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Abstract.Discrete optimization of truss structures is a hard computing problem with many local minima. Metaheuristic 
algorithms are naturally suited for discrete optimization problems as they do not require gradient information. A 
recently developed method called Jaya algorithm (JA) has proven itself very efficient in continuous engineering 
problems.Remarkably, JA has a very simple formulation and does not utilize algorithm-specific parameters. This study 
presents a novel JA formulationfor discrete optimization of truss structures under stress and displacement constraints. 
The new algorithm, denoted as discrete advanced JA (DAJA), implements efficient search mechanisms for generating 
new trial designs including discrete sizing, layout and topology optimization variables. Besides the JA’s basic concept of 
moving towards the best design of the population and moving away from the worst design, DAJA tries to form a set of 
descent directions in the neighborhood of each candidate designs thus generating high quality trial designs that are very 
likely to improve current population. Results collected in seven benchmark problems clearly demonstrate the 
superiority of DAJAover other state-of-the-art metaheuristic algorithms and multi-stage continuous-discrete 
optimization formulations. 
 

Keywords:Metaheuristic algorithms; Discrete optimization of truss structures; Sizing/layout/topology variables; Descent 
directions and approximate line search. 

 
 
1. Introduction 
 
In discrete structural optimization, trial designs are generated by selecting values of design variables 
from available sets of discrete values. However, if there are many optimization variables and many 
available discrete values for each variable, the design problem becomes a hard computing problem 
with many local minima. Metaheuristic algorithms [1] are naturally suited for discrete optimization 
in view of their inherent ability to perform global search without needing gradient information.  

Metaheuristic algorithms likegenetic algorithms (GA) [2,3], simulated annealing (SA)[4,5], 
particle swarm optimization (PSO) [6], artificial bee colony(ABC) [7], differential evolution (DE) 
[8,9], ant colony optimization (ACO) [10,11], harmony search (HS) [12], adaptive step-size search 
(SASS)[13], big bang-big crunch optimization(BBBC) [14], firefly algorithm (FA) [15], teaching-
learning-based optimization (TLBO) [16], mine blast algorithm (MBA)[17], swallow swarm 
optimization(SSO) [18], backtracking search optimization algorithm (BSA) [19], grey wolf 
optimizer (GWO) [20], symbiotic organisms search (SOS) [21],colliding bodies optimization 
(CBO)[22] and water evaporation optimization (WEO) [23] have been successfully applied to many 
engineering optimization problems.  

Truss design is the most classical benchmark in structural optimization[24,25]. 
Implementation is definitely more challenging in the case of discrete problems that usually entail a 
very complex design space with multiple local optima. Just to limit the overview to the last 10 
years, we can mention the study of Lee et al. [26] that used HS for discrete sizing optimization of 
four trusses with 25, 47, 52 and 72 bars: HS was found to be more efficient than GA variants. Li et 
al. [27] developed a heuristic particle swarm optimization (HPSO) method for discrete sizing 
optimization, which outperformed several PSO variants. A hybrid particle swarm ant colony 
optimization (DHPSACO) for discrete sizing optimization was developed by Kaveh and Talatahari 
[28] and successfully tested on truss structures with up to 582 elements: DHPSACO obtained better 
designs than GA, HS and PSO. A discrete BBBC algorithm for optimal design of skeletal structures 
was proposed by Kaveh and Talatahari [29] and the same authors later developed a charged system 
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search (CSS) with a fly to boundary method for discrete optimum design of truss structures 
[30].Sonmez [31] developed an artificial bee colony algorithm (ABC), very competitive with GA, 
HS and PSO in terms of optimized weight but slower than other methods.  

Sadollah et al. [17] proposed the mine blast algorithm (MBA), which was very robust and 
obtained better designs than other optimization methods. Kaveh and his collaborators[32,33] 
utilized colliding bodies optimization (CBO) and enhanced colliding bodies optimization (ECBO) 
algorithms, finding them competitive with GA, HS, HPSO, DHPSACO, ABC, BBBC, ICA 
(imperialist competitive algorithm, [34]) and IRO (improved ray optimization, [35]). The self-
adaptive step-size search (SASS) algorithm originally proposed by Nolle [13] was improved by 
Azad and Hasançebi [36] by introducing an elitist self-adaptive step-size search (ESASS) strategy: 
ESASS obtained better results than other metaheuristic methods such as GA and ABC. Dede [37] 
implemented an efficient teaching-learning-based-optimization (TLBO) algorithm for discrete 
optimization of truss structures with up to 72 bars. Baghlani et al. [38] developed an accelerated 
firefly algorithm (AFA) which converged to optimum within less structural analyses than standard 
FA. Sadollah et al. [39] compared water cycle (WCA), mine blast (MBA) and improved mine blast 
(IMBA) algorithms: all of these algorithms were very competitive with the most advanced 
metaheuristic optimization techniques. 

The hybrid harmony search algorithm (HHS) developed by Cheng et al. [40] successfully 
combined harmony memory and pitch adjustment of HS, the global-best particle PSO and 
neighborhood search. Huu et al. [41] developed an adaptive elitist differential evolution (aeDE) for 
discrete optimization, which outperformed standard DE and other methods in many test 
cases.KazemzadehAzad [42] demonstrated that seeding the initial population with feasible solutions 
can improve the computational efficiency of metaheuristic algorithms for structural 
optimization.KazemzadehAzad [43] also developed hybrid algorithms by integrating a design 
oriented strategy into the stochastic search properties of adaptive dimensional search, modified 
BBBC and exponential BBBC. 

Finding global optimum at low computational cost regardless of problem type and with limited 
sensitivity to initial population and internal parameters are critical issues in metaheuristic 
optimization. Computational cost can be minimized only if the exploration and exploitation phases are 
properly balanced. However, this is a very complicated task, which strongly depends on the algorithm 
formulation as well as on the problem at hand.The Jaya algorithm (JA) proposed by Rao [44] is an 
interesting metaheuristic method with a simple formulation and a powerful search engine that tries to 
move away from low quality solutions and direct search towards high quality solutions. The 
efficiency of JA was demonstrated in mathematical optimization problems [44], mechanical design 
problems [45], multi-objective optimization [46], and continuous optimization of truss structures [47]. 
In general, JA shows a very satisfactory performance compared to other metaheuristic algorithms and 
multi-objective evolutionary methods. The continuous optimization engine developed in [47] was 
then extendedto discrete problems by rounding continuous optimal solutionsto discrete values 
available from problem statement. 

The present study presents a fully discrete advanced JA formulation (DAJA) for truss design 
problems. The optimization problem is now solved in a single loop without the need of carrying out 
the preliminary continuous optimization done in [47]. Explicit gradient or pseudo-gradient 
information are utilized together with approximate line search in order to speed up the generation of 
discrete designs and reduce the number of structural analyses required in the optimization process. 
Basically,a set of descent directions is generated in the neighborhood of each candidate design to 
increase the probability of improving population in each design cycle. This simplifies by a great 
extent the optimization process and eliminates biases towards local minima that may be originated 
from rounding continuous optimum solutions improperly. 

Seven design examples including 10, 25, 47, 52, 72, 200 and 942-bar trusses are solved in order 
to verify the efficiency and robustness of the proposed DAJA formulation. The results obtained 
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byDAJA are compared with those reported in the literaturefor other state-of-art optimization 
methods.Thevalidity of the search engine developed in this study is fully demonstrated. The proposed 
approach is clearly superior over the multi-stage optimization strategy[47] and very competitive with 
state-of-the-art metaheuristic formulations. 

The paperis structured as follows. Section 2 recallsthe general formulation of trussdesign 
problems. Section 3 describes in detail the DAJA algorithm. Section 4 presentstest problems and 
optimization results. Section 5 summarizes the main findings of this study. 
 
 

2. Discrete design optimization of truss structures  
 
Truss design optimization aims to minimize structural weight under design constraints on element 
stresses and nodal displacements. The optimization problem for a trussincludingnm elements 
(grouped in ng groups) and nn nodes can be stated as: 
 

Minimize    W(A,Xconf,)= 𝛾∑ ௜𝐴௜ඥ(𝑥௜ଵ − 𝑥௜ଶ)
ଶ + (𝑦௜ଵ − 𝑦௜ଶ)

ଶ + (𝑧௜ଵ − 𝑧௜ଶ)
ଶ௡௠

௜ୀଵ    (1) 
 
Subjected to 
 

t
ii

c
i   ,    i=1,2,…nm 

maxmin   j ,   j=1,2,…..,nn (2) 

maxmin AAA k  ,   k=1,2,….,ng    

(x,y,z)min(xi1,xi2,yi1,yi2,zi1,zi2)(x,y,z)max           i=1,2,…,nm 
 

In Eq. (1), W is the weight of the truss structure and γi is the material density. In Eq. (2), σiis 

the stress developed in the ith element with the corresponding limits c
i  and t

i  in compression 

(including buckling strength) and tension; δjrepresent the displacement components of the jth 
nodewith the corresponding limits min and max. 

The Avector contains the sizing variables (i.e. cross-sectional areas of bars), selected from a 
list of discrete values. The Xconf vector contains the layout variables, which are the coordinates xi1,2, 
yi1,2, zi1,2 of the nodes limiting the ith element of the structure. While sizing variables are always 
discrete, layout variables may be discrete or not. The  vector includes the topology variables i 

that can take value 1 or 0, respectively, if the ith element (or element group) is keptin the design or 
removed from the truss. The optimization problem (1) hasNDV design variables, includingng 
element cross-sectional areas taken as sizing variables andNLAY nodal coordinates taken as layout 
variables. In topology optimization, elements are removed from the truss if their cross-sectional 
area becomes very small (i.e., in [47], the area limit was set equal to107 in2). 

Here, stress and displacement constraints were handled by penalty functions. The penalized 
objective function Fpis defined as: 
 
Fp=W(A,Xconf,)(1+)                      (3) 
 

The sum of stress and displacement penalties, , is defined as: 
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Stress constraint penalty i
  for the i-thmember and displacement constraint penalty j

 for 

thej-thnode are respectively defined as: 
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The penalty function exponent ε varies with the number of iterations as iter=o(1+it/itmax).The 

initial value o is chosen between 1.001 and 10000;it denotes the current iteration and itmax is the 
user-specified limit number of optimization iterations. This strategy allows to amplify the effect of 
penalty as the search process approaches constraint domain boundaries. Remarkably, JA 
convergence behavior was found to be insensitive to such a refinement (see, for example, [47]). 
 
 

3. The discrete advanced Jaya (DAJA) algorithm for truss design optimization 
 
3.1. Classical JA formulation 
The JA algorithm is a population-based metaheuristic optimization method based on the idea that 
search process should always move towards the best design and move away from the worst design 
of the population. Unlike the vast majority of metaheuristic methods used for structural 
optimization, JA does not use algorithm-specific internal parameters but itneedsonly two standard 
control parameters such as population size and maximum number of iterations. This allows 
complicated tuning processes to be bypassed thus increasing robustness of optimization search. 

Classical implementation of JA is very simple and includesjust one equation for generating 
new trial designs. Let us assume to have a population including np designs withNDV optimization 
variables. Let Xk,l,itbe the value assigned to the kth design variable of the lth design stored in the 
populationat the itth iteration. JA modifies the Xk,l,it value as follows: 
 

   it,l,kit,worst,kit,k,2it,l,kit,best,kit,k,1it,l,k
new

it,l,k XXrXXrXX  ൜
𝑘 = 1,… ,𝑁𝐷𝑉
𝑙 = 1,… , 𝑛𝑝

 (7) 

 

In Eq. (7), new
it,l,kX  is the new value generated for the optimization variable it,l,kX ; itkr ,,1  and itkr ,,2  

are two randomly generated real numbers in the range [0,1] for the kthoptimization variable at the 
itth iteration; it,best,kX is the value assigned to the kthoptimization variable of the current best 

designXbest,it; it,worst,kX is the value assigned to the kthoptimization variable of the worst 

designXworst,it.  
The term  it,l,kit,best,kit,k,1 XXr   indicates the tendency ofsearch process to approach the best 

design, while the term  it,l,kit,worst,kit,k,2 XXr   indicates the tendency ofsearch process to move 

away from the worst design. Random factorsr1 and r2 ensure a good exploration of search space. 
Taking the absolute value of candidate solution (|Xk,l,it) in Eq. (7) further enhances JA’s exploration 
ability [47].  
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Once all variables of the lth design stored in the population are updated with Eq. (7), the new 
trial design Xl

new thus generated is compared with the corresponding design Xl
pre stored in the 

previous iteration. If Xl
new is better than Xl

pre, population is updated by replacing Xl
pre with Xl

new. 
This process is repeated until some convergence criterion is satisfied. 

 
3.2. Improved JA formulation for discrete optimization 
Unlike other metaheuristic algorithms naturally suited for discrete optimization such as, for 
example, GA, HS and ACO (just to mention a few), the variable updating equation (7) of classical 
JA can provide real values for design variables. However, the optimization problem includes 
discrete values. The most common approach adopted in metaheuristic optimizationis to round real 
values to the nearest discrete values available from problem statement or to introduce additional 
terms in the variable updating equations. The latter strategy has the purpose of reducing not too 
much the number of available combinations of optimization variables. However, the 
abovementioned approaches do not necessarily improve population each time a new trial design is 
generated. For this reason, the following strategy has been implemented in the discrete advanced JA 
(DAJA) algorithm developed in the present study. LetXl,it be the candidate design currently 
perturbed by DAJA.Also, let Xk,NDSC andXk,2nd-NDSCbethe two nearest available discrete values to new

it,l,kX

such thatXk,NDSC new
it,l,kX Xk,2nd-NDSC. 

The new discrete value of the kth variable of the lth candidate design is selected as follows: 
 

(Xk,NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ,౟౪

<0         &(Xk,2nd-NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ.౟౪

>0  new
it,l,kX = Xk,NDSC  

   (8) 

(Xk,2nd-NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ.౟౪

<0 &      (Xk,NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ,౟౪

>0      new
it,l,kX = Xk,2nd-NDSC 

 
where W/xk is the sensitivity of cost function with respect to the kth design variable, evaluated at 
Xl,it. Basically,DAJA is forced to perturb optimization variables by moving along descent directions 
with respect to the candidate design Xl currently perturbed. Since for a descent direction S 
originating from a generic point X of design space it holds W=STW(X)<0 and the total variation 

of cost function Wisk=1,NDV Xi(W/xk), cost function reductionswill be more significant if 
variations relative to all design variablesare forced to be negative.  

If both inequalities (Xk,NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ,౟౪

<0 and (Xk,2nd-NDSC  Xk,l,it)  
డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ.౟౪

<0 are 

satisfied, both discrete values Xk,NDSC and Xk,2nd-NDSC available for rounding the kth design variable xk 
may potentially improve the candidate design Xl. In this case, DAJA tries to maximize the 
improvement in cost by taking the largest perturbation of design variable. Therefore, it sets: 
 

  If |Xk,NDSC  Xk,l,it|>|Xk,2nd-NDSC  Xk,l,it| new
it,l,kX = Xk,NDSC,       

 

  If |Xk,2nd-NDSC  Xk,l,it|>|Xk,NDSC  Xk,l,it| new
it,l,kX = Xk,2nd-NDSC. 

 

Strictly speaking, gradients are not defined for discrete optimization problems. However, in 
truss design optimization, cost function gradients with respect to sizing variables are constant over 
the whole design space whilethey are explicitly available for layout variables. Hence, Eq. (8) can 
always be used and it is computationally cheap. The same argument holds true for any optimization 
problemincludingan explicit cost function. 

In the general case where gradients were not available,the goal of each optimization 
cyclehowever remains to improve the current population. In this regard, it should be noted thatthe 

(9) 
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vector (Xbest,itXl,it) defines a descent direction with respect to the candidate design 
Xl,itbecauseW(Xl,it)>W(Xbest,it).Hence, considering the cost function gradientW(Xl,it) evaluated at Xl,it, 
it holds (Xbest,itXl,it)

TW(Xl,it)<0. In order to increase the probability of improving Xl,it, other descent 
directions originating from Xl,itshould be generated: for example, the (Xl,it

newXl,it)direction 
yielding(Xl,it

newXl,it)
TW(Xl,it)<0.By combining the two conditions (Xbest,itXl,it)

TW(Xl,it)<0 and 
(Xl,it

newXl,it)
TW(Xl,it)<0, it appears logical to accept a new trial design Xk,l,it

newif it holds 
(Xbest,itXl,it)

T(Xl,it
newXl,it)>0. In view of this, Eq. (8) can be rewritten as: 

 
(Xbest,itXl,it)

T(Xl,it
k,NDSCXl,it)>0  new

it,l,kX = Xk,NDSC 
 

(Xbest,itXl,it)
T(Xl,it

k,2nd-NDSCXl,it)>0  new
it,l,kX = Xk,2nd-NDSC 

 
where the two design vectors Xl,it

k,2ndNDSC(x1,l,it,x2,l,it,…,Xk,2nd-NDSC,…,xNDV1,l,it,xNDV,l,it) and 
Xl,it

k,NDSC(x1,l,it,x2,l,it,…,Xk,NDSC,…,xNDV1,l,it,xNDV,l,it) include the two nearest discrete values to new
it,l,kX . 

If both inequalitiesin Eq. (10) are satisfied, both discrete values Xk,NDSC andXk,2nd-NDSC may 
potentially improve the candidate design Xl,it. Hence, new

it,l,kX is rounded so as to take the largest 

perturbation stepsalong descent directions thusmaximizingimprovements in cost function. That is, 
 

If||Xl,it
k,NDSCXl,it||>||Xl,it

k,2nd-NDSCXl,it|| new
it,l,kX =Xk,NDSC 

 

If ||Xl,it
k,2nd-NDSCXl,it||>||Xl,it

k,NDSCXl,it|| new
it,l,kX =Xk,2nd-NDSC. 

 
Equation (8) is simplified if the currently perturbed kth design variable is continuous. In 

particular, it follows: 
 

( new
it,l,kX  Xk,l,it)  

డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ,౟౪

<0 Accept new
it,l,kX      (12) 

( new
it,l,kX  Xk,l,it)  

డௐ(𝑿)

డ௫ೖ
ቚ
𝑿ୀ𝑿ౢ,౟౪

>0 Reset new
it,l,kX as   ( new

it,l,kX ) ’= new
it,l,kX k ( new

it,l,kX Xk,l,it) 

 
where k  is a random number in the [0,1] interval. Basically, if new

it,l,kX and Xk,l,it limit a descent 

direction with respect to Xl,it, the trial point Xl,it
k,new(x1,l,it,x2,l,it,…, new

it,l,kX ,xNDV1,l,it,xNDV,l,it) may potentially 

improve the design. Conversely, DAJA attempts to transform the non-descent direction ( new
it,l,kX

Xk,l,it) in the descent direction  ( new
it,l,kX Xk,l,it) by “mirroring” the trial point Xl,it

k,new about Xl,it. The 

random number k  limits movements to make search remain in the feasible design space. 
Once a candidate design is updated with Eqs. (7-11), cost function Wnew is preliminary 

evaluated for the new design Xl
new. Structural analysis and penalty evaluation are performed only if 

Wnew<Wpre, that is if Xl
new can potentially improve the previous design Xl

pre. The case Wnew>Wpre 

entails a new constraint evaluation only if Xl
pre is infeasible. Clearly, if Xl

pre is feasible and Xl
new is 

heavier than Xl
pre regardless of penalty terms, it is not logical to perturb design on the non-descent 

direction (Xl
newXl

pre). This strategy resulted very efficient in the case of continuous optimization 
[40] and allowed computational cost to be reduced on average by 30%. It should be noted that since 
DAJA tries to take the largest perturbations as possible along the descent directions generated in the 
neighborhood of candidate designs by properly selecting the available discrete values of 
optimization variables, it is increased the probability of generating trial designs for which it holds 
Wnew<Wpre. 

(10) 

(11) 
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In summary, the standard JA formulation has been modified for discrete optimization and 
selection of discrete variables has been enhanced by including gradient information (if explicitly 
available) or pseudo-gradient information and approximate line search (general case). In this way, 
the two-step discrete optimization process described in [47] is no longer necessary and discrete 
optimization becomes affordable also if the discrete optimum design is formed by a large number of 
different discrete values of cross-sectional areas rather than by a few values. This turns very useful 
when the design space includes different types of variables that may have very different scales (e.g. 
sizing vs. layout variables). The risk of biasing search process towards designs including sub-
optimally rounded values is greatly reduced. The superiority of the present approach in terms of 
computational speed will be demonstrated in the rest of the article. 
 
3.3. DAJA formulation for topology optimization 
An interesting issue is how DAJA deals with topology variables. Degertekin et al. [47]utilized a 
recursive approach based on the progressive reduction of the number of bars. A new continuous 
optimization run was performed each time somebarswere removed or some sizing/layout variables 
were rounded. Discrete values of layout variables were selected by evaluating cost function and 
constraints for both nearest discrete values to the correspondingoptimum value of the continuous 
solution. Elements were removed as soon as their cross-sectional areas Akbecame smaller than 107 
in2. In the subsequent optimization cycles, Ak was made to vary between 0.999999999107 and 
1.000000001107, thus leavinglocal topology unvaried until the end of optimization process.Since 
structural weight will decrease as cross-sectional areas become smaller and the largest weight 
reductions can be achieved by removing bars, a metaheuristic formulation including gradient 
informationmay entail the risk of reducing structural weight too rapidly. Hence, constraint violation 
would increase to such an extent that new trial designs never improve population. This effect may 
become even more significantwhenmaterial is unnecessarily/prematurely removed from some 
region of the structure, thus biasing search process towards suboptimal designs. 

In order to overcome the above mentioned limitations, in the present study, the discrete set of 
cross-sections was artificially expanded by adding the following values to the available set: 
[1010Amin,109Amin,108Amin,107Amin,106Amin,105Amin,104Amin,103Amin,102Amin,101Amin]. The 
topology variable idefined for the ith element (or element group) is set equal to 0 (element 
removal)only if DAJA selects the value 1010Amin for an element cross-sectional area. The transition 
from Aminto 1010Amin is rather smooth because DAJA always considers the two nearest discrete 
values to the current value assigned to a design variable. In this way, DAJA can automatically 
update sizing variables and eventually remove bars without shifting too much from feasible to 
infeasible regions in the neighborhood of promising solutions. 

Interestingly, the smooth transition from Amin to 1010Amin adopted by DAJA for topology 
optimization may help avoidingthatWnewbecomes smaller than Wprejust because of the removal of 
some bars regardless of the values taken by all other optimization variables.Sincea cross-sectional 
areais scaled by a factor 10 each time DAJA operates on smaller values than Amin, stress constraints 
arevery sensitive to design perturbations whenDAJA changes the topology of the structure. The 
ability of DAJA to improve design in spite of such a large variation in structural response confirms 
the validity of the proposed formulation. 
 
3.4. Flow chart and implementation steps of DAJA 
 

The flow chart of the discrete advanced JA formulation developed in this study to include 
gradient/pseudo-gradient information, approximate line search and reduced number of structural 
analyses is shown in Figure 1. The implementation steps of DAJA are summarized below. 
 

Step 1 Generate the initial population including np candidate designsX pre. For each discrete 
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variable, generate a random integer between 1 and the number of available discrete values 
for that variable. For continuous variables, use the following relationship: 
 

 )XX()1,0( k
min

k
max

k
min

o
l,k  randXX  k=1,2,…,NDV; l=1,2,…,np (13) 

where rand(0,1) is a random number uniformly generated in the [0,1] interval. 
Set all topological variables equal to 1. 
Compute cost function values Wpreand penalized objective function values Fp

prefor all 
designs ofthe population using Eqs. (1-6).  
Initialize iteration counter as it=0 and setthe maximum iteration counter (itmax).  

Step 2 Increase the iteration counter, it=it+1. 
Step 3 Identify best design Xbestand worst design Xworstof the population. 
Step 4 Modify discreteoptimization variables with Eqs. (7-11); use Eqs. (7,12) for continuous 

variables. Try to maximize perturbation steps in order to make cost improvements the 
largest as possible. Generate np new trial designsXnew. The generation of discrete trial 
designs is completely renewed respect to classical approaches followed in literature 
including multi-stage algorithms, which alternate continuous and discrete optimizations 
until all design variables become equal to the available discrete values. 

Step 5 Compute objective function valuesWnewfor all new trial designsXnewgenerated in Step 4. 
Compare Wnew with the corresponding valuesWprecomputed at the previous iteration.  

Step 6 If Wl
new< Wl

pre, compute value of penalized cost function Fp,l
new and compare it with its 

counterpartFp,l
pre computed for the lth candidate design in the previous iteration. 

Step 7 If Fp,l
new< Fp,l

pre, replace the lth candidate design with the new design generated in Step 4. 
Step 8 If Wl

new > Wl
preorFp,l

new> Fp,l
pre, leave the lthcandidate design unchanged. 

Repeat Steps 6 through 8 for all candidate designs. 
Step 9 If it<itmax, go to Step 2. 

 If it>itmax,store current best design Xbest as optimum solution of the problem at hand. 
Besides the maximum number of iterations set so as to have a computational budget of 
20,000 structural analyses, DAJA checks the variation of cost functionW(Xbest) throughout 
the optimization process. In all design examples, DAJAconverged asymptotically to the 
optimum solution and the standard deviation of design vectors included in the population 
rapidly dropped below 107only 80-100 structural analyses after DAJA found theoptimum. 

 
3.5. Critical comparison of DAJA and other metaheuristic algorithms 
The description of DAJA formulation made in this section highlightssome important differences and 
clear advantages of the present approach over other metaheuristic algorithms. 

The first important advantage of DAJA isits very simple formulation based on just one 
perturbation equation (Eq. (7));Eqs. (8-12) simply serve to transform continuous values into 
available discrete values. Second, DAJA requires only two standard parameters: population size and 
limit number of iterations. While the former parameter is common to all population-based 
algorithms, the latter parameter may significantly affect convergence behavior. However, high 
quality trial designs generated by DAJA throughout search process always allow the present 
algorithm to find global optimum much before than the limit number of iterations are completed.  

Third, DAJA includes information on cost function gradients in the process of generating new 
trial designs while metaheuristic optimizers usually do not perform gradient evaluations.However, 
disposing of gradient information allows descent directions to be always selected at any stage of the 
optimization process thus increasing the probability of generating high quality designsin all 
iterations. This approach is very suited for optimization of skeletal structures where cost function 
gradients are explicitly available for sizing variables orthey can be evaluated at low computational 
cost for layout variables.  
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Fourth, metaheuristic algorithms usuallydefine a new trial design using a pseudo-random 
approach (i.e. reproducing some natural phenomenon) and then simply check if this design 
improves current population. This is usually done without taking care if the current best record is 
improved or not. Conversely, DAJA attempts to form high quality trial designs that always lie on 
descent directions. This may allow to immediately improve the current best record. 

 
  
 
 
 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Select the best Xbest and the worst Xworst designs of 
the population. Set the design counter l=0. 

Modify all design variables with Eq. (7)  

Set np and itmax. Generate initial population randomly with Eq. (13). 

Compute pF  values for all designs stored in the population using Eqs. (1-

6). Set it=0. 

Preliminary evaluate cost function Wnew with Eq. (1). 
- If Wnew<Wpre or previous design Xpre is infeasible, calculate Fp,l

new with Eqs. (2-6). 
- If Wnew>Wpre and previous design Xpre is feasible, move to next design of the 

population. 

it >itmax? 

it=it+1 

Extract Fp,l for the l-th design. Set l=l+1 

Replace the current design 
with the new one 

Generate a set of descent directions in the neighborhood of each candidate design to 
improve current population. 
- Use Eqs. (8-11) for rounding discrete variables to available values; 
- Accept/modify values of continuous design variables with Eq. (12); 
- Try to maximize perturbation steps to achieve largest improvements in cost. 

Yes Fp,l
new<Fp,l

pre? 

Keep the current design 

No 

it >itmax? 
Yes No 

Store the feasible design with the lowest 
weight as the optimum design. 
Terminate the search process 
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Fig. 1. Flowchart of the DAJA search process for discrete optimization of truss structures. 
 

Fifth, some metaheuristic algorithms adopt an elitist strategy to survive the best individuals of 
the current iteration also in the next iteration. However, this entails additional structural analyses. In 
this regard, the upper bound strategy (UBS) implemented in [48] is very efficient because 
optimization constraints are not evaluated (thus saving structural analyses) if the structural weight 
computed for the trial design Xl

new is larger than the worst penalized weight included in the 
population. Basically, UBS rejects all trial designs that are certainly worse than the worst element 
currently included in the population of candidate designs. DAJA implements an even more severe 
criterion than UBS as the trial design Xl

new is immediately rejected if it is heavier than the 
corresponding design Xl

pre regardless that Xl
pre is the worst design of the population or not. 

Sixth, metaheuristic algorithms usually include different mathematical models for updating 
optimization variables in the exploration and exploitation phases. Conversely, DAJA utilizes just a 
single equation – Eq. (7) – to perturb design variables and always uses gradient information to 
accept/reject/round updated values. Exploration and exploitation phases naturally alternate in DAJA 
based on the size of perturbation steps given to optimization variables. Movements ( new

it,l,kX  it,l,kX ) 

become smaller in size as the distance between the best design Xbest,it and the worst design Xworst,it 
included in the population decreases. 

Last, DAJA adaptively handles search process based on the quality of available discrete 
valuesin the neighborhood of the current solution. Other metaheuristic algorithms may adaptively 
change their internal parameters to balance exploration and exploitation but some particular 
adaptation criterion may increase the amount of heuristics entailed by optimization process. 

Table 1 summarizes the arguments made above comparing main characteristics of DAJA and 
other metaheuristic optimizers. It appears that DAJA’s formulation is inherently superiorover other 
metaheuristic algorithms and does not have significant weaknesses. 

 
Table 1.Critical comparison between DAJA and other metaheuristic algorithms. 

 

Characteristics DAJA 
Other metaheuristic 

algorithms 

Simplicity of 
formulation 

Very simple 
Sometimes very complicated 
formulations especially for 
hybrid algorithms. 

Setting of control 
parameters 

Not required 
Often required. Convergence 
behavior highly sensitive to 
setting of internal parameters. 

Gradient information 
Used for generating high 
quality trial designs. Works on 
explicit gradients. 

Not utilized 

Trial design improves 
population?  

High probability of generating 
high quality designs.  
Current best record can be 
improved in each iteration.  

Best design ofpopulation  not 
necessarily improved by new 
trial designs. 

Elitism 
Intrinsically elitist with no 
additional structural analyses. 

Sometimes elitist.  
Additional structural analyses 
usually needed. 

Exploration/exploitation 
Naturally balanced. Just one 
mathematical model. 

Not necessarily balanced. 
Two mathematical models. 
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Is the algorithm 
adaptive? 

Adaptive search strategy. 
Movements given to variables 
depend on distance between 
Xbest,it and Xworst,itas well as on 
quality of available discrete 
values in the neighborhood of 
current solution. 

Not necessarily adaptive 
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4. Test problems and optimization results 
 
The DAJA algorithm developed in this research was testedinseven classical truss weight 
minimization problems including discrete sizing, layout and topology optimization variables. 
Following the classical approach adopted by structural optimization experts, DAJA results were 
compared with the best solutions available in literature in terms of optimized weight and number of 
structural analyses. Because of the random nature of DAJA, each design example was run twenty 
times starting from randomly generated initial populations. Result tables report the best design 
obtained in these independent runs along with the best weight, the average weight, the worst weight 
and the standard deviation (SD) on optimized weight. The number of structural analyses(NSA) and 
percent constraint violation (CV%) for the best design also are specified. The rate of success 
achieved by DAJA over the twenty independent optimization runs also is specifiedfor each design 
example, thus providing further information on the robustness of the proposed algorithm. 
Interestingly, this information is not very often available in structural optimization literature. 

The test problems considered in this study were divided in three groups: (i) “small” scale 
problems with up to 16 sizing variables, 5 layout variables and 8 topology variables; (ii) “average” 
scale problems with up to 29 sizing variables, 17 layout variables and 27 topology variables; (iii) 
“large” scale problems with up to 59 sizing variables. The global optimum was available for the 
small scale problems (such a design could be obtained by many other metaheuristic algorithms 
documented in literature) and the main goal of DAJA’s search was hence to converge to the target 
solution within much less structural analyses than referenced algorithms. For the average/large scale 
problems, since no previously developed metaheuristic algorithm could find the global optimum 
because of the fairly large number of design variables, problem formulation or input data 
characteristics, the DAJA’s objective was twofold: to obtain a lower structural weight and reduce 
computational cost with respect to the best solutions available in the literature. If all of the 
aforementioned goals are accomplished for all test problems, DAJA should be regarded as a 
powerful method for discrete optimization of truss structures. This approach is commonly adopted 
in metaheuristic optimization to test the efficiency of a new algorithm. 

DAJA was coded in the MATLAB programming language under the Windows environment. 
Optimization runs were performed on a standard personal computer with an Intel Core i7 processor 
and 4 GB RAM. The population size np was set equal to 20 for all test problems. For that purpose, a 
sensitivity analysis was performed by changing np from 10 to 1000.Sensitivity analysis results for 
two representative design examples, the 10-bar and 200-bar truss problems, are reported in Table 2. 
Similar results were obtained for the other test problems and are omitted for the sake of brevity. 
Table 3 presents the details ofstructural weight and number of structural analyses obtained from 
each independent run of the 10-bar and 72-bar truss problems (small scale examples with, 
respectively, 10 and 16 sizing variables), 200-bar truss problem (average scale example with 29 
sizing variables), and 942-bar tower problem (large scale example with 59 sizing variables). 
Remarkably, DAJA resulted insensitive to initial population and population size: in fact, the ratio 
between standard deviation on optimized weight and average optimized weight ranged between 0% 
and 1.55% while the largest deviation on the number of structural analyses was about 30%.These 
results facilitated comparisons between DAJA and other metaheuristic algorithms that achieved 
their best performance by setting population sizes different from np=20. 

Table 2 demonstrates clearly the superiority of DAJA over classical JA. In fact, since classical 
JA performs np analyses for each optimization iteration (see Section 3.1), its computational cost 
increases linearly with population size at a fixed number of iterations. Conversely, computational 
cost of DAJA increased at most by a factor 3.6 even though the largest population considered in 
sensitivity analysis was 100 times larger than the smallest one (i.e. 1000 vs. 10). 
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Table 2. Results of sensitivity analysis on the effect of population size. 

 

Population  
size (ps) 

10-bar truss  
Case-1 

 

10-bar truss  
Case-2 

200-bar truss 

 Weight 
(lb) 

NSA Weight 
(lb) 

NSA Weight 
(lb) 

NSA  

10     5498.37 1270 5093.30 1187 28,587.39 6000 

20 5490.74 687 5067.33 1022 27,282.54 4693 

30 5490.74 1293 5081.48 1022 28,131.93 7421 

40 5491.72 1299 5092.02 1019 27,584.34 6057 

50 5490.74 1324 5074.79 1352 27,794.01 7318 

60 5498.20 1075 5082.24 1168 28,062.63 7899 

70 5499.35 1272 5070.42 1409 28,435.44 8516 

80 5504.16 1543 5085.33 1087 27,816.01 7545 

90 5497.22 1420 5096.38 1486 27,650.36 6302 

100 5504.16 1930 5095.87 1606 27,580.40 7481 

250 5499.35 2438 5082.24 1758 28,510.57 7049 

500 5502.52 2037 5093.30 2511 28,348.64 7496 

1000 5504.16 2048 5079.16 2118 28,529.11 7865 

 
Another important issue in comparing algorithms is the limit number of structural analyses 

that can be performed in the optimization process. This parameter may change significantly for 
population-based methods because it is commonly defined as the product between population size 
and limit number of iterations. Since DAJA found very soon the optimum design regardless of the 
size of the problem at hand, the effective computational budget exploited by DAJA was much 
smaller than for the referenced algorithms that continued to generate trial designs not able to 
improve the current best record until completing the limit number of structural analyses while 
DAJA rapidly converged 80-100 structural analyses after having found the optimum. This made the 
comparison with literature more challenging as DAJA was actually forced to search the optimum 
design over a small number of structural analyses. 
 

Table 3. Detailed results of twenty independent optimization runs for some design examples. 
 

 
Run 
No. 

10-bar truss 
Case-1 

10-bar truss 
Case-2 

72-bar truss 
Case-1 

72-bar truss 
Case-2 

200-bar truss 
 

942-bar tower 
 

Weight 
(lb) 

NSA Weight 
(lb) 

NSA Weight 
(lb) 

NSA Weight 
(lb) 

NSA Weight 
(lb) 

NSA Weight 
(lb) 

NSA 

1 5490.74 980 5081.48 2087 385.54 1873 389.684 3619 28,096.93 6904 377,485.0 52,116 

2 5490.74 964 5081.48 2401 386.95 1809 389.458 4247 27,875.64 8851 379,090.9 51,145 

3 5491.72 1018 5067.33 1022 385.54 2166 389.458 3997 28,108.61 10,641 385,454.5 42,005 

4 5490.74 887 5067.33 2081 385.54 1905 389.334 5164 27,846.24 8768 384,545.5 46,772 

5 5490.74 688 5067.33 2158 387.94 2172 389.458 5149 27,491.48 9641 383,636.4 44,117 
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6 5490.74 908 5067.33 1245 385.54 2447 389.828 5232 27,282.57 4693 382,727.3 52,115 

7 5490.74 687 5067.33 3739 387.94 1643 389.334 3475 28,101.21 10,783 380,909.1 50,023 

8 5491.72 1383 5081.48 2156 385.54 1957 389.601 3971 27,786.14 6810 377,485.0 52,117 

9 5490.74 1354 5081.48 1633 385.54 2087 389.458 4248 28,096.93 7248 382,727.3 45,967 

10 5490.74 1578 5070.42 2893 385.54 2891 389.334 3376 28,096.93 4941 379,090.9 48,771 

11 5491.72 1614 5067.33 1447 387.94 1817 389.334 3569 28,101.21 9049 378,181.8 44,781 

12 5490.74 1491 5067.33 1693 385.54 1903 389.458 3721 28,108.61 10,117 377,485.0 54,253 

13 5490.74 1446 5067.33 2105 385.54 2058 389.458 4019 28,096.93 7243 380,909.1 54,771 

14 5490.74 998 5070.42 2986 385.54 2179 389.828 5437 27,786.14 5973 378,181.8 53,778 

15 5491.72 1559 5067.33 1967 386.95 1795 389.458 4763 27,875.64 7985 377,485.0 49,097 

16 5490.74 1219 5081.48 2429 385.54 1958 389.334 3412 28,096.93 5418 382,727.3 50,017 

17 5490.74 1005 5067.33 1098 385.54 2346 389.334 4033 27,846.24 9009 379,090.9 55,411 

18 5490.74 1314 5067.33 2388 387.94 2013 389.601 3599 28,096.93 6428 384,545.5 51,123 

19 5491.72 1063 5067.33 2171 385.54 1971 389.458 4107 27,282.57 5102 380,909.1 53,771 

20 5491.72 1177 5081.48 1552 385.54 2034 389.684 3383 27,491.48 10,089 380,909.1 54,781 

 
 
4.1.Planar 10-bar truss structure 
 
The first design example regards the 10-bar planar truss structure with 10 elements and 6 nodes 
shown in Figure 2. The material density and the modulus of elasticity are 0.1 lb/in3 and 10 Msi, 
respectively. The allowable stress for all members is ±25,000psi for tension/compression. 
Displacementsof all freenodes are restricted to ±2.0 in. The loads applied to the truss structure are 
equal to P1 =100 kips and P2 =0.Each member is defined as a design variable, and hence there are 
ten sizing variables in the structure. This is a very classical test problem and was included in this 
study because the large amount of data available in the literature makes comparison very 
challenging.  

Two optimization cases are considered. For Case 1, discrete variables are selected from the 
set D=[1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 
3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 
15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] (in2). For Case 2, the following 
set is used D=[0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 
9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 
18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 
27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5] (in2).  
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Fig. 2. Schematic of the planar 10-bar truss structure 
 
 
The best solution quoted in the literature for Case 1 (see, for example, Refs. [31,37,40,41]) is 

33.50; 1.62; 22.90; 14.20; 1.62; 1.62; 7.97; 22.90; 22.00; 1.62 in2 yielding an optimum weight of 
5490.74 lb. For Case 2, the available best solution (see, for example, Refs. [17,40]) is 29.5; 0.1; 
24.0; 15.0; 0.1; 0.5; 7.5; 21.5; 21.5; 0.1 in2 with anoptimum weight of 5067.33 lb. While the rather 
small number of design variables included in the 10-bar truss problem and the huge number of 
combinations available from the D sets (respectively, 1042 and 1064, for Case 1 and Case 2) allowed 
many metaheuristic algorithms to converge to the global optimum, data on computational cost of 
the optimization were highly dispersed, ranging from 1000 to about 26,000 structural analyses for 
Case 1 and from about 2300 to 3000 structural analyses for Case 2. However, computational cost 
appears to be very large for a truss design problem including only 10 discrete sizing variables. It is 
hence very important to develop a new metaheuristic algorithm able to find the global optimum also 
minimizing the computational cost of the optimization process. 

Tables 4 and 5 compare the results obtained byDAJA and other state-of-art optimization 
methods forCases 1 and 2, respectively. The present algorithm and most methods converged to 
feasible designs corresponding to the target weights of 5490.74 lb for Case 1 and 5067.33 lb for 
Case 2. The AFA [38] and HPSO [27]algorithms were the worst optimizers overall. In particular, 
AFA designed a lighter structure but the solution violated optimization constraints in both 
optimization cases. HPSO converged instead to the largest weight. The most important result is that 
theDAJA algorithm required much less structural analyses than other methods in both optimization 
cases: for Case 1, only 687 vs. 1000 to 50,000 analyses; for Case 2, only 1022 analyses vs. 2291 to 
50,000 analysesrequired by the other optimizers. Hence, the main objective of the optimization was 
fully achieved for this problem. 

Remarkably, DAJA was very robust as its standard deviation on optimized weight is at least 
one order of magnitude smallerthan for the other methods. The metaheuristic nature of the 
optimization search obviously resultedin nonzero standard deviation on structural weight. In 
particular, the rate of success of DAJA (i.e. the number of times DAJA reached the global optima 
out of 20 independent optimization runs conducted from different initial populations) was 70% for 
Case 1 and60% for Case 2. However, this rate increases to 100% by considering nearly optimal 
designs that are up to 0.28% heavier than the target global optimum. 

The two-stage JA optimization process developed in [47] was applied to this test problem to 
check the improvement in computational efficiency brought by DAJA. The continuous optimum 
solutions found by two-stage JA [47] were consistent with the target weightsquoted in literature for 
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both Cases 1 and 2 (about 5060.9 lb) but two-stage JA required about 12,000 structural analyses to 
complete just the continuous optimization, i.e. between 12 and 17 times the total computational cost 
of DAJA to find the discrete optimum solution. For Case 1, the continuous optimum found by two-
stage JA[47] is 30.4973; 0.1; 23.1693; 15.2573; 0.1; 0.569; 7.452; 20.9837; 21.5897; 0.1 
in2.Thisleads to the discrete optimum design 33.50; 1.62; 22.90; 15.50; 1.62; 1.62; 7.22; 22.90; 
22.00;1.62 in2, whichstill satisfies displacement and stress constraints but is slightly heavier than 
DAJA’s optimum design (i.e. 5499.36 lb vs 5490.74 lb, see Table 3). For Case 2, the continuous 
optimum of two-stage JA is rounded to30.5; 0.1; 23.5; 15.5; 0.1; 0.5; 8; 21.5; 22.0; 0.1 in2, a 
feasible design yet slightly heavier than the best discrete design of DAJA (i.e. 5145.25 lb vs 
5067.33 lb, see Table5). This is a further proof of the efficiency of DAJA, which can avoid to bias 
discrete search space should an optimization variable be assigned a discrete value not corresponding 
to the global optimum. 
 
 
 

Table 4.Optimization results obtained for Case 1 of the 10-bar truss problem. 
 

Design variables 
Ai (in

2) 
HPSO 
[27] 

ABC 
[31] 

MBA 
[17] 

TLBO 
[37] 

AFA 
[38] 

HHS 
[40] 

aeDE 
[41] 

Present study 
DAJA 

A1 30.00 33.50 30.00 33.50 33.50 33.50 33.50 33.50 

A2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A3 22.90 22.90 22.90 22.90 22.90 22.90 22.90 22.90 

A4 13.50 14.20 16.90 14.20 13.90 14.20 14.20 14.20 

A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A7 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 

A8 26.50 22.90 22.90 22.90 22.90 22.90 22.90 22.90 

A9 22.00 22.00 22.90 22.00 22.00 22.00 22.00 22.00 

A10 1.80 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

Weight (lb) 5531.98 5490.74 5507.758 5490.74 5479.94 5490.74 5490.74 5490.74 

CV (%) None None None None 0.1945 None None None 

NSA 50000 25800 3600 1000 4250 3533 2380 687 

Worst weight 
(lb) 

N/A 5536.97 5536.965 N/A N/A N/A 5549.20 5491.72 

Mean weight 
(lb) 

N/A 5510.35 5527.296 N/A N/A 5493.49 5502.62 5491.03 

SD (lb) N/A N/A 11.38 N/A N/A 10.46 20.78 0.461 

 
 

Table 5.Optimization results obtained for Case 2 of the 10-bar truss problem. 
 

Design variables 
Ai (in

2) 
HPSO 
[27] 

MBA 
[17] 

AFA 
[38] 

HHS 
[40] 

Present study 
DAJA 

A1 31.50 29.5 31.00 29.50 29.50 

A2 0.10 0.1 0.10 0.10 0.10 
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A3 24.50 24 23.00 24.00 24.00 

A4 15.50 15 15.00 15.00 15.00 

A5 0.10 0.1 0.10 0.10 0.10 

A6 0.50 0.5 0.50 0.50 0.50 

A7 7.50 7.5 7.50 7.50 7.50 

A8 20.50 21.5 21.00 21.50 21.50 

A9 20.50 21.5 21.50 21.50 21.50 

A10 0.10 0.1 0.10 0.10 0.10 

Weight (lb) 5073.51 5067.33 5059.87 5067.33 5067.33 

CV (%) None None 0.037 None None 

NSA 50000 3000 4750 2291 1022 

Worst weight (lb) N/A N/A N/A N/A 5081.48 

Mean weight (lb) N/A N/A N/A 5068.36 5071.88 

SD (lb) N/A N/A N/A N/A 6.512 

 
 
The convergence curves recorded for the best optimization runs relative to Cases 1 and 2 are 

compared in Fig. 3. In Case 1 (see Fig. 3a), HHS [40] and aeDE [41] started from better initial 
populationsthan DAJA (i.e. their best individuals weighed between 640 and 900 lb less than the 
8048 lb of the DAJA’s best design), but the present algorithm soon generated much better 
intermediate solutions.This happened in spite of the hybrid/elitist strategies implemented by 
HHSand aeDE, thus confirming the advantages of including gradient/pseudo-gradient information 
and approximate line search in the generation of trial designs. MBA [17] and AFA [38] started their 
optimization runs from populations including more conservative designs than DAJA, HHS and 
aeDE and converged more slowly to the optimum. The same observationsmade for Case 1 hold true 
also for Case 2 (see Fig. 3b) even though DAJA required about twice more structural analyses than 
in the former case (i.e. 1022 vs. 687). 
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Fig. 3. Comparison of convergence curves for the 10-bar truss problem: (a) Case 1; (b) Case 2. 
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The second truss structure optimized in this study is the spatial
Material properties are the same as in the first example. Elements are divided 
independentgroups: (1) A1, (2) A
and (8) A22–A25. The allowable stress is ±40,000 psi for tension/compression while nodal 
displacements must be less than ±0.35 in.
analyzed in the optimization literature.

 

Fig. 4. Schematic of the
 
 
Three optimization cases including different available discrete sets of sizing variables and 

loading conditions (see Table 6) we
discrete set D=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 
2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4] (in
condition listed in Table 5. In Case 2, discrete sizing variables are sele
0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0] (in
variables are selected from American Institute of Steel Construction specifications 
7. Loading conditions 2 and 3 listed in 

The best solution quoted in the literature for Case 1 (see, for example, Refs. 
[17,27,31,33,35,37,38,40,41,50,5
weight of 484.85 lb. For Case 2, the available best solution (see, for example, Refs. [17,
0.01; 2.0; 3.6; 0.01; 0.01; 0.8; 1.6; 2.4
available best solution (see, for example, Refs. [17,
0.766; 1.620; 2.620 in2 with a structural weight of 551.14 lb.

Similar to the 10-bar truss problem, many algorithms were able to converge to the global 
optima of the three problem variants listed above
available combinations of discrete sizing variables 
829), 2.815.1014 (i.e. 816) and 6.277
computational cost entailed by metaheuristic optimization was very high also for this problem
which includes only 8 sizing variables
between 950 and 25,000 structural analyses for Case 2; between 
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optimized in this study is the spatial 25-bar tower
Material properties are the same as in the first example. Elements are divided 

, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A
The allowable stress is ±40,000 psi for tension/compression while nodal 

displacements must be less than ±0.35 in. This is another very classical design example widely 
analyzed in the optimization literature. 

 

. Schematic of the spatial 25-bar truss tower 

Three optimization cases including different available discrete sets of sizing variables and 
) were considered. In Case 1, sizing variables are selected from the 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 
2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4] (in2) and the truss is subject to the first loading 

. In Case 2, discrete sizing variables are selected from the set 
0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0] (in2). In Case 3, discrete sizing 

American Institute of Steel Construction specifications 
oading conditions 2 and 3 listed in Table 6 were used for optimization Cases 2 and 3.

The best solution quoted in the literature for Case 1 (see, for example, Refs. 
51]) is 0.1; 0.3; 3.4; 0.1; 2.1; 1.0; 0.5; 3.4 in

weight of 484.85 lb. For Case 2, the available best solution (see, for example, Refs. [17,
0.01; 2.0; 3.6; 0.01; 0.01; 0.8; 1.6; 2.4 in2 with a structural weight of 560.59 lb. For Case 3, the 

for example, Refs. [17,27,28,38]) is 0.111; 2.130; 2.880; 0.111; 0.111; 
with a structural weight of 551.14 lb. 
bar truss problem, many algorithms were able to converge to the global 

ariants listed above. This happened becauseof
of discrete sizing variables from the D sets: respectively, 
) and 6.277.1057 (i.e. 864), for Case 1, Case 2 and Case 3. However, 

computational cost entailed by metaheuristic optimization was very high also for this problem
which includes only 8 sizing variables: between 2450 and 25,000 structural analyses for Case 1; 

tructural analyses for Case 2; between 2400 

towershown in Fig. 4. 
Material properties are the same as in the first example. Elements are divided into eight 

, (6) A14–A17, (7) A18–A21 
The allowable stress is ±40,000 psi for tension/compression while nodal 

This is another very classical design example widely 

 

Three optimization cases including different available discrete sets of sizing variables and 
. In Case 1, sizing variables are selected from the 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 
) and the truss is subject to the first loading 

cted from the set D=[0.01, 
). In Case 3, discrete sizing 

American Institute of Steel Construction specifications [49] using Table 
were used for optimization Cases 2 and 3. 

The best solution quoted in the literature for Case 1 (see, for example, Refs. 
in2 yielding a structural 

weight of 484.85 lb. For Case 2, the available best solution (see, for example, Refs. [17,27,40]) is 
with a structural weight of 560.59 lb. For Case 3, the 

0.111; 2.130; 2.880; 0.111; 0.111; 

bar truss problem, many algorithms were able to converge to the global 
This happened becauseof the huge number of 
from the D sets: respectively, 1.547.1026 (i.e. 
for Case 1, Case 2 and Case 3. However, 

computational cost entailed by metaheuristic optimization was very high also for this problem, 
: between 2450 and 25,000 structural analyses for Case 1; 

 and 25,000 structural 
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analyses for Case 3. 
 
 

Table 6.Loading conditions acting on the spatial 25-bar tower. 
 

Optimization 
cases 

Loading 
conditions 

Nodes Forces (kips) 

   Px Py Pz 

1 1 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

2 and 3 

2 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 

3 

1 0.0 10.0 -5.0 

2 1.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.5 0.0 0.0 

  
 
 

Table 7.Available values of cross-sectional areas of bars taken from AISC specifications[49]. 
 

No. Area 
(in2) 

No. Area 
(in2) 

No. Area 
(in2) 

No. Area 
(in2) 

1 0.111 17 1.563 33 3.840 49 11.500 

2 0.141 18 1.620 34 3.870 50 13.500 

3 0.196 19 1.800 35 3.880 51 13.900 

4 0.250 20 1.990 36 4.180 52 14.200 

5 0.307 21 2.130 37 4.220 53 15.500 

6 0.391 22 2.380 38 4.490 54 16.000 

7 0.442 23 2.620 39 4.590 55 16.900 

8 0.563 24 2.630 40 4.800 56 18.800 

9 0.602 25 2.880 41 4.970 57 19.900 

10 0.766 26 2.930 42 5.120 58 22.000 

11 0.785 27 3.090 43 5.740 59 22.900 

12 0.994 28 3.130 44 7.220 60 24.500 

13 1.000 29 3.380 45 7.970 61 26.500 

14 1.228 30 3.470 46 8.530 62 28.000 

15 1.266 31 3.550 47 9.300 63 30.000 

16 1.457 32 3.630 48 10.850 64 33.500 

 
 

Tables 8through10compareDAJA optimization results with the literature. All 
methodsconverged to the same target optimum designs weighing 484.85 lb and 551.14 lb for Cases 
1 and 3, respectively. In Case 2, JA found the same optimum design as the other methods except 
DHPSACO [28] and AFA [38]. However, the design found byDAJA satisfied constraints while 



21 
 

DHPSACO and AFA converged to the same infeasible solution.  
It should be noted that the present algorithm always was the fastestoptimizer and required 

about half of the structural analyses required by the 2nd fastest algorithm:in Case 1, only 511 
analyses vs. 1440 analyses of aeDE [41];in Case 2, only 530 analyses vs. 950 analyses of MBA 
[17]; in Case 3, only 946 analyses vs. 2400 analyses of MBA. The main objective of the 
optimization, to significantly reduce the computational cost of the metaheuristic search, was hence 
fully accomplished by DAJA also for this test problem. 

Remarkably, DAJA always converged to the Case 1’s target weight in all independent runs 
thus achieving a 100% rate of success in spite of the metaheuristic nature of the optimization 
search. However, standard deviation on DAJA’s optimized weight was slightly larger than for MBA 
[17] (this algorithm also achieved 100% rate of success) and HHS [40] for Case 2,and MBA 
[17]forCase 3.The corresponding rate of success achieved by DAJA in these two cases decreased to 
about 80%. This may be due to the much higher convergence rate (i.e. about 3 times higher than for 
HHS in Case 2; about 2.5 times higher than for MBA in Case 3) exhibited by the proposed 
algorithm. A similar relationship between fast convergence and robustness was observed for the 
CBO and ECBO algorithms [28]: in fact, the latter was 3.5 times slower but achieved a better 
average solution. 

The two-stage JA algorithm of Ref. [47] was applied to Case 2, the classical problem variant 
presented in the literature for the continuous optimization of the 25-bar truss. The discrete solution, 
0.01; 2.0; 3.2; 0.01; 0.01; 0.8; 1.6; 2.8 in2, obtained by rounding the continuous solution 0.01; 
1.982567; 3.00; 0.010004; 0.010002; 0.684767; 1.677633; 2.659208 in2 found by two-stage JA 
[47] is feasible but corresponds to a slightly heavier weight than DAJA (i.e. 564.86 lb vs 560.59 lb, 
see Table 9). Furthermore, the target weight of the two-stage JA continuous solution was foundafter 
about 8,000 structural analyses, i.e. about 16 times the total computational cost required by DAJA 
for finding the discrete optimum. This confirms the validity of the proposed approach. 

 
 

Table 8. Optimization results obtained for Case 1 of the 25-bar truss problem (sizing variables 
only). 

 

Design 
variables 
Ai (in

2) 

HPSO 
[27] 

ABC 
[31] 

MBA 
[17] 

 

CBO 
[33] 

 

ECBO 
[33] 

TLBO 
[37] 

AFA 
[38] 

HHS 
[40] 

aeDE 
[41] 

 

DBB-BC 
[52] 

Present 
study 
DAJA 

A1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A2-A5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

A6-A9 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

A10-A11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A12-A13 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

A14-A17 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

A18-A21 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

A22-A25 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

Weight 
(lb) 

484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 

CV (%) None None None None None None None None None None None 

NSA 25000 24250 2150 2040 7050 4000 7100 1739 1440 20000 511 

Worst 
weight 

N/A 485.05 485.048 N/A N/A N/A N/A N/A 486.1 N/A 484.85 
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(lb) 

Mean 
weight 

(lb) 
N/A 484.94 484.885 486.87 485.89 N/A N/A 484.95 485.01 N/A 484.85 

SD (lb) N/A N/A 0.072 N/A N/A N/A N/A 0.365 0.273 N/A 0 

 
 

Table 9.Optimization results obtained for Case 2 of the 25-bar truss problem (sizing variables only). 
 

Design variables 
Ai (in

2) 
HPSO 
[27] 

DHPSACO 
[28] 

MBA  
[17] 

AFA 
[38] 

HHS  
[40] 

Present study 
DAJA 

A1 0.01 0.01 0.01 0.01 0.01 0.01 

A2-A5 2.00 1.60 2.00 1.60 2.00 2.00 

A6-A9 3.60 3.20 3.60 3.20 3.60 3.60 

A10-A11 0.01 0.01 0.01 0.01 0.01 0.01 

A12-A13 0.01 0.01 0.01 0.01 0.01 0.01 

A14-A17 0.80 0.80 0.80 0.80 0.80 0.80 

A18-A21 1.60 2.00 1.60 2.00 1.60 1.60 

A22-A25 2.40 2.40 2.40 2.40 2.40 2.40 

Weight (lb) 560.59 551.61 560.59 551.61 560.59 560.59 

CV (%) None 0.1 None 0.1 None None 

NSA 25000 4550 950 6200 1400 530 

Worst weight (lb) N/A N/A 560.59 N/A N/A 564.86 

Mean weight (lb) N/A N/A 560.59 N/A 560.785 561.44 

SD (lb) N/A N/A 0 N/A 0.743 1.88 

 
 

Table 10.Optimization results obtained for Case 3 of the 25-bar truss problem(sizing variables 
only). 
 

Design variables 
Ai (in

2) 
HPSO 
[27] 

DHPSACO 
[28] 

MBA 
[17] 

AFA 
[38] 

Present study 
DAJA 

A1 0.111 0.111 0.111 0.111 0.111 

A2-A5 2.130 2.130 2.130 2.130 2.130 

A6-A9 2.880 2.880 2.880 2.880 2.880 

A10-A11 0.111 0.111 0.111 0.111 0.111 

A12-A13 0.111 0.111 0.111 0.111 0.111 

A14-A17 0.766 0.766 0.766 0.766 0.766 
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A18-A21 1.620 1.620 1.620 1.620 1.620 

A22-A25 2.620 2.620 2.620 2.620 2.620 

Weight (lb) 551.14 551.14 551.14 551.14 551.14 

CV (%) None None None None None 

NSA 25000 4450 2400 9100 946 

Worst weight (lb) N/A N/A 554.067 N/A 554.51 

Mean weight (lb) N/A N/A 551.54 N/A 551.81 

SD (lb) N/A N/A 0.987 N/A 1.62 

 
 
 

Figure 5 compares the convergence curves recorded in the three sizing optimization 
problemssolvedfor the 25-bar tower. Each curve shown in the figure refers to the best optimization 
run performed for the corresponding algorithm.For the sake of clarity, some plots include less 
structural analyses than the slowest optimizer. 

 In Case 1 (see Fig. 5a), DAJA started from a population including a best design which 
wasabout 130 lb heavier than its aeDE’s counterpart [41]. Similar to the 10-bar truss example, the 
elitist strategy used by aeDE was less efficient than the approximate line searches utilized by 
DAJA. In fact, the present algorithm recovered the weight gap within about 450 structural analyses 
and immediately directed search towards the best region of design space while aaDE improved trial 
solutions by a smaller extent and required some 1000 additional structural analyses to complete the 
optimization process. AFA [38] and HHS [40] started their optimization runs from populations 
including about 80 lb lighter best individuals than DAJA. Harmony search is inherently more 
efficient than firefly algorithm and this explains why convergence curves of HHS and DAJA were 
very close until 450 structural analyses while AFA generated considerably heavier intermediate 
solutions than DAJA after only 150 structural analyses. CBO and ECBO [33] initial populations 
were similar to DAJA’s one but their convergence curves soon diverged from DAJA’s optimization 
history and their intermediate designs approached those of AFA [38]. Such a behavior was expected 
because ECBO and CBO include at most a weak elitist criterion, intrinsically less efficient than the 
search for descent directions carried out by DAJA. 

In Case 2 (see Fig. 5b), DAJA started its search from a larger initial structural weight than 
HPSO [27], DHPSACO [28] and HHS [40]. While DHPSACO generated infeasible intermediate 
designs and finally converged to an infeasible solution, DAJA could find lighter intermediate 
designs than DHPSACO after about 480 analyses never violating constraints.Furthermore, the 
present algorithm required only 200 structural analyses to recover the initial gap from HPSO and 
HHS’s best designs: HHS remained competitive with DAJA until 400 structural analyses while 
HPSO soon generated considerably higher intermediate designs than DAJA. 

In Case 3 (see Fig. 5c), DAJA and MBA [17] started optimization process from the largest 
(about 900 lb) and smallest (700 lb) initial weight, respectively. Again, DAJA required only 450 
structural analyses to recover the gap and generate better intermediate designs than MBA. HPSO 
[27], DHPSACO [28] and AFA [38] generated heavier intermediate designs than DAJA since the 
very beginning of the optimization process even though they started from better populations than 
the present algorithm. 
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Fig. 5. Comparison of convergence curves for the 25-bar truss problem: (a) Case 1; (b) Case 2; (c) 
Case 3. 
 
 

The 25-bar tower optimized in Case 1was re-optimized including layout and topology 
variables. There arefivecontinuous layout variables,the coordinates X4, Y4, Z4, X8 and Y8 of nodes 4 
and 8. Hence, this problem variant is a mixed discrete-continuous optimization problem including 
13 sizing/layout variables and 8 topology variables. The side constraints for geometry variables are: 
20≤X4 =X5=X3=X6 ≤60 in, 40≤Y3=Y4=Y5=Y6 ≤80 in, 90≤Z3=Z4=Z5=Z6 ≤130 in, 
40≤X8 =X9 =X7 =X10 ≤80 in, 100≤Y7 =Y8 =Y9 =Y10 ≤140 in. 

The optimization results are presented in Table 11. It can be seen that DAJA removed the 
same elements indicated for the other literature solutions(based on genetic algorithms, firefly 
algorithm and evolutionary search) and found the best design overall both in terms of structural 
weight and number of required structural analyses. The optimum design is kinematically stable and 
does not lead to the presence of local mechanisms. Interestingly, DAJA converged to the same 
optimum layout as the multi-stage JA algorithm developed in [47] for topology optimization. This is 
becausethe 25-bar tower problemincluded only 8 sizing variables which took only 3 values at the 
optimum solution. Hence, it is rather easy to identify the best region of sizing design space. 
However, the present formulation could reduce the number of required structural analyses from 
4877 to 3404thanks to the advanced search strategy described in Section 3. The standard deviation 
on optimized weight resulting from independent runs was only 0.003 kg, relatedto small 
fluctuations in the optimum values of layout variables. This is consistent with the fact that design 
search is driven by a rather small number of discrete values of cross-sectional areas. 
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Table 11.Optimization results of the 25-bar tower topology optimization problem. 
 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.47-bar power line 
 
The third design example regards the planar 47-bar power line tower shown in Fig. 6, including 47 
elements connected by 22 nodes. The material density is 0.3 lb/in3 while the modulus of elasticity is 
30Msi. Bars are divided in 27 groups: (1) A1=A3, (2) A2=A4, (3) A5=A6, (4) A7, (5) A8=A9, (6)A10, (7) 
A11=A12, (8) A13=A14, (9) A15=A16, (10) A17=A18, (11) A19=A20, (12) A21=A22, (13) A23=A24, (14) 
A25=A26, (15) A27, (16) A28, (17) A29=A30, (18) A31=A32, (19) A33, (20)A34=A35, (21) A36=A37, (22) A38, 
(23) A39=A40, (24) A41=A42, (25) A43, (26) A44= A45, and (27) A46=A47. 

The structure is subject to three independent loading conditions: (i) 6 kips acting in the 
positive X-direction and 14 kips acting in the negative Y-direction at nodes 17 and 22; (ii) 6 kips 
acting in the positive X- direction and 14 kips acting in the negative Y-direction at node 17; (iii) 6 
kips acting in the positive X-direction and 14 kips acting in the negative Y-direction at node 22.  

The truss must be designed against stress and buckling constraints. In particular, stress limits 
are 15,000 psi in compression and 20,000 psi in tension. The Euler buckling limit is:  
 

2
i

icr
i L

KEA
    i=1,2,….,47       (12) 

 
In Eq. (12),the value of the Kconstant depends on cross-sectional geometry (here,K=3.96);E is 

the Young’s modulus of the material;Aiand Li, respectively, are the cross-sectional area and length of 
the ithtruss element. 

 

Design  
Variables 

   GA 
[53] 

   GA 
   [54] 

  FFA 
  [55] 

FSD-ES 
   [56] 

Multi-stage     
JA[47] 

Present study 
DAJA 

A1 (in
2) Removed Removed Removed Removed  Removed  Removed 

A2    0.1    0.1    0.1    0.1       0.1       0.1 

A3    0.9    0.9    1.1    0.9       1.0       1.0 

A4 Removed Removed Removed Removed  Removed  Removed 

A5 Removed Removed Removed Removed  Removed  Removed 

A6    0.1    0.1    0.1    0.1       0.1       0.1 

A7    0.1    0.1    0.1    0.1       0.1       0.1 

A8    1.0    1.0    0.9    1.0       0.9       0.9 

X4 (in)   39.91   38.7913   38.50   38.8713    38.909    38.909 

Y4   61.99   66.1110   64.35   61.5207    59.087    59.087 

Z4 118.23 112.9787 112.87 119.1785  123.247  123.247 

X8   53.13   48.7924   49.13   49.4146    51.227    51.227 

Y8 138.49 138.8910 134.94 137.9423  140.104  140.104 

Weight (kg) 52.045   51.877 52.880   51.899   51.388   51.388 

CVP (%)  None    None  None    None    None    None 

NSA  6000   10000  6000    8660    4877    3404 
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Fig. 6. Schematic of the planar 47-bar power line tower. 
 

 
The simplest variant of this problem includes only 27 sizing variables corresponding to the 

cross-sectional areas of the 27 groups of elements. Under this assumption, the tower was optimized 
by Lee et al. [26] using harmony search (HS) and Kaveh and Mahdavi [32] using colliding bodies 
optimization (CBO). Discrete values of cross-sectional areas were selected from the AISC set 
reported in Table 6. The presence of buckling constraints contributed to the difficulty of 
metaheuristic algorithms to find a global optimum solution for this design example in spite of the 
very large number of available discrete combinations of sizing variables, 4.048.1091 (i.e. 2764).  

The results obtained by DAJA are compared with the literature in Table 12.It can be seen that 
the present algorithm not only designed a lighter structure than HS and CBO (i.e. between 10 and 
20 kg weight reduction) but also required significantly less structural analyses than the referenced 
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algorithms. In particular,DAJA obtained the optimum design after only 8046 structural analyses 
while HS and CBOfound their best solutions after 45,557 and 25,000 structural analyses, 
respectively. Once again, DAJA was able to fulfill the basic requirement of metaheuristic 
optimization: to explore large fractions of designs space at low computational cost. Table 12 shows 
also that DAJA is more robust than CBO. The rate of success of DAJA for this test problem was 
about 77%. 

 
 

Table 12.Optimization resultsofthe 47-bar truss problem including onlydiscrete sizing variables. 
 

Designvariables 
Ai (in

2) 
HS  
[26] 

CBO  
[32] 

Present study 
DAJA 

A1 3.840 3.840 3.840 

A2 3.380 3.380 3.380 

A3 0.766 0.785 0.766 

A4 0.141 0.196 0.111 

A5 0.785 0.994 0.785 

A6 1.990 1.800 1.990 

A7 2.130 2.130 2.130 

A8 1.228 1.228 1.228 

A9 1.563 1.563 1.563 

A10 2.130 2.130 2.130 

A11 0.111 0.111 0.111 

A12 0.111 0.111 0.111 

A13 1.800 1.800 1.800 

A14 1.800 1.800 1.800 

A15 1.457 1.563 1.457 

A16 0.442 0.442 0.563 

A17 3.630 3.630 3.630 

A18 1.457 1.457 1.457 

A19 0.442 0.307 0.250 

A20 3.630 3.090 3.090 

A21 1.457 1.266 1.266 

A22 0.196 0.307 0.307 

A23 3.840 3.840 3.840 

A24 1.563 1.563 1.563 

A25 0.196 0.111 0.141 

A26 4.590 4.590 4.590 

A27 1.457 1.457 1.457 

Weight (lb) 2396.8 2386.0 2376.019 

CV (%) None None None 

NSA 45557 25000 8046 
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Worst weight (lb) N/A 2467.73 2418.19 

Mean weight (lb) N/A 2405.91 2399.92 

SD (lb) N/A 19.61 13.15 

 
 

The convergence curves relative to the best optimization runs of DAJA, HS [26] and CBO 
[32]for the 47-bar truss problem including only sizing variables are shown in Fig. 7. It can be seen 
that DAJA and HS started their best run from very similar populations but the present algorithm 
rapidly improved design while HS spent about 18,000 structural analyses before reducing 
significantly structural weight. This happened because the HS formulation of [26] generates new 
trial designs by changing one optimization variable at time while the present DAJA algorithm 
updates all population in a more dynamic way. The CBO algorithm of Ref. [27] started the 
optimization process from a more conservative design than DAJA and showed a higher rate of 
reduction in cost function than DAJA for the first 1000 analyses. However, this led CBO to carry 
out search near the boundaries of feasible design space and reduce step sizes in order not to 
generate infeasible trial designs. 
 
 

 
 

Fig. 7. Comparison of convergence curves for the 47-bar truss problem including only sizing 
variables. 

 
 

A much more challenging variant of the 47-bar tower problem includes also discrete layout 
and topology optimization:the total number of design variables increases to 44 sizing/layout 
variables and 27 topology variables. The 17 layout variables are the nodal co-ordinates X2, X4, Y4, 
X6, Y6, X8, Y8, X10, Y10, X12, Y12, X14, Y14, X20, Y20, X21 and Y21, which can take discrete values with a 
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resolution of 1 in between two consecutive values.Structural symmetry about the Y-axis must be 
preserved in each design cycle.  

Table 13 presents the results obtained for this design example. Discrete JA was compared with 
the multi-stage JA formulation of Ref. [47], genetic algorithm [57] and simulated annealing [58]. 
The best and worst designs obtained by DAJA in the independent optimization runs are listed in the 
table. All optimized designs are kinematically stable. It appears that the best design of DAJA ranked 
overall third in terms of optimized weight.However, DAJA’s solutionshould be considered the best 
overall becauseit violatesdesign constraints less than the optimum solutions found by the other 
algorithms. For example, if we multiply cross-sectional areas by a factor (1+CV/100) to recover 
maximum constraint violation, DAJA’s optimized weights would range between 841.1 and 843.7 kg 
vs. 844.8 kg of multi-stage JA [47] and 860.3 kg of SA [58], yet considerably lighter than the 855.1 
kg weight of the GA’s feasible design [57]. 

Unlike multi-stage JA, which rounded continuous optimum solutions weighing from 823.805 
to 823.980 kg (practically includingthe same distribution of cross-sectional areas)andhence obtained 
always the same discrete optimum design regardless of initial population, DAJA explored a larger 
fraction of design space as it perturbed the whole set of sizing, layout and topology variables until 
the end of optimization process. The gradient/pseudo-gradient information and approximate line 
search strategy implemented by DAJA allowed to generate high quality trial designs throughout 
optimization process without biasing search after some variables are roundedand/or removed from 
the design process. This explains why the best and worst designs found by DAJA were very 
competitive and anyhow better than the optimum design of multi-stage JA. 
 
 
Table 13.Results of fully discrete optimization of the 47-bar truss structurewith sizing, layout and 
topology variables. 
 

Design  
variables 

     GA 
[57] 

SA 
[58] 

Multi-stage JA 
[47] 

Present study  
DAJA – Best 

Present study  
DAJA - Worst 

A1 (in
2) 2.6 2.9 2.6 2.7 2.6 

A2 2.4 2.4 2.5 2.5 2.5 
A5 0.8 0.5 0.8 0.8 0.8 
A7 Removed Removed Removed Removed Removed 
A8 1.1 1.7 1.0 1.0 1.0 
A10 1.3 Removed 1.0 1.2 1.0 
A11 1.7 1.6 1.7 1.9 1.8 
A13 0.6 0.5 0.8 0.6 0.8 
A15 1.0 0.9 0.9 0.8 0.9 
A17 1.4 1.3 1.2 1.3 1.2 
A19 0.5 0.8 0.3 0.4 0.3 
A21 1.1 1.1 1.1 1.2 1.1 
A23 1.0 1.0 0.9 1.0 0.9 
A25 1.0 0.8 0.9 0.9 0.9 
A27 0.8 0.5 0.8 0.8 0.8 
A28 Removed Removed Removed Removed Removed 
A29 2.7 2.6 2.6 2.7 2.6 
A31 1.0 1.1 0.8 0.8 0.8 
A33 Removed Removed Removed Removed Removed 
A34 2.9 3.1 2.8 2.9 2.8 
A36 0.9 0.5 0.9 0.9 0.9 
A38 Removed Removed Removed Removed Removed 
A39 3.1 2.9 3.0 3.1 3.0 
A41 1.1 1.4 1.1 1.0 1.1 
A43 Removed Removed Removed Removed Removed 
A44 3.2 3.3 3.3 3.2 3.3 
A46 1.0 0.3 1.1 1.1 1.1 
X2 (in)    104.0 112.0 100.0 105.0 100.0 
X4      93.0   88.0   87.0   86.0   87.0 
Y4    116.0 140.0 134.0 135.0 134.0 
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* Estimated as the product between number of optimization cycles and population size 
               + Estimated as the product between number of optimization cycles and number of optimized variables 
 

 

The present algorithm was much faster than GA and SA and required 25% less structural 
analyses than multi-stage JA. Again, this is due to the inherent ability of DAJA of generating high 
quality trial designs because the search engine always tries to improve design by operating on the 
whole set of optimization variables. As a further proof to this statement, Fig. 8 compares the 
optimum shapes found by different algorithms. The worst design of DAJA corresponds to a similar 
shape to multi-stage JA but the present design DAJA violated buckling by less than 0.5%, which is 
about 1/3 of the violation reported in [47] for multi-stage JA. The best design of DAJA is 
characterized by the presence of shorter elements in the truss regions most critical to buckling, thus 
making it easier to satisfy this type of constraint.  

 
 

X6      74.0   68.0   70.0   68.0 70.0 
Y6    223.0 241.0 261.0 248.0 261.0 
X8      64.0   61.0   61.0   58.0 61.0 
Y8    302.0 326.0 342.0 330.0 342.0 
X10      54.0   47.0   54.0   53.0   54.0 
Y10    391.0 410.0 411.0 396.0 413.0 
X12      46.0   44.0   43.0   44.0   43.0 
Y12    458.0 450.0 476.0 459.0 476.0 
X14      51.0   65.0   44.0   46.0   44.0 
Y14    507.0 502.0 514.0 506.0 514.0 
X20      19.0     1.0     2.0     1.0     1.0 
Y20    595.0 598.0 594.0 580.0 594.0 
X21      90.0    58.0   94.0   81.0 94.0 
Y21    626.0 635.0 634.0 632.0 634.0 

Weight (kg)  855.053        811.603            834.118  834.606  836.157 

CV (%)   None 
3.2 (Tens. stress) 
6  (Compr. stress) 

0.89 (Compr. stress) 
1.28  (Buckling) 

0.779 (Compr. stress) 
0.636  (Buckling) 

0.907 (Compr. stress) 
0.475  (Buckling) 

NSA  100000*       13000+              6945 5174 4576 
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Fig. 8. Comparison of optimized topologies found for the fully discrete 47-bar tower problem. 
 
 

Finally, DAJA is robust enough in terms of structural weight and number of structural 
analyses required in the optimization process. In fact, the standard deviation on optimized weight 
was only 1.359 kg, which is about 0.325% of the average optimized weight. Furthermore, the 
standard deviation on the number of structural analyses was about 15% of the average number of 
analyses. The robustness of DAJA is quite remarkable if we consider that this design example 
included a rather large number of optimization variables. 
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4.4. Planar 52-bar truss 
 
The forth structure optimized in this study was the planar 52-bar truss shown in Fig. 9.The structure 
includes 52 elements connected by 20 nodes. Material properties are the same as in the 47-bar tower 
problem. The allowable stress of bars is 26,010psi in tension/compression. A single loading 
condition acts in the structure:concentrated forcesPx=22.48 kips and Py=44.96 kips applied to nodes 
17-20. Bars are divided in 12 groups of elements with the same cross-sectional areas: (1) A1-A4, (2) 
A5-A10, (3) A11-A13, (4) A14-A17, (5) A18-A23, (6) A24-A26, (7) A27-A30, (8) A31-A36, (9) A37-A39, (10) 
A40-A43, (11) A44-A49, and (12) A50-A52. Hence, this design example included 12 discrete sizing 
variables selected from the discrete values listed in Table 6.  

The best solution quoted in the literature for this test problem (see, for example, Refs. [21,37-
41]) is 4658.055; 1161.288; 494.1930; 3303.219; 940.0000; 494.1930; 2238.705; 1008.385; 
494.1930;  1283.868; 1161.288; 494.1930 mm2 yielding a structural weight of 1902.605 kg. The 
huge number of available combinations of discrete sizing variables from the D set (i.e. 1.168.1069, 
that is1264) and the rather small number of discrete sizing variables (only 12) allowed many 
metaheuristic algorithms to find the aforementioned optimum design. However, computational cost 
entailed by metaheuristic optimization (i.e. between about 3700 and 7100 structural analyses) 
appears to be very high also for this design example. 

 

 
 

 
Fig. 9. Schematic of the planar 52-bar truss. 
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The optimization results of DAJA are comparedin Table 14with the many solutions published 
in the literature. Interestingly, DAJA and most of the referencedalgorithms convergedto a feasible 
design corresponding to the target optimum weight of 1902.605 kg.The HPSO [27],AFA[38] and 
DHPSACO [28]algorithms designed slightly heavier trusses than DAJA. Furthermore, the optimum 
design of DHPSACO also violated constraints. CSS[30] found the lowest structural weight overall 
(1897.62kg) but the corresponding optimum design violatedstressconstraints by 0.114%. 

 Once again, DAJA was the fastest and most robust optimization algorithm. In particular, 
DAJA found its best solutionafter 3321 structural analyses whereas the other methods required 
between 3720 and 150,000 analyses. It should be noted that the SOS algorithm described in [21] 
obtained the same structural weight as DAJA within 47 iterations but the actual number of structural 
analyses required in the optimization process was not specified in Ref. [21]. Interestingly, DAJA 
required 46 iterations (hence, one less iteration than SOS) to converge to the optimum weight of 
1902.605 kg although it started from a considerably heavier design than SOS: 7117.6 kg vs. only 
3950 kg of SOS. This result was achieved by DAJA in spite of having used a population of only 20 
designs vs. the 50 designs included in the SOS population. Hence, the present algorithm should 
actually be considered faster than SOS. 

As far as it concerns standard deviation on optimized weight, the 2nd most robust algorithm, 
IMBA, showed a 2.5 times larger deviation than DAJA. In summary, DAJA reduced computational 
cost for this design example by 11% with respect to the fastest referenced algorithm (aaDE of Ref. 
[41]) but was 15 times more robust than that algorithm. The rate of success achieved by DAJA for 
this design example was about 88%. 

 
 

Table 14. Optimization results obtained for the 52-bar truss problem
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Design 
variables 
Ai (mm2) 

HPSO 
[27] 

DHPSACO 
[28] 

CSS  
[30] 

CBO 
[32] 

TLBO 
[37] 

AFA 
[38] 

WCA 
[39] 

IMBA 
[39] 

HHS 
[40] 

aeDE 
[41] 

Present 
DAJA 

A1-A4 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 

A5-A10 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 

A11-A13 363.2250 494.1930 388.3860 388.3860 494.1930 363.2250 494.1930 494.1930 494.1930 494.1930 494.1930 

A14-A17 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 

A18-A23 940.0000 1008.385 940.0000 939.9980 940.0000 939.9880 940.0000 940.0000 940.0000 940.0000 940.0000 

A24-A26 494.1930 285.1610 494.1930 506.4510 494.1930 494.1930 494.1930 494.1930 494.1930 494.1930 494.1930 

A27-A30 2238.705 2290.318 2238.705 2238.705 2238.705 2238.705 2238.705 2238.705 2238.705 2238.705 2238.705 

A31-A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 

A37-A39 388.3860 388.3860 494.1930 506.4510 494.1930 641.2890 494.1930 494.1930 494.1930 494.1930 494.1930 

A40-A43 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 
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Figure 10 compares the convergence curves obtained for the best optimization runs of 
DAJA, TLBO [37], IMBA [39], HHS [40] and aeDE [41]. DAJA and aeDE started their best 
runs from almost the same initial weight but the present algorithmwas able to reduce structural 
weight since the very beginning of optimization process. This is because differential evolution 
(even DE schemes including elitist strategies) does not necessarily direct all trial designs towards 
the best design of the current population. HHS, IMBA and TLBO started from considerably 
better initial designs than DAJA but either generated infeasible intermediate designs (for 
example, HHS approached constraint domain boundaries too quickly) or biased search towards 
suboptimal designs. The present algorithm could soon recover the initial gap in structural weight 
with respect to HHS, IMBA and TLBO because it is easier to define a large number of descent 
directions and assignvery large perturbations to sizing variables when the optimization process 
starts from conservative designs. The considerably smaller amount of heuristics included in the 
DAJA formulation, which, unlike all other metaheuristic algorithms, does not require setting of 
internal parameters, certainly concurs to speed up search towards the optimum solution. 
 

 
Fig. 10. Comparison of convergence curves obtained for the 52-bar truss problem. 
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DAJA

TLBO [37]

IMBA [39]

HHS [40]

aeDE [41]

A44-A49 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 

A50-A52 792.2560 506.4510 494.1930 506.4510 494.1930 494.1930 494.1930 494.1930 494.1930 494.1930 494.1930 

Weight 
(kg) 

1905.50 1904.83 1897.62 1899.35 1902.605 1903.37 1902.605 1902.605 1902.605 1902.605 1902.605 

CV (%) None 0.2726 0.114 0.0484 None None None None None None None 

NSA 150000 5300 
 

5000 3840 6000 52600 7100 4750 4253 3720 3321 

Worst 
weight 

(kg) 
N/A N/A N/A 2262.8 N/A N/A 1912.646 1904.83 N/A 1925.714 1903.944 

Mean 
weight 

(kg) 
N/A N/A N/A 1963.12 N/A N/A 1909.856 1903.076 1904.587 1906.735 1902.74 

SD (kg) N/A N/A N/A 106.01 N/A N/A 7.09 1.13 1.309 6.679 0.446 
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4.5. Spatial 72-bar truss 
 
The fifth structure optimized in this study is thespatial 72-bar truss shown in Fig. 11. Thistruss 
includes 72 bars connected by 20 nodes. Material properties and stress limits are the same as for 
the 10-bar truss design example whilethe allowable displacements of the top nodes of trussmust 
be lessthan ±0.25 in in both X and Y-directions. The structure is subject to the two independent 
loading conditions listed in Table 15. This test problem included 16 discrete sizing variables 
corresponding to the cross-sectional areas of the groups of elements that form the truss: (1) A1–
A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) 
A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66, (15) A67–A70, (16) 
A71–A72.  

Two optimization cases were considered. InCase 1, discrete sizing variables were selected 
from the set D=[0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2] (in2). In Case 2, discrete sizing 
variables were selected from the available values listed in Table 6. 

The best solution quoted in the literature for Case 1 (see, for example, Refs. [28,32,37-40]) 
is 1.9; 0.5; 0.1; 0.1; 1.4; 0.5; 0.1; 0.1; 0.5; 0.5; 0.1; 0.1; 0.2; 0.6; 0.4; 0.6 in2 yielding a 
structural weight of 385.54 lb. For Case 2, the best design quoted in the literature (see, for 
example, Refs. [28,30,33,34]) is 1.990; 0.563; 0.111; 0.111; 1.228; 0.442; 0.111; 0.111; 0.563; 
0.563; 0.111; 0.111; 0.196; 0.563; 0.391; 0.563 in2 yielding a structural weight of 389.334 lb. 
Similar to the 10, 25 and 52-bar design examples, the 72-bar truss problem includes a very large 
number of available combinations from the discrete sets D (respectively, 3.403.1038 1632and 
1.158.1076 1664for Case 1 and Case 2) and a rather small number of discrete sizing variables 
(only 16). While this allowed several metaheuristic algorithms to find the global optima for the 
two problem variants, computational cost remains an important issue also for this test problem 
because the reported number of structural analyses ranged from 3200 to 12,200 for Case 1 and 
from 4600 to about 17,000 for Case 2.  

 



 

 

Fig. 11. Schematic of the spatial
node numbering pattern for the first story

 
 

Table 15. Loadingconditions acting on
 

Node 
Loading condition 1

Fx (kips) 

17 5.0 

18 0.0 

19 0.0 

20 0.0 

 
 

Tables 16 and 17 compare the optimization results of 
available in the literaturefor Case
methods converged to the target 
that found a weight of 388.94 lb. For optimization Case 2, D
[39] and IMBA [39]converged to the target feasible optimumdesign while
DHPSACO [28], CSS [30] and 
violate optimization constraints. JA 
cases, always followed by WCA. In particular, in 
structural analyses vs. 3200 analyses 
required by the 2nd fastest optimizer WCA.
process within 3376 structural analyses, 
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Schematic of the spatial 72-bar truss structure: (a) top and side view (b) member and 
node numbering pattern for the first story. 

ingconditions acting on the spatial 72-bar truss structure

Loading condition 1 Loading condition

Fy  (kips) Fz (kips) Fx (kips) Fy  (kips) 

5.0 -5.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

compare the optimization results of DAJA with the
literaturefor Case 1 and Case 2, respectively. For optimization C

 feasible optimum design weighing 385.54 lb except 
that found a weight of 388.94 lb. For optimization Case 2, DAJA,ECBO [33

converged to the target feasible optimumdesign while
and CBO [32,33] obtained heavier designs that 

. JA was definitely the fastest optimizer in both optimization 

. In particular, in optimization Case 1, DAJA required only 1873 
structural analyses vs. 3200 analyses (thus achieving about 42% reduction in computation cost) 

fastest optimizer WCA. In optimization Case 2, DAJA completed the design
process within 3376 structural analyses, about 27% less than the 2nd fastest optimizer WCA.

 

(a) top and side view (b) member and 

structure. 

ondition 2 

Fz (kips) 

-5.0 

-5.0 

-5.0 

-5.0 

with the many solutions 
respectively. For optimization Case 1, all 

385.54 lb except HPSO [24] 
3], AFA [38], WCA 

converged to the target feasible optimumdesign while HPSO [27], 
obtained heavier designs that sometimes even 

in both optimization 
JA required only 1873 

(thus achieving about 42% reduction in computation cost) 
completed the design 

fastest optimizer WCA.The 
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main goal of substantially reducing the computational cost of the optimization was hence very 
well accomplished by DAJA also for this test problem.  

DAJA showed once again a very small standard deviation on optimized weight, ranking 3rd 
after IMBA and WCA in Case 1 (this may be due to the fact that the present algorithm found the 
optimum design after a very small number of structural analyses compared to the other two 
algorithms) and 1st overall in Case 2.This confirms the validity of the proposed approach, which 
achieved a success rate of about 80% for Case 1 and about 90% for Case 2, if we consider 
optimized designs up to 0.35% heavier than the target global optimum. 

The continuous optimum design found by two-stage JA [40] in Case 1, 1.883750; 
0.513814; 0.100001; 0.100000; 1.263169; 0.511173; 0.100000; 0.100002; 0.524452; 0.516183; 
0.100000; 0.100089; 0.156420; 0.545762; 0.412597; 0.570632 in2, can be rounded to the same 
discrete optimum design quoted in Table 16 for DAJA. However, the continuous optimization of 
two-stage JA required by itself about 11,000 structural analyses, i.e. about 6 times the total 
computational cost of DAJA. The two-stage continuous-discrete optimization process, although 
appropriate for this test problem, confirms to be computationally very expensive. 

 
 

Table 16.Optimization results obtained for Case 1 of the 72-bar truss problem. 
 

Design 
variables 
A  (in2) 

HPSO 
[27] 

DHPSACO 
[28] 

CBO 
[32] 

TLBO[37] 
AFA 
[38] 

WCA 
[39] 

IMBA 
[39] 

HHS 
[40] 

Present 
study DAJA 

A1-A4 2.1 1.9 1.9 1.9 2.0 1.9 1.9 1.9 1.9 

A5-A12 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

A13-A16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A17-A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A19-A22 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 

A23-A30 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

A31-A34 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A35-A36 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A37-A40 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.5 

A41-A48 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

A49-A52 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A53-A54 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A55-A58 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

A59-A66 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

A67-A70 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

A71-A72 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Weight (lb) 388.94 385.54 385.54 385.54 385.54 385.54 385.54 385.54 385.54 

CV (%) None 0.0164 None None None None None None None 

NSA 50000 5330 4500 4000 12200 3200 5750 3294 1873 
Worst 

weight(lb) 
N/A N/A 460.98 N/A N/A 386.80 387.942 N/A 387.943 

Mean 
weight(lb) 

N/A N/A 401 N/A N/A 385.842 385.765 386.04 386.161 

SD (lb) N/A N/A 16.99 N/A N/A 0.55 0.41 1.155 1.008 
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Table 17. Optimization results obtained for Case 2 of the 72-bar truss problem. 

 

Design 
variables 
Ai (in

2) 

HPSO 
[27] 

DHPSACO 
[28] 

CSS 
[30] 

CBO(1) 
[32] 

CBO(2) 
[33] 

ECBO 
[33] 

AFA 
[38] 

WCA 
[39] 

IMBA 
[39] 

Present 
study 
DAJA 

A1-A4 4.970 1.800 1.990 1.620 2.130 1.990 1.990 1.990 1.990 1.990 

A5-A12 1.228 0.442 0.442 0.563 0.563 0.563 0.563 0.442 0.442 0.563 

A13-A16 0.111 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A17-A18 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A19-A22 2.880 1.228 0.994 1.457 1.228 1.228 1.228 1.228 1.228 1.228 

A23-A30 1.457 0.563 0.563 0.442 0.442 0.442 0.442 0.563 0.563 0.442 

A31-A34 0.141 0.111 0.111 0.111 0.141 0.111 0.111 0.111 0.111 0.111 

A35-A36 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A37-A40 1.563 0.563 0.563 0.602 0.442 0.563 0.563 0.563 0.563 0.563 

A41-A48 1.228 0.563 0.563 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

A49-A52 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A53-A54 0.196 0.250 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A55-A58 0.391 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 

A59-A66 1.457 0.563 0.563 0.602 0.563 0.563 0.563 0.563 0.563 0.563 

A67-A70 0.766 0.442 0.442 0.391 0.391 0.391 0.391 0.391 0.391 0.391 

A71-A72 1.563 0.563 0.766 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

Weight (lb) 393.094 393.380 393.05 391.07 391.23 389.334 389.334 389.334 389.334 389.334 

CV (%) None 0.0424 None 0.0076 None None None None None None 

NSA 50000 5330 5370 4500 4620 17010 13200 4600 6250 3376 

Worst 
weight (lb) 

N/A N/A N/A 495.97 N/A N/A N/A 393.778 389.457 389.828 

Mean weight 
(lb) 

N/A N/A N/A 403.71 456.69 391.59 N/A 389.941 389.823 389.495 

SD (lb) N/A N/A N/A 24.8 N/A N/A N/A 1.43 0.84 0.159 

 
 

Figure 12 compares the convergence curves obtained for the best optimization runs of DAJA 
and other metaheuristic methods carried out in Case 1 and Case 2. In the first case (see Fig. 12a), 
CBO [32] started from more conservative designs than the other algorithms and hence converged 
more slowly to the optimum solutions. DAJA, TLBO [37] and HHS [40] started from similar 
populations including almost the same best design. The global best PSO strategy used by HHS 
made search very fast in the initial design cycles but soon pushed search process near constraint 
domain boundaries. DAJA and HHS optimization histories practically coincided from 500 to about 
1250 structural analyses but DAJA could later exploit its inherent ability to always generate a set of 
descent directions in the neighborhood of any trial designs. TLBO progressively recovered the gap 
and behaved like HHS after about 2000 structural analyses. 

The advantage deriving from the use of gradient/pseudo-gradient information and 
approximate line search in discrete sizing optimization of truss structures (as is done by DAJA) 
appears evident from Fig. 12b which presents convergence curves for Case 2. In fact, DAJA 
generated better intermediate designs than TLBO [37] throughout the optimization process and 
required only 750 structural analyses to outperform designs of IMBA[39]although the best design 
included in the DAJA’s initial population was about two times heavier than those ofTLBO and 
IMBA. CBO [32,33] and ECBO [33] always generated lower quality intermediate designs than 
DAJA over the whole optimization process either when those referenced algorithms started 
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optimization search from lighter or heavier designs than the present algorithm. WCA [39] was 
muchfaster than CBO [33] and ECBO [33] and its convergence history practically coincided with 
that of DAJA after about 2500 structural analyses.Conversely, CBO and ECBO yet generated 
almost 15% heavier designs than DAJA after about 3400 analyses, that is when the present 
algorithm already completed the optimization process. 
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Fig. 12. Comparison of convergence curves for the 72-bar problem: (a) Case 1; (b) Case 2. 
 
4.6. Planar 200-bar truss structure 
 
The sixth structure optimized in this study is the planar 200-bar truss structure shown in Fig. 13. 
The structure includes 200 elements connected by 77 nodes. The Young’s modulus and mass density 
are 30Msi and 0.283 lb/in3, respectively. The allowable stress is 10,000psi in tension/compression 
andthere are no displacement constraints. Elementsare divided into the 29 groups listed in Table 18. 
The structure is subject to three independent loading conditions: (1) 1.0 kip acting in the positive x-
direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71; (2) 10.0 kips acting in the negative y-
direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28,29 30, 31, 32, 
33, 34,36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 
72, 73, 74 and 75; (3) load cases (1) and (2) acting together.  

This classical average-scale design example includes 29 discrete sizing variables 
(corresponding to cross-sectional areas of element groups), which must be selected from the 
following set: D = [0.1, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 
2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 19.18, 
23.68, 28.08, 33.7] (in2). The total number of available discrete combinations of sizing variables is 
7.446.1043 (i.e. 2930). 
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Fig. 14. Schematic of the planar 200-bar truss structure. 
 
 

Table 18.Variable linking used for the 200-bar truss problem. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similar to the 47-bar tower problem, no global optimum solution is available in the literature 

for this design example. Besides the fairly large number of sizing variables included in these two 
test cases (respectively, 29 and 27 variables vs. up to 16 variables defined for the 10, 25, 52 and 72-
bar trusses), the difficulty for metaheuristic algorithms to find a global optimum for the 200-bar 
truss problem lies in the fact that the size of the discrete set D is almost the same as the number of 
sizing variables (i.e. 30 vs. 29). This limits by a great extent the number of candidate designs 
formed by selecting all different cross-sectional areas (i.e. when a design vector cannot include two 
identical cross-sectional areas) and consequently affects the exploration phase of the metaheuristic 
search process if the optimal design does not include many similar cross-sectional areas. 

Table 19 compares the optimization results obtained byDAJA, ESASS [36], HHS [40] and 
GA[59].The present algorithmwas the most efficient optimizer and obtained a feasible design 
weighing 27,282.57 lb, respectively 2.9% and 4.5% lighter than the feasible designs obtained by 
GA and ESASS. The lighter design obtained by HHS violatedstress constraints by 12.53% and 
would be increased to about 30,600 lb by rescaling sizing variables by a factor equal to 
(1+CV/100). Furthermore, JA required the smallestnumber of structural analyses to complete the 

Design  
variables   

Member number 
Design  
variables   

Member number 

1 1,2,3,4 16 
82,83,85,86,88,89,91,92, 
103,104,106,107,109,110,112,113 

2 5,8,11,14,17 17 115,116,117,118 

3 19,20,21,22,23,24 18 119,122,125,128,131 

4 18,25,56,63,94,101,132, 
139,170,177 

19 133,134,135,136,137,138 

5 26,29,32,35,38 20 140,143,146,149,152 

6 6,7,9,10,12,13,15,16,27, 
28,30,31,33,34,36,37 

21 120,121,123,124,126,127,129, 
130,141,142,144,145,147,148, 
150,151 

7 39,40,41,42 22 153,154,155,156 

8 43,46,49,52,55 23 157,160,163,166,169 

9 57,58,59,60,61,62 24 171,172,173174,175,176 

10 64,67,70,73,76 25 178,181,184,187,190 

11 44,45,47,48,50,51,53,54, 
65,66,68,69,71,72,74,75 

26 158,159,161,162,164,165,167, 
168,179,180,182,183,185,186, 
188,189 

12 77,78,79,80 27 191,192,193,194 

13 81,84,87,90,93 28 195,197,198,200 

14 95,96,97,98,99,100 29 196,199 

15 102,105,108,111,114   
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optimization process and was the most robust optimization algorithm. Remarkably, the 
computational cost of the optimization process was reduced by DAJA by almost 58% with respect 
to the literature. The success rate achieved by DAJA was rather high also for thisaverage scale 
discreteoptimization problem. In fact, about 80%of independent optimization runs converged to 
solutions up to 3% heavier than DAJA’s best weight of 27,282.57 lb. Such a dispersion is smaller 
than the 4.1% ratio between standard deviation and average weight obtained by HHS at the cost of 
violating stress constraints. It can be concluded that DAJA represents a noticeable advancement 
with respect to other metaheuristic algorithms also for this design example. 

 
 

Table 19. Optimization results obtained for the 200-bar truss problem. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design variables 
Ai (in

2) 
GA 
[59] 

ESASS 
[36] 

HHS 
[40] 

Present study  
DAJA 

1 0.347 0.1 0.1 0.1 

2 1.081 0.954 0.954 0.954 

3 0.1 0.1 0.1 0.347 

4 0.1 0.1 0.1 0.1 

5 2.142 2.142 2.142 2.142 

6 0.347 0.347 0.347 0.347 

7 0.1 0.1 0.1 0.1 

8 3.565 3.131 3.131 3.131 

9 0.347 0.1 0.1 0.1 

10 4.805 4.805 4.805 4.805 

11 0.44 0.347 0.44 0.44 

12 0.44 0.1 0.347 0.347 

13 5.952 5.952 5.952 5.952 

14 0.347 0.1 0.347 0.1 

15 6.572 6.572 6.572 6.572 

16 0.954 0.44 0.954 0.954 

17 0.347 0.539 0.347 0.1 

18 8.525 7.192 8.525 8.525 

19 0.1 0.44 0.1 0.539 

20 9.3 8.525 9.3 9.3 

21 0.954 0.954 1.081 0.954 

22 1.764 1.174 0.347 0.1 

23 13.3 10.85 13.33 13.33 

24 0.347 0.44 0.954 0.1 

25 13.3 10.85 13.33 13.33 

26 2.142 1.764 1.764 0.954 

27 4.805 8.525 3.813 5.952 

28 9.3 13.33 8.525 10.85 

29 17.17 13.33 17.17 14.29 

Weight (lb) 28,544.014 28,075.488 27,163.59 27,282.57 
CV (%) None None 12.53 None 

NSA 51,360 11,156 5000 4693 

Worst weight (lb) N/A N/A N/A 28,108.61 

Mean weight (lb) N/A N/A 28,159.59 27,878.27 

SD (lb) N/A N/A 1149.91 282.88 
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The two-stage JA algorithm started the rounding process from the continuous optimum 

solution 0.147258; 0.940434; 0.100109; 0.100098; 1.941704; 0.296783; 0.100096; 3.106749; 
0.100095; 4.108109; 0.403975; 0.193079; 5.434236; 0.100095; 6.434203; 0.575306; 0.135485; 
7.980200; 0.100157; 8.980345; 0.709002; 0.437247; 10.89123; 0.100150; 11.89141; 1.049144; 
6.610648; 10.77913; 13.87830 in2 reported in [40].The discrete solution thus obtained is 0.347; 
1.081; 0.1; 0.1; 2.142; 0.347; 0.347; 3.131; 0.1; 4.805; 0.539; 0.1; 5.952; 0.1; 6.572; 0.539; 0.539; 
8.525; 0.1; 8.525; 0.954; 0.44; 10.85; 0.1; 13.33; 0.954; 6.572; 10.85; 13.33 in2. The corresponding 
structural weight is 26,488.83 lb, but the above reported discrete design violates stress constraints 
by 4.071%. By relaxing sizing variables by a factor (1+CV) to recover constraint violation, the 
structural weight would increase to 27,567.19 lb, which is 1.043% larger than the optimum weight 
of 27,282.57 lb obtained by DAJA. Furthermore, the present algorithm completed the whole 
optimization process within only 4693 structural analyses while two-stage JA [40] required 31,580 
analyses just to perform the continuous optimization. Once again, the present discrete formulation 
was about one order of magnitude faster than the two-stage optimization JA formulation of Ref. 
[47]. This confirms the utility of using gradient information in the generation of trial designs. 

Figure14compares the convergence curves for the best optimization runs of DAJA, 
ESASS[36] and HHS [40]. All optimizations started from similar populations including best designs 
with approximately the same weight. It can be seen that DAJA and ESASS had the same 
convergence rate over the first 3000 structural analyses but later became considerably less efficient 
than DAJA. Such a behavior can be explained as follows.ESASS updates population by taking a 
fraction of the distance between the currently perturbed design and another design randomly 
selected;an elitist strategy can enhance search by sampling new designs in the neighborhood of the 
current best record. As optimization cyclesprogress, population becomes more and more condensed 
about the current optimum and hence distances between pairs of candidate designs become smaller. 
This limits the search ability of ESASS. Conversely, DAJA can generate feasible directions with no 
limitation on the available step size to be given to design variables. 

Again, the global PSO search strategy implemented by HHS resulted in a high rate of 
reduction of structural weight in the first optimization cycles but this made intermediate designs 
turn infeasible while DAJA was able to generate descent directions in the neighborhood of 
candidate designs always remaining in the feasible design space.  
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Fig.14. Comparison of convergence curves obtained for the 200-bar truss problem. 
 

It should be noted that the 200-bar problem is a rather complicated test problem for 
metaheuristic algorithms also in the case of continuous optimization. This statement is proven by 
the fact that none of the currently available metaheuristic methods could converge to the target 
optimum of 25446.7 lb. Discrete optimization makes the problem even more complex and this is 
confirmed by the presence of several steps also in the convergence curve of DAJA (see Fig. 14). 

 
 
4.7. Spatial942-bar tower 
 
The last design example is the sizing optimization of the spatial 942-bar tower shown in Fig. 15. 
The structure is made of steel with Young’s modulusequal to 29 Msi. Variable linking is used to 
exploit the symmetry of thestructure about X and Y axes(see group numbering in Fig. 15).Hence, 
the optimization problem includes 59 discrete sizing variables, which can be selected from a 
discrete list of295 ready W-sections. The following single loading condition is applied to the 
structure: (i) the vertical loads in the z-direction are -3.0 kips, -6.0 kips and -9.0 kips at each node in 
the first, second and third sections, respectively; (ii) the lateral loads in the y-direction are 1.0 kips 
at all nodes of the tower; (iii) the lateral loads in the x-direction are 1.5 kips and 1.0 kips at each 
node on the left and right sides of the tower, respectively. The stress and stability constraints are 
taken from AISC-ASD specifications [49], setting the yield stress equal to 36,000 psi. 
Displacements of free nodes in allcoordinate directionsmust be less than 15 in, about 1/250 of the 
total height of the tower (312 ft). 

This large scale problemwas previously solvedby other authors using SA [58], a simple 
genetic algorithm (SGA) [60], evolution strategies (ESs) [60] and a bat inspired algorithm (BI) [61]. 
The very large number of available discrete combinations of sizing variables for this design 
example, 2.520.10522 (i.e. 59295), explains the significant dispersion observed in terms of optimized 
weight and number of structural analyses for the documented solutions. Hence, there is not a target 
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 literature. Furthermore, computational cost of optimization 
41500 and 200,000 structural analyses. 

, computational cost of optimization was 
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Fig. 15. Schematic of the spatial 942-bar tower. 
 

The optimum results of DAJA are compared with those of SA, SGA, ESs and BI in Table 
20.Denominations and area sizes of optimized cross-sections are listed in the table. The DAJA 
algorithm again was the best method in terms of optimized weight and computational cost. In 
particular, DAJA obtained a structural weight of 377,485 lb while the 2nd best design, obtained by 
BI, weighs 377,567 lb. This was achieved within one half structural analyses with respect to BI (i.e. 
49,097 vs. 95,700). Furthermore, DAJA generated an intermediate feasible design lighter than the 
optimum design of SA (i.e. 379,630 vs 379,660 lb) after only 37,521 structural analyses vs. the 
41,462 analyses required by SA for completing the optimization process. 

The standard deviation on optimized weight achieved by DAJA(see also details of 
independent runs given in Table 1) is less than 1% of mean weight, thus confirming the robustness 
of DAJA also for this large-scale problem. Interestingly, the rate of success of DAJA was about 
80% by considering optimized designs up to 1.4% heavier than the best weight of 377,485 lb. Such 
a dispersion is similar to the 1.1% ratio between standard deviation and average weight achieved by 
the 2nd best optimizer, the BI algorithm. 
 
 
Table 20. Optimization results obtained for the 942-bar tower problem. 
 

Design 
variables 
Ai (in

2) 

SA                                                
[58] 

SGA                                                      
[60] 

ESs                   
[60] 

BI                                                      
[61] 

Present study 
DAJA 

1 W6×9 (2.68) W10×22 (6.49) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
2 W6×9 (2.68) W6×9 (2.68) W8×10 (2.96) W6×9 (2.68) W6×9 (2.68) 
3 W6×9 (2.68) W6×9(2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
4 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
5 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
6 W6×15 (4.43) W5×19 (5.54) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
7 W6×15 (4.43) W5×16 (4.68) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
8 W6×9 (2.68) W14×22 (6.49) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
9 W6×20 (5.87) W18×50 (14.70) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) 

10 W8×24 (7.08) W8×24 (7.08) W6×25 (7.34) W8×24 (7.08) W8×24 (7.08) 
11 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
12 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
13 W6×20 (5.87) W10×22 (6.49) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) 
14 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
15 W4×13 (3.83) W5×16 (4.68) W4×13 (3.83) W4×13 (3.83) W4×13 (3.83) 
16 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
17 W8×28 (8.25) W8×28 (8.25) W8×28 (8.25) W8×28 (8.25) W8×28 (8.25) 
18 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
19 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W5×16 (4.68) W6×15 (4.43) 
20 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
21 W8×35 (10.30) W8×35 (10.30) W8×35 (10.30) W8×35 (10.30) W8×35 (10.30) 
22 W6×20(5.87) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) 
23 W6×25 (7.34) W8×31 (9.13) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) 
24 W8×35 (10.30) W12×40 (11.80) W10×45 (13.30) W8×35 (10.30) W8×35 (10.30) 
25 W10×49 (14.40) W8×58 (17.10) W8×58 (17.10) W10×49 (14.40) W10×49 (14.40) 
26 W8×31 (9.13) W10×33 (9.71) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) 
27 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
28 W8×24 (7.08) W12×26 (7.65) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) 
29 W14×26 (7.69) W8×24 (7.08) W6×25 (7.34) W8×24 (7.08) W8×24 (7.08) 
30 W8×21 (6.16) W14×22 (6.49) W10×22 (6.49) W8×21 (6.16) W8×21 (6.16) 
31 W12×87 (25.60) W10×68 (20.00) W14×90 (26.50) W27×84 (24.80) W27×84 (24.80) 
32 W6×20 (5.87) W8×24 (7.08) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) 
33 W6×20 (5.87) W6×15 (4.43) W6×15 (4.43) W5×19 (5.54) W5×19 (5.54) 
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34 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
35 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
36 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
37 W14×99 (29.10) W24×104 (30.60) W14×99 (29.10) W14×99 (29.10) W14×99 (29.10) 
38 W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) 
39 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
40 W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) W6×20 (5.87) 
41 W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
42 W6×9 (2.68) W4×13 (3.83) W8×10 (2.96) W6×9 (2.68) W6×9 (2.68) 
43 W24×131 (38.50) W12×136 (39.90) W24×131 (38.50) W24×131 (38.50) W24×131 (38.50) 
44 W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) 
45 W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) W6×15 (4.43) 
46 W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) 
47 W4×13 (3.83) W8×18 (5.26) W4×13 (3.83) W4×13 (3.83) W4×13 (3.83) 
48 W6×9 (2.68) W6×20 (5.87) W6×9 (2.68) W6×9 (2.68) W6×9 (2.68) 
49 W14×145 (42.70) W14×145 (42.70) W14×145 (42.70) W14×145 (42.70) W14×145 (42.70) 
50 W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) 
51 W8×28 (8.25) W6×20 (5.87) W12×30 (8.79) W8×28 (8.25) W8×28 (8.25) 
52 W8×24 (7.08) W8×31 (9.13) W8×24 (7.08) W8×24 (7.08) W8×24 (7.08) 
53 W10×60 (17.60) W14×61 (17.90) W12×65 (19.10) W12×65 (19.10) W12×65 (19.10) 
54 W24×68 (20.10) W8×48 (14.10) W21×73 (21.5) W21×73 (21.5) W21×73 (21.5) 
55 W14×132 (38.80) W14×120 (35.30) W14×132 (38.80) W14×132 (38.80) W14×132 (38.80) 
56 W8×35 (10.30) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) 
57 W12×79 (23.20) W10×100 (29.40) W12×72 (21.10) W12×72 (21.10) W12×72 (21.10) 
58 W8×24 (7.08) W10×33 (9.71) W8×28 (8.25) W8×28 (8.25) W8×28 (8.25) 
59 W8×35 (10.30) W10×33 (9.71) W8×31 (9.13) W8×31 (9.13) W8×31 (9.13) 

Weight (lb) 379,660 394,321 377,947 377,567 377,485 a 

CV (%)      None      None 0.07      None       None 

NSA 41,462 200,000 150,000 95,700 49,097 

Worst Weight (lb) N/A N/A N/A N/A 385,455 

Mean Weight (lb) N/A N/A N/A 382,017 380,679 

SD (lb) N/A N/A N/A 3970 2666.5 
 
a JA found an intermediate design weighing 379,660 lb (less than the optimum weight of SA) after only 37521 structural analyses.  

 
The convergence curves of the best optimization runs of DAJA, SA [58] and ESs [60] are 

compared in Fig. 16. The number of structural analyses and weight of intermediate designs shown 
in the plot axes are respectively limited to 80,000 and 900,000 lb for the sake of clarity. SA started 
the optimization process from a very conservative design, weighing almost 3.5 times as the best 
designs included in the initial populations of DAJA and ESs (i.e. about 2.5.106 vs. about 7-8.105 lb). 
SA recovered this gap within about 22,000 structural analyses but it then improved marginally 
weight from 30,000 structural analyses to the end of optimization process. This happened because 
the SA formulation used in [58] operated on a single design at a time also perturbingonly one sizing 
variable at a time. ESs was the slowest optimizer overall and always generated heavier intermediate 
designs than DAJA and SA: after 50,000 structural analyses, ESs found an intermediate design still 
weighing about 388,600 lb while DAJA and SA already converged to their optimum designs 
weighing less than 378,000 lb. This could be due to the presence of many search operators that 
introduce a considerable amount of heuristics in ESs. Such a limitation affected at a smaller (but 
still significant) extent also the convergence rate of the BI algorithm [61]. Interestingly, both ESs 
and BI operated with a much larger population than DAJA: respectively, 150 offspring and 50 
individuals.However, DAJA was able to better explore design space even operating on only 20 
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candidate designs. In summary, DAJA was definitely the fastest optimizer also in this large-scale 
problem. 
 

 
 

Fig. 16. Comparison of convergence curves obtained for the 942-bar truss problem. 
 
 
5. Conclusions 
 
This paper presented an advanced formulation ofthe Jaya algorithm for discrete optimization of 
truss structures including sizing, layout and topology design variables. The new algorithm (discrete 
advanced JA or DAJA) attempts to improve population by generating a set of descent directions in 
the neighborhood of each candidate design. For that purpose, explicit gradient information (if 
available) or pseudo-gradient information (in the general case) and approximate line search 
strategies are utilized to perturb design variables, rounding the values given by the JA search 
engine. 

DAJA was tested on several classical weight minimization problems formulated forseven 
truss structures. The largest test case included 59 discrete sizing variables while the second largest 
design example included 27 discrete sizing variables, 17 discrete layout variables and 27 topology 
variables (to determine if elements should be maintained or removed). The present algorithmalways 
converged to the target optimum designs quoted in the literature and, in the most complicated test 
problems, found better solutions than other methods. Remarkably,DAJA always required much less 
structural analyses than other optimization methods and was definitely more robust than its 
competitors in most design examples. The direct discrete optimization search performed by DAJA 
allowed computational cost to be reduced on average by one order of magnitude with respect to 
multi-stage JA continuous-discrete optimization[47]. 

DAJA’s formulation can easily be adapted to other engineering problems. For example, we 
successfully tested DAJA in the weight minimization of a frame structure and a gravity dam. 
Remarkably, DAJA resulted highly competitive with other hybrid algorithms that use SA, HS and 
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BBBC as metaheuristic search engines [62].Further studies are currently conducted for using DAJA 
in discrete optimization of structures with dynamic constraints. 
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