We study a degenerate oblique derivative problem in Sobolev spaces W-2,W-p (Omega), for all p > 1, for uniformly elliptic operators with Lipschitz continuous coefficients. The vector field prescribing the boundary condition becomes tangential to M at the points of a non-empty set and is of emergent type. (c) 2005 Elsevier Inc. All rights reserved.

The Poincaré problem in L^p-Sobolev spaces. I: Codimension one degeneracy / Palagachev, Dian Kostadinov. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 229:1(2005), pp. 121-142. [10.1016/j.jfa.2004.12.006]

The Poincaré problem in L^p-Sobolev spaces. I: Codimension one degeneracy

PALAGACHEV, Dian Kostadinov
2005-01-01

Abstract

We study a degenerate oblique derivative problem in Sobolev spaces W-2,W-p (Omega), for all p > 1, for uniformly elliptic operators with Lipschitz continuous coefficients. The vector field prescribing the boundary condition becomes tangential to M at the points of a non-empty set and is of emergent type. (c) 2005 Elsevier Inc. All rights reserved.
2005
http://www.sciencedirect.com/science/article/pii/S0022123604004252
The Poincaré problem in L^p-Sobolev spaces. I: Codimension one degeneracy / Palagachev, Dian Kostadinov. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 229:1(2005), pp. 121-142. [10.1016/j.jfa.2004.12.006]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/11382
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact