Search for excited leptons in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration

CERN, Switzerland

1. Introduction

The standard model (SM) of particle physics, albeit very successful, provides no explanation for the three generation structure of the fermion families. Attempts to explain the observed hierarchy have led to a family of models postulating that quarks and leptons might be composite objects of fundamental constituents [1–9]. The fundamental constituents are bound by an asymptotically free gauge interaction that becomes strong at a characteristic scale Λ. Compositeness models predict the existence of excited states of quarks (q^*) and leptons (ℓ^*) at this characteristic scale of the new binding interaction. Since these excited fermions couple to the ordinary SM fermions, they can be produced via contact interactions in collider experiments and subsequently decay radiatively to ordinary fermions through the emission of a $W/Z/\gamma$ boson or via contact interactions to other fermions. The excited leptons can also be produced via gauge-mediated interactions, but the cross sections for these are negligible for the range of parameters that are probed in this search and therefore this production mechanism is not considered. The effective Lagrangian describing the interaction of excited fermions [7] is parametrized by the scale Λ. Additionally, for decay via gauge mediated interaction, two factors f and f' represent the relative strength of the coupling between the excited fermions and isovector and isoscalar gauge fields, respectively. In this Letter the convention $f = f' = 1$ is adopted. The results for arbitrary $f = f' > 0$ can be simply obtained by a rescaling of the scale Λ to Λ/f.

Searches at LEP [10–13], HERA [14], and the Tevatron [15–18] found no evidence for excited leptons. At the Large Hadron Collider (LHC) [19] at CERN, previous searches performed by the CMS [20] and the ATLAS Collaborations [21] have also shown no evidence for excited leptons. At a center-of-mass energy of $\sqrt{s} = 7$ TeV, with 36 pb$^{-1}$ of data [20], CMS has excluded cross sections for the production and decay of the $\ell^* \rightarrow \ell' \gamma$ channels higher than 0.16 to 0.21 pb (0.14 to 0.19 pb) in the e^* (μ^*) channel for excited lepton masses ranging from 0.2 TeV to 2 TeV. In the same channels and with more integrated luminosity, ATLAS excluded cross sections higher than 2.3 (4.5) fb for excited electrons (muons) masses above 0.9 TeV, and excluded e^* (μ^*) with masses M_{e^*} below 1.87 (1.75) TeV for the scale of contact interaction $\Lambda = M_{e^*}$ [21].

This Letter presents a search for excited leptons, e^* and μ^*, using a data sample of pp collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV collected with the CMS detector at the LHC in 2011 and corresponding to an integrated luminosity of 5.0 ± 0.1 fb$^{-1}$. The production of an excited lepton in association with an oppositely charged lepton of the same flavor, via four-fermion contact interactions, is considered. Thus when the excited lepton decays via $\ell^* \rightarrow \ell' \gamma$, there are two oppositely charged leptons and a photon in the final state.

2. The CMS detector

The central feature of the Compact Muon Solenoid (CMS) detector is a superconducting solenoid, of 6 m internal diameter and
3. Signal and background

The dominant, irreducible SM background in this search is Drell–Yan production of $\ell^+\ell^−\gamma$ where the final state photon is either radiated by an initial-state parton (initial-state radiation, ISR), or originates from one of the final-state leptons (final-state radiation, FSR). The second-most important background is due to Drell–Yan production associated with jets ($Z\gamma\text{ jets}$), where a jet is misidentified as a photon (see Section 5). Another important background in the e^+ channel is due to $W + \gamma$ events with an FSR or ISR photon where a jet is misidentified as an electron. In the μ^+ channel, backgrounds from these $W + \gamma$ processes that lead to one true, one misidentified muon, and a true photon in the final state have been estimated to be negligible. Other less significant backgrounds originate from diboson events (WW, WZ, ZZ, $W + \gamma$), if production, and, for the electron channel, $\gamma\gamma$ production. These backgrounds are mainly suppressed by requiring high transverse momentum thresholds on the leptons and photon. Backgrounds arising from misidentified photons or misidentified electrons are estimated using a data-driven technique which is described in Section 5. The other backgrounds are estimated from the simulation.

Signal samples in both electron and muon channels are produced using PYTHIA (PYTHIA 6.424 [23] and PYTHIA 8.145 [24] respectively) based on the leading order (LO) compositeness model described in Ref. [7]. The signal cross sections are calculated with PYTHIA 6.424, corrected to include the branching ratio for the 3-body decays via contact interaction as per Ref. [7] which is not implemented in PYTHIA, with the Q^2 scale set to the square of the mass of the excited lepton ($M_{\ell^*}^2$).

Samples are obtained for different values of the excited lepton mass and $\Lambda = 4$ TeV, with the CTEQ6L1 [25] parametrisation for the parton distribution functions. This particular choice of the value of Λ has no impact on the simulated kinematics and all results are presented independently of the value of Λ, except for the signal yield in Fig. 1 and Fig. 2. The SM background samples: $Z + \gamma$, $W + \gamma$, if $Z + \text{jets}$, $W + \text{jets}$, and WW are generated with MADGRAPH 4.51 [26]. PYTHIA has been used to perform the fragmentation and hadronization of samples generated with MADGRAPH. The diboson samples (WW, ZZ) are generated using PYTHIA 6.424. The main background $Z + \gamma$ has been generated to correspond to an integrated luminosity of around 7 fb$^{-1}$. For all these SM background processes, the cross sections are scaled to the next-to-leading order (NLO) cross sections obtained from the parton level integrator MCFM [27]. For the main background $Z + \gamma$, the theoretical scale uncertainty has been evaluated using MCFM to be $+2.4\%$, -1.6%. All Monte Carlo events used in this analysis have been passed through the detailed simulation of the CMS detector based on GEANT4 [28].

4. Event reconstruction and selection

Candidate events for the electron (muon) channel are selected using triggers with the lowest possible thresholds on lepton transverse momentum. This corresponds to a transverse momentum threshold of 33 (24) GeV for the initial periods and 33 (40) GeV for the later periods of data collection in the electron (muon) channel. The trigger thresholds were raised in response to the increased mean instantaneous luminosity. For the leptons selected in the analysis, the trigger efficiencies are 100% (97%) in the electron (muon) channel. The two leptons and the photon in signal events are expected to be isolated from other particles in the event. This
the ratio of the energies deposited in the hadron and electromagnetic shapes of the ECAL clusters and isolation variables as well as to an electron is identified by imposing requirements on shower energy deposits in the ECAL. An energy deposit in the ECAL due to a lepton, the electrons are required to have a transverse energy \(E_T > 35 \) GeV and to be in the central region (barrel) of the ECAL with \(| \eta | < 1.4442\). The photon is also required to be isolated within a cone of radius \(\Delta R < 0.4 \) around its direction, both in the tracker and calorimeter. The cone axis is taken to be the direction of the line joining the harycenter of the electron energy cluster to the primary vertex. In the tracker, the scalar sum of the transverse momenta of the tracks, excluding tracks within an inner cone of 0.04, is required to be less than 0.001 \(p_T \) + 2 GeV. In the ECAL, the total \(E_T^{\text{iso}} \) in the barrel, excluding deposits associated with the photon, is required to be below 0.006 \(E_T \) + 4.2 GeV, whereas for the HCAL isolation, it is required to be below 0.0025 \(E_T \) + 2.2 GeV.

Muons are reconstructed by combining tracks from the inner tracker and the outer muon system, requiring at least one hit in the pixel tracker, hits in more than 8 tracker layers and track segments reconstructed in at least two muon stations. Since the segments have multiple hits that typically occur in different muon detectors and are therefore separated by thick layers of iron, the latter requirement significantly reduces the probability of a hadron being misidentified as a muon. For the muon channel, two muons are required with each having \(| \eta | < 2.1\); and the higher (lower) momentum muon must have \(p_T > 45 \) (40) GeV. In order to reject the cosmic-rays muon background, the transverse impact parameters of both muon tracks with respect to the primary vertex of the event are required to be less than 0.2 cm and muon pairs that are back-to-back in the transverse plane are rejected, with the angle between two muon tracks below \(\pi - 0.02\). Furthermore, the muon is required to be isolated such that the scalar sum of the transverse momenta of all tracks originating at the interaction vertex, excluding the muon itself, within a \(\Delta R < 0.3 \) cone around its direction is less than 10% of its \(p_T \).

In order to reject Drell–Yan events with final state radiation, the distance in \((\eta, \phi)\) coordinates between the photon and the leading lepton, \(\Delta R(\ell, \gamma) \) is required to be \(\Delta R(\ell, \gamma) > 0.5 \) for \(\ell = e \) and \(\Delta R(\ell, \gamma) > 0.7 \) for \(\ell = \mu \). Two lepton–photon invariant masses can also be computed, because the final state is composed of two leptons and one photon. For the electron channel, the dielectron invariant mass is required to be above 60 GeV and each of the dielectron and electron–photon invariant masses are required to be outside a \(\pm 25 \) GeV window centered at the nominal Z mass (91.19 GeV). For the muon channel, the dilepton invariant mass is required to be 25 GeV above the nominal Z mass. Fig. 1 shows the distribution of \(M_{T \gamma}^{\text{min}} \) and \(M_{T \gamma}^{\text{max}} \), the lower and higher invariant mass respectively. In the case of a signal, the correct assignment peaks at the excited lepton mass. In the \(M_{T \gamma}^{\text{min}} - M_{T \gamma}^{\text{max}} \) plane, the signal is distributed along two mutually perpendicular narrow bands. This shape determines the final selection cuts as outlined below and is illustrated in Fig. 2 for \(M_T = 0.2 \) TeV. Identical boundaries are used for the electron and muon channel. The only difference in the selection between the two channels is the Z veto, which, in the electron channel, is also applied on electron–photon invariant mass.

The background is located in the low invariant mass region, while the signal populates the higher invariant mass region. Using simulations, the boundaries of the signal region for a given...
mass have been chosen to optimize the expected limit. The final values for different excited lepton masses are shown in Table 1. For $M_{\ell^*} = 0.2$ TeV, the horizontal band is small, in order to reduce the background contamination. For $M_{\ell^*} = 0.4$ TeV, a larger horizontal band can be used, the increase of the background contamination being compensated by the gain in signal efficiency. For higher excited lepton masses, the horizontal band is large to improve the signal efficiency in regions where almost no background is present.

5. Background due to particle misidentification

Hadronic jets in which a π^0 carries a significant fraction of the energy may be misidentified as isolated photons. Thus $Z + $ jets events are a potential background for this search. The photon misidentification rate is measured directly from a data sample dominated by jets, with a photon-like candidate cluster embedded inside, which can potentially be misidentified as a photon. The misidentification rate is defined as the ratio of the number of photon candidates passing all the photon selection criteria (numerator) to the number of photon candidates that pass a loose set of shower shape requirements but fail one of the photon isolation criteria (denominator). The misidentification rate is estimated in bins of photon E_T. The numerator sample can have a contribution from isolated true photons. This misidentification rate is therefore corrected by using the probability distribution of energy-weighted shower width (σ_{sh}) of isolated true photons computed in units of crystal size, which is different from that of non-isolated photons. The true photon fraction in the numerator is estimated by fitting these two different shower shapes to the shower shape distribution of the numerator sample, and subtracted from the numerator. In order to estimate the contribution of misidentified photons in the analysis, the misidentification rate is applied to a subsample of data events containing one photon candidate and satisfying all other selection criteria. This rate is calculated in photon E_T bins of $(0.03–0.05, 0.05–0.075, 0.075–0.09, 0.09–0.2)$ TeV. Fig. 3 shows the E_T dependence of the photon misidentification rate. The calculated misidentified photon rate is found to be 0.28, 0.07, 0.06 and 0.09 for the above mentioned E_T bins.

From a fit, the measured rate is parametrized by a function, $f_{\gamma}^{\text{misid}}(E_T)$, as given in Eq. (1) with a, b and c being the fit parameters:

$$f_{\gamma}^{\text{misid}}(E_T) = a + \frac{b}{(E_T)^c}.$$

<table>
<thead>
<tr>
<th>M_{ℓ^*} (TeV)</th>
<th>$M_{\pi^0}^{\text{min}}$ (TeV)</th>
<th>$M_{\pi^0}^{\text{max}}$ (TeV)</th>
<th>ϵ_{signal} (%)</th>
<th>N_{signal}</th>
<th>N_{data}</th>
<th>ϵ_{signal} (%)</th>
<th>N_{signal}</th>
<th>N_{data}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.19–0.21</td>
<td>0.20–0.21</td>
<td>24.8 ± 1.8</td>
<td>1.0±0.5</td>
<td>2</td>
<td>28.2 ± 1.3</td>
<td>1.2±0.6</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.23–0.37</td>
<td>0.29–0.31</td>
<td>30.0 ± 2.2</td>
<td>1.2±0.6</td>
<td>1</td>
<td>34.4 ± 1.6</td>
<td>5.4±2.6</td>
<td>2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.28–0.52</td>
<td>0.38–0.41</td>
<td>32.7 ± 2.4</td>
<td>0.1±0.4</td>
<td>1</td>
<td>39.1 ± 1.6</td>
<td>1.6±0.9</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>0.35–0.65</td>
<td>0.47–0.53</td>
<td>34.8 ± 2.6</td>
<td>0.01±0.4</td>
<td>1</td>
<td>42.1 ± 1.8</td>
<td>0.0±0.4</td>
<td>1</td>
</tr>
<tr>
<td>0.6</td>
<td>0.42–0.78</td>
<td>0.55–0.64</td>
<td>36.6 ± 2.6</td>
<td>0.01±0.4</td>
<td>0</td>
<td>45.4 ± 2.0</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.49–0.91</td>
<td>0.65–0.76</td>
<td>37.8 ± 2.7</td>
<td>0.1±0.4</td>
<td>0</td>
<td>45.9 ± 2.1</td>
<td>1.0±0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.56–1.04</td>
<td>0.75–0.88</td>
<td>37.8 ± 2.7</td>
<td>0.01±0.4</td>
<td>0</td>
<td>45.3 ± 2.0</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.70–1.30</td>
<td>0.75–1.10</td>
<td>40.4 ± 2.8</td>
<td>0.01±0.4</td>
<td>0</td>
<td>48.5 ± 2.1</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.84–1.56</td>
<td>0.75–1.34</td>
<td>41.1 ± 2.9</td>
<td>0.01±0.4</td>
<td>0</td>
<td>50.0 ± 2.2</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>1.05–1.95</td>
<td>0.75–1.67</td>
<td>41.7 ± 2.9</td>
<td>0.01±0.4</td>
<td>0</td>
<td>50.8 ± 2.2</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.40–2.50</td>
<td>0.75–2.23</td>
<td>43.5 ± 3.1</td>
<td>0.01±0.4</td>
<td>0</td>
<td>50.4 ± 2.2</td>
<td>0.0±0.4</td>
<td>0</td>
</tr>
</tbody>
</table>
The loosener selection criteria require only that the first tracker layer contributes a hit to the electron track and that offline eliminations of the online trigger requirements ("loose identification requirements") on shower shape σ_{et} and the ratio H/E are satisfied. This ratio is estimated as a function of E_T in bins of η ($f_{\text{misid electron}}(E_T, \eta)$) using a data sample selected with single-photon triggers [31]. The jet to electron misidentified background in e^γ is estimated by applying a misidentification rate to a sample passing all our selection requirements, including triggers, except requiring one of the systematic uncertainties. The impact on the signal yield corrections from $Z\gamma$

<table>
<thead>
<tr>
<th>M_{ℓ^*} (TeV)</th>
<th>Electron channel $Z\gamma$ MC</th>
<th>Misid γ</th>
<th>Misid electron</th>
<th>Muon channel $Z\gamma$ MC</th>
<th>Misid γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8$^{+0.7}_{-0.5}$</td>
<td>0.07$^{+0.05}_{-0.06}$</td>
<td>0.0$^{+0.05}_{-0.07}$</td>
<td>1.0$^{+0.07}_{-0.06}$</td>
<td>0.07$^{+0.07}_{-0.05}$</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>1.6$^{+0.0}_{-0.0}$</td>
<td>0.08$^{+0.0}_{-0.0}$</td>
</tr>
<tr>
<td>\geq0.6</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.0$^{+0.0}_{-0.0}$</td>
<td>0.00$^{+0.00}_{-0.00}$</td>
</tr>
</tbody>
</table>

The uncertainties are reported as the quadratic sum of statistical and systematic errors.

As seen in Table 1, for masses above 0.5 TeV, no data events pass the criteria designed to select excited lepton signatures. Using a single bin counting method, upper limits are provided on the production cross section times branching fraction of excited electrons and excited muons at the 95% confidence level. The method is implemented in the statistical package developed by the Higgs study group [33]. The computation has been performed using both a Bayesian [34,35] and a CLs [36,37] approach; the results are found to be consistent with each other. The results presented here are from the frequentist CLs approach, without the use of the asymptotic approximation [33]. The background and signal uncertainties are dominated by completely uncorrelated uncertainties. The integrated luminosity normalization uncertainty is considered separately, with 100% correlation between signal and background. The nuisance parameters related to the uncertainties on the background are treated according to gamma probability distribution functions. The uncertainties on the signal yield and the integrated luminosity normalization are taken into account via a lognormal treatment of nuisance parameters. The observed limits for the electron and the muon channels are shown in Fig. 4. Production cross sections higher than 1.48 to 1.24 fb (1.31 to 1.11 fb) are excluded at the 95% confidence level (CL) for e^γ (μ^γ) masses ranging from 0.6 to 2 TeV. The structure observed in the expected and observed limits results from the limited sizes of the simulated background samples. The optimization of the invariant masses selecting the $M_{\ell\gamma}-M_{\gamma\gamma}$ signal region has been determined from simulation of signal reference mass points, ranging from $M_{\ell^*} = 0.2$ TeV to 2.0 TeV in steps of 0.2 TeV. For lower masses, the selected signal regions do not overlap. For continuous coverage, additional mass points for $M_{\ell^*} < 0.6$ TeV have been added by interpolating the cut thresholds and the signal efficiencies. Limits for masses between 0.2 and 0.4 TeV are less stringent because of the presence of background in this region.

In the excited muon channel, as visible in Table 1, the bump at $M_{\mu^*} \sim 0.5$ TeV corresponds to a region where the background is found to be $0.0^{+1.4}_{-0.0}$ in the simulated sample while one data event is observed. Also in this channel, the shape of the uncertainty bands at $M_{\mu^*} = 0.7$ TeV corresponds to a region where the background is found to be $1.0^{+1.2}_{-0.6}$ in the simulated sample while zero data events are observed. For high excited lepton masses, the muon channel cross section limit is slightly lower than the electron channel limit because of the difference in the acceptance. For lower excited lepton masses, the sensitivity of the electron channel is also reduced because of misidentification of photons and electrons.

The set of $\Lambda-M_{\ell^*}$ values for which the theoretical cross section times branching fraction is higher than the 95% upper limit on cross section, is considered as excluded region of the parameter space. The exclusion region in the $\Lambda-M_{\ell^*}$ plane is shown in Fig. 5. The displayed uncertainty band corresponds to the uncertainty on the cross section limits, and does not take into account uncertainties on the theoretical signal cross section. The region is theoretically excluded, where $M_{\ell^*} > \Lambda$. The signal cross sections are estimated with the Q^2 scale set to the square of the mass of excited lepton ($M_{\ell^*}^2$). If the Q^2 scale is varied to $M_{\ell^*}^2/2$, the limit for $\Lambda = M_{\ell^*}$ increases by 1.5% and if it is varied to $2M_{\ell^*}^2$, the limit for $\Lambda = M_{\ell^*}$ decreases by 2.4%. The impact of the parton distribution functions (PDF) uncertainties on the signal is smaller than 1%.

Assuming the same masses for e^γ and μ^γ, the two counting experiments have been combined using the CLs approach, improving the excluded cross section limit to 0.73 to 0.60 fb for masses from additional systematic uncertainty of 10% is assigned to the background to account for uncertainties associated with the choice of parton distribution functions. The uncertainty in the luminosity normalization is 2.2% [32].

Table 2 Details of the expected background compositions for several masses, showing contributions from $Z+\gamma$ MC sample, misidentified γ and misidentified electron estimated from data. The uncertainties are reported as the quadratic sum of statistical and systematic errors.
Fig. 4. Expected and observed 95% CL upper limits on the cross section of the studied channel for the different excited electron (top) and muon (bottom) mass points, using the CLs method. The excluded region is above the curve. The black solid lines correspond to the excited lepton LO cross sections times branching ratio for different Λ scales. The one (two) standard deviation uncertainty bands are shown in green (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Allowing e^* and μ^* to have different masses, the excluded cross sections would also be within this range. The following uncertainties have been considered as completely correlated between the two channels: the photon scale factor uncertainties in signal and background, the photon misidentification rate systematic uncertainty not related to statistics, the luminosity uncertainty, the pileup simulation uncertainty, the $Z + \gamma$ normalization uncertainty, and the $Z + \gamma$ PDF uncertainty. The other uncertainties are considered as 100% uncorrelated.

7. Summary

A search has been performed with the CMS detector for excited leptons in the electron (pp $\rightarrow e e^* \rightarrow ee\gamma$) and muon (pp $\rightarrow \mu \mu^* \rightarrow \mu \mu\gamma$) channels. For each excited lepton mass, the excluded cross section can be associated with a value for the new interaction scale Λ. Excited leptons (electrons or muons) with masses below 1.9 TeV are excluded for the scale of contact interaction $\Lambda = M_{\ell^*}$. Production cross sections higher than 1.48 to 1.24 fb (1.31 to 1.11 fb) are excluded at the 95% CL for e^* (μ^*) masses ranging from 0.6 to 2 TeV. The slightly better sensitivity in the muon channel is due to its better acceptance and efficiency, and also, for lower ℓ^* masses, to the fact that there is a higher background in the electron channel arising from particle misidentification. These limits are the most stringent published to date.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India);
Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria
M. Meneghelli a,b,5, A. Montanari a, F.L. Navarra a,b, F. Odorici a, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Siroli a,b, R. Travaglini a,b

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergo a,b, G. Cappello a,b, M. Chiorboli a,b, S. Costa a,b, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

g. Barbaglia a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, S. Frosali a,b, E. Gallo a, S. Goni a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, S. Colafranceschi25, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatore a, R. Musenich a, S. Tosi a,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

A. Benaglia a, F. De Guio a,b, L. Di Matteo a,b, S. Fiorendi a,b, S. Gennai a,b, A. Ghezzi a,b, S. Malvezzi a, R.A. Manzoni a,b, A. Martelli a,b, A. Massironi a,b, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, S. Sala a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

g. Barbaglia a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, S. Frosali a,b, E. Gallo a, S. Goni a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

A. Benaglia a, F. De Guio a,b, L. Di Matteo a,b, S. Fiorendi a,b, S. Gennai a,b, A. Ghezzi a,b, S. Malvezzi a, R.A. Manzoni a,b, A. Martelli a,b, A. Massironi a,b, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, S. Sala a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempo a, C.A. Carrillo Montoya a, N. Cavallo a,26, A. De Cosa a,b,5, O. Dogangun a,b, F. Fabozzi a,26, A.O. Iorio a, L. Lista a, S. Meola a,27, M. Merola a,b, P. Paolucci a,b

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli “Federico II”, Napoli, Italy

c Scuola Normale Superiore di Pisa, Pisa, Italy

P. Azzurri a,c, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, R.T. D’Agnolo a,c, S. Dell’Orso a, F. Fiori a,b,5, L. Foà a,c, A. Giassi a, A. Kraan a, F. Ligabue a,c, T. Lomtadze a, L. Martinis a,b, A. Messineo a,b, F. Palla a, A. Rizzi a,b, A.T. Serban a,29, P. Spagnolo a, P. Squillacioti a,5, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

S.G. Heo, T.Y. Kim, S.K. Nam

Kangwon National University, Chunchon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

Korea University, Seoul, Republic of Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Kansas State University, Manhattan, USA
J. Gronberg, D. Lange, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

S. Guragain, N. Parashar
Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski
University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian
The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev
Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov
Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA