left) and GWLs and 

SPEIs (right) for all wells and different time windows and lags using the subset of data collected during 

late winter-early spring. 

Once the correlation between SPIs and GWLs and between SPEIs and GWLs was es-

tablished, linear regression models were identified between groundwater levels rec-

orded at the eight (LE_LR was excluded due to its low correlation coefficient) remaining 

monitoring wells and the meteorological indices. 

Table 10 and Table 11 list the obtained correlation coefficients, the lag at which they 

were obtained and the resulting slopes and intercepts of the regression lines. These 
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linear relationships serve as forecasting models used to assess the impacts of climate 

change on the GWLs of the Salento aquifer. 

Table 10 - Wells, associated meteorological gauging stations, maximum correlation coefficients between 

February-April GWLs and SPIs and their accumulation periods and lags in months. Slopes and intercepts 

(m a.s.l.) of the linear regressions between GWLs and SPIs. 

Well Gauge Correl. SPI Lag Slope Interc. 

LE_12IIIS 

Copertino 

0.74 15 2 0.18 1.84 

LE_NC4 0.75 14 3 0.10 0.79 

LE_LR 0.36 11 6 0.07 2.07 

LE_PS17LE Galatina 0.89 17 0 0.26 2.18 

LE_19IIS 

Lecce 

0.71 18 3 0.13 2.74 

LE_4IIS 0.78 21 3 0.12 0.93 

LE_2BS Maglie 0.80 15 2 0.37 2.14 

LE_LS21LE 

Ruffano 

0.95 22 2 0.35 3.53 

LE_PS24LE 0.77 15 2 0.19 1.75 

 

Table 11 - Wells, associated meteorological gauging stations, maximum correlation coefficients between 

February-April GWLs and SPEIs and their accumulation periods and lags in months. Slopes and inter-

cepts (m a.s.l.) of the linear regressions between GWLs and SPEIs. 

Well Gauge Correl. SPEI Lag Slope Interc. 

LE_12IIIS 

Copertino 

0.72 15 2 0.16 1.88 

LE_NC4 0.72 14 3 0.09 0.81 

LE_LR 0.36 11 6 0.07 2.09 

LE_PS17LE Galatina 0.88 17 0 0.23 2.26 

LE_19IIS 

Lecce 

0.72 18 3 0.12 2.76 

LE_4IIS 0.80 21 3 0.11 0.95 

LE_2BS Maglie 0.80 15 2 0.33 2.27 

LE_LS21LE 

Ruffano 

0.94 14 2 0.44 3.57 

LE_PS24LE 0.75 15 2 0.17 1.82 

Fig. 24 depicts the results for the eight wells in 1986-2095 according to the SPI-GWL 

relationships. GWLs are averaged in February-April and represented in terms of GWL 
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anomalies relative to the average GWLs in the reference period, inferred from the RCMs. 

According to the RCM ensemble median and emission pathways, the analysis indicates 

that no evident changes in the GWLs are expected in the future for all wells; however, 

the inter-model variability between the 17 RCMs is different for the eight wells. Wells 

LE_PS17LE, LE_2BS and LE_LS21LE have the highest uncertainty; the remaining wells 

show less variability among the RCMs. The highest mean gradient is expected for the 

LE_LS21LE well (-3.0 cm/decade). 

 

Fig. 24 - Groundwater level anomalies, relative to 1986-2095, in terms of 10-year moving average for 

the eight wells according to the SPI-GWL relationships and the RCP4.5 and RCP8.5 scenarios. The GWLs 

are averaged in February-April and represent the late winter-early spring period. 

The future GWL anomalies evaluated using the SPEI-GWL relationships are shown in 

Fig. 25. A general decline in groundwater levels is expected for all wells, which is more 

severe for the RCP8.5 scenario; the inter-model variability is comparable to that ob-

tained with the SPI analysis.  
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Under the RCP4.5 scenario, most RCMs indicate significant negative trends in GWLs, 

with only a few exceptions. However, when considering the more severe RCP8.5 sce-

nario, all RCMs consistently project substantial declines in GWLs across all monitoring 

wells. Notably, the mean trend gradients calculated for RCP8.5 are higher than those 

obtained based on SPIs, while the standard deviations of these trend gradients are 

comparable. The LE_LS21LE well is expected to experience the most pronounced de-

crease in GWLs in both scenarios. Specifically, under the RCP4.5 scenario, it is pro-

jected to have a change rate of -3.5 cm per decade, while under the more severe 

RCP8.5 scenario, the projected change rate is even more substantial at -11.6 cm per 

decade. 

 

Fig. 25 - Groundwater level anomalies, relative to 1986-2095, in terms of 10-year moving average for 

the eight wells according to the SPEI-GWL relationships and the RCP4.5 and RCP8.5 scenarios. The 

GWLs are averaged in February-April and, therefore, represent the late winter-early spring period. 
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The response of the groundwater system to the climate signal, as inferred from the 

extended time windows of SPIs and SPEIs and the lag-time that exhibits the highest 

correlations with GWLs, suggests that the climate variables within the delay period have 

limited influence on the aquifer response. This results in a delayed reaction of the aq-

uifer to changes in climate conditions. This improvement validates the preliminary re-

sults presented by Balacco et al. (2022b), which concluded that the Salento aquifer 

exhibits characteristics akin to a low-pass filter in its response to meteorological events 

and is marked by great inertia and storage capacity. 

The responsiveness of the groundwater system depends on various factors, primarily 

localised conditions such as geology, surface morphology, unsaturated zone permea-

bility, precipitation patterns, the size of the aquifer under investigation, water withdraw-

als, and regional flow patterns. These factors collectively influence how meteorological 

droughts propagate to affect groundwater levels (Kumar et al., 2016; Uddameri et al., 

2019), resulting in a time lag between precipitation events and fluctuations in ground-

water. This time lag can impact the linear correlation between these variables, explain-

ing the dispersion observed in data points around the linear regression lines relating 

SPIs/SPEIs to GWLs. However, the dispersion is lower for negative SPIs and SPEIs 

concerning the positive ones, indicating that the regression model is more reliable dur-

ing dry periods. This reinforces the credibility of the proposed methodology, as one of 

its key objectives is to enhance the ability to predict groundwater droughts, a critical 

aspect of adequate water resources management. The variations observed among 

wells in terms of accumulation periods for meteorological indicators, lag times, and 

correlation coefficients underscore the complex nature of the studied aquifer, charac-

terised by anisotropy and heterogeneity. 
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6.3 Analyses of GWL and precipitation in time and frequency domain 

Based on the results achieved with the previous applications, further statistical 

techniques have been applied to deepen the hydrodynamic characterisation of the 

Salento aquifer. In detail, this section presents the outcomes of time series analyses in 

the time and frequency domain investigating daily groundwater levels and precipitation 

time series separately and combined. 

Specifically, the analysis used daily precipitation as input and GWL as output, consid-

ering eleven monitoring wells for a minimum of two to four hydrological years, depend-

ing on the well. Based on the available hydrological years, the GWL dataset was divided 

into Group 1 (4 years), Group 2 (3 years) and Group 3 (two years). In the time domain, 

ACF and CCF were calculated at all wells and associated rain gauge stations, fixing a 

step of one day and a truncation point at 125 days for each series (Mangin, 1984). 

The ACF of daily precipitation at each rain gauge station exhibits a rapid decline within 

two days, as characteristically illustrated for Ruffano station (Fig. 26). It remains in a 

defined confidence interval (-0.05 to +0.05) for all stations and lacks oscillation due 

to the varying timing of minimum and maximum rainfall occurrences. Despite the pres-

ence of a seasonal pattern in precipitation, this behaviour confirms that precipitation 

events are uncorrelated random processes (Angelini, 1997; Panagopoulos & Lam-

brakis, 2006). 

 

Fig. 26 - Autocorrelation function of Ruffano precipitation time series for each considered hydrological 

year. 
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In contrast, the ACFs of GWLs exhibit a gradual decrease and indicate a different re-

sponse of certain wells when comparing a hydrological year with lower rainfall to a 

much wetter one, such as 2008/09, which exceeds the average annual precipitation 

(Fig. 27). The ACFs of most wells in different hydrological years show negative values, 

indicating a yearly cycle that varies from 30 to 125 days (Larocque et al., 1998).  

Table 12 summarises the memory effect for each hydrological year and well, where the 

assessment of time lag corresponds to an ACF value of 0.2, as Mangin (1984) outlined.  

Based on the long memory effect detected, baseflow can be considered the primary 

water transfer process of the Salento aquifer due to the limited connectivity between 

fissures and fractures within the rock matrix. However, when precipitation exceeds the 

average of 638 mm/year (Portoghese et al., 2013), the correlogram initially displays a 

steep slope, indicating the rapid flow through karst conduits and large fractures, while 

the baseflow process becomes apparent only later, favoured by minor fractures and 

discontinuities that drain the unsaturated zone (Panagopoulos & Lambrakis, 2006). In 

contrast, for certain wells (LE_NC4 and LE_2/BS), the baseflow is the sole water trans-

fer process, regardless of rainfall intensity and frequency. This observation suggests 

that certain parts of the aquifer exhibit a much higher level of inertness, indicating lim-

ited responsiveness to changes in precipitation. 

CCF between precipitation and GWL for each well and hydrological year (Fig. 28) is 

dissimilar case-by-case, with variable amplification and response time (Table 12). The 

degree of correlation is generally low, with values never over 0.24. Overall, the CCFs 

decrease very slowly, confirming the inertial behaviour of the Salento aquifer. Some 

wells (LE_P1TAU, LE_4/IIS, and LE_1/LR) show a negative response time, indicating 

that precipitation does not directly influence GWL (Cai & Ofterdinger, 2016). 

During the driest year (2007-08), wells of Group 1 show a fast response time ranging 

from 1 to 14 days, except for LE_NC4 (56 days). During the wettest hydrological year 

(2008-09), the wells of Groups 1 and 2 present different behaviour in terms of response 

time. LE_LS21LE and LE_P1TAU wells exhibit a very fast response time compared to 

other wells, equal to 3 and 28 days, respectively; during the same year, LE_19/IIS, 

LE_12/IIIS, and LE_SG3 highlight a time lag of about 56-57 days, while LE_NC4, 
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LE_PS24LE, and LE_PS17LE have a response time lag of 71 days. For 2009-10 and 

2010-11, closer to the average hydrological year described by Portoghese et al. (2013), 

the response time varies depending on the well and hydrological year considered.  

Wells of Group 3 exhibit different behaviour: LE_4/IIS and LE_1/LR show a response 

time of 28 days for 2009-10, the wettest of the two considered hydrological years, and 

103 and 113 days, respectively, for the second year. On the contrary, LE_2/BS displays 

an opposite response, i.e., 69 days for 2009-10 and 8 days for 2010-11. This faster 

response time during a drier year could be associated with a concentrated period of 

rainfall that occurred from October to November 2010, i.e., at the beginning of the 

2010-11 hydrological year. Furthermore, it reveals a bimodal hydrodynamic behaviour 

(Panagopoulos & Lambrakis, 2006), where certain wells exhibit a series of peaks fol-

lowing the initial peak. This phenomenon aligns with the observations of Padilla & Pu-

lido-Bosch (1995) in attributing it to additional flow components entering the aquifer 

after the initial peak. 
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Fig. 27 - Autocorrelation functions of the short-term analyses conducted for each well. 
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Fig. 28 - Cross-correlation functions of the short-term analyses conducted for each well. 
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The analyses of ACF and CCF were finally repeated on the entire dataset to investigate 

the long-term response of precipitation and GWLs (Fig. 29). The outcomes of the ACF 

reveal that in most cases, the reaction of GWLs in terms of memory effect is longer 

than 100 days, with few exceptions (Fig. 29a). The common behaviour of the long-

term ACFs outlines the significant role of the rock matrix in slowly releasing infiltration 

water, so providing a large buffering capacity. As to the long-term CCF (Fig. 29b), the 

absence of statistically significant correlation between precipitation and groundwater 

levels related to LE_SG3 and LE_1/LR, and the low cross-correlation detected for the 

remaining wells, suggest that the Salento aquifer, contrary to most karst aquifers where 

exploitation occurs by the uptake of springs, may be influenced by additional factors, 

as the heavy exploitation of groundwater by wells.  

 

Fig. 29 - a) Autocorrelation and (b) Cross-correlation functions of the long-term analyses conducted for 

each well on the entire available time series. 
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Considering the frequency domain, the spectral density, the cross amplitude, the phase, 

the coherence, and the gain functions were determined for each well and hydrological 

year. The Spectral Density Function highlights aspects of the output signal that ACF 

cannot clearly distinguish. Moreover, it allows the calculation of the regulation time, 

which ranges from 50 to 100 days, emphasising the noticeable regulation capacity of 

the system. For the hydrological year 2007-08, which is the driest among those con-

sidered, the CAF reaches a maximum of 1. In contrast, the remaining studied years 

display highly variable amplitudes more significant than 1. However, these high ampli-

tudes occur at frequencies ranging from 0.05 to 0.1, corresponding to the extended 

period identified in the time domain. The comparison of CAF with precipitation spectral 

density demonstrates the role of the studied aquifer as a low-pass filter since the prom-

inent peaks of precipitation signal reflect in those of GWL at the same frequencies but 

with a considerably lower amplitude. Fig. 30 presents a comparison between the CAFs 

of the LE_P1TAU well during the wettest (Fig. 30a) and driest (Fig. 30b) hydrological 

years, alongside the corresponding spectral density of precipitation from the Ruffano 

rain gauge station. 

The results of PHF, COF and GAF are not reported for brevity. All of them confirm the 

strong influence of the hydrological year on the aquifer response, showing how the 

input signal is much attenuated when compared with GWLs. They ensure the role of 

the rock matrix in damping the input signal, causing poor correlation and coherency 

between the two analysed time series.  
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Fig. 30 - Cross Amplitude and precipitation spectral density functions for Ruffano station and LE_P1TAU 

of (a) 2008-09 and (b) 2010-11 hydrological cycle. 

  



Data-driven methods for qualitative and quantitative characterisation of coastal aquifers 

 97 

Table 12 - Calculated hydrological parameters for the Salento aquifer. 

Group 1 Year 

Memory 

Effect 

[days] 

Regulation 

Time 

[days] 

CCF 

coeff 

[-] 

Response 

Time 

[days] 

Mean 

Delay 

[days] 

LE_19/IIS 

2007/08 19 50 0.146 6 ND 

2008/09 26 89 0.113 57 5.7 

2009/10 72 150 0.127 29 1.3 

2010/11 54 143 0.156 122 ND 

LE_12/IIIS 

2007/08 56 65 0.178 3 0.8 

2008/09 32 118 0.165 57 0.9 

2009/10 24 76 0.117 81 ND 

2010/11 27 72 0.218 5 2.2 

LE_NC4 

2007/08 64 79 0.173 56 ND 

2008/09 56 69 0.08 71 0.4 

2009/10 62 133 0.120 40 2.4 

2010/11 58 87 0.179 67 ND 

LE_LS21LE 

2007/08 27 78 0.115 14 6.8 

2008/09 54 143 0.192 3 0.8 

2009/10 60 148 0.082 88 1.8 

2010/11 42 111 0.199 2 1.3 

LE_PS24LE 

2007/08 104 42 0.202 1 1.3 

2008/09 28 123 0.147 71 ND 

2009/10 51 138 0.140 32 ND 

2010/11 70 60 0.239 1 ND 

Group 2 Year 

Memory 

Effect 

[days] 

Regulation 

Time 

[days] 

CCF 

coeff 

[-] 

Response 

Time 

[days] 

Mean 

Delay 

[days] 

LE_SG3 

2008/09 29 111 0.120 56 0.6 

2009/10 68 150 0.087 103 1.5 

2010/11 80 85 0.187 35 ND 

LE_PS17LE 

2008/09 46 133 0.199 71 0.6 

2009/10 74 151 0.129 28 1.9 

2010/11 82 147 0.168 50 ND 

LE_P1TAU 

2008/09 34 132 0.171 28 ND 

2009/10 63 145 0.149 69 8.4 

2010/11 75 113 -0.173 17 ND 

Group 3 Year 

Memory 

Effect 

[days] 

Regulation 

Time 

[days] 

CCF 

coeff 

[-] 

Response 

Time 

[days] 

Mean 

Delay 

[days] 

LE_4/IIS 
2009/10 72 136 0.140 28 1.8 

2010/11 35 120 0.152 103 ND 

LE_1/LR 
2009/10 49 133 0.101 28 ND 

2010/11 31 79 0.097 113 2.9 

LE_2/BS 
2009/10 60 144 0.140 69 0.3 

2010/11 89 55 0.214 8 ND 
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6.4 GWL and precipitation decomposition 

Groundwater levels, differently from precipitation, are classified as additive time 

series, wherein fluctuations are influenced by multiple drivers (Shapoori et al., 2015). 

Seasonal and trend decomposition analysis is a valuable approach to isolate each sig-

nal component, such as seasonal or inter-annual variations, long-term trends, and ran-

dom factors, allowing an appropriate conceptual understanding of an aquifer system. 

This technique was applied to the eleven selected monitoring wells at a daily scale to 

investigate the influence of seasonal, trend and noise components on GWL.  

The visual classification of the 11 boreholes based on the shape and amplitude of the 

STL results led to the identification of three groups (Fig. 31). In the first Group (Fig. 

31a), three peaks can be detected for each available hydrological year, concentrated in 

wet period (mainly from December to April) except for LE_2/BS and LE_P1TAU wells 

which reach June. The dry period, instead, corresponds to September, except for 

LE_NC4 (August) and LE_P1TAU (October). The seasonal fluctuations are limited to 

around 0.20 m, while the trend component is predominantly negative, displaying an 

increasing pattern during 2009-10 hydrological year. The second Group exhibits a trend 

pattern like the previous case for all wells. Regarding the seasonal component, sea-

sonal fluctuations are also limited but higher, approximately 0.50 m (Fig. 31d). Two 

peaks were identified for these wells, principally in February and from May to July; the 

dry period corresponds to September. The third Group is characterised by one seasonal 

peak in February (LE_PS17LE) and March (LE_LS21LE), while the dry period concen-

trates in September (Fig. 31g). The ranges of the seasonal fluctuations are more similar 

to Group 2. The trend pattern agrees with the previous results. 

In all groups, the seasonal and the remainder components have a less significant influ-

ence on the GWL signals compared to the trend ones, as demonstrated by the variance 

ratio values obtained following the methodology of Lafare et al. (2016) and Colyer et 

al. (2022) reported in Table 13. LE_LR and LE_P1TAU are the unique wells for which 

the variance ratio is equally distributed in all three components, preventing the identifi-

cation of a prevailing pattern. 
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Table 13 - Statistical summary of STL results for Salento boreholes. 

Well - Observation Seasonal Trend Reminder 

LE_19IIS 

var. 0.036 0.005 0.022 0.004 

var. ratio - 0.14 0.60 0.12 

LE_12IIIS 

var. 0.058 0.003 0.034 0.012 

var. ratio - 0.05 0.59 0.22 

LE_NC4 

var. 0.031 0.005 0.017 0.005 

var. ratio - 0.15 0.53 0.17 

LE_LS21LE 

var. 0.146 0.016 0.090 0.026 

var. ratio - 0.11 0.62 0.18 

LE_PS17LE 

var. 0.060 0.008 0.030 0.006 

var. ratio - 0.14 0.51 0.10 

LE_PS24LE 

var. 0.053 0.009 0.027 0.007 

var. ratio - 0.16 0.50 0.14 

LE_4IIS 

var. 0.017 0.002 0.008 0.003 

var. ratio - 0.13 0.47 0.19 

LE_2BS 

var. 0.122 0.006 0.087 0.007 

var. ratio - 0.05 0.71 0.06 

LE_LR 

var. 0.087 0.018 0.019 0.029 

var. ratio - 0.20 0.21 0.33 

LE_SG3 

var. 0.067 0.014 0.034 0.008 

var. ratio - 0.21 0.51 0.12 

LE_P1TAU 

var. 0.029 0.011 0.004 0.010 

var. ratio - 0.39 0.14 0.34 
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Fig. 31 - GWL-STL decomposition classified into Group 1 (a, b, c), Group 2 (d, e, f) and Group 3 (g, h, 

i). The decomposition reports the Seasonal component as the first graph for every category, the trend in 

the middle and the remainder as the last. Ticks are centred in October. 
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6.5 Wavelet results 

The wavelet analysis was applied to the daily meteorological and GWL time 

series. Fig. 32 displays the time-frequency spectrum of the daily precipitation registered 

by Ruffano station, whilst Fig. 33 shows the time-frequency spectra for the daily GWL 

time series from 2007-2011. The thick black solid line designates a 5% significance 

level in both figures. Additionally, the COI is shown by lighter shades. Warmer colours 

(e.g., red) indicate the peaks, while colder colours (e.g., blue) designate the domain of 

the power density. 

The wavelet precipitation analyses indicate moderate power regions with 4-16-day (in 

red) reoccurrence patterns and a second considerable power band (in orange) that 

occurs from 2008-2010 for periods higher than 256 days. As for Ruffano, another 

significant power region occurred in all rain gauge stations in 2010, with a power band 

from 64 to 256 days. This region has been more extensive in Lecce station since 2009 

(Fig. 32b). 

(a)

 

(b) 

 

Fig. 32 - Continuous wavelet transform (CWT) of daily rainfall series for (a) Ruffano and (b) Lecce sta-

tions. The area covered by a white screen represents the cone of influence (COI). The thick black contour 

represents the significant region at a 95 % confidence level. 

The time-frequency spectra for the daily GWLs shown in Fig. 33 highlight relatively 

distinct patterns. In contrast to precipitation, many statistically significant periodicities 

can be detected in intervals of less than a year. At the 5% significance level, notable 

power is observed in the 4- to 64-day periods, corresponding to the autumn and 
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summer seasons. This is particularly evident in the LE_12/IIIS, LE_LS21LE, and 

LE_PS24LE wells. In contrast, no significant seasonal periodicity is detected in the 

LE_19/IIS, LE_PS17LE, LE4/IIS, LE_2/BS, and LE_LR wells, as no robust and mean-

ingful power regions can be identified in these cases. As detected in precipitation, most 

analysed GWLs exhibit continuous periodicity exceeding 256 days. These findings em-

phasise that the aquifer acts as a filter, transforming the precipitation signal into ground-

water signals, as discussed by Wang et al. (2023). The apparent annual periodicity 

observed in most monitoring wells demonstrates the extensive storage capacity of the 

investigated system. However, in this coastal aquifer, when infiltration waters penetrate 

the saturated zone, the rise in water level disrupts the freshwater-saltwater equilibrium, 

causing local changes in the elevation of the transition zone. Concurrently, groundwater 

undergoes spatial redistribution over time on a regional scale due to buoyancy effects, 

which could potentially govern the extent of GWL and its oscillations, possibly hiding 

the effects of overexpoitation. Different results were reached by Alfio et al. (2023) for 

the Pinios River basin (Greece), which extension is marginal compared to that of 

Salento. Applying this technique to fourteen boreholes and two rain gauge stations, they 

discovered a notable seasonal periodicity in most of the analysed wells in the power 

band from 4 to 64 days, attributable to climate and human pressure. In the long period, 

the common frequencies reflect those obtained for the associated precipitation stations, 

while in the short term, they correspond to groundwater abstraction since this basin is 

highly stressed by withdrawal for irrigation. 
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Fig. 33 - Continuous wavelet transform (CWT) of daily GWL series for the Salento wells. The area covered 

by a white screen represents the cone of influence (COI). The thick contour represents the significant 

region at a 95 % confidence level. 

Wavelet coherence analysis was employed for each pair of time series to evaluate the 

correlation between precipitation and GWLs (Fig. 34). The coloured shading on the 

graphs corresponds to the coherence magnitude, as depicted in the colour bar on the 

right side. It varies from 0 (indicating no correlation) to 1 (representing a perfect corre-

lation) and reflects the temporal variation in the correlation between the two-time series. 

Generally, the regions of significance are those where the coherence values exceed 

0.75 (highlighted in red) and fall within the COI. The areas outside the COI must not be 

interpreted. Furthermore, the black arrows define the relative phase relationships.  Ar-

rows pointing to the right signify an in-phase relationship (positive correlation), while 

arrows pointing to the left represent an anti-phase relationship (negative correlation). 

Arrows in other directions indicate time lags between precipitation and GWL. Distinct 

patterns are observable in each well. In most cases, substantial and uninterrupted co-

herence regions are consistently present, which are statistically significant at the 95% 

confidence level, particularly in the higher-than-256-day band. Conversely, correlations 

at shorter time scales (4 to 64 days) tend to be sporadic and in an anti-phase relation-

ship. These findings validate the influence of rainfall on GWLs over the long term and 

underscore the delayed response of the aquifer to seasonal climate variations. 
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Fig. 34 - Wavelet coherence between GWLs time series and precipitation stations. 
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6.6 MVSA and HFE comparison 

6.6.1 Tiziano Project database 

The Salento database included 449 samples of chemical and physical param-

eters collected from 2007 to 2011, of which 268 were considered for Multivariate Sta-

tistical Analyses (HCA and FA) and Hydrogeochemical Facies Evolution (HFE), follow-

ing the multi-critieria selection process described in section 4.1.1. 

The dataset was divided into seven campaigns, with sampling at the end of each wet 

season (from April to September) and at the end of each dry season (from October to 

March). Unfortunately, each sampling campaign did not include the same set of wells. 

Consequently, there are instances where the study area is comprehensively sampled, 

and there are periods during which certain areas lack consistent and uniform sampling 

coverage.  

MVSA applications for the Salento aquifer considered the physical and chemical varia-

bles, including Hardness (HR), EC, Ca
2+

, Mg
2+

, Na
+

, K
+

, Cl
−

, SO4

2−

, HCO3, NO3

-

, TOC, 

SAR, Br
-

, F, Fe. Table 14 summarises the statistical results of the considered parame-

ters. According to the Kolmogorov-Smirnov test, most showed a non-normal distribu-

tion (p-value<0.05). Therefore, these parameters were subjected to a data normalisa-

tion step using the Box-Cox transformation. Finally, Ca
2+

, Mg
2+

, SO4

2−

, NO3

-

, TOC, SAR, 

Br
-

, F, and Fe nearly matched the normal distribution after Box-Cox transformation.  

Fig. 35 displays the dendrogram from HCA applied to all the sampling periods and the 

selected variables. Within this analysis, three clusters of groundwater samples were 

determined by choosing a dissimilarity value of approximately 25. This selection was 

pointed out by the visual inspection of the dendrogram, where the "phenon line" was 

established. 

To further illustrate the variations between these identified clusters, boxplots of all major 

ions were generated for each group derived from the HCA (Fig. 36). Additionally, Table 

15 provides the median values for all variables, offering a summarised view of the da-

taset’s characteristics within these distinct groupings. 
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Table 14 - Statistical summary of parameters considered in MVSA applications. 

Param. Min Max Mean Median Std. Dev p-value BC λ BC p_value 

HR 8.60 583.80 45.2 36.3 53.8 <0.05 -0.57 0.46 

EC 315.00 44,600 1755.3 978 3982.5 <0.05 -0.65 0.96 

HCO3

-

 127.00 625 314.7 317 65.7 0.49 NA NA 

Ca
2+

 9.18 722 96 82.2 70 <0.05 -0.14 <0.05 

Cl
-

 17.80 18,400 482.9 169.5 1748.7 <0.05 -0.19 0.55 

Mg
2+

 3.05 980 51.5 36.8 92.2 <0.05 -0.08 <0.05 

K
+

 0.20 445 13 6.2 38.1 <0.05 -0.05 0.22 

Na
+

 10.10 10,200 254.1 88.9 946.7 <0.05 -0.23 0.64 

SO4

2-

 0.78 2,710 82.1 37.8 247.6 <0.05 -0.03 <0.05 

NO3

-

 0.06 192 33.1 28.7 30.5 <0.05 0.42 <0.05 

TOC 0.17 7.05 1.1 0.9 0.8 <0.05 -0.28 <0.05 

SAR 0.35 58 3.6 2.1 6.25 <0.05 -0.20 <0.05 

Br
-

 27.50 71,100 
 

1,820.6 610 6,616.72 <0.05 -0.15 <0.05 

F 0.06 0.7 0.2 0.2 0.09 <0.05 0.55 <0.05 

Fe 1.10 30,920 1,422.2 60.2 3,485.2 <0.05 -0.05 <0.05 

 

 

Fig. 35 - Dendrogram of HCA obtained with Tiziano Project dataset. The dashed line represents the se-

lected level of dissimilarity (25), which identifies three clusters: C1, C2 and C3. 
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Fig. 36 - Boxplots for major ions for each cluster (C1, C2 and C3) derived by HCA. 

Table 15 - Median values of physical and chemical parameters for each cluster derived by HCA. 

Parameters Unit C1 C2 C3 

HR °f 30.7 40.4 68.35 

EC µS/cm 712.0 1,252.0 3316 

HCO3

-
 mg/L 304.0 345.5 272.5 

Ca
2+

 mg/L 74.0 91.7 127.5 

Cl
- 

mg/L 80.2 246.5 1051 

Mg
2+ 

mg/L 28.6 44.3 80.9 

K
+ 

mg/L 3.1 7.6 22.75 

Na
+ 

mg/L 43.3 132.5 490 

SO4

- 
mg/L 22.1 56.8 169 

NO3

- 
mg/L 24.0 30.2 26.2 

TOC mg/L 1.0 0.8 1.32 

SAR - 1.1 3.0 9.49 

Br 
- 

µg/L 320.0 950.0 3,675 

F mg/L 0.2 0.2 0.235 

Fe µg/L 48.6 40.3 1,751.5 
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C1 cluster comprises water samples with the lowest chloride concentrations (Cl
-

= 

80.2 mg/L).  In contrast, samples in clusters C2 and C3 exhibit higher chloride con-

centrations (Cl
-

=246.5 mg/L and 1,051 mg/L, respectively) compared to those in C1 

samples. Other parameters associated with the salinisation process, such as Na
+

, SO4

2-

K
+

, also demonstrate an increasing trend from C1 to C3. Referring to the median values 

of each parameter as presented in Table 15 and following the classification outlined in 

Table 16, it can be inferred that: 

• the C1 cluster represents freshwater samples,  

• the C2 group refers to fresh-brackish,  

• the C3 is indicative of brackish water samples. 

Table 16 - Classification of groundwater based on Cl- values. 

Facies 

Prefix 

Range of Cl
-
 

(mg/L) 

Oligohaline 5-30 

Fresh 31-250 

Fresh-brackish 251-1,000 

Brackish 1,001-6,000 

Brackish-salt  6,001-10,000 

Saline 10,001-20,000 

Hyper-saline >20,001 

The FA analyses revealed three significant factors that collectively account for 73.2 % 

of the total variance in the dataset. Results confirm that groundwater salinisation is the 

primary phenomenon affecting groundwater quality in the Salento aquifer, as summa-

rised in Table 17.  

The first factor, denoted as F1 and explaining 48.64% of the total variance, is charac-

terised by high factor loadings associated with various parameters. These include EC 

(0.94), Cl
−

 (0.97), Mg
2+

 (0.79), Na
+

 (0.98), and SAR (0.98). Additionally, Br
-

 (0.95) 

exhibits a substantial factor loading, which is indicative of its relationship with ground-

water salinisation. Alcalá & Custodio (2008) have previously demonstrated that the Cl
-

/Br
-

 ratio can serve as an effective tracer for identifying the source of salinity in aquifers. 

The second latent factor reflects a freshening process, as high factor loadings charac-

terise it for Ca
2+

 (0.82) and HR (0.65). 
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Lastly, the third factor is influenced by NO3

-

 (-0.70), TOC (0.70) and Fe (0.80), albeit 

with a lower total variance of 11.55 %. 

Table 17 - Varimax rotated factor loadings, eigenvalues, and total and cumulative variance related to the 

Tiziano Project dataset. 
 

Factor 1 Factor 2 Factor 3 Factor 4 

HR 0.70 0.65 0.02 0.14 

EC 0.94 0.30 0.03 0.08 

HCO3

-
 -0.12 0.45 -0.03 0.74 

Ca
2+

 0.41 0.82 -0.09 -0.06 

Cl
-
 0.97 0.14 0.05 0.00 

Mg
2+

 0.79 0.23 0.15 0.28 

K
+
 0.83 0.05 0.11 -0.16 

Na
+
 0.98 0.09 0.05 0.05 

SO4

-
 0.80 0.36 -0.17 -0.16 

NO3

-
 0.09 0.49 -0.70 0.02 

TOC 0.06 0.16 0.70 -0.11 

SAR 0.98 -0.02 0.07 0.01 

Br 
-
 0.95 0.15 0.09 0.04 

F 0.12 -0.24 -0.11 0.76 

Fe 0.16 -0.10 0.80 0.01 

Eigenvalue 7.92 2.08 1.26 1.03 

% Total - variance 48.64 13.01 11.55 8.72 

% Cumulative - variance 48.64 61.65 73.20 81.92 

 

After applying MVSA, the chemical dataset was used for HFE analysis. Fig. 37 shows 

the HFE-Diagram with freshening/intrusion processes substages for all water samples. 

The Conservative Mixing Line was built with freshwater and saltwater end-members. 

Regarding the freshwater end-member, the HFE-D model automatically selects the 

chemical composition of the freshest groundwater collected during the seven sampling 

surveys. In contrast, the saltwater end-member refers to the average chemical analyses 

of saltwater samples collected in past monitoring programs (1986) in deep wells reach-

ing saltwater beneath freshwater in the study area (refer to Table 5 in section 4.2). 

The samples categorised as “freshening” correspond to those with the lowest TDS and 

Cl
-

 concentrations. Conversely, water samples in the “intrusion zone” are characterised 
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by TDS levels reaching up to 5,000 mg/L. Few samples exhibit TDS values exceeding 

5,000 mg/L, accompanied by Cl
-

 concentrations of about 20,000 mg/L, indicating the 

presence of saltwater. Based on classifications derived from HCA HFE analyses, the 

following associations can be made: 

• Waters in the C1 group are predominantly associated with the Ca-HCO3 and 

MixCa-HCO3 facies (f3, f4, and FW). This finding suggests that C1 groundwater 

samples primarily originate from recharge areas characterised by freshening 

processes. 

• In contrast, the C2 group is mainly associated with the MixNa-Cl and MixNa-

MixCl facies (i2 and i3). These results indicate that C2 groundwater samples 

are sourced from areas where there is a contribution of sodium and chloride 

ions, possibly reflecting the influence of seawater/saltwater intrusion. 

• Finally, the C3 group is nearly exclusively linked to the Na-Cl facies (SW), 

strongly suggesting that C3 groundwater samples originate from zones affected 

by sodium-chloride-dominated water, which could be indicative of saltwater or 

seawater intrusion. 
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Fig. 37 - HFE-Diagram of the chemical analyses for the seven sampling surveys of the Tiziano Project. 

The diagrams on the right side add information about the TDS and chloride concentration related to the 

freshening and intrusion HFs (Giménez-Forcada, 2014, 2019). 

To visually compare the HCA, FA and HFE techniques and to evaluate the temporal 

evolution over the seven sampling surveys from 2007 to 2011, the results were spa-

tially plotted, specifically investigating the dynamics of groundwater salinisation. These 

thematic maps are prepared by interpolating the factor scores related to F1 (groundwa-

ter salinisation) derived by FA (Fig. 38, left-hand side), as well as the hydrogeochemical 

sub-phases derived by the HFE analysis (Fig. 38, right-hand side) and locating HCA 

groups with different symbols.  

The spatial interpolation derived by FA distinguishes the areas more affected by F1 

(groundwater salinisation) as the factor score increases and those less affected by F1 

as the factor score decreases. The spatial interpolation derived by HFE-D allows distin-

guishing areas dominated by freshening processes and those dominated by intrusion 

sub-phases. 
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These thematic maps were determined by using the Ordinary Kriging interpolation 

method. The experimental variogram (Spherical) was built based on the observations 

for each of the seven sampling periods. Table 18 and Table 19 summarise the identified 

parameters, i.e., partial sill, nugget, and range for F1 factor scores and HFE substages, 

respectively. No cut-off was used since the spatial distribution of samples was inho-

mogeneous and sparse compared to the extension of the studied aquifer. 

Table 18 - Ordinary Kriging parameters for F1 factor scores. 

Sample campaign Variogram Partial Sill Nugget Range 

DRY_2007 Sph 0.6 0.2 15,000 

WET_2008 Sph 0.8 0.2 15,000 

DRY_2008 Sph 0.5 0.3 15,000 

WET_2009 Sph 0.5 0.3 15,000 

DRY_2009 Sph 1 0.5 15,000 

WET_2010 Sph 0.6 0.2 15,000 

DRY_2010 Sph 1 0.5 15,000 

 

Table 19 - Ordinary Kriging parameters for HFE substages. 

Sample campaign Variogram Partial Sill Nugget Range 

DRY_2007 Sph 7 4 15,000 

WET_2008 Sph 8 4 15,000 

DRY_2008 Sph 8 2 15,000 

WET_2009 Sph 8 2 15,000 

DRY_2009 Sph 8 5 15,000 

WET_2010 Sph 10 2 15,000 

DRY_2010 Sph 8 5 15,000 

 

Fig. 38 illustrates a clear correspondence between areas with negative F1 factor scores 

and those associated with the freshening sub-phases of the HFE classification. These 

areas are generally in alignment, and it is worth noting that most of the C1 samples are 

located within these zones. Consequently, the results obtained through statistical meth-

ods and HFE analysis are consistent in defining the recharge areas of the Salento aqui-

fer. These recharge areas are characterised by low TDS, influenced by freshening pro-

cesses, and unaffected by F1. Notably, the position and extent of these recharge areas 
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remain relatively stable over time, with only minor changes observed in the last three 

analysed periods, (DRY-2009/10 and WET-2010), despite limited data from sampled 

wells. One prominent recharge area is identifiable along the northwest border of the 

Salento aquifer, coinciding with the higher elevations of the adjacent Murgia aquifer. 

This area appears to be connected to the primary recharge zone of the Salento aquifer, 

situated in the central part of the Lecce Province, nearly corresponding to the endorheic 

part of the territory, extending into the southern portion of the Salento aquifer. 

Conversely, areas with positive F1 factor scores, as depicted in Fig. 38, correspond to 

locations marked by C2 and C3 water samples and various salinisation sub-phases (i1, 

i2, i3, i4 and SW). These areas are primarily situated along the Ionian coastline and 

within a narrow strip extending from the Ionian to the Adriatic seas in the northern part 

of the aquifer. This observation corroborates previous findings from studies conducted 

within the Water Protection Plan of Apulia Region (2005, 2015), as well as by Polemio 

(2016), which identified a narrow strip affected by groundwater salinisation extending 

from the Ionian to the Adriatic seas between the Murgia and the Salento aquifers. No 

significant information can be evident on the Adriatic side coast due to a few spatially 

heterogeneous sampled wells. 

The three statistical approaches are in good agreement and appropriate to investigate 

groundwater dynamics. The amount of data and the spatial distribution of the water 

samples influence the spatial resolution of the results. Therefore, a more homogeneous 

and denser spatial distribution of sampling points would be beneficial for a comprehen-

sive understanding of the areas showing variable dynamics of salinisation. 
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Fig. 38 - Results of FA, HFE-D and HCA are shown for each sampling period of the Tiziano Project. On 

the left-hand side, the thematic maps are associated with FSs of F1(groundwater salinisation) derived 

by FA; on the right-hand side, the thematic maps are associated with HFs derived by the HFE-D. On both 

sides, results are derived by Q-mode HCA. 

 

6.6.2 Maggiore Project database 

Similar results were achieved by Parisi et al. (2023) over the study area using 

the dataset originating from Maggiore Project (2015-2018). They organised the chem-

ical dataset into six monitoring surveys with sampling at the end of each wet season 

(from April to June) and at the end of each dry season (from October to December). 

After a preliminary data screening (checking non-numerical/missing values, charge bal-

ance error, and normality test as discussed in 4.1.1), only wells with repeated sampling 
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in the six surveys were considered, obtaining a net of 31 monitoring wells (12 static 

and 19 pumping).  

The chemical analyses concerned major cations (Ca
2+

, Mg
2+

, Na
+

 and K
+

) and anions 

(Cl
−

, SO4

2−

, NO3

−

 and HCO3

−

), as well as some minor ions (NH4

+

, NO2

−

, PO4 
3−

, Br
−

 

and F
−

). The physical parameters include temperature, pH, electrical conductivity (EC) 

and dissolved oxygen (DO). 

HCA enabled distinguishing three clusters, of which C1 concerns freshwater (TDS = 

567.2 mg/L), while C2 (TDS = 933.4 mg/L) and C3 (TDS = 2,938 mg/L) refer to 

fresh-brackish and brackish groundwater, respectively. 

 

 

Fig. 39 - Dendrogram of HCA obtained with the Maggiore Project dataset. The dashed line represents the 

selected level of dissimilarity (17), which identifies three clusters: C1, C2 and C3. 

According to the HFE’s classification (Fig. 40), C1 mostly belongs to Ca-HCO3 and 

MixCa-HCO3 (f3, f4 and FW) substages, C2 is predominantly MixNa-Cl and MixNa-

MixCl (i2 and i3), while C3 is nearly Na-Cl (i3, i4 and SW). Therefore, C1 groundwaters 

mark the areas of recharge typified by freshening processes, while C2 and C3 clusters, 

qualified by higher concentrations of Cl
−

, Na
+

, K
+

 and SO4

2−

, outline the zones subject 

to saltwater/seawater encroachment. Finally, FA results emphasised the idea that 

groundwater salinisation is the primary phenomenon affecting the groundwater quality 
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of the Salento aquifer (Table 20) since the highest factor loading associated with F1 

explained the 48.26 % of the total variance, divided between Na
+

 (0.97), Cl
−

 (0.97), EC 

(0.93) and Mg
2+

 (0.90). 

Table 20 - Varimax rotated factor loadings, eigenvalues, and total and cumulative variance related to the 

Maggiore Project dataset. 
 

Factor 1 Factor 2 Factor 3 

EC 0.93 0.21 0.10 

DO -0.15 -0.01 0.02 

pH -0.04 -0.93 -0.14 

Cl
-

 0.97 0.14 0.03 

Ca
2+

 0.51 0.66 0.18 

Mg
2+

 0.90 0.12 0.19 

Na
+

 0.97 0.05 0.05 

HCO3

-

 0.15 0.21 0.96 

Eigenvalue 4.37 1.38 0.91 

% Total - variance 48.26 18.02 12.89 

% Cumulative - variance 48.26 66.28 79.17 

 

The spatial distribution of negative F1 factor scores, HFE substages, and the locations 

of the clusters identified by HCA allows for defining the recharge area of the Salento 

aquifer, which is associated with the lowest TDS values and dominated by freshening 

processes. It corresponds to the central part of the study area, coinciding with the en-

dorheic basin and on the NW border of Salento, close to the Murgia aquifer. 

The areas with positive values of F1 factor scores correspond to those affected by 

salinisation substages (i1, i2, i3, i4 and SW) and are indicated by C2 and C3 clusters. 

These areas coincide with the Ionian coastline and two strips extending from the Ionian 

to the Adriatic seas in the northern and southern parts of the study area.  

The methodological approach used in Parisi et al. (2023) differs from that implemented 

with the Tiziano Project database in: 

i. Chemical and physical parameters used in the MVSA. 

ii. Only repeated samplings in all six monitoring surveys were considered. 

iii. The spline method applied for the spatial distribution of F1 factor scores and 

HFE substages. 
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Notwithstanding, a comparison of results demonstrated that even if based on different 

methodological approaches, the statistical and geochemical methods validate each 

other, showing comparable and complementary results in defining recharge areas and 

those subject to saltwater intrusion and salinisation. 

 

 

Fig. 40 - HFE-Diagram of the chemical analyses for the six sampling surveys of the Maggiore Project. 

The diagrams on the right side add information about the TDS and chloride concentration related to the 

freshening and intrusion HFs (Giménez-Forcada, 2014, 2019). 
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Fig. 41 - Results of FA, HFE-D and HCA are shown for each sampling period of the Maggiore Project. On 

the left-hand side, the thematic maps are associated with FSs of F1(groundwater salinisation) derived 

by FA; on the right-hand side, the thematic maps are associated with HFs derived by the HFE-D. On both 

sides, results are derived by HCA. 
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6.7 Indicator Kriging for the nitrate pollution assessment 

Nitrate pollution in the Salento aquifer had been documented as early as 1990, 

when Tulipano & Fidelibus (1993) reported concentrations of 100 mg/L in some areas.  

The accumulation of nitrates in groundwater is typically linked to the intensive use of 

fertilisers in agriculture. The excessive use and/or inappropriate application of fertilisers 

containing nitrates, such as ammonium nitrate and potassium nitrate, may result in a 

surplus of nitrates in the soil, which can subsequently infiltrate through the soil zone 

and reach the aquifer system, potentially affecting also the quality status and ground-

water dependent ecosystems.  

Different organisations and countries have imposed drinking water standards for nitrate 

and other chemical parameters to safeguard public health and the environment. Among 

these, in 1991, the European Union published the “Nitrates Directive” (91/676/CEE), 

designating vulnerable zones. The primary goal of this Directive is to mitigate water 

pollution caused by nitrates of agricultural origin and prevent further contamination. The 

Directive mandates drafting and implementing specific Action Plans (Aps) for European 

Union Member States to achieve these goals, focusing on promoting and ensuring re-

sponsible and sustainable use of fertiliser in agriculture, through compiled Codes of 

Good Agricultural Practices (COGAPs). The lack of continuous and long-term monitor-

ing data poses significant challenges for conducting a thorough assessment of ground-

water nitrate pollution using numerical models, limiting the spatio-temporal evaluation 

of pollution. Additionally, it hampers investigations into infiltration mechanisms and the 

time it takes for the groundwater system to respond to meteorological events. 

In addition to the previous issues, the Salento aquifer shows a high degree of hydraulic 

conductivity anisotropy because of fracturing and karstification processes. The regional 

groundwater flow pattern further complicates matters. These factors collectively create 

conditions that promote the development of pollutant-preferential pathways, which can 

result in diffuse groundwater quality degradation. 

For this purpose, chemical surveys from 1995 to 2021 were organised into two-time 

datasets (1995-2006 and 2007-2021) to focus on a general spatio-temporal overview 

of nitrate concentrations, aware of the differences between the analysed sampling 
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campaigns (concerning monitoring frequency, techniques and instruments, water sam-

ple storage, transport, and anaytical methodologies followed in the laboratory) as well 

the complexity and the three-dimensional vulnerability of the investigated system. 

A preliminary statistical analysis of nitrate concentrations has been conducted on the 

whole dataset and each well to identify potential trends. Fig. 42 reports the nitrate con-

centration patterns of six monitoring wells over the last 25 years. Data indicate a con-

siderable increase over time in nitrate concentrations, even exceeding the recom-

mended upper limit threshold (20 mg/L) of the EU’s Nitrate Directive. In the early 1990s, 

it was common to find nitrate concentration values around 40 mg/L (e.g., SAL_W35, 

SAL_W79, and SAL_W94 wells). 

 

 

Fig. 42 - Trend of nitrate concentrations sampled from 1995 to 2021 in a few selected monitoring wells. 

Fig. 43 shows boxplots regarding nitrate concentrations for the same set of monitoring 

wells shown in Fig. 42, distinguished according to the two reference periods. In 1995-

2006, the mean nitrate concentrations are slightly below the regulatory threshold of 20 

mg/L, while a noticeable increase in the average nitrate values is observed from 2007 

to 2021. During the second reference period, there were some outliers with nitrate con-

centrations exceeding 70 mg/L. (e.g., SAL_W79) and in other monitoring wells, alt-

hough they are not explicitly listed here for brevity. 
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Fig. 43 - Boxplot of nitrate concentrations sampled over the two reference periods in a few selected 

monitoring wells. 

The sampling results of nitrate concentration values monitored during the two reference 

periods offer valuable insights into the temporal evolution of groundwater quality in 

Salento. Analysing average and maximum values provides a general sense of the water 

quality variability in for each monitoring well, even if the occasional exceeding a certain 

threshold might also be attributed to instruments’ errors, data outliers, or operator mis-

takes. Therefore, when interpreting such data, it is advisable to apply statistical tech-

niques to identify and address potential anomalies or errors that could impact the ac-

curacy of the results, ensuring a reliable and robust assessment. Considering nitrate 

concentrations in groundwater from 1995 to 2021, the frequency curves were deter-

mined for a number of wells (152) with significant samples. 

Table 21 lists the frequency at which the set thresholds were exceeded, considering all 

available wells, and depending on the number of samples collected over time for each 
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one of them. Nearly all considered wells consistently exceed the 20 mg/L threshold for 

nitrate concentration. Specifically, 96 out of 152 wells exceed this threshold approxi-

mately 90% of the time. However, the results differ when examining the 40 mg/L and 

50 mg/L levels. For 48 of the wells (about one-third of the total), the 40 mg/L threshold 

is exceeded more than 10% of the time. On the other hand, for the higher threshold of 

50 mg/L, only about one-sixth of the wells (22) show concentration values above this 

level for more than 10% of the investigated period. Most worryingly, around one-sixth 

of those analysed exceed the 40 mg/L limit more than 50% of the time.  

Table 21 - Frequency values of nitrate concentration threshold exceedances.  

% of Time 20 mg/L 40 mg/L 50 mg/L 

≥ 90 96 6 1 

≥ 80 102 7 1 

≥ 70 109 12 4 

≥ 60 120 17 5 

≥ 50 126 23 9 

≥ 40 130 24 10 

≥ 30 134 30 11 

≥ 20 134 36 16 

≥ 10 138 48 22 

IK analyses were performed to directly estimate the local conditional probabilities of 

nitrate concentrations for the two reference periods using data from available wells 

(277 and 257 wells, respectively). The three thresholds set for the local estimation of 

the probability content in an unsampled location are 20, 40, and 50 mg/L. Theme maps 

representing the spatial distribution of these water quality limits have been compiled 

and reported with the corresponding standard deviation maps, i.e., a measure of errors.  

Average nitrate concentrations were calculated for each available well, as the explora-

tory analysis of the entire dataset did not reveal significant differences between wet and 

dry months. The probability of nitrate concentrations above 20 mg/L greatly expanded 

throughout the Salento aquifer compared with 1995-2006, affecting coastal and inland 

areas with a percentage exceedance of around 90 % (Fig. 44).  
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Fig. 44 - Nitrate probability maps (up) and associated standard deviation (down) for the two reference 

periods with a 20 mg/L threshold. 

The probability of exceeding 40 mg/L evolved significantly between the first and second 

period from a mean percentage value of 20 % to about 60 % (Fig. 45).  
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Fig. 45 - Nitrate probability maps (up) and associated standard deviation (down) for the two reference 

periods with a 40 mg/L threshold. 

A considerable variation is also observed between the two periods, with more than 50 

% exceeding the threshold of 50 mg/L for many coastal and inland areas (Fig. 46).  
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Fig. 46 - Nitrate probability maps (up) and associated standard deviation (down) for the two reference 

periods with a 50 mg/L threshold. 

Between the first and second period, the areas with a probability of exceeding the 

threshold value of 20 mg/L increased by approximately 50% of the total aquifer. In the 
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first period, nearly the entire area of the Salento aquifer had a probability of exceedance 

lower than 25% for the 40 mg/L threshold. However, this percentage area became more 

dispersed in the second period, with higher exceedance probabilities. A similar pattern 

was observed for 50 mg/L, suggesting an overall increase in the possibility of exceed-

ance and a consequent expansion of affected zones between the two periods. Further-

more, compared to the previous period, the areas with a probability of exceeding the 

threshold of under 25% are more expansive today and potentially more vulnerable. Ta-

ble 22 summarises the above results. 

Table 22 - Percentage areas corresponding to equal intervals of probability exceedance of the thresholds 

calculated for the two reference periods. 

 

20 mg/L 40 mg/L 50 mg/L 

 

1995-2006 2007-2021 1995-2006 2007-2021 1995-2006 2007-2021 

0-25 26.8 0.0 97.3 44.0 97.9 67.8 

25-50 27.9 7.3 2.7 43.7 2.1 19.0 

50-75 25.7 23.1 0.0 12.3 0.0 11.4 

75-100 19.5 69.6 0.0 0.0 0.0 1.7 

 

The results showed that the probability of finding high nitrate concentrations in ground-

water changed throughout the study area and over time. Groundwater quality usually 

depends on anthropogenic factors and land management.  

However, without a census of agricultural activities distributed in the area, it was only 

possible to investigate whether and how land use change over time could influence 

groundwater pollution. For this purpose, the nitrogen surplus areas identified in two 

Corine Land Cover maps (https://land.copernicus.eu/global/) for the years 2000 and 

2018 were compared. Results were discussed in terms of percentage variations of land 

use areas (Fig. 47). Nitrogen surplus data at different agricultural areas were collected 

from the Water Protection Plan of the Apulia Region (Water Protection Plan, 2009): 66 

Kg/ha for olive groves, 60 Kg/ha for vineyards, 42 Kg/ha for fruit trees, 25 Kg/ha for 

temporary crops associated with permanent crops and non-irrigated arable crops, and 

0 Kg/ha for vegetable and herbaceous crops. The comparison includes red areas, 

which identify territories where the nitrogen surplus has increased over time, and the 

https://land.copernicus.eu/global/
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green ones, representing the zones where the nitrogen surplus has decreased. The re-

maining areas are those where nitrogen surplus remained unchanged over time: (i) 

orange, pink, and blue areas correspond to zones with high, medium, and low nitrogen 

surplus, respectively; (ii) grey areas refer to zones with no nitrogen surplus, (iii) while 

the white ones are those where nitrogen surplus was not detected like artificial areas, 

wetlands, and water bodies. 

 

Fig. 47 - Nitrogen surplus changing in agricultural areas from 2000 to 2018 

The comparison of the two Corine Land Cover maps highlights that the nitrogen surplus 

is distributed over the entire territory. On the contrary, IK identifies distinct zones po-

tentially affected by nitrate pollution. 
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Furthermore, while national data on the nitrogen-based fertilisers used in the Apulia 

region (ISTAT data: http://dati.istat.it/index.aspx?queryid=23961#) reveal a drastic re-

duction from 2008 onwards (Fig. 48), the IK results suggest an expansion of the areas 

potentially contaminated by nitrates in 2007-2021 compared to 1995-2006.  

 

 

Fig. 48 - Distribution, for agricultural use, of fertilisers (fertilisers, soil conditioners and correctives) from 

2003 to 2020 (Source: Istat - http://dati.istat.it/index.aspx?queryid=23961#) 

Data on land-use change over the period under investigation and the distribution of 

nitrate-producing fertilisers are apparently unrelated to the nitrate concentrations ob-

served in the second reference period from 2007 onwards. Several studies demon-

strated that nitrates leaching from the soil could take decades to reach groundwater 

due to the transitory deposition and accumulation of nitrates in the unsaturated zone 

(Wang et al., 2013). The nitrate transport processes should be, in principle, more com-

plex within karst unsaturated zones than in porous ones because in the former, the 

anisotropy of the hydraulic conductivity adds up to soil lithology, land use, and hydro-

logical conditions as key control factors. Therefore, the time lag detected in many cases 

(Wang et al., 2013; Kaandorp et al., 2021) could justify the observed trend. If this is 

true, it means that we will see in the following years a recessionary limb that will bring 

nitrate concentration values from their peaks to values coherent with the adopted poli-

cies of reduction of fertiliser use. This result is crucial advice and would be essential to 

http://dati.istat.it/index.aspx?queryid=23961%23
http://dati.istat.it/index.aspx?queryid=23961
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be considered for groundwater monitoring planning as it outlines a challenging situation 

in the management of the resources. Groundwater quality improvement in response to 

mitigation measures is delayed in time, and the definition of this lag is critical from a 

policy and monitoring perspective (Bain et al., 2012). For this purpose, it is essential to 

constantly collect groundwater quality data, attempting to clarify whether what appears 

today is merely the result of the uncontrolled practices of the past. 
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6.8 Potential climate change in the Salento aquifer 

With the aim of evaluating the projected precipitation and temperature changes 

in the Salento aquifer, an ensemble of twelve Regional Climate Models (RCMs) driven 

by several General Circulation Models (GCMs) were collected under the Representative 

Concentration Pathway RCP4.5. Eight bias-correction (BC) methods were applied at 

daily time steps, and their results were assessed on monthly and annual time steps, 

using daily records from 19 and 11 precipitation and temperature (minimum and max-

imum) stations, respectively, for the period 1960-2005. Potential hydrological and eco-

nomic impacts of the projected climate trend were finally qualitatively assessed. 

Two distinct paragraphs report the performance of the bias-correction methods and the 

future climate trend results. 

6.8.1 Results of bias correction methods 

As described in Chapter 5, an ensemble of 12 RCMs was analysed, and eight 

BC methods were applied to account for uncertainty due to climate projections. Since 

the Salento aquifer has a great storage capacity and exhibits slow response to precipi-

tation and temperature variability (Balacco et al., 2022b), we focused on the monthly 

and annual assessment of the results. Furthermore, although the analyses were carried 

out for each station, the results were reported in terms of average values of the ensem-

ble for characterising the climate trend on a regional dimension. 

The calculated metrics for monthly precipitation and temperature data, i.e., RMSE, 

RHO, NSE, and BIAS, are reported in the Annex section (Table A3-Table A5). Regarding 

precipitation, results differ among each RCM and BC method. LS, EQM, LOCI, and PTR 

generally yield better scores of the assessed coefficients than the other more sophisti-

cated techniques, especially regarding percent bias error. In contrast, temperature out-

comes confirm that all methods show good performances in adjusting raw simulated 

data, and no significant deviations between RCMs can be detected. 

Fig. 49 shows the metric results for precipitation, highlighting how all BC methods 

slightly improve the raw RCM datasets; there are still significant deviations in reproduc-

ing the observed characteristics depending on the analysed RCM and BC technique.  
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In general, the selected bias-corrected RCMs are sufficiently representative of the 

Salento precipitation pattern, although a significant variation exists among them com-

pared to the observed time series. Few RCMs (i.e., AL_CN and WF_IP) were excluded 

entirely from successive precipitation analyses because their deviation was signifi-

cantly inconsistent compared to the observations, even after applying the BC methods. 

As reported in Fig. 49, these two RCMs are indeed those with the highest variability in 

terms of metrics. It is worth noting that the performance of each BC method varies 

among all RCMs, making the selection of the best technique undetectable. 

Fig. 50 illustrates the Taylor diagrams compiled by raw and bias-corrected RCM pre-

cipitation from 1971-2005 on a monthly interval. They are normalised to the standard 

deviation of the observed data and expressed as mm/month. These graphs simultane-

ously control the standard deviation and the correlation coefficient between simulated 

(raw or bias-corrected) and observed data. Thus, bias-corrected RCMs showing high 

correlation coefficients and standard deviations closer to one represent datasets more 

similar to the observed patterns.  

Regarding raw data, except for RA_IC, RC_IC and RC_MP, all the other raw RCMs data 

tend to underestimate monthly precipitation over 1971-2005 (standard deviation less 

than one). Specifically, the standard deviation varies between a minimum of 0.58 

mm/month (RC_IP) to a maximum of 1.05 mm/month (RC_IC). Correlation coefficients 

range between a minimum of 0.15 (RC_IP) to a maximum of 0.29 (CC_CN and 

RC_CN). After applying BC methods, the standard deviations increase to around one 

(0.58 mm/month (RC_IP) and 1.05 mm/month (RC_IC)), and the correlation coeffi-

cients slightly improve, especially for LS, EQM, PQM, and PTR.  

DQM and QDM methods perform worse than the others, with monthly precipitation 

amounts higher than the observations. 
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Fig. 49 - Statistical performance evaluation of the raw and bias-corrected RCM outputs against the 

monthly observed rainfall for the 12 RCMs in the Salento aquifer from 1971 to 2005. The RMSE, RHO, 

NSE and BIAS are reported. The coding of the analysed scenarios is reported in Section 5.1.1. 
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Fig. 50 - Taylor diagrams of monthly raw and bias-corrected RCMs precipitation data for the period 

1971-2005. 

Fig. 51 illustrates the comparison of the monthly precipitation mean values of raw and 

bias-corrected simulated data with the historical observations (dashed line) from 1971-

2005. As detected in the Taylor diagrams, the monthly precipitation averages of raw 
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RCM data are generally lower than the observations, especially during autumn. The 

variability and uncertainty of each raw RCM compared to the observed time series are 

visually detectable. Although the seasonality is largely reproduced, the uncorrected 

monthly average precipitation of the selected RCMs significantly deviates from the ob-

served ones, overestimating spring-summer depths, and underestimating autumn-win-

ter ones.  

After BC, the monthly bias-corrected precipitation of each ensemble member is com-

parable with that of the observation data, with the best fit presented for LS, EQM, and 

PTR techniques. GPQM, DQM, and QDM exhibit more significant variability than the 

observed trend, with values usually overestimating monthly precipitation, especially 

during the wet period. 

 

 

Fig. 51 - Average monthly precipitation of raw and bias-corrected RCM data for 1971-2005. 

Improving simulated raw precipitation data is more complex than temperature in the 

bias correction context. In fact, in the case of temperature datasets, all RCMs and BC 
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methods perform satisfactorily, with bias-corrected results in agreement with the ob-

servation time series. 

The results of the metrics (i.e., RMSE, RHO, NSE and BIAS) for monthly maximum 

temperature are reported in Fig. 52. The statistical performance coefficients explain a 

better bias correction of simulated data compared to precipitation, without significant 

differences among RCMs and BC techniques. RMSE coefficients are close to zero, in-

dicating a low deviation between simulated and observed data. The already high RHO 

correlation coefficients for the raw simulated data improve after the application of BC 

methods. NSE coefficients range around zero, demonstrating the goodness of all BC 

methods. Finally, the BIAS percentage is very low against monthly precipitation, for 

which higher values and variability among each technique were obtained. 

Contrarywise to precipitation, all 12 RCMs were considered for the temperature dataset. 

Fig. 53 shows the Taylor diagrams of maximum temperatures. Similar considerations 

could be discussed for minimum temperatures. All raw RCMs display high values of 

correlation coefficients, ranging between 0.94 and 0.96 and standard deviations vary-

ing from a minimum of 0.80 °C/month to a maximum of 1.13 °C/month. Applying BC 

methods improves the standard deviation more than the correlation coefficient. No sig-

nificant difference in the performance between RCMs and BC methods was identified. 
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Fig. 52 - Statistical performance evaluation of the raw and bias-corrected RCM outputs against the 

monthly observed maximum temperature for the 12 RCMs in the Salento aquifer from 1971 to 2005. The 

RMSE, RHO, NSE and BIAS are reported. The coding of the analysed scenarios is reported in Section 

5.1.1. 
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Fig. 53 - Taylor diagrams of monthly raw and bias-corrected RCMs maximum temperature data for the 

period 1971-2005. 

Fig. 54 provides a comparison of raw/bias-corrected monthly averages of the maxi-

mum temperature of each RCM and observations. No specific difference among RCMs 

or BC methods is evident, as all techniques considerably reduce the bias. 
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Fig. 54 - Average monthly maximum temperature of raw and bias-corrected RCM data for 1971-2005. 

Compromise programming (CP) results were used to select the most suitable bias-

corrected data for assessing projected precipitation and temperature trends. Fig. 55 

highlights the results of CP for precipitation in terms of mean values of Lcp. The most 

efficient methods are LS, PTR, and LOCI. Nevertheless, LOCI was excluded from the 
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future trend analysis because there are still some considerable biases in monthly aver-

age precipitation after BC, as illustrated in Fig. 51.  

 

 

Fig. 55 - Average values of compromise programming results for precipitation. 

The LS and the PTR algorithms could finally be considered the most efficient BC meth-

odologies for precipitation time series for the case study, since quantile methods (i.e., 

GPQM, DQM, and QDM) tend to overestimate monthly precipitation, especially during 

the wet period. On the contrary, in the case of temperature datasets, all methods per-

form satisfactorily, and the results agree with the observation time series. 

Addressing the persistent uncertainties in RCMs requires a comprehensive approach 

combining BC methods with multi-model ensemble techniques, as Lyra & Loukas 

(2023) discussed. However, many BC techniques are specifically designed for partic-

ular characteristics of catchments, primarily at the basin scale, making them less suit-

able for alternative contexts (Tumsa, 2022). The challenges of selecting the appropriate 

BC method become even more complex in arid and semi-arid regions, where precipi-

tation patterns are characterised by scarcity, irregularity, and randomness (Mendez et 

al., 2020). BC methods often tend to overestimate annual mean values in these regions, 

with the degree of overestimation varying depending on the specific RCMs used. Fur-

thermore, uncertainties arise regarding the ability of these methods to accurately rep-

resent climate change signals and predict future extreme weather events. In this con-

text, it is noteworthy that climate change signals are chiefly sensitive to RCMs, given 
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that LS and PTR for precipitation and LS and VAR for temperature generally yield similar 

results. Nonetheless, there are geographical regions where the choice of BC methods 

significantly influences climate change patterns and extreme events assessments. For 

example, Tefera et al. (2023) illustrated in the Jemma sub-basin of the Upper Blue Nile 

Basin that the performance of Linear Scaling and Distribution Mapping techniques var-

ies in extreme event characterisation and climate change signal representation across 

different RCMs and emission scenarios. 

Despite advancements in this field, dealing with the compounded uncertainties intro-

duced by the modelling process remains a challenging task. This process encom-

passes decisions regarding GCM and RCM simulations, evaluations of emission sce-

narios, BC method selection, the geographical area under investigation, and the quality 

of observed datasets (Noto et al., 2023b). 

6.8.2 Future trends and potential climate change over the Salento aquifer 

Precipitation and minimum and maximum temperature datasets provided by 

each raw and bias-corrected RCM for the entire projection period 2006-2100 were 

divided into two 30-year intervals (2031-2060, 2071-2100) and compared with the 

reference period 1971-2005 on monthly and annual intervals. The correction factors 

assessed in the reference period for each BC method were used to correct the bias in 

the future, as usually considered in climate studies.  

The mean annual amount and the change signal were calculated for each RCM in the 

two 30-year periods from the observed reference to evaluate the effect of the selected 

methods on future projections. Specifically, the climate change signal refers to the per-

centage difference between future raw and bias-corrected RCM output for precipitation 

and temperature deviations from the reference period. Results reported in Table 23 and 

Table 24 refer to the average ensemble of all station time series. 

Fig. 56 and Fig. 57 show the boxplots and climate change signals of the annual precip-

itation of raw and bias-corrected RCMs. It can be noted that, among the others, LS and 

PTR adapt simulated data of the selected RCMs to local observations regarding monthly 

mean precipitation during the reference period (1971-2005). However, when evaluating 

the future projections, the raw RCMs consistently project a reduction in the mean value 
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of both periods, except for RC_CN and RA_IC, which show higher mean precipitation 

(Fig. 56). In contrast, bias-corrected simulated data overestimate the mean annual 

amount in most cases, as exemplified by CC_CN, CC_IC, CC_MP, HI_IC, RC_IP, 

RE_MP. However, both methods appear to be suitable for preserving the climate 

change signal of most of the RCMs in 2031-2060 and 2071-2100 (Fig. 57). There are 

a few exceptions, such as CC_CN, where LS and PTR cause a shift from a negative 

climate change signal in the raw data to a positive one in 2071-2100. Another exception 

is RA_IC, which exhibits a changing trend from a positive signal to a negative one in 

the 2031-2060. Generally, it can be observed that all bias-corrected RCMs tend to 

damp or attenuate the climate change signals when compared to the raw data. 
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Fig. 56 - Boxplots of the annual precipitation of RCM simulations with (LS, PTR) and without (RCP4.5) 

bias correction for 2031-2060 (in blue) and 2071-2100 (in orange). In the boxplots, whiskers indicate 

the minimum and maximum value of precipitation; the horizontal lines refer to the 25th percentile, me-

dian, and 75th percentile from the bottom to the top of each boxplot, and the point symbols represent 

outliers. 
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Fig. 57 - Climate change signals of annual precipitation of RCM simulations with (LS, PTR) and without 

(RCP4.5) bias correction for 2031-2060 (in blue) and 2071-2100 (orange).   
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Fig. 58 shows the annual precipitation variability (blue line) resulting from the average 

of the 10 RCMs, bias-corrected with LS and PTR for 2031-2060 and 2071-2100. The 

results indicate a wide interannual variation of average precipitation. At the same time, 

the 95% confidence interval (light blue area) range of about 200 mm reveals the con-

siderable uncertainty around projected annual precipitation, introduced by the different 

climate realisations presented from the different RCM-GCM combinations. The data 

reveal that the annual precipitation trend is relatively stable for the near to medium fu-

ture, with no clear indication of a significant increase or decrease. This outcome was 

consistent across both LS and PTR methods (orange lines in Fig. 58). On the contrary, 

a slightly positive trend in annual precipitation became more noticeable in 2071-2100. 

However, bias-corrected data showed consistently lower values for both periods when 

compared to historical observations, pointing towards a potential decrease in precipi-

tation over time (Table 23). 

 

Fig. 58 - Average annual precipitation (bold blue line) and 95% confidence interval (light blue area) based 

on the data of the 10 RCMs, bias-corrected with LS and PTR methods for the period 2031-2060 (left-

hand top and bottom sides) and 2071-2100 (right-hand top and bottom sides), respectively. Orange line 

indicates the trend, and the light orange area refers to its 95% confidence interval. 

The average annual precipitation resulting from bias-corrected data with LS in 2031-

2060 was 613.2 mm, while the corresponding value of PTR was 616.5 mm, thus indi-

cating a very low deviation between the two BC methods. In 2071-2100, the average 
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annual precipitation resulting from bias-corrected data were 616.8 mm and 624.5 mm 

with LS and PTR, respectively. Thus, precipitation results are lower than the observed 

average annual precipitation in the historical period (1971-2005), which equals 655.3 

mm. Specifically, the annual precipitation for the Salento study area shows a decrease 

of 6.4 % and 5.9 % for LS and 5.9 % and 4.7 % for PTR in 2031-2060 and 2071-2100, 

respectively, when compared to the historical period (1971-2005). 

Table 23 - Summary of annual precipitation change scenarios. 

BC  Period 
Annual precipitation 

trend 

Average annual  

precipitation [mm] 

Average annual  

precipitation change 

[%] 

Historical 1971-2005 + 655.3 na 

LS 2031-2060 - 613.2 -6.4 

PTR 2031-2060 + 616.5 -5.9 

LS 2071-2100 + 616.8 -5.9 

PTR 2071-2100 + 624.5 -4.7 

The monthly precipitation change is mainly negative in the short and long term, with 

some exceptions during the late spring-early summer period (April-June), which ap-

pears to be increasing (Fig. 59). 

 

Fig. 59 - Monthly precipitation change of 2031-2060 (left-hand top and bottom sides) and 2071-2100 

(right-hand top and bottom sides) for LS and PTR, respectively. The blue line refers to the average 

monthly value, and the light blue area indicates the 95% confidence interval produced from the 10 RCMs. 
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For brevity, minimum and maximum temperature results are reported referring to LS 

and VAR methods since deviations among each method are negligible. In contrast to 

precipitation, different results can be detected for minimum and maximum temperature 

in terms of mean value, for which all raw simulations project an increasing trend com-

pared to the reference period, except for RA_IC, RC_CN, and RC_IC, which display a 

slight reduction in minimum temperature. However, when referring to bias-corrected 

data, LS and VAR often overestimate the mean annual temperature. The two BC meth-

ods preserve the positive climate change signals in both periods, except for RA_IC, 

RC_CN, RC_IC, and RC_MP, for which BC methods triggered a change from negative 

to positive climate change signals.  
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Fig. 60 - Boxplots of the maximum temperature of RCM simulations with (LS, VAR) and without (RCP4.5) 

bias correction for 2031-2060 (in blue) and 2071-2100 (in orange). In the boxplots, whiskers indicate 

the minimum and maximum value of Tmax; the horizontal lines refer to the 25th percentile, median, and 

75th percentile from the bottom to the top of each boxplot, and the point symbols represent outliers. 
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Fig. 61 - Climate change signals of maximum temperature of RCM simulations with (LS, VAR) and with-

out (RCP4.5) bias correction for 2031-2060 (in blue) and 2071-2100 (orange).   
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Table 24 summarises the results of all BC techniques, while Fig. 62 and Fig. 63 highlight 

the temporal variation in maximum and minimum temperatures (blue lines), resulting 

from the 12 RCMs’ average bias-corrected with LS and VAR for 2031-2060 and 2071-

2100 respectively. The linear trend (orange lines) outlines an increasing pattern for both 

periods and variables. In contrast to precipitation results, air temperature simulations 

show a limited interannual variation of average temperature and moderate deviations in 

annual temperature projections resulting from all the selected RCMs (light blue area). 

 

Fig. 62 - Average annual maximum temperature (blue line) and 95% confidence interval (light blue area) 

based on the data of the 12 RCMs, bias-corrected with LS and VAR for the period 2031-2060 (left-hand 

top and bottom sides) and 2071-2100 (right-hand top and bottom sides), respectively. Orange line indi-

cates the trend, and the light orange area refers to its 95% confidence interval. 
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Fig. 63 - Average annual minimum temperature (blue line) and 95% confidence interval (light blue area) 

based on the data of the 12 RCMs, bias-corrected with LS and VAR for the period 2031-2060 (left-hand 

top and bottom sides) and 2071-2100 (right-hand top and bottom sides), respectively. Orange line indi-

cates the trend, and the light orange area refers to its 95% confidence interval. 

The average annual maximum temperature obtained from bias-corrected data was ap-

proximately 22°C in 2031-2060 and 22.6°C in 2071-2100. These values demonstrate 

a significant difference from the observed average maximum temperature in 1971-

2005, which was 20.5°C. No significant deviation was observed between the two bias 

correction methods, as indicated in Table 24.  

Similarly, the annual minimum temperature derived from bias-corrected data was ap-

proximately 14.1°C in 2031-2060 and 14.8°C in 2071-2100. In contrast, the observed 

average minimum temperature in the historical period of 1971-2005 was 12.9°C. 

Therefore, the bias-corrected data project higher maximum and minimum temperatures 

in the future. The annual maximum and minimum temperatures increase on average by 

1.4°C and 1.3°C, respectively, compared to the reference period. Considerable temper-

ature increases are observed in 2071-2100, with maximum and minimum temperatures 

rising by 2.1°C and 1.9°C, respectively. 
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Table 24 - Summary of annual maximum and minimum change scenarios. 

BC  Period 

Annual 

Tmax 

trend 

Average  

annual Tmax 

[°C] 

Average  

annual Tmax  

difference [°C] 

Annual 

Tmin 

trend 

Average  

annual Tmin 

[°C] 

Average  

annual Tmin  

difference [°C] 

Historical 1971-2005 + 20.5 na + 12.9 na 

LS 2031-2060 + 21.9 1.4 + 14.2 1.3 

EQM 2031-2060 + 22 1.5 + 14.2 1.3 

PQM 2031-2060 + 22 1.5 + 14 1.1 

GPQM 2031-2060 + 22 1.5 + 14.2 1.3 

DQM 2031-2060 + 21.9 1.4 + 14.1 1.2 

QDM 2031-2060 + 21.9 1.4 + 14.2 1.3 

VAR 2031-2060 + 21.9 1.4 + 14.2 1.3 

LS 2071-2100 + 22.6 2.1 + 14.8 1.9 

EQM 2071-2100 + 22.6 2.1 + 14.8 1.9 

PQM 2071-2100 + 22.6 2.1 + 14.6 1.7 

GPQM 2071-2100 + 22.6 2.1 + 14.8 1.9 

DQM 2071-2100 + 22.6 2.1 + 14.8 1.9 

QDM 2071-2100 + 22.6 2.1 + 14.8 1.9 

VAR 2071-2100 + 22.6 2.1 + 14.8 1.9 

At a monthly scale, it is evident that maximum and minimum temperatures increase for 

most months in the two analysed time windows, particularly during the summer. For 

brevity, Fig. 64 illustrates the monthly change results for maximum temperature in the 

two periods, considering both LS and VAR methods, as the results for minimum tem-

perature were similar. 
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Fig. 64 - Monthly maximum temperature change of 2031-2060 (left-hand top and bottom sides) and 

2071-2100 (right-hand top and bottom sides) for LS and VAR methods, respectively. The blue line refers 

to the mean, and the light blue area indicates the 95% confidence interval produced from the 12 RCMs. 

Fig. 65 shows the projection of the total annual precipitation and minimum and maxi-

mum temperature in 2015-2100 of the RCM ensemble’s average values bias corrected 

through the LS method. The results represent a 10-year moving average to mitigate 

natural variability and emphasise the climate change signal. The median values of the 

climate models (blue line) reveal a slight decline in precipitation time series in the future, 

whilst the variability between the RCMs (blue shadow) indicates high uncertainty in the 

climate projections. In contrast, the temperature projections suggest a progressive 

warming in the region under investigation. 

 

Fig. 65 - Annual precipitation (a), annual maximum temperature (b) and minimum temperature (c) in 

terms of a 10-year moving average in the period 2015-2100 according to the RCP4.5 scenario. 
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The expected slight decline in precipitation and rise in temperatures until the end of the 

century align with findings from other studies conducted in Southern Italy. For example, 

Bucchignani et al. (2016) projected a modest decrease in winter-autumn precipitation 

(from September to February) and a moderate to significant reduction in other months 

under the RCP4.5 scenario for 2071-2100. They based their analysis on high-resolu-

tion simulations using COSMO-CLM over Italy. Similarly, there was an estimated in-

crease of over 2°C in the average temperature. D’Oria et al. (2018) also examined tem-

perature changes, reporting an average annual minimum and maximum temperature 

variations of more than 2°C under the RCP4.5 scenario for the Salento Peninsula. 

These trends pose significant challenges for various ecosystems, particularly in regions 

where water resource management has not received adequate attention. This is espe-

cially concerning in areas like Salento, where highly vulnerable aquifer systems serve 

as the primary source of water for the entire region. These changing climate patterns 

could lead to reduced aquifer recharge rates due to higher levels of evapotranspiration 

and, in some periods, decreased precipitation. 

In numerous catchments located within the Mediterranean basin, water demand typi-

cally exhibits a rise during the summer months, primarily driven by agricultural and 

tourism-related needs. Consequently, the projected reduction in precipitation during 

these months, which coincides with periods of stronger dependency on groundwater, 

will worsen the already severe water shortages. This, in turn, exacerbates the problem 

of overexploitation in coastal aquifers, leading to groundwater quality deterioration, 

driven, amongst others, by saltwater intrusion. 

Changes in land use can further impact aquifer recharge. The expansion of both inland 

and coastal urbanization, often driven by tourism development, involves converting 

substantial areas covered by soil into impermeable or low permeability zones. This al-

teration impedes infiltration and deep percolation of water, increases surface runoff, 

and increase flood risk substantially.  Additionally, the simultaneous rise in tempera-

tures increases water loss from such surfaces and also from the topsoil through evap-

oration. 
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Munafò et al. (2022) offered an up-to-date picture of the land cover transformation 

processes in Italy, revealing that the Salento region is among the territories most sig-

nificantly affected by land consumption (overbuilding, construction of photovoltaic 

plants and abandonment). While this transformation may reduce water demand for ir-

rigation, it also contributes to adverse changes in the infiltration and runoff regimes. 

On the other hand, changes in minimum and maximum temperatures could impact the 

agricultural sector through the subsequent increase of potential evapotranspiration, 

which results in higher crop water requirements. Moreover, the elevated maximum tem-

peratures can subject crops to heat stress, which may disrupt their growth and yield, 

ultimately leading to substantial economic losses and deficits in food production.  

Groundwater availability in the Salento aquifer could be compromised due to the pro-

jected decline in precipitation and the temperature rise, as emphasized in prior research 

(Kapur et al., 2007; Lionello et al., 2014; D’Oria et al., 2018). This is especially so in 

the absence of any surface water bodies in the region, which sets all pressure on 

groundwater, thus exacerbating water deficit conditions and worsening its’ quality char-

acteristics predominantly due to saltwater intrusion. Fortunately, the Apulian Water Au-

thority is aiming to address water demand in the Apulia region by expanding the water 

network and optimising the use of surface water resources through the Piano D’Ambito 

2020-2045 (https://www.autoritaidrica.puglia.it/aip/po/mostra_news.php?id=6). This 

way, the target to maintain or even reduce water withdrawals from the Salento aquifer 

may be reached. 

Notwithstanding, when water levels decrease, the transition zone expands, reducing the 

thickness of the freshwater layer with a simultaneous increase in its salt content. The 

recovery of groundwater levels is contingent on the scale of the aquifer and can vary in 

duration. However, even during wet periods that may lead to water levels replenish-

ment, groundwater quality often remains compromised, as Alfio et al. (2020) pointed 

out. Therefore, any future reduction in rainfall compared to the historical reference pe-

riod, albeit modest (c.a. 6%), poses a definitive threat to groundwater quality and avail-

ability because the simultaneous decrease in recharge and increased groundwater ex-

traction will most probably expedite the salinisation process. 

https://www.autoritaidrica.puglia.it/aip/po/mostra_news.php?id=6
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Addressing the multifaceted challenges posed by climate change requires a holistic 

approach. As suggested by Lange (2019), an integrated strategy involving regional co-

operation, collaborative research, and stakeholder engagement is vital. It encompasses 

the development of adaptation and mitigation strategies, such as improving the effi-

ciency of resource deployment, conducting thorough assessments of technology for 

power generation, and increasing reliance on renewable and solar technologies. These 

measures are necessary to address water and energy scarcity and ensure a secure and 

sustainable future for Mediterranean societies. 
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CONCLUSIONS 

 

Groundwater resources worldwide are essential for satisfying water drinking 

demand, agriculture, and industry, particularly in semi-arid and arid regions. Climate 

change further exacerbates water scarcity by altering precipitation patterns and increas-

ing temperatures, leading to higher water demand, especially during droughts. In 

coastal aquifers, overexploitation and limited recharge rates can result in declining 

groundwater levels and increased saltwater intrusion, compromising water quality and 

making it less suitable for various uses. Due to climate variability and human activities, 

many Mediterranean countries face groundwater quantity and quality challenges. Ef-

fective management practices are crucial to ensure long-term groundwater availability 

and quality while mitigating risks such as overexploitation and saltwater intrusion.  

The advent of cutting-edge sensor technologies, satellite imagery, and remote sensing 

tools has revolutionised aquifer data collection. These technologies enable the acquisi-

tion of real-time or near real-time and high-resolution datasets, allowing the observation 

of time trends from networks across large areas. Continuous monitoring data enables 

the simulation and prediction of the aquifer behaviour under various scenarios. This 

capability aids in proactive management, such as addressing groundwater depletion or 

contamination risks. However, in many cases, the design of the monitoring network 

goes beyond the preliminary understanding of the system to be investigated. Construct-

ing the conceptual model of the hydrogeological configuration and hydrodynamic evo-

lution of an aquifer represents the preliminary yet essential step for designing a sus-

tainable, meaningful, trustworthy, and cost-efficient monitoring plan. In the case of 

coastal aquifers, this phase becomes more complex because the theory of groundwater 

flow in variable-density systems is considerably more intricate than under single-den-

sity conditions. Due to the absence of detailed guidelines, monitoring plans often prove 

unexpectedly ineffective as they depend on inadequate understanding of the natural 

environment. A monitoring design that fails to account for the inherent complexity of 

the subsurface and the associated processes inevitably leads to uncertainties in moni-

toring outcomes, that can be misleading.  
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This Thesis arises from the need to develop a comprehensive and integrated approach, 

which can be considered a supporting tool for decision makers, water managers and 

water utilities in defining strategic and proper groundwater resources management. 

Above all, it aims to serve as a point of reflection on the limitations still existing in our 

monitoring networks and, consequently, on our knowledge of the aquifer. The main 

challenge occurred in the hydrogeological data acquisition for the selected aquifer. De-

spite the continuous advancements in instrumentation, in the case of the Apulia region, 

the only available daily groundwater level data pertain to the Tiziano project, which cov-

ered the years 2007-2011. Additional piezometric data consist of sporadic manual 

measurements over time (typically every six months) conducted on a monitoring net-

work that, while well-defined spatially, has not been consistently sampled during each 

sampling campaign. Often, detailed information about monitoring wells is lacking, pre-

venting their use. All these issues rendered the application of the data-driven method-

ologies intricate and the interpretation of results challenging. 

Furthermore, the initial idea of employing artificial intelligence, particularly machine 

learning, to identify future patterns in GWL data using climate models failed due to the 

absence of a sufficiently large dataset for training, calibration, and validation steps. 

While numerical models can provide a more precise understanding of aquifer behav-

iour, artificial intelligence enables the identification of patterns, trends, and anomalies 

in hydrogeological data. Numerical models are invaluable tools for understanding and 

managing groundwater systems, but they require careful consideration of data, model 

complexity, calibration, uncertainty, and validation. Overcoming these difficulties is es-

sential to ensure the accuracy and reliability of the models, but require a significant 

amount of data, including geological, hydrological, and hydrogeological information, 

often not available. Nevertheless, these sophisticated approaches become mere nu-

merical exercises without robust reference measurements. 

To this purpose, the Thesis investigated a set of methods requiring a short-time series 

or discrete mesaurements for a preliminary assessment of the quantitative and qualita-

tive hydrodynamic mechanism of a complex coastal karst aquifer in southern Italy. The 
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knowledge gained on the study area can be summarised following the key points re-

ported in the INTRODUCTION Section. 

1. Hydrogeological characterisation 

The conceptual model of aquifer functioning indicates that the case study does not 

behave, as previously believed, as a classic karst, but rather as a porous aquifer, where 

precipitation inputs do not immediately reach the aquifer but with a certain lag. In fact, 

the analyses of correlations between monthly groundwater levels and climate indices 

(specifically SPI and SPEI) reveal a statistically significant positive relationship, which 

varies locally across different time scales and lag times. The presence of a long-term 

correlation suggests that the Salento aquifer, despite its complexity, responds linearly 

to precipitation and temperature variations over an extended period, acting as a low-

pass filter with significant inertia in terms of transmissivity and storage capacity. When 

using these correlations to estimate future groundwater levels in response to climate 

projections, it is advisable to employ the SPEI index. This choice enables a thorough 

evaluation of the combined effects resulting from variations in both precipitation and 

temperature, specifically in areas marked by minimal precipitation decreases and sub-

stantial temperature increases. The daily time series analyses in both time and fre-

quency domains also confirm the slow behaviour of the case study. They indicate a 

general baseflow water transfer process, favoured by minor fractures and discontinui-

ties that drain the unsaturated zone, occasionally anticipated by a rapid flow through 

karst conduits and large fractures during heavy precipitation. Results are locally dis-

similar, with variable response times and modest correlation coefficients due to the 

high degree of complexity and anisotropy of the investigated system. The transfer of 

infiltration water occurs slowly, and the effects on groundwater levels can be observed 

with an average lag of 18 months, however varying from area to area.  

Wavelet analysis outcomes endorse the high storage capacity of the investigated sys-

tem resulting from the persistent periodicity higher than 256 days for all monitoring 

wells. 

Groundwater level decomposition proves that the seasonal and remainder components 

influence less significantly than the trend. Based on the available and relatively short 
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recordings, all monitoring wells concur in detecting a predominantly negative trend in 

2007-2011, except for the hydrological year 2009-2010, which stands out as a wet 

period compared to the study area’s annual average. However, these trends may be 

considered cautiously, as they refer to a too short time frame. 

The results of this study indicate that the proposed combination of methods is advan-

tageous and can be easily applied to other regions where groundwater level and mete-

orological time series data are accessible. Despite the limited hydrogeological data 

available, this approach has enhanced the understanding of subsurface hydrodynamic 

processes in response to meteorological conditions in the Salento aquifer. On the other 

hand, studies highlighted how the accessibility to long-term, consistent, and spatially 

distributed measurements can provide a more accurate view of the system and support 

future groundwater resources planning and management. 

2. Qualitative assessment 

From the qualitative point of view, Multivariate Statistical analysis and the Hydrogeo-

chemical Facies Evolution Diagram provide a valuable means of the salinisation pro-

cess during the two analysed monitoring periods. Both methods concur in identifying 

the portion of the aquifer most susceptible to saltwater intrusion, primarily along the 

Ionian coastline and within a specific zone extending from the Ionian to the Adriatic 

seas in the northern sector of the aquifer. It highlights that the size and location of 

recharge areas remain relatively stable over time. The northwestern boundary of the 

Salento aquifer, which corresponds to the higher elevations of the adjacent Murgia aq-

uifer, is connected to the central part of the Lecce Province, closely aligning with the 

endorheic region of the southern portion of the study area.  

Another source of pollution impacting the Salento aquifer is associated with nitrates, 

which may potentially originate from agricultural activities, even though national data 

on nitrogen-based fertilizers used in the Apulia region indicate a significant reduction 

from 2008 onwards. The presence of elevated nitrate concentrations in groundwater, 

as identified through geostatistical analysis, and the apparent disconnection from agri-

cultural practices raise a question regarding the pathways through which these pollu-

tants infiltrate the soil and reach the karst aquifer, as well as the time involved in this 
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process. This finding holds significant implications for the planning of future ground-

water monitoring initiatives, indicating that improvements in groundwater quality in re-

sponse to mitigation measures could be delayed over time. 

3. Future climatic projections 

The last part of the Thesis focuses on assessing climate change within the study area, 

utilising various RCMs and numerous BC methods for examining future projections. 

Results predict a declining trend in precipitation by approximately 6% and a rising tem-

perature pattern of 2°C relative to the historical period (1971-2005), extending until 

2100. Consequently, recharge rates could be constrained due to increased evapotran-

spiration levels, reduced precipitation, and augmented water demand. Without alterna-

tive water sources, anthropogenic pressures could exacerbate existing water short-

ages, potentially leading to groundwater quality degradation caused, amongst others, 

by saltwater intrusion. 

Managing water resources in coastal basins represents a common yet significant chal-

lenge that increases with time due to climate change and increasing population con-

centration in coastal basins. It requires focused attention, targeted solutions, and shar-

ing experiences among similar contexts. Leveraging advanced technologies for data 

collection, analysis, and modelling empowers stakeholders to make informed deci-

sions. However, this phase must be preceded by a proper definition of the hydrogeo-

logical conceptual model and hydrodynamic processes to make the monitoring plan 

effective and cost-efficient. Scientific and technological progress, collaboration among 

stakeholders from diverse disciplines and the sharing of results from different regions 

of the globe can help us address the complex challenges facing aquifer management. 

Temporal and spatial continuity of measurements is crucial in this context.  
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Table A1 - Main features of the Salento meteorological gauge station. 

Code Name LAT LONG 
Elevation 

(m AMSL) 

Precipitation (P) and Air 

Temperature (AT) Monitoring 

Period 

SAL_MS1 S. Pietro Vernotico 40.4675 18.0008 49 
P (1953-2019) 

AT (1951-2019) 

SAL_MS2 Novoli 40.3669 18.0506 51 
P (1951-2019) 

AT (2013-2019) 

SAL_MS3 Lecce 40.3503 18.1667 51 
P (1950-2019) 

AT (1950-2019) 

SAL_MS4 Masseria Monteruga 40.3339 17.8172 92 
P (1951-2019) 

AT (1979-2019) 

SAL_MS5 Copertino 40.2667 18.0500 34 
P (1951-2019) 

AT (2013-2019) 

SAL_MS6 Melendugno 40.2672 18.2672 36 
P (1971-2019) 

AT (2013-2019) 

SAL_MS7 Canale dell’Asso 40.1842 18.0375 88 P (2010-2019) 

SAL_MS8 Nardò 40.1669 18.0333 54 
P (1951-2019) 

AT (1951-2019) 

SAL_MS9 Corigliano 40.1506 18.3003 85 
P (2008-2019) 

AT (2013-2019) 

SAL_MS10 Otranto 40.1503 18.4842 27 
P (1951-2019) 

AT (1951-2019) 

SAL_MS11 Galatina 40.1342 18.1678 73 
P (1951-2019) 

AT (2013-2019) 

SAL_MS12 Maglie 40.1008 18.2839 102 
P (1950-2019) 

AT (1951-2019) 

SAL_MS13 Minervino di Lecce 40.0836 18.4167 103 
P (1951-2019) 

AT (1951-2019) 

SAL_MS14 Collepasso 40.0667 18.1678 120 
P (1971-2019) 

AT (2013-2019) 

SAL_MS15 Gallipoli 40.0544 17.9944 31 
P (1951-2019) 

AT (1951-2019) 

SAL_MS16 Vignacastrisi 40.0006 18.4000 99 
P (1951-2019) 

AT (1951-2019) 

SAL_MS17 Taviano 39.9675 18.0836 65 
P (1951-2019) 

AT (1951-2019) 

SAL_MS18 Ruffano 39.9675 18.2667 134 
P (1951-2019) 

AT (2013-2019) 

SAL_MS19 Alessano 39.8842 18.3172 166 P (2018-2019) 

SAL_MS20 Presicce 39.8839 18.2667 105 
P (1951-2019) 

AT (1951-2019) 

SAL_MS21 S. Maria di Leuca 39.7904 18.3459 26 
P (1953-2019) 

AT (1953-2019) 
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Table A2 - Main features of the monitoring wells over the Salento aquifer including in the Tiziano Project. 

Name LAT LONG 
Elevation 

[m AMSL] 

Well-Head 

Thickness 

[m] 

Well 

Depth 

[m] 

Considered Monitoring Period 

LE_19/IIS 40.293 18.299 34.557 0.605 227.0 1/10/2007 - 30/09/2011 

LE_12/IIIS 40.295 18.065 42.065 0.646 62.5 1/10/2007 - 30/09/2011 

LE_NC4 40.245 17.978 48.195 0.976 170.0 1/10/2007 - 30/09/2011 

LE_LS21LE 40.026 18.217 154.621 0.503 230.0 1/10/2007 - 30/09/2011 

LE_PS24LE 39.968 18.306 106.059 0.575 250.0 1/10/2007 - 30/09/2011 

LE_SG3 40.112 18.061 90.88 0.000 124.0 1/10/2008 - 30/09/2011 

LE_PS17LE 40.149 18.229 76.685 0.566 250.0 1/10/2008 - 30/09/2011 

LE_P1TAU 39.979 18.237 148.925 0.865 240.0 1/10/2008 - 30/09/2011 

LE_4/IIS 40.420 18.165 22.681 0.810 100.0 1/10/2009 - 30/09/2011 

LE_1/LR 40.241 18.166 51.412 0.508 210.0 1/10/2009 - 30/09/2011 

LE_2/BS 40.085 18.280 86.984 0.463 113.0 1/10/2009 - 30/09/2009 
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Table A3 - Time series-based evaluation of the ensemble monthly raw and bias-corrected RCMs precip-

itation data for the period 1971-2005. 

 AL_CN CC_CN CC_IC CC_MP HI_IC RA_IC RC_CN RC_IC RC_IP RC_MP RE_MP WF_IP 

RMSE 

CDW_hist 70.05 58.71 63.35 59.23 62.82 64.89 62.16 68.06 62.50 64.49 64.39 285.20 

LS 56.22 61.70 69.89 62.48 67.06 62.90 57.58 64.63 68.53 62.81 67.38 59.46 

EQM 55.28 59.57 67.18 60.89 65.30 65.77 60.41 69.55 61.69 65.91 64.14 104.29 

PQM 77.27 72.13 80.58 72.95 75.55 78.92 72.45 79.11 79.81 75.83 80.63 76.76 

GPQM 85.56 78.00 87.30 84.41 79.40 86.84 94.46 95.66 86.02 96.38 83.68 121.46 

LOCI 69.29 64.48 69.87 64.07 67.98 65.73 61.12 67.75 69.60 65.00 69.78 69.74 

PTR 61.70 62.18 69.78 64.31 65.32 67.32 62.87 68.52 69.38 66.84 68.28 68.48 

DQM 77.75 74.05 90.32 70.22 71.51 77.05 83.57 79.93 77.05 112.17 73.57 138.71 

QDM 126.08 68.81 76.90 72.74 68.71 85.74 93.05 86.47 78.29 88.45 75.20 197.54 

RHO 

CDW_hist -0.09 0.32 0.27 0.34 0.35 0.37 0.33 0.34 0.25 0.35 0.29 -0.10 

LS 0.44 0.42 0.31 0.37 0.36 0.39 0.44 0.32 0.31 0.35 0.37 0.34 

EQM 0.45 0.43 0.34 0.40 0.41 0.41 0.45 0.36 0.36 0.37 0.39 0.28 

PQM 0.41 0.43 0.33 0.38 0.38 0.39 0.43 0.33 0.33 0.35 0.37 0.29 

GPQM 0.40 0.43 0.33 0.39 0.39 0.39 0.43 0.33 0.33 0.35 0.38 0.26 

LOCI -0.05 0.32 0.27 0.34 0.34 0.37 0.32 0.33 0.25 0.35 0.29 -0.10 

PTR 0.41 0.42 0.32 0.37 0.37 0.37 0.41 0.31 0.31 0.33 0.36 0.26 

DQM 0.17 0.37 0.30 0.34 0.31 0.33 0.31 0.26 0.22 0.31 0.31 0.02 

QDM 0.00 0.38 0.29 0.35 0.30 0.37 0.34 0.29 0.22 0.33 0.31 0.02 

NSE 

CDW_hist -2.16 -1.53 -1.29 -1.42 -0.86 -0.64 -0.81 -0.53 -3.15 -0.59 -1.30 -2.01 

LS -0.49 -0.29 -0.45 -0.60 -0.39 -0.64 -0.57 -0.68 -0.67 -0.65 -0.51 -0.76 

EQM -0.57 -0.38 -0.49 -0.58 -0.34 -0.47 -0.39 -0.40 -0.85 -0.43 -0.57 -0.27 

PQM -0.15 -0.11 -0.26 -0.31 -0.20 -0.27 -0.20 -0.31 -0.37 -0.30 -0.26 -0.31 

GPQM -0.14 -0.10 -0.21 -0.20 -0.13 -0.21 -0.11 -0.17 -0.30 -0.13 -0.23 -0.16 

LOCI -1.65 -0.56 -0.62 -0.70 -0.48 -0.63 -0.87 -0.58 -0.81 -0.61 -0.69 -1.98 

PTR -0.37 -0.29 -0.45 -0.55 -0.41 -0.51 -0.42 -0.57 -0.65 -0.55 -0.50 -0.54 

DQM -0.61 -0.24 -0.24 -0.38 -0.34 -0.39 -0.30 -0.33 -0.51 -0.10 -0.49 -0.67 

QDM -0.87 -0.29 -0.37 -0.32 -0.36 -0.30 -0.31 -0.25 -0.48 -0.18 -0.43 -1.03 

BIAS 

CDW_hist 23.4 -25.2 -20.8 -19.0 -19.3 9.5 13.5 4.8 -41.0 1.1 -22.9 409.6 

LS 1.6 -0.7 0.9 -0.8 -1.3 0.5 -0.1 -2.3 -1.6 -2.1 -0.6 -0.1 

EQM -1.8 3.9 7.8 5.6 10.0 9.3 10.2 13.5 -4.8 12.2 2.5 71.7 

PQM 35.1 26.7 27.6 27.7 24.3 31.7 32.7 29.1 26.8 29.0 28.4 31.5 

GPQM 39.7 30.0 30.9 31.7 25.4 36.1 45.5 37.5 29.7 41.1 27.9 62.3 

LOCI -1.3 -4.1 -1.6 -3.3 -4.4 -1.6 -1.1 -2.2 -2.7 -3.1 -3.0 -2.7 

PTR 2.0 -0.7 1.0 -0.4 -1.5 0.4 -0.1 -2.0 -1.3 -2.2 -0.4 0.1 

DQM 37.5 7.4 4.4 7.4 -4.5 22.3 44.4 16.6 9.4 25.7 2.0 138.5 

QDM 122.8 10.9 7.6 16.3 -4.9 47.7 70.9 34.6 11.7 39.0 9.2 246.0 
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Table A4 - Time series-based evaluation of the ensemble monthly raw and bias-corrected RCMs maxi-

mum temperature data for the period 1971-2005. 

 
AL_CN CC_CN CC_IC CC_MP HI_IC RA_IC RC_CN RC_IC RC_IP RC_MP RE_MP WF_IP 

RMSE 

Historical 2.45 2.57 2.60 2.40 2.48 2.76 2.33 2.57 2.48 2.14 3.17 24.43 

EQM 2.13 2.15 2.16 2.10 1.90 2.12 1.95 2.02 2.01 1.95 1.99 2.04 

LS 2.14 2.21 2.21 2.12 1.88 2.10 1.93 2.00 2.00 1.93 1.98 2.10 

PQM 2.14 2.08 2.07 2.02 1.97 2.16 2.00 2.08 2.05 2.01 2.02 1.98 

GPQM 2.13 2.08 2.06 2.02 1.97 2.15 1.99 2.07 2.02 2.00 2.02 1.98 

DQM 2.15 2.14 2.14 2.05 1.97 2.16 2.03 2.14 2.07 2.05 2.06 2.02 

QDM 2.34 2.27 2.27 2.15 2.15 2.31 2.30 2.47 2.31 2.38 2.26 2.25 

VAR 2.14 2.09 2.07 2.02 1.97 2.16 2.00 2.08 2.03 2.01 2.02 1.98 

RHO 

Historical 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.93 0.94 0.91 0.92 

EQM 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

LS 0.94 0.93 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

PQM 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

GPQM 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

DQM 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.94 

QDM 0.92 0.93 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92 0.93 0.93 

VAR 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

NSE 

Historical 0.88 0.87 0.85 0.87 0.80 0.78 0.88 0.84 0.88 0.90 0.78 -22.69 

EQM 0.89 0.89 0.89 0.90 0.91 0.89 0.91 0.90 0.90 0.91 0.90 0.90 

LS 0.89 0.88 0.88 0.89 0.91 0.89 0.91 0.90 0.90 0.91 0.90 0.89 

PQM 0.89 0.89 0.89 0.90 0.90 0.88 0.90 0.89 0.90 0.90 0.90 0.90 

GPQM 0.89 0.89 0.89 0.90 0.90 0.88 0.90 0.89 0.90 0.90 0.90 0.90 

DQM 0.88 0.89 0.89 0.90 0.90 0.88 0.90 0.88 0.89 0.89 0.89 0.90 

QDM 0.86 0.87 0.86 0.88 0.88 0.86 0.86 0.84 0.86 0.85 0.88 0.87 

VAR 0.89 0.89 0.89 0.90 0.90 0.88 0.90 0.89 0.90 0.90 0.90 0.90 

BIAS 

Historical -1.40 -3.10 -4.00 -1.00 -5.20 -6.90 -3.90 -6.60 0.00 -0.80 7.20 -118.30 

EQM 1.20 1.30 1.20 1.90 1.30 1.70 0.20 0.10 0.00 0.30 1.60 0.10 

LS 1.00 1.30 1.20 1.60 1.40 1.50 0.10 0.20 0.20 0.20 1.70 0.90 

PQM 1.00 1.20 1.10 1.50 1.60 1.60 0.20 0.20 -0.20 0.20 1.80 1.10 

GPQM 1.00 1.30 1.10 1.50 1.60 1.60 0.20 0.20 0.30 0.20 1.80 1.10 

DQM 1.00 1.00 1.10 1.40 1.30 1.20 0.10 0.20 0.10 0.20 1.70 0.60 

QDM 0.30 0.20 0.50 0.00 1.70 0.20 -0.10 0.20 0.10 0.00 2.20 1.60 

VAR 1.00 1.20 1.10 1.50 1.50 1.60 0.20 0.20 0.20 0.20 1.80 0.90 
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Table A5 - Time series-based evaluation of the ensemble monthly raw and bias-corrected RCMs mini-

mum temperature data for the period 1971-2005. 

AL_CN CC_CN CC_IC CC_MP HI_IC RA_IC RC_CN RC_IC RC_IP RC_MP RE_MP WF_IP 

RMSE 

Historical 4.01 2.08 2.10 2.11 2.16 3.34 3.10 4.03 3.02 2.75 2.32 20.70 

EQM 1.89 1.90 1.98 1.92 1.77 1.95 1.74 1.81 1.76 1.83 1.77 2.35 

LS 1.91 1.91 1.97 1.91 1.74 1.91 1.76 1.83 1.80 1.85 1.72 2.43 

PQM 1.82 1.90 1.97 1.94 1.85 1.99 1.72 1.80 1.83 1.82 1.86 1.89 

GPQM 1.82 1.90 1.97 1.93 1.84 1.98 1.72 1.80 1.74 1.82 1.85 1.91 

DQM 1.87 1.95 2.01 1.97 1.86 2.02 1.77 1.85 1.81 1.89 1.89 1.99 

QDM 2.01 2.10 2.11 2.10 1.96 2.15 1.92 2.03 2.00 2.08 2.06 1.92 

VAR 1.82 1.90 1.97 1.94 1.84 1.99 1.72 1.80 1.74 1.82 1.86 1.90 

RHO 

Historical 0.90 0.92 0.92 0.92 0.92 0.89 0.92 0.92 0.91 0.91 0.92 0.88 

EQM 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.93 0.94 0.92 

LS 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.93 0.94 0.90 

PQM 0.94 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.93 

GPQM 0.94 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.93 

DQM 0.93 0.93 0.93 0.93 0.93 0.92 0.94 0.93 0.94 0.93 0.93 0.93 

QDM 0.93 0.92 0.92 0.92 0.93 0.92 0.93 0.93 0.93 0.92 0.92 0.93 

VAR 0.94 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.93 

NSE 

Historical 0.62 0.87 0.84 0.84 0.78 0.55 0.66 0.26 0.71 0.70 0.78 -11.60

EQM 0.87 0.88 0.87 0.88 0.89 0.87 0.89 0.88 0.89 0.88 0.89 0.83 

LS 0.87 0.87 0.86 0.87 0.89 0.87 0.89 0.88 0.89 0.88 0.89 0.81 

PQM 0.88 0.87 0.86 0.87 0.88 0.86 0.90 0.89 0.89 0.88 0.88 0.88 

GPQM 0.89 0.88 0.87 0.87 0.88 0.86 0.90 0.89 0.90 0.88 0.88 0.87 

DQM 0.88 0.87 0.86 0.87 0.88 0.86 0.89 0.88 0.89 0.88 0.88 0.86 

QDM 0.86 0.84 0.83 0.84 0.86 0.84 0.87 0.87 0.87 0.86 0.85 0.87 

VAR 0.88 0.87 0.86 0.87 0.88 0.86 0.90 0.89 0.90 0.88 0.88 0.88 

BIAS 

Historical -22.10 0.70 -2.10 4.50 -1.50 -17.70 -18.10 -26.40 -16.30 -14.00 7.10 -158.50

EQM 1.00 -1.00 -1.10 -0.50 -0.70 0.50 0.80 1.00 0.60 0.60 -0.20 -5.70

LS -0.70 -0.70 -0.80 -0.20 -0.60 -0.20 -0.10 -0.10 -0.10 -0.10 -0.10 -1.50

PQM -0.70 -0.70 -0.80 -0.20 -0.20 0.00 -0.10 -0.10 -1.60 0.00 0.20 -1.40

GPQM -0.70 -0.70 -0.70 -0.20 -0.30 0.10 -0.10 -0.10 -0.10 0.00 0.20 -1.50

DQM -0.80 -1.00 -1.00 -0.70 -0.70 -0.40 -0.30 -0.40 -0.40 -0.40 -0.50 -2.20

QDM -3.30 -1.40 -1.20 -1.50 -0.50 -1.80 -2.20 -2.90 -2.10 -1.90 -0.60 1.10 

VAR -0.80 -0.70 -0.80 -0.20 -0.30 0.00 -0.10 -0.10 -0.10 -0.10 0.20 -1.50
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Abstract
This research investigates a set of data-driven methods for 
characterising coastal aquifers under data scarcity using 
available short hydrogeological time series and chemical 
surveys. Correlation indices, time series analyses, wavelet 
analyses, and seasonal and trend decomposition, are 
extensively analysed using precipitation and groundwater 
levels (GWLs) to define the hydrodynamic mechanism of an 
aquifer system in response to climate factors. They can 
provide valuable insights into various aspects, including the 
nature of the aquifer, the influence of climatic conditions, 
and significant abstractions. Multivariate statistical analysis 
is instead a valuable approach handling multiple 
geochemical and physical parameters to reveal spatial and 
temporal variations in groundwater quality, identify key 
hydrochemical processes, and assess how they change 
over time. Together with the Hydrogeochemical Facies 
Evolution-Diagram, these techniques allow to explore the 
salinisation process. Through Geostatistic, the salinisation 
process and nitrate pollution are investigated in space and 
compared in time, allowing the identification of the areas 
more vulnerable. Finally, a comprehensive assessment of 
climate change projections and bias-correction techniques, 
employing historical and regional climate data, examine the 
potential impacts of weather projections on a coastal 
aquifer. The Thesis focuses on the coastal karst aquifer of 
Salento (Southern Italy), which presents numerous 
challenges, i.e., geomorphological complexity, regional size, 
limited surface water resources, and significant water 
withdrawals for various human activities. The aim is to 
investigate the hydrodynamic mechanism of such aquifer 
and discuss the potential problematics to which groundwater 
resources are exposed due to climate change and human 
pressure. The study encourages for the establishment and 
consistent implementation of a comprehensive and strategic 
monitoring plan for GWLs, water quality parameters, and 
other relevant variables aimed at ensuring the long-term 
sustainability and availability of groundwater resources.

On the cover: Ponte Ciolo, Gagliano del Capo (LE) 
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