Measurement of the W^+W^- and ZZ production cross sections in pp collisions at $\sqrt{s} = 8$ TeV

CERN Collaboration*

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 20 January 2013
Received in revised form 10 March 2013
Accepted 18 March 2013
Available online 25 March 2013
Editor: M. Doser

Keywords:
CMS
Physics
W and Z pair production

A B S T R A C T

The W^+W^- and ZZ production cross sections are measured in proton–proton collisions at $\sqrt{s} = 8$ TeV with the CMS experiment at the LHC in data samples corresponding to an integrated luminosity of up to 5.3 fb$^{-1}$. The measurements are performed in the leptonic decay modes $W^+W^- \to \ell^+\ell^-\nu\bar{\nu}$ and $ZZ \to 2\ell^2\ell'^2$, where $\ell = e, \mu$, and $\ell' = e, \mu, \tau$. The measured cross sections $\sigma(pp \to W^+W^-) = 69.9 \pm 2.8$ (stat.) ± 5.6 (syst.) ± 3.1 (lum.) pb and $\sigma(pp \to ZZ) = 8.4 \pm 1.0$ (stat.) ± 0.7 (syst.) ± 0.4 (lum.) pb, for both Z bosons produced in the mass region $60 < m_Z < 120$ GeV, are consistent with standard model predictions. These are the first measurements of the diboson production cross sections at $\sqrt{s} = 8$ TeV.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

The study of W^+W^- and ZZ production in proton–proton collisions is an important test of the standard model (SM). Any deviations of the measured cross sections from SM predictions would indicate new physics. Measurements of electroweak W^+W^- and ZZ production are essential for an accurate estimate of irreducible backgrounds for Higgs boson studies.

Previous measurements of W^+W^- and ZZ production were performed at the Large Hadron Collider (LHC) at a center-of-mass energy $\sqrt{s} = 7$ TeV. With a data set corresponding to an integrated luminosity of 36 pb$^{-1}$, the Compact Muon Solenoid (CMS) Collaboration measured the W^+W^- cross section $\sigma(pp \to W^+W^-) = 41.1 \pm 15.3$ (stat.) ± 5.8 (syst.) ± 4.5 (lum.) pb [1], in good agreement with the SM prediction of 47 ± 2 pb from Ref. [2]. The ATLAS Collaboration measured $\sigma(pp \to W^+W^-) = 51.9 \pm 2.0$ (stat.) ± 3.9 (syst.) ± 2.0 (lum.) pb [3] using 4.6 fb$^{-1}$ of data. The ZZ cross section measurement from CMS used 5 fb$^{-1}$ of data; the measured value, $\sigma(pp \to ZZ) = 6.24^{+0.89}_{-0.80}$ (stat.) ± 0.41 (syst.) ± 0.14 (lum.) pb, is consistent with the SM prediction of 6.3 ± 0.4 pb for both Z bosons in the mass range $60 < m_Z < 120$ GeV [4]. ATLAS measured $\sigma(pp \to ZZ) = 6.7 \pm 0.7$ (stat.) ± 0.3 (syst.) ± 0.3 (lum.) pb [5] with a data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Measurements of the W^+W^- and ZZ cross sections performed at the Tevatron are summarized in Refs. [6–10]. All measurements are found to agree well with the corresponding SM predictions.

In this Letter, the first measurements of the W^+W^- and ZZ production cross sections at $\sqrt{s} = 8$ TeV are presented. The analysis is based on data collected in 2012 with the CMS experiment at the LHC, corresponding to an integrated luminosity of 3.5 fb$^{-1}$ for the W^+W^- measurement and 5.3 fb$^{-1}$ for the ZZ measurement. The measurements are performed in the $W^+W^- \to \ell^+\ell^-\nu\bar{\nu}$ and $ZZ \to 2\ell^2\ell'^2$ decay channels, where $\ell = e, \mu$, and $\ell' = e, \mu, \tau$. If a τ lepton is present in the W^+W^- final state, only leptonic decays of the τ lepton are considered. If a τ lepton is present in the ZZ final state, one Z is required to decay either into e^+e^- or $\mu^+\mu^-$, and the second Z into $\tau^+\tau^-$ in four possible final states: $\tau_1\tau_2$, $\tau_1\tau_h$, $\tau_h\tau_2$, and $\tau_1\tau_\mu$, where τ_h indicates a τ lepton decaying hadronically, and τ_μ and τ_ℓ indicate taus decaying into an electron and a muon, respectively.

The SM background sources to the W^+W^- event sample include $W\gamma$, top-quark ($t\bar{t}$ and tW), $Z/\gamma^* \to \ell^+\ell^-$, and diboson (WZ and ZZ) production, as well as $W+J$ and QCD multijet events, where at least one of the jets is misidentified as a lepton. The SM background sources to the ZZ event sample include contributions from $Z\bar{b}b$ and $t\bar{t}$ processes, where the final states contain two isolated leptons and two b jets with secondary leptons, and from $Z+J$ and $ZW+J$ processes where the jets are misidentified as leptons.

2. The CMS detector and simulation

While the CMS detector is described in detail elsewhere [11], the key components for this analysis are summarized here. The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the
center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the anticlockwise-beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angle ϕ is measured in the x–y plane. The magnitude of the transverse momentum (p_T) is calculated as $p_T = \sqrt{p_x^2 + p_y^2}$. A superconducting solenoid occupies the central region of the CMS detector, providing an axial magnetic field of 3.8 T parallel to the beam direction. The silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter are located within the solenoid. A quartz-fibre Cherenkov calorimeter extends the coverage to $|\eta| < 5.0$, where pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$. Muons are measured in gas ionization detectors embedded in the steel flux return yoke outside the solenoid. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events in less than 3 μs using information from the calorimeters and muon detectors. The high-level-trigger processor farm decreases the event rate from 100 kHz delivered by the first level trigger to a few hundred hertz, before data storage.

Several Monte Carlo (MC) event generators are used to simulate the signals and backgrounds. The W^+W^- production via $q\bar{q}$ annihilation is generated with the MadGraph [12] event generator, and PYTHIA [13] is used for parton showering, hadronization, and the underlying event simulation. The $gg \rightarrow W^+W^-$ process, which is expected to contribute 3% of the total W^+W^- production rate [14], is generated with gg2W [15]. The ZZ production via $q\bar{q}$ annihilation is generated at next-to-leading order (NLO) with POWHEG 2.0 [16–18]. The $gg \rightarrow ZZ$ process is simulated with gg2zz [19]. Other diboson processes (WZ, $W^*\nu\bar{\nu}$) and the $Z+\text{jets}$ samples are generated with MADGRAPH. The $t\bar{t}$ and $t\bar{W}$ events are generated at NLO with POWHEG. For leading-order (LO) generators, the default set of parton distribution functions (PDF) used to produce these samples is CTEQ6L [20], while CT10 [21] is used for NLO generators. The τ lepton decays are generated with TAUOLA [22]. For all processes, the detector response is simulated using a detailed description of the CMS detector, based on the GEANT4 package [23], and event reconstruction is performed with the same algorithms as used for data. The simulated samples include additional interactions per bunch crossing (pileup). The simulated events are weighted so that the pileup distribution matches the data, with an average pileup of about 20 interactions per bunch crossing.

3. Event reconstruction

Both the W^+W^- and ZZ event selections begin with the reconstruction and identification of lepton candidates. Electrons are reconstructed by combining information from the electromagnetic calorimeter and tracker [24,25]. Their identification relies on a multivariate technique that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the geometrical and momentum matching between the electron trajectory in the tracker and the energy deposit in the calorimeter, as well as the shower shape [24]. Muons are reconstructed [26] with information from both the tracker and the muon spectrometer, and are required to pass selection criteria similar to those described in Ref. [1]. A particle-flow (PF) technique [27] is used to reconstruct τ_h candidates with the “hadron plus strip” (HPS) algorithm [28], which is designed to optimize the performance of τ_h identification and reconstruction by considering specific τ_h decay modes.

In the PF approach, information from all subdetectors is combined to reconstruct and identify particles produced in the collision. The particles are classified into mutually exclusive categories: charged hadrons, photons, neutral hadrons, muons, and electrons. These particles are used to reconstruct the τ_h candidates; the neutrinos produced in all τ decays escape detection and are ignored in the τ_h reconstruction. The lepton candidates are required to be consistent with the primary vertex of the event, which is chosen as the vertex with highest $\sum p_T^2$ of its associated tracks. This criterion provides the correct assignment for the primary vertex in more than 99% of both signal and background events for the pileup distribution observed in the data.

Charged leptons from W and Z boson decays are usually isolated from other activity in the event. For each electron or muon candidate, a cone is constructed around the track direction at the event vertex. The scalar sum of the transverse momenta of all reconstructed particles consistent with the chosen primary vertex and contained within the cone is calculated, excluding the contribution from the lepton candidate itself. To improve the discrimination against nonisolated muons from the $W^++\text{jets}$ background in the W^+W^- selection, this procedure is repeated with several cones of different widths. This isolation information is then combined by means of a multivariate technique. For both electrons and muons a correction is applied to account for the energy contribution in the isolation cone due to pileup. A median transverse energy due to pileup is determined event by event and is subtracted from the transverse energy (E_T) in the isolation cone [29]. A similar technique is used to form τ lepton isolation quantities.

Jets are reconstructed from the PF particles using the anti-k_T clustering algorithm [30] with distance parameter of 0.5, as implemented in the FASTJET package [31,32]. The jet energy is corrected for pileup in a manner similar to the correction of the energy inside a lepton isolation cone. Jet energy corrections are also applied as a function of the jet p_T and η [33]. A multivariate selection is applied to separate jets coming from the primary interaction from those reconstructed using energy deposits associated with pileup. This discrimination is based on the differences in the jet shapes and in the relative multiplicity of charged and neutral components. Tracks associated with a jet are required to be consistent with the primary vertex.

To suppress the top-quark background in events without high-p_T jets, top-quark-tagging techniques are defined with two methods. The first method vetoes events containing muons originating from b quarks [34] appearing in top-quark decays. The second method uses b-jet tagging applied to jets with $p_T < 30$ GeV based on tracks with large impact parameter within jets.

The missing transverse energy E_T^{miss} is defined as the negative vector sum of the transverse momenta of all reconstructed particles in the event. A projected E_T^{miss} is defined as (i) the magnitude of the E_T^{miss} component transverse to the closest lepton, if $\Delta\phi(\ell, E_T^{\text{miss}}) < \pi/2$, or (ii) the magnitude of the E_T^{miss} otherwise. This observable more efficiently selects $Z/\gamma^* \rightarrow \tau^+\tau^-$ background events in which the E_T^{miss} is preferentially aligned with the leptons, and $Z/\gamma^* \rightarrow \ell^+\ell^-$ events with mismeasured E_T^{miss}. Since the projected E_T^{miss} resolution is degraded as pileup increases, the minimum of two different observables is used: the first includes all particle candidates in the event, while the second uses only the charged particle candidates associated with the primary vertex.

4. Event selection and background estimates

4.1. W^+W^- production

Events are selected with two oppositely charged electron or muon candidates, both with $p_T > 20$ GeV and with $|\eta| < 2.5$ for the electrons and $|\eta| < 2.4$ for the muons. The τ leptons contribute to the measurement only if they decay to electrons or muons that pass the selection requirements. At the trigger level, events are required to have a pair of electrons or muons where one of the
leptons has $p_T > 17 \text{ GeV}$ and the other $p_T > 8 \text{ GeV}$, or a single electron (muon) with $p_T > 27$ (24) GeV. The trigger efficiency is approximately 98% for both $q\bar{q} \rightarrow W^+W^-$ and $gg \rightarrow W^+W^-$ processes.

To reduce the background from top-quark decays, events with one or more jets surviving the jet selection criteria and with $p_T > 20 \text{ GeV}$ and $|\eta| < 4.7$ are rejected. The residual top-quark background is further suppressed by 50% after applying the top-quark-tagging techniques.

In order to reduce the Drell–Yan background, the projected E_{T}^{miss} is required to be above 45 GeV in the e^+e^- and $\mu^+\mu^-$ final states. For the e^+e^- final state, which has a lower contamination from $Z/\gamma^* \rightarrow e^+e^-$ decays, the threshold is reduced to 20 GeV. These requirements remove more than 99% of the Drell–Yan background.

To further reduce the Drell–Yan background in the e^+e^- and $\mu^+\mu^-$ final states, the angle in the transverse plane between the dilepton system total momentum and the most energetic jet with $\Delta R < 0.5$ is required to be above 45 GeV to reduce contributions from Drell–Yan background and events containing jets misidentified as leptons.

To reduce the background from other diboson processes, such as WZ or ZZ production, any event is rejected if it has a third lepton with $p_T > 10 \text{ GeV}$ passing the identification and isolation requirements. The W$Y^{(*)}$ production in which the photon converts is suppressed by rejecting electrons consistent with a photon conversion.

The W$+$ jets and QCD multijet backgrounds are estimated from a control region in which one lepton passes the nominal requirements, while the other passes looser criteria on impact parameter and isolation, but fails the nominal requirements. The contribution to the control region from processes with two genuine leptons is subtracted by using simulation. The number of events in the signal region is obtained by scaling the number of events in the control region with the efficiency for loosely identified lepton candidates to pass the tight selection. These efficiencies are measured in data using multijet events and are parametrized according to the p_T and $|\eta|$ of the lepton candidate.

The normalization of the top-quark background that survives the top-quark-tagging requirements is estimated from data by counting the number of top-tagged events and applying the corresponding top-tagging efficiency. The top-tagging efficiency is measured with a control sample dominated by $t\bar{t}$ and tW events, which is selected by requiring a b-tagged jet.

We estimate the Drell–Yan contribution to the e^+e^- and $\mu^+\mu^-$ final states outside of the Z mass window by normalizing the event yield from simulation to the observed number of events inside the Z mass window. The methods used to estimate both the top-quark and Drell–Yan backgrounds are described in more detail in Ref. [35].

Finally, a control sample with three reconstructed leptons is used to measure the data-to-MC scaling factor for the W$Y^{(*)}$ process. We use only $WY^{(*)} \rightarrow \ell\nu Y\mu^-\mu^-$ events for this measurement because the $e^+e^-\rightarrow e^+e^-$ final state is difficult to separate from other backgrounds. This measurement is used to normalize the simulated W$Y^{(*)}$ background contribution from asymmetric gamma decays in which one lepton escapes detection [36].

Other backgrounds, such as WZ and ZZ diboson production, are estimated from simulation.

The W$+$ jets and W$Y^{(*)}$ background estimate is checked using data events that pass all the selection requirements with the exception that the two leptons must have the same charge. After subtraction of the expected WZ background, this sample is dominated by W$+$ jets and W$Y^{(*)}$ events. The $Z/\gamma^* \rightarrow \tau^+\tau^-$ contamination is checked using $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ events selected in data, where the leptons are replaced with simulated τ lepton decays.

4.2. ZZ production

Selected events are required to have at least one electron or muon with $p_T > 20 \text{ GeV}$ and another one with $p_T > 10 \text{ GeV}$, and $|\eta| < 2.5$ (2.4) for electrons (muons). All other electrons (muons) are required to have $p_T > 7$ (5) GeV. The $t\bar{t}$ candidates are required to have $p_T > 20 \text{ GeV}$ and $|\eta| < 2.3$. All leptons must originate from the same vertex and be isolated. At the trigger level, events are required to have a pair of electrons or muons, one lepton with $p_T > 17 \text{ GeV}$ and the other with $p_T > 8 \text{ GeV}$.

The selected events are required to contain two Z candidates. One candidate, denoted by Z_1, should decay into electrons or muons, $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$. If more than one candidate is found, the one with mass closest to the Z mass is considered as Z_1.

The selection requirements for the second Z candidate, denoted by Z_2, depend on the final state. In the 4μ, $4e$, and $2e2\mu$ final states the isolation requirements are the same as for the leptons from Z_1. For the $e^+\tau^-\tau^+$ and $\mu^+\mu^-\tau^+\tau^-$ final states the electron and muon p_T values are required to exceed 10 GeV. In final states with $Z_2 \rightarrow \tau^+\tau^-$ the isolation requirements for all the electrons and muons are tighter. A study of inclusive $Z \rightarrow \tau^+\tau^-$ production [37] shows that modifying the electron and muon isolation requirements is a more effective way to reduce background in such final states than imposing tighter isolation criteria on $\tau\nu$.

The invariant mass of the reconstructed Z_2 is required to satisfy $60 < m_{e\gamma} < 120 \text{ GeV}$ when Z_2 decays into e^+e^- or $\mu^+\mu^-$. In the $2\tau 2\nu$ final states, the visible invariant mass of the reconstructed $Z_2 \rightarrow \tau^+\tau^-$ is shifted to smaller values because of undetected neutrinos in τ decays. Therefore, in the final states involving τ leptons, the visible mass is required to satisfy $30 < m_{\tau\tau} < 90 \text{ GeV}$, and the leptons from the same Z are required to be separated by $\Delta R > 0.4$ for the Z_1, and by $\Delta R > 0.5$ for the Z_2.

Estimated acceptances of the selection requirements defined with respect to the full phase space are 58%, 56%, 54%, and 25% for the $4e$, $2e2\mu$, 4μ, and $2\tau 2\nu$ final states, respectively.

The major contributions to the background come from Z production in association with jets, WZ production in association with jets, and $t\bar{t}$. In all these cases, a jet or nonisolated lepton is misidentified as an isolated electron, muon, or $\tau\nu$. The relative contribution of each source of background depends on the final state.

For the background estimation, two different approaches are used. Both start by relaxing the isolation and identification criteria for two additional reconstructed lepton objects indicated as $\ell_{e reco f isco}$ in the $Z_1 + \ell_{e reco f isco}$ event sample. The additional pair of leptons is required to have like-sign charge (to avoid signal contamination) and same flavor ($e^+e^-, \mu^+\mu^-$). The first method estimates the number of $Z \rightarrow X$ background events in the signal region by taking into account the lepton misidentification probability for each of the two additional leptons. The second method uses a control region with two opposite-sign leptons that fail the isolation and identification criteria. The background in the signal region is estimated by weighting the events in the control region with the lepton misidentification probability. In addition, a control region with three passing leptons and one failing lepton is used to account for contributions from backgrounds with three prompt leptons and one misidentified lepton. Comparable background rates
in the signal region are found within the uncertainties from both methods.

5. Systematic uncertainties

The uncertainty in the signal acceptance for the two measurements due to variations in the parton distribution functions and the value of α_s is estimated by following the PDF4LHC prescription [38]. Using CT10 [21], MSTW08 [39], and NNPDF [40] sets, the uncertainties are 2.3% (4.0%) for the q$q\rightarrow W^+W^-$ (ZZ) processes.

The effects of higher-order corrections are found by varying the QCD renormalization and factorization scales simultaneously up and down by a factor of two using the mcfm program [14]. The variations in the acceptance are found to be 1.5% for the q$q\rightarrow W^+W^-$ process and to be negligible for the q$q\rightarrow ZZ$ processes.

The W$^+W^-$ jet veto efficiencies in data are estimated from simulation, and multiplied by a data-to-simulation scale factor derived from Zγ^* → $\ell^+\ell^-$ events in the Z peak: $\varepsilon_{W^+W^-}^{data}/\varepsilon_{W^+W^-}^{MC} = \varepsilon_{Z}/\varepsilon_{Z}$. The uncertainty is thus factored into the uncertainty in the Z efficiency in data and the uncertainty in the ratio of the W$^+W^-$ efficiency to the Z efficiency in simulation ($\varepsilon_{W^+W^-}^{data}/\varepsilon_{Z}^{MC}$). The former, which is statistically dominated, is 0.3%. Theoretical uncertainties due to higher-order corrections contribute most to the W$^+W^-$/Z efficiency ratio uncertainty, which is estimated to be 4.6% for W$^+W^-$ production. The data-to-simulation correction factor is found to be close to one and is not applied.

Simulated events are scaled according to the lepton efficiency correction factors measured using data control samples, which are typically close to one. The uncertainties in the measured identification and isolation efficiencies are found to be 1–2% for muons and electrons, and 6–7% for τ_b. The uncertainty in the trigger efficiency is 1.5%. The uncertainty in the lepton energy scale is about 3% for τ_b, and 1–2.5% and 1.5% for electrons and muons, respectively.

The uncertainties in the Z + jets, W + jets, and tt backgrounds to the ZZ → 2ℓ selection are 30–50% depending on the decay channel. These uncertainties comprise the statistical and systematic uncertainties in the misidentification rates measured in data control samples.

The systematic uncertainties in the W + jets, Z + jets, and top backgrounds to the W$^+W^-$ → $\ell^+\ell^-$ selection are 36%, 24%, and 15%, respectively. The theoretical uncertainties in the WZ and ZZ cross sections are calculated following the same prescription as for the signal acceptance. Including the experimental uncertainties gives a systematic uncertainty in WZ and ZZ backgrounds of approximately 10%.

The uncertainty assigned to the pileup reweighting procedure amounts to 2.3%. The uncertainty in the integrated luminosity is 4.4% [41].

6. Results

6.1. W$^+W^-$ cross section measurement

The observed and expected signal plus background yield is summarized in Table 1. The expected W$^+W^-$ contribution is calculated assuming the SM cross section.

The total background yield is 275 ± 35 events and the expected signal and background yield is 959 ± 60 events, with 1111 events observed.

The measured W$^+W^-$ yield is calculated by subtracting the estimated contributions of the various background processes. The product of the signal efficiency and acceptance averaged over all lepton flavors including τ leptons is (3.2 ± 0.2)%.

The data-to-simulation correction branching ratio of 0.1080 ± 0.0009 from Ref. [42], the W$^+W^-$ production cross section in pp collision data at $\sqrt{s} = 8$ TeV is measured to be

$$\sigma(pp \rightarrow W^+W^-) = 69.9 ± 2.8 \text{(stat.)} ± 5.6 \text{(syst.)} ± 3.1 \text{(lum.)} \text{ pb}.$$
Fig. 1. Distributions for W^+W^- candidate events of (a) the leading lepton transverse momentum p_T^{max}, (b) the trailing lepton transverse momentum p_T^{min}, (c) the dilepton transverse momentum $p_T^{\ell\ell}$, and (d) the dilepton invariant mass $m_{\ell\ell}$. Points represent the data, and shaded histograms represent the W^+W^- signal and the background processes. The last bin includes the overflow. The W^+W^- signal is scaled to the measured cross section, and the background processes are normalized to the corresponding estimated values in Table 1.

Table 2

<table>
<thead>
<tr>
<th>Channel</th>
<th>$4e$</th>
<th>4μ</th>
<th>$2e2\mu$</th>
<th>$2/2\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>11.6 ± 1.4</td>
<td>20.3 ± 2.2</td>
<td>32.4 ± 3.5</td>
<td>6.5 ± 0.8</td>
</tr>
<tr>
<td>Background</td>
<td>0.4 ± 0.2</td>
<td>0.4 ± 0.3</td>
<td>0.5 ± 0.4</td>
<td>5.6 ± 1.4</td>
</tr>
<tr>
<td>Signal + background</td>
<td>12.0 ± 1.4</td>
<td>20.7 ± 2.2</td>
<td>32.9 ± 3.5</td>
<td>12.1 ± 1.6</td>
</tr>
<tr>
<td>Data</td>
<td>14</td>
<td>19</td>
<td>38</td>
<td>13</td>
</tr>
</tbody>
</table>

 shifted downwards with respect to the generated values by about 30% because of the undetected neutrinos in τ decays. Figs. 2(c) and 2(d) demonstrate the relationship between reconstructed Z_1 and Z_2 masses.

To measure the ZZ cross section the numbers of observed events are unfolded in a combined likelihood fit. Each decay mode is treated as a separate channel giving eleven measurements to combine: $4e, 4\mu, 2e2\mu$, and eight $2/2\tau$ channels. The τ-lepton decay modes are treated separately; the methodology used for event reconstruction and selection ensures that the decay modes are mutually exclusive. The joint likelihood is a combination of the likelihoods for the individual channels, which include the signal and background hypotheses. The statistical and systematic uncertainties are introduced in the form of nuisance parameters via log-normal distributions around the estimated central values. The resulting cross section is

$$\sigma(pp \rightarrow ZZ) = 8.4 \pm 1.0 \text{(stat.)} \pm 0.7 \text{(syst.)} \pm 0.4 \text{(lum.) pb}.$$

This is to be compared to the theoretical value of 7.7 ± 0.4 pb calculated with MCFM at NLO for $q\bar{q} \rightarrow ZZ$ and LO for $gg \rightarrow ZZ$ with MSTW08 PDF, and factorization and renormalization scales set to the Z mass, for both lepton pairs in the mass range $60 < m_Z < 120$ GeV.

7. Summary

The W^+W^- and ZZ production cross sections have been measured in proton–proton collisions at $\sqrt{s} = 8$ TeV in the $W^+W^- \rightarrow \ell^+\ell^-\nu\bar{\nu}$ and $ZZ \rightarrow 2\ell^2\ell^2\ell^2\ell^2$ decay modes with $\ell = e, \mu$ and $\ell' = e, \mu, \tau$. The data samples correspond to an integrated luminosity of 3.5 fb$^{-1}$ for the W^+W^- and 5.3 fb$^{-1}$ for the ZZ measurements. The measured production cross sections $\sigma(pp \rightarrow W^+W^-) = 69.9 \pm 2.8 \text{(stat.)} \pm 5.6 \text{(syst.)} \pm 3.1 \text{(lum.) pb}$ and $\sigma(pp \rightarrow ZZ) = 8.4 \pm 1.0 \text{(stat.)} \pm 0.7 \text{(syst.)} \pm 0.4 \text{(lum.) pb}$, for both Z bosons produced in the mass region $60 < m_Z < 120$ GeV, are consistent with the
Fig. 2. Distributions for ZZ candidate events of (a) the four-lepton reconstructed mass for the sum of the 4e, 4μ, and 2e2μ channels and (b) the sum of the 2/2τ channels. Points represent the data, and shaded histograms represent the expected ZZ signal and the reducible background. The shapes of the signal and background are taken from the MC simulation, with each component normalized to the corresponding estimated value from Table 2. The distributions (c) and (d) demonstrate the relationship between the reconstructed Z₁ and Z₂ masses. Different symbols are used to present different decay channels.

standard model predictions. This is the first measurement of the diboson production cross sections at \(\sqrt{s} = 8 \) TeV.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

A. Van Spilbeeck
Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caerbergs, E. Daubie, G.H. Hammad
Université de Mons, Mons, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil

V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
H.A. Weber, L. Wehrli

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

C. Amsler 39, V. Chiochia, C. Favaro, M. Ivona Rikova, B. Kilminster, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, E. Simili, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak 45, M. Kaya 46, O. Kaya 46, S. Ozkorucuklu 47, N. Sonmez 48

Bogazici University, Istanbul, Turkey

H. Bahtiyar 49, E. Barlas, K. Cankocak, Y.O. Günaydin 50, F.I. Vardarlı, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, G. Williams, B.L. Winer

The Ohio State University, Columbus, OH, USA

Princeton University, Princeton, NJ, USA

E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, PR, USA

Purdue University, West Lafayette, IN, USA

S. Guragain, N. Parashar

Purdue University Calumet, Hammond, IN, USA

Rice University, Houston, TX, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

University of Rochester, Rochester, NY, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

The Rockefeller University, New York, NY, USA

Rutgers, the State University of New Jersey, Piscataway, NJ, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

University of Tennessee, Knoxville, TN, USA

Texas A&M University, College Station, TX, USA

N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, TX, USA

Vanderbilt University, Nashville, TN, USA

University of Virginia, Charlottesville, VA, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

Wayne State University, Detroit, MI, USA

University of Wisconsin, Madison, WI, USA

* Corresponding author.
E-mail address: George.Alverson@cern.ch (G. Alverson).
† Deceased.
* Also at Vienna University of Technology, Vienna, Austria.
1 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
2 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
3 Also at Universidade Estadual de Campinas, Campinas, Brazil.
4 Also at California Institute of Technology, Pasadena, USA.
5 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
6 Also at Suez Canal University, Suez, Egypt.
7 Also at Zewail City of Science and Technology, Zewail, Egypt.
8 Also at Cairo University, Cairo, Egypt.
9 Also at Fayoum University, El-Fayoum, Egypt.
10 Also at British University in Egypt, Cairo, Egypt.
11 Now at Ain Shams University, Cairo, Egypt.
12 Also at National Centre for Nuclear Research, Swierk, Poland.
13 Also at Université de Haute Alsace, Mulhouse, France.
14 Also at Joint Institute for Nuclear Research, Dubna, Russia.
15 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
16 Also at Brandenburg University of Technology, Cottbus, Germany.
17 Also at PLA Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
18 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
19 Also at University of Athens, Athens, Greece.
20 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
21 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
22 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
23 Also at Gaziosmanpasa University, Tokat, Turkey.
50 Also at Kahramanmaras Sütcü İmam University, Kahramanmaras, Turkey.
51 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
52 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
53 Also at Utah Valley University, Orem, USA.
54 Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom.
55 Also at Institute for Nuclear Research, Moscow, Russia.
56 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
57 Also at Argonne National Laboratory, Argonne, USA.
58 Also at Erzincan University, Erzincan, Turkey.
59 Also at Kyungpook National University, Daegu, Republic of Korea.