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Abstract
Deep learning is a powerful tool for solving data driven differential problems and has come out to have successful applications 
in solving direct and inverse problems described by PDEs, even in presence of integral terms. In this paper, we propose to 
apply radial basis functions (RBFs) as activation functions in suitably designed Physics Informed Neural Networks (PINNs) 
to solve the inverse problem of computing the perydinamic kernel in the nonlocal formulation of classical wave equation, 
resulting in what we call RBF-iPINN. We show that the selection of an RBF is necessary to achieve meaningful solutions, 
that agree with the physical expectations carried by the data. We support our results with numerical examples and experi-
ments, comparing the solution obtained with the proposed RBF-iPINN to the exact solutions.
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1 � Introduction to the peridynamic inverse 
problem

We consider the following PDE in peridynamic formulation:

where C ∶ ℝ → ℝ , representing the so-called kernel func-
tion, is a nonnegative even function.

In the one-dimensional case, the model describes the 
dynamic response of an infinite bar composed of a linear 
microelastic material.

The main important aspect of such constitutive model 
is that it takes into account long-range interactions and 
their effects. The equation of motion (1.1) was proposed 
by Silling in 2000 in [29] in the framework of continuum 
mechanics theory with the name of linear peridynamics. 
This is an integral-type nonlocal model involving only 
the displacement field and not its gradient. This leads to a 
theory able to incorporate cracks, fractures and other kind 
of singularities.

The general initial-value problem associated with (1.1) 
is well-posed (see [13]) and due to the presence of long-
range forces, the solution shows a dispersive behavior. The 
length-scale of the long-range interactions is parameterized 
by a positive scalar value 𝛿 > 0 called horizon, which repre-
sents the maximum interaction distance between two mate-
rial particles. In the more general setting, this parameter is 
intrinsically incorporated into the kernel function C, that is 
meant to weigh the nonlocal interactions.

If the kernel function C, also known as micromodulus 
function, is a suitable generalized function, in the limit of 
short-range forces, or equivalently taking the limit as � → 0 , 
the linear peridynamic model (1.1) reduces to the wave 

(1.1)�tt�(x, t) = ∫
ℝ

C(|x − y|)[�(x, t) − �(y, t)] dy,
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equation �tt�(x, t) − �xx�(x, t) = 0 , (see [25] and references 
therein). As a consequence, the length-scale parameter � can 
be viewed as a measure of the degree of nonlocality of the 
model.

In order to maintain the consistency with Newton’s third 
law, the micromodulus function must be even:

Moreover, due to the dispersive effects C must be such that

for every wave number k ≠ 0.
Additionally, since the interaction between two material 

particles should become negligible as the distance between 
particles become very large, we can assume that

If a material is characterized by a finite horizon, so that no 
interactions happen within particles that have relative dis-
tance greater than � , then we can assume that the support of 
the kernel function is given by [−�, �] and the model (1.1) 
writes as

Of course, such condition is less restrictive than (1.4).
It is clear that a different microelastic material corre-

sponds to a different kernel function and, as a consequence, 
the kernel function involved in the model provides different 
constitutive models.

In literature there are several kernel functions satisfying 
conditions (1.2), (1.3), and (1.4). In particular, according to 
[36], we will focus on a Gauss-type kernel in the form

Moreover, we aim to validate the choice of a distributed 
kernel function with shape

proposed in [7] in nonlocal unsaturated soil model contexts.
In this paper, we aim to solve the inverse problem 

described in (1.1) for learning the shape of the kernel func-
tion C, by implementing a Physics Informed Neural Net-
work (PINN). More specifically, we show that this inverse 
problem requires a careful selection of activation func-
tions in all the layers and a correct interaction with kernel 
initializers. It can be seen, in fact, that a naive choice on 
these functions would result in unreliable predictions and 

(1.2)C(�) = C(−�), � ∈ ℝ.

(1.3)∫
ℝ

(1 − cos(k𝜉))C(𝜉) d𝜉 > 0,

(1.4)lim
�→±∞

C(�) = 0.

(1.5)�tt�(x, t) = ∫B�(x)

C(|x − y|)[�(x, t) − �(y, t)] dy.

C(𝜉) = 𝜆e−𝜇𝜉
2

, 𝜆, 𝜇 > 0.

C(𝜉) =

{ |𝜉|−𝜆+𝛿
𝛿

, |𝜉| ≥ 𝜆 − 𝛿,

0, |𝜉| < 𝜆 − 𝛿,
𝜆 > 0,

possibly unfeasible solutions. More precisely, we see that, 
if the neural network structure is not chosen accordingly to 
appropriate geometric knowledge relative to the data, then 
PINN output returns different, still acceptable, results, show-
ing a lack of uniqueness. Therefore we will show that, as 
long as the peridynamic operator is bounded on a compact 
support [−�, �] and the PINN architecture is build accord-
ingly, as a consequence of the well posedness conditions of 
the peridynamic formulation, the learned kernel fulfills all 
the requirements expected, provided that PINN structure is 
accurate enough.

2 � Introduction to PINNs

Physics-Informed Neural Networks (PINNs) have emerged 
as a transformative approach to tackle both direct and inverse 
problems associated with PDEs. These innovative neural 
network architectures seamlessly integrate the principles of 
physics into the machine learning framework. By doing so, 
PINNs offer a promising solution to efficiently and accu-
rately model, simulate, and optimize complex systems gov-
erned by PDEs. More specifically, they can be employed to 
solve both direct and inverse problems; in the latter case, 
such PINNs are commonly referred to as inverse PINNs.

Direct problems involve finding solutions to PDEs that 
describe the evolution of physical systems under specified 
initial and boundary conditions. Traditional numerical meth-
ods, such as finite element analysis (see [18, 39]), finite dif-
ference methods with composite quadrature formulas (see 
[21]) and applied to spectral fractional models (see [12]), 
model order reduction methods (see [27]), meshfree meth-
ods (see [28, 30]), adaptive refinement techniques (see [2, 
9]) and collocation and Galerkin methods (see [1]) have 
been widely used for solving direct problems. Moreover, 
more recently spectral methods with volume penalization 
techniques (see for instance [17, 20]) and Chebyshev spec-
tral methods (see [22, 35]) have been developed in order to 
increase the order of convergence, to improve the accuracy 
of the results and to maintain the consistency of the method 
even in presence of singularities.

However, these approaches often require substantial com-
putational resources and may struggle with high-dimensional 
or non-linear problems. Additionally, such methods need to 
know the constitutive parameters of the model such as the ana-
lytic expression of the kernel function, the size of the horizon 
and the Young’s modulus to predict fractures in the material 
under consideration and, in suitable configurations, they fail 
to impose boundary conditions. In order to provide some hint 
in this direction, a data-driven approach can be developed. In 
[31] the authors propose a geometry-aware method in physics 
informed neural network to exactly imposing boundary con-
ditions over complex domains. In [40] the authors investigate 
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both a forward and an inverse problems of high-dimensional 
nonlinear wave equations via a deep neural networks with the 
activation function, while in [34] a combination of an orthogo-
nal decomposition with a neural network is applied to build a 
reduced order model. In [23], the authors present an unsuper-
vised convolutional neural network architecture with nonlocal 
interactions for solving PDEs using Peridynamic Differential 
Operator as a convolutional filter. Indeed, this approach results 
to be very efficient when the model is governed by an integral 
operator (see for instance [37]).

Inverse problems, on the other hand, are concerned with 
determining unknown parameters, boundary conditions, or 
the PDE itself, given limited or noisy observations of the 
system behavior. These problems frequently arise in real-
world applications, including medical imaging [38], geo-
physics [4, 6], material characterization [10], and industrial 
process optimization [24]. Inverse problems are inherently 
ill-posed, as multiple solutions or no solutions may exist, 
making their resolution challenging. In fact, several issues 
could arise in solving inverse problems, especially related to 
irregular geometries [15], or also small data regimes, incom-
plete data or incomplete models [26].

In the context of nonlocal elasticity theory, in [33] the 
authors propose a methodology based on a constrained 
least squares optimization to solve inverse problems in het-
erogeneous media using state-based peridynamics in order 
to derive parameter values characterizing several material 
properties and to establish conditions for fracture patterns 
in geological setting.

Thus, Physics-Informed Neural Networks represent a 
paradigm shift in the way to approach direct and inverse 
problems associated with PDEs. Their ability to combine 
data-driven learning with physical principles opens up new 
frontiers in scientific research, engineering design, and prob-
lem-solving across a wide spectrum of domains.

2.1 � PINN paradigm

In this paper, we will consider a Feed-Forward fully con-
nected Neural Network (FF-DNN), also called Multi-Layer 
Perceptron (MLP) (see [5] and references therein).

In a PINN the solution space is approximated through 
a combination of activation functions, acting on all the 
hidden layers, with the independent variable used as the 
network inputs. Letting x ∈ ℝ

n , in a Feed-Forward network 
each layer feeds the next one through nested transforma-
tion, so that a it can be seen, letting L be the number of 
layers, as

(2.1)

z0 = x,

zl = �l
(
Λl(zl−1)

)
, Λl(zl−1) ∶= Wlzl−1 + bl, l = 1,… , L,

where, for each layer l = 1,… , L , �l ∶ ℝ
n
→ ℝ

m is the acti-
vation function, which operates componentwise, Wl is the 
weight matrix and bl is the bias vector. Thus, the output 
zL ∈ ℝ

m of a FF-NN can be expressed as a single function 
of the input vector x, defined as the composition of all the 
layers above in the following way:

The aim of a PINN is to minimize, through a Stochastic Gra-
dient Descent method, a suitable objective function called 
loss function, that would take into account the physics of the 
problem, with respect to all the components, called trainable 
parameters, of Wl, bl , for l = 1,… , L.

More specifically, given a general PDE of the form 
P(f ) = 0 , where P represents the differential operator act-
ing on f, the loss function used by a PINN is usually given by

where f ∗ is the training dataset (of points inside the domain 
or on the boundary), and 0∗ is the expected (true) value for 
the differential operation P(f ) at any given training or sam-
pling point; the chosen norm ‖ ⋅ ‖ (it may be different for 
each term in the loss function) depends on the functional 
space and the specific problem. Selecting a correct norm 
(so to avoid overfitting) for the loss function evaluation is 
an important problem in PINN, and recently in [32] authors 
have proposed spectral techniques based on Fourier residual 
method to overcome computational and accuracy issues. The 
first term in the right-hand side of (2.2) is referred to as data 
fitting loss, while the second term is referred to as residual 
loss, which is responsible to make a NN be informed by 
physics. We address the construction of the loss function 
in Sect. 3.3.

The operator P is usually performed using autodiff 
(Automatic Differentiation algorithm). In the context of peri-
dynamic theory, in [16] authors propose, for the first time, 
a nonlocal alternative to autodiff by replacing the evalu-
ation of f and its partial derivatives through the action of a 
Peridynamic Differential Operator (PDDO) on f.

A recent review on PINNs and related theory can be 
found in [11].

3 � RBF‑iPINN for the kernel function

In case one wants to solve an inverse problem, there will 
be more trainable parameters than only those coming from 
weight matrices and bias vectors. Hence, such further 
parameters have to be considered in the minimization itera-
tions and their respective gradients must be computed as 
well.

zL ∶= (�L◦ΛL◦… ◦�1◦Λ1)(x).

(2.2)L(f ) ∶= ‖f − f ∗‖ + ‖P(f ) − 0∗‖,
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However, in our case, the inverse problem does not involve 
the mere computation of scalar quantities, but rather a whole 
function, specifically the kernel function C in (1.1), which has 
also analytical and geometrical properties to be accounted for, 
such as nonnegativity and symmetry. In the PINN architecture 
proposed, these features reflect in the implementation of a NN 
model with two separated sets of layers, one for C and the 
other for � , and whose output would be both the solution to 
(1.1) and the unknown function C; moreover, the loss function 
(2.2) has been accordingly endowed with further terms neces-
sary to enforce the requirements on C.

From the point of view of the architecture, while nonnegati-
tivity of C has been simply enforced by requiring all trainable 
parameters in (2.1) to be nonnegative, symmetry has required 
a more specific treatment, both in terms of activation functions 
and in the way we have defined the loss function. Our idea 
has been to wisely select different activation functions for the 
two different sets of layers, inspired by the properties coming 
along with C and the data on � . In the following section we 
will introduce and discuss the technical approaches to deal 
with activation and loss functions.

3.1 � Radial Basis Function Layer

As activation function for the first layer, whose input is x, 
a Radial Basis Function (RBF) is selected. By definition, a 
Radial Basis Function (RBF) is a real-valued function whose 
output depends only on the distance from a fixed center or 
prototype point. An RBF can be defined as

where � is the RBF function, x is the input to the RBF, c is 
the center or prototype point, ‖x − c‖ represents the distance 
between x and c.

RBFs are commonly used in various fields and, when used 
as activation functions in neural networks, they give rise to 
Radial Basis Function Neural Networks (RBFNNs) (see [14]).

We have considered two families of RBFs (3.1), sketched 
in Fig. 1, given by 

 called inverse quadratic and multiquadric RBFs respec-
tively, where all the parameters above could be taken to 
be trainable. This approach has recently been proposed in 
[3] in the context of direct problem for nonlinear PDEs, 
but used in the middle layer. However, we have exten-
sively noticed that such a choice is not efficient to learn 
the kernel function C in (1.1), resulting in nonphysical 

(3.1)�rbf(x) = �(‖x − c‖),

(3.2a)𝜎rbf(x) ∶=
𝜌

1 + 𝛾(x − 𝜇)2
, 𝜌, 𝛾 ,𝜇 > 0,

(3.2b)𝜎rbf(x) ∶= 𝜌
√
1 + 𝛾(x − 𝜇)2, 𝜌, 𝛾 ,𝜇 > 0,

results and excessively large computational time and cost. 
In fact, this has led us to introduce an RBF inverse PINN, 
that we called RBF-iPINN, where we select a Radial 
Basis Function as the activation function for the first 
layer, that has significantly sped up performance while 
providing the expected result if compared to the exact 
solution.

3.2 � RBF‑iPINN Structure

Since the kernel function C depends on the sole spatial 
variable x, while the solution to (1.1) � depends on both 
space and time, then x, t need to be handled separately. To 
this purpose, the proposed RBF-iPINN is implemented in 
a serialized fashion, suitably connecting, as we are going 
to explain in details below, two different Neural Net-
works, which we may call spatial NN and temporal NN. 
In the spatial NN, the spatial variable x is the sole input 
of a hidden layer of 20 neurons, activated by an RBF 
as in (3.2), followed by 8 layers with 20 neurons each, 
activated by ReLu function. The output of this sequence 
of layers is then concatenated with t, providing the input 
for the temporal Neural Network. More specifically, this 
second part is made up by 8 layers, each containing 20 
neurons and activated by a sigmoid function. Finally, 
the overall output of the RBF-iPINN is returned as an 
array that lists two tensors, the first carrying the kernel 
C, and the other carrying the dependent variable � ; the 
structure of the RBF-iPINN is sketched in Fig. 2.

Let us notice that selecting the ReLU activation func-
tion for all the layers of the architecture could result in a 
loss of compatibility potential of the PINN, as reported in 
[19]. This consideration, also supported by several exper-
iments, justifies the choice of the sigmoid activation 
function in the temporal NN. We witness that, however, 
other selections than sigmoid function do not perform 
satisfactorily enough as in the cases reported in Sect. 4.

Moreover, the spatial NN is endowed with a kernel initial-
izer of type glorot_normal, to better keep the variance 
of the weights consistent across layers, thus helping with 
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Fig. 1   Qualitative shapes of Radial Basis Functions defined in (3.2a) 
and (3.2b), respectively
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training stability, while the temporal NN is endowed with a 
random_uniform kernel initializer; also, a nonnegative 
kernel constraint and a kernel regularizer of type l1_l2, 
with weights l1 = l2 = 0.01 is applied to the spatial NN, 
which yields the computed kernel function. The nonnega-
tivity constraint is expected to take care of that the kernel 
function is nonnegative, and is also coherent with the non-
negativity of the RBF activating the first layer of the spatial 
NN, which is in turn fed into the successive layers; the l1 
parameter is meant to avoid overfitting, to encourage sparsity 
and to effectively perform feature selection; through the l2 
parameter, on the other hand, we enforce the spatial NN to 
be more robust to outliers.

3.3 � Loss Function

Given the constraints on C, we have to accordingly con-
struct a loss function as in (2.2) with as many components 
as there are constraints to be enforced in the RBF-PINN. 
More specifically, we consider the following components 
to be part of L : 

 In the selection of norms above, we have been guided by 
the features we want our PINN to take into account. More 
specifically, since we are interested in fitting data and in 
satisfying our model as much as possible, we selected the 
2-norm for these contributions; however, since symmetry is 

(3.3a)pde loss: Lpde ∶= ‖P(f ) − 0∗‖2,

(3.3b)data fitting loss: Ldata ∶= ‖f − f ∗‖2,

(3.3c)symmetry loss: Lsym ∶= ‖f (x, t) − f (−x, t)‖1.

to be expected from the PINN architecture and, in particular, 
from the first RBF layer, we measure its loss via the 1-norm, 
which is more sensible to small errors. Finally, we consider 
a weighted sum of the contributions given above as

where, for our simulations in Sect. 4, we have set

These values have been suitably tuned, and turned out to 
perform well in all the experiments we carried out below.

3.4 � Learning rate

The learning rate � has been selected to be decreasing with 
the epoch in a quadratic way. More precisely, we imple-
mented the following scheduler:

where N is the number of epochs chosen for the training. 
Thus, starting with a learning rate of �0 at epoch 0, it pro-
gressively gets reduced according to (3.5) over the epochs, 
until it reaches the value �1 at epoch N.

4 � Numerical Simulations

In this section, we show results with our RBF-iPINN. All the 
experiments have been run using 1000 epochs with a learn-
ing rate defined in (3.5) and employed the ADAM optimizer. 

(3.4)L = wpdeLpde + wdataLdata + wsymLsym,

wpde = 2, wdata = 1, wsym = 2.

(3.5)
�0 = 10−4, �1 = 0.7�0

�i =

(
1 −

(
i

N

)2
)
�0 +

(
i

N

)2

�1, i = 0,… ,N,

Fig. 2   RBF-iPINN structure. 
In our simulations, we set the 
number of ReLU and sigmoid 
activated hidden layers to 8, and 
the number of neurons per each 
layer, including the RBF layer, 
to 20
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The machine used for the experiments is an Intel Core 
i7-8850 H CPU at 2.60GHz and 64 GB of RAM. Moreover, 
the PINNs, providing results in the examples below, have 
been developed in Python 3.10, using the library TensorFlow 
2.15.0 within the interface Keras 3.0.1.

Moreover, real data, which are used in our simulations 
to compute the loss function (3.3b), are synthetically built 
using appropriate spectral methods from [20] to solve (1.1).

A main feature of the numerical computation is the evalu-
ation of the integral on the right-hand side of (1.1). In fact, in 
order to exploit the power of Keras on computing convolution 
products, we notice that

where the second term in the right-hand side above is 
the convolution product between the kernel C and the 
unknown function � . It has to be noticed here that the 
kernel function C is compactly supported, with support 
[−�, �] . Now, in order to numerically compute such con-
volution product, let [0, X] be the space interval and let 
0 < x1 < x2 < … < xN−1 < xN = X be the uniform spatial 
discretization of the interval [0, X] with stepsize h > 0 . the 
convolution product above can be numerically treated by 
determining the exact number of components in the vector 
[C(xi)]

n
i=1

 so that only points xi such that

come into play when computing C(‖x‖) ∗ �(x, t) . Since 
xi = i ⋅ h , then we deduce that the only indices involved in 
the convolution product are i, j = 1,… ,N such that

Since the peridynamic integral-operator in (1.5) is linear, we 
can derive in terms of the Green’s function a solution to the 
initial-value problem using continuous Fourier Transform. 
Such solution can be used to provide a dataset for the next 
simulations.

In the next two experiments, we exemplify on datasets 
derived from V-shaped kernel functions. This choice of ker-
nel is justified by the fact that it is implemented in some 
nonlocal formulations of Richards’ equation as it is able 
to easily incorporate Dirichlet boundary conditions in the 
model (see [7]).

Thus, we select as activation function for the first layer of 
the spatial NN an RBF of type (3.2b). Further, we tried both 

∫
ℝ

C(|x − y|)[�(x, t) − �(y, t)] dy

= �(x, t)∫
ℝ

C(|x − y|) dy − ∫
ℝ

C(|x − y|)�(y, t) dy

= �(x, t)∫
ℝ

C(|x − y|) dy − C(|x|) ∗ �(x, t),

|xi − xj| < 𝛿, i, j = 1,… ,N,

|i − j| < 𝛿

h
.

to keep all the three parameters � , �,� trainable, and to fix � 
while letting �,� be trainable. According to our experience 
and for the following two cases, fixing � improves conver-
gence performance and result quality.

Example 4.1  Here we consider a dataset  with 
t ∈ [0, 20], x ∈ [−10, 10] with spatial stepsize h = 2 ⋅ 10−1 
and � = 10 , and for which the analytical expression of the 
kernel is

We set � = 0.09 , obtaining the results showed in Fig. 3a, 
where we compare the true kernel function in (4.1) to the 
output of the proposed inverse RBF-iPINN. Setting � = 0.05 
in (3.2b) provides qualitatively comparable results, as can 
be observed in Fig. 3b.

Example 4.2  Here we consider a dataset  with 
t ∈ [0, 20], x ∈ [−10, 10] with spatial stepsize h = 2 ⋅ 10−1 
and � = 1 , and for which the analytical expression of the 
kernel is

We set � = 0.09 , obtaining the results showed in Fig. 4a, 
where we compare the true kernel function in (4.2) to the 
output of the proposed inverse RBF-iPINN. Setting � = 0.05 
provides results in Fig. 4b.

In the next example, we consider a bell-shaped kernel 
function to test the proposed RBF-iPINN. Accordingly, an 
RBF of type (3.2a) is chosen to activate the first layer of the 
spatial NN.

Example 4.3  For this example, first we tuned hyperparam-
eters, setting the kernel regularizers l1_l2 with weights 
0.01 and 0.1 respectively, in order to try and catch, as better 
as possible, the correct qualitative behavior of the kernel in 
the interior of its compact support; moreover, on the account 
of the knowledge of the kernel shape, we decided to activate 
the first layer of the RBF-iPINN through (3.2a), where we 
set the hyperparameter � = 1 ; finally, for a better data fitting, 
we also selected the sup-norm in (3.3b).

In this case, the neural network shows a discrete ability to 
catch shape and support of the bell-shaped kernel, but fails 
in a good approximation of the characteristic parameters, 
as shown in Fig. 5. In fact, in this case the true kernel is 
given by

(4.1)C(x) =
3

5
|x|.

(4.2)C(x) =

⎧
⎪⎨⎪⎩

𝛿−x−10

𝛿
, x ≤ −10 + 𝛿,

0, − 10 + 𝛿 < x ≤ 10 − 𝛿,
𝛿+x−10

𝛿
, x > 10 − 𝛿.
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(a) γ =0 .09 (b) γ =0 .05

Fig. 3   Learned kernel functions relative to Example 4.1 for different values of � in (3.2b)

(a) γ = 0.09 (b) γ = 0.05

Fig. 4   Learned kernel functions for different values of � in (3.2b) relative to Example 4.2

Therefore, we have performed a further analysis by imple-
menting a standard inverse PINN to learn parameters �∗ and 
�∗ in

(4.3)C(x) =
4√
�
e−x

2

.

Starting with initial guesses for �∗ = 3 and for �∗ = 0.5 , we 
run a PINN whose structure is the same as the second por-
tion relative to � of the RBF-iPINN described above (see the 
architecture in Fig. 2). The training phase has been per-
formed over 1000 epochs and with the same learning rate 

(4.4)C∗(x) ∶= �∗e−�
∗x2 .
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scheduler described in Sect. 3.4, but with a faster descent 
obtained by setting �0 = 10−3 . Results are depicted in Fig. 6. 
It can be deduced that the inverse PINN has been able to 
correctly detect the learned values which, at convergence, 
are given by �∗ = 2.3302033 and �∗ = 1.0218402 , being 
4√
�
≈ 2.2567583.

Remark 4.4  We stress that a prior geometrical knowledge 
about the kernel function to learn is necessary to cor-
rectly set up the spatial NN of the RBF-iPINN. In fact, we 
report that, activating the spatial NN with an RBF of type 
(3.2a) in Example 4.1 and Example 4.2 results in poor and 

nonphysical predictions; similar negative results show up if 
RBFs of type (3.2b) are used in Example 4.3.

5 � Conclusions

In this work we have analyzed a peridynamic formulation 
of a classical wave equation, trying to compute the kernel 
function responsible for the nonlocal behavior of the model 
considered. We have proposed to utilize a Radial Basis 
Function (RBF) as activation function for the first layer of a 
suitably designed Physics Informed Neural Network (PINN) 
to solve the inverse problem. Specifically, our inverse PINN 
architecture has two neural networks working in series: the 
first set of layers, called spatial NN and whose first layer 
activated by some Radial Basis Function, takes the spatial 
data as input and yields the first output for recovering the 
kernel function; then, this first output is concatenated to the 
temporal data, thus providing a new tensor serving as input 
to the second set of layers, that is called temporal NN and 
that produces the output describing � , solution to the peridy-
namic wave equation. We called the proposed model RBF-
iPINN. We have shown that, with a wise scheduler for the 
learning rate and necessary initializations of the spatial NN 
responsible for the kernel function computation, for stand-
ard selections of the activation RBF, the RBF-iPINN can 
provide reliable prediction of the kernel function, in case it 
has a V-shape behavior. We also tackle the case of Gauss-
ian kernel function: here, RBF-iPINN is able to adequately 
detect the shape, but a further analysis is necessary to learn 
the expected parameters of a bell-shaped function. We did 
so by implementing a standard inverse PINN, practically 
tuning the very same second set of layer of the RBF-iPINN.

Such models turn out to be promising tools for investigat-
ing optimal controls problems in dimension 2 or higher (see, 
e.g., [8]), where an inverse PINN approach seems to provide 
robust and scalable results. Such considerations pave the 
way to further investigations about how to deal with more 
complicated peridynamic models via PINNs and Radial 
Basis Functions, that seem to be a powerful approach to this 
kind of problems, due to their inherently symmetric nature.
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