
24 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Computing the matrix Mittag-Leffler function with applications to fractional calculus / Garrappa, Roberto; Popolizio,
Marina. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - STAMPA. - 77:1(2018), pp. 129-153.
[10.1007/s10915-018-0699-5]

This is a post print of the following article

Original Citation:

Computing the matrix Mittag-Leffler function with applications to fractional calculus

Published version
DOI:10.1007/s10915-018-0699-5

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/169250 since: 2022-06-07

Computing the matrix Mittag–Leffler function with
applications to fractional calculus ∗

Roberto Garrappa
Università degli Studi di Bari, Dipartimento di Matematica, Bari, Italy

Member of the INdAM Research group GNCS

roberto.garrappa@uniba.it

Marina Popolizio
Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi”. Lecce, Italy

Member of the INdAM Research group GNCS

marina.popolizio@unisalento.it

Submitted on June 5th, 2017

Abstract

The computation of the Mittag-Leffler (ML) function with matrix arguments,
and some applications in fractional calculus, are discussed. In general the evaluation
of a scalar function in matrix arguments may require the computation of derivatives
of possible high order depending on the matrix spectrum. Regarding the ML func-
tion, the numerical computation of its derivatives of arbitrary order is a completely
unexplored topic; in this paper we address this issue and three different methods
are tailored and investigated. The methods are combined together with an original
derivatives balancing technique in order to devise an algorithm capable of providing
high accuracy. The conditioning of the evaluation of matrix ML functions is also
studied. The numerical experiments presented in the paper show that the proposed
algorithm provides high accuracy, very often close to the machine precision.

Keywords: Mittag–Leffler function, Matrix function, Derivatives of the Mittag–
Leffler function, Fractional calculus, Conditioning.

1 Introduction

When the Swedish mathematician Magnus Gustaf Mittag-Leffler introduced, at the be-
ginning of the twentieth century, the function that successively would have inherited his
name [42, 43], he perhaps ignored the importance it would have gained several years later;
indeed, although the introduction of the Mittag-Leffler (ML) function was motivated just
by the analysis of divergent series, this function has nowadays a fundamental role in the

∗This is the post-print of the paper: R.Garrappa, M.Popolizio, “Computing the matrix Mittag–Leffler
function with applications to fractional calculus”, Journal of Scientific Computing (Springer), October
2018, Volume 77, Issue 1, pp 129-153, doi: 10.1007/s10915-018-0699-5, avialable at https://doi.org/

10.1007/s10915-018-0699-5. This work is supported under the GNCS-INdAM 2017 project “Analisi
numerica per modelli descritti da operatori frazionari”.

1

ar
X

iv
:1

80
4.

04
88

3v
2

 [
m

at
h.

N
A

]
 1

 D
ec

 2
01

9

https://doi.org/10.1007/s10915-018-0699-5
https://doi.org/10.1007/s10915-018-0699-5

theory of operators of fractional (i.e., non integer) order and it has become so important
in this context as to be defined the “Queen function of fractional calculus” [26, 28, 39].

For complex parameters α and β, with <(α) > 0, the ML function is defined by means
of the series

Eα,β(z) =
∞∑
j=0

zj

Γ(αj + β)
, z ∈ C, (1)

where Γ(·) is the Euler’s gamma function. Eα,β(z) is an entire function of order ρ = 1/<(α)
and type σ = 1 and it is clearly a generalization of the exponential function to which it
reduces when α = β = 1 since for j ∈ N it is Γ(j + 1) = j!. Throughout the paper we
consider real values for α and β which is the case of interest for common applications.

Despite the great interest in fractional calculus, few works have so far concerned the
accurate evaluation of the ML function. Indeed this is in and of itself challenging and
expensive and few efficient algorithms for this task have been devised only recently (e.g.,
see [18, 23, 27, 54, 56]).

The ML function with matrix arguments is just as valuable as its scalar version and it
can be successfully employed in several applications: for the efficient and stable solution
of systems of fractional differential equations (FDEs), to determine the solution of certain
multiterm FDEs, in control theory and in other related fields (e.g., see [20, 21, 22, 44, 46,
48, 55]).

The aim of this paper is to discuss numerical techniques for the evaluation of the ML
function with matrix arguments; in particular we are interested in methods working with
high accuracy, if possible very close to the machine precision, in order to provide results
which can be considered virtually exact in finite precision arithmetic.

Incidentally, and under a more general perspective, we cannot get out of mentioning
the recent interest in the numerical approximation of matrix functions for applications in
a wide range of areas, for which we refer the reader to the textbook by Higham [33] and
the readable papers [7, 15, 29, 34].

For general matrix functions the Schur–Parlett algorithm [6] represents the most pow-
erful method. It is based on the Schur decomposition of the matrix argument combined
with the Parlett recurrence to evaluate the matrix function on the triangular factor [25].
Additionally, for the diagonal part, the Taylor series of the scalar function is used. This
last task requires the knowledge of the derivatives of the underlying scalar function up to
an order depending on the eigenvalues of the matrix argument. In particular, high orders
are needed in the presence of multiple or highly clustered eigenvalues. This is a crucial
issue which complicates the matrix case with respect to the scalar one.

Facing the evaluation of derivatives of the ML function, as requested by the Schur–
Parlett algorithm, is a demanding task other than a rather unexplored topic (except, as
far as we know, for one work dealing with just the first order derivative [27]). A great
portion of this paper is therefore devoted to discuss and deeply investigate three different
methods for the evaluation of derivatives of the ML function; the rationale for introducing
different methods is that each of them properly works in limited regions of the complex
plane and for different parameter ranges. Thanks to our investigation, we are therefore
able to tune a combined algorithm which applies, in an accurate way, to matrices with
any eigenvalues location.

Besides, we analyze the conditioning of the computation of matrix ML functions to
understand the sensitivity of the matrix function to perturbations in the data. We thus
give a first contribution on this topic which we think can be of interest for readers in-
terested in numerical applications of the matrix ML function, where rounding errors and

2

perturbations are inevitable.
This paper is organized as follows: in Section 2 we survey some of the most common

applications of the ML function with matrix arguments. In Section 3 we discuss the
generalization of a scalar function to matrix arguments and we review the Schur-Parlett
algorithm for its numerical computation. Some methods for the accurate and efficient
evaluation of derivatives of the ML function, as requested by the Schur-Parlett algorithm,
are hence described in Section 4: we study in detail each method in order to identify
strengths and weaknesses and provide some criteria for the selection of the most suitable
method in each situation. The conditioning of the ML function is studied in Section 5
and, finally, in Section 6 we present the results of some numerical experiments.

2 Applications of matrix Mittag-Leffler functions

The evaluation of matrix ML functions is not just a curiosity-driven problem; several
practical applications can indeed benefit from calculating the value of Eα,β in matrix
arguments.

This section presents some important applications involving the numerical evaluation
of matrix ML functions. The aim is to give just a flavor of the assorted fields in which
these objects are required, while for their thorough discussion we refer the reader to the
existing literature (e.g., see [26, 30, 49]).

2.1 Solution of systems of FDEs

The matrix ML function is crucial to explicitly represent the solution of a linear system
of FDEs of order α > 0

Dα
t Y (t) = AY (t), Y (`)(0) = Y `

0 , ` = 0, . . . ,m− 1, (2)

where A ∈ Rn×n, Y (t) : [0, T] → Rn, m = dαe is the smallest integer greater or equal to
α and Dα

t is the Caputo’s fractional derivative

Dα
t y(t) ≡ 1

Γ(m− α)

∫ t

0

y(m)(u)(
t− u

)α+1−mdu,

with y(m) denoting the standard integer–order derivative.
It is immediate to verify that the exact solution of the system (2) is

Y (t) =
m−1∑
`=0

t`Eα,`+1

(
tαA

)
Y `
0 (3)

and, once some tool for the computation of the matrix ML function is available, the
solution of (2) can be evaluated, possibly with high accuracy, directly at any time t >
0. Conversely, the commonly used step-by-step methods usually involve considerable
computational costs because of the persistent memory of fractional operators [9].

2.2 Solution of time-fractional partial differential equations

Given a linear time-fractional partial differential equation

Dα
t u(t, x) = ∇2

xu(t, x) + f(t, x), (4)

3

subject to some initial and boundary conditions, a preliminary discretization along the
spatial variables allows to recast (4) in terms of a semi-linear system of FDEs in the form

Dα
t U(t) = AU(t) + F (t), (5)

with U(t) =
(
u1(t), . . . , uNx(t)

)T
, being ui(t) an approximation of u(xi, t) on a parti-

tion x1, . . . , xNx of the spatial domain, and F (t) obtained from the source term and the
boundary conditions. By assuming for simplicity 0 < α < 1, the exact solution of the
semi-discretized system (5) can be formulated as

U(t) = Eα,1
(
tαA

)
U0 +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)F (τ) dτ. (6)

A common approach to solve (5) relies on product-integration rules which actually
approximate, in the standard integral formulation of (5), the vector-field AU(t) + F (t)
by piecewise interpolating polynomials. This method, however, has severe limitations for
convergence due to the non-smooth behavior of U(t) at the origin [13]. However, the same
kind of approximation when used in (6), where just F (t) is replaced by polynomials, does
not suffer from the same limitations [17] and it is possible to obtain high order methods
under the reasonable assumption of a sufficiently smooth source term F (t). In addition,
solving (4) by using matrix ML functions in (6) allows also to overcome stability issues
since the usual stiffness of the linear part of (5) is solved in a virtually exact way.

2.3 Solution of linear multiterm FDEs

Let us consider a linear multiterm FDE of commensurate order 0 < α < 1

n∑
k=0

akD
kα
t y(t) = f(t), (7)

with Dkα
t derivatives of Caputo type and associated initial conditions

y(0) = b0, y
′(0) = b1, . . . , y

(m−1)(0) = bm−1, m = dnαe .

When nα < 1, or when α ∈ Q, the FDE (7) can be reformulated as a linear system
of FDEs (see [10, 11] or [9, Theorems 8.1-8.2]). For instance, if α = p/q, with p, q ∈ N,

one puts y1(t) = y(t), yk(t) = D
1/q
t yk−1(t) and, by introducing the vector notation Y (t) =(

y1(t), y2(t), . . . , yN(t)
)T

, it is possible to rewrite (7) as

D
1/q
t Y (t) = AY (t) + eNf(t), Y (0) = Y0 (8)

where eN =
(
0, 0, . . . , 0, 1

)T ∈ RN , Y0 ∈ RN is composed in a suitable way on the basis of
the initial values bj, the coefficient matrix A ∈ RN×N is a companion matrix and the size
of problem (8) is N = np.

Also in this case it is possible to express the exact solution by means of matrix ML
functions as

Y (t) = Eα,1(t
αA)Y0 +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)eNf(τ)dτ (9)

4

and hence approximate the above integral by some well-established technique. As a special
case, with a polynomial source term f(t) = c0 + c1t + . . . cst

s it is possible to explicitly
represent the exact solution of (8) as

Y (t) = Eα,1(t
αA)Y0 +

s∑
`=0

`!c`t
α+`Eα,α+`+1(t

αA)eN . (10)

We have also to mention that, as deeply investigated in [38], the solution of the linear
multiterm FDE (7) can be expressed as the convolution of the given input function f(t)
with a special multivariate ML function of scalar type, an alternative formulation which
can be also exploited for numerically solving (7).

It is beyond the scope of this work to compare the approach proposed in [38] with
numerical approximations based on the matrix formulation (9); it is however worthwhile
to highlight the possibility of recasting the same problem in different, but analytically
equivalent, formulations: one involving the evaluation of scalar multivariate ML functions
and the other based on the computation of standard ML functions with matrix arguments;
clearly the two approaches present different computational features whose advantages and
disadvantages could be better investigated in the future.

2.4 Controllability and observability of fractional linear systems

For a continuous-time control system the complete controllability describes the possibility
of finding some input signal u(t) such that the system can be driven, in a finite time, to
any final state xT starting from the fixed initial state x0. The dual concept of observability
instead describes the possibility of determining, at any time t, the state x0 = x(t0) of the
system from the subsequent history of the input signal u(t) and of the output y(t).

Given a linear time-invariant system of fractional order α > 0{
Dα
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(11)

controllability and observability are related to the corresponding Gramian matrices, de-
fined respectively as [2, 40]

Cα(t) :=

∫ t

0

Eα,α((t− τ)αA)BBTEα,α((t− τ)αAT)dτ

and

Oα(t) =

∫ t

0

Eα,1(τ
αAT)CTCEα,1((t− τ)αA)dτ

(see also [41] for problems related to the control of fractional order systems).
In particular, system (11) is controllable (resp. observable) on [0, T] if the matrix Cα(t)

(resp. the matrix Oα(t)) is positive definite.
Although alternative characterizations of controllability and observability are avail-

able in terms of properties of the state matrix A, the computation of the controllability
Gramian Cα(t) (resp. the observability Gramian Oα(t)) can be used to find an appropriate
control to reach a state xT starting from the initial state x0 (resp. to reconstruct the state
x(t) from the input u(t) and the output y(t)). Moreover, computing the Gramians is also
useful for input-output transfer function models derived from linearization of nonlinear
state-space models around equilibrium points that depend on working conditions of the
real modeled systems (see, for instance, [36, 37]).

5

3 The Mittag-Leffler functions with matrix arguments:

definitions

3.1 Theoretical background

Given a function f of scalar arguments and a matrix A, the problem of finding a suitable
definition for f(A) goes back to Cayley (1858) and it has been broadly analyzed since then.
The extension from scalar to matrix arguments is straightforward for simple functions,
like polynomials, since it trivially consists in substituting the scalar argument with the
matrix A. This is also the case of some transcendental functions, like the ML, for which
(1) becomes

Eα,β(A) =
∞∑
j=0

Aj

Γ(αj + β)
(12)

(this series representation is useful for defining Eα,β(A) but usually it cannot be used for
computation since it presents the same issues, which will be discussed later in Subsection
4.1, of the use of (1) for the scalar function, amplified by the computation increase due
to the matrix argument).

In more general situations a preliminary definition is of fundamental importance to
understand the meaning of evaluating a function on a matrix.

Definition 1. Let A be a n×n matrix with s distinct eigenvalues λ1, . . . , λs and let ni be
the index of λi, that is, the smallest integer k such that (A− λiI)k = 0 with I denoting
the n × n identity matrix. Then the function f is said to be defined on the spectrum of
A if the values f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s exist.

Then for functions defined on the spectrum of A the Jordan canonical form can be of
use to define matrix functions.

Definition 2. Let f be defined on the spectrum of A and let A have the Jordan canonical
form

A = ZJZ−1 = Z diag(J1, . . . , Jp)Z
−1, Jk =

λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk .

Then
f(A) = Zf(J)Z−1 = Z diag(f(J1), . . . , f(Jp))Z

−1,

with

f(Jk) =

f(λk) f ′(λk) . . . f (mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 .
This definition highlights a fundamental issue related to matrix functions: when mul-

tiple eigenvalues are present, the function derivatives need to be computed. In our context
this is a serious aspect to consider since no numerical method has been considered till
now for the derivatives of the (scalar) ML function, except for the first order case [27].

In practice, however, the Jordan canonical form is rarely used since the similarity
transformation may be very ill conditioned and, even more seriously, it cannot be reliably
computed in floating point arithmetic.

6

3.2 Schur-Parlett algorithm

Diagonalizable matrices are favorable arguments for simple calculations; indeed a ma-
trix is diagonalizable if there exist a nonsingular matrix P and a diagonal matrix D =
diag(λ1, . . . , λn) such that A = P−1DP . In this case f(A) = P−1f(D)P and f(D) is
still a diagonal matrix with principal entries f(λi). Clearly the computation involves only
scalar arguments. Problems arise when the matrix P is nearly singular or in general badly
conditioned, since the errors in the computation are related to the condition number of
the similarity matrix P (see [33]). For these reasons well conditioned transformations are
preferred in this context.

The Schur decomposition is a standard instrument in linear algebra and we refer to
[25] for a complete description and for a comprehensive treatment of the related issues. It
nowadays represents the starting point for general purpose algorithms to compute matrix
functions thanks also to its backward stability. Once the Schur decomposition for the
matrix argument A is computed, say A = QTQ∗ with Q unitary and T upper triangular,
then f(A) = Qf(T)Q∗, for any well defined f . The focus thus moves to the computation
of the matrix function for triangular arguments.

In general this is a delicate issue which can be the cause of severe errors if not cleverly
accomplished. Here we describe the enhanced algorithm due to Davies and Higham [6]:
once the triangular matrix T is computed, it is reordered and blocked so to get a matrix
T̃ such that each block T̃ij has clustered eigenvalues and distinct diagonal blocks have far
enough eigenvalues.

To evaluate f(T̃ii) a Taylor series is considered about the mean σ of the eigenvalues
of T̃ii. So, if m is the dimension of T̃ii then σ = trace(T̃ii)/m and

f(T̃ii) =
∞∑
k=0

f (k)(σ)

k!
Mk

with M such that T̃ii = σI +M . The powers of M will decay quickly after the (m− 1)-st
since, by construction, the eigenvalues of T̃ii are “sufficiently” close.

Once the diagonal blocks f(T̃ii) are evaluated, the rest of f(T̃) is computed by means of
the block form of the Parlett recurrence [33]. Finally the inverse similarity transformations
and the reordering are applied to get f(A).

4 Computation of derivatives of the ML function

The Schur-Parlett algorithm substantially relies on the knowledge of the derivatives of the
scalar function in order to compute the corresponding matrix function. Since in the case
of the ML function Eα,β(z) the derivatives are not immediately at disposal, it is necessary
to devise efficient and reliable numerical methods for their computation for arguments
located in any region of the complex plane and up to any possible order, in dependence
of the spectrum of A.

To this purpose we present and discuss three different approaches, namely

1. series expansion,

2. numerical inversion of the Laplace transform,

3. summation formulas.

7

Although the three approaches are based on formulas which are equivalent from an
analytical point of view, their behavior when employed for numerical computation differs
in a substantial way.

We therefore investigate in details weaknesses and strengths in order to identify the
range of arguments for which each of them provides more accurate results and we tune,
at the end of this Section, an efficient algorithm implementing, in a combined way, the
different methods.

4.1 Series expansion

After a term-by-term derivation, it is immediate to construct from (1) the series repre-
sentation of the derivatives of the ML function

dk

dzk
Eα,β(z) =

∞∑
j=k

(j)k
Γ(αj + β)

zj−k, k ∈ N, (13)

with (x)k denoting the falling factorial

(x)k = x(x− 1) · · · (x− k + 1).

At a glance, the truncation of (13) to a finite number J ∈ N of terms, namely

dk

dzk
Eα,β(z) ≈

J∑
j=k

(j)k
Γ(αj + β)

zj−k, (14)

may appear as the most straightforward method to compute derivatives of the ML func-
tion. Anyway the computation of (14) presents some not negligible issues entailing serious
consequences if not properly addressed.

We have first to mention that in IEEE-754 double precision arithmetic the Gamma
function can be evaluated only for arguments not greater than 171.624, otherwise overflow
occurs; depending on α and β the upper bound for the number of terms in (14) is hence

Jmax :=

⌊
171.624− β

α

⌋
,

with bxc being the largest integer less than or equal to x; as a consequence the truncated
series (14) can be used only when the Jmax-th term is small enough to disregard the
remaining terms in the original series (13). By assuming a target accuracy τ as the
threshold for truncating the summation, a first bound on the range of admissible values
of z is then obtained by requiring that

|z| ≤
(
τ

Γ(αJmax + β)

(Jmax)k

) 1
Jmax−k

.

The effects of round-off errors (related to the finite-precision arithmetic used for the
computation) may however further reduce, in a noticeable way, the range of admissible
arguments z for which the series expansion can be employed. When |z| > 1 and | arg(z)| >
απ/2, some of the terms in (14) are indeed in modulus much more larger than the modulus
of Eα,β(z); actually, small values of Eα,β(z) result as the summation of large terms with
alternating signs, a well-known source of heavy numerical cancellation (e.g., see [32]).

8

To decide whether or not to accept the results of the computation, it is necessary to
devise a reliable estimate of the round-off error. We inherently assume that in finite-
precision arithmetic the sum S1 = c0 + c1 of any two terms c0 and c1 leads to Ŝ1 =
(c0 + c1)(1 + δ1), with |δ1| < ε and ε > 0 the machine precision. Then, for J ≥ 2, the
general summation SJ = c0 + c1 + . . .+ cJ of J + 1 terms is actually computed as

ŜJ = SJ + (c0 + c1)
J∑
j=1

δj + c2

J∑
j=2

δj + c3

J∑
j=3

δj + · · ·+ cJδJ (15)

where |δ1|, |δ2|, . . . , |δJ | < ε and terms proportional to O(ε2) have been discarded. It is
thus immediate to derive the following bound for the round-off error

∣∣SJ − ŜJ ∣∣ ≤ ε

(
J |c0|+

J∑
j=1

(J − j + 1)
∣∣cj∣∣) . (16)

The order by which the terms cj are summed is relevant especially for the reliability
of the above estimator; clearly, an ascending sorting of |cj| makes the estimate (16)
more conservative and hence more useful for practical use. It is therefore advisable,
especially in the more compelling cases (namely, for arguments z with large modulus and
| arg(z)| > απ/2) to perform a preliminary sorting of the terms in (14) with respect to
their modulus.

An alternative estimate of the round-off error can be obtained after reformulating (15)
as

ŜJ = SJ +
J∑
j=1

Sjδj

from which one can easily derive

∣∣SJ − ŜJ ∣∣ ≤ ε
J∑
j=1

∣∣Sj∣∣. (17)

The bound (17) is surely more sharp than (16) and it does not involve a large amount
of extra computation since it is possible to evaluate SJ by storing all the partial sums
Sj; anyway (17) is based on the exact values of the partial sums Sj which are actually

not available; since just the computed values Ŝj can be employed, formula (17) can un-
derestimate the round-off error. We find useful to use a mean value between the bounds
provided by (16) and (17).

Unfortunately, only “a posteriori” estimates of the round-off error are feasible and
it seems not possible to prevent from performing the computation before establishing
whether or not to accept the results. Obviously, on the basis of the above discussion, it is
possible to reduce the range of arguments for which the evaluation by (14) is attempted
and, anyway, if well organized, the corresponding algorithm runs in reasonable time.

4.2 Numerical inversion of the Laplace transform

After a change of the summation index, it is straightforward from (13) to derive the
following representation of the derivatives of the ML function

dk

dzk
Eα,β(z) =

∞∑
j=0

(j + k)kz
j

Γ(αj + αk + β)
= k!Ek+1

α,αk+β(z), (18)

9

where

Eγ
α,β(z) =

1

Γ(γ)

∞∑
j=0

Γ(j + γ)zj

j!Γ(αj + β)
(19)

is a three parameter ML function which is recognized in literature as the Prabhakar func-
tion [47] (the relationship between the derivatives of the ML function and the Prabhakar
function has been recently highlighted also in [16, 45]).

This function, which is clearly a generalization of the ML function (1), since E1
α,β(z) =

Eα,β(z), is recently attracting an increasing attention in view of its applications in the
description of relaxation properties in a wide range of anomalous phenomena (see, for
instance [5, 19, 24, 35, 50]). For this reason some authors recently investigated the problem
of its numerical computation [18, 51].

The approach proposed in [18] is based on the numerical inversion of the Laplace
transform and extends a method previously proposed in [23, 55]. Since it allows to perform
the computation with an accuracy very close to the machine precision, the extension to
derivatives of the ML function appears of particular interest.

For any t > 0 and z ∈ C, the Laplace transform (LT) of the function tβ−1Eγ
α,β(tαz) is

given by

L
(
tβ−1Eγ

α,β(tαz) ; s
)

=
sαγ−β

(sα − z)γ
, <(s) > 0, |zs−α| < 1. (20)

After selecting t = 1 and denoting

Hk(s; z) =
sα−β

(sα − z)k+1
,

with a branch–cut imposed on the negative real semi axis to make Hk(s; z) single-valued,
the derivatives of the ML function can be evaluated by inverting the LT (20), namely by
recasting (18) in form of the integral

dk

dzk
Eα,β(z) =

k!

2πi

∫
C
esHk(s; z) ds =: Ik(z), (21)

over a contour C in the complex plane encompassing at the left all the singularities of
Hk(s; z).

The trapezoidal rule has been proved to possess excellent properties for the numerical
quadrature of contour integrals of analytic functions [4, 53] but satisfactory enough results
can be obtained also in the presence of singularities if the contour is selected in a suitable
way.

In particular, in order to truncate, after a reasonable small number of terms, the
infinite sum resulting from the application of the trapezoidal rule to (21) it is necessary
that the integrand decays in a fast way; therefore contours beginning and ending in the
left half of the complex plane must be selected. Our preference is for parabolic contours

C : σ(u) = µ(iu+ 1)2, −∞ < u <∞

whose simplicity allows accurate estimates of the errors and a fine tuning of the main
parameters involved in the integration.

Given a grid uj = jh, j = −N, . . . , N , with constant step-size h > 0, the truncated
trapezoidal rule applied to (21) reads as

I
[N]
k (z) =

k!h

2πi

N∑
j=−N

eσ(uj)Hk(σ(uj); z)σ′(uj).

10

For choosing the integration parameters µ, h and N the two main components of the
error are considered, that is the discretization and the truncation errors. The balancing
of these errors, according to the procedure described first in [55], and hence applied to
the ML function in [18, 23], allows to select optimal parameters in order to achieve a
prescribed tolerance τ > 0.

The error analysis is performed on the basis of the distance between the contour and
the integrand singularities. As observed in [18], in addition to the branch-point singularity
at s = 0, the set of the non zero poles s? of Hk(s; z) in the main Riemann sheet, i.e. such
that −π < Arg(s?) ≤ π, is given by

S? =

{
|s|1/αei

Arg(s)+2jπ
α

∣∣∣ − α

2
− Arg(s)

2π
< j ≤ α

2
− Arg(s)

2π
, j ∈ Z

}
. (22)

Depending on α and z, one can therefore expect singularities in any number and in
any region of the complex plane but the selection of contours so wide to encompass all
the singularities usually leads to numerical instability. In order to avoid that round-off
errors dominate discretization and truncation errors, thus preventing from achieving the
target accuracy, it is indeed necessary to select contours which do not extend too far in
the right half-part of the complex plane; in particular, it has been found [18] that the
main parameter µ of the parabolic contour must satisfy

µ < log τ − log ε, (23)

with ε the machine precision and τ > ε the target accuracy.
Since in many cases it is not possible to leave all the singularities at the left of the

contour and simultaneously satisfy (23), some of the singularities must be removed from
(21) to gain more freedom in the selection of the contour C; the corresponding residues
are therefore subtracted in view of the Cauchy’s residue theorem and hence

dk

dzk
Eα,β(z) = k!

∑
s?∈S?C

Res
(
esHk(s; z), s?

)
+

k!

2πi

∫
C
esHk(s; z)ds, (24)

where S?C ⊆ S? is the set of the singularities of Hk(s; z) laying to the right of C (which
now is not constrained to encompass all the singularities) and Res

(
esHk(s; z), s?

)
is the

residue of esHk(s; z) at s?; since the selected branch–cut, the singularity at the origin is
always kept at the left of C.

To make equation (24) applicable for computation we give an explicit representation
of the residues in terms of elementary functions by means of the following result.

Proposition 1. Let α > 0, β ∈ R, k ∈ N, z 6= 0 and s? ∈ S? one of the poles of Hk(s; z).
Then

Res
(
esHk(s; z), s?

)
=

1

αk+1
es?s1−αk−β? Pk(s?)

where Pk(x) = p
(k)
0 + p

(k)
1 x+ . . . p

(k)
k xk is the k-th degree polynomial whose coefficients are

p
(k)
j =

1

j!

k−j∑
`=0

(α− β)`
`!

H
(k)
k−j−`, j = 0, 1, . . . , k

with the coefficients H
(k)
j evaluated recursively as

H
(k)
0 = 1, H

(k)
j = − 1

α

j∑
`=1

(
α

`+ 1

)(
k`

j
+ 1

)
H

(k)
j−`, j = 1, 2, . . . , k

11

and the generalized binomial coefficients are defined as(
α

j

)
=
α(α− 1)(α− 2) · · · (α− j + 1)

j!
= (−1)j

Γ(j − α)

Γ(−α)Γ(j + 1)
.

Proof. Since s? is a pole of order k + 1 of esHk(s; z), the corresponding residue can be
evaluated by differentiation

Res
(
esHk(s; z), s?

)
=

1

k!
lim
s→s?

dk

dsk
esHk(s; z)(s− s?)k+1. (25)

To study the term Hk(s; z)(s− s?)k+1 we observe that for s sufficiently close to s? we
can write

sα = sα?

(
s− s?
s?

+ 1

)α
= sα? + sα?

∞∑
j=1

(
α

j

)
(s− s?)j

sj?
,

and, hence, since sα? = z we have

sα − z = sα?

∞∑
j=1

(
α

j

)
(s− s?)j

sj?
.

After observing that
(
α
1

)
= α, it is a direct computation to provide the expansion

Hk(s; z)(s− s?)k+1 = sα−β
(
sα − z
s− s?

)−(k+1)

=
s
−(α−1)(k+1)
?

αk+1
sα−β

(
1 +

1

α

∞∑
j=1

(
α

j + 1

)
(s− s?)j

sj?

)−(k+1)

.

The reciprocal of the (k + 1)-th power of the unitary formal power series can be
evaluated by applying the Miller’s formula [31, Theorem 1.6c] thanks to which it is possible
to provide the expansion

Hk(s; z)(s− s?)k+1 =
s
−(α−1)(k+1)
?

αk+1
sα−β

∞∑
j=0

H
(k)
j

(s− s?)j

sj?
.

To evaluate (25) we now introduce, for convenience, the functions

F1(s) = es, F2(s) = sα−β, F3(s) =
∞∑
j=0

H
(k)
j

(s− s?)j

sj?
,

and hence, thanks to (25) we are able to write

dk

dsk
(
esHk(s; z)(s− s?)k+1

)
=
s
−(α−1)(k+1)
?

αk+1

k∑
k1=0

k−k1∑
k2=0

k!F
(k1)
1 (s)F

(k2)
2 (s)F

(k−k1−k2)
3 (s)

k1!k2!(k − k1 − k2)!
.

It is immediate to evaluate the derivatives of the functions F1, F2 and F3 and their
limit as s→ s?

lim
s→s?

F
(j)
1 (s) = es? , lim

s→s?
F

(j)
2 (s) = (α− β)js

α−β−j
? , lim

s→s?
F

(j)
3 (s) =

j!H
(k)
j

sj?
,

12

and hence we are able to compute

Res
(
esHk(s; z), s?

)
=
s
−(α−1)(k+1)
?

αk+1

k∑
k1=0

k−k1∑
k2=0

es?(α− β)k2s
α−β−k2
? H

(k)
k−k1−k2

k1!k2!s
k−k1−k2
?

from which we obtain

Res
(
esHk(s; z), s?

)
=
s1−αk−β?

αk+1
es?

k∑
k1=0

sk1?
k1!

k−k1∑
k2=0

(α− β)k2H
(k)
k−k1−k2

k2!

and the proof immediately follows.

We observe that, with respect to the formula presented in [52], the result of Proposition
1 is slightly more general and easier to be used for computation. The coefficients of
polynomials Pk(x) can be evaluated without any particular difficulty by means of a simple
algorithm. For ease of presentation we show here their first few instances

P0(x) = 1

P1(x) = (α− β + 1) + x

P2(x) =
1

2
+

(
3α

2
− β +

3

2

)
x+

(
α2 − 3αβ

2
+

3α

2
+
β2

2
− β +

1

2

)
x2

We have to consider that the algorithm devised in [18] for the inversion of the LT
of the ML function needs some adjustment to properly evaluate the derivatives. As k
increases a loss of accuracy can indeed be expected for very small arguments also on the
negative real semi axis (namely the branch-cut). This is a consequence of the fact that
the origin actually behaves as a singularity, of order k + 1, and hence its effects must be
included in the balance of the error.

Moreover, for high order derivatives, round-off errors must be expected especially
when a singularity of Hk(s; z) lies not so close to the origin (thus to make very difficult
the choice of a contour encompassing all of them) but at the same time not so far from
the origin (thus, making difficult to select contour in the region between the origin and
the singularity). To safely deal with situations of this kind we will introduce, later in
Subsection 4.4, a technique which keeps as low as possible the order of the derivatives to
be evaluated by the numerical inversion of the Laplace transform.

4.3 Summation formulas

The Djrbashian’s formula [14] allows to express the first derivative of the ML function in
terms of two instances of the same function, according to

d

dz
Eα,β(z) =

Eα,β−1(z) + (1− β)Eα,β(z)

αz
, (26)

and, obviously, (26) holds only for z 6= 0; anyway, from (13) it is immediate to verify that

dk

dzk
Eα,β(z)

∣∣∣∣
z=0

=
k!

Γ(αk + β)
. (27)

Equation (26) provides an exact formulation for the first-order derivative of the ML
function but we are able to generalize it also to higher-order derivatives by means of the
following result.

13

k = 0 k = 1 k = 2 k = 3

c
(k)
0 1 1− β (1− β)(1− β − α) (1− β)(1− β − α)(1− β − 2α)

c
(k)
1 1 3− 2β − α (1− β)(1− β − α) + (3− 2β − α)(2− β − 2α)

c
(k)
2 1 6− 3β − 3α

c
(k)
3 1

Table 1: First few coefficients (29) of the summation formulas (28) and (32).

Proposition 2 (Summation formula of Djrbashian type). Let α > 0, β ∈ R and z 6= 0.
For any k ∈ N it is

dk

dzk
Eα,β(z) =

1

αkzk

k∑
j=0

c
(k)
j Eα,β−j(z), (28)

where c
(0)
0 = 1 and the remaining coefficients c

(k)
j , j = 0, 1, . . . , k, are recursively evaluated

as

c
(k)
j =

(1− β − α(k − 1))c

(k−1)
0 j = 0

c
(k−1)
j−1 + (1− β − α(k − 1) + j)c

(k−1)
j j = 1, . . . , k − 1

1 j = k

(29)

Proof. We proceed by induction on k. For k = 0 the proof is obvious and for k = 1 it
is a consequence of (26). Assume now that (28) holds for k − 1; then, the application of
standard derivative rules, together with the application of (26), allows us to write

dk

dzk
Eα,β(z) =

1

αk−1zk−1

k−1∑
j=0

c
(k−1)
j

αz

(
Eα,β−j−1(z)− (β − j − 1)Eα,β−j(z)

)
−(k − 1)zk−2

αk−1z2k−2

k−1∑
j=0

c
(k−1)
j Eα,β−j(z)

and the proof follows after defining the coefficients c
(k)
j as in (29).

The Djrbashian summation formula (SF) of Proposition 2 allows to represent the
derivatives of the ML function in terms of a linear combination of values of the same
function; clearly it can be employed in actual computation once a reliable procedure for
the evaluation of Eα,β(z) for any parameter α and β is available, as it is the case of the
method described in [18].

Unfortunately, it seems not possible to provide an explicit closed form for the coeffi-
cients c

(k)
j in the Djrbashian SF (28); anyway the recursive relationship (29) is very simple

to compute and the first few coefficients, holding up to the derivative of third order, are
shown in Table 1.

An alternative approach to compute the coefficients c
(k)
j can be derived by observing,

from (27), that the derivatives of the ML function have finite values at z = 0; hence, since
Eα,β is entire, all possible negative powers of z in (28) must necessarily vanish and, since

c
(k)
k = 1, it is immediate to verify that the coefficients c

(k)
j are solution of the linear system

k−1∑
j=0

1

Γ(α`+ β − j)
c
(k)
j = − 1

Γ(α`+ β − k)
, ` = 0, . . . k − 1.

14

To study the stability of the Djrbashian SF (28), we observe that since the derivatives
of the ML function have finite values at z = 0, see Eq. (27), from (28) it follows

k∑
j=0

c
(k)
j Eα,β−j(z) = O

(
zk
)
, |z| → 0. (30)

As a consequence, differences of almost equal values are involved by (28) when |z| is
small; the unavoidable numerical cancellation, further magnified since the division by zk,
makes this summation formula not reliable for values of z close to the origin, especially
for derivatives of high order.

To overcome these difficulties we can exploit again the relationship (18) between the
ML derivatives and the Prabhakar function together with the formula (see [47])

Ek+1
α,β (z) =

Ek
α,β−1(z) + (1− β + αk)Ek

α,β(z)

αk
, (31)

expressing the Prabhakar function as difference of two instances of the same function but
with a smaller value of the third parameter. We are hence able to provide the following
alternative SF of Prabhakar type.

Proposition 3 (Summation formula of Prabhakar type). Let α > 0 and β ∈ R. For any
k ∈ N it is

dk

dzk
Eα,β(z) =

1

αk

k∑
j=0

c
(k)
j Eα,αk+β−j(z), (32)

where c
(k)
j , j = 0, 1, . . . , k, are the coefficients (29) of Proposition 2.

Proof. The claim is obvious for k = 0; for k = 1 it is a consequence of (31) and then one
can easily prove it by induction with algebraic transformations quite similar to the ones
used to prove (28).

For small values of |z|, the Prabhakar SF (32) is expected to be less affected by round-
off errors than (28). Indeed not only the sum in (32) returns O(1) when |z| → 0 but
possible round-off errors are not amplified by division by zk as in (28).

In Figures 1 and 2 we compare the errors given by the SF (28) of Djrbashian type
with those provided by the SF (32) of Prabhakar type; here and in the following tests,
the reference values for the derivatives of Eα,β(z) are obtained by computing the series
expansion (13) in high-precision floating-point arithmetic with 2000 digits by using Maple
15. As we can clearly see, when |z| is small the Prabhakar SF (32) is surely more accurate
whilst for larger values of |z| their performances are almost similar.

4.4 Combining algorithms with derivatives balancing

The mathematical considerations in the previous subsection, supported by several exper-
iments we conducted on a wide range of parameters α and β, and for arguments z in
different sectors of the complex plane, indicate that the Prabhakar SF (32) is capable of
providing accurate and satisfactory results in the majority of the cases.

Anyway we have to consider that larger errors should be expected as the degree of
the derivative increases; this a consequence of the large number of operations involved by
(32) and, in particular, of the accumulation of round-off errors. Unfortunately, also the
numerical inversion of the LT can show a loss of accuracy for high order derivatives since

15

0 2 4 6 8 10
10

−18

10
−15

10
−12

10
−9

|z|

Djrbashian SF k=2
Prabhakar SF k=2
Djrbashian SF k=4
Prabhakar SF k=4

Figure 1: Comparison of errors provided by Djrbashian and Prabhakar SFs for α = 0.6,
β = 1.0 and arg(z) = π.

0 2 4 6 8 10
10

−18

10
−15

10
−12

10
−9

|z|

Djrbashian SF k=2
Prabhakar SF k=2
Djrbashian SF k=4
Prabhakar SF k=4

Figure 2: Comparison of errors provided by Djrbashian and Prabhakar SFs for α = 0.8,
β = 1.2 and arg(z) = π/2.

the strong singularity in Hk(s; z) may lead to large round-off errors in the integration
process.

In critical situations it is advisable to adopt mixed strategies by combining different
algorithms. For instance, it is natural to use the truncated series expansion (14) for small
arguments and switch to other methods as |z| becomes larger; the error estimates discussed
in Subsection 4.1 can be of help for implementing an automatic procedure performing this
switching.

In addition, since all methods reduce their accuracy for high order derivatives, it could
be necessary to adopt a strategy operating a balance of the derivatives thus to bring the
problem to the evaluation of lower order derivatives. To this purpose, Proposition 3 can
be generalized in order to express k-th order derivatives of the ML function in terms of
lower order derivatives instead of the ML function itself.

Proposition 4. Let α > 0, β ∈ R. For any k ∈ N and p ≤ k it is

dk

dzk
Eα,β(z) =

1

αk−p

k−p∑
j=0

c
(k−p)
j

dp

dzp
Eα,(k−p)α+β−j(z), (33)

where c
(k)
j , j = 0, 1, . . . , k, are the coefficients (29) of Proposition 2.

16

The proof of the above result is similar to the proof of Proposition 3 and is omitted
for shortness.

Thanks to Proposition 4 it is possible to combine the algorithms introduced in the
previous subsections and employ the SF (33) with underlying derivatives evaluated by
the numerical inversion of the LT. Clearly, the aim is to avoid working with high-order
derivatives in the numerical inversion of the LT and, at the same time, reduce the number
of terms in (32).

In Figure 3 we illustrate the positive effects on accuracy of performing the derivatives
balancing. As we can see, the SF (32) tends to lose accuracy for higher order derivatives
(here a 5-th order has been considered); the numerical inversion of the LT is instead more
accurate but when the integration contour is constrained to stay close to the singularity
the error can rapidly increase (see the peak in the interval [0, 2]). The derivatives balancing
(operated here for p = 1) allows to keep the error at a moderate level on the whole interval,
without any worrisome peak.

0 2 4 6 8 10
10

−18

10
−15

10
−12

10
−9

|z|

Laplace transform
Prabhakar SF
Deriv. balancing (p=1)

Figure 3: Comparison of errors for 5-th derivative of the ML function when α = 0.6,
β = 1.0 and arg(z) = π/2.

Finally, we present a couple of tests in which the different techniques described in the
paper are combined to provide accurate results for the evaluation of the derivatives of
the ML function. Roughly speaking, the algorithm uses the truncated series for small
arguments and hence, on the basis of the error estimate, it switches to the Prabhakar
SF (32) using the numerical inversion of the Laplace transform according to a derivative
balancing approach.

In several cases we have observed that the computation of lower order derivatives turns
out to be more accurate (see Figure 4) although it is not possible to infer a general trend as
we can observe from Figure 5. Anyway, in all cases (we have performed experiments, not
reported here for brevity, on a wide set of arguments and parameters) the errors remain
in a range 10−13 ∼ 10−15 which can be surely considered satisfactory for applications.
The plotted error is |E − Ẽ|/(1 + |E|) where E is a reference value and Ẽ the evaluated
derivative.

5 Conditioning of the matrix ML function

To hone the analysis of the matrix ML function it is of fundamental importance to measure
its sensitivity to small perturbations in the matrix argument; indeed, even when dealing

17

0 5 10 15 20
10

−18

10
−16

10
−14

|z|

k=1
k=3
k=5

Figure 4: Errors in the computation of k-th derivatives of the ML function when α = 0.6,
β = 0.6 and arg(z) = 0.8π.

0 5 10 15 20
10

−19

10
−17

10
−15

10
−13

|z|

k=1
k=3
k=5

Figure 5: Errors in the computation of k-th derivative of the ML function when α = 0.8,
β = 1.2 and arg(z) = π/2.

with exact data, the rounding errors can severely affect the computation, exactly as in
the scalar case. A useful tool for this analysis is the condition number whose definition
can be readily extended to matrix functions [33].

Definition 3. For a general matrix function f , if ‖ · ‖ denotes any matrix norm, the
absolute condition number is defined as

κa(f, A) = lim
ε→0

sup
‖E‖≤ε

‖f(A+ E)− f(A)‖
ε

while the relative condition number is defined as

κr(f, A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

being the matrix E a perturbation to the original data A.

For the actual computation of these quantities the Fréchet derivative of the matrix
function f is of use. We recall that given a matrix function f defined in Cn×n, its Fréchet
derivative at a point A ∈ Cn×n is a linear function L(A,E) such that

f(A+ E)− f(A)− L(A,E) = o(‖E‖).

18

The norm of the Fréchet derivative is defined as

‖L(A)‖ := max
Z 6=0

‖L(A,Z)‖
‖Z‖

and it turns out to be a useful tool for the sensitivity analysis of the function itself thanks
to the following result.

Theorem 4. [33] The absolute and relative condition numbers are given by

κa(f, A) = ‖L(A)‖,

κr(f, A) =
‖L(A)‖
‖f(A)‖

‖A‖.

The computation of the Fréchet derivative is thus essential to derive the function
conditioning. Nowadays only specific functions have effective algorithms to compute it,
like the exponential, the logarithm and fractional powers [8, 33]. For general matrix
functions the reference algorithm for the Fréchet derivative is due to Al-Mohy and Higham
[1, 34].

To give a flavor of the conditioning of the ML function we consider 25 test matrices of
dimension 10× 10 taken from the Matlab gallery. Figure 6 reports the 1-norm relative
condition number κr(Eα,1, A) computed by the funm condest1 routine from the Matrix
Function Toolbox [33]. Amazingly, for all but the chebspec matrix (the one plotted in red
line with small circles), the conditioning is almost independent on α; this shows that the
ML function has almost the same conditioning of the exponential function for any α. For
most of the test matrices the ML function conditioning is large; in particular, for small
values of α the ML conditioning for the chebspec Matlab matrix is huge. An explanation
could be that the Schur-Parlett algorithm does not work properly with this matrix, as
stressed in [33]; indeed, this matrix is similar to a Jordan block with eigenvalue 0 while its
computed eigenvalues lie roughly on a circle with centre 0 and radius 0.2. The well-known
ill-conditioning of Pascal matrices (for n = 10 it is κ(A) ≈ 8.13 × 109) clearly leads to a
severe ill-conditioning of the matrix function too (see the straight blue line).

In general, more insights can derive from a comparison of this conditioning with the
1-norm condition of A, that we denote with κ(A). To this purpose, Figure 7 displays the
ratio κr(Eα,1, A)/κ(A). From this plot we can appreciate that in most of the cases the
ML function is better conditioned than the matrix argument itself, while in the remaining
cases the conditioning is not too much amplified.

Moreover in Figure 9 of the next section we show that κr(Eα,1, A)ε well bounds the
error between the computed and the reference values of Eα,1(A); this property seems to
reveal that our technique to compute Eα,1(A) is normwise forward stable, according to
the definition given in [32].

6 Numerical experiments

In addition to the numerical tests already presented in the previous sections, in this
section we verify the accuracy obtained for some test matrices. All the experiments have
been carried out in Matlab ver. 8.3.0.532 (R2014a) and, in order to plot the errors, also
in these experiments reference values have been evaluated by means of Maple 15 with a
floating-point precision of 2000 digits.

19

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

0

10
2

10
4

10
6

10
8

α

κ r(E
α,

1,A
)

Figure 6: Conditioning κr(Eα,1, A) for 25 matrices of dimension 10× 10 from the Matlab
gallery.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−15

10
−11

10
−7

10
−3

10
1

α

κ r(E
α,

1,A
)/

κ(
A

)

Figure 7: Conditioning ratio κr(Eα,1, A)/κ(A) for 25 matrices of dimension 10× 10 from
the Matlab gallery.

For the Schur-Parlett algorithm we use the Matlab funm function, whilst the deriva-
tives of the ML function are evaluated by means of the combined algorithm described in
Subsection 4.4 and making use of the derivatives balancing. The corresponding Matlab
code, which will be used in all the subsequent experiments, is available in the file exchange
service of the Mathworks website1. The plotted errors between reference values E and
approximations Ẽ are evaluated as ‖E− Ẽ‖/(1 + ‖E‖), where ‖ · ‖ is the usual Frobenius
norm.

Example 1: the Redheffer matrix

For the first test we use the Redheffer matrix from the matrix gallery of Matlab. This is
a quite simple binary matrix whose elements ai,j are equal to 1 when j = 1 or i divides
j, otherwise they are all equal to 0; however, the eigenvalues are highly clustered: for a
n × n Redheffer matrix the number of eigenvalues equal to 1 is exactly n − blog2 nc − 1
(see [3]). As a consequence, computing Eα,β(−A) demands the evaluation of high order
derivatives (up to the 24-th order in our experiments) thus making this matrix appealing

1www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-
arguments

20

for test purposes.
In Figure 8 we observe the error for some values of α with n × n Redheffer matrices

of increasing size (n is selected in the interval [4, 20] and β = 1 is always used). As we
can clearly see, the algorithm is able to provide an excellent approximation, with an error
very close to machine precision, also for matrices of notable size.

4 8 12 16 20
10

−16

10
−15

10
−14

n

α=0.5
α=0.7
α=0.9
α=1.1

Figure 8: Errors in the computation of Eα,1(−A) with A the Redheffer matrix as its
dimension changes

Example 2: matrices with selected eigenvalues

The second experiment involves 4 different matrices of size 40× 40 suitably built in order
to have eigenvalues with moderately high multiplicities. In practice we fix some values
and we consider diagonal matrices having them as principal entries, repeated according
to the multiplicities we want (as listed in Table 2). Then, by similarity transformations,
we get the full matrices with the desired spectrum. To reduce rounding errors for the
similarity transformations we use orthogonal matrices provided by the gallery Matlab
function.

Eigenvalues (multiplicities) Max derivative
order

Matrix 1 ±1.0(5) ±1.0001(4) ±1.001(4) ±1.01(4) ±1.1(3) 15
Matrix 2 ±1.0(8) 2(8) −5(8) −10(8) 3
Matrix 3 −1(2) −5(2) 1± 10i(6) −4± 1.5i(6) ±5i(6) 3
Matrix 4 1(4) 1.0001(4) 1.001(4) 1± 10i(7) −4± 1.5i(7) 7

Table 2: Eigenvalues (with multiplicities) for the 40× 40 matrices of the Example 2.

The maximum order of the derivatives required by the computation is indicated in the
last column of Table 2. As we can observe from Figure 9 (solid lines), despite the large
size of the matrices and the high clustering of the eigenvalues, it is possible to evaluate
Eα,β(A) with a reasonable accuracy. In the same plot we can also appreciate (dotted lines)
how the bounds κr(Eα,1, A)ε (see Section 5) give a reasonable estimate for the error.

Example 3: solution of a multiterm FDE

In the third experiment we consider an application to the multiterm FDE

2y(t) + 6Dα
0 y(t) + 7D2α

0 y(t) + 4D3α
0 y(t) +D4α

0 y(t) = f(t) (34)

21

0.5 0.7 0.9 1.1 1.3 1.5

10
−14

10
−13

α

Matrix 1
Matrix 2
Matrix 3
Matrix 4

Figure 9: Relative errors (solid lines) for Eα,1(A) for the four test matrices A ∈ R40×40 of
Example 2 and conditioning κr(Eα,1, A)ε (dotted lines).

with homogeneous initial conditions, which is first reformulated in terms of the linear
system (8) with a companion coefficient matrix A, of size 16× 16, with both simple and
double eigenvalues. The reference solution, for α = 0.8 and an external source term
f(t) = −t2/2 + 2t, is shown in Figure 10 on the interval [0, 6].

0 1 2 3 4 5 6
0

0.25

0.5

t

Solution y(t)

Figure 10: Solution of the multiterm FDE (34) for α = 0.8.

In Figure 11 we compare the error of the solution evaluated by using the matrix ML
function in (10) with those obtained by a step-by-step trapezoidal product integration
(PI) rule generalized to multiterm FDEs according the ideas discussed in [12]; in the plot
we simply denote this approach as “Trapez. PI” with indicated the step-size h used for
the computation.

Also in this case we observe the excellent results obtained thanks to the use of matrix
ML functions. We must also note that in order to achieve a comparable accuracy, the
Trapez. PI would require very small step-sizes, with a remarkable computational cost
especially for integration on intervals of large size; the use of matrix ML functions instead
allows to directly evaluate the solution at any time t.

7 Concluding remarks

In this paper we have discussed the evaluation of the ML function with matrix arguments
and illustrated some remarkable applications. Since one of the most efficient algorithms for

22

0 1 2 3 4 5 6

10
−16

10
−13

10
−10

10
−7

10
−4

t

Trapez. PI h=2−3

Trapez. PI h=2−5

Trapez. PI h=2−7

Matrix ML

Figure 11: Errors in the solution of the multiterm FDE (34) for α = 0.8.

the evaluation of matrix functions requires the evaluation of the derivatives of the original
scalar function, a large portion of the paper has been devoted to present different methods
for the accurate evaluation of derivatives of the ML function, a subject which, as far as
we know, has not been faced before except for first derivatives. We have also discussed
some techniques for combining the different methods in an efficient way with the aim of
devising an algorithm capable of achieving high accuracy with matrices having any kind
of spectrum. The analysis on the conditioning has shown that it is possible to keep errors
under control when evaluating matrix ML functions. Finally, the numerical experiments
presented at the end of the paper have highlighted the possibility of evaluating the matrix
ML function with great accuracy also in the presence of not simple matrix arguments.

References

[1] Al-Mohy, A.H., Higham, N.J.: The complex step approximation to the Fréchet
derivative of a matrix function. Numer. Algorithms 53(1), 113–148 (2010)

[2] Balachandran, K., Govindaraj, V., Ortigueira, M., Rivero, M., Trujillo, J.: Observ-
ability and controllability of fractional linear dynamical systems. IFAC Proceedings
Volumes 46(1), 893 – 898 (2013)

[3] Barrett, W.W., Jarvis, T.J.: Spectral properties of a matrix of Redheffer. Linear
Algebra Appl. 162/164, 673–683 (1992). Directions in matrix theory (Auburn, AL,
1990)

[4] Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-digit challenge.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004)

[5] Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in Prabhakar
viscoelasticity. Mathematics 6(2), 15 (2018). DOI 10.3390/math6020015

[6] Davies, P.I., Higham, N.J.: A Schur-Parlett algorithm for computing matrix func-
tions. SIAM J. Matrix Anal. Appl. 25(2), 464–485 (electronic) (2003)

[7] Del Buono, N., Lopez, L., Politi, T.: Computation of functions of Hamiltonian and
skew-symmetric matrices. Math. Comp. Simul. 79(4), 1284–1297 (2008)

23

[8] Dieci, L., Papini, A.: Conditioning and Padé approximation of the logarithm of a
matrix. SIAM J. Matrix Analysis Applications 21(3), 913–930 (2000)

[9] Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Math-
ematics, vol. 2004. Springer-Verlag, Berlin (2010)

[10] Diethelm, K., Ford, N.J.: Numerical solution of the Bagley-Torvik equation. BIT
42(3), 490–507 (2002)

[11] Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their nu-
merical solution. Appl. Math. Comput. 154(3), 621–640 (2004)

[12] Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value prob-
lems of fractional order. J. Comput. Anal. Appl. 6(3), 243–263 (2004)

[13] Dixon, J.: On the order of the error in discretization methods for weakly singular
second kind Volterra integral equations with nonsmooth solutions. BIT 25(4), 624–
634 (1985)

[14] Džrbašjan [Djrbashian], M.M.: Harmonic analysis and boundary value problems
in the complex domain, Operator Theory: Advances and Applications, vol. 65.
Birkhäuser Verlag, Basel (1993). Translated from the manuscript by H. M. Jer-
bashian and A. M. Jerbashian [A. M. Dzhrbashyan]

[15] Frommer, A., Simoncini, V.: Matrix functions. In: Model order reduction: theory,
research aspects and applications, Math. Ind., vol. 13, pp. 275–303. Springer, Berlin
(2008)

[16] Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function:
theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)

[17] Garrappa, R.: Exponential integrators for time-fractional partial differential equa-
tions. Eur. Phys. J. Spec. Top. 222(8), 1915–1927 (2013)

[18] Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler func-
tions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

[19] Garrappa, R., Mainardi, F., Maione, G.: Models of dielectric relaxation based on
completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)

[20] Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equa-
tion by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)

[21] Garrappa, R., Moret, I., Popolizio, M.: On the time-fractional Schrödinger equa-
tion: theoretical analysis and numerical solution by matrix Mittag-Leffler functions.
Comput. Math. Appl. 74(5), 977–992 (2017)

[22] Garrappa, R., Popolizio, M.: On the use of matrix functions for fractional partial
differential equations. Math. Comput. Simulation 81(5), 1045–1056 (2011)

[23] Garrappa, R., Popolizio, M.: Evaluation of generalized Mittag–Leffler functions on
the real line. Adv. Comput. Math. 39(1), 205–225 (2013)

[24] Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Non-
linear Sci. Numer. Simul. 56, 138–143 (2018)

24

[25] Golub, G.H., Van Loan, C.F.: Matrix computations, third edn. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD (1996)

[26] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler functions. The-
ory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014)

[27] Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function
Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

[28] Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of
fractional order. In: Fractals and fractional calculus in continuum mechanics (Udine,
1996), CISM Courses and Lect., vol. 378, pp. 223–276. Springer, Vienna (1997)

[29] Hale, N., Higham, N.J., Trefethen, L.N.: Computing Aα, log(A), and related matrix
functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)

[30] Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their ap-
plications. J. Appl. Math. pp. Art. ID 298,628, 51 (2011)

[31] Henrici, P.: Applied and computational complex analysis, vol. 1. John Wiley & Sons,
New York-London-Sydney (1974)

[32] Higham, N.J.: Accuracy and stability of numerical algorithms, second edn. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

[33] Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA (2008)

[34] Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–
208 (2010)

[35] Liemert, A., Sandev, T., Kantz, H.: Generalized Langevin equation with tempered
memory kernel. Phys. A 466, 356–369 (2017)

[36] Lino, P., Maione, G.: Design and simulation of fractional-order controllers of injection
in CNG engines. IFAC Proceedings Volumes (IFAC-PapersOnline), 582–587 (2013)

[37] Lino, P., Maione, G.: Fractional order control of the injection system in a CNG
engine. 2013 European Control Conference, ECC 2013, 3997–4002 (2013)

[38] Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential
equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)

[39] Mainardi, F., Mura, A., Pagnini, G.: The M -Wright function in time-fractional
diffusion processes: a tutorial survey. Int. J. Differ. Equ. pp. Art. ID 104,505, 29
(2010)

[40] Matignon, D., d’Andréa Novel, B.: Some results on controllability and observability
of finite-dimensional fractional differential systems. In: Computational Engineering
in Systems Applications, Proceedings of the IMACS, IEEE SMC Conference, Lille,
France, pp. 952–956 (1996)

[41] Matychyn, I., Onyshchenko, V.: Time-optimal control of fractional-order linear sys-
tems. Fract. Calc. Appl. Anal. 18(3), 687–696 (2015)

25

[42] Mittag-Leffler, M.G.: Sopra la funzione Eα(x). Rend. Accad. Lincei 13(5), 3–5 (1904)

[43] Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une
fonction monogène - cinquième note. Acta Mathematica 29(1), 101–181 (1905)

[44] Moret, I., Novati, P.: On the convergence of Krylov subspace methods for matrix
Mittag–Leffler functions. SIAM J. Numer. Anal. 49(5), 2144–2164 (2011)

[45] de Oliveira, D.S., Capelas de Oliveira, E., Deif, S.: On a sum with a three-parameter
Mittag-Leffler function. Integral Transforms Spec. Funct. 27(8), 639–652 (2016)

[46] Popolizio, M.: Numerical solution of multiterm fractional differential equations using
the matrix Mittag–Leffler functions. Mathematics 1(6), 7 (2018)

[47] Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler func-
tion in the kernel. Yokohama Math. J. 19(1), 7–15 (1971)

[48] Rodrigo, M.R.: On fractional matrix exponentials and their explicit calculation. J.
Differential Equations 261(7), 4223–4243 (2016)

[49] Rogosin, S.: The role of the Mittag-Leffler function in fractional modeling. Mathe-
matics 3(2), 368–381 (2015)

[50] Sandev, T.: Generalized Langevin equation and the Prabhakar derivative. Mathe-
matics 5(4), 66 (2017)

[51] Stanislavsky, A., Weron, K.: Numerical scheme for calculating of the fractional two-
power relaxation laws in time-domain of measurements. Comput. Phys. Commun.
183(2), 320–323 (2012)

[52] Tomovski, Ž., Pogány, T.K., Srivastava, H.M.: Laplace type integral expressions for
a certain three-parameter family of generalized Mittag-Leffler functions with applica-
tions involving complete monotonicity. J. Franklin Inst. 351(12), 5437–5454 (2014)

[53] Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule.
SIAM Rev. 56(3), 385–458 (2014)

[54] Valério, D., Tenreiro Machado, J.: On the numerical computation of the Mittag-
Leffler function. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3419–3424 (2014)

[55] Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing
the Bromwich integral. Math. Comp. 76(259), 1341–1356 (2007)

[56] Zeng, C., Chen, Y.: Global Padé approximations of the generalized Mittag-Leffler
function and its inverse. Fract. Calc. Appl. Anal. 18(6), 1492–1506 (2015)

26

	1 Introduction
	2 Applications of matrix Mittag-Leffler functions
	2.1 Solution of systems of FDEs
	2.2 Solution of time-fractional partial differential equations
	2.3 Solution of linear multiterm FDEs
	2.4 Controllability and observability of fractional linear systems

	3 The Mittag-Leffler functions with matrix arguments: definitions
	3.1 Theoretical background
	3.2 Schur-Parlett algorithm

	4 Computation of derivatives of the ML function
	4.1 Series expansion
	4.2 Numerical inversion of the Laplace transform
	4.3 Summation formulas
	4.4 Combining algorithms with derivatives balancing

	5 Conditioning of the matrix ML function
	6 Numerical experiments
	7 Concluding remarks

