Magnetic shape memory (MSM) alloys are comparatively new active materials which can be used for several industrial applications, ranging from precise positioning systems to advanced robotics. Beyond the material research, which deals with the basic thermo-magneto-mechanical properties of the crystals, the design as well as the control of the actuators displacement is an essential challenge. This paper addresses those two topics, trying to give to the reader a useful overview of existing results, but also presents new ideas. First, it introduces and discusses in details some possible designs, with a special emphasis on innovative actuator design concepts which are able to exploit the particular potentialities of MSM elements. The second focus of the paper is on the problem of designing a controller, i.e., an algorithm that allows to obtain a required performance from the actuator. The proposed control strategies try to take into account two main characteristics of MSM elements: the hysteresis and the temperature dependence. The effectiveness of the strategies is emphasized by experimental results performed on a commercially available MSM actuator demonstrator.
MSM Actuators: Design Rules and Control Strategies / Holz, B.; Riccardi, L.; Janocha, H.; Naso, David. - In: ADVANCED ENGINEERING MATERIALS. - ISSN 1438-1656. - 14:8(2012), pp. 668-681. [10.1002/adem.201200045]
MSM Actuators: Design Rules and Control Strategies
NASO, David
2012-01-01
Abstract
Magnetic shape memory (MSM) alloys are comparatively new active materials which can be used for several industrial applications, ranging from precise positioning systems to advanced robotics. Beyond the material research, which deals with the basic thermo-magneto-mechanical properties of the crystals, the design as well as the control of the actuators displacement is an essential challenge. This paper addresses those two topics, trying to give to the reader a useful overview of existing results, but also presents new ideas. First, it introduces and discusses in details some possible designs, with a special emphasis on innovative actuator design concepts which are able to exploit the particular potentialities of MSM elements. The second focus of the paper is on the problem of designing a controller, i.e., an algorithm that allows to obtain a required performance from the actuator. The proposed control strategies try to take into account two main characteristics of MSM elements: the hysteresis and the temperature dependence. The effectiveness of the strategies is emphasized by experimental results performed on a commercially available MSM actuator demonstrator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.