
Vol.:(0123456789)

Engineering with Computers
https://doi.org/10.1007/s00366-024-01957-5

ORIGINAL ARTICLE

Physics informed neural networks for an inverse problem
in peridynamic models

Fabio V. Difonzo1 · Luciano Lopez2 · Sabrina F. Pellegrino3

Received: 18 December 2023 / Accepted: 13 February 2024
© The Author(s) 2024

Abstract
Deep learning is a powerful tool for solving data driven differential problems and has come out to have successful applications
in solving direct and inverse problems described by PDEs, even in presence of integral terms. In this paper, we propose to
apply radial basis functions (RBFs) as activation functions in suitably designed Physics Informed Neural Networks (PINNs)
to solve the inverse problem of computing the perydinamic kernel in the nonlocal formulation of classical wave equation,
resulting in what we call RBF-iPINN. We show that the selection of an RBF is necessary to achieve meaningful solutions,
that agree with the physical expectations carried by the data. We support our results with numerical examples and experi-
ments, comparing the solution obtained with the proposed RBF-iPINN to the exact solutions.

Keywords  Physics Informed Neural Network · Peridynamic Theory · Radial Basis Functions · Inverse Problems

Mathematics Subject Classification  34A36 · 15B99

1 � Introduction to the peridynamic inverse
problem

We consider the following PDE in peridynamic formulation:

where C ∶ ℝ → ℝ , representing the so-called kernel func-
tion, is a nonnegative even function.

In the one-dimensional case, the model describes the
dynamic response of an infinite bar composed of a linear
microelastic material.

The main important aspect of such constitutive model
is that it takes into account long-range interactions and
their effects. The equation of motion (1.1) was proposed
by Silling in 2000 in [29] in the framework of continuum
mechanics theory with the name of linear peridynamics.
This is an integral-type nonlocal model involving only
the displacement field and not its gradient. This leads to a
theory able to incorporate cracks, fractures and other kind
of singularities.

The general initial-value problem associated with (1.1)
is well-posed (see [13]) and due to the presence of long-
range forces, the solution shows a dispersive behavior. The
length-scale of the long-range interactions is parameterized
by a positive scalar value 𝛿 > 0 called horizon, which repre-
sents the maximum interaction distance between two mate-
rial particles. In the more general setting, this parameter is
intrinsically incorporated into the kernel function C, that is
meant to weigh the nonlocal interactions.

If the kernel function C, also known as micromodulus
function, is a suitable generalized function, in the limit of
short-range forces, or equivalently taking the limit as � → 0 ,
the linear peridynamic model (1.1) reduces to the wave

(1.1)�tt�(x, t) = ∫
ℝ

C(|x − y|)[�(x, t) − �(y, t)] dy,

 *	 Fabio V. Difonzo
	 fabiovito.difonzo@cnr.it

	 Luciano Lopez
	 luciano.lopez@uniba.it

	 Sabrina F. Pellegrino
	 sabrinafrancesca.pellegrino@poliba.it

1	 Istituto per le Applicazioni del Calcolo “Mauro Picone”,
Consiglio Nazionale delle Ricerche, Via G. Amendola 122/I,
70126 Bari, Italy

2	 Dipartimento di Matematica, Università degli Studi di Bari
Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

3	 Dipartimento di Ingegneria Elettrica e dell’Informazione,
Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-024-01957-5&domain=pdf

	 Engineering with Computers

equation �tt�(x, t) − �xx�(x, t) = 0 , (see [25] and references
therein). As a consequence, the length-scale parameter � can
be viewed as a measure of the degree of nonlocality of the
model.

In order to maintain the consistency with Newton’s third
law, the micromodulus function must be even:

Moreover, due to the dispersive effects C must be such that

for every wave number k ≠ 0.
Additionally, since the interaction between two material

particles should become negligible as the distance between
particles become very large, we can assume that

If a material is characterized by a finite horizon, so that no
interactions happen within particles that have relative dis-
tance greater than � , then we can assume that the support of
the kernel function is given by [−�, �] and the model (1.1)
writes as

Of course, such condition is less restrictive than (1.4).
It is clear that a different microelastic material corre-

sponds to a different kernel function and, as a consequence,
the kernel function involved in the model provides different
constitutive models.

In literature there are several kernel functions satisfying
conditions (1.2), (1.3), and (1.4). In particular, according to
[36], we will focus on a Gauss-type kernel in the form

Moreover, we aim to validate the choice of a distributed
kernel function with shape

proposed in [7] in nonlocal unsaturated soil model contexts.
In this paper, we aim to solve the inverse problem

described in (1.1) for learning the shape of the kernel func-
tion C, by implementing a Physics Informed Neural Net-
work (PINN). More specifically, we show that this inverse
problem requires a careful selection of activation func-
tions in all the layers and a correct interaction with kernel
initializers. It can be seen, in fact, that a naive choice on
these functions would result in unreliable predictions and

(1.2)C(�) = C(−�), � ∈ ℝ.

(1.3)∫
ℝ

(1 − cos(k𝜉))C(𝜉) d𝜉 > 0,

(1.4)lim
�→±∞

C(�) = 0.

(1.5)�tt�(x, t) = ∫B�(x)

C(|x − y|)[�(x, t) − �(y, t)] dy.

C(𝜉) = 𝜆e−𝜇𝜉
2

, 𝜆, 𝜇 > 0.

C(𝜉) =

{ |𝜉|−𝜆+𝛿
𝛿

, |𝜉| ≥ 𝜆 − 𝛿,

0, |𝜉| < 𝜆 − 𝛿,
𝜆 > 0,

possibly unfeasible solutions. More precisely, we see that,
if the neural network structure is not chosen accordingly to
appropriate geometric knowledge relative to the data, then
PINN output returns different, still acceptable, results, show-
ing a lack of uniqueness. Therefore we will show that, as
long as the peridynamic operator is bounded on a compact
support [−�, �] and the PINN architecture is build accord-
ingly, as a consequence of the well posedness conditions of
the peridynamic formulation, the learned kernel fulfills all
the requirements expected, provided that PINN structure is
accurate enough.

2 � Introduction to PINNs

Physics-Informed Neural Networks (PINNs) have emerged
as a transformative approach to tackle both direct and inverse
problems associated with PDEs. These innovative neural
network architectures seamlessly integrate the principles of
physics into the machine learning framework. By doing so,
PINNs offer a promising solution to efficiently and accu-
rately model, simulate, and optimize complex systems gov-
erned by PDEs. More specifically, they can be employed to
solve both direct and inverse problems; in the latter case,
such PINNs are commonly referred to as inverse PINNs.

Direct problems involve finding solutions to PDEs that
describe the evolution of physical systems under specified
initial and boundary conditions. Traditional numerical meth-
ods, such as finite element analysis (see [18, 39]), finite dif-
ference methods with composite quadrature formulas (see
[21]) and applied to spectral fractional models (see [12]),
model order reduction methods (see [27]), meshfree meth-
ods (see [28, 30]), adaptive refinement techniques (see [2,
9]) and collocation and Galerkin methods (see [1]) have
been widely used for solving direct problems. Moreover,
more recently spectral methods with volume penalization
techniques (see for instance [17, 20]) and Chebyshev spec-
tral methods (see [22, 35]) have been developed in order to
increase the order of convergence, to improve the accuracy
of the results and to maintain the consistency of the method
even in presence of singularities.

However, these approaches often require substantial com-
putational resources and may struggle with high-dimensional
or non-linear problems. Additionally, such methods need to
know the constitutive parameters of the model such as the ana-
lytic expression of the kernel function, the size of the horizon
and the Young’s modulus to predict fractures in the material
under consideration and, in suitable configurations, they fail
to impose boundary conditions. In order to provide some hint
in this direction, a data-driven approach can be developed. In
[31] the authors propose a geometry-aware method in physics
informed neural network to exactly imposing boundary con-
ditions over complex domains. In [40] the authors investigate

Engineering with Computers	

both a forward and an inverse problems of high-dimensional
nonlinear wave equations via a deep neural networks with the
activation function, while in [34] a combination of an orthogo-
nal decomposition with a neural network is applied to build a
reduced order model. In [23], the authors present an unsuper-
vised convolutional neural network architecture with nonlocal
interactions for solving PDEs using Peridynamic Differential
Operator as a convolutional filter. Indeed, this approach results
to be very efficient when the model is governed by an integral
operator (see for instance [37]).

Inverse problems, on the other hand, are concerned with
determining unknown parameters, boundary conditions, or
the PDE itself, given limited or noisy observations of the
system behavior. These problems frequently arise in real-
world applications, including medical imaging [38], geo-
physics [4, 6], material characterization [10], and industrial
process optimization [24]. Inverse problems are inherently
ill-posed, as multiple solutions or no solutions may exist,
making their resolution challenging. In fact, several issues
could arise in solving inverse problems, especially related to
irregular geometries [15], or also small data regimes, incom-
plete data or incomplete models [26].

In the context of nonlocal elasticity theory, in [33] the
authors propose a methodology based on a constrained
least squares optimization to solve inverse problems in het-
erogeneous media using state-based peridynamics in order
to derive parameter values characterizing several material
properties and to establish conditions for fracture patterns
in geological setting.

Thus, Physics-Informed Neural Networks represent a
paradigm shift in the way to approach direct and inverse
problems associated with PDEs. Their ability to combine
data-driven learning with physical principles opens up new
frontiers in scientific research, engineering design, and prob-
lem-solving across a wide spectrum of domains.

2.1 � PINN paradigm

In this paper, we will consider a Feed-Forward fully con-
nected Neural Network (FF-DNN), also called Multi-Layer
Perceptron (MLP) (see [5] and references therein).

In a PINN the solution space is approximated through
a combination of activation functions, acting on all the
hidden layers, with the independent variable used as the
network inputs. Letting x ∈ ℝ

n , in a Feed-Forward network
each layer feeds the next one through nested transforma-
tion, so that a it can be seen, letting L be the number of
layers, as

(2.1)

z0 = x,

zl = �l
(
Λl(zl−1)

)
, Λl(zl−1) ∶= Wlzl−1 + bl, l = 1,… , L,

where, for each layer l = 1,… , L , �l ∶ ℝ
n
→ ℝ

m is the acti-
vation function, which operates componentwise, Wl is the
weight matrix and bl is the bias vector. Thus, the output
zL ∈ ℝ

m of a FF-NN can be expressed as a single function
of the input vector x, defined as the composition of all the
layers above in the following way:

The aim of a PINN is to minimize, through a Stochastic Gra-
dient Descent method, a suitable objective function called
loss function, that would take into account the physics of the
problem, with respect to all the components, called trainable
parameters, of Wl, bl , for l = 1,… , L.

More specifically, given a general PDE of the form
P(f) = 0 , where P represents the differential operator act-
ing on f, the loss function used by a PINN is usually given by

where f ∗ is the training dataset (of points inside the domain
or on the boundary), and 0∗ is the expected (true) value for
the differential operation P(f) at any given training or sam-
pling point; the chosen norm ‖ ⋅ ‖ (it may be different for
each term in the loss function) depends on the functional
space and the specific problem. Selecting a correct norm
(so to avoid overfitting) for the loss function evaluation is
an important problem in PINN, and recently in [32] authors
have proposed spectral techniques based on Fourier residual
method to overcome computational and accuracy issues. The
first term in the right-hand side of (2.2) is referred to as data
fitting loss, while the second term is referred to as residual
loss, which is responsible to make a NN be informed by
physics. We address the construction of the loss function
in Sect. 3.3.

The operator P is usually performed using autodiff
(Automatic Differentiation algorithm). In the context of peri-
dynamic theory, in [16] authors propose, for the first time,
a nonlocal alternative to autodiff by replacing the evalu-
ation of f and its partial derivatives through the action of a
Peridynamic Differential Operator (PDDO) on f.

A recent review on PINNs and related theory can be
found in [11].

3 � RBF‑iPINN for the kernel function

In case one wants to solve an inverse problem, there will
be more trainable parameters than only those coming from
weight matrices and bias vectors. Hence, such further
parameters have to be considered in the minimization itera-
tions and their respective gradients must be computed as
well.

zL ∶= (�L◦ΛL◦… ◦�1◦Λ1)(x).

(2.2)L(f) ∶= ‖f − f ∗‖ + ‖P(f) − 0∗‖,

	 Engineering with Computers

However, in our case, the inverse problem does not involve
the mere computation of scalar quantities, but rather a whole
function, specifically the kernel function C in (1.1), which has
also analytical and geometrical properties to be accounted for,
such as nonnegativity and symmetry. In the PINN architecture
proposed, these features reflect in the implementation of a NN
model with two separated sets of layers, one for C and the
other for � , and whose output would be both the solution to
(1.1) and the unknown function C; moreover, the loss function
(2.2) has been accordingly endowed with further terms neces-
sary to enforce the requirements on C.

From the point of view of the architecture, while nonnegati-
tivity of C has been simply enforced by requiring all trainable
parameters in (2.1) to be nonnegative, symmetry has required
a more specific treatment, both in terms of activation functions
and in the way we have defined the loss function. Our idea
has been to wisely select different activation functions for the
two different sets of layers, inspired by the properties coming
along with C and the data on � . In the following section we
will introduce and discuss the technical approaches to deal
with activation and loss functions.

3.1 � Radial Basis Function Layer

As activation function for the first layer, whose input is x,
a Radial Basis Function (RBF) is selected. By definition, a
Radial Basis Function (RBF) is a real-valued function whose
output depends only on the distance from a fixed center or
prototype point. An RBF can be defined as

where � is the RBF function, x is the input to the RBF, c is
the center or prototype point, ‖x − c‖ represents the distance
between x and c.

RBFs are commonly used in various fields and, when used
as activation functions in neural networks, they give rise to
Radial Basis Function Neural Networks (RBFNNs) (see [14]).

We have considered two families of RBFs (3.1), sketched
in Fig. 1, given by

 called inverse quadratic and multiquadric RBFs respec-
tively, where all the parameters above could be taken to
be trainable. This approach has recently been proposed in
[3] in the context of direct problem for nonlinear PDEs,
but used in the middle layer. However, we have exten-
sively noticed that such a choice is not efficient to learn
the kernel function C in (1.1), resulting in nonphysical

(3.1)�rbf(x) = �(‖x − c‖),

(3.2a)𝜎rbf(x) ∶=
𝜌

1 + 𝛾(x − 𝜇)2
, 𝜌, 𝛾 ,𝜇 > 0,

(3.2b)𝜎rbf(x) ∶= 𝜌
√
1 + 𝛾(x − 𝜇)2, 𝜌, 𝛾 ,𝜇 > 0,

results and excessively large computational time and cost.
In fact, this has led us to introduce an RBF inverse PINN,
that we called RBF-iPINN, where we select a Radial
Basis Function as the activation function for the first
layer, that has significantly sped up performance while
providing the expected result if compared to the exact
solution.

3.2 � RBF‑iPINN Structure

Since the kernel function C depends on the sole spatial
variable x, while the solution to (1.1) � depends on both
space and time, then x, t need to be handled separately. To
this purpose, the proposed RBF-iPINN is implemented in
a serialized fashion, suitably connecting, as we are going
to explain in details below, two different Neural Net-
works, which we may call spatial NN and temporal NN.
In the spatial NN, the spatial variable x is the sole input
of a hidden layer of 20 neurons, activated by an RBF
as in (3.2), followed by 8 layers with 20 neurons each,
activated by ReLu function. The output of this sequence
of layers is then concatenated with t, providing the input
for the temporal Neural Network. More specifically, this
second part is made up by 8 layers, each containing 20
neurons and activated by a sigmoid function. Finally,
the overall output of the RBF-iPINN is returned as an
array that lists two tensors, the first carrying the kernel
C, and the other carrying the dependent variable � ; the
structure of the RBF-iPINN is sketched in Fig. 2.

Let us notice that selecting the ReLU activation func-
tion for all the layers of the architecture could result in a
loss of compatibility potential of the PINN, as reported in
[19]. This consideration, also supported by several exper-
iments, justifies the choice of the sigmoid activation
function in the temporal NN. We witness that, however,
other selections than sigmoid function do not perform
satisfactorily enough as in the cases reported in Sect. 4.

Moreover, the spatial NN is endowed with a kernel initial-
izer of type glorot_normal, to better keep the variance
of the weights consistent across layers, thus helping with

−10 −5 0 5 10
0

0.2
0.4
0.6
0.8

x

σ
rb

f(
x
)

−10 −5 0 5 10
0
2
4
6
8
10

x

σ
rb

f(
x
)

Fig. 1   Qualitative shapes of Radial Basis Functions defined in (3.2a)
and (3.2b), respectively

Engineering with Computers	

training stability, while the temporal NN is endowed with a
random_uniform kernel initializer; also, a nonnegative
kernel constraint and a kernel regularizer of type l1_l2,
with weights l1 = l2 = 0.01 is applied to the spatial NN,
which yields the computed kernel function. The nonnega-
tivity constraint is expected to take care of that the kernel
function is nonnegative, and is also coherent with the non-
negativity of the RBF activating the first layer of the spatial
NN, which is in turn fed into the successive layers; the l1
parameter is meant to avoid overfitting, to encourage sparsity
and to effectively perform feature selection; through the l2
parameter, on the other hand, we enforce the spatial NN to
be more robust to outliers.

3.3 � Loss Function

Given the constraints on C, we have to accordingly con-
struct a loss function as in (2.2) with as many components
as there are constraints to be enforced in the RBF-PINN.
More specifically, we consider the following components
to be part of L :

 In the selection of norms above, we have been guided by
the features we want our PINN to take into account. More
specifically, since we are interested in fitting data and in
satisfying our model as much as possible, we selected the
2-norm for these contributions; however, since symmetry is

(3.3a)pde loss: Lpde ∶= ‖P(f) − 0∗‖2,

(3.3b)data fitting loss: Ldata ∶= ‖f − f ∗‖2,

(3.3c)symmetry loss: Lsym ∶= ‖f (x, t) − f (−x, t)‖1.

to be expected from the PINN architecture and, in particular,
from the first RBF layer, we measure its loss via the 1-norm,
which is more sensible to small errors. Finally, we consider
a weighted sum of the contributions given above as

where, for our simulations in Sect. 4, we have set

These values have been suitably tuned, and turned out to
perform well in all the experiments we carried out below.

3.4 � Learning rate

The learning rate � has been selected to be decreasing with
the epoch in a quadratic way. More precisely, we imple-
mented the following scheduler:

where N is the number of epochs chosen for the training.
Thus, starting with a learning rate of �0 at epoch 0, it pro-
gressively gets reduced according to (3.5) over the epochs,
until it reaches the value �1 at epoch N.

4 � Numerical Simulations

In this section, we show results with our RBF-iPINN. All the
experiments have been run using 1000 epochs with a learn-
ing rate defined in (3.5) and employed the ADAM optimizer.

(3.4)L = wpdeLpde + wdataLdata + wsymLsym,

wpde = 2, wdata = 1, wsym = 2.

(3.5)
�0 = 10−4, �1 = 0.7�0

�i =

(
1 −

(
i

N

)2
)
�0 +

(
i

N

)2

�1, i = 0,… ,N,

Fig. 2   RBF-iPINN structure.
In our simulations, we set the
number of ReLU and sigmoid
activated hidden layers to 8, and
the number of neurons per each
layer, including the RBF layer,
to 20

...
...

...

space
input

RBF
hidden layer

ReLU
activated

hidden layers

spatial
Neural Network

first
output
layer
(C)

time
input

...
...

...

sigmoid
activated

hidden layers

temporal
Neural Network

second
output
layer
(θ)

	 Engineering with Computers

The machine used for the experiments is an Intel Core
i7-8850 H CPU at 2.60GHz and 64 GB of RAM. Moreover,
the PINNs, providing results in the examples below, have
been developed in Python 3.10, using the library TensorFlow
2.15.0 within the interface Keras 3.0.1.

Moreover, real data, which are used in our simulations
to compute the loss function (3.3b), are synthetically built
using appropriate spectral methods from [20] to solve (1.1).

A main feature of the numerical computation is the evalu-
ation of the integral on the right-hand side of (1.1). In fact, in
order to exploit the power of Keras on computing convolution
products, we notice that

where the second term in the right-hand side above is
the convolution product between the kernel C and the
unknown function � . It has to be noticed here that the
kernel function C is compactly supported, with support
[−�, �] . Now, in order to numerically compute such con-
volution product, let [0, X] be the space interval and let
0 < x1 < x2 < … < xN−1 < xN = X be the uniform spatial
discretization of the interval [0, X] with stepsize h > 0 . the
convolution product above can be numerically treated by
determining the exact number of components in the vector
[C(xi)]

n
i=1

 so that only points xi such that

come into play when computing C(‖x‖) ∗ �(x, t) . Since
xi = i ⋅ h , then we deduce that the only indices involved in
the convolution product are i, j = 1,… ,N such that

Since the peridynamic integral-operator in (1.5) is linear, we
can derive in terms of the Green’s function a solution to the
initial-value problem using continuous Fourier Transform.
Such solution can be used to provide a dataset for the next
simulations.

In the next two experiments, we exemplify on datasets
derived from V-shaped kernel functions. This choice of ker-
nel is justified by the fact that it is implemented in some
nonlocal formulations of Richards’ equation as it is able
to easily incorporate Dirichlet boundary conditions in the
model (see [7]).

Thus, we select as activation function for the first layer of
the spatial NN an RBF of type (3.2b). Further, we tried both

∫
ℝ

C(|x − y|)[�(x, t) − �(y, t)] dy

= �(x, t)∫
ℝ

C(|x − y|) dy − ∫
ℝ

C(|x − y|)�(y, t) dy

= �(x, t)∫
ℝ

C(|x − y|) dy − C(|x|) ∗ �(x, t),

|xi − xj| < 𝛿, i, j = 1,… ,N,

|i − j| < 𝛿

h
.

to keep all the three parameters � , �,� trainable, and to fix �
while letting �,� be trainable. According to our experience
and for the following two cases, fixing � improves conver-
gence performance and result quality.

Example 4.1  Here we consider a dataset with
t ∈ [0, 20], x ∈ [−10, 10] with spatial stepsize h = 2 ⋅ 10−1
and � = 10 , and for which the analytical expression of the
kernel is

We set � = 0.09 , obtaining the results showed in Fig. 3a,
where we compare the true kernel function in (4.1) to the
output of the proposed inverse RBF-iPINN. Setting � = 0.05
in (3.2b) provides qualitatively comparable results, as can
be observed in Fig. 3b.

Example 4.2  Here we consider a dataset with
t ∈ [0, 20], x ∈ [−10, 10] with spatial stepsize h = 2 ⋅ 10−1
and � = 1 , and for which the analytical expression of the
kernel is

We set � = 0.09 , obtaining the results showed in Fig. 4a,
where we compare the true kernel function in (4.2) to the
output of the proposed inverse RBF-iPINN. Setting � = 0.05
provides results in Fig. 4b.

In the next example, we consider a bell-shaped kernel
function to test the proposed RBF-iPINN. Accordingly, an
RBF of type (3.2a) is chosen to activate the first layer of the
spatial NN.

Example 4.3  For this example, first we tuned hyperparam-
eters, setting the kernel regularizers l1_l2 with weights
0.01 and 0.1 respectively, in order to try and catch, as better
as possible, the correct qualitative behavior of the kernel in
the interior of its compact support; moreover, on the account
of the knowledge of the kernel shape, we decided to activate
the first layer of the RBF-iPINN through (3.2a), where we
set the hyperparameter � = 1 ; finally, for a better data fitting,
we also selected the sup-norm in (3.3b).

In this case, the neural network shows a discrete ability to
catch shape and support of the bell-shaped kernel, but fails
in a good approximation of the characteristic parameters,
as shown in Fig. 5. In fact, in this case the true kernel is
given by

(4.1)C(x) =
3

5
|x|.

(4.2)C(x) =

⎧
⎪⎨⎪⎩

𝛿−x−10

𝛿
, x ≤ −10 + 𝛿,

0, − 10 + 𝛿 < x ≤ 10 − 𝛿,
𝛿+x−10

𝛿
, x > 10 − 𝛿.

Engineering with Computers	

(a) γ =0 .09 (b) γ =0 .05

Fig. 3   Learned kernel functions relative to Example 4.1 for different values of � in (3.2b)

(a) γ = 0.09 (b) γ = 0.05

Fig. 4   Learned kernel functions for different values of � in (3.2b) relative to Example 4.2

Therefore, we have performed a further analysis by imple-
menting a standard inverse PINN to learn parameters �∗ and
�∗ in

(4.3)C(x) =
4√
�
e−x

2

.

Starting with initial guesses for �∗ = 3 and for �∗ = 0.5 , we
run a PINN whose structure is the same as the second por-
tion relative to � of the RBF-iPINN described above (see the
architecture in Fig. 2). The training phase has been per-
formed over 1000 epochs and with the same learning rate

(4.4)C∗(x) ∶= �∗e−�
∗x2 .

	 Engineering with Computers

scheduler described in Sect. 3.4, but with a faster descent
obtained by setting �0 = 10−3 . Results are depicted in Fig. 6.
It can be deduced that the inverse PINN has been able to
correctly detect the learned values which, at convergence,
are given by �∗ = 2.3302033 and �∗ = 1.0218402 , being
4√
�
≈ 2.2567583.

Remark 4.4  We stress that a prior geometrical knowledge
about the kernel function to learn is necessary to cor-
rectly set up the spatial NN of the RBF-iPINN. In fact, we
report that, activating the spatial NN with an RBF of type
(3.2a) in Example 4.1 and Example 4.2 results in poor and

nonphysical predictions; similar negative results show up if
RBFs of type (3.2b) are used in Example 4.3.

5 � Conclusions

In this work we have analyzed a peridynamic formulation
of a classical wave equation, trying to compute the kernel
function responsible for the nonlocal behavior of the model
considered. We have proposed to utilize a Radial Basis
Function (RBF) as activation function for the first layer of a
suitably designed Physics Informed Neural Network (PINN)
to solve the inverse problem. Specifically, our inverse PINN
architecture has two neural networks working in series: the
first set of layers, called spatial NN and whose first layer
activated by some Radial Basis Function, takes the spatial
data as input and yields the first output for recovering the
kernel function; then, this first output is concatenated to the
temporal data, thus providing a new tensor serving as input
to the second set of layers, that is called temporal NN and
that produces the output describing � , solution to the peridy-
namic wave equation. We called the proposed model RBF-
iPINN. We have shown that, with a wise scheduler for the
learning rate and necessary initializations of the spatial NN
responsible for the kernel function computation, for stand-
ard selections of the activation RBF, the RBF-iPINN can
provide reliable prediction of the kernel function, in case it
has a V-shape behavior. We also tackle the case of Gauss-
ian kernel function: here, RBF-iPINN is able to adequately
detect the shape, but a further analysis is necessary to learn
the expected parameters of a bell-shaped function. We did
so by implementing a standard inverse PINN, practically
tuning the very same second set of layer of the RBF-iPINN.

Such models turn out to be promising tools for investigat-
ing optimal controls problems in dimension 2 or higher (see,
e.g., [8]), where an inverse PINN approach seems to provide
robust and scalable results. Such considerations pave the
way to further investigations about how to deal with more
complicated peridynamic models via PINNs and Radial
Basis Functions, that seem to be a powerful approach to this
kind of problems, due to their inherently symmetric nature.

Acknowledgements  SFP has been supported by REFIN Project, grant
number D1AB726C funded by Regione Puglia, and by PNRR MUR -
M4C2 project, grant number N00000013 - CUP D93C22000430001.
The three authors gratefully acknowledge the support of INdAM-GNCS
2023 Project, grant number CUP_E53C22001930001, and INdAM-
GNCS 2024 project, grant number CUP_E53C23001670001. They are
also part of the INdAM research group GNCS.

Author Contributions  All authors contributed equally to the paper.

Funding  Open access funding provided by Consiglio Nazionale Delle
Ricerche (CNR) within the CRUI-CARE Agreement.

Fig. 5   Learned kernel function compared to the true one from Exam-
ple 4.3

Fig. 6   Gaussian kernel function learned from (4.4), compared to the
true one from Example 4.3

Engineering with Computers	

Availability of data and materials  No datasets were generated or ana-
lysed during the current study.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Alebrahim R (2023) Modified wave dispersion properties in
1D and 2D state-based peridynamic media. Comput Math Appl
151:21–35

	 2.	 Alebrahim R, Marfia S (2023) Adaptive PD-FEM coupling method
for modeling pseudo-static crack growth in orthotropic media. Eng
Fract Mech 294:109710

	 3.	 Bai Jinshuai, Liu Gui-Rong, Gupta Ashish, Alzubaidi Laith, Feng
Xi-Qiao, YuanTong Gu (2023) Physics-informed radial basis net-
work (PIRBN): A local approximating neural network for solv-
ing nonlinear partial differential equations. Computer Methods in
Applied Mechanics and Engineering 415:116290

	 4.	 Bandai T, Ghezzehei TA (2022) Forward and inverse modeling of
water flow in unsaturated soils with discontinuous hydraulic con-
ductivities using physics-informed neural networks with domain
decomposition. Hydrol Earth Syst Sci 26(16):4469–4495

	 5.	 Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural proba-
bilistic language model. J Mach Learn Res 3:1137–1155

	 6.	 Berardi M, Girardi G (2024) Modeling plant water deficit by a non-
local root water uptake term in the unsaturated flow equation. Com-
mun Nonlinear Sci Numer Simul 128:107583

	 7.	 Berardi M, Difonzo FV, Pellegrino SF (2023) A numerical method
for a nonlocal form of Richards’ Equation based on Peridynamic
theory. Comput Math Appl 143:23–32

	 8.	 Berardi M, Difonzo FV, Guglielmi R (2023) A preliminary model
for optimal control of moisture content in unsaturated soils. Comput
Geosci 27(6):1133–1144

	 9.	 Bobaru F, Yang M, Alves S, Silling F, Askari E, Xu J (2009) Con-
vergence, adaptive refinement, and slaning in 1D peridynamics. Int
J Numer Mech Eng 77:852–877

	10.	 Chen X, Cao BT, Yuan Y, Meschke G (2023) Transfer learning
based physics-informed neural networks for solving inverse prob-
lems in engineering structures under different loading scenarios.
Comput Methods Appl Mech Eng 405:115852

	11.	 Cuomo S, Cola VSD, Giampaolo F, Rozza G, Raissi M, Piccialli F
(2022) Scientific machine learning through physics-informed neural
networks: where we are and what’s next. J Sci Comput 92(3):88

	12.	 Difonzo FV, Garrappa R (2023) A numerical procedure for frac-
tional-time-space differential equations with the spectral frac-
tional laplacian. In: Angelamaria C, Marco D, Fabio D, Roberto

G, Mariarosa M, Marina P (eds) Fractional Differential Equations,
pages 29–51, Springer Nature Singapore, Singapore

	13.	 Emmrich E, Puhst D (2015) Survey of existence results in nonlinear
peridynamics in comparison with local elastodynamics. Comput.
Methods Appl. Math. 15(4):483–496

	14.	 Fasshauer GE (2007) Meshfree approximation methods with Matlab
(With Cd-rom). World Scientific Publishing Company, Interdisci-
plinary Mathematical Sciences

	15.	 Gao H, Zahr MJ, Wang J-X (2022) Physics-informed graph neural
Galerkin networks: a unified framework for solving PDE-governed
forward and inverse problems. Comput Methods Appl Mech Eng
390:114502

	16.	 Haghighat E, Bekar AC, Madenci E, Juanes R (2021) A nonlocal
physics-informed deep learning framework using the peridynamic
differential operator. Comput Methods Appl Mech Eng 385:114012

	17.	 Jafarzadeh S, Larios A, Bobaru F (2020) Efficient solutions for non-
local diffusion problems via boundary-adapted spectral methods. J
Peridyn Nonlocal Model 2:85–110

	18.	 Kilic B, Madenci E (2010) Coupling of peridynamic theory and the
finite element method. J Mech Mater Struct 5(5):703–733

	19.	 Kuangdai L, Jeyan T (2023) On the compatibility between neural
networks and partial differential equations for physics-informed
learning

	20.	 Lopez L, Pellegrino SF (2021) A spectral method with volume
penalization for a nonlinear peridynamic model. Int J Numer Meth-
ods Eng 122(3):707–725

	21.	 Lopez L, Pellegrino SF (2022) A space-time discretization of a
nonlinear peridynamic model on a 2D lamina. Comput Math Appl
116:161–175

	22.	 Luciano Lopez and Sabrina Francesca Pellegrino (2023) Compu-
tation of eigenvalues for nonlocal models by spectral methods. J
Peridyn Nonlocal Model 5(2):133–154

	23.	 Mavi A, Bekar AC, Haghighat E, Madenci E (2023) An unsuper-
vised latent/output physics-informed convolutional-LSTM network
for solving partial differential equations using peridynamic differen-
tial operator. Comput Methods Appl Mech Eng 407

	24.	 Meng Z, Qian Q, Mengqiang X, Bo Y, Yildiz AR, Mirjalili Seyedali
(2023) PINN-FORM: a new physics-informed neural network for
reliability analysis with partial differential equation. Comput Meth-
ods Appl Mech Eng 414:116172

	25.	 Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffu-
sion. J Comput Phys 265:71–96

	26.	 Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations.
J. Comput. Phys. 378:686–707

	27.	 Regazzoni F, Dedè L, Quarteroni A (2019) Machine learning for
fast and reliable solution of time-dependent differential equations.
J. Comput. Phys. 397:108852

	28.	 Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled
meshless finite point/Peridynamic method for 2D dynamic fracture
analysis. Int J Mech Sci 119:419–431

	29.	 Silling SA (2000) Reformulation of elasticity theory for discontinui-
ties and long-range forces. J Mech Phys Solids 48(1):175–209

	30.	 Silling S, Askari E (2005) A meshfree based on the peridynamic
model of solid mechanics. Comput Struct 83(17–18):1526–1535

	31.	 Sukumar N, Srivastava A (2022) Exact imposition of boundary
conditions with distance functions in physics-informed deep neural
networks. Comput Methods Appl Mech Eng 389:114333

	32.	 Taylor JM, Pardo D, Muga I (2023) A deep fourier residual method
for solving PDEs using neural networks. Comput Methods Appl
Mech Eng 405:115850

	33.	 Turner DZ, van Bloemen Waanders BG, Parks ML (2015) Inverse
problems in heterogeneous and fractured media using peridynamics.
J Mech Materi Struct 10(5)

http://creativecommons.org/licenses/by/4.0/

	 Engineering with Computers

	34.	 Vitullo P, Colombo A, Franco NR, Manzoni A, Zunino P (2024)
Nonlinear model order reduction for problems with microstructure
using mesh informed neural networks. Finite Elements Anal Design
229:104068

	35.	 Wang L, Jafarzadeh S, Mousavi F, and Bobaru F (2023) PeriFast/
Corrosion: A 3D Pseudospectral Peridynamic MATLAB Code for
Corrosion. J Peridynamics Nonlocal Model:1–25

	36.	 Weckner O, Abeyaratne R (2005) The effect of long-range forces on
the dynamics of a bar. J Mech Phys Solids 53(3):705–728

	37.	 Yuan L, Ni YQ, Deng XY, Hao S (2022) A-PINN: auxiliary phys-
ics informed neural networks for forward and inverse problems of
nonlinear integro-differential equations. J Comput Phys 462

	38.	 Yuyao Chen LL, Karniadakis GE, Dal Negro L (2020) Physics-
informed neural networks for inverse problems in nano-optics and
metamaterials. Opt Express 28(8):11618–11633

	39.	 Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018)
Coupling of FEM meshes with Peridynamic grids. Comput Methods
Appl Mech Eng 330:471–497

	40.	 Zhou Z, Wang L, Yan Z (2023) Deep neural networks learning
forward and inverse problems of two-dimensional nonlinear wave
equations with rational solitons. Comput Math Appl 151:164–171

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Physics informed neural networks for an inverse problem in peridynamic models
	Abstract
	1 Introduction to the peridynamic inverse problem
	2 Introduction to PINNs
	2.1 PINN paradigm

	3 RBF-iPINN for the kernel function
	3.1 Radial Basis Function Layer
	3.2 RBF-iPINN Structure
	3.3 Loss Function
	3.4 Learning rate

	4 Numerical Simulations
	5 Conclusions
	Acknowledgements
	References

