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Abstract

The aim of this Ph.D. thesis is to illustrate the research works conducted to design and
develop advanced computational frameworks for analyzing electroencephalographic (EEG)
signals to improve the early diagnosis of neurodegenerative diseases (NDs). Dementia
is one of the leading causes of disability and death worldwide, and the detection of its
initial phases remains a critical challenge both for prognostic and therapeutic purposes. The
modern conceptualization of NDs, and particularly of Alzheimer’s disease, assumes cognitive
decline to develop as a continuum, along which populations with still sufficient functional
compensation could be targeted for early clinical trials. In this context, EEG signals can
provide non-invasive and cost-effective biomarkers, holding potential for capturing neural
dysfunctions associated with neurodegeneration. Nonetheless, the inherent complexity and
variability of EEG result in significant challenges for accurate interpretation and analysis.

This thesis addresses how Deep Learning (DL) models, particularly Transformers, and
interpretability techniques can be leveraged for robust classification of EEG data, offering
insights into subtle cognitive changes in preclinical and prodromal stages and overcoming the
need for domain-specific expertise to extract consistent and reliable features. Furthermore,
other approaches advancing the integration of computational neuroscience with Machine
Learning (ML), including biophysical modeling of neural modulation in response to specific
stimuli, are explored.

In particular, the first part of the work presents a novel signal-based Deep Learning
framework for distinguishing between subjective cognitive decline (SCD) and mild cognitive
impairment (MCI) using resting-state EEG. The methods aim to capture prodromal signs of
Alzheimer’s disease through a state-of-the-art Transformer model based on the mechanism of
self-attention. To enhance clinical trustworthiness and translatability, the previously described
method is then integrated with interpretability tools. Specifically, the role of self-attention
within Transformer models is systematically explored to explain decision-making processes,
providing greater transparency into the models’ focus on the input signals for differentiating
SCD from MCI and proving that this information could be used to guide the identification of
biomarkers of cognitive impairment in resting-state EEG.



iv

The second part of the research work presents computational methods for analyzing
evoked responses, namely event-related potentials (ERP) and event-related (de)synchronization
(ERD/ERS), in neurodegeneration, exploring motor resonance in early Parkinson’s disease,
dynamic causal modeling for ERP classification, and the effects of sensory stimuli on
electrophysiological responses in a Human-Robot Interaction scenario.
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Chapter 1

Introduction

The opening Chapter of this manuscript serves two purposes: to provide an overview of
the motivation behind this work and to introduce the scientific challenges associated with
developing intelligent systems for detecting and characterizing neurodegenerative disorders.
Following this, a thorough description of the objectives and contributions to the field will be
presented. Finally, a structured outline of the manuscript will guide readers through the rest
of the thesis.

1.1 Motivation and Scientific Challenges

1.1.1 On the importance of non-invasive biomarkers for early diagnosis
of neurodegenerative diseases

Neurodegenerative diseases (NDs) are a composite group of central nervous system disorders
characterized by a chronic and selective process of loss of function and structure affecting
neurons. These pathologies exhibit extreme intra- and inter-subject variability, with clinical
manifestations depending on the type of neuronal systems involved during the course of
the disease. NDs can lead to movement issues, known as ataxias, or impairments in mental
functioning, referred to as dementias [1]. Although certain physical or cognitive symptoms
linked to these disorders can be alleviated through therapy, there is currently no definitive
cure for prevalent neurodegenerative conditions like Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) [2].

Ageing is one of the main risk factors for most neurodegenerative diseases [3]. Given
that about 22% of the world’s population is estimated to be over 60 years old by 2050 [4],
early diagnosis of NDs, preventive treatment to delay their onset or improve their prognosis
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are open research objectives, both from a purely clinical perspective and in fields related to
or supporting clinical practice [5]. The main obstacle to reaching these objectives is the fact
that in many neurodegenerative diseases, symptoms only manifest when significant neuronal
loss has already occurred, but the course of the disease is now known to begin several years
in advance [6, 7]. Although this knowledge has deeply shifted the modern conceptualization
of these pathologies, their diagnosis is still subject to expert interpretation and requires too
much time and incurs into high costs.

A traditional approach to assess the progression of neurodegenerative diseases is through
neuropsychological evaluations [8]. These assessments consist of a series of tests and
questionnaires designed to evaluate cognitive functions such as memory, language, attention,
and executive function. While providing valuable insights into a patient’s cognitive abilities,
they present several limitations, including inconsistencies introduced by different examiners’
expertise and lack of sensitivity for differential diagnosis [9]. As a consequence, misdiagnosis
can lead to suboptimal treatment and costly investigations.

In the last century, intensive research on chemical and neuroimaging biomarkers has
led to the review of diagnostic criteria for NDs, introducing objective and quantifiable
indicators on the pathological changes occurring in the brain [10, 11]. These biomarkers
encompass a range of physiological indicators, which can provide a reliable reflection of
neurodegeneration [12].

Among the available brain imaging techniques, Electroencephalography (EEG) provides
a reliable, noninvasive and cost-effective tool to investigate altered patterns in brain activity
in pathological conditions [13, 14]. Recent literature in this field has expanded exponentially.
However, the intrinsic complexity of the EEG signal, along with the high dimensionality, low
signal-to-noise ratio and large signal variability strongly impacts the time and effort needed
for its interpretation. These challenges may be better addressed by feature-based approaches
that exploit more specific assumptions about the signal.

1.1.2 Unveiling the impact of Artificial Intelligence on neurodegenera-
tive disease management

The development of intelligent systems based on Machine Learning (ML) approaches can
support data management and analysis as tools for understanding the pathological mech-
anisms underlying neurodegenerative disorders, stratifying subgroups of patients within a
single pathology, and developing new optimal and specific therapies for each patient, geared
towards the frontiers of precision medicine [15].
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These algorithms also forecast disease progression and prognosis, offering valuable
insights into disease trajectories and supporting clinical decision-making. ML-driven image
and signal processing techniques detect subtle structural and functional changes in the brain,
aiding in the identification of disease-specific biomarkers [16].

Among modern ML models, Deep Learning (DL) networks are particularly suited for
EEG data processing, since they can encompass large amounts of multidimensional data, and
different architectures can decode directly from the time, space and frequency domains of the
EEG signals. Furthermore, given the sequential nature of EEG data, DL models like recurrent
neural networks (RNNs) and Transformers can capture temporal dependencies and patterns
within the signal. This ability to model complex, time-dependent relationships makes DL
models highly effective for tasks such as classification, feature extraction, and anomaly
detection in EEG data, ultimately supporting improved accuracy in detecting cognitive and
neurological states.

However, it is now known that the unexpected advancement and increasingly frequent use
of DL techniques in managing big multivariate data have exposed an intrinsic problem in the
decision-making process of neural network models. Although the implicit feature extraction
capabilities provide solutions in contexts where traditional methods have shown limitations,
the problem of deep models’ explainability remains open. The black box nature of Deep
Learning models, and thus the lack of interpretability and transparency of the implemented
logic, do not allow for their complete permeability, especially in clinical settings [17]. In
this light, the development of methods for visualizing, explaining, and interpreting DL
models has recently attracted much attention. The emerging field of Explainable Artificial
Intelligence (XAI) holds great promise for unlocking new insights into the the intricate
biological processes underlying NDs and potentially bridging the gap between advanced
DL models and their real-world clinical applications. In particular, when dealing with
the EEG signal, there is a great need for interpretable models that can elucidate which
temporal and frequency-based features contribute most to the model’s predictions [18]. This
interpretability is especially crucial for understanding the rationale behind a model’s outputs
and equip clinicians with transparent tools to both identify key biomarkers and offer insights
into their relevance, ultimately advancing the personalized diagnostics and treatment for
NDs.

Another important consideration in the field of neurodegenerative disease diagnosis is the
limited knowledge about the generalization of existing methods. Variations in EEG signal
quality, patient demographics, disease heterogeneity, and data collection protocols introduce
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inconsistencies that limit the standardization diagnostic tools. Thus, developing more robust
models that can adapt to a range of conditions and patient profiles is an open challenge [19].

1.2 Contribution

Given the limitations and research needs stated above, the main contributions of this Ph.D.
thesis are the design, development and evaluation of the first end-to-end Deep Learning
framework tailored for resting-state EEG data analysis, for discriminating between early
phases of cognitive decay in the Alzheimer’s spectrum, and specifically Subjective Cognitive
Decline (SCD) from Mild Cognitive Impairment (MCI). The same framework is then em-
ployed to perform a multiclass classification among healthy controls (HC), SCD and MCI.
The method employs a multi-head attention-based Transformer model to address the inherent
challenges of EEG’s sequential nature and identify the most discriminative frequency bands
in the signal. It achieves state-of-the-art results, confirming that changes in relative power
in the lower frequencies are indicative of diffuse slowing of brain oscillations, which is a
hallmark feature in the progression of Alzheimer’s.

Furthermore, a systematic interpretability workflow is integrated to enhance model’s
transparency, while also guiding the identification of EEG biomarkers for neurodegeneration.
By leveraging the attention mechanism of the Transformer, a novel perspective of XAI
techniques applied to EEG signals is proposed, which aims to find physiological correlations
of the model’s outcomes with pathological EEG signatures. In addition, the different role of
multi-head attention and self-attention in the explainability process is investigated.

Moreover, this thesis work presents computational approaches based on statistical method-
ologies for the analysis of evoked potentials both in the field of neurodegenerative diseases,
targeting early Parkinson’s disease, and other applications in the domain of cognitive neuro-
science.

1.3 Thesis Outline

After providing an introduction reporting the reference scientific context in this Chapter, the
thesis is structured as follows:

• Chapter 2 provides a theoretical background on the main concepts of this thesis,
elaborating on different types of NDs and highlighting recent advances in the use of DL
models in EEG signal analysis and their application in the context of neurodegeneration.
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Furthermore, it provides some background on attention-based DL architectures, as
well as on the concept of interpretability and XAI techniques.

• Chapter 3 reports the first original work addressing the task of classifying subjects in
the early phases of cognitive impairment, namely SCD and MCI, based on resting-state
EEGs, with the aim of providing an end-to-end framework that processes signals in
the time domain to characterize the stages along Alzheimer’s disease continuum.

• Continuing along these lines, Chapter 4 expands the previous research work by
describing a novel framework for improving interpretability in EEG-Transformers.
It describes how a systematic analysis of the model’s focus on input signals and
the corresponding classification outcomes can produce physiologically significant
explanations.

• Chapter 5 shifts the focus from the analysis of spontaneous EEG to the implementation
of statistical methods for interpreting neural responses to specific stimuli. A range of
applications of these techniques, from the characterization of early Parkinson’s disease
to the field of Human-Robot Interaction, is explored. Moreover, an approach based on
Dynamic Causal Modeling for simulating and classifying event-related potentials is
proposed.

• Finally, the conclusions of the research work described in this thesis are reported in
Chapter 6.



Chapter 2

Background

This Chapter offers a thorough background on the key clinical and technical concepts of this
thesis. Firstly, an overview of neurodegenerative diseases, mainly focusing on depicting the
continuum of cognitive decline leading to dementia, is provided. The importance and the
latest advances in the field of biomarkers for neurodegenerative diseases are also detailed.
Then, a description of the electroencephalographic signal both from a clinical and analytical
perspective is presented. The Chapter concludes with a synopsis of modern Deep Learning
models and their employment in designing EEG-based computer-aided diagnostic systems
in the scenario of neurodegeneration, along with a definition of explainability methods for
enhancing trustworthiness of these systems.

2.1 Neurodegenerative Diseases

As evidenced in the previous Chapter, neurodegenerative diseases typically display some
degree of heterogeneity, such as differences in the location of disease pathology, the extent
and type of neuroinflammation, or the severity of neurodegeneration [2].

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common
neurodegenerative disorders worldwide, with AD being the most prevalent and PD the
second. Both involve protein misfolding and aggregates, leading to neurotoxicity and cell
death. While the exact causes of these diseases remain unclear, research suggesting they
are likely the result of a combination of genetic, environmental, and lifestyle factors [20],
their accurate and timely diagnosis is essential for enabling the prospective screening of
ageing populations, mainly because certain subgroups, potentially identified by biomarkers,
may respond more favorably to specific therapies. It’s even likely that different disease-
modifying treatments have optimal time windows in which they are most effective during the
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disease’s progression [21], i.e. during the early pre-symptomatic or prodromal stages, before
significant and irreversible neurodegeneration has occurred [12].

In this Ph.D. thesis, the automatic discrimination of EEG signals of individuals with
Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), which represent
the preclinical and prodromal stages of AD, has been explored.

2.1.1 Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disorder that gradually leads to cognitive decline,
behavioral disturbances, and loss of functional independence. As the most prevalent cause of
dementia worldwide and one of the leading causes of death, AD’s rising prevalence is closely
tied to global aging populations, making it a significant public health challenge with substan-
tial socio-economic implications [22]. Consequently, AD has become a healthcare challenge
of epidemic proportions, with no effective treatment to modify the disease’s progression [23].
The irreversible nature of cognitive and behavioral decline in AD results in a devastating
impact. A significant portion of these costs is associated with the institutionalization of
dementia patients, a step that becomes necessary in about 50% of cases after five years and
up to 90% of cases after eight years [24].

Typically, individuals affected by AD first experience episodic memory impairment,
followed by additional cognitive symptoms such as language difficulties, challenges with
executive and visuospatial functions, and eventually, the onset of dementia [25].

The brain changes associated with these symptoms involve plaques of a toxic protein
called Amyloid Beta (Ab ) and tangles of tau proteins inside neurons. As plaques and
neurofibrillary tangles accumulate, they interfere with synaptic function and neuronal health.
Neuronal death results in a progressive loss of brain tissue, particularly in areas associated
with memory and learning, such as the hippocampus, which manifests as brain atrophy,
particularly in later stages of the disease.

2.1.1.1 Diagnosis

The conceptualization of AD as a clinical-biological entity was elaborated in the 1980s and
was widely accepted and applied to clinical activity for over 30 years [26]. The National
Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) workgroup proposed, in 1984, the first
set of structured diagnostic criteria for AD [27]. The term probable AD was first introduced
to describe an acquired, progressive amnestic dementia for which no other cause could be
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identified. This clinical diagnosis was linked to the presence of b -amyloid-containing neuritic
plaques and tau-containing neurofibrillary tangles, forming the basis of a clinicopathologic
model. This model was subsequently adapted in a simplified form for use in population-based
studies and general clinical practice, though the uncertainty implied by the term was often
overlooked. Nonetheless, the definite diagnosis of AD dementia was confirmed only by
post-mortem evidence of neuropathological alterations characteristic of AD.

As public awareness of cognitive decline in later life increased, a vernacular understanding
of AD emerged. In this context, Alzheimer’s disease came to represent all forms of dementia
not attributable to another clearly identifiable cause. However, the growing availability of
biomarkers for b -amyloid and tau has highlighted the gap between the clinicopathologic,
vernacular, and pathobiological models of AD.

In 2007, the NINCDS-ADRDA criteria were firstly reviewed by the International Work-
ing Group (IWG) [28]. For the first time, in vivo biomarkers were proposed to support
diagnosis and characterize the clinical-biological entity of AD in the predementia stage,
when symptoms do not configure the clear picture of overt dementia. The prodromal AD
stage included a wide range of described entities, such as age-related memory impairment
and cognitive decline, mild neurocognitive disorder, and Mild Cognitive Impairment (MCI).
In 2010, and later with the revision of 2014, the IWG proposed a new classification, defin-
ing AD as a spectrum, including patients with overt dementia and individuals with mild
or no symptoms. In this revision, a clear distinction was proposed between the clinical
diagnosis and disease pathology, considering that the evidence of AD pathological changes
not necessarily coincides with the stage of AD dementia [29]. With the development and
increased availability of biomarkers for AD, the National Institute on Aging and Alzheimer’s
Association (NIA-AA) proposed a theoretical model in which the cognitive decline appears
later over the disease stage, preceded by pathological and molecular alterations, and manifests
initially with MCI and then with AD dementia [30].

2.1.1.2 The preclinical and prodromal phases of AD

The biological definition of AD motivated the recognition of a long pre-dementia stage,
preceding the clinical appearance of symptoms, representing a potential fruitful therapeutic
target [31]. In this pre-dementia stage, while pathological alteration can be already detectable,
irreversible neurodegenerative processes may not yet occur, offering the possibility to change
the disease course effectively. This evidence led to a new biological definition of the disease,
which assumes that the cognitive decline in AD occurs over a long period and develops as a
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Fig. 2.1 Alzheimer’s disease continuum [32]

continuum rather than as distinct, clinically-defined entities (Figure 2.1). On this continuum,
three broad phases can be distinguished:

• Preclinical AD, which can include Subjective Cognitive Decline (SCD), where clini-
cally unimpaired individuals with no symptoms show brain changes linked to neurode-
generation, including amyloid deposition and neurodegeneration;

• Prodromal AD, including MCI individuals, with a subtle cognitive decline but without
impact on daily activity functioning;

• Dementia due to AD.

Subjective Cognitive Decline The concept of Subjective Cognitive Decline has been intro-
duced to describe individuals who perceive a cognitive decline despite normal performance in
standardized assessments [33, 34]. SCD covers all cognitive domains and is frequently self-
reported as memory decline, commonly found in 25-50% of adults over 65 years old [35, 36].
Emotional factors such as anxiety and depression often accompany SCD, complicating its
differential diagnosis [37, 38].

Moreover, the progression risk from SCD to dementia is heightened when subjective
memory decline onset is recent (within five years) and accompanied by concern, prompt-
ing individuals to seek medical help [34]. However, only about 14% of individuals with
SCD progress to dementia over long-term follow-up, with fewer than one-third developing
MCI [39].

Biomarker analysis enhances etiological understanding and prognosis in SCD, particularly
in detecting amyloid-b , tau, and brain atrophy [40, 41]. Abnormal biomarkers increase the
likelihood of progression to AD dementia [33]. In longitudinal studies, SCD patients with
positive amyloid-b markers show a higher risk of progressing to dementia, particularly when
multiple biomarkers are abnormal [42].
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Mild Cognitive Impairment Mild Cognitive Impairment refers to a condition charac-
terized by mild but noticeable cognitive difficulties, which, however, do not affect the
individual’s ability to carry out daily life activities independently. Specifically, MCI is
defined as an intermediate stage between natural cognitive decline due to aging and dementia,
with patients experiencing a greater degree of cognitive impairment than expected [30].
Currently, the underlying causes of mild cognitive decline are unknown.

Historically, the amnestic MCI, which is the most frequent type, traditionally indicated
the prodromal stage of typical AD dementia, while the non-amnestic MCI possibly indicated
other etiologies such as frontotemporal dementia (FTD) and dementia with Lewy bodies
(DLB). However, this classification is not reliable [43]. Given the heterogeneity of MCI
causes, research criteria and biomarkers have been defined to support the diagnosis of MCI
as a prodromal phase of Alzheimer’s. According to the NIA-AA, cerebral amyloidosis and
neurodegeneration are necessary to determine this type of cognitive decline [30].

2.1.1.3 Biomarkers for AD

Besides biomarkers of neuropathology, markers of neurodegenerative changes have been
proposed to support AD diagnosis. Common biomarkers include amyloid-b and tau, de-
tectable through imaging techniques like amyloid-PET and tau-PET or through cerebrospinal
fluid (CSF) measurements. Amyloid-PET allows visualization of amyloid-b plaques, which
typically accumulate in the neocortical association areas, particularly the medial parietal and
frontal regions [44]. However, amyloid-PET positivity is also found in cognitively normal el-
derly individuals, complicating its use as a standalone diagnostic tool. CSF biomarkers, such
as amyloid-b42 and the amyloid-b42/amyloid-b40 ratio, correlate well with amyloid-PET
findings and are predictive of AD progression, particularly in patients with MCI [45]. The
main limitation in using CSF measurements is the collection of samples by lumbar puncture,
which is an invasive procedure not widely available.

Tau biomarkers are equally significant. Tau-PET imaging shows high accuracy in dis-
tinguishing AD patients from controls, often correlating with cognitive impairment and
neurodegeneration. In particular, tau deposition varies across AD phenotypes, providing
valuable insights into the clinical diversity of the disease. For example, temporoparietal
tau pathology is common in typical amnestic AD, while posterior parietal and occipital tau
accumulation is associated with posterior cortical atrophy [46].

Neurodegenerative biomarkers, including MRI, [18F]FDG-PET, and fluid biomarkers
like neurofilaments, complement amyloid-b and tau measurements by highlighting brain
atrophy and hypometabolism. Hippocampal atrophy, detectable via structural MRI, is one
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of the earliest signs of AD-related neurodegeneration [47]. However, certain types of AD
exhibit irregular patterns of atrophy, which may overlap with other pathologies and make
diagnosis uncertain. [18F]FDG-PET is another key tool in clinical practice, revealing brain
regions with hypometabolism, often correlating with tau pathology and neuronal loss.

Fluid biomarkers, including t-tau and neurofilaments, are elevated in both CSF and
plasma in cases of axonal degeneration. In addition to AD, these markers are useful in other
neurodegenerative diseases, such as Parkinson’s Disease and ALS. Despite their promise,
plasma biomarkers have yet to achieve the sensitivity and specificity needed for routine
clinical use.

More recently, scientific literature has expanded with studies employing EEG as a
supporting technique for a faster and simpler diagnosis of AD. Several studies proposed
resting state electroencephalographic (rsEEG) rhythms as candidate biomarkers of AD [48–
51]. A more comprehensive review of research in this field can be found in the work by
Babiloni et al. [52]. Cassani et al. summarized EEG changes related to AD progression
into four main categories: slowing, complexity reduction, synchronization decrement and
neuromodulatory deficit [13]. At the MCI stage, such EEG abnormalities were found to be
intermediate between healthy controls and dementia patients, and more severe compared
to subjects with SCD [53]. Changes in relative and absolute power of Theta (q ) frequency
band appear to be significant among AD, MCI and healthy controls at individual level [54].
Significantly higher global Delta (d ) and Theta power, lower global Alpha (a) power
and a higher global peak frequency have also been found in patients with SCD that have
progressed to MCI and dementia [53]. Hence, measures of EEG-recorded brain activity can
represent sensitive, non-invasive markers in the prediction of clinical development of AD.
This assumption holds true also when comparing EEG to other neuroimaging methods, both
structural and functional [55].

2.1.2 Parkinson’s disease

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s
disease, affecting an estimated 0.5-1% of individuals aged 65-69 and 1-3% of those aged 80
and older [56]. The primary pathological feature of Parkinson’s disease is the degeneration
of dopaminergic neurons in the substantia nigra, a region of the brain’s basal ganglia. This
phenomenon starts with the aggregation of a-synuclein protein into structures known as Lewy
bodies. These Lewy body aggregations typically begin in the lower, or caudal, regions of
the brain and progressively move toward more anterior areas, finally reaching the substantia
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nigra in the midbrain, where dopaminergic neurons either die or become dysfunctional,
leading to a reduction or depletion of dopamine. This decline in dopamine, a critical
neurotransmitter involved in the regulation of voluntary movement, is responsible for the
typical motor symptoms of PD. As the disease advances and dopamine levels continue to drop,
patients progressively lose the ability to control their movements normally. While the cause
and pathogenesis of selective dopamine neuron loss and a-synuclein accumulation remain
unknown, increasing evidence from environmental risk factors and early-onset genetics
suggests a convergence between energy metabolism and protein disposal in the development
of the pathology [57]. These findings indicate that mitochondrial dysfunction and ubiquitin-
proteasome system impairment may play a crucial role in the etiology of PD.

2.1.2.1 Diagnosis

PD is clinically assessed primarily through the identification of characteristic motor symp-
toms. A diagnosis is typically made when at least two of four motor symptoms, which
include resting tremor, bradykinesia, rigidity, and postural instability, are present. However,
PD is also associated with a range of non-motor comorbidities, including mental health
disorders, autonomic and gastrointestinal dysfunction, and significant sleep disturbances, all
of which can severely impact patients’ quality of life and that of their families.

Non-dopaminergic and non-motor symptoms of PD often manifest years before motor
symptoms appear, and they can dominate the clinical presentation in advanced stages, proving
difficult to manage effectively [58]. This aligns with evidence suggesting that PD pathology
may be at an advanced stage well before motor symptoms become clinically apparent [59].
Deficits in executive function, along with impairments in working memory and attention, are
often regarded as the earliest and most prominent neuropsychological indicators of functional
alterations in fronto-striatal circuits [60]. Braak et al. [61] proposed a staging model for
PD pathology based on Lewy body distribution. In the earliest stages (stage 1), neuronal
damage begins in the dorsal motor nucleus of the vagus nerve in the medulla and the olfactory
bulb, representing a pre-Parkinsonian state along with stage 2, where pathological inclusions
spread to the subcoeruleus-coeruleus complex and the magnocellular nucleus of the reticular
formation. The condition is not classified as Parkinsonian until stage 3, with involvement of
the substantia nigra, pedunculopontine nucleus, and amygdala, and then stage 4, which affects
the temporal mesocortex. Late-Parkinsonian stages include stage 5, with initial neocortical
involvement, and stage 6, where nearly the entire neocortex is affected.
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2.1.2.2 Biomarkers for PD

Along with genetic, metabolic, and fluid biomarkers, electroencephalographic (EEG) studies
have highlighted alterations in cognitive processing through both event-related potentials
(ERP) and event-related desynchronization/synchronization (ERD/ERS) methods. Changes
in the P3 component, such as delayed latencies or reduced amplitudes, have been observed
in Parkinsonian patients [62, 63]. These changes are interpreted as indicators of cognitive
slowing, particularly in stimulus classification and attention processing. ERD/ERS analysis
provides additional insight by examining frequency-specific changes that reflect dynamic,
transient connections between different brain regions. ERD in the Alpha band and reduced
Theta-ERS at frontal regions have been linked to disruptions in basal ganglia activity and
associated thalamo-cortical networks in PD, reflecting impaired auditory and visual working
memory encoding and categorization processes [64, 65]. This frequency-specific approach
has proven valuable in detecting subtle neurophysiological changes in PD that are not
captured by traditional ERP analysis alone.
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2.2 Electroencephalography

Exactly a century after its discovery by German psychiatrist Hans Berger, electroencephalog-
raphy (EEG) remains the most common non-invasive technique for monitoring brain electrical
activity in clinical and research settings.

The electroencephalographic signal is a measure of extracellular current flow generated
by the synchronous activity of a large number of pyramidal neurons with similar spatial orien-
tation. Cortical electrical activity exhibits oscillations characterized by different amplitudes
and frequencies, referred to as rhythms. In the context of EEG rhythms, synchronization
refers to the temporal dynamics of electrical activity in local cortical neuronal populations,
showing collective oscillatory behavior on a macroscopic spatial scale of a few centimeters.

The amplitude of the EEG signal mainly depends on the degree of synchronization with
which cortical neurons interact. Asynchronous excitation of a group of neurons generates an
irregular EEG signal with low-amplitude oscillations. In contrast, synchronous excitation
produces a higher-amplitude signal due to the temporal summation of individual electrical
contributions. The frequency of oscillations in the EEG is linked to the pacemaker properties
of thalamic neurons and feedback mechanisms occurring within the neural circuit [66].

Fig. 2.2 Diagram of the international 10-20 system seen from the (A) left and (B) above
the head. Each electrode is assigned a nomenclature with a letter and a number. The letters
indicate the areas of the scalp: F (Frontal), C (Central), T (Temporal), P (Parietal) and O
(Occipital); numbers are odd for the left side and even for the right side.
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Modern EEG systems consist of scalp electrodes connected to high-impedance amplifiers
and a digital data acquisition unit. Traditionally, the contact between the electrode and the
skin is enhanced using electrolytic gels or abrasive pastes. Recently, dry electrodes have
been used, leveraging advances in materials science and electronics to reduce preparation
time. The standard 10–20 system has long been used to define electrode placement, with
21 electrodes. However, its spatial resolution is insufficient for modern brain research. To
address this, high-density systems with up to 256 electrodes are now commercially available,
while some specialized ultra high-density EEG systems can support over 300 electrodes.

Figure 2.2, which represents the standard 10-20 system, is provided as a reference for the
next Chapters for identifying electrodes’ positions and labels.

EEG traces are characterized by spontaneous voltage fluctuations associated with various
mental states, levels of consciousness, or pathological disturbances. The range of the
clinically relevant EEG frequency components lies between 0.1 and 100 Hz and commonly
in routine clinical settings it may be more restricted (i.e., between 0.1 and 70 Hz) [67].
Oscillations have characteristic frequency bands that are clinically defined and associated
with different cerebro-functional states. EEG rhythms are classified into Delta (d ), Theta (q ),
Alpha (a), Beta (b ), and Gamma (g) rhythms:

• d rhythm has oscillations at frequencies below 4 Hz. It represents the physiological
rhythm observed during the third and fourth stages of human sleep and anesthesia.
This rhythm can also manifest in the presence of subcortical lesions. In adults, it
is typically most pronounced in the frontal regions (referred to as FIRDA - Frontal
Intermittent Rhythmic Delta), while in children, it tends to be more prominent in the
posterior regions (known as OIRDA - Occipital Intermittent Rhythmic Delta). The
delta band is characterized by high amplitude and slow wave activity.

• q rhythm presents oscillations in the 4–7 Hz band and is present during deep sleep
states. Theta activity is typically observed in young children and may appear during
drowsiness or arousal in older children and adults; however, an excess of theta activity
for a given age is indicative of abnormal brain function. This rhythm can present as
a focal disturbance in cases of focal subcortical lesions. Theta activity is thought to
originate from the limbic system and hippocampal regions. It has been associated
with anxiety, behavioral activation, and behavioral inhibition. When functioning
appropriately, the theta rhythm mediates and promotes adaptive, complex behaviors
such as learning and memory.
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• a rhythm is characterized by oscillations in the 8–13 Hz band, with an average
amplitude of 30 µV, and is recorded with closed eyes in an awake subject. Alpha is a
common state for the brain and occurs whenever a person is alert (it is a marker for
alertness and sleep), but not actively processing information. It emerges with closing
of the eyes and with relaxation, and attenuates with eye opening or mental exertion.
Alpha rhythm is more evident in the occipital cortex. The posterior basic rhythm is
actually slower than 8 Hz in young children (therefore technically in the theta range).
Besides the classic alpha rhythm of the visual cortex, there are rhythmic activities in
the same frequency range that can be recorded from the somatosensory cortex (called
the mu rhythm) and the temporal cortex (called the tau rhythm).

• b rhythm is a very fast rhythm, with oscillations between 14 and 30 Hz, a small
amplitude (1–20 µV), and is associated with active cortical areas and levels of con-
sciousness such as attention and concentration. Typically observed bilaterally in a
symmetrical distribution, beta waves are most pronounced in the frontal regions. This
activity is closely tied to motor behavior, often diminishing during active movements.
Low-amplitude beta with a variety of frequencies is frequently linked to active, busy, or
anxious thinking, as well as sustained concentration. Conversely, rhythmic beta waves
exhibiting a dominant frequency pattern can be associated with various pathologies and
the effects of certain medications, particularly benzodiazepines. In cases of cortical
damage, beta activity may be diminished or absent. Overall, beta rhythm predominates
in individuals who are alert, anxious, or have their eyes open.

• g rhythm has oscillations with frequencies above 30 Hz and low amplitude. It is linked
to active information processing in the cortex and is thought to represent binding of
different populations of neurons together into a network to carry out certain cognitive
or motor functions.

However, it should be noted that the EEG spectrum is not configured into discrete bands,
but it is instead a continuum of overlapping frequencies. The division into bands is an
arbitrary practical construct developed to simplify the interpretation of EEG data in clinical
and research contexts. These bands are not entirely independent of one another; instead, they
often interact and influence each other dynamically, reflecting the complex and integrative
nature of neural activity. Such interactions underline the importance of interpreting EEG
rhythms not in isolation but as components of a broader, interconnected spectral landscape.
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2.2.1 EEG Recording

Studies have made use of EEG signals under diverse recording conditions, which can be
divided into two major groups:

• Resting-State EEG. Spontaneous EEG activity refers to brain signals recorded in the
absence of any external stimuli, capturing the brain’s intrinsic, background activity.
This type of recording is advantageous as does not require participants to perform tasks,
making the EEG acquisition process simpler, more comfortable, and less stressful,
particularly beneficial for elderly participants. Resting-state EEG includes recordings
in an awake resting state, typically with eyes open or closed, as well as during sleep,
allowing researchers to observe baseline neural dynamics under minimal external
influence [68].

• Event-Related EEG. EEG signals recorded in response to specific events are known as
time-locked signals. These responses are also phase-locked, resulting in event-related
potentials (ERPs). When the EEG response is not phase-locked, it is referred to as
induced activity, which can be assessed through event-related (de)synchronization
(ERD/ERS) [69, 70] or event-related oscillations (ERO). Such event-based EEG activi-
ties are linked to sensory, perceptual, motor, and cognitive processes, providing insights
into various brain functions [71]. ERD and ERS are produced by a change in the syn-
chronization of neurons that causes a decrease (or increase) in the signal amplitude of
a specific frequency band during a motor task (either executed or imagined). Indeed,
ERD/ERS modulations are most prominent in the EEG measured in correspondence
with the sensorimotor cortex. ERD is usually observed in low-frequency bands such as
mu or beta bands, whereas ERS is the result of relaxation, which is mainly observed in
the beta frequency.

In this Ph.D. thesis, different methods for modeling and analyzing EEG activity both at
rest and related to specific stimuli in neuropathological and physiological conditions have
been addressed.

2.2.2 EEG Analysis

The analysis of EEG signals is closely tied to the extraction of quantitative parameters,
such as the dominant frequency value or the similarity between two signals recorded from
symmetrical derivations, either simultaneously or at different times. Without these mea-
surements, the evaluation of the EEG signal remains subjective and is unlikely to lead to a
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logical systematization [66]. Traditionally, EEG assessment has focused on frequency and
amplitude measurements using simple metrics, which, however, have significant limitations,
especially when dealing with large amounts of data [72]. In such cases, it is necessary not
only to reduce the volume of data to be analyzed but also to verify the relationships between
internal and external factors and the phenomena identified in the signal. To address these
needs, a more complex form of signal analysis is required, which may also involve elements
of pattern recognition. Naturally, the method chosen for the analysis must align with the
specific goal of the analysis itself. In the next sections, we’ll focus on providing a short
background on some well-established techniques for EEG cleaning and processing, which
have been employed in the works of this thesis.

Preprocessing A fundamental challenge of EEG is that neuronal signals generated in
the cortex must pass through several layers of tissue with varying electrical properties
and complex geometries before reaching the scalp. This process causes the signals to
become attenuated and distorted, meaning EEG is less sensitive to deep cortical activity.
EEG recordings are also susceptible to interference from other bodily signals, such as eye
movements, cardiac activity, and muscle contractions, as well as from environmental noise.
Additionally, temporary electrode detachment can degrade signal quality and further obscure
relevant EEG data.

While biological artifacts have characteristic waveform shapes and can therefore be easily
identified, non-physical artifacts exhibit a wide variety of morphologies, which can distort
or obscure normal EEG activity. In more severe cases, artifacts can make the recording
uninterpretable. The recognition and removal of artifacts in EEG traces are the focus of
numerous studies and remain an ongoing challenge [73]. One effective tool for identifying
these artifacts is the Independent Component Analysis.

Independent Component Analysis If the signals were modeled as a linear composition
of statistically independent sources, their activities could be isolated through the use of
Independent Component Analysis (ICA), a computational method developed to separate a
multivariate signal into individual additive sub-components.

Decomposing the data using ICA (or any linear decomposition method) involves a linear
transformation of the data from the individual scalp channels into a spatially transformed
basis.

In the original recording, each signal represents the time course of voltage differences
between the projections of the source onto a channel and one or more reference channels.
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After ICA decomposition, each row of the data matrix represents the time course of activity
of a spatially filtered process, localized to the channel associated with the component. In ICA
decomposition, the independent filters are chosen to produce signals that are maximally inde-
pendent in time across each channel. The information sources can represent synchronous or
partially synchronous activity within one (or possibly more) cortical patches, or activity from
non-cortical sources (e.g., potentials induced by eye movements or produced by individual
muscle activities, line noise, etc.).

Mathematically, the observed multivariate signal X = [x1(t),x2(t), . . . ,xm(t)]T can be
modeled as a linear mixture of independent source signals S = [s1(t),s2(t), . . . ,sn(t)]T as
follows:

X = AS (2.1)

where A is an unknown mixing matrix, and S represents the latent source signals that
need to be recovered. The goal of ICA is to estimate both A and S based on the observed
mixed signals X. To achieve this, ICA assumes that the components in S are statistically
independent and that at most one of them follows a Gaussian distribution.

The task of ICA is to find an unmixing matrix W such that:

S = WX (2.2)

where W is the inverse of the mixing matrix A, or an approximation of it. The estimation
of W is often performed by maximizing a measure of non-Gaussianity, such as, for example,
kurtosis. One popular method for this estimation is the FastICA algorithm [74], which
iteratively optimizes the independence of the extracted components. The measure of non-
Gaussianity is typically computed as:

J(S) =
n

Â
i=1

[G(si)�E[G(si)]] (2.3)

where G is a non-quadratic function, and E[G(si)] is the expected value of the non-
Gaussianity function for each component si.

In summary, ICA transforms the mixed EEG signals X into statistically independent com-
ponents S, enabling the separation of neural activity from various noise sources and artifacts.
The effectiveness of this technique lies in its ability to exploit the statistical independence of
the underlying sources, which is a key assumption in brain signal decomposition.
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Spectral analysis Due to their inherent complexity, EEG time series can be treated as
realizations of a stochastic process [66]. Their statistical properties are often analyzed using
traditional signal processing methods, including probability distributions and their moments
(such as mean, variance, and higher-order moments), correlation functions, and power spectra.
Estimating these observable parameters typically assumes stationarity, meaning the statistical
characteristics of the signal do not change over the observation period. However, it is
important to note that EEG is classified as a stochastic and stationary signal only over short
intervals, particularly when recorded under constant conditions.

Among the most common methods for EEG spectral analysis are the Fourier Transform
(FT), autoregressive (AR) and autoregressive moving average (ARMA) models, Kalman
filters, and time-frequency methods. Fourier analysis can only be applied to EEG signals if
short signal windows are considered, within which stationarity can be assumed, as we said.
To achieve this, a window function w(t) of width Dt is selected and moved incrementally
by t across the signal. For each t , the Fourier Transform is computed within the window,
then shifted, and repeated across the entire signal, a technique known as Short Time Fourier
Transform (STFT).

The use of a fixed-duration time window introduces a trade-off between time and fre-
quency resolution: narrow windows provide high temporal resolution but poor frequency
resolution, while wider windows yield better frequency resolution at the expense of temporal
precision. Moreover, large windows can violate the assumption of stationarity. The primary
limitation of STFT is its use of a fixed-width window, resulting in constant time and frequency
resolution across the signal.

The Continuous Wavelet Transform (CWT) provides an optimal compromise between
time and frequency resolution, making it highly effective for non-stationary signals like EEG.

Unlike the Short Time Fourier Transform (STFT), which uses a fixed window, the CWT
provides a multi-resolution analysis by adapting the time and frequency resolution according
to the scale of the wavelet. The CWT of a signal x(t) is defined as:

CWT(a,b) =
Z •

�•
x(t)y

✓
t �b

a

◆⇤
dt (2.4)

where a is the scale parameter (related to frequency), b is the translation (time shift), and
y(t) is the mother wavelet. The function y⇤ represents the complex conjugate of the wavelet,
and the integral computes how well the signal matches the wavelet at different scales and
times.
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The resulting coefficients can be visualized in time-frequency graphs called scalograms,
which provide a visual representation of the signal’s energy distribution across different
scales and times. Examples of scalograms are shown in Figure 2.3.

Fig. 2.3 Example of raw EEG signal segments and corresponding scalograms obtained with
CWT.

In EEG analysis, CWT is particularly advantageous due to its ability to capture both
low-frequency components (with wide time windows) and high-frequency components (with
narrow time windows), thus adapting to the nature of the signal. Low-frequency components,
such as delta waves, can be resolved with good frequency precision, while high-frequency
components, like gamma waves, are resolved with better temporal precision. This multi-
resolution property of CWT is highly effective for characterizing the transient and oscillatory
behaviors often seen in EEG signals, especially during cognitive tasks or seizure detection.
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2.2.3 Current Challenges in EEG Processing

Although many methods have become standard in the field, processing EEG signals still
represents a complex task, with major challenges in signal quality due to low SNR and
diverse noise sources. High-quality electrodes, optimized placement, and advanced denoising
algorithms, have allowed to increase the quality of EEG and reduce the complexity of
processing steps.

However, numerous challenges remain open [75]:

1. Signal complexity: the inherently high-dimensional nature of EEG data, which arises
from multiple electrode placements and sampling frequencies, poses substantial chal-
lenges for subsequent analysis. The sheer volume of data complicates the extraction of
meaningful features and patterns. Furthermore, EEG signals exhibit significant tempo-
ral variability, reflecting both intra- and inter-individual differences. This variability
complicates the identification of consistent neural patterns across different recording
sessions or experimental conditions.

2. Feature extraction, selection and dimensionality reduction: the challenge of identifying
pertinent features from raw EEG data is magnified by the need for dimensionality
reduction techniques that retain critical information while discarding redundant or
irrelevant data.

3. Individual variability: considerable variability in EEG patterns exists across individuals,
influenced by factors such as age, sex, and neurological health. This inter-subject
variability complicates the development of generalized models for neural activity
classification and interpretation. Also, variability in EEG signatures associated with
different neurological and psychiatric conditions necessitates the use of individualized
analytical approaches to enhance diagnostic accuracy.

4. Real-time processing: for applications such as brain-computer interfaces (BCIs),
achieving real-time data processing and analysis is imperative. However, this neces-
sitates the implementation of computationally efficient algorithms that can operate
with minimal latency and manage manage large-scale datasets effectively through
scalability.

Addressing these multifaceted challenges requires the development of advanced compu-
tational techniques, improved acquisition protocols, and a concerted effort to standardize
methodologies within the field of EEG research and clinical application.
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The next part of the Chapter will describe how novel computational methods can be
applied to overcome these drawbacks in EEG analysis to construct reliable computer-aided
EEG diagnostic systems.
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2.3 Deep Learning for time-series analysis

Time series data, characterized by their inherent temporal ordering, are fundamental to a
wide range of tasks involving human cognitive processing [76]. Indeed, any classification
problem involving data recorded with an inherent sequence can be framed as a time-series
classification task.

Building on the success of deep neural networks (DNNs) in Computer Vision, extensive
research has introduced various DNN architectures for natural language processing (NLP)
tasks, including machine translation [77, 78] and learning word embeddings ([79]. DNNs
have also significantly advanced speech recognition, offering powerful models for acoustic
processing [80]. DL methods are representation-learning techniques that involve multiple
levels of abstraction, derived from nonlinear modules that transform raw data inputs into
higher-level representations. As the model’s depth increases, the extracted information
becomes progressively more abstract. While traditional ML techniques perform well across
a wide range of tasks, they are limited in their ability to process raw data without heavily
relying on feature extraction processes, which convert input into a suitable representation for
classifiers to recognize and discern specific patterns. On the other hand, DL techniques are
designed to automatically learn hierarchical representations from raw data, eliminating the
need for extensive manual feature engineering. In time series analysis, the model’s depth
allows it to progressively extract features that capture patterns across multiple scales, from
local, short-term fluctuations to more abstract, long-term dependencies.

Figure 2.4 depicts a general scheme of time-series processing with DL models.

Fig. 2.4 General framework for DL-based time-series classification. From [81].
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2.3.1 Evaluation metrics

In a framework exploiting DL models for time series classification, performances are evalu-
ated using different metrics. In a binary classification task, with Positive (P) and Negative
(N) classes, the results obtained from a classification system may be organised a Confusion
Matrix, as the one reported in Table 2.1.

Table 2.1 Confusion Matrix

Predicted Condition

Negative Positive

True Condition Negative TN FP
Positive FN TP

Specifically, True Positive (TP) indicates the number of instances labelled as Positive,
and correctly classified as Positive; True Negative (TN) refers to the number of instances
labelled as Negative and correctly classified as Negative; False Positive (FP) refers the
number of instances labelled as N but misclassified as Positive; False Negative (FN) indicates
the number of instances labelled as P but classified as Negative.

Starting from the confusion matrix, several metrics are computed. In the following,
Equations 2.5, 2.6 and 2.7 report how to compute Accuracy, Specificity, Sensitivity and
F1-Score, which will be used in the subsequent Chapters.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.5)

Speci f icity =
T N
N

=
T N

FP+T N
(2.6)

Sensitivity (or Recall) =
T P
P

=
T P

T P+FN
(2.7)

Precision =
T P

T P+FP
(2.8)

F1-Score =
2⇤T P

2⇤T P+FN +FP
(2.9)
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2.3.2 Deep Learning for EEG classification

To overcome the challenges described in Section 2.2.3, new approaches are required to
improve the processing of EEG towards better generalization capabilities and more flexible
applications. The use of Deep Learning for EEG signal decoding and classification has
increased exponentially over the years, with the development of intelligent systems for
various types of clinical and non-clinical applications, such as tasks involving the recognition
of emotional states [82, 83], sleep stages [84] , or motor imagery [85]. The hierarchical
structure of DNNs allows features to be learned on raw or minimally preprocessed data,
avoiding neural information to be lost or overlooked during feature extraction and selection
pipelines [86].

The different approaches vary both in the choice of architectures and in the formulation
of the input. The reviews proposed by Craick et al. [87] and Roy et al. [86] provide a detailed
analysis of the published studies, offering some guidelines for design choices based on the
task and the desired outcomes.

In general, the most employed architectures are Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Deep Belief Networks (DBNs). For CNNs, the
input is mainly generated in the form of spectrograms or scalograms (see Section 2.2.2),
whereas DBNs have shown better results when working with raw or time-domain averaged
signals.

Furthermore, both studies highlight that a compelling open question in the field is whether
heavy preprocessing EEG data is still necessary if DL models can effectively extract relevant
features from raw, unfiltered data. Although explicit artifact removal steps may not be
necessary in some cases [86], without affecting the models’ performances, most studies in
literature employ EEG preprocessing methods at different levels. To overcome the issues tied
to the variability of data preparation, the works presented in this thesis employ a standardized
EEG preprocessing pipeline, which aims to improve robustness and reproducibility of the
frameworks. Further details will be provided in the dedicated sections.

More recently, attention-based models have gained success in the field of EEG data
analysis [88, 89]. The next sections of the Chapter will detail how these architecture can be
effectively exploited for processing EEG signals.
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2.4 Attention in DL models

The year 2015 marked a pivotal shift in the evolution of Deep Learning with the rise
of attention-based architectures. This shift began with the introduction of the attention
mechanism in Neural Machine Translation (NMT) [90, 91] and image captioning [92]. In
NMT, the goal is to learn continuous representations of sequences of variable length. At
the time, Recurrent Neural Networks such as Long-Short Term Memories (LSTMs) [93]
and Gated-Recurrent Units [94], were the dominant models for sequence learning. These
RNNs, however, had significant limitations: their outputs depended on previous elements in
the sequence, and they lacked the ability to parallelize computations, slowing down training.
Additionally, their fixed-size memory struggled with long-range dependencies, creating a
bottleneck in performance [95].

NMT models typically employed an encoder-decoder architecture, where both the encoder
and decoder were RNNs. The encoder transformed an input sequence into a fixed-length
vector, which the decoder then used to generate the output sequence one token at a time.
However, this approach faced two key challenges: first, compressing the input sequence
into a fixed-length vector often led to information loss [94]; second, it lacked a mechanism
for aligning input and output sequences, which is a critical for tasks like translation and
summarization [96]. Moreover, the decoder had no way to focus on specific, relevant input
tokens when generating the output.

To address these issues, Bahdanau et al. [90] introduced a soft attention mechanism,
enabling the model to selectively focus on relevant parts of the input when predicting each
target word. This extension of the encoder-decoder architecture allowed the model to search
over the input sequence, attending to the most important information for generating the target
output.

In the following years, attention mechanisms rapidly expanded across neural network
applications, leading to the later self-attention mechanism introduced by Vaswani et al. [95]
in the Transformer architecture, which modeled interactions across the entire input sequence.

Since then, self-attention mechanisms and Transformers have become essential to se-
quence modeling, allowing to capture dependencies between input and output sequences, and
revolutionizing the way networks process sequential data, including physiological signals.

2.4.1 Transformers and Vision Transformers

As shown in Figure 2.5, the core of a Transformer consists of an encoder and a decoder
with several blocks of the same type. The encoder generates encodings of inputs, while
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the decoder generates the output sequence from the encodings. Each transformer block is
composed of an attention layer, a feed-forward neural network, shortcut connection and layer
normalization. The attention layer is based on the concept of self-attention, which computes
an attention function of the inputs to retrieve the dependencies of each element to the others.

Fig. 2.5 Original Transformer architecture. Image from Vaswani et al. [95]

Specifically, the input vector is first transformed into three different vectors: the query
vector q, the key vector k and the value vector v with dimensions dq = dk = dv. Vectors
derived from different inputs are then merged together into three different matrices, namely
Q, K and V . Subsequently, the attention function between different input vectors is calculated
according to Equation 2.10.

Attention(Q,K,V ) = so f tmax(
Q ·KT
p

dk
) ·V (2.10)

The function computes scores between each pair of inputs, and these values impact how
much attention we give to other inputs when encoding the current input. These scores are
normalized for gradient stability and then translated into probabilities using the softmax



2.5 Explainability 29

function. Finally, each value vector is multiplied by the sum of the probabilities. The
subsequent layer focuses on vectors with higher probability.

The original Transformer employs layers of Multi-Head Attention (MHA), which gen-
eralise the concept of attention by computing different representation subspaces using H
randomly initialized query, key and value matrices, where H is the chosen number of heads.
These representations are then concatenated to feed the classification layer. This method
allows the model to focus on one or more specific input positions without influencing the
attention on other equally important positions at the same time.

The first fully self-attention-based architecture for Computer Vision, known as the
Vision Transformer (ViT), was introduced by Dosovitskiy et al. [97]. In this model, an
input image is divided into smaller image patches, referred to as visual tokens, which are
then processed sequentially by the Transformer network. ViT directly applies the MHA
mechanism to sequences of image patches for image classification tasks. Few modifications
are implemented to the original architecture, even though only the transformer encoder
module is kept. In such model, sequences of image patches are treated as sequences of words
in NLP. 2D images are reshaped into a series of patches of dimension where C is the number
of image channels, (P, P) is the resolution of each image patch, and N is the total number of
resulting patches.

Instead of treating individual pixels as tokens, which would make attention computation
prohibitively expensive due to its quadratic scaling with pixel count, ViT uses patches of
16×16 pixels. Each patch is flattened and linearly projected into a vector of a fixed dimension
(Figure 2.6).

Since the Transformer architecture is inherently unaware of the spatial arrangement of
these patches within the original image and MHA is permutation-equivariant with respect
to its inputs, position embeddings are added to capture the 2D structure. ViT learns these
positional relationships during training. Additionally, a learnable class embedding token,
is prepended to the sequence of patches. This token is trained alongside the patches and
ultimately assists in predicting the classification label via a multi-layer perceptron (MLP)
head.

2.5 Explainability

In Chapter 1, we highlighted that as the use of black-box DL models has become more
prevalent in high-stakes decision making, the need for greater transparency from these
systems is emphasized. The risk arises when models generate decisions that are not justifiable,
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Fig. 2.6 Vision Transformer architecture. Image from Dosovitskiy et al. [97]

lack legitimacy, or fail to offer meaningful explanations of their behavior. In fields like
precision medicine, providing detailed explanations is critical, as experts require more than
just a binary prediction to support their diagnoses and make informed decisions.

The first obstacle to establishing a foundational understanding of eXplainable AI (XAI)
lies in the interchangeable use of terms such as interpretability and explainability in the
literature [98].

Interpretability refers to a model’s ability to provide clear insights into its decision-making
process for human users. An interpretable model is able to show how a decision is made
for a specific input [99], by exposing the inner mechanisms through human-understandable
explanations. Explainability serves as the interface between the model and the end-user,
ensuring that users can understand the behavior of a system and receive clarification about
why a decision is made by the model.

In the field of Computer Vision, two broad aims of work on interpretability have been
recognized in the literature: transparency and post-hoc interpretation. Transparency addresses
how a model functions internally, whereas post-hoc interpretations concern how the model
behaves and the reasons behind its behaviour. Post-hoc methods generate explanations after
the model has already been trained. Rather than modifying the original model, an external or
surrogate model is used to mimic its behavior and generate explanations for users.

Post-hoc methods can be further divided into two subcategories: model-agnostic and
model-specific. Model-agnostic methods are adaptable and can be applied to any model,
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while model-specific methods are tailored to particular architectures. Model-agnostic post-
hoc methods have gained popularity in recent research due to their flexibility and ease of
integration with existing models.

Furthermore, based on how explanations can be achieved, a taxonomy of post-hoc XAI
methods includes:

• Perturbation-based Methods. Models like Local Interpretable Model-agnostic Expla-
nations (LIME) [100] approximate complex models with simpler, interpretable ones.
LIME explains a black-box system by analyzing its response to small perturbations
of an input. The resulting data is then used to build a local linear model that acts
as a simplified proxy for the original model within the input’s neighborhood. One
other example is Shapley Additive Explanation Values (SHAP), which quantifies the
contribution of each input features to prediction based on the Shapley values from
game theory [101]. These methods, however, are computationally intensive and prone
to overfitting [102].

• Backpropagation-based Methods. These techniques decompose the model predictions
by first backpropagating the gradients from the predictions into input feature space and
then visualizing the weights of these features in raw input. One example is GradCAM,
a class-specific technique that integrates input features with the gradients of a network
layer to generate explanations [103]. Due to its class-specific focus and reliable outputs,
GradCAM is widely used in downstream applications like weakly-supervised semantic
segmentation. However, this method relies solely on gradients from the deepest layers,
leading to coarse results when these low-resolution layers are upsampled.

A third interpretability approach involves designing networks with architectures that
inherently simplify the understanding of their behavior.

Indeed, while most of the explainability methods focus on giving information about how
a model processes data or how it represents data internally, attention-based architectures gen-
erate explanation-producing systems by directly revealing which information flows through
the network [104]. Specifically, attention can help access a model’s inherent processes by
showing how it assigns different weights to different inputs and parts of the input [105].

This is particularly essential for EEG-based systems, because it assesses whether the
model has learned physiologically meaningful features. Foremost, interpretability allows
checking whether the predictive logic of AI models conforms to specific proven physiological
rules, since the predictive accuracy scores of the AI models can be deceptive.



Chapter 3

Deep Learning for the classification of
SCD and MCI using rsEEG

After the introduction about the clinical context, highlighting the need for automatic iden-
tification of EEG biomarkers for diagnosing and monitoring the progression of cognitive
impairment, and the description of methodologies for achieving the set goals, this Chapter
reports part of the research works conducted in the field of interest of this thesis during the
Ph.D. activities.

Specifically, starting from the results obtained in a precursory work based on a more tradi-
tional pipeline that involves a signal-to-image transform, the first Deep Learning framework
for classifying HC, SCD and MCI subjects based on their raw resting-state EEG signals is
presented.

3.1 Motivation

As described in Chapter 2, Subjective Cognitive Decline and Mild Cognitive Impairment
are recognized to be part of the taxonomy of Alzheimer’s disease. While MCI refers to a
well-defined, intermediate stage between normal ageing and pathological status [30], many
patients experience a subjective cognitive decline in memory and other cognitive domains
prior to demonstrable impairment. SCD is not linked to a particular disease status itself [33].
However, it has been proved that the subjective decline, even at the stage of normal cognitive
performance on mental tests, is associated with an increased risk of positive biomarkers
for Alzheimer’s and later conversion to dementia [106–109]. In this context, it has been
established that SCD can occur at late stages of preclinical AD, before MCI is reached.
This phase can be also referred to as pre-MCI or pre-prodromal AD. In particular, since
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new diagnostic guidelines have been released, SCD individuals with pathological Ab levels
in cerebrospinal fluid (CSF) could be considered to be in Alzheimer’s disease continuum
(Section 2.1.1.2). Although the task of classifying SCD and MCI subjects from healthy
controls has been addressed in several studies [110, 111], the discrimination between SCD
and MCI conditions from a functional point of view is still poorly investigated in literature
since anatomical and functional changes in brain between the two classes are subtler, making
it a more challenging task to deal with [112]. Nevertheless, the intricacy of brain alterations in
the early stages of AD makes it difficult to recognize patterns and develop accurate indicators
for diagnosing and monitoring the development of AD on an individual basis [113, 114].
Furthermore, whilst advanced neuroimaging methods like PET and MRI enable to capture
relevant modifications in brain processes related to AD, their use is limited in clinical settings
due to cost, invasiveness and time consumption [14].

In this section of the thesis, a novel Deep Learning approach that employs a redesigned
Transformer architecture for classifying rsEEG signals of HC, SCD and MCI subjects is
described.

The rest of this Chapter is organised as follows: Section 3.2 summarizes the recent
literature in the field and highlights the limitations of previous works. Section 3.3 provides a
detailed description of the dataset employed to conduct research in this field. The last two
sections, Section 3.4 and Section 3.5, present the innovative contributions to the field.

3.2 State of the art

Despite longitudinal studies have assessed the increased risk for both SCD and MCI patients
to develop Alzheimer’s dementia, to the best of our knowledge a limited number of works
have investigated changes of distinctive biomarkers to differentiate early AD stages.

Yue et al. evaluated the extent of asymmetry of hippocampus and amygdala volumes from
MRI scans in HC, SCD and MCI subjects [115]. They found significant differences between
the latter two groups only when considering asymmetry of hippocampus, indicating that this
marker could help the diagnosis of early AD stages. On the other hand, they found significant
differences between HC and SCD in the volume of the right hippocampus, right amygdala
and asymmetry of amygdala, and those differences were reflected in the comparison of HC
and MCI. In a recent study by Li et al., an approach based on ML models was exploited on
features extracted from MRI data to predict the scores of cognitive tests, i.e. Mini-Mental
State Examination (MMSE) or Montreal Cognitive Assessment (MoCA), of HC, SCD and
MCI subjects, respectively. Results showed that imaging volumetric features of the brain
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were more correlated with the scores of cognitive tests than individual features extracted from
brain subregions, such as the hippocampal area [116]. Such neuroimaging-based studies,
although allow to characterize SCD and MCI effectively, still require time-consuming and
expensive techniques to acquire data and thus are not easily replicable.

A study by Scheijbeler et al. [117] used magnetoencephalography (MEG) data to compute
brain network interactions in SCD and MCI patients by means of a permutation index, called
inverted joint permutation entropy (JPE_inv), which was used to train a logistic regression
model. The area under the roc curve (AUROC) value obtained with this index (0.784 for
SCD-MCI classification), was higher when compared to other MEG markers. However, a
limited number of 18 SCD and 18 MCI subjects was employed and thus a replication of their
method on larger samples is needed.

Even fewer works have focused on the role of EEG-derived biomarkers in the classifica-
tion of SCD and MCI, although a lot of work has been done in discriminating AD subjects
from both MCI and HC [51, 118] also employing DL models [119–121].

Recently, quantitative electroencephalography (qEEG) was used by Engedal et al. to
predict the conversion to dementia from a large dataset composed of 200 HC, SCD and MCI
subjects for whom follow-up information was available [122]. Spectral features were ex-
tracted from the signal to calculate a Dementia Index (DI), and a statistical pattern recognition
method was employed to evaluate the predictive power of the index, reaching an accuracy of
69 % in discriminating converters from non-converters. However, Engedal et al. predicted
conversion to dementia from EEG data of subjects already diagnosed. Lazarou et al. [114]
investigated the power of graph metrics derived from High-Density EEG (HD-EEG) to
discriminate among HC, SCD, MCI and AD individuals. They expected to find differences
in brain connectivity in terms of correlation matrices constructed from the EEG activity. The
statistical analyses showed that SCD individuals present network values intermediate to HC
and MCI, underlying a common disconnection pattern of the brain connectome in SCD but
not to the same extent as in MCI. Nonetheless, in the SCD vs MCI comparison, classifi-
cation performances of both local and global network measures, evaluated with AUROC
values, were lower than 60 %. Similarly, Abazid et al. investigated connectivity links in the
brain networks derived from rsEEG of SCD, MCI and AD patients by exploiting measures
of statistical entropy and a Support Vector Machine (SVM) to discriminate the classes of
patients. They demonstrated the effectiveness of the entropy measure to identify different
stages of cognitive dysfunction when considering different graph parameters, reaching high
accuracy levels, over 90 % [123]. However, these results depend on several stages of signal
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manipulation (e.g. feature extraction, thresholding and selection) which can highly affect the
classification performance.

3.3 Data description

The EEG data used in the research works presented in this Chapter, as well as the next one,
have been acquired from subjects enrolled in the “PRedicting the EVolution of SubjectIvE
Cognitive Decline to Alzheimer’s Disease With machine learning (PREVIEW)” project, an
ongoing prospective cohort study started in October 2020. [124]. The aim of the project is to
investigate baseline predictors and biomarkers of Alzheimer’s pathology and progression
to MCI and dementia in a large cohort of patients with SCD. Specifically, patients with
SCD and MCI self-referred to the Regional Reference Center for Alzheimer’s Disease
and Cognitive Disorders of Careggi Hospital, Florence. Age-matched healthy subjects
were enrolled for cross-sectional comparison. Table 3.1 summarises some clinical and
demographic information about the subjects enrolled in the study at the time the analyses
were conducted. Patients were classified as SCD according to the terminology proposed by
the Subjective Cognitive Decline Initiative (SCD-I) Working Group [33], which requires the
subject to self-experience a persistent decline in cognitive capacity in comparison with a
previously normal status and unrelated to an acute event, as well as normal age-, gender-, and
education-adjusted performances on standardized cognitive tests. Patients were classified as
MCI according to the NIA-AA workgroups criteria for the diagnosis of MCI [30], specifically
requiring: cognitive concern reflecting a change in cognition reported by the clinician or
the patient, objective evidence of impairment in one or more cognitive domains (all patients
underwent an extensive neuropsychological investigation, with estimation of premorbid
intelligence, and assessment of depression), preservation of independence in functional
abilities and no signs of dementia. The study was approved by a local ethics committee and
individual informed consent was obtained. Experimental procedures were conformed to the
Declaration of Helsinki and national guidelines. Resting-state EEG data were acquired using
EBNeuro’s GalNt system (EBNeuro, Florence, Italy) with 64 channels digitized at a sampling
rate of 512 Hz. Among the 64 electrodes, 61 electrodes covered the whole scalp to record
EEG while the remaining ones recorded electrooculographic (EOG) and electrocardiographic
(ECG) activity, and thus were not considered for further analysis. ERPs were also acquired
during two tasks, namely a 3-choice vigilance task and a standard image recognition task,
but were not employed for the purposes of this thesis. The electrodes were placed according
to the 10�10 montage system and electrode-skin impedance was set below 5 kW. Subjects



3.4 Preliminary results 36

were sat in a reclined chair for approximately 20 minutes. The acquisition protocol was
structured to involve both closed and open eyes conditions.

Table 3.1 Clinical-demographic characteristics of the study population. HC: healthy controls;
SCD: subjective cognitive decline; MCI: mild cognitive impairment; MMSE: mini-mental
state examination; TIB: italian brief intelligence test; SD: standard deviation

.

Characteristics HC (n = 17) SCD (n = 56) MCI (n = 45)

Age (mean ± SD) 64.29±4.77 66.26±8.72 74.26±8.20
Females (%) 41.2 78.3 54.3
Age onset (mean ± SD) - 55.15±8.04 62.09±9.97
Years of Education (mean ± SD) 15.50±3.78 12.58±3.47 10.18±4.17
MMSE (mean ± SD) 28.92±1.19 27.48±2.28 27.52±2.13
TIB (mean ± SD) - 107.22±20.48 111.00±6.01

3.3.1 Data preprocessing

Raw data were preprocessed offline using Matlab R2019b (The Mathworks, Natick, MA,
USA) and EEGLAB toolbox v.2021.0. In this work, a standardized pipeline, the PREP
pipeline [125], was adapted and employed as a first step to clean the signal. This pipeline
uses a robust re-referencing algorithm to interpolate noisy channels and leverages routines
from the cleanline method to remove line noise components [125]. Although the biggest
advantage of this approach is that it removes only deterministic line components, while
preserving substantial spectral energy, it can present some drawbacks due to the assumption
of signal stationarity [125]. To overcome these limitations, a 50 Hz notch filter was further
applied to ensure line noise cleaning. This method can be safely applied on our data since
high frequencies of the signal, which could be distorted, were not analysed [125].

A semi-automatic method employing EEGLAB’s ICLabel [126] and manual choice of
independent components to retain has then been applied to the signals. Lastly, epochs with
excessive noise or artifacts were visually inspected and removed.

A schematic representation of the preprocessing pipeline is shown in Fig.3.1.

3.4 Preliminary results

The work entitled A Deep Learning Framework for the Classification of Pre-prodromal and
Prodromal Alzheimer’s Disease Using Resting-State EEG Signals [127] reports some of the
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Fig. 3.1 Pipeline of the preprocessing steps applied to the EEG signals.

first results obtained by applying a DL model on rsEEG signals of SCD and MCI. It is worth
noting that at the time this manuscript was produced, the collection of the PREVIEW dataset
was still in process. Thus, the available EEG recordings of 35 SCD and 32 MCI subjects were
employed. The key idea of this work is to use Continuous Wavelet Transform on EEG epochs
to produce time-frequency representations of the input signals, and process these images
using a Convolutional Recurrent Neural Network (CRNN). Several previously published
studies employed DL methods based on CNNs to classify images derived from EEG signals
of subjects with AD, MCI and healthy controls. Morabito et al. proposed a data-driven CNN
based on time–frequency representations of the EEG signal to classify AD, MCI, and HC,
reaching an accuracy of 82% in the three-ways classification and up to 85% when considering
a binary classification between MCI-HC, MCI-AD, and AD-HC classes [128]. Similarly, a
recent work by Ieracitano et al. exploited EEG power spectral density to construct grayscale
images used as input to a customized CNN, to address the same classification task. They
reported an accuracy of 83.3% and compared the results with other conventional machine
learning methods (e.g., Linear Discriminant Analysis and Support Vector Machine), showing
how the DL framework outperforms state-of-the-art algorithms [129]. Other studies, such
as the one conducted by Kim et al., employed Deep Neural Networks to address binary
classifications between AD, MCI, and HC with feature- based inputs relating to the Relative
Power (RP) of different frequency bands within EEG signals [130]. The maximum accuracy
reached by the model was 75%. A work by Huggins et al. [131] proved a similar approach
based on time-frequency signal representations to be effective in classifying rsEEG epochs
of AD, MCI and controls. However, none of them include SCD groups.
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Hence, after applying the preprocessing pipeline described in the previous section 3.3.1,
21 channels were selected to reduce the complexity of the input signals. Non-overlapping
epochs of 5 s were extracted from each recording, and, for each epoch, a Continuous Wavelet
Transform was applied on each EEG channel. The output coefficients of the function were
plotted as scalograms, i.e., time–frequency graphs in which the energy of CWT coefficients is
represented by different colors. A logarithmic scale and a colorimetric map with 256 colors
were then employed to visualize and save the scalograms. The resulting 21 images for each
epoch, corresponding to the EEG channels, were then tiled following the 10–10 electrode
placement system, in order to retain spatial information of the channels’ position on the
scalp. The Deep Learning architecture incorporated a pre-trained ResNet-18 model [132],
with its final layer connected to a LSTM consisting of one hidden layer with 8 units. The
use of a previously trained network as backbone was needed to reduce the risk of overfitting
due to the relatively small sample size. This approach enabled the model to treat each EEG
recording as a series of sequential frames (i.e., scalograms) that captured the neural activity
of each subject (Fig. 3.2). Each sequence was then labeled as either SCD or MCI, with
the same label assigned to the corresponding subject. The dataset was split subject-wise
randomly into training (70%) and test (30%) sets.

Fig. 3.2 Overall architecture of the proposed model. The time series composed of all the
scalograms of a given subject in the dataset is fed to a ResNet-18 model followed by a LSTM
layer composed of 8 units. Then, a fully-connected layer classifies each time series either as
SCD or MCI

The classifier reached an Accuracy of 75.0%, a Sensitivity of 66.7%, and a Specificity of
81.8% on the test set for the classification of SCD and MCI.

These preliminary results were promising, mostly considering that the task of classifying
SCD and MCI patients, as stated before, is very challenging [114] and that most state-of-the-
art results obtained with DL approaches concerned the classification of AD, MCI, and HC
subjects. Nonetheless, this work presented several limitations. Firstly, the small sample size
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limited the the generalization capabilities of the framework. Furthermore, the robustness
and reproducibility of the methods needed to be improved. Most importantly, the lack of a
healthy control group restricted the assessment of the classifier’s ability to decode neural
activity when some sort of degeneration was present. The subsequent work was conducted
in order to address these limitations and provide a more robust framework for this specific
classification task.

3.5 Attention-based approach

The exploratory work presented in the previous section 3.4 paved the way for the application
of Deep Learning to discriminate among different levels of cognitive impairment based on
resting-state EEG signals. In the study An attention-based deep learning approach for the
classification of subjective cognitive decline and mild cognitive impairment using resting-
state EEG [133], an end-to-end model mainly employed in NLP, the Transformer 2.4.1, and
the self-attention mechanism, were exploited to classify resting-state EEG signals of 17 HC,
56 SCD and 45 MCI subjects by focusing on the global patterns of the brain oscillatory
activity. For the aim of this work, we extracted and employed only the eyes-closed (EC)
epochs of the original signal for all the subjects (mean length = 15.03±1.41 min), which
represent the largest part of the protocol.

Clean data were processed and a cluster of 19 channels, namely Fp1, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, was selected. Since these channels
evenly cover the scalp area, this EEG pattern is the most employed in the literature for similar
studies [134] and has been proven to ensure sufficient quality along with possible comparison
with previous rsEEG findings of other projects [50]. Subsequently, the signals were bandpass
filtered between 0.1 Hz and 45 Hz.

Four main frequency bands, namely Delta (d ) [0.1 - 4] Hz, Theta (q ) [4 - 8] Hz, Alpha (a)
[8 - 13] Hz and Beta (b ) [13 - 30] Hz were extracted from each EEG signal using designed
bandpass filters, and each related dataset was created. Furthermore, in order to assess which
frequency band was the most distinctive in the classification of HC, SCD and MCI, we also
filtered the signals in the entire range [0.1 - 30] Hz, and an additional dataset (All-band)
was generated. Gamma (g) band [30 - 70] Hz was excluded from the analysis since the
EEG signal in this band can be significantly contaminated with muscle artifacts [135]. To
design filters, we used the pop_eeg f iltnew function from EEGLAB, which has a heuristic
for automatically determining the filter length and order. This function employs a zero-phase
Hamming windowed sinc finite impulse response (FIR) filter [136].
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Fig. 3.3 EEG epoch classification pipeline. Each EEG segment of C = 19 channels and
D = 5120 datapoints is used as input to our model, which uses a convolutional layer to
compress the signal, extract slices and embed the information. k = 31 is the size of the kernel,
emb = 6 is the embeddings’ dimension and CLS is the classification token prepended to the
input. Attention mechanism is then applied on the temporal domain and, after global average
pooling, a linear layer is used to classify the input EEG epoch.

3.5.1 Proposed model

As described in the previous Chapter, the original Transformer employs layers of Multi-
Head Attention (MHA), which generalise the concept of attention by computing different
representation subspaces using H randomly initialized query, key and value matrices, where
H is the chosen number of heads. These representations are then concatenated to feed the
classification layer. This method allows the model to focus on one or more specific input
positions without influencing the attention on other equally important positions at the same
time.

Following the work by Song et al. [137], we implemented a pipeline to classify EEG
epochs, as shown in Figure 3.3, by designing and training a modified version of their model
on eyes-closed rsEEG signals of SCD and MCI subjects. The same pipeline was followed for
the classification of HC, SCD and MCI. For this second task, the last fully connected layer
was composed of three output units.

The major difference between the two architectures concerns the way attention is applied
to the signals. The proposed model dismisses the spatial attention module, which is used to
weight the information encoded by each EEG channel, and prioritizes the temporal domain
of the signal. This difference is due to the fact that the objective of this work is to classify



3.5 Attention-based approach 41

resting-state signals, instead of Motor Imagery (MI) signals as in Song et al. [137]. In
fact, while different motor imagery processes activate different areas of the cerebral cortex,
and thus spatial channel information was revealed to be of fundamental importance when
engaging in a MI classification task [138, 139], resting-states reflect the spontaneous brain
activity, thus there is not an established spatial correlation also when investigating cognitive
decline associated with Alzheimer’s disease [140].

Consequently, our model aims to exploit multi-head attention to understand if temporal
dependencies of the EEG sequences can highlight discriminative patterns among HC, SCD
and MCI subjects. The MHA layer is included in an encoder block, which combines it with
a feed-forward module, a normalization layer and dropout. The encoder block is replicated a
number of times specified by the depth parameter, which was set to 2, whereas the number of
heads was set to 3. It is worth noting that this configuration is of low complexity and reduced
computational cost since it requires fewer parameters than traditional CNNs and RNNs. A
graphical representation of the implemented Transformer model is shown in Figure 3.4 with
reference to SCD vs MCI classification.

Similarly to the original Transformer architecture, the proposed model also needs some
information on the position of inputs in the time series. This is achieved by Song et al. by
using a convolutional layer on the time dimension before compression, rather than positional
encodings as in the original model [137]. Instead, we use a convolutional layer to embed
channels’ information, compressing it to a single channel representation, and to extract slices
from EEG sequences as shown in Figure 3.3. Then, we encode the positions of all slices
in the sequence, and the vector of positions is linearly added to the input. Furthermore,
we prepend an extra-learnable classification token to each input sequence, which is used to
predict the final class after being updated by attention, as in the ViT [97]. Compared to the
original model, this position encoding method requires fewer parameters and avoids the use
of an additional convolutional layer, which increases the complexity of the model. After the
global average pooling, a classification head composed of a fully-connected layer, after layer
normalization, is then used to classify the new representation of the input.

After preprocessing, Leave-One-Subject-Out Cross-Validation was used on the datasets
(All-band, Delta, Theta, Alpha, Beta), where all subjects except one were used for training
and the remaining for testing. This cross-validation strategy is the most used across studies
that employ rsEEG for AD diagnosis and progression analysis [13]. EEG signals were split
into 10-second epochs, and random sampling was applied to balance the classes. Z-score
normalization was performed for each subject’s EEG data, which was revealed to be an
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Fig. 3.4 Proposed Transformer architecture. CLS is the classification token, h = 3 is the
number of heads used by Multi-Head Attention and Depth = 2 indicates the number of times
the transformer encoder block is repeated. A legend for uncaptioned blocks is provided on
the bottom right corner.

optimal normalization technique for giving models the ability to make classification across
an inter-subject population [141].

The model was trained using the Adam optimizer, with a batch size of 8 and 250 iterations.
Cross-Entropy was the loss function, and an early-stop mechanism prevented overfitting.
Finally, classification was done at the epoch level, followed by a hard voting mechanism to
predict each subject’s label.

3.5.2 Results

The classification results are reported in Table 3.3 for all the datasets. The best performances
have been reached by the Transformer model on Delta and Theta bands. Specifically, an
Accuracy of 67.4% and a F1-Score of 67.3% were obtained for Delta, whereas a value of
65.0% was obtained for both metrics on Theta. AUC scores on Delta as well as on Theta
were higher than 0.8, revealing that both the classifiers have an overall excellent diagnostic
accuracy in discriminating SCD and MCI [142].

Subsequently, we evaluated the capabilities of the models on the classification of patients,
which is the main objective of this study. We report the classification performances for
all the datasets in terms of Accuracy (Equation 2.5), Sensitivity (Equation 2.7), Specificity
(Equation 2.6) and F1-Score (Equation 2.9). The results are detailed in Table 3.4. On
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Table 3.2 Confusion Matrix for SCD vs MCI classification

Predicted Class
SCD MCI

True Class SCD TN FP
MCI FN TP

Table 3.3 Per epoch classification performances. Metrics are computed on the cumulative
test confusion matrix. No Information Rate (NIR) = 0.553. The 95% Confidence Interval
(CI) was calculated for each set with the Clopper–Pearson method for a binomial distribution
(Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05). F1-Score is weighted for the
number of samples per class.

Dataset Accuracy CI AUC Sensitivity Specificity F1-Score

Alpha 0.628 [0.618, 0.638]*** 0.779 0.602 0.650 0.629
Beta 0.619 [0.608, 0.628]*** 0.744 0.598 0.635 0.619

Delta 0.674 [0.664, 0.683]*** 0.807 0.620 0.717 0.673
Theta 0.650 [0.640, 0.660]*** 0.802 0.591 0.698 0.650

All-band 0.642 [0.632, 0.652]*** 0.779 0.561 0.707 0.640

the Delta band, the model reached the highest value for all the computed metrics, with an
Accuracy and F1-Score of 76.2%, a Sensitivity of 73.3% and a Specificity of 78.6%. It is
worth noting that, when considering the epochs’ classification task, both single-band Delta
and Theta datasets perform better than the All-band dataset, upholding the idea that changes
in particular EEG rhythms are more discriminative of SCD and MCI conditions and easier
to be detected by our model. On patient-level classification, Delta outperforms all the other
datasets.

Table 3.4 Per patient classification performances. Metrics are computed on the cumulative
test confusion matrix. No Information Rate (NIR) = 0.554. The 95% Confidence Interval
(CI) was calculated for each set with the Clopper–Pearson method for a binomial distribution
(Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05). F1-Score is weighted for the
number of samples per class.

Dataset Accuracy CI Sensitivity Specificity F1-Score

Alpha 0.653 [0.552, 0.745]* 0.644 0.661 0.654
Beta 0.624 [0.552, 0.718] 0.600 0.643 0.624

Delta 0.762 [0.667, 0.841]*** 0.733 0.786 0.762
Theta 0.673 [0.573, 0.763]** 0.600 0.732 0.672

All-band 0.673 [0.573, 0.763]** 0.578 0.750 0.671
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Fig. 3.5 ROC curves for SCD vs MCI classification on the cumulative test set.

Lastly, in order to demonstrate the efficacy of the entire workflow, we selected the best-
performing frequency bands (i.e. Delta and Theta) and constructed two supplementary high-
density EEG datasets, following the same pipeline, but skipping the channel selection step.
Specifically, the new EEG segments used as input to the Transformer model had dimensions
C = 61 channels and D = 5120 datapoints. We used the same LOSOCV approach and
computed all the metrics in order to compare the results with the previous datasets. On
the high-density EEG Delta dataset, we obtained an Accuracy of 62.8% and F1-Score of
62.7% on epochs’ classification, while 67.3% and 67.4% were obtained for Accuracy and
F1-Score on patients’ classification. On the high-density EEG Theta dataset, we obtained
59.8% and 59.7% for Accuracy and F1-Score on epochs’ classification, respectively. On
patients’ classification, Accuracy reached a value of 61.5%, whereas we obtained 61.2% for
F1-Score. Although, even in this case, the Delta band shows the best results, all the metrics
are lower when compared to the 19-channel datasets, meaning the information added by
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using more EEG channels is not useful for our model to perform the classification of SCD
and MCI subjects.

3.5.3 HC vs SCD vs MCI classification

Then, we assessed the performances of our model on the classification of HC, SCD and MCI
subjects. As for the SCD vs MCI classification, we reported the results for both epochs and
patients. In particular, Table 3.5 reports the performances on epochs in terms of Accuracy
(Equation 2.5), F1-Score (Equation 2.9) and AUC, and Figure 3.6 shows the corresponding
ROC curves. Specifically, the micro-average ROC curve is reported aggregating, for each
dataset, the contribution of all classes.

The best performances have been reached by the Transformer model on Alpha and Theta
bands. Specifically, an Accuracy of 48.8% and a F1-Score of 49.4% were obtained for Alpha,
whereas values of 48.6% and 49.8% were obtained on the Theta band for the same metrics,
respectively. AUC scores on both bands were higher than 0.7, revealing that the classifiers
have an overall acceptable diagnostic accuracy in discriminating HC, SCD and MCI [142].

Also in this case, we evaluated the capabilities of the models to classify individual
subjects. Table 3.6 reports the performances in terms of Accuracy (Equation 2.5) and F1-
Score (Equation 2.9), showing that the Theta band has the highest discriminatory power with
an Accuracy of 54.2% and a F1-Score of 54.9%.

Table 3.5 Per epoch HC vs SCD vs MCI classification performances. Metrics are computed
on the cumulative test confusion matrix. No Information Rate (NIR) = 0.473. The 95%
Confidence Interval (CI) was calculated for each set with the Clopper–Pearson method for a
binomial distribution (Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05). F1-Score
is weighted for the number of samples per class.

Dataset Accuracy CI AUC F1-Score

Alpha 0.488 [0.479, 0.498]*** 0.750 0.494
Beta 0.446 [0.436, 0.455] 0.693 0.448

Delta 0.449 [0.440, 0.458] 0.662 0.470
Theta 0.486 [0.476, 0.495]*** 0.745 0.498

All-band 0.443 [0.434, 0.452] 0.681 0.455

As in the SCD vs MCI classification task, we obtained two 61-channel datasets corre-
sponding to the bands with the best performances, namely Theta and Alpha, and compared
the results with the corresponding 19-channel datasets. For Alpha, we obtained an Accu-
racy of 49.6% and a F1-Score of 50.1% on epochs’ classification and 55.1% and 55.3% on
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Fig. 3.6 ROC curves for HC vs SCD vs MCI classification on the cumulative test set.

patients’ classification, respectively. For Theta we obtained an Accuracy of 45.9% and a
F1-Score of 47.1% on epochs’ classification and 48.3% and 49.8% on patients’ classification.
These results show that, even in the HC vs SCD vs MCI classification task, using an higher
number of EEG channels does not have a significant impact on the performances of our
model. In fact, although there was a small increase in the results on Alpha, on Theta, which
is the best-performing band on subject-wise classification, our Transformer continues to give
the highest results considering the dataset with 19 channels.

3.5.4 Performance Comparison with CNN-based models

In order to compare our model with state-of-the-art EEG classification models, we con-
ducted experiments with some recent CNN-based models, namely DeepConvNet [143],
EEGNet [144] and EEG-TCNet [145]. These architectures were mainly developed for MI-
based EEG signals decoding, as well as for the classification and interpretation of EEG-based
BCIs. Park et al. employed them in the field of the identification of preclinical AD from
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Table 3.6 Per patient HC vs SCD vs MCI classification performances. Metrics are computed
on the cumulative test confusion matrix. No Information Rate (NIR) = 0.475. The 95%
Confidence Interval (CI) was calculated for each set with the Clopper–Pearson method for a
binomial distribution (Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05). F1-Score
is weighted for the number of samples per class.

Dataset Accuracy CI F1-Score

Alpha 0.500 [0.407, 0.593] 0.503
Beta 0.500 [0.407, 0.593] 0.503

Delta 0.500 [0.407, 0.593] 0.527
Theta 0.542 [0.448, 0.634] 0.549

All-band 0.517 [0.423, 0.610] 0.532

EEG to overcome the limitation of high inter-subject variability, which affects the possibility
of extracting robust handcrafted features [146]. However, to our knowledge, they have never
been used for the specific classification task of discriminating SCD from MCI. It is worth
noting that these models are characterized by a higher number of parameters than our Trans-
former. Indeed, while the Transformer contains a total of 5.2 k parameters, DeepConvNet,
EEGNet and TCNet have 298.6 k, 9.8 k and 14.1 k parameters, respectively.

The models’ parameters were adjusted to take EEG epochs of dimension C⇥D in input
as our Transformer model. The comparison was performed on the best-performing datasets
for both classification tasks, i.e. Delta and Theta for SCD vs MCI and Alpha and Theta for
HC vs SCD vs MCI. Results are reported in Table 3.7 and Table 3.8, respectively. For SCD
vs MCI classification, all the models reached comparable performances in terms of accuracy,
which was always significantly higher than no-information rate for epochs classification. For
the Delta band, the classification accuracy of patients was 76.2% for the Transformer, while
the same metric has values of 73.3% for EEGNet, 65.3% for DeepConvNet and 70.3% for
EEG-TCNet. In all the cases, except for DeepConvNet, the accuracy was always significantly
higher than no-information rate (p  0.001 for Transformer and EEGNet, p  0.01 for
EEG-TCNet).

Concerning the HC vs SCD vs MCI classification, the epochs’ classification accuracy was
significantly higher than no-information rate for the Transformer, for both Alpha and Theta
bands, and EEG-TCNet, for the Theta band only (p  0.001 for all the cases). However,
patients’ classification accuracy was not significantly higher than the no-information rate,
except for the Transformer which reached a near significance (p = 0.08), with a value of
54.2% against 48.3% for EEGNet, 49.2% for DeepConvNet and 50.0% for EEG-TCNet.
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Table 3.7 SCD vs MCI classification performance comparison in terms of overall accuracy
on the cumulative test set of the DL models. No Information Rate (NIR) for epochs classifi-
cation = 0.553; NIR for patients classification = 0.554. The 95% Confidence Interval (CI)
was calculated for each set with the Clopper–Pearson method for a binomial distribution
(Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05).

Model Dataset Epochs Patients
Accuracy CI Accuracy CI

Transformer
Delta 0.674 [0.664, 0.683]*** 0.762 [0.667, 0.841]***

Theta 0.650 [0.640, 0.660]*** 0.673 [0.573, 0.763]**

EEGNet
Delta 0.726 [0.716, 0.735]*** 0.733 [0.635, 0.816]***

Theta 0.669 [0.659, 0.678]*** 0.683 [0.583, 0.772]**

DeepConvNet
Delta 0.590 [0.580, 0.600]*** 0.653 [0.552, 0.745]*

Theta 0.589 [0.579, 0.599]*** 0.594 [0.492, 0.691]

EEG-TCNet
Delta 0.673 [0.664, 0.683]*** 0.703 [0.604, 0.790]**

Theta 0.693 [0.683, 0.702]*** 0.683 [0.583, 0.772]**

Table 3.8 HC vs SCD vs MCI classification performance comparison in terms of overall
accuracy on the cumulative test set of the DL models. No Information Rate (NIR) for epochs
classification = 0.473; NIR for patients classification = 0.475. The 95% Confidence Interval
(CI) was calculated for each set with the Clopper–Pearson method for a binomial distribution
(Accuracy > NIR, *** p  0.001, ** p  0.01, * p  0.05).

Model Dataset Epochs Patients
Accuracy CI Accuracy CI

Transformer
Alpha 0.488 [0.479, 0.498]*** 0.500 [0.407, 0.593]
Theta 0.486 [0.476, 0.495]*** 0.542 [0.448, 0.634]

EEGNet
Alpha 0.472 [0.462, 0.481] 0.483 [0.390, 0.577]
Theta 0.451 [0.442, 0.461] 0.424 [0.333, 0.518]

DeepConvNet
Alpha 0.479 [0.469, 0.488] 0.492 [0.398, 0.585]
Theta 0.476 [0.467, 0.486] 0.500 [0.407, 0.593]

EEG-TCNet
Alpha 0.467 [0.458, 0.477] 0.500 [0.407, 0.593]
Theta 0.495 [0.486, 0.505]*** 0.508 [0.415, 0.602]
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3.5.5 General remarks

Previous studies that have addressed the task of discriminating SCD and MCI patients in
the AD continuum, with statistical or traditional ML approaches, have highlighted that this
problem is much more challenging than other classification tasks in the same field. This
evidence can be deducted both from works that employ MRI data [112, 115] and EEG
data [114]. It is also supported by other works in literature [51, 118–121], some of which
show in general better classification performances than those obtained in this work but
considering different classes of subjects, e.g. HC vs SCD, HC vs MCI or MCI vs AD.

For the SCD vs MCI classification task, by comparing the results on all the test sets
gathered from a LOSOCV approach, we found that Delta and Theta bands had the best
performances with AUC values of 0.807 and 0.802, respectively. Furthermore, the other
classification metrics, i.e. Accuracy, Sensitivity, Specificity and F1-Score, were the highest
on Delta, reporting a value of 67.4% for Accuracy and 67.3% for F1-Score on epoch-
wise classification and a value of 72.6% for both Accuracy and F1-Score on patient-wise
classification. On the same band, the model reached good Sensitivity and Specificity values,
respectively of 73.3 % and 78.6%, showing it is capable of discriminating SCD and MCI
subjects when they have that specific condition. For both Delta and Theta bands, the
classification accuracy was significantly higher than the no-information rate (p  0.001 and
p  0.01 for epoch-wise and patient-wise classifications, respectively), assessing that the
classifier model performed better than one could do by always predicting the most common
class. Indeed, changes in relative power in the lower frequencies (d and q ) indicate a diffuse
slowing of brain oscillations, which is a hallmark feature in the progression of AD [13].
In this context, EEG spectral analysis revealed that higher Delta and Theta powers are
associated with clinical progression of SCD patients towards MCI and dementia, mainly
when considering eyes-closed resting-state activity, as it has been done in this study [53].

Our results uphold this evidence, showing that changes in Delta and Theta are particularly
useful in characterizing the brain activity of subjects affected by SCD or MCI, both when
compared to other common EEG rhythms and to the All-band dataset, which includes the
signals filtered in the range [0.1-30] Hz. Furthermore, the multi-head attention mechanism
well captures temporal dependencies of rsEEG, highlighting their importance in the discrimi-
nation between SCD and MCI. This is supported also by a recent work by Wei et al., who
employed the attention mechanism to classify MCI and HC using EEG signals recorded
during cognitive tasks [147]. In fact, this approach allowed to improve the performances of a
traditional CNN by almost 10%, suggesting that the use of this technique should be further
investigated.
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On the other hand, we found that adding more spatial details by using all available 61 EEG
channels, instead of a cluster of 19 channels, not only did not improve the performances of the
model, but all the metrics reported lower values for both epochs’ and patients’ classification
performed on Delta and Theta datasets. Hence, we showed that more spatial information
increases the complexity and redundancy of the signal pattern produced by the selected 19
channels, which already holds enough information for the model to distinguish between the
two classes.

In order to further assess the performance of our model, we added a control group of 17
healthy subjects and conducted a multiclass classification to discriminate HC, SCD and MCI
simultaneously. We found that, in this case, the best-performing frequency bands were Alpha
and Theta both on epochs’ and patients’ classification tasks. Specifically, on Alpha the AUC
was 0.750, and slightly lower for Theta as shown by the ROC curves in Figure 3.6. However,
Theta reported the best performances in terms of Accuracy and F1-Score when classifying
subjects. In addition, Alpha and Theta bands were the only ones that reached classification
accuracies significantly higher than no-information rate (p  0.001 for both bands). These
results are in line with evidence reported in literature that both SCD and MCI subjects are
characterized by lower amplitude of posterior alpha rhythms in rsEEG in relation to cognitive
functions when compared to controls [148] and that this feature, along with higher amplitude
of d - q rhythms, is related to worsening of impairment over time [50].

Also in relation to this task, single-band datasets performed better than the All-band
dataset, showing that specific EEG rhythms can be strong prognostic biomarkers for cognitive
impairment in the context of AD. Furthermore, we conducted experiments using high-density
EEG Alpha and Theta datasets and showed that, as in the previous case, increasing the number
of channels does not significantly improve the capabilities of our model in discriminating
among the three classes of subjects, since marginally higher results were obtained on Alpha
but not on Theta.

In terms of classification performances, we compared the Transformer with three DL mod-
els based on CNNs for both binary and multiclass classification tasks. The results reported in
Tables 3.7 and 3.8 show that all the models achieve overall good performances. In particular,
focusing on the patients’ binary classification, all the classifiers, except DeepConvNet on the
Theta band, reach good accuracy levels (> 70%), significantly higher than the no-information
rate (p  0.001 for Transformer and EEGNet; p  0.01 for EEG-TCNet). The classification
accuracy of patients in the multiclass approach, instead, was not significantly higher than the
no-information rate in any case. Nevertheless, accuracy higher than 50% was achieved only
by the Transformer and EEG-TCNet on the Theta band; in these cases, the performance on
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epochs’ classification was significantly higher than no-information rate (p  0.001), meaning
that both models uncovered a pattern underlying EEG data which allows the discrimination
of HC, SCD and MCI subjects.

We also performed statistical analysis in order to assess the significance of our results
on the cumulative test set. One-Way ANOVA was carried out for each group of data
(i.e., SCD vs MCI on Delta and Theta bands, and HC vs SCD vs MCI on Alpha and
Theta bands), considering the model as factor. The analysis did not reach the statistical
significance (p < 0.05) in all the cases, except for the SCD vs MCI classification on Delta
band (p = 0.023).

This result should be interpreted considering that we conducted the study implementing a
LOSOCV approach which, in any case, allows an estimation of the generalization capabilities
of the implemented models on the data of unseen subjects [149].

Despite the performances of the Transformer for the specific classification tasks are not
outperforming when compared to the results obtained by CNN-based models, the use of this
model still brings advantages that are worth considering. In fact, as already reported in the
previous section, the Transformer model is less complex, with 5.2 k of trainable parameters,
when compared to DeepConvNet, EEGNet and EEG-TCNet, which have 298.6 k, 9.8 k and
14.1 k parameters, respectively. As evidenced by a recent survey by Hu et al., reducing
the complexity of DL models while guaranteeing, at the same time, a sufficient level of
expressive capacity by the model itself for a given task, is an open research problem [150].
In this perspective, the Transformer model already demonstrated classification capabilities
comparable with more complex models.

As a final remark, in the next Chapter we’ll demonstrate that the attention mechanism
implemented by the Transformer, which is perfectly suited for the classification of temporal
signals, allows the exploration of its interpretability capabilities by analysing temporal
dependencies in the EEG signals exploiting the attention weights [151, 152].



Chapter 4

Interpretability methods for EEG-based
Transformers

In the previous Chapter we demonstrated that Transformers and the self-attention mechanism
can be successfully applied for the classification of EEG signals in a complex task as
the discrimination of SCD from MCI patients. However, the clinical translatability of
the framework remains somehow limited, due to the intrinsic complexity and black-box
behaviour of the model.

In this section of the Ph.D. thesis, an extension of the previously described workflow is
provided, introducing a method for visualizing and interpreting the outcome of the model as
well as giving insights about its decision-making processes. Furthermore, the research work
lays the foundation to the possibility of using this information to guide the identification of
biomarkers of cognitive impairment in resting-state EEGs.

4.1 Motivations

Explainability and visualization methods of deep models, such as GradCAM or LIME,
have already been employed in tasks for the classification of biological signals [153, 154];
however, a trustworthy understanding of DL algorithms supporting decisions in healthcare is
essential and still needed [155, 156]. As seen in previous Chapters, concept of interpretability
could represent a valid approach to deal with this problem. Transformers [95] and Vision
Transformers [157] have introduced a new approach to the interpretability of deep networks
in the fields of Natural Language Processing and Computer Vision through the mechanism
of self-attention (see Section 2.5).
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Fig. 4.1 Representation of the modules composing the proposed Transformer. C is the number
of EEG channels, L is the length of the input epoch (in s), f is the EEG sampling rate (in
Hz), k is the kernel size, emb is the embedding dimension and H is the number of attention
heads. The classification token is denoted as CLS; the classification token updated after the
Attention module is denoted as CLS*.

Various interpretability methods have been proposed for models based on Transform-
ers [158]. Nonetheless, one effective approach is to leverage raw attention scores to visualize
the portions of the input on which the model focused the most during the decision pro-
cess [159, 160], particularly when working with time series [161].

On these premises, the research paper entitled Understanding the role of self-attention in
a Transformer model for the discrimination of SCD from MCI using resting-state EEG [162]
and reported in this section of the thesis aims to develop an interpretable framework for the
model presented in the previous Chapter 3 in order to provide explanations for its decisions
and support the identification of alterations in the brain activity of SCD and MCI patients
by detecting patterns of interest in the input signals. In addition, this work aims to provide
a further analysis of said method by tuning parameters and performing ablation studies
on different modules of the Transformer in order to highlight the role of the self-attention
component in the classification process.

4.2 Materials and methods

The dataset and the preprocessing steps used in this work are extensively described in
Section 3.3. For this specific study, the binary classification task SCD vs MCI is considered.
Specifically, epochs of rsEEG signals of 56 SCD and 45 MCI subjects were used as input to
the Transformer model, whose modules are outlined in Figure 4.1 for clarity purposes.
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As previously described, the model is composed of three main modules, namely patch
embedding, positional encoding and the self-attention module, which is included in an
encoder block. Lastly, it comprises a classification module constituted by a fully-connected
layer with the softmax activation function.

To investigate how the traditional self-attention and Multi-Head Attention (MHA) strate-
gies could affect the classification performances, the number of heads (H) per encoder was
varied.

To avoid overevaluation of model performance, a test set was generated using 20 % of
total subjects with a stratified random sampling approach. A stratified 5-fold cross-validation
was employed on the remaining subjects, i.e. 43 SCD and 37 MCI, to train and validate the
classification model. Using this technique, the data is divided subject-wisely into five equally-
sized subsets, and the model is iteratively trained on four of these subsets and validated on
the remaining one. Each subset is used as validation set exactly once.

Models were trained using Adam optimizer (lr = 10e � 4, b1 = 0.9, b2 = 0.999,
eps = 1e� 08), which is the most employed method when training Transformer-based
architectures [95] since it has faster convergence than non-adaptive algorithms such as
SGD [163]. The value of lr was chosen by reducing it by a factor of 10 until finding an
optimum in the validation set accuracy, starting from 10e�2. Cross-Entropy was used as
loss function. Batch size was set to 16 and the number of training iterations was equal to 250.
In the proposed model, emb is set to 32 and Depth is set to 2, resulting in 56194 trainable
parameters.

4.3 Interpretability workflow via Self-attention

To understand the behavior of the model for the investigated classification task, it is important
to know which parts of the input the model pays more attention to. To this end, we extracted
weights from each attention layer of the trained models in order to identify the signal patch
that contributed the most to the classification of each EEG epoch. As shown above, the
classification of an EEG epoch is made upon the updated representation of the CLS token, i.e.
CLS* (see Fig. 4.1). Thus, for each attention matrix, we considered the first row of values
that correspond to the scaled dot-product attention of the CLS* token on the representations
corresponding to the non-overlapping patches of the raw signal. This gives attention weights
for each patch of the input epoch, helping evaluate their impact on the prediction.

It is worth noting that our Transformer, in its configuration with H > 1, uses a multi-depth
and multi-head attention mechanism, which can produce different attention patterns that
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can be challenging to visualize [105]. We averaged the attention scores across attention
heads in order to retain all information produced by the attention module. On the other
hand, we extracted different results for the first and the second encoder blocks to evaluate the
contribution of each attention layer separately.

For all subjects in the dataset, we identified n patches, corresponding to n epochs of the
raw signals with the highest attention weights. This means that for each epoch of length
L, a patch of signal with dimension k datapoints was obtained, where k is the dimension of
the kernel in the convolutional layer employed for patch embedding. In order to uphold the
assumption that the highest attention weights are representative of significant changes in
the EEG activity between SCD and MCI groups, we collected and concatenated 1-second
long windows of the signal centered on the previously identified patches, obtaining a new
set of signals for each class. Epochs belonging to the same class were then merged in a
single time series. To validate the significance of the results through a comparison with a
reference, we also segmented the complete signals with windows of 1 second and, once again,
concatenated epochs of the same class to obtain one SCD and one MCI time series. Statistical
analysis was performed on EEG data using Matlab’s Letswave 7 tool. We applied the multi-
sensor non-parametric cluster-based permutation Student’s t-test for unpaired data [164]
to compare the signals’ epochs of the two groups, both for the attention-based set and the
reference, which allowed us to handle the multiple comparisons problems. The calculation
of the cluster-based statistics consists in grouping together neighboring t-values obtained for
(space, time)-samples into clusters and summing the statistical values within each cluster.
For inclusion in a cluster, only statistical values higher than the cluster-forming threshold,
which was set to 0.05, are considered. Then, the significance probability is calculated with
a Monte Carlo approximation based on the number of permutations. As a rule of thumb
proposed in previous works, this number should be no less than 1000. Thus, to perform
feasible computations, we set it to 2000.

Finally, to gain a physiological interpretation of the results, we performed time-frequency
analysis by applying Continuous Wavelet Transform (CWT) to the EEG epochs and averaging
the results across each group. Complex Morlet wavelet with bandwidth of 1 Hz and central
frequency of 1.5 Hz was used as mother wavelet.

4.4 Results and Discussion

In this section, we extensively illustrate the results of interpretability analysis for visualizing
the focus of the model on specific EEG patterns. Then, we provide results of parameter
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tuning tests for choosing the best model configuration and demonstrate the efficacy of the
attention module through ablation studies.

4.4.1 Interpretability analysis

Following the approach proposed in section 4.3, the interpretability analysis was performed
on the model which obtained the highest values of mean accuracy and AUC on the test set, i.e.
the Transformer configuration with L = 30 s, k = 64 and H = 8. This configuration achieves
mean accuracy of 65.4 % (95 % CI [0.637 - 0.671], p-value [Accuracy > No Information
Rate] = 0.00026) on epochs’ classification, and 65.7 % of accuracy for subjects’ classification
through hard voting.

As a first attempt to visualize the attention focus, we present heat maps of attention scores
on the raw EEG signals for both SCD and MCI classes. Figure 4.2 shows two examples of
5-s-long windows extracted from the corresponding 30-s epochs of one correctly classified
SCD (Fig. 4.2a) and one correctly classified MCI (Fig. 4.2b) subject of the test set. For clarity
purposes, the normalized and non-normalized signals of one channel, namely T3, have been
plotted for both samples. Attention scores are plotted over patches of k datapoints, with dark
red indicating areas with higher focus, and light yellow indicating areas with lower focus.

To quantitatively evaluate the contribution of the attention scores on the final classification
outcome, we show results of the nonparametric cluster-based permutation Student’s t-test and
the corresponding time-frequency analysis with the aim of highlighting differences between
the two groups. We considered channels with clustered p-value < 0.01 to be significant.

When comparing epochs of 1 s centered on patches with the highest attention, the most
significant differences between the SCD and MCI signals are, indeed, located in the time
interval that corresponds to those patches, i.e. from 437 ms to 562 ms since the epoch start.
For instance, when considering the results of the first Transformer attention block (Fig. 4.3a)
it can be noted that most statistically significant inter-group differences can be found in
the central part of the time window, as shown by the corresponding scalp topographies
representing clustered p-values. The most significant changes occur on clusters including the
following channels: Fp1, Fp2, F3, F7, Fz, F4, F8, C3, Cz, C4, P3, P4, Pz, T5, T6, O1 and
O2.

This evidence is strengthened by the results obtained on the second attention block
(Fig. 4.3b). In this case, almost all statistically significant differences correspond to the
highest attention scores which are located in the middle of the considered time window.
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(a) SCD

(b) MCI

Fig. 4.2 Sample plots of two 5-s long EEG epochs with relative attention scores for one SCD
(a) and one MCI (b) subject of the test set. Both normalized and non-normalized signals are
shown.
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Scalp topographies of clustered p-values show that the significant clusters include the Fp1,
Fp2, F7, F3, F4, F8, C4, Cz, T3, P3, Pz and P4 channels.

The clusters found in both cases indicate brain regions that are congruent with scientific
evidence from cross-sectional and longitudinal studies on the cognitive spectrum of AD. As
reported in [53], the left posterior parietal and left and right temporo-occipital regions (which
are represented by P3, P4, T6 and O2 electrodes) were consistently described as the most
discriminative brain areas between controls, MCI and AD, while the left posterior temporal
region and fronto-central midline (corresponding to T5, Fz, Cz and Pz channels) as important
in the prediction of clinical progression in patients with SCD.

On the other hand, statistical analysis performed on the reference dataset, i.e. considering
all epochs of 1 s extracted from the input signal, regardless of weights attributed by attention,
found no significant channels at any time instant (p > 0.01). This result confirms that,
although mean classification accuracy on the test set is not optimal, the Transformer is able
to capture global temporal dependencies of the signal that allow the classification of each
epoch with good discrimination capability.

However, differently from other studies that applied an interpretability approach based
on attention scores to EEG signals in the context of sleep stage classification [151, 165] or
motor imagery paradigms [166, 167], these features are not easily detectable and do not
provide enough explanations in the time domain.

Hence, on the basis of the findings derived from the statistical analysis, we report scalp
topographies of the average power CWT for SCD and MCI subject groups based on the
results of the first Transformer block (Depth = 1). In particular, Fig. 4.5 shows CWT maps
averaged across the whole 1-s interval (first and third row) and the interval of interest (second
and fourth row) for delta (Fig.4.5a) and alpha (Fig.4.5b) frequency bands, respectively. Of
notice, differences between the groups are once again more evident when considering the
time interval corresponding to the highest attention scores, rather than the entire time window.
The maps confirm that subjects belonging to the MCI group show a lower power in high
frequencies and higher power in low frequencies in accordance with state-of-the-art results in
the context of AD characterization from rsEEG [13, 53, 168]. In addition, these explanations
keep with expectations of our previous work [133].

Additionally, we compared these maps with the ones obtained on the reference dataset,
and found that in the latter the differences between the groups do not correspond to specific
time intervals, in accordance with the results of the aforementioned statistical analysis.

To further understand the role of the multi-head attention mechanism, we repeated the
analyses for the baseline model with single-head self-attention, which achieves a mean
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accuracy of 59.5 % (95 % CI [0.577 - 0.612], p-value [Accuracy > No Information Rate]
> 0.05) on epochs’ classification and 61.9 % on patients’ classification. As expected, and
as found by [166], the attention activation of a single head is similar to the one obtained by
averaging multiple heads, with significantly different patches (p-value < 0.01) between SCD
and MCI groups corresponding to the highest attention scores, but resulting in more sparse
and less consistent channel clusters, particularly when considering the results obtained on
the first Transformer block. For Depth = 1, significant clusters include Fp2, F4, F7, F8, Cz,
C3, C4, P3, Pz, T3, T4, T5, T6, and O2 (Fig. 4.4a). For Depth = 2, significant channels
are Fp1, Fp2, F3, F7, F8, Fz, Cz, C3, C4, Pz, P4, T3, T4, T5, T6, O1 and O2 (Fig. 4.4b).
This is explained considering that the baseline model, for the same model depth, has lower
performances which do not reach the statistical significance in terms of accuracy; such a
result is in line with [169], who report that single-head attention necessitates deeper models
to prove more effective than MHA, but increasing the model complexity. Thus, the attention
focus is less indicative of discriminative EEG features. Consequently, the spectral analysis
obtained with CWT shows similar outcomes, with changes in activation between groups
mostly gathered in the central part of the window, but being less enhanced, especially in the
lower frequencies, for both Depths.

4.4.2 Hyperparamter tuning

We conducted experiments to identify the best model’s parameters to achieve optimal classi-
fication performances. We varied two parameters that influence the construction of the input,
namely the time duration of input EEG epochs and the design of the convolutional kernel,
and also investigated the influence of the number H of attention heads in the attention layer,
known to impact feature learning.

In particular, three different lengths of input epochs (10, 30 and 60 seconds) and five
different kernel sizes (16, 32, 64, 128 and 512) were tested and compared to identify the
combination with the highest classification performance. Table 4.1 reports mean results for
all the considered metrics on epochs’ and patients’ classification. The highest levels of mean
accuracy are reached with a kernel size of 64, with values of 65.4 % and 63.0 % for epochs of
30 s and 60 s respectively, and a kernel size of 32 on epochs of 10 s with a value of 63.4 %.

By contrast, the lowest results are yielded when using kernel sizes of 512 (52.4 % on
epochs of 60 s) and 16 (54.3 % on epochs of 30 s). Although the differences are not
significant (p > 0.05), in accordance with Song et al. [166], we found that large kernel sizes
tend to flatten temporal features and reduce the learning of global dependencies, while small
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(a)

(b)

Fig. 4.3 The results of the cluster permutation Student’s t-test for multi-head attention model,
Depth = 1 (a) and Depth = 2 (b). Clustered p-values over time are plotted on scalp maps at
50 ms intervals. Significant channels are yellow-circled and highlighted.
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(a)

(b)

Fig. 4.4 The results of the cluster permutation Student’s t-test for single-head self-attention
model, Depth = 1 (a) and Depth = 2 (b). Clustered p-values over time are plotted on scalp
maps at 50 ms intervals. Significant channels are yellow-circled and highlighted.
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(a)

(b)

Fig. 4.5 Scalp topographies of Average Continuous Wavelet Transform of EEG signals
segmented based on attention scores of the first Transformer block for SCD and MCI groups.
(a) Average CWT in delta band (1-4 Hz) across the whole second interval (first row) and the
interval of interest (second row). (b) Average CWT in alpha band (8-12 Hz) across the whole
second interval (first row) and the interval of interest (second row).
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Table 4.1 Classification results on the epochs’ test set for different input configurations,
expressed as mean ± standard deviation.

Epoch length Kernel Accuracy Sensitivity Specificity Precision F1 AUC

10

16 0.61±0.01 0.59±0.12 0.62±0.09 0.48±0.01 0.52±0.04 0.60±0.02
32 0.63±0.03 0.63±0.13 0.64±0.03 0.51±0.03 0.56±0.07 0.63±0.05
64 0.62±0.06 0.54±0.06 0.66±0.07 0.50±0.08 0.52±0.06 0.60±0.06
128 0.47±0.08 0.54±0.15 0.42±0.19 0.36±0.05 0.43±0.07 0.52±0.06
512 0.57±0.03 0.53±0.04 0.59±0.02 0.44±0.03 0.48±0.03 0.59±0.04

30

16 0.56±0.06 0.57±0.08 0.55±0.05 0.44±0.05 0.49±0.06 0.56±0.06
32 0.62±0.05 0.61±0.11 0.62±0.09 0.50±0.06 0.54±0.06 0.61±0.05
64 000...666555±±±000...000555 0.58±0.11 0.70±0.06 0.54±0.06 0.56±0.07 000...666444±±±000...000666
128 0.62±0.12 0.46±0.15 000...777222±±±000...222666 000...555777±±±000...111444 0.48±0.08 0.62±0.12
512 0.55±0.03 0.57±0.11 0.54±0.09 0.43±0.03 0.48±0.05 0.58±0.05

60

16 0.60±0.08 0.64±0.16 0.58±0.12 0.48±0.09 0.55±0.11 0.61±0.09
32 0.59±0.12 0.56±0.14 0.62±0.19 0.49±0.12 0.51±0.10 0.59±0.11
64 0.63±0.09 000...666444±±±000...111222 0.62±0.09 0.51±0.10 000...555777±±±000...111111 0.63±0.10
128 0.59±0.08 0.57±0.20 0.60±0.13 0.46±0.07 0.50±0.13 0.60±0.11
512 0.53±0.05 0.49±0.13 0.55±0.10 0.40±0.05 0.43±0.07 0.52±0.06

kernels produce tokens that do not contain enough information for the model to perceive
local changes in the signal. On the other hand, the length of the input EEG signal seems to
impact the performances of our model to a lesser extent. However, as a general remark, using
very long epoch lengths (i.e. 60 s) results in a smaller dataset size which increases the risk of
lowering the performance of the classification model.

We also compared the impact of choosing different numbers of heads for the attention
layer, performing experiments by varying H in [1, 2, 4, 8, 16, 32]. Since each head projects

the input onto a subspace of dimension dim =
emb
H

to compute the context [95], the values
of H were chosen based on the embedding dimension.

The results reported in Fig. 4.6 show that the effects on the performance of the model
follow no evident trend (p > 0.05), but the highest accuracy of 65.4 % is obtained with
H = 8, compared to 59.5 % with H = 1, 62.8 % with H = 2, 57.8 % with H = 4, 56.9 %
with H = 16 and 59.3 % with H = 32. Also, as shown by the error bars in the same figure,
setting the number of heads to 8 allowed to obtain the smallest 95 % confidence interval.
Conversely, the highest confidence intervals were derived from configurations with 1 and 32
heads. This suggests that while employing a greater number of heads enables the model to
identify more meaningful features, a progressive increase in the number of heads results in
shorter feature lengths within each head. This, in turn, contributes to a marginal decrease in
performance. This result confirms previous evidence from another study [170].
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Fig. 4.6 The impact of different numbers of attention heads on the mean accuracy over folds
for epoch-wise classification on the test set.

4.4.3 Ablation Study

In this section, we systematically analyze the importance of two key components of our
model, namely the attention-based Transformer encoder module and the positional encoding
module. An ablation study was conducted by firstly removing the Transformer encoder, i.e.
the classification was performed on the input signal after convolution without applying any
attention strategy. Then, we reintroduced the Transformer encoder module and dismissed the
positional encoding, so that the model had no information about the position of each patch in
the input sequence when performing classification. Lastly, we removed both the Transformer
and the positional encoding blocks. In the study, we included results for both MHA and
single-head self-attention models.

As depicted in Figure 4.7, and as already shown in Fig. 4.6, for the same input configura-
tion, the model employing multiple heads has overall better performances than the model
employing the traditional self-attention layers, which does not reach statistical significance
in classification accuracy on the test set and shows high variability over the folds.

Nevertheless, the effectiveness of using an attention mechanism is confirmed by the
results obtained when the Transformer block is removed, in which the mean accuracy on
the test set drops significantly in the epochs’ classification, decreasing by 16 % (p = 0.004)
for the MHA configuration and by 10.5 % (p > 0.05) for the single-head self-attention
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configuration including it. Also, in patients’ classification it reduces significantly by 19 %
(p = 0.009) in the first case and by 15.2 % (p > 0.05) in the latter.

The removal of the positional encoding has a different impact on the two models. For
the model employing MHA, the mean accuracy over the folds decreases by 1.5% (p > 0.05).
Although the difference is not significant, these results suggest that this model makes use
of positional encoding in an informative way, but is still able to compensate for it with
the attention module. Additionally, this consideration is supported by the results of the
last ablation test, in which both the Transformer and the positional encoding modules are
removed. In this case, the mean performances of the model are slightly higher than the case
in which only the Transformer is removed, by 1.5 % epoch-wise (p = 0.02), proving that the
positional encoding module is useful when combined with multi-head attention, but has a
negative impact on the results when added to a convolutional-based model. In fact, positional
information could be inherently learned by a convolutional layer with a sufficient receptive
field size [171] and thus the information provided by the positional encoding in this case
could produce redundancy. On the other hand, the ablation of the positional encoding module
in the single-head self-attention model also seems to impact positively on the classification
performances, by increasing accuracy of 2.2 %, but not significantly (p > 0.05), which
further proves that the attention module is capable of learning positional information by
itself [172]. However, this result needs further understanding [173].

Fig. 4.7 The results of ablation study for epoch-wise classification on the test set. Accuracy
values are plotted for single folds and as mean values over folds. In the legend, att is the
attention module, pe is the positional encoding, mha is the multi-head attention and sa is the
traditional self-attention with one head.
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4.4.4 General remarks

The complexity of EEG signals poses a challenge in the identification of biomarkers that
can accurately discriminate between SCD and MCI conditions. This study demonstrated
that MHA can be used in an end-to-end Transformer model to automatically locate time
windows of the resting-state EEG that may account for significant changes in the brain
activity. The interpretability analysis showed a higher global efficacy of MHA compared
to traditional self-attention approaches. Indeed, although it was previously found that the
MHA-based Transformer did not outperform other investigated DL methods for the specific
task, it allowed to highlight significant differences between the groups which could not be
explained otherwise. In addition, the ablation study confirmed the effectiveness of introducing
Transformer blocks in the proposed model, in particular when coupled with the encoding of
the positions of patches in the input.

This finding suggests that this framework could serve not only to enhance the inter-
pretability of a black-box model which achieves state-of-the-art classification performances,
thus addressing the problem of the trade-off between accuracy and trustworthiness [174], but
also as a guide for experts to facilitate the extraction of rsEEG markers of cognitive decay.
A recent work employed the attention mechanism to design an EEG channel interpolation
algorithm [175]. Similarly, this method could be exploited also in different applications to
select relevant domain-specific information by taking into account short and long temporal
dependencies of the signal.



Chapter 5

Computational methods for the analysis
of evoked responses

So far, this thesis has dealt with the development of intelligent explainable systems for
decoding and classifying spontaneous EEG signals recorded in resting-state conditions. In
this last Chapter, the focus will shift on computational methods for analysing EEG responses
related to internal or external events.

In particular, the first part of the Chapter describes the use of an experimental paradigm
to verify the preservation of the mechanism of motor resonance in early PD patients using
behavioral, hemodynamic and electrophysiological data and how this can affect rehabilitation
strategies. In this work, changes in event-related desynchronizations (ERDs) of alpha
rhythm are analysed as a biomarker for assessing the presence of sensorimotor network
involvement during specific tasks. This study was conducted in collaboration with the
Neurophysiopathology Unit at Polyclinic General Hospital of Bari, in Bari, Italy.

The second topic of the Chapter focuses on event-related potentials and proposes a
different level of analysis by employing biophysical models based on Dynamic Causal
Modeling (DCM) and statistical inference, coupled with ML methods. The research activities
described in this section were carried out during the months spent as visiting Ph.D. student
in the Department of Data Analysis at the Faculty of Psychology and Educational Sciences
of Ghent University, in Ghent, Belgium.

Lastly, the Chapter reports a novel research in the field of Human-Robot Interaction (HRI)
investigating how cross-modal stimulation linked to gender aspects (i.e., human pheromones
and voice gender) and proxemic space variations influence behavioral and electrophysiologi-
cal responses. These research activities were conducted in collaboration with the Laboratory
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of Cognitive and Psychophysiological Olfactory Processes of the University of Salento, in
Lecce, Italy.

5.1 Motor Resonance in Parkinson’s disease

5.1.1 Motivations

The role of the motor cortex has long been known in cognitive processes such as, for example,
motor planning, motor imagination, perception of action, and motor learning. The observation
of action seems to involve the generation of the internal representation of that same action
in the observer, a process named Motor Resonance (MR) [176, 177] and mediated by the
Mirror Neuron System (MNS). Importantly, action observation determines the activation of
different networks located in the visual, motor, and perceptive areas [178].

Understanding the neurophysiological mechanisms of action observation effects on the
brain of neurological patients has been a hot topic in the last few years. Specifically, the pro-
gressive aging of the population poses new challenges to rehabilitation medicine, in particular
for those neurodegenerative and disabling diseases such as Parkinson’s disease [179]. In PD,
motor resonance is often impaired due to the degeneration of dopaminergic neurons in the
basal ganglia (see Section 2.1.2), which disrupts motor control and coordination. Studies sug-
gest that individuals with PD may show reduced MR, as evidenced by altered brain activity in
regions of the MNS typically associated with action observation and motor simulation, such
as the premotor cortex and inferior parietal lobule [180, 181]. This impairment can contribute
to difficulties in motor learning and social interactions, as patients may struggle to imitate
or understand observed movements. Motor cognition appears to represent a promising field
of study for the design of rehabilitation interventions for patients with PD, including those
based on action observation [179].

The main objective of this study was to verify whether an experimental paradigm of
action observation in a laboratory context could elicit cortical motor activation in PD patients.
This specific paradigm, which involves the observation of grasping actions towards graspable
or ungraspable objects through videos, had been previously employed for providing indirect
evidence for the presence of MR, but never on PD patients [182–185]. In particular, the aim
was to investigate how movement congruence could affect mirror mechanisms in PD and
healthy controls, and whether a comparable pattern between the two groups could indicate a
preservation of normal motor resonance.
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5.1.2 Materials and Methods

21 PD patients and 22 sex- and age-matched controls were enrolled in the study. Inclusion
criteria for PD were: diagnosis of idiopathic Parkinson’s disease, Hoehn-Yahr stage < II, age
between 40–80 years, MMSE > 24, absence of significant visual deficits. All patients were
stable without motor/non-motor fluctuations and dyskinesias. The experimental protocol
was designed as follows: in a first session, participants observed videos of grasping actions
directed towards a graspable or an ungraspable object and were instructed to respond the
instant the agent touched the object (Time-to-contact detection session). In a different
experimental session, instead, participants were instructed to watch and pay attention to the
videos (Observation-only session).

During each experimental session, the participants’ cerebral hemodynamic activity was
recorded using a functional Near-Infrared Spectroscopy (fNIRS) with 20 channels located on
the motor and premotor brain areas. Furthermore, an EEG analysis, focused on event-related
desynchronization of alpha rhythm (alpha-mu rhythm), was considered to verify the presence
of a sensorimotor network involvement.

For the purposes of this Ph.D. thesis, only results relative to the EEG data analysis are
reported in the next sections. The complete results were published in the work "Effects of
movement congruence on motor resonance in early Parkinson’s disease" [186].

5.1.2.1 Experimental procedure

The stimuli used in the study are described in Craighero et al. [176], consisting of two 2640
ms videos depicting an agent seated at a desk reaching and grasping an object, recorded
from a third-person perspective. In the flat object video, the object was a parallelepiped (7
cm × 3 cm × 3 cm) oriented with its longer axis facing the agent, who naturally grasped
it with fingers parallel to the frontal plane without lifting it. The sharp-tip object video
replaced the parallelepiped with a polyhedron of the same dimensions using video editing
software, ensuring that the kinematics of the movement remained unchanged, and the agent’s
fingers touched the sharp tips. Both videos featured the same moment of contact between
the agent’s index finger and the object (1880 ms, Frame 47). Additionally, catch-trial videos
were created by stopping the videos before the agent’s hand touched the objects (1520 ms,
Frame 38) and extending the duration to match the experimental trials (2640 ms) by repeating
the final frame. These catch trials were included to maintain participant attention but were
excluded from the analysis.
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The experiment was conducted using a multimodal fNIRS-EEG co-registration system.
Participants, seated in front of a display and a keyboard, were first asked to grasp both objects
shown in the videos using the same grip demonstrated by the agent. This task aimed to
illustrate the difficulty of grasping the sharp-tip object due to its weight and sharp edges,
compared to the flat object, despite both objects having the same weight. Two experimental
sessions were conducted: a Time-to-contact detection session and an Observation-only
session. Each session consisted of 42 randomized trials, including 30 experimental trials (15
flat object videos and 15 sharp-tip object videos) and 12 catch trials (6 of each type).

At the start of each session, participants fixated on a cross for 120 s, recording 20 s of
baseline and 100 s of resting state. The type of session was announced before the resting-state
period, and participants were warned again 5 s before the video began. The resting-state data
were used to assess preparatory brain activity for action observation in both fNIRS and EEG
modalities. Between videos, a 15 s black screen was shown, and participants were given a
5-minute break at the end of each session.

5.1.2.2 EEG recording and analysis

The EEG signal was acquired using the Micromed Brain Quick equipment at a sampling
rate of 256 Hz using 61 electrodes positioned according to the 10-10 international system.
To acquire also the electrooculogram (EOG), two electrodes were placed on the right and
left eyebrows, respectively. The reference electrode was positioned on the nasion, and
the ground electrode on Fpz. A 0.1–70 Hz band-pass filter with a 50 Hz digital filter was
applied during the EEG recording. The EEG was recorded during the entire experimental
procedure. The EEG data preprocessing was performed with EEGLAB. The researchers
used a semi-automatic method based on visual detection and channel statistics to locate and
remove the faulty recording channels. All channels with distributions far from the Gaussian
one were excluded from the analyses. Ocular artifacts recorded by the EOG channels were
removed by means of the ICA algorithm included in the EEGLAB tool. Next, all the
EEG files were processed using Letswave 7 tool. EEG has been re-referenced to 0 value
and pre-filtered with a band-pass filter in the range [1 -30] Hz. To evaluate the not phase-
locked synchronization/desynchronization of alpha mu and beta mu, the researchers used a
time-frequency analysis based on Continuous Wavelet Transform (CWT), with a baseline
correction computed on the 20 seconds preceding the resting-state. The absolute power of
the alpha (7-12 Hz) and beta (13-30 Hz) bands were considered for the single experimental
conditions. In order to detect the preparation to action observation, epochs lasting 5 seconds
that preceded both the start of the observation-only session and the time-to-contact detection
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session were considered. To evaluate the alpha mu changes, with respect to the baseline,
related to the vision of the flat and sharp tip objects, we computed the CWT in a time window
from 2 seconds preceding the object grasping to 1 second following it, so the EEG was
recorded simultaneously to the movement of the arm in the video.

For topographical analysis and generation of Statistical Probability Maps, we used Matlab
Letswave 7 tool, applying the Student’s t-test for paired data to compare the absolute power
of alpha mu in single groups. The two-way ANOVA with conditions and groups as factors
was also applied, to establish differences of alpha mu behaviour in resting-state preceding
observation and time-to-contact detection sessions and during these sessions between flat vs
sharp tip object grasping conditions. The cluster significant threshold was set to 0.05 and
the number of permutations was set to 2000. For representation purposes, the Statistical
Probability Maps show the significant results obtained after permutations in the range 0.001-
0.01

5.1.3 Results

Alpha mu: Comparison between time preceding time-to-contact detection session and
observation-only session. For the resting-state, we considered the 5 seconds preceding the
time-to-contact detection session and the observation-only session.

In controls, we observed that in the lower frequencies range, the alpha rhythm was more
desynchronized in the time preceding the observation-only session (Figure 5.1). However,
this did not reach the statistical significance.

In PD patients, the alpha mu desynchronized in the time preceding the time-to-contact de-
tection session (Figure 5.1). The t-test for paired data showed a significant desynchronization
in the 13-18 Hz range over the central regions.

In the comparison between groups, alpha mu desynchronization was more evident in
PD patients over the left fronto-central regions in the seconds preceding the time-to-contact
detection session, as indicated by the results of the ANOVA test considering the session and
groups as factors (Figure 5.1).

Time-to-contact detection session: comparison between flat object trials vs sharp-tip
object trials. In controls, desynchronization of the mu rhythm in the alpha range was
present in the second preceding the grasp of the objects. Two seconds before the flat
object grasp, the alpha rhythm desynchronization prevailed in the 8-12 Hz range, on the left
fronto-central electrodes, compared to sharp-tip object (Figure 5.2).
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In PD patients, the desynchronization of alpha mu was also present in the second preced-
ing and following both objects grasping. We also observed desynchronization in the range
11-13 Hz in the same time preceding the hand grasping the flat object.

The comparison between flat object trials vs sharp-tip object trials between groups was
not significant (Figure 5.2).

Observation-only session: comparison between flat object trials vs sharp-tip object
trials. In controls, the mu rhythm, especially in alpha range, showed a tendency to a
desynchronization in the time preceding the grasp of both objects. In the time following
the incongruent movement, the alpha rhythm appeared more desynchronized, though no
significant change was detected with the t-test. (Figure 5.3).

Patients showed a similar mu rhythm desynchronization, especially in the alpha range, in
approaching the objects grasping, though the two objects did not induce different mu rhythm
behaviour.

The comparison across groups and conditions was not significant.
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Fig. 5.1 Resting-state preceding the observation and Time-to-contact detection session.
(Up) The Grand Average of Continuous Wavelet Transform of alpha-mu recorded on the
C3 derivation in the 5 s of resting state preceding the observation session and Time-to-
contact detection session is reported for controls and PD patients groups. In PD patients,
desynchronization of EEG rhythm is evident in the 8–13 Hz range in the time preceding
the Time-to-contact detection session, in controls desynchronization prevailed in the low
alpha range before the observation-only session. (Bottom) The statistical map reports the
p-values obtained with ANOVA analysis for the interaction group x session. It shows that
alpha desynchronization was more evident in PD patients on the fronto-central electrodes for
the effect of the session.
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Fig. 5.2 Time-to-contact detection session: comparison between flat vs sharp-tip object. (Up)
The Grand Average of time–frequency analysis of alpha-mu recorded on the C3 derivation
in the 2 s preceding and 1 s following the flat and sharp-tip object grasping are reported for
controls and PD patients. (Bottom) For each group, the p-values obtained with paired t-test
between flat vs sharp tip object are reported on the C3 channel, and on the statistical map.
Before the flat object trials, we observed that alpha-mu desynchronization prevailed in the
8–9.5 Hz range in the 2 s time in controls, and in the 1 s time in the 11–13 Hz range in PD
patients.
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Fig. 5.3 Observation-only session: comparison between flat vs sharp-tip object. The Grand
Average of time–frequency analysis of alpha-mu recorded on the C3 derivation in the 3 s
preceding and 1 s following the flat and sharp tip object grasping are reported in controls and
PD patients.

5.1.4 Discussion

Recent works reported that action observation therapy (AOT) has shown evidence of efficacy
as a rehabilitation strategy in PD patients [187, 188]. Such an approach for therapy, in fact,
was revealed to be effective in both single-session experiments and long-term therapeutic
programs; in addition, a recent review work evidenced how this kind of approach was easier
to apply respect to others, such as those based on Motor Imagery [180]. However, mirroring
circuits activation seems weaker in PD patients during the observation of others’ gait, as
compared to controls.

Here, the first evidence of active motor resonance mechanisms in early PD was provided,
with active response facilitation obtained with the observation of movement with explicit
semantic clues. Such phenomenon could compensate for a possible initial failure in motor
programming, as shown by the good performance PD patients demonstrated in motor reaction
after the more suitable movement observation.

Overall, the behavioral, metabolic, and EEG data suggested that MR mechanisms are
preserved in early-stage PD patients, since no significant differences were found between
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groups, and similar cortical activation during the observation of congruent movements was
observed [186].

Focusing on EEG results, in the resting state, PD patients exhibited greater alpha mu
desynchronization compared to controls. Both PD patients and controls experienced alpha
mu desynchronization when observing flat object grasping before responding, while this
effect was less pronounced when observing sharp-tip objects. Among controls, observing
the sharp-tip grasping triggered desynchronization of the alpha mu rhythm, likely indicating
cortical activation in response to the anticipation of an incorrect action by the agent.

Nonetheless, some differences between PD patients and healthy individuals were evident.
In resting-state, alpha mu desynchronization prevailed in PD patients on the left fronto-central
regions, in the resting state before the task requiring a behavioural motor reaction. In PD
patients, the preparation for active movement could request additional resources with respect
to controls, so we could not exclude that compensatory phenomena of cortical activation may
support motor reaction.

For Time-to-contact detection session, the time-frequency analysis showed a desynchro-
nization of alpha rhythm in the 1 s time preceding and following the movement observation,
which was similar for the 2 objects and for the 2 groups. This is in line with previous studies,
showing that changes in EEG mu activity provide a valid means for the study of human neural
mirroring. Similarly to fNIRS results, in both PD and control groups, we observed a prevalent
alpha mu desynchronization in the time preceding the vision of the flat object grasping. The
desynchronization was represented on the parieto-occipital and central electrodes in controls
and left prefrontal and posterior central electrodes in patients. No significant differences were
detectable between groups with regard to the spatial distribution of the desynchronization
induced by the congruent movement. Contamination with occipital alpha suppression is
possible during a visual task, and the lack of topographic specificity of mu desynchronization
may be a result of more general attention processes [189]. The contribution of neuroimaging
methods, such as fMRI and fNIRS could further clarify the role of cortical regions involved
in mirroring phenomena, as in the present study, in which an increase of oxyhemoglobin
levels was detected in the motor network. The lack of statistical differences in alpha mu
desynchronization modality between patients and controls is a confirmation of the substantial
integrity of motor resonance mechanisms in early PD.

For Observation-only session, the alpha mu showed desynchronization in the second
preceding and following the object grasping, in a more evident way in controls for the
ungraspable object. This type of EEG phenomenon could be explained with a sort of
mirroring activation due to other potential motor failures and was strictly time-related to the
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vision of the hand grasping. The alpha mu desynchronization is associated with execution
more than observation [189], and this could explain the contradictory results obtained with
the 2 brain functional analysis methods. The phenomenon we observed in controls with the
fNIRS method, consistent with a cortical activation induced by the more suitable movement,
was computed in the global time of the task and not evident in the time-frequency EEG
analysis which, on the other hand, displayed a time related cortical reaction to uncorrected
movement, which was not detectable with the fNIRS method. In any case, PD patients seemed
less reactive at the cortical level during the simple observation of movement, supporting the
hypothesis that mirror phenomena could have a function of motor facilitation in patients with
initial dysfunction of movement programming.

Based on the present results, we could suppose that modifying the content of action
observation, in order to stimulate motor resonance with the use of congruent movement, could
improve the efficacy of such rehabilitation strategies. Indeed, a recent work made evident the
modulation induced by motor resonance in healthy subjects, linking such excitability to the
efficacy of the AOT itself [190].
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5.2 Statistical inference and dynamic-causal modeling

In neuroimaging, accurately characterizing the directed interactions between brain regions is
critical for understanding the underlying neural dynamics responsible for cognitive processes
and pathological states. Most methods for assessing connectivity in neuroimaging studies
(e.g. MEG/EEG and fMRI) rely on functional connectivity measures, such as phase synchro-
nization, temporal correlations, or coherence between the activity of two regions, either at the
scalp or source level. Functional connectivity captures statistical dependencies between time
series and is advantageous because it does not require prior assumptions about the interactions
or their causal nature. However, in some cases, the primary interest lies in understanding
the causal architecture of these interactions [191]. Unlike functional connectivity, Dynamic
Causal Modeling (DCM) focuses on effective connectivity, which specifically refers to the
directed influence one neuronal system exerts over another .

DCM is a computational framework that models interactions among cortical regions,
allowing to make inferences about the system’s parameters and investigate how these parame-
ters are influenced by experimental factors. This inference relies on an underlying generative
model, which is informed by prior knowledge of neural dynamics and is typically expressed
as a set of differential equations. These equations describe the flow of neural activity between
regions and how the activity changes over time [192]

This approach goes beyond purely statistical associations and aims to model the under-
lying neural dynamics that generate an observed evoked response, such as ERP signals. It
focuses on how brain regions interact to produce these signals, using a biophysically realistic
model of neural activity and connectivity. In DCM, the brain is modeled as a determinis-
tic, nonlinear dynamic system that responds to external inputs and generates observable
outputs [193].

Since ERPs provide rich temporal data, the state equations in DCM for ERPs are more
detailed compared, for example, to those used for fMRI. Bayesian inference is often employed
to estimate the model parameters, which include the connectivity strengths between brain
regions, the time constants of neural processes, and the amplitude of neuronal responses.
Bayesian inference combines prior knowledge with observed data (i.e., ERP recordings)
to estimate the parameters of the DCM. This is done by specifying a prior distribution
for the model parameters, which encodes initial beliefs about the causal interactions in
the brain. As the model is fitted to the observed data, the prior is updated through model
inversion, resulting in a posterior distribution that represents the estimated parameters with
their associated uncertainty.
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In mathematical terms, Bayes’ theorem can be written as:

P(q |data) =
P(data|q)P(q)

P(data)
(5.1)

where:

• P(q |data) is the posterior distribution (our updated belief about the parameters q after
seeing the data),

• P(data|q) is the likelihood, which tells us how likely the observed data is, given certain
parameter values,

• P(q) is the prior, our belief about the parameters before seeing the data,

• P(data) is a normalizing constant that ensures the posterior is a valid probability
distribution.

Bayesian methods are particularly suited for DCM because they can accommodate uncer-
tainty in both the model and the data, allowing for robust estimates of effective connectivity.
The posterior distributions provide not just point estimates but a range of plausible values for
each parameter, reflecting the variability in the data and any prior knowledge.

5.2.1 DCM-informed classification of ERPs

The idea behind this research topic is to develop a highly generalizable and modular frame-
work that incorporates extracting ERPs from real-data of heterogeneous cohorts of subjects,
fitting DCM models to the data and obtaining the models’ parameters. These parameters
can be viewed as biomarkers that yield a low dimensional, interpretable feature space that
allows the description of differences between subjects at individual level. Thus, this work
aims to demonstrate that a combination of biophyisical models and Machine Learning may
outperform traditional approaches based on raw brain data.

As a first attempt to develop the aforementioned framework, data from the Human
Intracranial Database [194] available on EBRAINS Knowledge Graph was used. This is a
dataset of stereotactic electroencephalography (sEEG) recordings from 100 epileptic patients,
collected while patients performed up to eight behavioral tasks designed to activate large-scale
neural networks involved in various cognitive functions such as language, memory, visual
attention, and motor behavior. The participants in the HID were patients undergoing surgical
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evaluation for drug-resistant partial epilepsy. These patients were recruited because non-
invasive methods failed to identify the epileptic focus, necessitating the use of intracranial
EEG (iEEG) recordings. iEEG recordings were conducted using a video-iEEG monitoring
system allowing simultaneous data recording from 128 depth-EEG electrode sites, sampled
at 512 Hz. One of the contact sites in the white matter was chosen as a reference. In addition,
all signals were re-referenced to their nearest neighbor on the same electrode before analysis.

The continuous iEEG signals were initially filtered using a band-pass filter across multiple
successive 10 Hz-wide frequency ranges (e.g., 10 bands from 50–60 Hz to 140–150 Hz).
For each band, the signal envelope was computed using the Hilbert transform. The resulting
envelope had a time resolution of 15.625 ms. To normalize the data, the envelope signal
for each band was divided by its mean over the entire recording session and then multiplied
by 100, producing instantaneous envelope values as a percentage of the mean. Finally, the
envelope signals from the consecutive frequency bands (spanning 10 Hz intervals between
50 and 150 Hz) were averaged to create a single time-series for the entire session. The Visual
Search Task (MCSE) was selected among different tasks to extract ERPs. This task was
designed to test participants’ ability to find a target (a gray "T") among distractors (tilted "L"
shapes) displayed on a screen. Participants were required to indicate, as quickly as possible,
whether the target was located in the upper or lower part of the array by pressing one of two
buttons (right index or right middle finger). The task was divided into two conditions, easy
and hard. In the easy condition, distractors were black while the target was gray; in the hard
condition, both the distractors and the target were gray. The task consisted of 8 blocks, each
block containing 12 trials, with 6 easy and 6 hard trials presented in a pseudo-random order.

The binary classification problem was structured to discriminate trial difficulty based on
the event-triggered high-gamma signal, as shown in Figure 5.4.

Of course, while this task does not provide a clinical relevance for this study, it is simple
enough to assess the proposed method.
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Fig. 5.4 Examples of high-gamma ERPs for easy and hard trials.

The ERP model was based on the DCM approach developed by David et al. [195]
which incorporates the connectivity principles outlined by Felleman and Van Essen [196] to
construct networks of interacting neural sources. Each source is modeled using a neural mass
framework, building upon the model by Jansen and Rit [197]. This model represents the
activity within a cortical area through three distinct neuronal subpopulations, corresponding
to granular and agranular cortical layers. In this model, excitatory pyramidal cells, which act
as the primary output neurons, receive input from both excitatory and inhibitory interneurons
via intrinsic connections confined to the cortical structure. Excitatory interneurons are
represented as spiny stellate cells, which are predominantly located in layer four and receive
forward inputs. The excitatory pyramidal cells and inhibitory interneurons, located in
agranular layers, process backward and lateral inputs within the network.

DCM parameter estimates were obtained by fitting ERPs during the easy and hard
tasks. We fitted ERP recordings from different participants, thus obtaining DCM parameter
estimates. Figure 5.5 shows the results obtained for different brain regions and different task
difficulties.

These parameters were then used as input features to train and test a simple logistic
regression model. The same model was then trained using the raw signal samples as features,
and also concatenating raw signals with the parameters of the DCM fit.

Results obtained over 5-fold cross-validation demonstrated that adding the parameters to
the original samples actually improved the mean classification accuracy (LR: 0.82 ± 0.15
with raw signal samples, 0.88 ± 0.14 with aggregated signals and parameters). This could
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Fig. 5.5 Original and simulated ERPs obtained by fitting the DCM model. Signals are
averaged over subjects and trials.

indicate that the information carried by the parameters’ estimates of the DCM model is used
by the classifier to discriminate between the two classes. Although these results should be
confirmed and further assessed, another recent study proved a similar approach to be effective
in classifying depression against controls [198], indicating that byophisical models of EEG
activity could provide biomarkers of pathological states.
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5.3 Effects of cross-modal stimulation in Human-Robot
Interaction

5.3.1 Motivations

Robotics is increasingly vital in cognitive neuroscience, providing innovative tools and
methodologies to investigate the complexities of human brain function and behavior [199].
The integration of humanoid robots and Human-Robot Interaction (HRI) paradigms facilitates
a novel approach to understanding the neural and psychological processes that underpin social
interaction, empathy, and the perception of agency [200, 201]. This perspective is valuable
for elucidating how the brain responds to social signals, body language, and facial expressions
in robotic agents, thereby enhancing our understanding of the neural foundations of social
cognition [202]. One promising application of humanoid robots lies in the investigation of
putative human pheromones (PP). Research over the past few decades has yielded contentious
results regarding the existence and function of pheromonal signaling in humans, particularly
concerning the vomeronasal system (VNS) [203, 204]. While anatomical and genetic studies
suggest that the VNS is diminished or absent in humans [205, 206], evidence from other
mammals indicates that pheromone-based communication remains vital [207, 208]. Notably,
specific steroidal compounds, such as androstadienone and estratetraenol, have been iden-
tified as potential human pheromones, yet solid empirical support for their effects remains
elusive. Methodological challenges, including difficulties in replicating results and limited
sample sizes, complicate the field. Additionally, research suggests that these chemosen-
sory mechanisms operate below conscious awareness, necessitating careful experimental
design [209, 210]. Employing humanoid robots in these studies may enhance experimental
control and replicability, allowing for a more nuanced exploration of how PP influences
neural and behavioral responses during HRI. This innovative approach could illuminate the
interplay between olfactory cues, proxemic behavior, and social communication, ultimately
contributing to a deeper understanding of human social dynamics.

Recent research showed that PP affects brain activity and the sense of co-presence in
a gender-dependent fashion during interaction with an embodied medium [211]. Building
on these findings and the literature presented above, the aim of this research work was to
investigate, during an experimental setting of HRI, the influence of cross-modal stimulation
linked to gender aspects (i.e., PP and the gender of the voice) and proxemic space variations
on behavioral and electrophysiological responses.
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5.3.2 Experimental setup

The experiment was conducted in the Laboratory of Cognitive and Psychophysiological
Olfactory Processes – INSPIRE Lab – of the University of Salento, Lecce, Italy. Fifty
healthy students (women n=25; mean age=22.6 y.o., standard deviation SD=4) took part in
the experiment. General information about the participants was collected through a short
questionnaire. The humanoid robot NAO, created by Aldebaran Robotics, was used as a
robotic interface and as a physical actuator to administer the embodied social cues stimuli,
while opportunely playing a recording of a reduced Italian adaptation of the story for children
“Freddie the Leaf” by Leo F. Buscaglia, lasting approximately 5 minutes. This story was
previously recorded with a male (M) and a female (F) voice. During the playback of the
audio, every 10 seconds, the robot would perform one out of four movements to reduce
and increase the proxemic space of the participants: walk forward (S1), arm forward (S2),
arm backward (S3), and walk backward (S4). The electroencephalographical signal was
recorded from the scalp of the participants using a 64 active electrode cap (ActiCHamp, Brain
Products, Munich, Germany), according to the international 10–10 system, with a sampling
frequency of 1,000 Hz. Human putative pheromones (PP) 1,3,5(10),16-estratetraen-3-ol
(Steraloids, Inc., Newport, R.I.; CAS number: 1150-90-9; Estr, E) and 4,16-Androstadien-3-
one (Steraloids, Inc., Newport, R.I.; CAS number: 4075-07-4; Andr, E) were used. Vaseline
oil alone (Neut, N) was used as a control substance. Three pheromonal conditions (N, E,
A) were combined with two genders (F, M) of the narrative voice, resulting in a total of six
experimental conditions per subject: NF, NM, EF, EM, AF, and AM. They were presented in
a balanced and pseudorandomized fashion across subjects so that none of the participants
underwent the same order of conditions. Before the beginning and out of sight of the subject,
one experimenter (F or M depending on the condition) replaced the vial cork with a drilled
one and placed the vial in a necklace with a special accommodation. Then, the collar was
positioned around Nao’s neck so that the pheromone could volatilize during that condition.
Nao was placed 70 cm from the subject; the latter was asked to observe the robot during the
listening. Each condition lasted 5 minutes during which the robot performed a movement
of reduction or increase of the proxemic space every 10 seconds. Between one storytelling
session and another Nao was taken out of the room so that its necklace could be replaced. In
the meanwhile, the door and the window were kept open, and the subject was asked to fill
out the questionnaire.

Statistical analysis was performed on EEG data using Matlab’s Letswave 7 tool. We con-
ducted a main analysis by adopting a two-way point-by-point analysis of variance (ANOVA).
The factorial design included the group (men and women) as a between-subject factor,
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whereas the within-subject factors were social odor condition (N, E, and A), voice (M and F),
proximity space (Forward and Backward), and body (LEGS and ARMS). To estimate the
significance of the amplitude responses across time and electrodes (post-stimulus), post-hoc
comparisons were performed with the non-parametric cluster-based permutation Student’s t-
test for paired data, as in previous studies of this thesis. Multi-sensor analysis was performed
in order to consider both temporal and spatial adjacency of the samples.

The spatio-temporal evolution of the significant effects is represented through topograph-
ical maps of the clusters averaged in bins of 50 ms. For all the analyses, the channels for
which the t-value exceeded the statistical threshold (p < 0.05) were considered significant.

5.3.3 Results and discussion

The electrophysiological findings indicate that spatial variations, specifically in forward
versus backward movements, significantly influence brain activation patterns, with variations
also based on the moving body part (LEGS or ARMS) and narrating voice (M or F). For
movement direction, forward movements generated increased activation in temporal, parietal,
centro-parietal, and occipital regions across both conditions (AF and NF) (see Figure 5.6).
Conversely, backward movements led to stronger frontal activation, though with latency
differences between the AF and NF conditions, showing a quicker response in the AF
condition.

Additionally, the results reveal distinct temporal windows for these effects, notably from
50-600 ms in AF (with a focus on 350-550 ms) and two clusters in NF (0-500 ms and
500-1000 ms). These observations suggest that different spatial movements (forward or
backward) elicit unique brain activation patterns, impacting specific brain regions in ways
that vary based on the narrating voice and timing.

The results further highlight significant interactions between the robot’s moving body
part (ARMS vs. LEGS) and experimental conditions, particularly regarding proximity space,
social odors, and narrating voice.

Body Part Motion (ARMS vs LEGS): The movement of the ARMS had a pronounced
effect in several conditions (AF, AM, EM) (Figure 5.7). A consistent activation pattern
emerged over time, beginning in the frontotemporal areas and expanding to central, parietal,
temporal, and occipital regions between 350-750 ms, especially when interacting with social
odor A. In contrast, the LEGS movement showed significance only in the AM condition,
activating central and posterior regions with an initial response between 50-450 ms. At later
time points, the arms movement dominated once more, particularly in posterior brain areas.
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Interaction with Social Odors (Andr, Estr, Neuter): The Andr pheromone significantly
influenced brain activity when paired with ARMS movement, marked by activation in both
frontotemporal and posterior regions during specific time windows. - Estr pheromone also
produced significant effects, though primarily in the central, parietal, and temporal regions,
suggesting a different neural response compared to Andr. Comparisons with the Neuter
odor revealed distinct patterns, especially in posterior regions during backward movements,
indicating unique neural signatures for both Andr and Estr versus Neuter.

Effect of Proximity Space and Direction (Forward vs Backward): Brain activity dif-
fered noticeably between forward (S1, S2) and backward (S3, S4) robot movements (see
Figure 5.6). Forward movements primarily influenced central regions, while backward move-
ments strongly impacted posterior regions, with pronounced differences when comparing
social odors (A, E, N). Significant differences were noted in backward movements across AF,
AM, EM, EF, NM, and NF conditions (see Figure 5.8). The right front-lateral area was more
activated in the NF condition, especially during the latter half of the post-stimulus period.

Gender Voice (Male vs Female Narrating Voice): The narrating voice’s gender only
significantly affected the Neuter condition (see Figure 5.8), with male voices inducing
stronger activation in left-posterior regions and female voices increasing activation in front-
lateral regions. Notably, no significant differences were observed for the narrating voice in
the Andr or Estr conditions, suggesting that the Neuter odor enhances the voice effect.

In summary, these findings underscore the complexity of neural responses shaped by the
combined influences of body part movement, proximity space, social odors, and narrating
voice. Social odors, in particular, appear to modulate brain activity, especially during
backward movements (see Figure 5.9), with some conditions showing enhanced activation in
both frontal and posterior regions.
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(a)

(b)

Fig. 5.6 Clustered t-value for AF (a) and NF (b) in Forward vs Backward. The color
map represents the value of the t-statistic. Significant channels (p < 0.05) are circled and
highlighted in red.
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(a)

(b)

(c)

Fig. 5.7 Clustered t-value for AF (a), AM (b) and EM (c) in ARMS vs LEGS. The color
map represents the value of the t-statistic. Significant channels (p < 0.05) are circled and
highlighted in red.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8 Clustered t-value for Backward in AF vs NF (a), AM vs NF (b), EF vs NF (c), EM
vs NF (d), EM vs NM (e), and NM vs NF (f). The color map represents the value of the
t-statistic. Significant channels (p < 0.05) are circled and highlighted in red.
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(a)

(b)

(c)

Fig. 5.9 Clustered t-value for Men Backward in AF vs NF (a), AM vs NF (b), EM vs NF
(c). The color map represents the value of the t-statistic. Significant channels (p < 0.05) are
circled and highlighted in red.



Chapter 6

Conclusion

The overall purpose of this Ph.D. dissertation was to conceptualize, develop and evaluate
novel computational methods for processing electrophysiological signals in order to support
early clinical diagnosis and progression monitoring of neurodegenerative diseases.

In particular, the work aimed to advance the field of neurodegenerative disease diagnostics
by focusing on the role of Deep Learning and EEG biomarkers, specifically for the classifica-
tion and differentiation of subjective cognitive decline and mild cognitive impairment.

After the introduction highlighting the need for the automatic identification of non-
invasive and cost-effective tools for decoding neurodegeneration, a review of the current
scientific and clinical challenges associated with the intrinsic complexity of the continuum of
Alzheimer’s and other neurological diseases has been detailed in Chapter 2. In this context,
the potential of automatic extraction of EEG features through accurate and reliable DL
models has been emphasized. This groundwork underscored the significance of resting-state
EEG as a biomarker, which motivated the development of intelligent systems for EEG signal
classification and analysis, and the investigation of principles behind the developed systems,
by exploiting explainability techniques.

Indeed, Chapter 3 presented the first DL framework that employs the attention mechanism
implemented by the Transformer model to classify patients affected by early-stage conditions
of AD at individual level, using resting-state EEG signal. The results obtained by training and
testing the model on EEG data corresponding to different frequency bands confirmed previous
findings, which revealed a correlation between clinical progression of the disease and signal
alterations in specific frequency bands, e.g. power spectrum shifts from high-frequency
components (a and b ) towards low-frequency components (d and q ). The robustness of
the classification model has been further confirmed by the performance obtained in the
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discrimination of healthy controls, SCD and MCI. Results have been compared with other
works found in the state-of-the-art analysis.

Building on those premises, in Chapter 4 a complete end-to-end framework which
leverages attention scores to gain insights of the developed Transformer model was described.
The focus of the Transformer, which corresponds to the highest attention on specific signal
patches, is representative of hallmark EEG patterns that could allow to discriminate SCD
from MCI. This could be employed as a guide for experts to facilitate the extraction of
rsEEG markers of cognitive decay. Early identifying the prodromal stages of AD has become
fundamental, since risky subjects might represent a target population for disease-modifying
therapies. This work took an essential step toward the integration of AI tools in personalized
medicine for neurodegeneration, ultimately advancing the field toward improved patient
outcomes and quality of life.

Lastly, in Chapter 5, computational methods for analyzing evoked response, i.e. event-
related potentials and event-related (de)synchronization, were presented as they relate to
neurodegenerative conditions, with a focus on early-stage Parkinson’s disease. This Chapter
investigated how ERD/ERS components, associated with motor and sensory processing, could
serve as markers for understanding the progression of impairment in neurodegeneration. By
examining the effects of movement congruence on motor resonance, the study demonstrated
the substantial preservation of motor resonance mechanisms in early PD patients and the
possibility that the action observation finalized to a consequent movement can activate
cortical networks in patients with no advanced motor limitations, allowing early rehabilitation
interventions with specific observation paradigms.

Furthermore, a framework based on dynamic-causal modeling on ERP data to capture
underlying neural dynamics was presented. This approach also supported DCM-informed
classification, which demonstrated the utility of combining statistical inference with Machine
Learning for ERP-based diagnostics, paving the way towards a personalized pathological
modeling of neurodegenerative processes.

A comprehensive method for evaluating the impact of social and environmental factors,
such as gender voices and proxemic variations, on ERP responses, revealing how these
external influences could modulate neural processing in physiological conditions was also
introduced. Further research could examine how factors like stress, social interaction, and
environmental changes influence neural responses in neurodegenerative patients. This could
provide a more holistic understanding of how external conditions impact disease progression,
which may be especially relevant for creating supportive environments in clinical or home
settings.
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