In the recent papers [1,2] we studied a new procedure based on the Korn inequality for determining sufficient conditions for the Hadamard stability, aimed at determining optimal lower bound estimates for the critical load in bifurcation problems. Here, we discuss the effectiveness of our approach for the classical representative problem of uniaxial compression of a Mooney-Rivlin circular cylinder. We find that our lower bound estimate is effective and advantageous for applications, since it is easily implementable in numerical codes.

Optimal bounds from below of the critical load for elastic solids subject to uniaxial compression

Castellano, Anna;Foti, Pilade;Fraddosio, Aguinaldo;Marzano, Salvatore;Piccioni, Mario Daniele
2015-01-01

Abstract

In the recent papers [1,2] we studied a new procedure based on the Korn inequality for determining sufficient conditions for the Hadamard stability, aimed at determining optimal lower bound estimates for the critical load in bifurcation problems. Here, we discuss the effectiveness of our approach for the classical representative problem of uniaxial compression of a Mooney-Rivlin circular cylinder. We find that our lower bound estimate is effective and advantageous for applications, since it is easily implementable in numerical codes.
86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/117682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact