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Abstract 8 

The grey water footprint (GWF) refers to the amount of freshwater required to dilute pollutants to 9 

meet water-quality standards. The aim of this paper was to estimate the GWF and its uncertainty 10 

for crop production at the basin scale. The proposed approach was tested in the Rio Mannu Basin 11 

(Sardinia, Italy) for durum wheat production. The fraction of nutrients flowing into the river and 12 

groundwater was evaluated using the Soil and Water Assessment Tool model that was calibrated 13 

with in-stream monitoring data. A bootstrap technique coupled with Monte Carlo simulations was 14 

used to estimate the uncertainty of the GWF due to the variability of the primary input data and the 15 

unknown natural background level of nutrients in the waters. The GWF for total phosphorus (TP) 16 

input (3284 m3 t-1) was higher than that for dissolved inorganic nitrogen (DIN) (275 m3 t-1), despite 17 

the lower rate of phosphorus fertiliser application. The uncertainty was found to be relevant for 18 

both DIN (60%) and TP (18%). The environmental sustainability of durum wheat production was 19 

assessed throughout the water pollution level. This showed that the TP load exceeded the 20 

assimilation capacity at the reach scale, and that further analyses are needed to assess the 21 

environmental sustainability at the basin scale.  22 

Keywords: Grey water, nitrogen and phosphorus export, SWAT model, uncertainty analysis, water pollution level 23 

1 INTRODUCTION 24 

Freshwater is a fundamental social and environmental resource and constitutes the most important 25 

productive factor in all economic sectors. For a long time, the question of whether water is an 26 

economic good, a universal need or a human right has been debated. In 2000, the United Nations 27 

(UN) World Water Forum declared water to be a basic need, and in 2002, the UN Committee on 28 

Economic, Social and Cultural Rights defined the access to water to be a human right that should be 29 

guaranteed by governments for all members of society. In several regions around the world, 30 

freshwater availability is not adequate to satisfy all human or ecosystem requirements (UN World 31 

Water Assessment Program, 2018). Currently, two-thirds of the world's population lives in areas 32 

affected by water scarcity at least one month per year, and this percentage is expected to increase 33 

(Zhuo et al., 2014). In the future, water resources availability could be reduced further due to 34 

climate change (De Girolamo et al., 2017a), while demand for freshwater is expected to increase by 35 

nearly one-third by 2050 due to demographic growth and economic development (UN World Water 36 
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Assessment Program, 2018). To safeguard the quantity and quality of water resources for future 37 

generations, it is necessary to study and evaluate how current water use can influence its availability 38 

in the future (Pellicer-Martínez and Martínez-Paz, 2016a). To this end, Arjen Hoekstra, in 2002, 39 

introduced the concept of the water footprint (WF), an indicator that quantifies freshwater use as a 40 

productive factor, taking into consideration not only its direct use by producers and consumers, but 41 

also its indirect use. The WF of a product is therefore defined as the total volume of freshwater used 42 

to produce a product, measured by considering the entire production chain (Hoekstra et al., 2011).  43 

With the introduction of the standard, UNI 14046, which was intended to harmonise the calculation 44 

of the WF and simplify the exchange of information about the environment, the WF has become the 45 

most important international reference for estimating the impact of products, services, processes and 46 

organisations on water resources (Hoekstra, 2016; Chapagain, 2017). The WF is divided into three 47 

components – blue, green and grey. The blue WF refers to the amount of groundwater or surface 48 

water required to produce a product. The green WF refers to the amount of rainwater used to 49 

produce a product. The grey WF (GWF) refers to the amount of freshwater required to dilute 50 

pollutants in a body of water in order to meet particular water-quality standards (i.e. standards set 51 

by the US Clean Water Act; Franke et al., 2013; Liu et al., 2017). The water polluted during the 52 

production process must be considered to be water directly consumed by the production because, if 53 

the quality of the surface or groundwater becomes unacceptable, it can no longer be used for other 54 

purposes. 55 

For agricultural products, several studies have been published that have estimated the WF at the 56 

global scale (Chapagain and Hoekstra, 2011; Mekonnen and Hoekstra, 2011), for the EU countries 57 

(Vanham and Bidoglio, 2013), at the national level (Cazcarro et al., 2016), and at basin 58 

(D’Ambrosio et al., 2018a, b) and local (Lamastra et al., 2014; Pellegrini et al., 2016) scales. 59 

However, in the majority of cases of these published studies, the GWF has been neglected or 60 

considered only partially. This is due to the complexity of its computation and to the fact that its 61 

estimation is made difficult by the lack of field data (Gil et al., 2017).  62 

The GWF plays an important role in the WF assessment of crop production because agriculture is 63 

the main source of diffuse pollution. Fertilisers and pesticides, largely used in crop production, can 64 

severely impair the water in streams and lakes, causing eutrophication and structural changes in the 65 

ecosystem (Grizzetti et al., 2008). At the basin scale, for each crop, GWF estimation needs data 66 

concerning the specific agricultural practice, crop yield (production per hectare) and the amount of 67 

a pollutant that percolates into the aquifer or flows into a river as a result of the production of a 68 

single crop. The amount of chemicals entering into water bodies cannot be directly measured, as it 69 

is a diffuse source and, even if measures of pollutant loads are taken in some river sections or at the 70 
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outlet of a river basin, it is very difficult to apportion a measured load to a particular source. For this 71 

reason, the amount of a pollutant is generally estimated by using simple or complex models 72 

(Hoekstra et al., 2011). 73 

In Mediterranean basins, agronomic practices and field characteristics (i.e. soil type, slope, climate, 74 

etc.) vary widely within a basin. This peculiarity, in addition to the fact that farmers generally do 75 

not participate actively in the interviews that provide reliable data, makes it difficult to map every 76 

single field within the basin with local information. Consequently, modelling applications are made 77 

difficult for those basins. Local data used to estimate the GWF, even if accurately collected, may be 78 

affected by uncertainty (De Girolamo et al., 2017b), enhanced by natural background pollution in 79 

the water bodies and the amount of pollutant that percolates into the aquifer or flows into the river. 80 

Despite that its relevance has been recognised, few studies have focused on uncertainty analysis in 81 

GWF estimation (Zhuo et al., 2014; Gil et al., 2017). Therefore, experimental studies are needed to 82 

improve existing methodological approaches to estimate the GWF in Mediterranean basins in which 83 

water management is a challenge, especially in the global change perspective (Nikolaidis et al., 84 

2013).  85 

In this context, the first aim of the present study was to estimate the GWF for durum wheat 86 

production at the basin scale. The second aim was to quantify the uncertainty due to the variability 87 

of input data, such as fertiliser management schemes, environmental characteristics influencing the 88 

crop yield and nutrient export, and the unknown natural background level of nutrients in the water 89 

bodies. Finally, the environmental sustainability of the GWF was assessed throughout the water 90 

pollution level (WPL), an indicator defined as the ratio between the GWF and runoff (Hoekstra et 91 

al., 2011). The methodological approach was tested in the Rio Mannu Basin (Sardinia, Italy) on 92 

durum wheat production. Field data and the Soil and Water Assessment Tool (SWAT) model were 93 

used to estimate the apportionment of the nutrient loads.  94 

The methodology can be exported to other basins to improve assessment of the GWF and WPL, and 95 

can contribute to sustainable watershed management. 96 

2  STUDY AREA 97 

The Rio Mannu (Sardinia, Italy) is a tributary of the Flumini Mannu River that drains into the ‘S. 98 

Gilla’ brackish coastal pond, designated as an important wetland site for southern Europe under the 99 

Ramsar Convention for its great variety of Mediterranean vegetation and bird species. The basin, 100 

which covers an area of 488 km2, has a Mediterranean climate, with very high temperatures in 101 

summer, often exceeding 40°C, and low rainfall (~500 mm, average annual value from 1996 to 102 

2006). The rainfall mainly occurs from November to April, while during the dry season (June to 103 
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October), the rainfall occurs over small areas as short, but intense, events. The streamflow regime 104 

changes rapidly with the seasonal patterns of wet and dry conditions. In summer, flash floods are 105 

quite common, with consequences for erosion, the sediment regime and nutrient delivery. The mean 106 

elevation for the watershed is 292 m, ranging from 0 to 962 m a.s.l. 107 

Following the US Natural Resources Conservation Service classification, the major soil series in the 108 

basin have a moderate or slow infiltration rate. The main economic activity in the area is intensive 109 

agriculture. Durum wheat (47%), olive trees (7%), winter pasture (3.3%), alsike clover (1.4%) and 110 

vineyards (1%) are the main crops cultivated, while minor land uses include alfalfa (1%), corn 111 

silage (0.5%), vegetables (0.1%) and orchards (0.2%). In the area, natural forest (1%), range brush 112 

(34%) and range grasses (2.7%) are also present, and the residential areas (0.8%) are limited to 113 

small villages (De Girolamo and Lo Porto, 2012).  114 

In recent decades, the wetland has suffered severe impacts due to agricultural activities and several 115 

small urban wastewater treatment plants (14000 IE) that discharge their sewage into the river.  116 

 117 

 118 

Figure 1. Study area: Rio Mannu River Basin (Sardinia, Italy). 119 

 120 
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3 MATERIALS AND METHODS  121 

3.1 GREY WATER FOOTPRINT ACCOUNTING 122 

Hoekstra et al. (2011) defined the GWF of a crop production as the volume of water needed to 123 

dilute pollutants to such an extent that the quality of the water remains above fixed water-quality 124 

standards. The authors reported a three-tiered approach for calculating diffuse pollution delivered to 125 

a water body. The accuracy of the load estimate increases from Tier 1 to 3, but the data requirement 126 

increases and, consequently, the feasibility decreases. Tier 1, which can be considered to be a first 127 

rough estimate, calculates the pollutant entering into water bodies as a fraction of the amount of 128 

chemicals applied to the soil. In this approach, pollutant loads entering into waters can be derived 129 

from the existing literature, being, for instance, 10% or 7% (Chapagain et al., 2006; Stathatou et al., 130 

2012). Tier 2 is based on a simple model approach based on data concerning the properties of the 131 

specific pollutant (i.e. nitrogen, phosphorus, chemicals) and the characteristics of the environment 132 

(rainfall, soil hydraulic conductivity, agronomic practices) (Gil et al., 2017). Tier 3 is based on 133 

complex models, water sampling and analytical determination of the pollutants in water bodies. The 134 

GWF is calculated separately for each chemical substance, and the overall GWF is assumed to be 135 

equal to the largest value among the specific GWFs found for each pollutant involved (Hoekstra et 136 

al., 2011).  137 

In this work, a Tier 3 approach was tested, coupling a hydrological and water-quality model at basin 138 

scale with field data (agronomic practices from farmer interviews and measured nutrient 139 

concentrations in the stream).   140 

Following the methodology described in The Water Footprint Assessment Manual by Hoekstra et 141 

al. (2011), the GWF (m3 t-1, equivalent to L kg-1) related to fertilisers was calculated using the 142 

equation:  143 

GWF = 
𝛼 ∙𝐴𝑅

𝑌(𝐶𝑚𝑎𝑥− 𝐶𝑛𝑎𝑡 )
  [volume × mass-1]                                                                               Eq. 1 144 

, where Cmax is the maximum acceptable concentration (kg m-3), Cnat is the natural background 145 

concentration (kg m-3), Y is crop yield (t ha-1), AR is the application rate of fertilisers per year (or 146 

crop cycle; kg ha-1) and α is the nutrient export coefficient (dimensionless, ranging from 0 to 1). 147 

The nutrient load adducted to the river (α·AR) divided by Y was estimated by the SWAT model, as 148 

described in this text. We computed the GWF for dissolved inorganic nitrogen (DIN) and total 149 

phosphorus (TP); the highest value among these values was assumed to be the final GWF.   150 
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3.1.1 Maximum acceptable concentration 151 

The ambient water-quality standards for TP and DIN (NO2-N+NO3-N+NH4-N) in surface waters 152 

were fixed on the basis of Italian legislation (Ministero dell'Ambiente e della Tutela del Territorio e 153 

del Mare, 2010), which implements the Water Framework Directive (WFD) of the European 154 

Parliament and of the Council (EC, 2000) and fixes threshold values for certain physical and 155 

chemical parameters for supporting the ecological status determination. The maximum acceptable 156 

concentration was fixed at Level 2 (good) of the above-mentioned decree, for which the Cmax DIN 157 

was fixed at 1.26 mg L-1 and the Cmax TP was fixed at 0.1 mg L-1.  158 

3.1.2 Natural background concentration (Cnat) 159 

The natural background concentration is defined as the value of a pollutant in a water body that 160 

occurs in the absence of anthropogenic impacts. For human-made chemicals (i.e. pesticides), and 161 

for substances estimated to be low in concentration, Cnat is assumed to equal zero (Mekonnen and 162 

Hoekstra, 2010; Zeng, et al., 2013), although nutrients can also be present in water bodies in the 163 

absence of human pressures as a result of natural processes. Due to the variability of environmental 164 

characteristics and the complexity of processes that determine the background level of a nutrient in 165 

a water body, there is no value that is valid always and everywhere (European Environment 166 

Agency, 2004). On the other hand, in the majority of river basins, this value cannot be measured 167 

because of human disturbance. Thus, Cnat is generally derived from existing literature that reports 168 

background values expressed in terms of different compounds (i.e. total nitrogen [TN], NO3-N or 169 

DIN and TP or PO4-P). Liu et al. (2017), in their review, reported values of Cnat for TN in surface 170 

water and groundwater ranging from 0 mg L-1 to 1.5 mg L-1, and from 0 mg L-1 to 0.52 mg L-1 for 171 

TP. Koukal et al. (2004) assumed Cnat values for phosphate in surface water ranging from 0.005 mg 172 

L-1 to 0.05 mg L-1. Dabrowski et al. (2009) assumed Cnat equal to 0.62 mg L-1 and 0.06 mg L-1 for 173 

TN and TP, respectively. Because of the relevance of the Cnat value in GWF assessment, we 174 

assumed a range of likely values, instead of a unique fixed value, and we included the variability of 175 

this factor in the uncertainty analysis. On the basis of the above literature, we assumed a Cnat for 176 

DIN in surface water of 0 to 0.9 mg L-1 and a Cnat for TP in surface water of 0 to 0.03 mg L-1. 177 

3.2 MODELLING NUTRIENT LOAD  178 

The SWAT model (Arnold et al., 1998) was used to evaluate the fraction of fertilisers reaching the 179 

surface waters (α·AR in Eq. 1) and the crop yield (Y in eq. 1) for each parcel of land under durum 180 

wheat production. This model is widely used in river-basin management for hydrological regime 181 

analyses (De Girolamo et al., 2017c), for assessing the effectiveness of agricultural conservation 182 

practices (Dechmi et al., 2012; Strauch et al., 2013; Brouziyne et al., 2018), for estimating climate 183 
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change impacts on water (De Girolamo et al., 2017a; Vetter et al., 2017), and to quantify sediment 184 

yield (Abdelwahab et al., 2018; Ricci et al., 2018) and pollutant loads (Glavan et al., 2013).  185 

A detailed description of the application of the model to the study area (set-up, input data, model 186 

calibration) can be found in De Girolamo and Lo Porto (2012). The surface runoff was estimated 187 

using the Soil Conservation Service’s Curve Number procedure (US Department of Agriculture–188 

Soil Conservation Service, 1972), and the potential evapotranspiration was calculated using the 189 

Hargreaves–Samani method (Hargreaves and Samani, 1985).  190 

Data concerning the agronomic practices adopted in the area for each crop were collected in the 191 

study area through farmer interviews and included in the input files needed by the model (De 192 

Girolamo and Lo Porto, 2012). Regarding the durum wheat, most of the farms in the basin were 193 

under traditional tillage methods (40 cm deep), while a minor number of the farms had adopted 194 

conservation tillage. From the farmer interviews (2006), it was found that a uniform application per 195 

year of 32–40 kg ha-1 N and 80–100 kg ha-1 P2O4 (generally as 18–46–00) was applied with the 196 

seeds. In addition, post-plant N was supplied as urea (80–120 kg ha-1). The timing of the seeding 197 

was the end of November or the beginning of December. In the model simulation, fertiliser amounts 198 

were applied to each hydrological response unit (HRU – the unique combination of land cover, soil 199 

and slope distributed in the basin) in the range of the above-mentioned amounts.  200 

The basin was divided into 29 subbasins and 185 HRUs (multiple HRUs with thresholds of 7 and 201 

10% for land use and soil type, respectively). The model was run on a daily time-step for 11 years 202 

(1996–2006). This period included both wet and dry years, with a very different crop yield for each 203 

production. Because streamflow measurements were unavailable for this period, although monthly 204 

flow data were available from 1922 to 1967 (Ente Autonomo Flumendosa, 1996), we adopted a 205 

regional parameter estimation approach, as described in De Girolamo and Lo Porto (2012). This 206 

approach is based on the assumption that catchments with similar characteristics show a similar 207 

hydrological behaviour (Bárdossy, 2007), and it is possible to transfer parameters if the model 208 

performance for the donor catchment is satisfactory. We used modelling results from the Rio 209 

Mulargia (donor catchment; Figure 1; De Girolamo et al., 2008), which is similar to the Rio Mannu 210 

catchment in terms of climate, topography, land use and soil properties. We assumed a transposition 211 

of the hydraulic soil parameters, groundwater parameters and curve numbers for the same 212 

combination of soil type, land use and agricultural practices from the donor basin (Rio Mulargia) to 213 

the Rio Mannu Basin (Table I). The results can be considered satisfactory if the simulated monthly 214 

streamflows fall within the interval of natural variation defined by ±1 standard deviation from the 215 

mean of the measured streamflows from 1922 to 1967 (Richter et al., 1996), which are the only 216 

available data (De Girolamo and Lo Porto, 2012).  217 
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The water quality calibration was performed at the outlet of the Rio Mannu for TP and TN from 218 

2006 to 2007, when discrete measurements of the nutrients were taken (two per month). We 219 

changed the default values to the following parameters: nitrogen percolation coefficient, residue 220 

decomposition coefficient and biological mixing efficiency (De Girolamo and Lo Porto, 2012) in 221 

order to find the best set able to meet both the water quality and crop yield (Table I). The latter was 222 

compared with official data at the province level (ISTAT, 2008) and at the farm level, with data 223 

collected from farmer interviews. For water quality, the Nash–Sutcliffe efficiency (NSE) and the 224 

percent bias (PBIAS) were used to evaluate the model’s efficiency. Model simulation can be 225 

considered satisfactory if the NSE > 0.5, and the PBIAS is ± 70 for TN and TP (Moriasi et al., 226 

2007). SWAT provides a number of output files that report the total nutrient loads delivered at the 227 

outlet, and the load per hectare of nutrient at the basin, subbasin and HRU levels. 228 

 229 

Table I. Parameters used for the SWAT model simulation. 230 

Parameter Description Actual value used Range 

CN  Curve number 68-86a 35-98 

ESCO Soil evaporation compensation factor 0.815 0-1 

GWQMN 

 

Threshold depth of water in the shallow aquifer 

required for return flow to occur [mm H2O] 

1000 0-5000 

CH_N Manning's roughness coef. “n” for channel 0.025 0-1 

SOL_K Saturated hydraulic conductivity [mm/hr] 0.5-22 a 0-2000 

SOL_AWC Available water capacity [mm H2O/mm soil] 0.09-0.13 a 0-1 

ALFA_BF Baseflow alfa factor [days] 0.75 0-1 

NPERCO Nitrogen percolation coefficient 1 0-1 

BIOMIX Biological mixing efficiency 0.2 0-1 

RSDCO Residue decomposition coefficient  0.04 0-0.05 

SLOPE Average slope steepness [m/m] 0.03-0.25 b 0-0.6 
a value varies according to input data (soil, land use)  231 
b value was adapted in HRUs by GIS analysis 232 

 233 

3.3 UNCERTAINTY IN GWF ACCOUNTING 234 

The predictive models, 𝑀, are generally structured as follows: 𝑀 =  {𝐼, 𝐵, 𝑅}, where 𝐼 is the input 235 

matrix, 𝐵 is the data-processing mechanism (also known as the ‘actual model’) and 𝑅 is the 236 

response vector. Since uncertainty affects the input data, the model structure and its parameters, it 237 

consequently also affects the response.  238 

In the following, the uncertainty of the GWF has been analysed accounting for the variability of the 239 

inputs, but assuming that the structure of the model is correct. The uncertainty affecting the input 240 

data is mainly due to the variability, both in space and time, of the crop yield and of the nutrient 241 

fractions that flow into the river as a result of the production of a single crop. The level of natural 242 

background nutrients in the watercourse is a further element of uncertainty.  243 
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If only the available input information is considered, at the end of the computational GWF process, 244 

the outcome will be a single number without any uncertainty. Therefore, to garner a measure of 245 

uncertainty, a distribution of GWF values should be constructed. To reach this goal, many input 246 

datasets are needed, with similar properties in terms of averages, variability, etc., but that are 247 

slightly different from each other. In this way, a GWF value for each dataset can be computed, and 248 

then a distribution is attained. We defined a procedure, detailed in the following, which is a 249 

combination of the bootstrap and Monte Carlo methods. 250 

As input data, we used the fractions of nutrients per hectare (kg ha-1) reaching the surface waters 251 

and the crop yields provided by SWAT for all the HRUs. A total number of 185 HRUs were 252 

identified within the basin, of which 65 were being cultivated with durum wheat. We obtained 715 253 

values (65 HRUs × 11years) for the ratio between a HRU nutrient load and the yield, called Li 254 

(Li=α·ARi/Yi).  255 

Starting from that dataset of Li, the bootstrap method – a conditional simulation technique that uses 256 

real observations as the basis of the simulations – was applied, that generated 5000 artificial 257 

subsamples (L’i). Each subsample consists of 715 data that are random samplings with replacement 258 

from the original data. The data related to the observations were analysed, and the most 259 

representative central parameter was chosen. In the case of a symmetrical distribution, this 260 

parameter is the mean; in the case of a asymmetric distribution, this is preferably the median for its 261 

insensitivity to extreme values. For each L’i generated by the bootstrap, the most representative 262 

parameter (median or mean, according to the previous step) was computed, called �̂�𝑗, with j=1, 263 

…5000. It was verified that the bias (the difference between the original sample and the 264 

corresponding bootstrap sample) was negligible, using the ‘rule of thumb’ defined by Efron and 265 

Tibshirani (1993); bias divided by standard error <0.25). 266 

The Monte Carlo simulation generated a set of 5000 random values of the Cnat,q parameter within 267 

the interval defined above (0.00–0.90 mg L-1 for DIN, 0.00–0.09 mg L-1 for TP), making the 268 

assessment of the impact of the parameter variability on the response computation possible. To 269 

obtain the GWF, the 5000 values of  �̂�𝑗 were divided by the difference between Cmax, which is a 270 

fixed value, and Cnat,q (with q = 1, 2, …5000). In this way, two series of values for the GWF were 271 

obtained for DIN and TP, respectively. These data were then analysed by using the most 272 

representative parameter (mean or median), and the final value of the GWF was assumed to be the 273 

highest value between the two nutrients. Figure 2 shows the scheme of the methodology. An R 274 

script, reported in Appendix A, was created to perform all the operations described in the 275 

methodology summarized in Figure 2 (R Development Core Team, 2008; RStudio Team, 2015).  276 

 277 
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 278 

Figure 2. Scheme of the methodological approach used for estimating GWF uncertainty. 279 

 280 

3.4 ASSESSING ENVIRONMENTAL SUSTAINABILITY 281 

In the Rio Mannu Basin, the environmental sustainability of the GWF for durum wheat production 282 

was assessed throughout the WPL. The WPL is an indicator, developed by Hoekstra et al. (2011), to 283 

express the effect of the GWF on the water quality in a basin. It shows the fraction of the waste 284 

assimilation capacity in a river basin that has been consumed (Mekonnen and Hoekstra, 2015). It is 285 

defined as the ratio of the total GWF (m3) to the total water yield (TWY, m3). The TWY was 286 
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estimated by using the results of the SWAT model simulations that provide its value at the HRU 287 

level. Desirable values for the WPL should be within the range of 0 to 1 (Mekonnen and Hoekstra, 288 

2015). If the WPL is greater than 1, the GWF is not sustainable because there is not enough water to 289 

dilute the pollutant load to maintain the concentration of the pollutant to below the maximum 290 

acceptable concentration (Liu et al., 2012).  291 

4 RESULTS 292 

4.1 MODELLING HYDROLOGY AND WATER QUALITY 293 

The results of the hydrological and water-quality calibrations obtained using the transposition of 294 

hydrological parameters from the Rio Mulargia Basin to the Rio Mannu Basin were satisfactory, 295 

following the criteria reported by Moriasi et al. (2007), as reported by De Girolamo et al. (2008). As 296 

Figure 3 shows, the mean monthly streamflow simulated at the outlet falls within the interval of the 297 

standard deviations of the mean historical measured streamflow. It seems that the rainfall regime 298 

has changed in recent decades, both in winter, when a consistent reduction in the amount has been 299 

recorded, and in late summer, when an increase in the average monthly rainfall has occurred. These 300 

changes in the rainfall regime have had implications for the overall flow regime. Thus, the 301 

simulated streamflow is generally higher than the historical values from April to December, except 302 

in June and July, while it is lower than the historical values in the rest of the year, especially in 303 

March. 304 

The hydrological regime of the Rio Mannu shows a high interannual variability, mainly due to 305 

the rainfall regime. The total annual rainfall over the 11-year simulation period ranges from 267 306 

mm to 692 mm (501±138 mm), and the simulated TWY from 39 mm to 228 mm (120±57 mm). The 307 

simulated streamflow varies significantly, and in severe drought years, is nearly zero from June to 308 

October. The annual potential evapotranspiration ranges from 1120 mm to 1250 mm (1190±40 309 

mm), confirming data from the literature (Ravelli, 2009). At the basin scale, the water balance is 310 

dominated by the actual evapotranspiration (327±35 mm), which constitutes about 60% of the total 311 

annual precipitation.  312 

 313 

 314 

 315 

 316 

 317 



12 
 

 318 

Figure 3. Measured (Qobs) and simulated (Qsim) mean monthly streamflow at the outlet (Monastir gauge). 319 
Error bars correspond to the standard deviation of the historical observed monthly streamflow from 1922 to 320 
1964.  Mean monthly rainfall: historical (Pcp his) and recent measured data from the Rio Mannu Basin (Pcp 321 
cur).   322 

 323 

The model was also calibrated for water quality, in terms of concentrations, and the performance 324 

of the model was satisfactory, as the PBIAS is 6.51 and 28.59 for TN and TP, respectively, and the 325 

NSE is 0.92 for TN and 0.64 for TP (Moriasi et al., 2007). However, we are conscious that the 326 

measured data were limited, and that using additional data (i.e. flood events, dry and wet years), a 327 

better calibration could be made.  328 

In the study period, the surveys showed mean concentrations of TP close to 0.25 mg L-1, while 329 

the corresponding modelled values slightly underestimated the TP concentrations (0.19 mg L-1). 330 

The values were higher than the limit value, fixed at 0.1 mg L-1 for Level 2 (good) by the Italian 331 

Ministerial Decree (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2010; (Figure 332 

4a). At the Monastir site, the TN concentrations simulated by the SWAT model ranged from 2.84 to 333 

18.72 mg L-1 (Figure 4b).   334 

The observed (mean value 3.53 mg L-1) and simulated NO3-N  concentrations (mean value 3.47 335 

mg L-1) were found to be higher than the limit value (1.2 mg L-1) fixed for Level 2 in the surface 336 

waters. The NO3-N is correlated with the magnitude of the peak flow; it depends on the applications 337 

of fertiliser (rate and timing) and on the previous hydrological conditions (soil moisture).  338 

 339 

Figure 4. Simulated and observed concentrations of total phosphorus (TP) and total nitrogen (TN) at the 340 

outlet (Monastir).  341 
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 342 

4.2 NUTRIENT EXPORT AND CROP YIELD 343 

Table I shows the main components of the water balance and the specific nutrient loads at the 344 

basin scale. As a result of the high interannual variability in annual rainfall (from 267 mm to 692 345 

mm), the water balance components and nutrient loads differ from year to year. Nutrient load 346 

assumes the lowest values in dry years and the highest in wet years. As Table II shows, specific 347 

loads differ among the years.   348 

 349 
Table II. Main components of the water balance at the basin scale: precipitation (PREC), total water yield 350 

(TWY), percolation (PERC), actual evapotranspiration (Et). Specific nutrient loads (kg ha-1) in surface waters, 351 
NO3-N, soluble phosphorus (Sol P), organic phosphorus (Org P), and NO3-N leached from soil profile to 352 
groundwater (Leac).   353 

 354 
     NO3-N  NO3-N  Sol P Org P 

Year PREC TWY PERC Et 
Surf 

Water Leac   

 (mm) (mm) (mm) (mm) (Kg/ha) (Kg/ha) (Kg/ha) (Kg/ha) 

         

1996 692 163 121 406 1.76 2.19 0.10 1.15 
1997 518 138 95 329 2.02 1.87 0.07 0.89 

1998 341 59 40 310 0.95 0.95 0.04 0.46 

1999 388 62 31 309 2.05 1.00 0.04 0.40 
2000 454 94 63 294 1.26 1.77 0.08 1.10 

2001 267 38 36 273 0.61 0.56 0.02 0.23 

2002 559 116 69 363 1.28 1.52 0.07 0.79 
2003 639 181 149 339 1.66 2.10 0.14 0.93 

2004 682 228 176 328 1.93 2.50 0.20 1.56 

2005 512 136 123 313 1.61 1.86 0.09 0.79 

2006 457 110 62 333 1.33 1.29 0.10 0.81 

Mean 501 120 88 327 1.50 1.60 0.09 0.83 

SD 138 57 49 35 0.46 0.60 0.05 0.38 

 355 
 356 

The crop yield predicted by the model was found to be in agreement with the durum wheat yield 357 

declared by the local farmers. Due to the water scarcity, which characterises the basin, and to the 358 

monoculture scheme adopted for durum wheat cultivation, the average production in the basin was 359 

lower than for national production (Istituto Nazionale di Economia Agraria, 2013). As Figure 5 360 

shows, the crop yield varies from year to year and within each year among the HRUs of the basin. 361 

The production ranges between 1.6 t ha-1 and 3.5 t ha-1, tending to be higher in wet years. In each 362 

year, crop production variability differs among the HRUs to varying degrees, mainly depending on 363 

factors such as climate (rainfall and temperature) and soil characteristics (texture, depth, organic 364 

matter).   365 
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 366 

Figure 5. Yield (t ha-1) estimated by SWAT for all the HRUs under durum wheat production. The horizontal 367 
line in the boxplot indicates the median, the boundaries of the box indicate the 25th and 75th percentiles and the 368 
whiskers indicate the 1st and 99th percentiles of the values.    369 

 370 

Over the study period, the average export coefficient was estimated as 10% and 2% of the N and 371 

P application rate, respectively, computed to include all the HRUs under durum wheat production. 372 

About 1% of the nitrogen application rate was estimated to leach from the soil profile into the 373 

groundwater, in the form of NO3-N. Specific nutrient loads (kg ha-1) vary among HRUs, and differ 374 

from year to year, as Figures 6 and 7 illustrate. The specific DIN load ranges from 0.06 to 5.41 kg N 375 

ha-1 among the HRUs within the basin. The minor variability and the lower values were recorded in 376 

dry years. The average specific TP load was estimated as 0.86 kg ha-1, ranging from 0.02 kg ha-1 to 377 

6.5 kg ha-1, recorded in a dry and wet year, respectively. The NO3-N leached from the soil into the 378 

groundwater was, on average, 0.91 kg ha-1, ranging from 0.00 to 24.60 kg ha-1 (Figure 8). 379 

 380 

 381 

Figure 6. DIN load (kg ha-1) estimated by SWAT for the HRUs under durum wheat production. The 382 
horizontal line within the boxplot indicates the median, the boundaries of the box indicate the 25th and 75th 383 
percentiles and the whiskers indicate the 1st and 99th percentiles of the values.    384 

 385 
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 386 

Figure 7. TP load (kg ha-1) estimated by SWAT for the HRUs under durum wheat production. The horizontal 387 
line within the boxplot indicates the median, the boundaries of the box indicate the 25th and 75th percentiles and 388 
the whiskers indicate the 1st and 99th percentiles of the values.    389 

 390 

 391 

Figure 8. NO3-N load (kg ha-1) leaching from the soil into the groundwater estimated by SWAT for the HRUs 392 
under durum wheat production. The horizontal line within the boxplot indicates the median, the boundaries of 393 
the box indicate the 25th and 75th percentiles and the whiskers indicate the 1st and 99th percentiles of the values.    394 

4.3 GREY WATER FOOTPRINT FOR DURUM WHEAT: ACCOUNTING FOR 395 

UNCERTAINTY 396 

From the SWAT results, both the load of DIN and the yield were extracted for each HRU and for 397 

each year, producing a dataset of 715 values of Li (α·ARi/Yi), which constituted the original sample 398 

for the bootstrap. The same operation was performed for the TP load, giving a second dataset of 715 399 

values of Li.   400 

A asymmetric distribution was found for the observed dataset of Li computed for both the DIN and 401 

TP loads. Hence, the median and the interquartile range (IQR) were selected as being representative 402 

parameters. The median values (�̂�𝑗) of the generated subsamples (L’i) and the IQR for DIN were 403 

found to equal to those of the original samples, as Table III shows.  404 

The median value of the GWF was 275 m3 t-1 and the IQR was 167 m3 t-1. The uncertainty, 405 

explained as the ratio between the IQR and the median value, was about 60%.  406 

The difference between the median value of the original sample (0.278 kg t-1) and the corresponding 407 

bootstrap subsample (0.276 kg t-1) was negligible for TP (Table III), as well as for the 1st (0.002) 408 

and 3rd (0.001) quartiles. The median value of the GWF was 3284 m3 t-1 and the IQR was 586 m3 t-409 
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1. The uncertainty (IQR/median value) was estimated at 18%. The GWF estimated for TP was 410 

assumed to be the GWF of durum wheat because the result was higher than that obtained for DIN.  411 

Table III. Results of the bootstrap resampling for TP and DIN. 412 

 413 

  TP   DIN   

Parameter Estimation 
Estimation 

(Bootstrap) 
Estimation 

Estimation 

(Bootstrap) 

Mean 0.696 0.697 0.549 0.548 

Variance  3.734 3.747 3.355 3.340 

SD  1.932 1.916 1.832 1.786 

Median 0.278 0.276 0.221 0.221 

1st Quartile 0.119 0.121 0.125 0.124 

3rd Quartile 0.513 0.514 0.369 0.372 

Var. Coeff. 2.776 2.739 3.337 3.229 

SE of Mean 0.072 0.072 0.069 0.067 

Med. Abs. Dev. 0.174 0.173 0.115 0.114 

95th Percentile 1.902 2.074 1.679 1.665 

 414 

    415 

4.4 ENVIRONMENTAL SUSTAINABILITY OF THE GWF 416 

In a river basin, the effect of the total GWF depends on the total runoff available for pollutant 417 

assimilation. The results of the present work show that both the variables GWF and TWY vary over 418 

time and space. Hence, the WPL assumes diverse values, depending on the time intervals 419 

considered in the calculations (intra- and interannual), and it also varies among subbasins. In the 420 

present work, we performed an overall evaluation of the WPL for the Rio Mannu Basin over a study 421 

period of 11 years. To do that, the median value of the annual GWF related to the TP load (3284 m3 422 

t-1) was estimated for the entire wheat production on a yearly basis (53 066 t) for the entire study 423 

area. The value of the GWF multiplied by the total wheat production was then divided by the 424 

median annual total runoff (19 587 237 m3) provided by the SWAT model for the 65 HRUs. The 425 

WPL (8.8) was greater than 1. This result indicates that the pollution assimilation capacity has been 426 

fully consumed at the HRU level. Hence, locally and periodically, pollution problems can be 427 

expected. 428 

5 DISCUSSION 429 

5.1 MODELLING THE LEACHING-RUNOFF NUTRIENT FRACTION AND CROP YIELD 430 

The results of the present study show that the SWAT model is able to simulate the growing cycle 431 

of durum wheat, estimate the crop yield and quantify the fraction of nutrients entering the soil at 432 

HRU level that reaches the surface waters or percolates into the groundwater. The model thus 433 

proved to be a suitable tool for WF assessment. SWAT, as with most of the complex models 434 
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operating at the basin scale, requires a huge amount of data for its set-up, and field measurements 435 

for calibrating the streamflow and water quality. In basins with data scarcity, such as the Rio 436 

Mannu, specific strategies are needed to estimate the model parameters when flow data are 437 

unavailable (Bárdossy, 2007). The method adopted in this work was based on the transposition of 438 

parameters from a similar basin, in which the model was calibrated and validated (Bárdossy, 2007; 439 

De Girolamo and Lo Porto, 2012). This approach allows the paucity of measured flow data to be 440 

overcome and calibration of the model, and even if the set of parameters is not the best, it is still a 441 

reliable way of estimating water balance and nutrient load apportionment. 442 

5.2 IMPROVING GREY WATER FOOTPRINT ASSESSMENT 443 

The crucial points in GWF assessment are: (i) the fraction of pollutants that leach from the soil to 444 

the groundwater and run off to the surface water; (ii) the water-quality standards and natural 445 

background level of pollutants in the waters; and (iii) the crop yield. In previous studies, the TN 446 

leaching–runoff fraction has been roughly estimated to be 0.10 of the TN fertiliser application 447 

(Hoekstra and Chapagain, 2008; Pellegrini et al., 2016). In more detailed studies, the runoff and 448 

leaching fractions have been differentiated on the basis of the characteristics of the area (physical, 449 

hydraulic, agricultural practices; Franke et al., 2013). In the latter case, the leaching and runoff 450 

fractions were defined as being in the range of 0.01–0.25 and 0.000–0.05 for TN and TP, 451 

respectively. Few studies have been based on field measurements (McFarland and Hauck, 2001; 452 

D’Ambrosio et al., 2018a). Such studies have demonstrated that the leaching and runoff fractions 453 

are site specific, and that a unique and static value does not allow correct estimation of the GWF at 454 

the local scale (Brueck and Lammel, 2016; D’Ambrosio et al., 2018a).   455 

In the present study, the average value of the export coefficient was estimated as being 10% and 456 

2% of the TN and TP application rate, respectively, computed by including all the HRUs under 457 

durum wheat production, as provided by the SWAT model. About 1% of the TN application was 458 

estimated to leach from the soil profile to the groundwater in the form of N-NO3. Nutrient loads (kg 459 

ha-1) reaching the surface and groundwater differed among the HRUs and from year to year. The 460 

leaching fraction, which is quite low in the Rio Mannu, could be much more relevant in basins with 461 

karstic areas bearing thin soils. Hence, caution is needed when transferring these factors to different 462 

areas.  463 

The Cmax and Cnat of pollutants are two factors that are extremely relevant in the GWF 464 

computation. Despite several authors having already highlighted the need for standardising their 465 

settings (Dabrowski et al., 2009; Pellicer-Martínez and Martínez-Paz, 2016b; Liu et al., 2012, 466 

2017), dissimilar values are currently assumed for both nitrogen and phosphorus compounds around 467 
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the world (Liu et al., 2017). The majority of the studies have fixed Cmax at drinking-water standards 468 

(Bulsink et al., 2010; Mekonnen and Hoekstra, 2010, 2011; Liu et al., 2017), with only a few 469 

studies having used ambient water-quality standards (Pellegrini et al., 2016; Zhuo et al., 2016; 470 

D’Ambrosio et al., 2018a, b). However, the fact that about two-thirds of the major rivers in the 471 

world are polluted to a level that exceeds their natural assimilation capacity (Liu et al., 2012) means 472 

that this should no longer be neglected.  473 

In the present paper, for the DIN and TP in the surface water, we designated Cmax as the 474 

concentration fixed by national legislation for supporting a good ecological status, as required by 475 

the WFD. Such environmental objectives constitute more stringent limits than those for drinking 476 

water, and remain valid for groundwater (EC, 2006). Thus, the GWF based on environmental 477 

standards assumes a higher value. Indeed, the aquatic ecosystem is the most sensitive user of water 478 

resources. The level of TP, which is not directly toxic to humans, NH4-N and NO3-N can have a 479 

significant impact on the biota and river ecosystem (Prat et al., 2014). In EU countries, for surface 480 

waters, Cmax should be fixed for environmental objectives, as required by the WFD, which aims at 481 

achieving a good ecological status for all water bodies. Nevertheless, the standardisation remains an 482 

open problem because surface water-quality standards fixed by EU countries for TN and TP vary 483 

substantially.  484 

Cnat is generally assumed to be zero (Chapagain et al., 2006; Zeng et al., 2013), even if the usually 485 

natural concentration of TN  and TP in the surface water is greater than zero. To avoid 486 

underestimation of the GWF that this assumption would produce, we designated Cnat as variable 487 

within an interval from zero to a maximum value, fixed for each nutrient using values from the 488 

literature, and we included such variability in the uncertainty analysis. 489 

Based on the assumptions described above, our study shows that the GWF for TP inputs is the 490 

highest for durum wheat production. TP is the principal nutrient related to the eutrophication 491 

problem in riverine ecosystems, and is a more relevant pollutant than TN, despite the lower rate of 492 

TP fertiliser application. This is also due to the fact that TP resides for longer in the environment. 493 

Although a comparison of the GWF in numerical terms with previous studies cannot be done 494 

without analysing the water-quality standards and natural background concentrations, similar results 495 

have been reported by Dabrowsky et al. (2009) and Gill et al. (2017), who found that the GWFs of 496 

TN and pesticides were negligible compared to the results obtained for TP. Currently, most of the 497 

studies on GWF assessment have only considered the TN and, generally, water-quality standards 498 

for drinking water (Lovarelli et al., 2016), thus it is difficult to compare GWFs for crop production.  499 

Aldaya and Hoekstra (2010) reported a value of GWF for durum wheat in Italy of 301 m3/t, 500 

estimated for TN, using the US Environmental Protection Agency standards (10 mg L-1 of NO3-N). 501 



19 
 

This value, which is in line with that estimated for DIN in this work, was about one order of 502 

magnitude less than the final value of the GWF corresponding to TP. This study clearly 503 

demonstrates that, by considering only the TN and using drinking-water standards, the GWF is 504 

underestimated, whereas, to obtain a reliable assessment of the GWF, a larger number of pollutants 505 

should be included. The variability in crop yield also has a great influence on the GWF calculation. 506 

Production varies among the years; in the Rio Mannu Basin, this was between 1.6 t ha-1 and 3.5 t 507 

ha-1. These values tend to be higher in wet years. It is evident that the value of the crop yield to be 508 

used in the GWF equation has to be selected with particular caution. From our analysis, it is clear 509 

that several years (at least 10) should be considered so as to obtain a reliable estimation of the crop 510 

yield that allows for climate variability.  511 

5.3 ACCOUNTING FOR UNCERTAINTY 512 

Although the relevance of uncertainty analysis in WF assessment has been well recognised (Zhuo et 513 

al., 2014; Gil et al., 2017; D’Ambrosio et al., 2018a), it is rarely developed. The assessment of the 514 

response uncertainty is currently an open problem, given its intrinsic complexity due to the 515 

interdependence of the various types of uncertainty that propagate from the input to the response 516 

through the model (Refsgaard et al., 2007). A possible approach to the uncertainty issue starts from 517 

a knowledge of the mathematical form of input data distribution and, based on the model structure, 518 

a prediction about the response data distribution can be provided (Gill et al., 2017). Unfortunately, 519 

in general, real-world data follow a complex mixture of distributions, the properties of which are 520 

very difficult to characterise, making the above approach unfeasible. Since the main uncertainty 521 

descriptors are the statistical moments or the quantiles, rather than the whole distribution, an 522 

alternative simple and effective approach to the uncertainty assessment is the simulation. As 523 

proposed in this paper, by means of the simulation, it is possible to generate a set of responses from 524 

which the usual uncertainty descriptors (standard deviations, interquartile range, etc.) can be 525 

extracted. The approach, which is based on a combination of bootstrap and Monte Carlo 526 

simulations, is conceptually easy, even if it might be computer-intensive. In fact, on one hand, a 527 

large number of simulations guarantees high accuracy in the descriptors computation, but on the 528 

other, a too large number of simulations could be excessively time-consuming. To provide a 529 

realistic and representative value of the GWF, we used 5000 runs and investigated 11 years’ worth 530 

of crop production. The high value of uncertainty found in this study demonstrates that it cannot be 531 

neglected.   532 
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5.4 WATER POLLUTION LEVEL AND POLICY IMPLICATIONS 533 

Water scarcity and water pollution are the main problems affecting the Rio Mannu and most of 534 

the basins in the Mediterranean region, where the most common waterways are intermittent streams 535 

that are particularly sensitive to pollution levels (Shumilova et al., 2019). Their protection requires 536 

new methods to better manage river basins (Nikolaidis et al., 2013; Leigh et al., 2016).   537 

The WF and the WPL are two relatively new indicators that can constitute valid supports for 538 

watershed management, by means of which it is possible to evaluate the environmental 539 

sustainability of crop production. In this work, the environmental sustainability of the GWF for 540 

durum wheat production, assessed throughout the WPL, was found to be greater than the desirable 541 

value. Hence, we can argue that the TP load exceeds the assimilation capacity at the reach scale. At 542 

the basin scale, we are not able to evaluate the sustainability, as the assimilation capacity could be 543 

guaranteed or reduced, depending on all other land uses and anthropogenic activities present in the 544 

basin.  545 

Specific measures should be implemented to reduce the GWF of durum wheat production. These 546 

measures must be oriented towards reducing pollutants flowing into the river, but, at the same time, 547 

such measures must offer a margin of profit for the farmers to be accepted and implemented. In this 548 

difficult process of integration between environmental sustainability and economic competitiveness, 549 

technological innovations will play a key role (Aldieri and Vinci, 2017; Hájek and Stejskal, 2018). 550 

Indeed, precision agriculture (PA), which uses information technology, can contribute to meeting 551 

the increasing demand for food, feed and raw materials, while ensuring the sustainable use of 552 

natural resources. Currently, the EU Common Agriculture Policy supports PA, providing 553 

instruments and measures for EU member states (Joint Research Centre of the European 554 

Commission, 2014). However, the adoption of PA in Europe encounters specific challenges, mainly 555 

due to the small size and diversity of farm structures. 556 

6 CONCLUSIONS 557 

In the present paper, a new approach for improving GWF assessment and its uncertainty has been 558 

proposed, coupling the SWAT model and in-stream monitoring activities at the basin scale. The 559 

methodology was tested for the rain-fed durum wheat production in the Rio Mannu Basin, an area 560 

under water shortage.  561 

The main conclusions derived from the study are: 562 

• SWAT is a useful tool for assessing the GWF and the sustainability of crop production 563 

because it is able to provide the main inputs for GWF computation, such as the fractions of 564 



21 
 

nutrients that leach from soil to groundwater or runoff to surface water and the crop yield, at 565 

the HRU level with high accuracy. 566 

• The GWF strictly depends on the water-quality standards applied. By using environmental 567 

standards instead of drinking water-quality standards for fixing Cmax, the GWF assumes a 568 

higher value, as the environmental objectives constitute more stringent limits than those for 569 

drinking water. Assuming Cnat equals zero leads to an underestimation of the GWF. It is 570 

better to consider Cnat as variable within an interval of zero to a maximum value, fixed for 571 

each nutrient by values from the literature, including such variability in the uncertainty 572 

analysis. This study shows that a standardisation for fixing Cmax and Cnat is needed. 573 

• The GWF for TP inputs is the highest for durum wheat production, despite the phosphorus 574 

fertiliser application rate being lower than that of nitrogen. This study clearly demonstrates 575 

that, to obtain a reliable assessment of the GWF, a large number of pollutants should be 576 

included.  577 

• GWF estimation is site and time specific. This result suggests that GWF accounting, 578 

especially for rain-fed crops, should be done over a long period of time to take into account 579 

the influence of climate on crop yield and nutrient export.  580 

• The uncertainty analysis, based on the bootstrap coupled with Monte Carlo simulations, has 581 

proved to be an easy approach, able to provide a realistic and representative value for the 582 

GWF.  583 

• The environmental sustainability of the GWF for durum wheat production, assessed 584 

throughout the WPL indicator, shows that, at the HRU level, there is not enough water to 585 

dilute the pollutant load to maintain the concentration of pollutants below the maximum 586 

acceptable concentration. At the same time, this study shows that further studies are needed 587 

to estimate the GWF and WPL at the basin scale, to include all anthropogenic activities 588 

existing in the area.  589 
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APPENDIX A: R script. The input file (.xlsx or .csv format) must contain in the first column load (α·AR; kg ha-1) 799 
for each HRU, in the second column crop yield (Y; t ha-1), in the third column the ratio between α·AR and 800 
Y. Cmax (kg m-3) and Cnat (kg m-3) for each of the two analysed pollutants must be fixed by the user within 801 
the script as indicated by the comments.  802 

########################################################################SCRIPT###########803 
################################################# 804 
require(openxlsx) 805 
require(nortest) 806 
######################################################################################### 807 
mydata <- as.data.frame(openxlsx::read.xlsx("D:/C_DOCUMENTI/eman/annamariaDeG/PL/Dati 808 
per bootstrap per Eman.xlsx", 1)) 809 
mydata.din <- na.omit(mydata[ , 3]) 810 
#statistics and graphs 811 
hist(mydata.din) 812 
boxplot(mydata.din) 813 
p.value <- ad.test(mydata.din)$p.value # ANDERSON-DARLING GAUSSIAN TEST 814 
#resampling - SAMPLE WITH REPLACEMENT 815 
resamples <- lapply(1:5000, function(i) sample(mydata.din, replace = T))  816 
if (p.value > 0.05) { 817 
r.average <- sapply(resamples, mean) 818 
} else {r.average <- sapply(resamples, median)} 819 
############################################################################ 820 
mydata.din <- data.frame() 821 
mydata.din <- cbind(r.average) 822 
############################################################################# 823 
mydata <- as.data.frame(openxlsx::read.xlsx("D:/C_DOCUMENTI/eman/annamariaDeG/PL/Dati 824 
per bootstrap per Eman.xlsx", 2)) 825 
mydata.tp <- na.omit(mydata[ , 3]) 826 
#statistics and graphs 827 
hist(mydata.tp) 828 
boxplot(mydata.tp) 829 
p.value <- ad.test(mydata.tp)$p.value 830 
#resampling 831 
resamples <- lapply(1:5000, function(i) sample(mydata.tp, replace = T)) 832 
if (p.value > 0.05) { 833 
  r.average <- sapply(resamples, mean) 834 
} else {r.average <- sapply(resamples, median)} 835 
####################################################################### 836 
mydata.tp <- data.frame() 837 
mydata.tp <- cbind(r.average) 838 
######################################################################## 839 
limit.inf <- 0.000    #INPUT BY USER 840 
limit.sup <- 0.00003  #INPUT BY USER 841 
#MC generation based on uniform distribution 842 
cnat.tp <- runif(5000, limit.inf, limit.sup)  843 
cmax.tp <- 0.0001     #INPUT BY USER 844 
c.tp <- cmax.tp - cnat.tp 845 
mydata.tp <- cbind(mydata.tp, c.tp) 846 
limit.inf <- 0.000    #INPUT BY USER 847 
limit.sup <- 0.0009  #INPUT BY USER 848 
#MC generation based on uniform distribution 849 
cnat.din <- runif(5000, limit.inf, limit.sup)  850 
cmax.din <- 0.00126   #INPUT BY USER 851 
c.din <- cmax.din - cnat.din 852 
mydata.din <- cbind(mydata.din, c.din) 853 
####################################################################### 854 
res.tp <- as.numeric(vector()) 855 
res.din <- as.numeric(vector()) 856 
##################################################################### 857 
for (i in 1:5000){ 858 
  num.din <- mydata.din[i, 1] 859 
  num.tp <- mydata.tp[i, 1] 860 
  #print(i) 861 
  for (j in 1:5000){ 862 
    denom.din <- mydata.din[i, 2] 863 
    denom.tp <- mydata.tp[i, 2] 864 
    res.din[(i -1) * 5000 + j] <- num.din/denom.din 865 
    res.tp[(i -1) * 5000 + j] <- num.tp/denom.tp 866 



27 
 

  }# end loop i 867 
}# end loop j 868 
#statistics and graphs 869 
hist(res.din) 870 
boxplot(res.din) 871 
p.value <- ad.test(res.din)$p.value 872 
if (p.value > 0.05) { 873 
  r.average <- mean(res.din) 874 
  r.spread <- sd(res.din) 875 
} else {r.average <- median(res.din) 876 
         r.spread <- IQR(res.din) 877 
} 878 
print(r.average) 879 
print(r.spread) 880 
#statistics and graphs 881 
hist(res.tp) 882 
boxplot(res.tp) 883 
p.value <- ad.test(res.tp)$p.value 884 
if (p.value > 0.05) { 885 
  r.average <- mean(res.tp) 886 
  r.spread <- sd(res.tp) 887 
} else {r.average <- median(res.tp) 888 
r.spread <- IQR(res.tp) 889 
} 890 
print(r.average) 891 
print(r.spread) 892 
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