Dijet Azimuthal Decorrelations in \(pp \) Collisions at \(\sqrt{s} = 7 \) TeV

V. Khachatryan et al.*, (CMS Collaboration)

(Received 26 January 2011; published 22 March 2011)

Measurements of dijet azimuthal decorrelations in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 \(\text{pb}^{-1} \). The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.

High-energy proton-proton collisions with high momentum transfer are described within the framework of quantum chromodynamics (QCD) as pointlike scatterings between the proton constituents, collectively referred to as partons. The outgoing partons manifest themselves, through quark and gluon soft radiation and hadronization processes, as localized streams of particles, identified as jets. At Born level, dijets are produced with equal transverse momenta \(p_T \) with respect to the beam axis and back to back in the azimuthal angle \((\Delta \varphi_{\text{dijet}} = |\varphi_{\text{jet1}} - \varphi_{\text{jet2}}| = \pi) \). Soft-gluon emission will decorrelate the two highest \(p_T \) (leading) jets and cause small deviations from \(\pi \). Larger decorrelations from \(\pi \) occur in the case of hard multijet production. Three-jet topologies dominate the region of \(2\pi/3 < \Delta \varphi_{\text{dijet}} < \pi \), whereas angles smaller than \(2\pi/3 \) are populated by four-jet events.

Dijet azimuthal decorrelations, i.e., the deviation of \(\Delta \varphi_{\text{dijet}} \) from \(\pi \) for the two leading jets in hard-scattering events, can be used to study QCD radiation effects over a wide range of jet multiplicities without the need to measure all the additional jets. Such studies are important because an accurate description of multiple-parton radiation is still lacking in perturbative QCD (pQCD). Experiments therefore rely on Monte Carlo (MC) event generators to take these higher-order processes into account in searches for new physics and for a wide variety of precision measurements. The observable chosen to study the radiation effects is the differential dijet cross section in \(\Delta \varphi_{\text{dijet}} \), normalized by the dijet cross section integrated over the entire \(\Delta \varphi_{\text{dijet}} \) phase space: \(\langle 1/\sigma_{\text{dijet}} \rangle (d\sigma_{\text{dijet}}/d\Delta \varphi_{\text{dijet}}). \) By normalizing the \(\Delta \varphi_{\text{dijet}} \) distributions in this manner, many experimental and theoretical uncertainties are significantly reduced. Measurements of dijet azimuthal decorrelations at the Tevatron have previously been reported by the D0 Collaboration [1]. In this Letter, we present the first measurements of dijet azimuthal decorrelations in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV at the CERN Large Hadron Collider (LHC).

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid, of 6 m internal diameter, providing an axial field of 3.8 T. Charged particle trajectories are measured by the silicon pixel and strip tracker, covering \(0 < \varphi < 2\pi \) in azimuth and \(|\eta| < 2.5 \), where pseudorapidity \(\eta = -\ln(\tan(\theta/2)) \) and \(\theta \) is the polar angle relative to the counterclockwise proton beam direction with respect to the center of the detector. A lead-tungstate crystal electromagnetic calorimeter and a brass-scintillator hadronic calorimeter surround the tracking volume. The calorimeter cells are grouped in projective towers of granularity \(\Delta \eta \times \Delta \varphi = 0.087 \times 0.087 \) at central pseudorapidities. The granularity becomes coarser at forward pseudorapidities. A preshower detector made of silicon sensor planes and lead absorbers is installed in front of the electromagnetic calorimeter at \(1.653 < |\eta| < 2.6 \). Muons are measured in gas-ionization detectors embedded in the steel magnetic field return yoke. A detailed description of the CMS detector can be found elsewhere [2].

CMS uses a two-tiered trigger system to select events on-line: level 1 and the high level trigger. In this analysis, events were selected by using two inclusive single-jet triggers that required a level-1 jet with \(p_T > 20 \) (30) GeV and a high level trigger jet with \(p_T > 30 \) (50) GeV. The jets at level 1 and the high level trigger are reconstructed by using energies measured by the electromagnetic and hadronic calorimeters and are not corrected for the jet energy response of the calorimeters. The trigger efficiency for a given corrected \(p_T \) threshold of the leading jet (\(p_T^{\text{max}} \)) was measured by using events selected by lower-threshold trigger. For the event selection, \(p_T^{\text{max}} \) thresholds were chosen so that this efficiency exceeded 99%. The corresponding off-line corrected \(p_T^{\text{max}} \) values are 80 (110) GeV for the low (high) threshold jet trigger.

Jets were reconstructed off-line by using the anti-\(k_T \) clustering algorithm with a distance parameter \(R = 0.5 \) [3].

*Full author list given at the end of the article.

Published by American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The four-vectors of particles reconstructed by the CMS particle-flow algorithm were used as input to the jet-clustering algorithm. The particle-flow algorithm combines information from all CMS subdetectors to provide a complete list of long-lived particles in the event. Muons, electrons, photons, and charged and neutral hadrons are reconstructed individually. As a result, the residual corrections to the jet four-vectors, arising from the detector response, are relatively small (at the level of 5%–10% in the central region) [4]. A detailed description of the particle-flow algorithm can be found elsewhere [5,6].

Spurious jets from noise and noncollision backgrounds were eliminated by applying loose quality cuts on the jet properties [7]. Events were required to have a primary vertex reconstructed along the beam axis and within 24 cm of the detector center [8]. Further cuts were applied to reject interactions from the beam halo. Events were selected having two leading jets each with \(p_T > 30 \) GeV and rapidity \(|y| < 1.1\), where \(y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \), with \(E \) being the total jet energy and \(p_z \) the projection of the jet momentum along the beam axis. Each event is put into one of five mutually exclusive regions, which are based on the \(p_T \) in the event. The five regions are \(80 < p_T < 110 \) GeV, \(110 < p_T < 140 \) GeV, \(140 < p_T < 200 \) GeV, \(200 < p_T < 300 \) GeV, and \(300 \) GeV < \(p_T \). The data correspond to an integrated luminosity of 0.3 pb\(^{-1}\) for the lowest \(p_T \) region and 2.9 pb\(^{-1}\) for the other \(p_T \) regions. The uncertainty on the integrated luminosity is estimated to be 11% [9]. After the application of all selection criteria, the numbers of events remaining in each of the five \(p_T \) regions, starting from the lowest, are 60,837, 160,388, 69,009, 14,383, and 2,284.

The \(\Delta \varphi_{dijet} \) distributions are corrected for event migration effects due to the finite jet \(p_T \) and position resolutions of the detector. The distributions are sensitive to the jet \(p_T \) resolution because fluctuations in the jet response can cause light-energy jets to be misidentified as leading jets, and events can migrate between different \(p_T \) regions. The finite resolution in azimuthal angle causes event migration between \(\Delta \varphi_{dijet} \) bins, while the resolution in rapidity can move jets in and out of the central rapidity region (\(|y| < 1.1\)). The correction factors were determined by using two independent MC samples: PYTHIA 6.422 (PYTHIA6) [10] tune D6T [11], and HERWIG++ 2.4.2 [12]. The \(p_T \), rapidity, and azimuthal angle of each generated jet were smeared according to the measured resolutions [13]. The ratio of the two dijet azimuthal distributions (the generated distribution and the smeared one) determined the unfolding correction factors for each \(p_T \) region, for a given MC sample. The average of the correction factors for each \(p_T \) region from the two MC samples was used as the final unfolding correction applied to the data. The unfolding correction factors modify the measured \(\Delta \varphi_{dijet} \) distributions by less than 2% for 5\(\pi/6 \) < \(\Delta \varphi_{dijet} < \pi \). For \(\Delta \varphi_{dijet} \sim \pi/2 \), the changes range from \(-11\%\), for the highest \(p_T \) region, to \(-19\%\), for the lowest.

The main sources of systematic uncertainty arise from uncertainties in the jet energy calibration, the jet \(p_T \) resolution, and the unfolding correction. The jet energy calibration uncertainties have been tabulated for the considered phase space in the variables of jet \(p_T \) and \(\eta \) [4]. Typical values are between 2.5% and 3.5%. The resulting uncertainties on the normalized \(\Delta \varphi_{dijet} \) distributions range from 5% at \(\Delta \varphi_{dijet} \sim \pi/2 \) to 1% at \(\Delta \varphi_{dijet} \sim \pi \). The effect of the jet \(p_T \) resolution uncertainty on the \(\Delta \varphi_{dijet} \) distributions was estimated by varying the jet \(p_T \) resolutions by \(\pm 10\% \) [13] and comparing the \(\Delta \varphi_{dijet} \) unfolding correction before and after the change. This yields a variation on the normalized \(\Delta \varphi_{dijet} \) distributions ranging from 5% at \(\Delta \varphi_{dijet} \sim \pi/2 \) to 1% at \(\Delta \varphi_{dijet} \sim \pi \). The uncertainties on the unfolding correction factors were estimated by comparing the corrections from different event generators and PYTHIA6 tunes that vary significantly in their modeling of the jet kinematic distributions and \(\Delta \varphi_{dijet} \) distributions. The resulting uncertainty varies from 8% at \(\Delta \varphi_{dijet} \sim \pi/2 \) to 1.5% at \(\Delta \varphi_{dijet} \sim \pi \). The systematic uncertainty from using a parametrized model to simulate the finite jet \(p_T \) and position resolutions of the detector to determine the unfolding correction factors was estimated to be about 2.5% in all \(p_T \) regions. The combined systematic uncertainty, calculated as the quadratic sum of all systematic uncertainties, varies from 11% at \(\Delta \varphi_{dijet} \sim \pi/2 \) to 3% at \(\Delta \varphi_{dijet} \sim \pi \).

The corrected differential \(\Delta \varphi_{dijet} \) distributions, normalized to the integrated dijet cross section, are shown in Fig. 1 for the five \(p_T \) regions. The distributions are scaled by multiplicative factors for presentation purposes. Each data point is plotted at the abscissa value for which the predicted differential \(\Delta \varphi_{dijet} \) distribution has the same value as the bin average obtained by using PYTHIA6 tune D6T, which provides a good description of the data [14].

The \(\Delta \varphi_{dijet} \) distributions are strongly peaked at \(\pi \) and become steeper with increasing \(p_T \). The simulated \(\Delta \varphi_{dijet} \) distributions from the PYTHIA6 (D6T and Z2 [15] tunes), PYTHIA 8.135 (PYTHIA8) [16], HERWIG++, and MADGRAPH 4.4.32 [17] event generators are presented for comparison. The MADGRAPH generator is based on leading-order matrix element multiparton final-state predictions, using PYTHIAS for parton showering and hadronization, and the Mangano method [18] to map the parton-level event into a parton shower history. The MADGRAPH predictions included tree-level processes of up to four partons. For PYTHIA6, PYTHIA8, and MADGRAPH event generators the CTEQ6L [19] parton distribution functions (PDFs) were used; for HERWIG++, the MRST2001 PDFs [20].

Figure 2 shows the ratios of the measured \(\Delta \varphi_{dijet} \) distributions to the predictions of PYTHIA6, PYTHIA8, HERWIG++, and MADGRAPH in the five \(p_T \) regions.
The predictions near $\Delta \phi_{\text{dijet}} = \pi$ have been excluded because of their sensitivity to higher-order corrections not included in the present calculations.

Uncertainties due to the renormalization (μ_r) and factorization (μ_f) scales are evaluated by varying the default choice of $\mu_r = \mu_f = p_T^{\text{max}}$ between $p_T^{\text{max}}/2$ and $2p_T^{\text{max}}$ in the following six combinations: $(\mu_r, \mu_f) = (p_T^{\text{max}}/2, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, 2p_T^{\text{max}})$, $(p_T^{\text{max}}, p_T^{\text{max}})$, $(p_T^{\text{max}}, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, p_T^{\text{max}})$, and $(2p_T^{\text{max}}, 2p_T^{\text{max}})$.

The combined systematic uncertainty on the experimental measurements is shown by the shaded band. The predictions from PYTHIA6, PYTHIA8, HERWIG++, and MADGRAPH. The error bars on the data points include statistical and systematic uncertainties.

The predictions near $\Delta \phi_{\text{dijet}} = \pi$ have been excluded because of their sensitivity to higher-order corrections not included in the present calculations.

Uncertainties due to the renormalization (μ_r) and factorization (μ_f) scales are evaluated by varying the default choice of $\mu_r = \mu_f = p_T^{\text{max}}$ between $p_T^{\text{max}}/2$ and $2p_T^{\text{max}}$ in the following six combinations: $(\mu_r, \mu_f) = (p_T^{\text{max}}/2, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, 2p_T^{\text{max}})$, $(p_T^{\text{max}}, p_T^{\text{max}})$, $(p_T^{\text{max}}, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, p_T^{\text{max}})$, and $(2p_T^{\text{max}}, 2p_T^{\text{max}})$.

The predictions near $\Delta \phi_{\text{dijet}} = \pi$ have been excluded because of their sensitivity to higher-order corrections not included in the present calculations.

Uncertainties due to the renormalization (μ_r) and factorization (μ_f) scales are evaluated by varying the default choice of $\mu_r = \mu_f = p_T^{\text{max}}$ between $p_T^{\text{max}}/2$ and $2p_T^{\text{max}}$ in the following six combinations: $(\mu_r, \mu_f) = (p_T^{\text{max}}/2, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, 2p_T^{\text{max}})$, $(p_T^{\text{max}}, p_T^{\text{max}})$, $(p_T^{\text{max}}, 2p_T^{\text{max}})$, $(2p_T^{\text{max}}, p_T^{\text{max}})$, and $(2p_T^{\text{max}}, 2p_T^{\text{max}})$.
distributions over much of the $\Delta \phi_{dijet}$ range. Compared to the data, the reduced decorrelation in the theoretical prediction and the increased sensitivity to the μ_r and μ_f scale variations for $\Delta \phi_{dijet} < 2\pi/3$ shown in Fig. 3 are attributed to the fact that the pQCD prediction in this region is effectively available only at leading order, since the contribution from tree-level four-parton final states dominates.

The sensitivity of the $\Delta \phi_{dijet}$ distributions to initial-state parton shower radiation (ISR) is investigated by varying the input parameter k_{ISR} [PARP(67)] in PYTHIA6 tune D6T. The product of k_{ISR} and the square of the hard-scattering scale gives the maximum allowed parton virtuality (i.e., the maximum allowed p_T) in the initial-state shower. Previous studies have shown that k_{ISR} is the only parameter in PYTHIA6 that has significant impact on the $\Delta \phi_{dijet}$ distributions [27]. The default value of k_{ISR} in PYTHIA6 tune D6T is 2.5, determined from the D0 dijet azimuthal decorrelation results [1]. Figure 4 shows comparisons of the measured $\Delta \phi_{dijet}$ distributions to PYTHIA6 distributions with various k_{ISR} values. The effects are more pronounced for smaller $\Delta \phi_{dijet}$ angles, where multigluon radiation dominates. Varying k_{ISR} by ± 0.5 about its default value yields a change of about 30% on the PYTHIA6 prediction for $\Delta \phi_{dijet} \sim \pi/2$, suggesting that our results could be used to tune parameters in the MC event generators that control radiative effects in the initial state. In PYTHIA6 tune D6T, the maximum p_T allowed in the final-state radiation parton shower is controlled through the parameter PARP(71). We varied the value of this parameter from 2.5 to 8 (the default value is 4.0) and observed less than $\sim 10\%$ changes in the $\Delta \phi_{dijet}$ distributions in all p_T regions.

In summary, we have measured dijet azimuthal decorrelations in different leading-jet p_T regions from pp collisions at $\sqrt{s} = 7$ TeV. The PYTHIA6 and HERWIG++ event generators are found to best describe the shape of the measured distributions over the entire range of $\Delta \phi_{dijet}$. The predictions from NLO pQCD are in reasonable agreement with the measured distributions, except at small $\Delta \phi_{dijet}$ where multiparton radiation effects dominate. The $\Delta \phi_{dijet}$ distributions are found to be sensitive to initial-state gluon radiation.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC.
machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEAS and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); BAE and DST (Indonesia); IPM (Iran); IFAE (Spain); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, and Uzbekistan); MST and MAE (Russia); FCT (Portugal); JINR (Armenia, Belarus, and Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); NKFIA and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[15] The PYTHIA6 Z2 tune is identical to the Z1 tune described in Ref. [11] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2 M. Friedl,2 R. Frühwirth,2 V. M. Ghete,2 J. Hammer,2 H. Hänsel,2 C. Hartl,2 M. Hohlwurm,2 J. Hrubec,2 N. Hümmer,2 J. Hrubec,2 M. Jeitler,2 G. Kasieczka,2 W. Kiesenhofer,2 M. Krammer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2 H. Rohringer,2 M. Rodozov,1 S. Sibirtsev,1 V. Tchelitchew,1 G. Wulz,2 R. Köhnebeck,2 J. Strauss,2 A. Taurok,2 F. Teischinger,2 P. Wagner,2 W. Waltenberger,2 G. Walzel,2 E. Wied,2 C.-E. Wulz,2 V. Mossovov,3 N. Shumeiko,3 J. Suarez Gonzalez,3 L. Benucci,4 K. Cerny,4 E. A. De Wolf,4 X. Janssen,4 T. Maes,4 L. Mucibello,4 S. Ochesanu,4 B. Roland,4 R. Roughy,4 M. Selvaggi,4 H. Van Haevermaet,4 P. Van Mechelen,4 L. Thomas,4 C. Vander Velde,4 P. Vanlaer,4 J. Wickens,4 V. Adler,7 S. Costantini,7 M. Grunewald,7 B. Klein,7 A. Marinov,7 J. Mccartin,7 D. Ryckbosch,7 F. Thyssen,7 M. Tytgat,7 L. Vanelderen,7 P. Verwilligen,7 S. Walsh,7 N. Zaganidis,7 S. Basegmez,8 G. Bruno,8 J. Caudron,8 L. Ceard,8 P. Verwilligen,7 S. Walsh,7 N. Zaganidis,7 S. Basegmez,8 G. Bruno,8 J. Caudron,8 L. Ceard,8
26 Lappeenranta University of Technology, Lappeenranta, Finland
27 Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
34 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
35 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
37 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
38 Deutsches Elektronen-Synchrotron, Hamburg, Germany
39 University of Hamburg, Hamburg, Germany
40 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
41 Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
42 University of Athens, Athens, Greece
43 University of Ioánnina, Ioánnina, Greece
44 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
45 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
46 University of Debrecen, Debrecen, Hungary
47 Panjab University, Chandigarh, India
48 University of Delhi, Delhi, India
49 Bhabha Atomic Research Centre, Mumbai, India
50 Tata Institute of Fundamental Research - EHEP, Mumbai, India
51 Tata Institute of Fundamental Research - HECR, Mumbai, India
52 Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
53a INFN Sezione di Bari, Bari, Italy
53b Università di Bari, Bari, Italy
53c Politecnico di Bari, Bari, Italy
54a INFN Sezione di Bologna, Bologna, Italy
54b Università di Bologna, Bologna, Italy
55a INFN Sezione di Catania, Catania, Italy
55b Università di Catania, Catania, Italy
56a INFN Sezione di Firenze, Firenze, Italy
56b Università di Firenze, Firenze, Italy
56c Scuola Normale Superiore di Pisa, Pisa, Italy
57 INFN Laboratori Nazionali di Frascati, Frascati, Italy
58a INFN Sezione di Genova, Genova, Italy
58b INFN Sezione di Milano-Bicocca, Milano, Italy
58c Università di Milano-Bicocca, Milano, Italy
58d INFN Sezione di Napoli, Napoli, Italy
58e Università di Napoli “Federico II,” Napoli, Italy
58f INFN Sezione di Padova, Padova, Italy
58g Università di Padova, Padova, Italy
58h Università di Trento (Trento), Padova, Italy
58i INFN Sezione di Pavia, Pavia, Italy
58j Università di Pavia, Pavia, Italy
58k INFN Sezione di Perugia, Perugia, Italy
58l Università di Perugia, Perugia, Italy
58m INFN Sezione di Pisa, Pisa, Italy
58n Università di Pisa, Pisa, Italy
58o Scuola Normale Superiore di Pisa, Pisa, Italy
58p INFN Sezione di Roma, Roma, Italy
58q Università di Roma “La Sapienza,” Roma, Italy
58r INFN Sezione di Torino, Torino, Italy
58s Università di Torino, Torino, Italy
58t Università del Piemonte Orientale (Novara), Torino, Italy
58u INFN Sezione di Trieste, Trieste, Italy
58v Università di Trieste, Trieste, Italy
58w Kangwon National University, Chunchon, Korea
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Korea University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Soltan Institute for Nuclear Studies, Warsaw, Poland
Laboratorio de Instrumentacion e Fisica Experimental de Particulas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
P. N. Lebedev Physical Institute, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
Universidad Autonoma de Madrid, Madrid, Spain
University of Oviedo, Oviedo, Spain
Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute of Particle Physics, ETH Zurich, Zurich, Switzerland
Universitat Zurich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
130 The University of Iowa, Iowa City, Iowa, USA
131 Johns Hopkins University, Baltimore, Maryland, USA
132 The University of Kansas, Lawrence, Kansas, USA
133 Kansas State University, Manhattan, Kansas, USA
134 Lawrence Livermore National Laboratory, Livermore, California, USA
135 University of Maryland, College Park, Maryland, USA
136 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
137 University of Minnesota, Minneapolis, Minnesota, USA
138 University of Mississippi, University, Mississippi, USA
139 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
140 State University of New York at Buffalo, Buffalo, New York, USA
141 Northeastern University, Boston, Massachusetts, USA
142 Northwestern University, Evanston, Illinois, USA
143 University of Notre Dame, Notre Dame, Indiana, USA
144 The Ohio State University, Columbus, Ohio, USA
145 Princeton University, Princeton, New Jersey, USA
146 University of Puerto Rico, Mayaguez, Puerto Rico, USA
147 Purdue University, West Lafayette, Indiana, USA
148 Purdue University Calumet, Hammond, Indiana, USA
149 Rice University, Houston, Texas, USA
150 University of Rochester, Rochester, New York, USA
151 The Rockefeller University, New York, New York, USA
152 Rutgers, the State University of New Jersey, Piscataway, New York, USA
153 University of Tennessee, Knoxville, Tennessee, USA
154 Texas A&M University, College Station, Texas, USA
155 Texas Tech University, Lubbock, Texas, USA
156 Vanderbilt University, Nashville, Tennessee, USA
157 University of Virginia, Charlottesville, Virginia, USA
158 Wayne State University, Detroit, Michigan, USA
159 University of Wisconsin, Madison, Wisconsin, USA

a Deceased.
b Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
c Also at Universidade Federal do ABC, Santo Andre, Brazil.
d Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
e Also at Suez Canal University, Suez, Egypt.
f Also at Fayoum University, El-Fayoum, Egypt.
g Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
h Also at Massachusetts Institute of Technology, Cambridge, MA, USA.
i Also at Universite de Haute-Alsace, Mulhouse, France.
j Also at Brandenburg University of Technology, Cottbus, Germany.
k Also at Moscow State University, Moscow, Russia.
l Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
m Also at Eötvös Loránd University, Budapest, Hungary.
 Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
o Also at University of Visva-Bharati, Santiniketan, India.
p Also at Facolta Ingegneria Universita di Roma “La Sapienza,” Roma, Italy.
q Also at Università della Basilicata, Potenza, Italy.
r Also at Università degli studi di Siena, Siena, Italy.
s Also at California Institute of Technology, Pasadena, CA, USA.
t Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
u Also at University of California, Los Angeles, Los Angeles, CA, USA.
v Also at University of Florida, Gainesville, FL, USA.
w Also at Université de Genève, Geneva, Switzerland.
x Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
y Also at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
z Also at University of Athens, Athens, Greece.

122003-14
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Paul Scherrer Institut, Villigen, Switzerland.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Suleyman Demirel University, Isparta, Turkey.
Also at Ege University, Izmir, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.
Also at Istanbul Technical University, Istanbul, Turkey.
Also at Laboratori Nazionale di Legnaro dell’INFN, Legnaro, Italy.