Search for microscopic black hole signatures at the Large Hadron Collider

CMS Collaboration

CERN, Switzerland

Abstract

A search for microscopic black hole production and decay in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pb⁻¹. Events with large total transverse energy are analyzed for the presence of multiple high-energy jets, leptons, and photons, typical of a signal expected from a microscopic black hole. Good agreement with the standard model backgrounds, dominated by QCD multijet production, is observed for various final-state multiplicities and model-independent limits on new physics in these final states are set. Using simple semi-classical approximation, limits on the minimum black hole mass are derived as well, in the range 3.5–4.5 TeV. These are the first direct limits on black hole production at a particle accelerator.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

One of the exciting predictions of theoretical models with extra spatial dimensions and low-scale quantum gravity is the possibility of copious production of microscopic black holes in particle collisions at the CERN Large Hadron Collider (LHC) [1,2]. Models with low-scale gravity are aimed at solving the hierarchy problem, the puzzlingly large difference between the electroweak and Planck scales.

In this Letter we focus on microscopic black hole production in a model with large, flat, extra spatial dimensions, proposed by Arkani-Hamed, Dimopoulos, and Dvali, and referred to as the ADD model [3,4]. This model alleviates the hierarchy problem by introducing n extra dimensions in space, compactified on an n-dimensional torus or sphere with radius r. The multidimensional space–time is only open to the gravitational interaction, while the gauge interactions are localized on the 3 + 1 space–time observer. The relationship between the parton energy may not be trapped within the event horizon and will be emitted in the form of gravitational shock waves, which results in energy, momentum, and angular momentum loss

The parton-level cross section of black hole production is derived from geometrical considerations and is given by

\[\sigma = \frac{1}{\sqrt{\pi M_D}} \left(\frac{M_B}{M_D} \right)^{\frac{n+3}{2}} \]

Since in the ADD model gravity is enhanced by many orders of magnitude at distances much smaller than r, black hole formation in particle collisions could happen at energies greater than MD. The Schwarzschild radius of a black hole with mass MBH equal to the total energy accessible in the collision. The Schwarzschild radius of a black hole with mass MBH embedded in 4 + n space–time can be found by solving Einstein’s general relativity equations and is given by

\[r_S = \frac{1}{\sqrt{\pi M_D}} \left(\frac{M_B}{M_D} \right)^{\frac{n+3}{n+2}} \]

The exact cross section cannot be calculated without knowledge of the underlying theory of quantum gravity and is subject to significant uncertainty. It is commonly accepted [1,2] that the minimum black hole mass M_BH cannot be smaller than MD; although the formation threshold can be significantly larger than this. When a black hole is formed, some fraction of the colliding parton energy may not be trapped within the event horizon and will be emitted in the form of gravitational shock waves, which results in energy, momentum, and angular momentum loss [9–11]. This effect is particularly model-dependent for black hole masses close to MD. In general, black holes in particle collisions are produced with non-zero angular momentum, which also affects their properties and production cross section.

Once produced, the microscopic black holes would decay thermally via Hawking radiation [12], approximately democratically (with equal probabilities) to all standard model (SM) degrees of freedom.
freedom. Quarks and gluons are the dominant particles produced in the black hole evaporation (∼ 75%) because they have a large number of color degrees of freedom. The remaining fraction is accounted for by leptons, W and Z bosons, photons, and possibly Higgs bosons. Emission of gravitons by a black hole in the bulk space is generally expected to be suppressed [13], although in some models it can be enhanced for rotating black holes for the case of large n [10,11,14]. In some models the evaporation is terminated earlier, when the black hole mass reaches M_D, with the formation of a stable non-interacting and non-accreting remnant [15]. The Hawking temperature for a black hole in $4 + n$ space–time is given by [1,2,7,8]: $T_H = \frac{\hbar c}{2\pi m_c} \left(\text{in Planck units $h = c = k_B = 1$, where k_B is the Boltzmann constant} \right)$ and is typically in the range of a few hundred GeV. The lifetime for such a microscopic black hole is $\sim 10^{-21}$ s [1,2,8].

Here we consider semi-classical black holes, whose properties are similar to those for classical black holes described by general relativity and whose mass is close enough to M_D so that quantum effects can not be ignored completely. There are also models [16–18] of quantum black holes that decay before they thermalize, mainly into two-jet final states. We do not consider this signature here, leaving it for dedicated searches in the dijet channel [19,20].

In what follows, we further assume that the semi-classical approximation, which is strictly valid only for $M_{BH} \gg M_D$, still holds even for the BH masses as low as M_2. While we expect that unknown quantum corrections to the black hole production and decay may become very important, if not dominant, for $M_{BH} \approx M_D$, we still use semi-classical approximation as a benchmark due to the lack of a better, quantum model of black hole production and decay.

The microscopic black holes produced at the LHC would be distinguished by high multiplicity, democratic, and highly isotropic decays with the final-state particles carrying hundreds of GeV of energy. Most of these particles would be reconstructed as jets of hadrons. Observation of such spectacular signatures would provide direct information on the nature of black holes as well as the structure and dimensionality of space–time [1]. Microscopic black hole properties are reviewed in more detail in [10,11].

The search for black holes is based on $\sqrt{s} = 7$ TeV pp collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC between March and October 2010, which correspond to an integrated luminosity of 34.7×3.8 pb$^{-1}$. A detailed description of the CMS experiment can be found elsewhere [21]. The central feature of the CMS detector is the 3.8 T superconducting solenoid enclosing the silicon pixel and strip tracker, the electromagnetic calorimeter (ECAL), and the brass-scintillator hadronic calorimeter (HCAL). For triggering purposes and to facilitate jet reconstruction, the calorimeter cells are grouped in projective towers, of granularity $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$ at central rapidities and 0.175×0.175 in the forward region. Here, the pseudorapidity η is defined as $-\ln(\tan \frac{\theta}{2})$, where θ is the polar angle with respect to the direction of the counterclockwise enveloping cone, and ϕ is the azimuthal angle. Muons are measured in the pseudorapidity window $|\eta| < 2.4$ in gaseous detectors embedded in the steel return yoke.

The CMS trigger system consists of two levels. The first level (L1), composed of custom hardware, uses information from the calorimeters and muon detectors to select the most interesting events for more refined selection and analysis at a rate of up to 80 kHz. The software-based High Level Trigger (HLT) further decreases the rate to a maximum of ∼ 300 Hz for data storage. The instantaneous luminosity is measured using information from forward hadronic calorimeters [22].

We use data collected with a dedicated trigger on the total jet activity, H_T, where H_T is defined as the scalar sum of the transverse energies E_T of the jets above a preprogrammed threshold. At L1 this jet E_T threshold was 10 GeV, and the H_T threshold was 50 GeV. At HLT, the jet E_T threshold varied between 20 and 30 GeV, and the H_T threshold between 100 and 200 GeV. The trigger is fully efficient for the offline analysis selections described below. Energetic electrons and photons are also reconstructed as jets at the trigger level and are thus included in the H_T sum.

Jets are reconstructed using energy deposits in the HCAL and ECAL, clustered using a collinear and infrared safe anti-k_t algorithm with a distance parameter of 0.5 [23]. The jet energy resolution is $\Delta E/E \approx 100\% / \sqrt{E} \{\text{GeV}\} \oplus 5\%$. Jets are required to pass quality requirements to remove those consistent with calorimeter noise. Jet energies are corrected for the non-uniformity and non-linearity of the calorimeter response, as derived using Monte Carlo (MC) samples and collision data [24]. Jets are required to have $E_T > 20$ GeV before the jet-energy-scale corrections and to have $|\eta| < 2.6$. Missing transverse energy E_T is reconstructed as the negative of the vector sum of transverse energies in the individual calorimeter towers. This quantity is further corrected to account for muons in the event, which deposit little energy in the calorimeters, and for the jet energy scale [25].

Electrons and photons are identified as isolated energy deposits in the ECAL, with a shape consistent with that expected for electromagnetic showers. Photons are required to have no matching hits in the inner pixel detector layers, while electrons are required to have a matching track. Electrons and photons are required to have $E_T > 20$ GeV and to be reconstructed in the fiducial volume of the barrel ($|\eta| < 1.44$) or the endcap ($1.56 < |\eta| < 2.4$). The ECAL has an ultimate energy resolution better than 0.5% for unconverted photons or electrons with transverse energies above 100 GeV [26]. In 2010 collision data, for $E_T > 20$ GeV, this resolution is better than 1% in the barrel.

Muons are required to have matched tracks in the central tracker and the muon spectrometer, to be within $|\eta| < 2.1$, be consistent with the interaction vertex to suppress backgrounds from cosmic ray muons, be isolated from other tracks, and have transverse momentum p_T above 20 GeV. The combined fit using tracks measured in the central tracker and the muon spectrometer results in p_T resolution between 1% and 5% for p_T values up to 1 TeV.

The separation between any two objects (jet, lepton, or photon) is required to be

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > 0.3.$$

Black hole signal events are simulated using the parton-level BlackMax [27] generator (v2.01.03), followed by a parton-showering fragmentation with PYTHIA [28] (v6.420), and a fast parametric simulation of the CMS detector response [29], which has been extensively validated for signal events using detailed detector simulation via GEANT4 [30].

Several parameters govern black hole production and decay in the ADD model in addition to M_D and n. For each value of M_D, we consider a range of the minimum black hole masses, M_{BH}^{min}, between M_D and the kinematic limit of the LHC. We assume that no parton-collision energy is lost in gravitational shock waves, i.e. it is all trapped within the event horizon of the forming black hole. We consider both rotating and non-rotating black holes in this analysis, although the description of rotating black holes in the existing MC generators is only approximate. Graviton radiation by the black hole is not considered. For most of the signal samples we assume full Hawking evaporation without a stable non-interacting remnant.

The parameters used in the simulations are listed in Table 1 for a number of characteristic model points. The MSTW2008lo68 [31] parton distribution functions (PDF) were used. In addition we compare the BlackMax results with those of the CHARYBDIS 2 MC
Table 1
Monte Carlo signal points for some of the model parameters probed, corresponding leading order cross sections (σ), and the minimum required values for the event multiplicity ($N \geq N_{\text{min}}$) and $S_T > S_T^{\text{min}}$, as well as the signal acceptance (A), the expected number of signal events (n_{sig}), the number of observed events (n_{data}), and the observed (σ_{obs}) and expected (σ_{exp}) limits on the signal cross section at 95% confidence level.

<table>
<thead>
<tr>
<th>M_0 (TeV)</th>
<th>M_{min}^{M0} (TeV)</th>
<th>n</th>
<th>σ (pb)</th>
<th>N_{min}</th>
<th>S_T^{min} (TeV)</th>
<th>A (%)</th>
<th>n_{exp}</th>
<th>n_{data}</th>
<th>σ_{obs} (pb)</th>
<th>σ_{exp} (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>6</td>
<td>118</td>
<td>3</td>
<td>1.5</td>
<td>90.6</td>
<td>3713</td>
<td>203</td>
<td>241 ± 45</td>
<td>1.69 ± 2.52</td>
</tr>
<tr>
<td>1.5</td>
<td>3.0</td>
<td>6</td>
<td>25.9</td>
<td>3</td>
<td>1.8</td>
<td>91.3</td>
<td>823</td>
<td>45</td>
<td>66.2 ± 22.2</td>
<td>0.62 ± 1.13</td>
</tr>
<tr>
<td>1.5</td>
<td>3.5</td>
<td>6</td>
<td>4.97</td>
<td>4</td>
<td>2.1</td>
<td>88.3</td>
<td>153</td>
<td>6</td>
<td>12.1 ± 6.3</td>
<td>0.21 ± 0.39</td>
</tr>
<tr>
<td>1.5</td>
<td>4.0</td>
<td>6</td>
<td>0.77</td>
<td>5</td>
<td>2.4</td>
<td>84.4</td>
<td>225</td>
<td>0</td>
<td>2.01 ± 1.48</td>
<td>0.11 ± 0.18</td>
</tr>
<tr>
<td>1.5</td>
<td>4.5</td>
<td>6</td>
<td>0.09</td>
<td>5</td>
<td>2.9</td>
<td>80.9</td>
<td>255</td>
<td>0</td>
<td>0.46 ± 0.54</td>
<td>0.11 ± 0.13</td>
</tr>
<tr>
<td>1.5</td>
<td>5.0</td>
<td>6</td>
<td>0.007</td>
<td>5</td>
<td>3.4</td>
<td>75.2</td>
<td>19</td>
<td>0</td>
<td>0.13 ± 0.21</td>
<td>0.12 ± 0.13</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
<td>4</td>
<td>28.9</td>
<td>3</td>
<td>1.7</td>
<td>81.4</td>
<td>817</td>
<td>82</td>
<td>99.7 ± 28.1</td>
<td>1.16 ± 1.64</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>4</td>
<td>6.45</td>
<td>3</td>
<td>2.0</td>
<td>83.2</td>
<td>186</td>
<td>21</td>
<td>30.8 ± 14.0</td>
<td>0.47 ± 0.76</td>
</tr>
<tr>
<td>2.0</td>
<td>3.5</td>
<td>4</td>
<td>1.26</td>
<td>4</td>
<td>2.3</td>
<td>77.9</td>
<td>34.0</td>
<td>3</td>
<td>6.12 ± 0.45</td>
<td>0.20 ± 0.31</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>4</td>
<td>0.20</td>
<td>4</td>
<td>2.8</td>
<td>73.4</td>
<td>5.07</td>
<td>0</td>
<td>1.35 ± 0.45</td>
<td>0.12 ± 0.19</td>
</tr>
<tr>
<td>2.0</td>
<td>4.5</td>
<td>4</td>
<td>0.02</td>
<td>5</td>
<td>3.2</td>
<td>64.4</td>
<td>0.53</td>
<td>0</td>
<td>0.21 ± 0.21</td>
<td>0.14 ± 0.15</td>
</tr>
<tr>
<td>2.0</td>
<td>5.0</td>
<td>4</td>
<td>0.002</td>
<td>5</td>
<td>3.7</td>
<td>59.6</td>
<td>0.04</td>
<td>0</td>
<td>0.06 ± 0.06</td>
<td>0.15 ± 0.15</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>0.59</td>
<td>3</td>
<td>2.4</td>
<td>62.1</td>
<td>12.8</td>
<td>2</td>
<td>7.88 ± 5.80</td>
<td>0.21 ± 0.46</td>
</tr>
<tr>
<td>3.0</td>
<td>3.5</td>
<td>2</td>
<td>0.12</td>
<td>3</td>
<td>2.8</td>
<td>58.9</td>
<td>2.41</td>
<td>0</td>
<td>2.40 ± 1.57</td>
<td>0.15 ± 0.28</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
<td>2</td>
<td>0.02</td>
<td>4</td>
<td>3.2</td>
<td>47.3</td>
<td>0.32</td>
<td>0</td>
<td>0.46 ± 0.37</td>
<td>0.19 ± 0.23</td>
</tr>
<tr>
<td>3.0</td>
<td>4.5</td>
<td>2</td>
<td>0.002</td>
<td>5</td>
<td>3.6</td>
<td>33.6</td>
<td>0.03</td>
<td>0</td>
<td>0.08 ± 0.08</td>
<td>0.26 ± 0.28</td>
</tr>
<tr>
<td>3.0</td>
<td>5.0</td>
<td>2</td>
<td>0.0002</td>
<td>5</td>
<td>4.0</td>
<td>34.5</td>
<td>0.002</td>
<td>0</td>
<td>0.03 ± 0.07</td>
<td>0.26 ± 0.26</td>
</tr>
</tbody>
</table>
Fig. 1. Total transverse energy \(S_T \), for events with the multiplicities of a) \(N = 2 \), and b) \(N = 3 \) objects in the final state. Data are depicted as solid circles with error bars; the shaded band is the background prediction obtained from data (solid line) with its uncertainty. Non-multijet backgrounds are shown as colored histograms. Also shown is the predicted black hole signal for three different parameter sets.

Fig. 2. Total transverse energy \(S_T \), for events with multiplicities a) \(N \geq 3 \), b) \(N \geq 4 \), and c) \(N \geq 5 \) objects in the final state. Data are depicted as solid circles with error bars; the shaded band is the background prediction (solid line) with its uncertainty. Also shown are black hole signals for three different parameter sets.

\[S_T = 1000 \text{–} 1100 \text{ GeV}, \] where no black hole signal contribution is expected.

Since no excess is observed above the predicted background, we set limits on the black hole production. We assign a systematic uncertainty on the background estimate of 6% to 125% for the \(S_T \) range used in this search. This uncertainty comes from the normalization uncertainty (4–12%, dominated by the statistics in the normalization region) added in quadrature to the uncertainties arising from using various ansatz fit functions and the difference between the shapes obtained from the \(N = 2 \) and \(N = 3 \) samples. The integrated luminosity is measured with an uncertainty of 11% \([22]\). The uncertainty on the signal yield is dominated by the jet-energy-scale uncertainty of \(\approx 5\% \) \([24]\) which translates into a 5% uncertainty on the signal. An additional 2% uncertainty on
the signal acceptance comes from the variation of PDFs within the CTEQ6 error set [35]. The particle identification efficiency does not affect the signal distribution, since an electron failing the identification requirements would be classified either as a photon or a jet; a photon failing the selection would become a jet; a rejected muon would contribute to the E_{T}. In any case the total value of S_T is not affected.

We set limits on black hole production with the optimized S_T and N selections by counting events with $S_T > S_T^{\text{min}}$ and $N > N^{\text{min}}$. We optimized the signal (S) significance in the presence of background (B) using the ratio $S/\sqrt{S+B}$ for each set. The optimum choice of parameters is listed in Table 1, as well as the predicted number of background events, the expected number of signal events, and the observed number of events in data. Note that the background uncertainty, dominated by the choice of the fitting function, is highly correlated for various working points listed in Table 1 and also bin-to-bin for the S_T distributions shown in Figs. 1 and 2.

We set upper limits on the black hole production cross section using the Bayesian method with flat signal prior and log-normal prior for integration over the nuisance parameters (background, signal acceptance, luminosity) [5,37]. These upper limits at the 95% confidence level (CL) are shown in Fig. 3, as a function of $M_{\text{BH}}^{\text{min}}$. For the three model parameter sets shown in the figure, the observed (expected) lower limits on the black hole mass are 3.5, 4.2 and 4.5 TeV (3.2, 4.0, and 4.5 TeV), respectively.

Translating these upper limits into lower limits on the parameters of the ADD model, we can exclude the production of black holes with minimum mass of 3.5–4.5 TeV for values of the multidimensional Planck scale up to 3.5 TeV at 95% CL. These limits, shown in Fig. 4, do not exhibit significant dependence on the details of the production and evaporation within the set of models we studied. These are the first limits of a dedicated search for black hole production at a particle accelerator.

We point out that the semi-classical approximation used in this search is valid only for the lowest values of the M_D, for which the limits on the minimum black hole mass exceed M_D by a factor of a few. For higher values of M_D the limits become comparable with M_D, which implies that the approximation is no longer valid and that the BH production cross section may be modified significantly. Nevertheless, due to the exponentially falling nature of production cross section with the black hole mass, even large changes in the cross section translate only in moderate changes in the minimum black hole mass limit, as evident from Fig. 3.

Finally, we produce model-independent upper limits on the cross section times the acceptance for new physics production in high-S_T inclusive final states for $N \geq 3, 4$, and 5. Fig. 5 shows 95% CL upper limits from a counting experiment for $S_T > S_T^{\text{min}}$ as a function of S_T^{min}, which can be used to test models of new physics that result in these final states. A few examples of such models are production of high-mass tt resonances [38] in the six-jet and lepton $+$ jet final states, R-parity violating gluino decay into three jets, resulting in the six-jet final state [39,40], and a class of models with strong dynamics, with a strongly produced resonance decaying into a pair of resonances further decaying into two jets each, resulting in the four-jet final state [41]. In addition, these limits can be used to constrain black hole production for additional regions of the parameter space of the model, as well as set limits on the existence of string balls [42], which are quantum precursors of black holes predicted in certain string models. We have checked that for the black hole model parameters we probed with the dedicated optimized analysis, the sensitivity of the search in terms of the excluded black hole mass range exceeds that from the model-independent cross section limits by as little as 5–8%. Thus, model-independent limits can be used efficiently to constrain the allowed parameter space in an even broader variety of black hole models than we covered in this Letter.

To conclude, we have performed the first dedicated search for microscopic black holes at a particle accelerator and set limits on their production in the model with large extra dimensions in space using simple semi-classical approximation of the black hole production and decay [1,2]. The lower limits on the black hole mass at 95% CL range from 3.5 to 4.5 TeV for values of the Planck scale up to 3 TeV. Additionally, we have produced model-independent limits on the production of energetic, high-multiplicity final states, which can be used to constrain a variety of models of new physics.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF
Fig. 5. Model-independent 95% confidence level upper limits on a signal cross section times acceptance for counting experiments with $\sqrt{s} > 5\,\text{TeV}$ as a function of S_T^min for (a) $N \geq 3$, (b) $N \geq 4$, and (c) $N \geq 5$. The solid (dashed) lines correspond to an observed (expected) limit for nominal signal acceptance uncertainty of 5%.

References

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez González

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebegs, E. Daubie

Université de Mons, Mons, Belgium

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

University of Ioánnina, Ioánnina, Greece

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran

Moscow State University, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Vinogradov

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Djordjevic, D. Krpc, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad Autonoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC – Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu
Brunel University, Uxbridge, United Kingdom

K. Hatakeyama
Baylor University, Waco, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA