In this paper we present a physical discussion of the indirect two-photon absorption (TPA) occuring in silicon carbide with either cubic or wurtzite structure. Phonon-electron interaction is analyzed by finding the phonon features involved in the process as depending upon the crystal symmetry. Consistent physical assumptions about the phonon-electron scattering mechanisms are proposed in order to give a mathematical formulation to predict the wavelength dispersion of TPA and the Kerr nonlinear refractive index n2. The TPA spectrum is investigated including the effects of band nonparabolicity and the influence of the continuum exciton. Moreover, a parametric analysis is presented in order to fit the experimental measurements. Finally, we have estimated the n2 in a large wavelength range spanning the visible to the mid-IR region.
Dispersion of nonresonant third-order nonlinearities in Silicon Carbide / DE LEONARDIS, Francesco; Soref, R. A.; Passaro, Vittorio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7:(2017). [10.1038/srep40924]
Dispersion of nonresonant third-order nonlinearities in Silicon Carbide
DE LEONARDIS, Francesco;PASSARO, Vittorio
2017-01-01
Abstract
In this paper we present a physical discussion of the indirect two-photon absorption (TPA) occuring in silicon carbide with either cubic or wurtzite structure. Phonon-electron interaction is analyzed by finding the phonon features involved in the process as depending upon the crystal symmetry. Consistent physical assumptions about the phonon-electron scattering mechanisms are proposed in order to give a mathematical formulation to predict the wavelength dispersion of TPA and the Kerr nonlinear refractive index n2. The TPA spectrum is investigated including the effects of band nonparabolicity and the influence of the continuum exciton. Moreover, a parametric analysis is presented in order to fit the experimental measurements. Finally, we have estimated the n2 in a large wavelength range spanning the visible to the mid-IR region.File | Dimensione | Formato | |
---|---|---|---|
srep40924 our.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.